WO2007148668A1 - 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム - Google Patents

光記録情報再生方法および装置、ならびに光記録情報再生用プログラム Download PDF

Info

Publication number
WO2007148668A1
WO2007148668A1 PCT/JP2007/062268 JP2007062268W WO2007148668A1 WO 2007148668 A1 WO2007148668 A1 WO 2007148668A1 JP 2007062268 W JP2007062268 W JP 2007062268W WO 2007148668 A1 WO2007148668 A1 WO 2007148668A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
recording medium
power
information
unit
Prior art date
Application number
PCT/JP2007/062268
Other languages
English (en)
French (fr)
Inventor
Hideyuki Muto
Junichi Furukawa
Yoshio Sasaki
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007148668A1 publication Critical patent/WO2007148668A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1369Active plates, e.g. liquid crystal panels or electrostrictive elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation
    • G11B7/1263Power control during transducing, e.g. by monitoring

Definitions

  • the present invention relates to an optical recording information reproducing method and apparatus for reproducing information optically recorded on a recording medium such as CD, DVD, Blu-ray DISC, HD (High Definition) DVD, and optical
  • a recording medium such as CD, DVD, Blu-ray DISC, HD (High Definition) DVD, and optical
  • the present invention relates to a program for reproducing recorded information.
  • Optical recording media such as CD, DVD, and next-generation DVD (Blu-ray DISC, HD DVD)
  • the operating current is relatively small, and a single mode laser (laser having a single longitudinal mode) is used as a light source.
  • the laser light emitted from this single mode laser has a very high coherence, so noise that causes fluctuations in the laser light power of the laser light emitted from the light source (single mode laser) when reproducing data. It is necessary to maintain a high ratio to CNR (ie, Carrier to Noise Ratio).
  • the noise that causes the laser light power fluctuation includes noise (return light noise) caused by interference with the return light from the recording medium, optical parts, and the like, and laser noise caused by temperature fluctuation and the like.
  • the writing (recording) of information on the recording medium is performed by the state change of the medium recording layer based on the heat caused by the irradiation light, so from the viewpoint of preventing deterioration of the recording layer.
  • Patent Document 1 discloses that the optical coupling efficiency, which is the ratio of the amount of light collected on the recording medium to the total amount of light emitted from the light source, is large during recording and small during reproduction. By setting it, it is possible to maintain a high CNR while suppressing the irradiation light power during playback.
  • Patent Document 2 discloses an optical head having transmitted light amount changing means for changing the amount of light reaching a recording medium from a light source.
  • the optical head described in Patent Document 2 when reproducing information of the first recording medium having a plurality of recording layers, the light emitted from the light source is transmitted by the transmitted light amount changing means.
  • the irradiation light power and CNR are kept high, and when reproducing information from a second recording medium having a single-layer (single-layer) recording layer, the amount of transmitted light
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-260272
  • Patent Document 2 JP 2004-272949 A
  • Patent Document 1 discloses a content in which the coupling efficiency of light emitted from a light source and reaching a recording medium is simply switched between recording and reproduction.
  • Patent Document 1 discloses a content in which the coupling efficiency of light emitted from a light source and reaching a recording medium is simply switched between recording and reproduction.
  • the amount of light emitted from the light source and reaching the recording medium is determined by simply including the first recording medium having a plurality of recording layers and the single-layer recording layer.
  • the content of switching between the second recording medium and the second recording medium is disclosed, and a specific disclosure is provided regarding how to adjust the amount of light emitted from the light source and reaching the recording medium during reproduction. Or as an example, there is a problem of lack of practicality and lack of practicality.
  • the present invention has been made in view of the above-described circumstances, and when reproducing information recorded on a recording medium, the amount of light emitted from a light source and applied to the recording medium is specifically set to an arbitrary value. Its purpose is to make it possible to make adjustments. Means for solving the problem
  • the first aspect of the present invention receives reflected light reflected from information recorded on the recording medium based on the light emitted from the light source and applied to the recording medium.
  • An optical recording information reproducing apparatus for reproducing information recorded on the recording medium based on reflected light.
  • the optical recording information reproducing apparatus includes a light amount adjusting unit that can adjust the light amount of the light emitted from the light source by control information of external force and the like, the degree of light amount adjustment of the emitted light by the light amount adjusting unit and the recording
  • a light amount adjustment unit that sets the light amount adjustment degree of the light amount adjustment unit to a desired value by determining the control information based on power change information representing a relationship with the power change degree of the emitted light on the medium; ing.
  • the second aspect of the present invention is the information recorded on the recording medium based on the light emitted from the light source and irradiated on the recording medium in a state where the light amount is adjusted via the light amount adjusting unit.
  • a computer that is provided in an optical recording information reproducing apparatus that receives reflected light that has been reflected by force and reproduces information recorded on the recording medium based on the received reflected light, and that can control the light amount adjusting unit.
  • This is an executable program for reproducing optical recording information.
  • the optical recording information reproduction program causes the computer to provide power change information indicating the relationship between the light amount adjustment degree of the emitted light from the light source by the light amount adjusting unit and the power change degree of the emitted light on the recording medium.
  • the information force recorded on the recording medium has been reflected based on the light emitted from the light source and applied to the recording medium in a state in which the amount of light is adjusted.
  • this optical recording information reproducing method reflected light is received and information recorded on the recording medium is reproduced based on the received reflected light.
  • the step of monitoring the power of the light emitted from the light source on the recording medium, the monitoring result, the degree of light amount adjustment for the emitted light, and the power change degree of the emitted light is performed.
  • a step of setting the light intensity adjustment degree to a desired value based on the power change information representing the above relationship is reflected based on the light emitted from the light source and applied to the recording medium in a state in which the amount of light is adjusted.
  • FIG. 1 is a block diagram showing a schematic configuration of an information recording / reproducing apparatus according to a first embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an information recording / reproducing apparatus according to a first embodiment of the present invention.
  • FIG. 8 A flowchart schematically showing an example of processing executed by the computer of the information recording / reproducing apparatus according to the second embodiment of the present invention.
  • A is a graph showing an example of the relationship between the error rate and reproduction linear velocity of a certain ECC block in the second embodiment of the present invention
  • B is a certain E CC block in the second embodiment of the present invention.
  • the graph showing an example of the relationship between the error rate and light transmittance.
  • FIG. 10 A flowchart schematically showing an example of processing executed by the computer of the information recording / reproducing apparatus according to the third embodiment of the present invention.
  • step S54 shown in FIG. 10 is performed while changing the value of the recording laser beam intensity on the recording medium from 8.lmW to the front and back thereof.
  • the strategy width of the laser multi-pulse modulation waveform corresponding to the NRZI data is changed from the default best state to the front and back thereof.
  • FIG. 14 A shows a PI error rate range including the threshold level obtained by the processing of steps S52 to S55 in FIG. 10 in the third embodiment of the present invention, and the reproduction linear velocity is set to quadruple speed.
  • B is an example of the transmittance change necessary for the PI error rate X corresponding to the threshold level at the reference speed to be maintained at the threshold level regardless of the increase in the reproduction linear velocity in the third embodiment of the present invention.
  • FIG. 15 is a diagram showing a relationship between a radial position of a recording medium and a reproducing linear velocity at the time of CAV recording in the third embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an information recording / reproducing apparatus 1 according to the first embodiment of the present invention.
  • reference numeral 3 denotes a recording medium having, for example, a disk-shaped protective layer and a disk-shaped recording layer that includes a recording track formed in a spiral shape or a concentric shape and is laminated on the protective layer. It is.
  • the recording medium 3 CD, DVD, Blu-ray Disc, HD D VD, or the like can be used.
  • the information recording / reproducing apparatus 1 is a recording medium that rotates at a desired speed.
  • 3 is a device having a function of recording information on three recording tracks and a function of reproducing information recorded on a recording track of the recording medium 3.
  • the recording track has at least one of lands and groups alternately arranged along the radial direction as one configuration example thereof. At least one of them is meandered at a predetermined frequency, and a part thereof is phase-modulated, for example, so that information such as recording track address information is included in the modulation portion.
  • the information recording / reproducing apparatus 1 performs optical recording on the recording track of the rotating recording medium 3.
  • Optical pick-up unit (optical head unit) 5 for recording and / or reproducing information by spot irradiation and power adjustment for adjusting the power of the recording medium 3 on the recording medium 3 Part 7.
  • the information recording / reproducing apparatus 1 also controls the rotation speed of the recording medium 3, controls the focus position of the spot light irradiated onto the recording track of the recording medium 3 by the optical pickup unit 5, and controls the spot with respect to the recording track.
  • a servo circuit 9 is provided as a servo control system for optical tracking control (tracking control).
  • the information recording / reproducing apparatus 1 has a function of generating data corresponding to information to be recorded on the recording medium 3 (hereinafter referred to as recording data), and recording on the recording medium 3 obtained by the optical pickup unit 5. And a recording / reproduction data processing unit 11 having a function of generating data corresponding to the recorded information (hereinafter referred to as reproduction data).
  • the information recording / reproducing apparatus 1 includes an optical pickup unit 5, a power adjustment unit 7, and a servo circuit 9
  • the computer 13 stores, for example, HDD (Hard)
  • the plurality of programs P are programs that cause the computer 13 to execute the control operation.
  • the optical pickup unit 5 emits laser light as light for information recording and / or reproduction, and drives and controls the LD unit 15. By controlling the output waveform of the laser beam output from the LD unit 15
  • the optical pickup unit 5 is an element for adjusting the amount of laser light output from the LD unit 15, and has a light transmittance due to a change in applied voltage from an LC (Light Control) driver described later.
  • a light control element (Light Control Element) 19 composed of a changing liquid crystal element is provided.
  • the LD unit 15 and the light amount adjusting element 19 in the optical pickup unit 5 are such that the optical axis of the laser light guided through both elements protects the recording medium 3. It arrange
  • FIG. 2 shows an example of the relationship between the change in the control condition (applied voltage) and the change in light transmittance in the light amount adjusting element 19 according to the present embodiment.
  • the horizontal axis represents the control condition (applied voltage) change (unit: volts [V])
  • the vertical axis represents the light transmittance change (unit [%]).
  • the light amount adjusting element 19 has a characteristic that attenuates by about 10% in the initial state (non-voltage applied state).
  • the optical pickup unit 5 includes a beam splitter 21 disposed on the optical path of laser light that is output from the LD unit 15 and travels through the light amount adjusting element 19.
  • the beam splitter 21 has a function of transmitting the laser beam traveling through the light amount adjusting element 19 and reflecting the light transmitted through a rising mirror described later.
  • the optical pickup unit 5 includes a rising mirror 23 disposed on the optical path of the laser light that has passed through the beam splitter 21.
  • the rising mirror 23 is configured to reflect the laser beam transmitted through the beam splitter 21 in a direction perpendicular to the optical axis and to the recording medium 3.
  • the optical pickup unit 5 supports the recording medium 3 so as to face the rising mirror 23 and so that the optical axis of the laser beam reflected by the rising mirror 23 is orthogonal to the surface of the protective layer. And a spindle motor 25 for rotating the recording medium 3.
  • the optical pickup unit 5 has an objective lens 27 interposed between the rising mirror 23 and the protective layer surface of the recording medium 3.
  • the objective lens 27 has a function of focusing the laser beam reflected by the rising mirror 23 onto the recording track of the recording medium 3 and irradiating it as spot light.
  • the optical pickup unit 5 is configured to be able to move the objective lens 27 along at least the radial direction of the recording medium 3 and the direction away from the recording medium 3, and electrically connected to the servo circuit 9. It has a connected actuator 29.
  • the actuator 29 is configured to adjust the focus position and tracking position of the light spot by moving the objective lens 27 based on the control from the servo circuit 9.
  • the objective lens 27 has a function of receiving light (reflected light) reflected from the recording track of the recording medium 3 during reproduction and outputting it as parallel light having a predetermined beam diameter.
  • the lifting mirror 23 has a function of reflecting the reflected light sent through the objective lens 27 and sending it to the beam splitter 21.
  • the beam splitter 21 has a function of reflecting the reflected light transmitted through the rising mirror 23.
  • the optical pickup unit 5 is arranged on the optical path of the reflected light reflected by the beam splitter 21, and receives the reflected light and converts it into an electrical signal (hereinafter referred to as an RF signal). Have 30.
  • the power adjustment unit 7 constantly monitors the power (intensity) of a part of the laser beam that has passed through the beam splitter 21 and has passed through the rising mirror 23, and this monitoring result is recorded on the recording medium.
  • 3 has a monitoring photodiode (hereinafter simply referred to as a monitoring diode) 31 that outputs a monitoring signal (electrical signal for monitoring, for example, monitoring current) representing the power of the laser beam irradiated on the recording medium 3. is doing.
  • the power adjusting unit 7 is electrically connected to the monitor diode 31 and includes an amplifier 33 that amplifies the monitor signal output from the monitor diode 31.
  • the amplifier 33 is electrically connected to the computer 13, and the computer 13
  • the power adjustment unit 7 has a sample and hold circuit (S / H) 35 electrically connected to the amplifier 33 and the computer 13.
  • the sample hold circuit 35 has a function of sampling and holding the value of the monitor signal output from the amplifier 33 when APC (Automatic Power Control) of the computer 13 is executed (when on).
  • the power adjustment unit 7 has an APC circuit 37 that is electrically connected to the sample hold circuit 35 and the LD driver 17.
  • the APC circuit 37 executes APC, based on the value of the monitor signal sampled and held by the sample and hold circuit 35, the monitor signal value is a predetermined power of the irradiation laser light on the recording medium 3.
  • the output waveform (output) of the laser beam output from the LD unit 15 is controlled (feedback control).
  • the power adjustment unit 7 has a light amount adjustment element driver (LC dryer) 38.
  • the LC driver 38 has a function of controlling the transmittance of the light amount adjusting element 13 by controlling the voltage applied to the light amount adjusting element 13 under the control of the computer 5.
  • the recording / playback data processing unit 11 is connected to the interface 41 for receiving the recording data (bit string data) input from the connected device and electrically connected to the interface 41 at the time of recording.
  • the interface 41, the buffer 43, and the modem unit 45 are each electrically connected to the computer 13, and their operations are controlled by the computer 13, for example.
  • the modulation / demodulation unit 45 performs, on the basis of control of the computer 13, the recording data held in the buffer 43 for each predetermined unit ⁇ in this embodiment, an ECC (Error Correlation Code) block It has a function of adding an error correction code ⁇ eg, PI (Parity Inner) correction code and / or PO (Parity Outer) correction code, etc. ⁇ to each unit ⁇ .
  • ECC Error Correlation Code
  • ECC block represents a unit of data recorded on the recording medium 3.
  • the ECC block has 182 bytes (172 2-byte data + 10-byte PI correction code) X 208 rows (192 rows + 16 rows PO correction code) ).
  • 172 bytes x 12 rows form one data frame
  • 16 ECCs are collected to form one ECC block.
  • the recording data of each frame of each ECC block after the error correction code is added is extracted from the wobble signal obtained by the meandering recording track running by the computer 13. Based on the clock with the meandering frequency of the recording track (Woven clock), whether the signal level is high or not for the value of that bit Is converted to a signal that changes from low level to low level or from low level to high level, and the converted data ⁇ NRZI (Non Return to Zero Inverted) data ⁇ is written to the recording track of recording medium 3 (recording The data correspond to the mark and pit.
  • the bit length (run length; recording signal length) until the edge of the NRZI data changes varies depending on the modulation method or the like.
  • NT ⁇ N is the type of recording medium 3
  • the integer is 3 or more.
  • the integer is 2 or more, and T is a period of a wobble clock).
  • the power level on the recording medium 3 is automatically feedback-controlled to the recording power level, and the output waveform is deformed (for example, multi-track). Pulsed laser light is irradiated, and a recording signal corresponding to the run length of each NRZI data is written on the recording track of the recording medium 3.
  • This laser light output waveform control (multi-pulse control) is called a write strategy, and the width of the multi-pulse is appropriately set according to the power level of the laser light on the recording medium 3. Further, it is possible to prevent the deterioration of the recording signal due to the continuous irradiation of the laser beam having a constant power level.
  • the modulation / demodulation unit 45 amplifies the RF signal obtained by the light receiving unit 30 during reproduction, and from the amplified RF signal, represents a wobble modulation signal and a tracking error indicating a tracking control error.
  • Each has a function for generating a signal and a focus error signal representing a focus control error, and a function for demodulating (decoding) reproduction data (bit string data) from the RF signal.
  • the demodulated playback data is sent to the computer 13, and this computer 13 performs error detection processing, judgment processing for determining whether or not the detected error can be corrected, and error correction if correction is possible. Correction processing is performed.
  • the reproduction data after the correction processing is held in the buffer 43 by the processing of the computer 13.
  • the interface 41 is information connected to the interface 41 at the time of reproduction. According to the control of the output device, it has a function of outputting the reproduction data held in the buffer 43 to the information output device.
  • the computer 13 stores setting information on the linear velocity of the recording medium 3 (speed of laser light traveling on the medium 3 during recording and / or reproduction; for example, 1 ⁇ speed, 2 ⁇ speed,..., 32 ⁇ speed, etc.)
  • An input unit 47 for inputting various information and instructions such as an ECC block defect judgment registration processing execution instruction and a trial writing execution instruction to the computer 13 by a user operation is connected.
  • the servo circuit 9 has a function of driving and controlling the spindle motor 25 according to an instruction from the computer 13 to rotate the recording medium 3 while keeping the linear velocity set and input by the input unit 47 constant.
  • CLV Constant Linear Velocity
  • CAV Constant Angular Velocity
  • the servo circuit 9 controls the actuator 29 based on the tracking error signal and the focus error signal obtained by the modulation / demodulation unit 45, so that the spot light irradiated on the recording track of the recording medium 3 is controlled. It has functions to perform focus position control and tracking control respectively.
  • the light amount adjusting element 19 configured to change the light amount of the output laser light according to the control information applied from the computer 13 via the LC driver 38 is used as the light amount adjusting element 19 from the computer 13 to the LC driver 38.
  • a liquid crystal element whose light transmittance is changed by a change in applied voltage applied via, is used, the present invention is not limited to this configuration.
  • variable optical attenuator ⁇ variable ND (Neutral Density ) Filters, etc. ⁇
  • polarizing elements wavelength plates, liquid crystal elements, etc.
  • elements composed of beam splitters can also be used.
  • a light amount adjusting unit according to the present invention by arranging a polarizing element instead of the light amount adjusting element 19 in FIG. 1 and combining the beam splitter 21.
  • the optical axis direction (polarization direction) of the polarization element is changed by a predetermined angle from the polarization direction of the incident laser light by the control information applied from the computer 13 via the driver.
  • the incident laser light after passing through the polarizing element and the beam splitter 21 is separated.
  • the light transmittance can be changed.
  • the computer 13 performs the control process of the LD driver 17 and the light amount adjustment element 19 in the optical pickup unit 5, the control process of the power adjustment unit 7, and the control process of the servo circuit 9. , And processing relating to error detection and / or correction in the recording / playback data processing unit 11 is executed in accordance with the corresponding program P loaded in the second memory 13b.
  • the power adjustment unit 7, LD of the computer 13 when reproducing the recording data recorded on the recording track of the recording medium 3 is performed.
  • the control process for the driver 17 and the light amount adjusting element 19 will be mainly described.
  • Power change information indicating the relationship with the power level change of the laser light irradiated onto the medium 3, more specifically, the applied voltage value (light quantity adjustment element control condition) to the light quantity adjustment element 19 and the output from the monitor diode 31
  • the power change information representing the relationship with the value of the monitor signal amplified by the amplifier 33 is generated in advance, and the generated power change information is stored in the first memory 13a as a power change information file F by a file format, for example.
  • the computer 13 executes the process shown in FIG. 3 according to at least one program P loaded in the second memory 13b.
  • step S1 the computer 13 sets the power level of the irradiation laser light on the recording medium 3 to a predetermined level (eg, 0.35 mW, 0.7 mW, 2 mW, etc., hereinafter referred to as a predetermined power level). Based on this specified power level, APC on-control of the Samp Nore Hold circuit 35 is performed.
  • a predetermined level eg, 0.35 mW, 0.7 mW, 2 mW, etc.
  • the sample hold circuit 35 performs a sample hold on the value of the monitor signal output from the amplifier 33 and outputs it to the APC circuit 37.
  • the APC circuit 37 passes the LD unit 17 through the LD driver 17 so that the power level (monitor power level) corresponding to the value of the sampled and held monitor signal substantially matches the predetermined power level.
  • the drive current applied to 15 is controlled to control the output power level of the laser beam output from the LD unit 15.
  • the recording track of the recording medium 3 is irradiated with laser light whose power level on the medium 3 is automatically feedback controlled to a predetermined power level.
  • step S1 the computer 13 stores the laser light output power level and the monitor signal value (monitor power level) corresponding to the laser light output power level in the first memory 13a in association with each other.
  • step S2 the computer 13 switches the APC control to the ON state force OFF state.
  • the sample hold circuit 35 In response to this APC off control, the sample hold circuit 35 outputs the value of the held monitor signal related to the value of the monitor signal output from the amplifier 33.
  • the APC circuit 37 passes through the LD driver 17 so that the power level (hold power level) corresponding to the value of the monitor signal output from the sample hold circuit 35 substantially matches the predetermined power level. Then, the drive current applied to the LD unit 15 is controlled, and the output power level of the laser beam output from the LD unit 15 is controlled to be constant to the hold unit level. As a result, the operation of the optical pick-up unit 5 irradiates the recording medium 3 with the laser light power from the LD unit 15 and its output power level controlled at a constant hold power level.
  • the computer 13 controls the voltage applied to the light amount adjusting element 19 via the LC driver 38, and the monitor power level in the state where the voltage is not applied to the light amount adjusting element 19 is detected. Adjust the ratio of the monitor power level at the time of applied voltage control (that is, the light transmittance of the light quantity adjusting element 19), and reduce this ratio from 100% to the desired ratio (for example, 50%).
  • the determination of S4 is NO (N) ⁇ .
  • the light transmittance of the light amount adjusting element 19 being 100% means the light transmittance of the light amount adjusting element 19 in a voltage non-application state, and the light transmittance of the light amount adjusting element 19 is 50%. Is This means that the ratio of the monitor power level when controlling the applied voltage to the monitor power level when no voltage is applied is approximately 50%.
  • the computer 13 controls the applied voltage to the light amount adjusting element 19 via the LC driver 38, and adjusts the light amount when the output power level of the laser light output from the LD unit 15 is constant. By reducing the light transmittance of the element 19, the power level on the recording medium 3 is reduced.
  • step S5 When the light transmittance of the light amount adjusting element 19 is reduced to a desired ratio (approximately 50%) in the determination of step S4 by the light transmittance lowering process ⁇ step S4 ⁇ YES (Y) ⁇ , the computer 13 The applied voltage value when the light transmittance of the light quantity adjusting element 19 is approximately 50% is associated with the corresponding monitor signal value (or monitor unit level) as a control condition corresponding to the light transmittance of 50%. 1 is stored in the memory 13a (step S5).
  • the first memory 13a corresponds to the information indicating the relationship between the laser light output power level corresponding to the predetermined power level on the recording medium 3 and the monitor signal value, and the light transmittance of 50%.
  • Information representing the relationship between the applied voltage value and the monitor signal value to be stored is stored, and information representing the relationship between the laser light output power level and the applied voltage value corresponding to the light transmittance of 50% is stored from these two pieces of information. Is stored in the first memory 13a.
  • the computer 13 changes the applied voltage value to the light amount adjusting element 19 even when the output power level of the laser light output from the LD unit 15 is kept constant. If the monitor power level based on the above constant laser beam output power level is set to 100% when the monitor power level during non-light intensity adjustment control (when no voltage is applied to the light intensity adjustment element 19) is assumed to be 100%, It becomes possible to set a desired value, for example, 50%.
  • the computer 13 adjusts the laser light output power level to a non-light quantity adjustment by changing the voltage applied to the light quantity adjustment element 19 even when the monitor power level is kept constant.
  • the laser output power level (monitor power level is constant) at the time of control (when no voltage is applied to the light intensity adjusting element 19) is 100%
  • the desired value from this 100% is, for example, 200% (monitor The power level can be set to a fixed level.
  • the ratio of the monitor power level when controlling the applied voltage to the monitor power level when the light transmittance of the light amount adjusting element 19 is 100% (when no voltage is applied) is set to a desired value of 50%.
  • the power described for the setting process The above ratio (that is, the light transmittance of the light amount adjusting element 19) varies within a predetermined range in multiple steps (eg 90%, 70%, 50%, 30%, 10%)
  • the light transmittance 100 of the light amount adjusting element 19 is obtained by repeatedly executing the process shown in FIG.
  • the ratio of the monitor power level during applied voltage control to the monitor power level at / ⁇ (when no voltage is applied) can be set to any value within the specified range.
  • the computer 13 executes the processes of steps S1 and S2 shown in FIG.
  • the operation of the optical pickup unit 5 causes the laser light from the LD unit 15 to be recorded on the recording medium 3 in a state where the output power level is constantly controlled to the hold power level (corresponding to a predetermined power level). Irradiated.
  • the laser light output power level corresponding to the predetermined power level and the monitor signal value (monitor power level) corresponding to the laser light output power level are associated with each other, and the first memory is used as a component of the power change information file F. Stored in 13a.
  • the computer 13 selects a light transmittance (90%, 70%, 50%, 30%, 10%) in a plurality of stages within a predetermined range (for example, 90% to 0%)
  • a predetermined range for example, 90% to 0%
  • One of the transmittances for example, 10% is selected (step S10).
  • the computer 13 controls the voltage applied to the light amount adjusting element 19 in the same manner as steps S3 and S4 shown in FIG. Adjust the ratio of the monitor power level when controlling the applied voltage to the power level (light transmittance of the light intensity adjustment element 19), and lower this ratio from 100% until it reaches the selected value (10%) (Step S4 ⁇ NO).
  • step S5 When the light transmittance of the light amount adjusting element 19 reaches the selected value (10%) in the determination of step S4 by the light transmittance lowering process (step S4 ⁇ YES), the computer 13 performs the steps shown in FIG. As in S5, when the light transmittance of the light quantity adjustment element 19 reaches the selected value of 10% (the ratio of the monitor power level during applied voltage control to the monitor power level when no voltage is applied to the light quantity adjustment element 19) The applied voltage value at 10%) As a control condition corresponding to the light transmittance of 10%, the components of the power change information file F are stored in the first memory 13a in association with the corresponding monitor signal value (or monitor power level) and laser light output power level. (Step S5).
  • step Sl l the computer 13 determines whether or not all of the light transmittances in a plurality of stages (90%, 70%, 50%, 30%, 10%) have been selected (step Sl l). Now, since the light transmittance of 10% is selected, the determination in step S11 is NO, and the computer 13 returns to the process of step S10, and the plurality of unselected light transmittances (90 /.,. 70%, 50%, 30./.) Select one of the transmittances, and perform the processing of step S3, step S4, and step SI 1, and the judgment of step S11 is YES, that is, all Repeat until you have selected the light transmittance (90./o, 70%, 50%, 30%).
  • the first memory 13a has a plurality of applied voltage values (control conditions) corresponding to a plurality of light transmittances (90%, 70%, 50%, 30%, 10%), and this Information indicating the relationship with the plurality of monitor signal values (monitor signal power levels) corresponding to each of the plurality of applied voltage values, the laser beam output power level corresponding to the predetermined power level, and the laser beam output power level Information representing the relationship with the monitor signal value (monitor power level) is stored in the first memory 13a as a component of the power change information file F.
  • FIG. 5 shows the control condition (applied voltage) change (corresponding to the light transmittance change of the light quantity adjusting element 19) obtained as the power change information file F and the corresponding monitor signal value change. It is a graph showing an example of a relationship.
  • the horizontal axis represents control condition (applied voltage) change (unit: volts [V])
  • the vertical axis represents monitor signal value change (unit [mA: milliampere]) 3 ⁇ 4r.
  • a plurality of values are selected within a predetermined range (about 0% to about 90%) as the light transmittance in a plurality of stages.
  • the value between the light transmittances is approximated by connecting the P contact transmittances. That is, in the above description, the computer 13 has a plurality of applied voltage values (control conditions) corresponding to a plurality of light transmittances and a plurality of monitor signal values (monitor signal power levels corresponding to the plurality of applied voltage values).
  • the power change information file F is stored while being associated with each other.
  • the present invention is not limited to this configuration.
  • the computer 13 has a plurality of applied voltage values (control conditions) corresponding to a plurality of light transmittances within a predetermined range, and a plurality of monitor signal values corresponding to the plurality of applied voltage values (Graph data approximated based on the relationship with the monitor signal power level (see Fig. 5) can be stored as the power change information file F.
  • the computer 13 sets the power level of the irradiation laser beam on the recording medium 3 to a predetermined power level, and based on the set predetermined power level. Then, APC on control is executed for the sample hold circuit 35 (FIG. 5; step S21).
  • the sample hold circuit 35 samples and holds the monitor signal value output from the amplifier 33 and outputs the monitor signal value to the APC circuit 37.
  • the APC circuit 37 controls the drive current applied to the LD unit 15 via the LD driver 17, and sets the output power level of the laser light output from the LD unit 15 to a desired level. ing
  • the computer 13 In parallel with the drive current control of the APC circuit 37, the computer 13 refers to the power change information file F stored in the first memory 13a, and monitors the sampled and held monitor signal value and the set laser beam output power. The control condition (applied voltage value) corresponding to the level is obtained (step S22).
  • step S22 data indicating the relationship between the monitor signal value change at a constant laser light output power level and the applied voltage value change is obtained.
  • Data representing the relationship between the laser light output power level change and the applied voltage value change when the monitor signal value is fixed can be obtained.
  • the control condition (applied voltage value) corresponding to the set laser beam output power level can be obtained.
  • the computer 13 applies the obtained applied voltage value to the light amount adjusting element 19, thereby recording related to the output power level of the laser light output from the LD unit 15.
  • the power level on the medium 3 is maintained at a predetermined power level (step S23).
  • the LD unit 15 via the APC circuit 37 and the LD driver 17 while maintaining the power level on the recording medium 3 at a predetermined power level.
  • the output power level of the laser beam output from can be set to a desired level.
  • the power level of the laser beam output from the LD unit 15 (laser beam output power level) is set on the condition that the ratio to the corresponding monitor power level is included in the predetermined range of the light transmittance described above.
  • the maximum value can be set.
  • the reproduction characteristic in the present embodiment is an index for evaluating the reproduction data obtained by the recording / reproduction data processing unit 11 and the computer 13.
  • the recording medium 3 of this embodiment is a DVD
  • the ratio of PI errors indicating the number of error bytes for all rows in each ECC block (PI error rate: number of error bytes / number of normal bytes in each ECC block) Can be used as a reproduction characteristic.
  • Fig. 7 shows a recording medium when Blu-ray DISC is used as the recording medium 3.
  • the light transmittance of the light amount adjusting element 19 is reduced from 90% to 50% with the laser beam irradiation power on the recording medium 3 kept constant, in other words, the recording medium
  • the PI error rate production characteristics
  • the light transmittance of the light amount adjusting element 19 is maintained in a state where the laser beam irradiation power level on the recording medium 3 is kept constant by the processing shown in FIG.
  • the laser light output power level can be adjusted to increase, and the reproduction characteristic of the reproduction data can be improved by increasing the laser light output power level.
  • the function of recording information on the recording track of the recording medium 3 rotating at a predetermined speed, and the recording track of the recording medium 3 are recorded.
  • the present invention is not limited to this configuration, and only for reproduction having a function of reproducing information recorded on a recording track of the recording medium 3 It is also applicable to the device.
  • An information recording / reproducing apparatus according to a second embodiment of the present invention will be described with reference to the drawings.
  • the hardware components of the information recording / reproducing apparatus according to the second embodiment are substantially the same as the hardware configuration of the information recording / reproducing apparatus 1 according to the first embodiment. The description is omitted or simplified.
  • the reproduction characteristics of the recording medium 3 deteriorate as the reproduction linear velocity of the recording medium 3 increases. Further, as described above, the reproduction characteristics can be improved by reducing the light transmittance of the light amount adjusting element 19 in a state where the laser light irradiation power level on the recording medium 3 is kept constant. It can also be seen that the degree of improvement becomes more pronounced as the playback linear velocity increases.
  • the inventors of the present invention pay attention to the relationship between the reproduction linear velocity and the reproduction characteristic, and the relationship between the light transmittance and the reproduction characteristic, and by using the respective relationships, We have figured out that it is possible to easily and quickly perform defect judgment registration processing when performing defect management (difference management) of data written on a recording track.
  • the reason that the data written on the recording track of the recording medium 3 is in a defective state is that the recording layer deteriorates due to repeated overwriting on the recording medium 3, the medium 3 itself Quality defects, scratches and dirt on the medium 3, and the like.
  • Data written to the recording track of recording medium 3 is in such a “defective” state. In this case, it can be determined that it is not appropriate to use this data for future reading and writing. Therefore, the above data is subject to defect management.
  • the defect determination registration process for the data written on the recording track of the recording medium 3 is easier than the conventional defect determination registration process. And it functions as a defect management system that can be performed quickly.
  • the defect management (difference management) of data written to the recording track of the recording medium 3 refers to the ECC block written after the recording data is written to the recording track of the recording medium 3 in units of ECC blocks, for example. If the ECC block is determined to be a defective block (defective block) as a result of the verification, the address of the ECC block and the degree of defect (difference level) are This is a process of managing in association with each other.
  • the recording medium 3 has a reference linear velocity as a reference indicating whether each ECC block is a defective (difference) block.
  • the threshold level of the PI error rate indicating the reproduction characteristics of the reproduction data of each ECC block in the state of rotating at double speed is preset and stored in the first memory 13a of the converter 13 .
  • the computer 13 is rotated at a speed higher than the reference linear velocity (double speed) (for example, quadruple speed). Therefore, it is possible to determine whether or not the ECC block force is S defective block (defective) with the same accuracy as a conventional information recording / reproducing apparatus.
  • double speed for example, quadruple speed
  • the computer 13 executes the processing shown in FIG. 8 according to at least one program P loaded in the second memory 13b.
  • the computer 13 controls the spindle motor 25 via the servo circuit 9 and sets it through the input unit 47 as step S31.
  • the recording medium 3 is rotated at a speed, for example, 4 times faster than the input reference linear velocity.
  • the computer 13 drives and controls the actuator 29 via the servo circuit 9 while confirming the address of the recording track, and focuses the objective lens 27 to a predetermined recording target address in the recording track of the recording medium 3. And tracking.
  • the computer 13 sets the light transmittance of the light amount adjusting element 19 to a predetermined value (hereinafter referred to as a reference light transmittance) as a reference.
  • a reference light transmittance a predetermined value
  • the computer 13 sets the power level Pw of the irradiation laser beam on the recording medium 3 to a predetermined recording power level (for example, 8. lmW), and samples based on the set recording power level.
  • Hold circuit 35 is APC-on controlled.
  • the sample hold circuit 35 samples and holds the value of the monitor signal output from the amplifier 33 and outputs it to the APC circuit 37.
  • the APC circuit 37 for example, in the high level state, the power corresponding to the value of the monitor signal sampled and held
  • the drive current given to the LD unit 15 is controlled via the LD driver 17 so that the level (monitor power level) substantially matches the recording power level, and the output is multipulsed based on a predetermined write strategy and output.
  • a laser beam whose power level is controlled is output.
  • a predetermined recording target address in the recording track of the recording medium 3 is irradiated with a laser beam whose power level Pw on the medium 3 is automatically feedback-controlled to the recording power level.
  • a recording signal corresponding to the run length of the block's NRZI data is written.
  • the computer 13 After the completion of writing, as a verification process, the computer 13 maintains the linear velocity of the recording medium 3 and the focusing and tracking with respect to a predetermined recording target address in the recording track of the recording medium 3 of the objective lens 27, respectively. Irradiation on 3 The power level of the light is set to a predetermined power level, and the sample hold circuit 35 is APC-on controlled based on the set predetermined power level (step S32).
  • the sample hold circuit 35 samples and holds the value of the monitor signal output from the amplifier 33 and outputs it to the APC circuit 37.
  • the APC circuit 37 drives the drive current supplied to the LD unit 15 via the LD driver 17 so that the monitor power level corresponding to the value of the sampled and held monitor signal substantially matches the predetermined power level.
  • the operation of the optical pickup unit 5 irradiates the ECC block having the output waveform controlled to the ECC block written as a recording signal at a predetermined address in the recording track of the recording medium 3.
  • the reflected light reflected from the corresponding recording signal is detected as an RF signal through the light receiving unit 30 by the operation of the optical pickup unit 5, and is transmitted through the modem unit 45.
  • the data is decoded as ECC block reproduction data (bit string data) and transmitted to the computer 13.
  • step S33 the computer 13 obtains the PI error rate from the reproduction data of the received ECC block, and then in step S34, the obtained PI error rate is stored in the first memory 13a. It is determined whether or not the threshold level is exceeded.
  • step S34 If it is determined in step S34 that NO (the obtained PI error rate is less than the threshold level), this ECC block is determined to be a normal block. At this time, the computer 13 returns to the process of step S31 and executes the above-described differential determination process for the next ECC block (see steps S31 to S34).
  • step S34 the computer 13 performs the verification process shown in step S32 for this ECC block on the recording medium 3. Execute again with the rotation speed of 2 times the reference speed returned to the ECC block to obtain the playback data of the ECC block. As shown in step S33, the playback error of the obtained ECC block also determines the PI error rate ( Step S35).
  • step S36 determines again whether or not the obtained PI error rate is equal to or higher than the threshold level stored in the first memory 13a (step S36). [0129] If it is determined in step S36 that NO (the obtained PI error rate is less than the threshold level stored in the first memory 13a), the computer 13 reproduces the ECC block in step S34. Recognizing that the defective block (defective) is determined due to the increase of the linear velocity ⁇ reference speed (2x speed) ⁇ 4x speed ⁇ , the process proceeds to step S38.
  • step S36 determines YES (the calculated PI error rate is equal to or higher than the threshold level stored in the first memory 13a)
  • the computer 13 determines that the ECC block has a high reproduction linear velocity. Regardless of ⁇ standard speed (2x speed) ⁇ 4x speed ⁇ , it is recognized as a defective block (defective), and the process proceeds to step S37.
  • step S37 the computer 13 changes the differential processing in step S36.
  • I error rate level are stored in the first memory 13a in a state of being associated with each other.
  • step S38 the computer 13 determines whether the ECC block is determined to be defective at the quadruple speed and is normal at the reference speed (step S36 ⁇ YES), or any of the quadruple speed and the reference speed.
  • the verification process shown in step S32 for the ECC block determined to be defective is performed by setting the reproduction linear velocity of the recording medium 3 to quadruple speed and applying the applied voltage (control condition) to the light quantity adjusting element 19.
  • the light transmittance value of the light quantity adjusting element 19 is sequentially executed, for example, while changing in a plurality of stages, and the reproduction data of the ECC block corresponding to each of the plurality of light transmittance values is obtained.
  • step S38 as shown in step S33, the computer 13 obtains the PI error rate change characteristic from the reproduction data of the ECC block corresponding to each of the plurality of values of the light transmittance.
  • the computer 13 corresponds to the value of the light transmittance correlated with the PI error rate at the double speed that is the reference reproduction linear velocity, in other words, the reference velocity.
  • the light transmittance calibration value and the control condition (applied voltage value) corresponding to this calibration value are respectively determined, and the determined control condition (applied voltage value) is set to the address of the corresponding ECC block and the corresponding reproduction linear velocity. (4 times speed) is stored in the first memory 13a (step S39).
  • the computer 13 determines whether or not defect determination registration processing (write processing, verify processing, and differential detection processing) for all ECC blocks has been executed (step S40).
  • the computer 13 ends the defect determination registration process.
  • step S40 determines whether the result of determination in step S40 is N0, that is, if there is an ECC block that has not been subjected to the defect judgment registration process, all the ECC blocks have the above-mentioned defects at the quadruple speed.
  • the judgment registration process (see steps S31 to S40) is repeatedly executed.
  • FIG. 9A shows the PI error rate of the ECC block that is determined to be defective at 4 ⁇ speed and determined to be normal at the reference speed when NO is determined in step S36, and the reproduction linear velocity is These figures show the reference speed (2x speed) and 4x speed respectively.
  • the PI error rate of this ECC block is equal to or higher than the threshold level when the playback linear velocity is 4 ⁇ (YES in step S34), and is determined to be differential.
  • the PI error rate of the ECC block is less than the threshold level (NO in step S36), and is determined to be a normal ECC block.
  • FIG. 9B shows the PI block of the ECC block shown in FIG. 9A when the light transmittance is changed by changing the voltage applied to the light amount adjusting element 19 within a predetermined range by the processing of step S38. It is a figure which shows the change characteristic of an error rate roughly. In Fig. 9B, it is assumed that the PI error rate of the ECC block changes linearly due to the change in light transmittance.
  • the light transmittance calibration value of the element 19 can be obtained.
  • step S36 determines whether the error rate of the ECC block is differential in both quadruple speed and double speed. If YES is determined in step S36, that is, if the error rate of the ECC block is determined to be differential in both quadruple speed and double speed, the processing in steps S38 to S40 is performed. As a result, the PI error rate at the quadruple speed of the ECC block can be set to be approximately the same as the PI error rate at the reference speed.
  • each ECC block defect determination registration process is performed while rotating the recording medium 3 at the reference speed (double speed)
  • the reference Since the verify process can be performed at a higher playback linear velocity than the speed
  • each ECC block defect judgment registration process can be performed easily and quickly.
  • the defect judgment registration result of each ECC block can be obtained more easily and quickly than before.
  • the present embodiment by controlling the light transmittance of the light quantity adjusting element 19, the PI error rate of the ECC block that is initially determined to be differential at quadruple speed is obtained at the reference speed.
  • the PI error rate can be substantially matched.
  • the linear velocity used in the ECC block defect determination registration process is set to quadruple speed, but the present invention is not limited to this configuration, and other than the reference speed. It is possible to use linear velocity.
  • An information recording / reproducing apparatus according to a third embodiment of the present invention will be described with reference to the drawings.
  • the hardware components of the information recording / reproducing apparatus according to the third embodiment are substantially the same as the hardware configuration of the information recording / reproducing apparatus 1 according to the first embodiment. The description is omitted or simplified.
  • the information recording / reproducing apparatus of the present embodiment is also a recording medium.
  • It functions as a defect management system that can perform defect determination registration processing of data written on the third recording track more easily and quickly than conventional defect determination registration processing.
  • the defective ECC block is detected at a reproduction linear velocity (eg, 4 ⁇ speed) higher than the reference velocity (steps S 31 to S 34), when the ECC block determined to be defective is detected, the light quantity adjustment element 19 is calibrated for transmittance.
  • a reproduction linear velocity eg, 4 ⁇ speed
  • Test writing area PCA: Power Calibration Area
  • user data area etc. inside 3 are irradiated with laser light, and the error rate (PI error rate obtained by this test writing) is obtained.
  • the light transmittance of the light quantity adjusting element 19 in other words, the applied voltage value (control condition) corresponding to the light transmittance is determined.
  • the computer 13 has at least one loaded in the second memory 13b.
  • the processing shown in Fig. 10 is executed according to program p.
  • the computer 13 repeatedly determines, for example, periodically whether or not to execute the ECC block defect determination registration processing according to the present embodiment as step S51.
  • step S51 if an execution command for ECC block defect determination registration processing is input to the computer 13 by the user's input unit 47 operation, the determination in step S51 becomes YES, and the converter 13 Transition to processing.
  • step S52 the computer 13 controls the spindle motor 25 via the servo circuit 9 to rotate the recording medium 3 at an arbitrary linear velocity.
  • the computer 13 drives and controls the actuator 29 via the servo circuit 9 while confirming the address of the recording track to focus and focus the objective lens 27 on the test writing area in the recording medium 3, for example.
  • the computer 13 sets the light transmittance of the light amount adjusting element 19 to a predetermined value (reference light transmittance) as a reference.
  • the computer 13 sets the recording power Pw of the irradiation laser beam on the recording medium 3 to a predetermined recording power level (for example, 8 ⁇ lmW), and based on the set recording power level, the sample hold circuit Control APC on 35.
  • a predetermined recording power level for example, 8 ⁇ lmW
  • the sample hold circuit 35 samples and holds the value of the monitor signal output from the amplifier 33 and outputs it to the APC circuit 37.
  • the APC circuit 37 corresponds to the value of the monitor signal sampled and held in the high level state, for example, in accordance with the NRZI data corresponding to the recording data for test writing obtained by the modem unit 45.
  • Multi-pulse modulation is performed based on a predetermined write strategy by controlling the drive current applied to the LD unit 15 via the LD driver 17 so that the power level to be monitored (monitor power level) substantially matches the recording power level. And output laser light whose power level is controlled.
  • the test writing area of the recording medium 3 is irradiated with laser light whose power level Pw on the medium 3 is automatically feedback-controlled to the recording power level.
  • the recording signal corresponding to the run length of the corresponding NRZI data is written.
  • the computer 13 controls the spindle motor 25 via the servo circuit 9 to set the linear velocity of the recording medium 3 to the reference linear velocity in step S53, and the objective lens 27 While maintaining focusing and tracking for the trial writing area of recording medium 3, the power level of the irradiation laser beam on recording medium 3 is set to a predetermined power level, and a sample hold circuit is set based on the set predetermined power level. Control APC on 35.
  • the sample hold circuit 35 samples and holds the value of the monitor signal output from the amplifier 33 and outputs it to the APC circuit 37.
  • the APC circuit 37 drives the drive current applied to the LD unit 15 via the LD driver 17 so that the monitor power level corresponding to the value of the sampled and held monitor signal substantially matches the predetermined power level.
  • the operation of the optical pickup unit 5 irradiates the recording signal written in the test writing area of the recording medium 3 with the laser light whose output waveform is controlled.
  • the reflected light reflected from the corresponding recording signal is detected as an RF signal through the light receiving unit 30 by the operation of the optical pickup unit 5, and is transmitted through the modem unit 45. Thus, it is decoded as reproduced data (bit string data) of the trial writing data and transmitted to the converter 13.
  • step S53 the computer 13 calculates a PI error rate from the transmitted reproduction data.
  • the computer 13 repeatedly executes the trial writing, verification, and PI error rate calculation processing based on the verification result in steps S52 and S53 while changing the data writing condition (step S54).
  • the data writing condition for example, the recording power of the irradiation laser beam on the recording medium 3
  • a value of Pw (recording power level), a write strategy in multi-pulse modulation, and / or a light transmittance of the light amount adjusting element 19 are included.
  • step S54 the computer 13 changes the data write condition.
  • the recording power Pw value (recording power level) of the irradiation laser beam on the recording medium 3 is 8.1. While changing mW as the best and before and after it, the test writing in step S52 and S53, the verification, and the PI error rate calculation process based on the verification result are repeatedly executed.
  • FIG. 11 shows a laser multi-panorless modulation waveform corresponding to, for example, run-length 3T NRZI data.
  • the upper row is a modulation waveform having a strategy width (3T 0) of the default best, and the lower row is a default best waveform.
  • step S54 the computer 13 changes the strategy width of the laser multi-pulse modulation waveform corresponding to the NRZI data to the default best state force before and after (soil direction).
  • the PI error rate calculation process based on the trial writing, verification and verification results in steps S52 and S53 is repeatedly executed.
  • FIG. 12 shows the process of step S54 while changing the recording power Pw of the irradiation laser beam on the recording medium 3 while changing the writing power to 8.lmW as the best, before and after the change.
  • 3 is a graph (reference symbol G1) showing the error rate change characteristic obtained by the above.
  • the horizontal axis represents the change in the recording power Pw around 8 ⁇ lmW (unit: [mW]), and the vertical axis represents the PI error rate change. .
  • FIG. 5 is a graph showing the error rate change characteristic obtained by executing the process of step S54 while changing the speed before and after that, and the symbol G3 sets the linear speed to 4 times speed and the light quantity adjusting element 19
  • the recording power Pw of the irradiation laser light on the recording medium 3 is increased.
  • This is a graph showing the error rate change characteristics obtained by executing the process of step S54 while changing the value around 8 lmW as the best.
  • the error rate is adjusted to include the threshold level according to the change of the recording power Pw. It is possible to change power S.
  • the reproduction linear velocity is changed from the reference velocity to the quadruple velocity, the obtained error rate change characteristic may shift in a direction that deteriorates (increases) as a whole. (See G2).
  • the light transmittance of the light intensity adjusting element 19 is reduced (the power level on the medium 3 is constant) to reduce the LD.
  • the obtained error rate change characteristic is generally improved (decreased) compared to the error rate change characteristic obtained by the normal reference speed. (See G3).
  • FIG. 13 shows the processing of step S54 while changing the strategy width of the laser multi-panelless modulation waveform corresponding to the NRZI data from the default best state before and after it as the write condition change.
  • This is a graph (symbol G11) that shows the error rate change characteristics obtained.
  • the horizontal axis represents the change from the default best strategy width (0 is the default best), and the vertical axis represents the PI error rate change.
  • reference numeral G12 indicates that the strategy width of the laser multi-frequency modulation waveform corresponding to the NRZI data is changed from the default best state before and after the linear velocity is set to quadruple speed.
  • FIG. 13 is a graph showing the error rate change characteristic obtained by executing the process of step S54, and the code G13 sets the linear velocity to 4 ⁇ and the light transmittance of the light amount adjusting element 19. With the laser power output level of the LD unit 15 increased by decreasing (the power level on the medium 3 is constant), the strategy width of the laser multi-frequency modulation waveform corresponding to the above N RZI data is set to the default value.
  • 6 is a graph showing an error rate change characteristic obtained by executing the process of step S54 while changing the state of the strike before and after the strike.
  • the error rate is changed according to the change in the strategy width.
  • the light transmittance of the light amount adjusting element 19 is reduced (the power level on the medium 3 is constant) to reduce the LD.
  • the error rate change characteristics obtained are generally improved (decreased) compared to the error rate change characteristics obtained by the normal reference speed. (See G13).
  • step S54 the computer 13 sets an error rate range including the threshold level stored in the first memory 13a (step S55).
  • the computer 13 performs the verification processing and error rate calculation processing shown in step S53 on the test writing data using the reproduction linear velocity of the recording medium 3 and the linear velocity actually used in the defect determination registration processing (for example, 4x speed), and by changing the applied voltage (control condition) to the light quantity adjusting element 19 and changing the light transmittance value of the light quantity adjusting element 19 in multiple steps, for example, The PI error rate change characteristic corresponding to each of the plurality of transmittance values is obtained (step S56).
  • the computer 13 sets the light transmittance value correlated with the error rate threshold level at the double speed that is the reference reproduction linear velocity, in other words, the reference velocity.
  • the computer 13 executes an actual defect determination registration process at quadruple speed, that is, a defect determination registration process for all ECC blocks at quadruple speed (see steps S31 to S34 and S37 in FIG. 8). .
  • this defect determination registration process (steps S31 to S34, S3 (Refer to Fig. 7)
  • the verification is executed with the light transmittance of the light quantity adjusting element 19 adjusted using the control condition (applied voltage value) stored in the first memory 13a (step S58). .
  • steps S54 to S58 will be described in detail with reference to FIGS. 14A and 14B.
  • Figure 14A shows the PI error rate range including the threshold level obtained by the processing in steps S52 to S55 El ⁇ Playback linear speed is the reference speed (2x speed) ⁇ and the playback linear speed is set to 4x Shows the PI error rate range E2 obtained by the processing in steps S52 to 55 in Fig. 5 and the PI error rate range E3 obtained by the processing in steps S52 to 55 when the playback linear velocity is set to 6 times speed. It is.
  • the PI error rate range increases depending on the change in the reproduction linear velocity (2 ⁇ speed ⁇ 4 ⁇ speed ⁇ 6 ⁇ speed). Therefore, due to the increase in the entire PI error rate range due to this increase in the playback linear velocity, some ECC blocks are considered to be normal blocks at the reference speed, but the high-speed playback line exceeding the reference speed has been exceeded. In some cases, speed may be considered differential.
  • symbol XI in FIG. 14A represents the PI error rate (reference PI error rate) corresponding to the threshold level in the PI error rate range E1 including the threshold level, and the threshold corresponding to the reference speed. Even if the level (reference PI error rate XI) is applied to the verification process using the high-speed playback line speed as it is, the ECC block defect judgment obtained by the verification process at the reference speed can be determined by the change in the entire PI error rate range. The result will be different from the processing result.
  • the relationship between the light transmittance change of the light amount adjusting element 19 and the PI error rate shown in FIGS. 7, 12, and 13, that is, the light amount adjusting element 19 The threshold level corresponding to the reference speed (reference PI error rate XI) is changed to the high-speed playback linear speed (4x speed and 6x speed) using the relationship that the PI error rate decreases due to a decrease in the light transmittance of It is configured to calibrate accordingly.
  • FIG. 14B shows the transmittance change necessary for the reference PI error rate X1 corresponding to the threshold level at the reference speed to be maintained at the threshold level regardless of the increase in the reproduction linear velocity. It is a figure which shows an example of conversion. Note that the process shown in Fig. 10 determines the light transmittance calibration value when the linear velocity actually used in the defect judgment registration process is 6x, and changes the reproduction linear velocity (reference velocity (2x)) ⁇ 4x 6x speed ⁇ and light transmittance change corresponding to the reproduction linear velocity change (reference light transmittance corresponding to 2x speed, light transmittance calibration value corresponding to 4x speed, and light transmittance calibration corresponding to 6x speed) Figure 14B shows an approximate graph of the relationship with (value).
  • the light transmittance (predetermined value) R1 of 9 is reduced to the light transmittance R2 correlated with the reference PI error rate XI so as to cancel out the error rate increase caused by the increase in the reproduction linear velocity.
  • the value of the light transmittance of the light intensity adjusting element 19 correlated with the reference PI error rate X 1 corresponding to the threshold level at the reference speed (2 ⁇ speed) in other words, a new 4 ⁇ speed corresponding to the reference PI error rate.
  • Threshold level calibration value (based on the reference PI error rate XI and the light transmittance calibration value of the light amount adjusting element 19) can be obtained.
  • Threshold value calibration value (based on the reference PI error rate XI and the light transmittance calibration value of the light amount adjusting element 19) can be obtained.
  • the calibration value of the light transmittance of the light quantity adjusting element 19 when the reproduction linear velocity is changed from the double speed, which is the reference speed, to the quadruple speed used in the defect determination registration process by trial writing, and A threshold level calibration value for quadruple speed based on the calibration value can be obtained.
  • the computer 13 performs the defect determination registration process for the data of each ECC block, the data of each ECC block while rotating the recording medium 3 at the quadruple speed.
  • the voltage value applied to the light quantity adjusting element 19 is controlled so that the light transmittance is substantially equal to the light transmittance calibration value, that is, the threshold level is set to the threshold for quadruple speed. Performed with the level calibration value set (see step S58).
  • the write condition for the test write area without actually detecting the defective ECC block is changed from the normal condition (non-Diffe condition). That is, by writing the test writing data while deteriorating, the PI error rate range including the threshold level at the reference reproduction speed can be set.
  • the error rate obtained by trial writing on the recording medium 3 is performed because the transmittance calibration of the light amount adjusting element 19 is performed after the actual defective ECC block detection processing. Since the calibration process of the transmittance of the light amount adjusting element 19 is performed based on the (PI error rate) change, the ECC block defect determination registration process can be performed more easily and more quickly than in the second embodiment.
  • the data representing the relationship shown in FIG. 14B that is, the reproduction linear velocity change ⁇ reference speed (2 ⁇ speed) ⁇ 4 ⁇ speed ⁇ 6 ⁇ speed ⁇ and the reproduction linear velocity change are supported.
  • Data indicating the relationship with changes in light transmittance (reference light transmittance corresponding to 2 ⁇ speed, light transmittance calibration value corresponding to 4 ⁇ speed, and light transmittance calibration value corresponding to 6 ⁇ speed) (transmittance 1 ⁇ speed) Correlation data) can also be stored in the first memory 13a.
  • This configuration is particularly suitable when performing defect determination registration processing during CAV recording in which the linear velocity varies depending on the radial position.
  • FIG. 15 is a diagram showing the relationship between the radial position of the recording medium 3 and the reproduction linear velocity at the time of CAV recording. As shown in FIG. 15, the double speed at the radial position of 26 mm of the recording medium 3 is shown. If the radius is 52mm, which is twice as much, it will be recorded at double the quadruple speed.
  • the computer 13 responds to the change in the reproduction linear velocity based on the change in the radial position, the light transmittance calibration value corresponding to the current reproduction linear velocity, and this light.
  • the threshold level calibration value based on the transmittance calibration value can be obtained by referring to the transmittance single speed correlation data stored in the first memory 13a. The obtained light transmittance calibration value and the threshold level calibration value are obtained. Based on the above, it is possible to execute verification without reducing the current playback linear velocity.
  • the PI in each ECC block is used as a reproduction characteristic that serves as an index for evaluating the reproduction data obtained by the recording / reproduction data processing unit 11 and the computer 13.
  • Power Using Error Rate The present invention is not limited to this configuration, and it is possible to use various data as long as it serves as the reproduction data evaluation index. For example, jitter representing the rate of change between reproduced data and a clock extracted from the reproduced data can be used as a reproduction characteristic.
  • the power described as an ECC block as a processing unit for differential management.
  • the present invention is not limited to this configuration. Can be used.
  • a predetermined number of PI lines (the threshold level level is set as the number of PI uncorrectable lines or the predetermined number of PI correction lines) can be used as a processing unit for differential management.
  • the control processing of the light amount adjustment element 19 in the optical pickup unit 5, the control processing of the power adjustment unit 7, the control processing of the servo circuit 9, and the recording Regarding error detection and / or correction in the playback data processor 11 The power configured to cause the computer 13 to execute the processing to be performed according to the corresponding program P
  • the present invention is not limited to the above-described configuration, and may be performed in a distributed manner using, for example, two or more computers.
  • the power of performing APC on control using the sample hold circuit 35 and the APC 37 even during data recording is limited to this configuration. However, when recording and playing back data, another APC control unit (Amplo hold circuit and APC circuit may be used to perform APC on control individually.
  • Amplo hold circuit and APC circuit may be used to perform APC on control individually.
  • the power of a part of the laser light incident on the rising mirror shown in FIG. 1 and transmitted through the rising mirror is constantly monitored by the monitor diode.
  • the present invention is not limited to this configuration.
  • it may be arranged on the optical path between the light quantity adjusting element 19 and the objective lens 27, or on the optical path branched from the optical system between them, and configured to monitor the reflected light on the corresponding optical path. It is possible.
  • Monitor on the optical path of laser light emitted from the surface opposite to the output end of the LD unit back side laser light: laser light having the same power as the laser light emitted from the normal output end
  • back side laser light laser light having the same power as the laser light emitted from the normal output end

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

 光情報記録再生装置1は、レーザダイオードユニット15から出射されたレーザ光の光量を、外部からの制御情報により調整できる光量調整素子19を含み、光量調整素子19による出射光の光量調整度合と記録媒体3上における出射光のパワー変化度合との関係を表すパワー変化情報ファイルFに基づいて制御情報を決定することにより、光量調整素子19の光量調整度合を所望の値に設定するコンピュータ13を備えている。

Description

明 細 書
光記録情報再生方法および装置、ならびに光記録情報再生用プログラム 技術分野
[0001] 本発明は、例えば CD、 DVD, Blu-ray DISC, HD(High Definition) DVD等の記 録媒体に光記録された情報を再生するための光記録情報再生方法及び装置、なら びに光記録情報再生用プログラムに関する。
背景技術
[0002] CD、 DVD,次世代 DVD (Blu-ray DISC, HD DVD)等の記録媒体に対して光
(例えばレーザ光)を照射し、この照射光に起因する熱に基づく媒体記録層の状態 変化により情報を書き込むとともに、その情報からの反射光に基づいて、対応する情 報を再生する光情報記録再生装置は、従来の磁気テープを記録媒体とするビデオ テープレコーダに代わる情報記録再生装置として、急速に普及してレ、る。
[0003] このように構成された光データ記録再生装置においては、比較的動作電流が小さ レ、シングルモードレーザ(縦モードが単一であるレーザ)を光源として用いてレ、る。こ のシングルモードレーザから出射されるレーザ光は、可干渉性が非常に高いため、 データを再生する際に、光源(シングルモードレーザ)から出射されるレーザ光のレー ザ光パワー変動をもたらすノイズに対する比率(すなわち、 CNR: Carrier to Noise R atio)を高く維持する必要が生じてレ、る。このレーザ光パワー変動をもたらすノイズに は、記録媒体や光学部品等からの戻り光との干渉に起因するノイズ (戻り光ノイズ)と 、温度変動等に起因したレーザノイズとが含まれる。
[0004] 一方、上述したように、記録媒体に対する情報の書き込み (記録)は、照射光に起 因する熱に基づく媒体記録層の状態変化により行われるため、記録層劣化防止の観 点から、再生時に照射される光のパワーには、限界がある。
[0005] この点、特許文献 1には、光源から出射される光の総光量に対する記録媒体上に 集光される光の光量の比率である光結合効率を、記録時には大きぐ再生時には小 さく設定することにより、再生時において、照射光パワーを抑制しながら CNRを高く 維持することを可能にしてレ、る。 [0006] 一方、特許文献 2には、光源から記録媒体に到達する光量を変化させる透過光量 変化手段を有する光ヘッドが開示されてレ、る。
[0007] この特許文献 2に記載された光ヘッドによれば、複数記録層を有する第 1の記録媒 体の情報を再生する場合においては、光源から出射される光を、透過光量変化手段 により減衰させることなく記録媒体に照射させることにより、照射光パワーおよび CNR を高く維持するとともに、単層(1層)記録層を有する第 2の記録媒体の情報を再生す る場合においては、透過光量変化手段により、光源から出射され記録媒体に到達す る光の光量を減衰させることにより、照射光パワーを抑制しながら CNRを高く維持す ることを可能にしている。すなわち、 LD出射光量をあげることにより、戻り光ノイズの 影響およびレーザノイズをそれぞれ低減させている。
[0008] 特許文献 1 :特開 2002— 260272号公報
特許文献 2:特開 2004— 272949号公報
発明の開示
発明が解決しょうとする課題
[0009] し力、しながら、特許文献 1においては、光源から出射され記録媒体に到達する光の 結合効率を、単に記録時と再生時との間において切り換える内容が開示されており、 再生時において、光源から出射され記録媒体に到達する光の光量をどのように調整 するかに関しては、具体的な開示または示唆がされておらず、実用性に乏しいという 問題が一例として存在する。
[0010] また、特許文献 2においても、特許文献 1と同様に、光源から出射され記録媒体に 到達する光の光量を、単に複数記録層を有する第 1の記録媒体と単層記録層を有 する第 2の記録媒体との間において切り換える内容が開示されており、再生時におい て、光源から出射され記録媒体に到達する光の光量をどのように調整するかに関し ては、具体的な開示または示唆がされておらず、実用性に乏しいという問題が一例と して存在する。
[0011] 本発明は上述した事情に鑑みてなされたものであり、記録媒体に記録された情報 の再生時において、光源から出射され記録媒体に照射される光の光量を具体的に 任意の値に調整することを可能にすることをその目的とする。 課題を解決するための手段
[0012] 本発明の第 1の態様は、光源から出射され記録媒体に対して照射された光に基づ いて、該記録媒体に記録された情報から反射されてきた反射光を受光し、受光した 反射光に基づいて前記記録媒体に記録された情報を再生する光記録情報再生装 置である。この光記録情報再生装置は、前記光源から出射された光の光量を、外部 力、らの制御情報により調整できる光量調整部を含み、前記光量調整部による該出射 光の光量調整度合と前記記録媒体上における該出射光のパワー変化度合との関係 を表すパワー変化情報に基づいて前記制御情報を決定することにより、該光量調整 部の光量調整度合を所望の値に設定する光量調整ユニットを備えている。
[0013] 本発明の第 2の態様は、光源から出射され、光量調整部を介してその光量が調整 された状態で記録媒体に照射された光に基づいて、該記録媒体に記録された情報 力 反射されてきた反射光を受光し、受光した反射光に基づいて前記記録媒体に記 録された情報を再生する光記録情報再生装置に備えられ、かつ前記光量調整部を 制御可能なコンピュータが実行可能な光記録情報再生用プログラムである。この光 記録情報再生用プログラムは、前記コンピュータに、前記光量調整部による前記光 源からの出射光の光量調整度合と前記記録媒体上における該出射光のパワー変化 度合との関係を表すパワー変化情報に基づいて前記光量調整部を制御することによ り、該光量調整部の光量調整度合を所望の値に設定する処理を実行させる。
[0014] 本発明の第 3の態様は、光源から出射され、その光量が調整された状態で記録媒 体に照射された光に基づいて、該記録媒体に記録された情報力 反射されてきた反 射光を受光し、受光した反射光に基づいて前記記録媒体に記録された情報を再生 する光記録情報再生方法である。この光記録情報再生方法は、前記光源からの出 射光の前記記録媒体上におけるパワーをモニタするステップと、前記モニタ結果およ び前記出射光に対する光量調整の度合と前記出射光のパワー変化度合との関係を 表すパワー変化情報に基づいて、前記光量調整度合を所望の値に設定するステツ プと、を含んでいる。
図面の簡単な説明
[0015] [図 1]本発明の第 1の実施形態に係る情報記録再生装置の概略構成を示すブロック 図である。
園 2]本発明の第 1の実施の形態に係わる光量調整素子における制御条件変化と光 透過率変化との関係の一例を示すグラフ。
園 3]本発明の第 1の実施形態に係る情報記録再生装置のコンピュータにより実行さ れる処理の一例を概略的に示すフローチャート。
園 4]本発明の第 1の実施形態に係る情報記録再生装置のコンピュータにより実行さ れる処理の一例を概略的に示すフローチャート。
園 5]本発明の第 1の実施の形態において、パワー変化情報ファイルとして求められ た制御条件変化と対応するモニタ信号値変化との関係の一例を表すグラフ。
園 6]本発明の第 1の実施形態に係る情報記録再生装置のコンピュータにより実行さ れる処理の一例を概略的に示すフローチャート。
園 7]本発明の第 1の実施の形態における、記録媒体上のレーザ光照射パワーを一 定にした状態で光量調整素子の光透過率を変化させた際の再生線速度変化と再生 特性としてのエラーレートとの関係の一例を表すグラフ。
園 8]本発明の第 2の実施形態に係る情報記録再生装置のコンピュータにより実行さ れる処理の一例を概略的に示すフローチャート。
園 9]Aは本発明の第 2の実施形態における、ある ECCブロックのエラーレートと再生 線速度との関係の一例を表すグラフ、 Bは本発明の第 2の実施形態における、ある E CCブロックのエラーレートと光透過率との関係の一例を表すグラフ。
園 10]本発明の第 3の実施形態に係る情報記録再生装置のコンピュータにより実行 される処理の一例を概略的に示すフローチャート。
園 11]本発明の第 3の実施形態における、例えばランレングス 3Tの NRZIデータに 対応するレーザマルチパルス変調波形を示す図。
園 12]本発明の第 3の実施形態における、記録媒体上の照射レーザ光の記録パヮ 一の値を 8. lmWをべストとしてその前後に変化させながら図 10に示すステップ S54 の処理を実行することにより得られたエラーレート変化特性を示すグラフ。
園 13]本発明の第 3の実施形態における、 NRZIデータに対応するレーザマルチパ ルス変調波形のストラテジ幅をデフォルトベストの状態からその前後に変化させなが らステップ S54の処理を実行することにより得られたエラーレート変化特性を示すダラ フ。
[図 14]Aは本発明の第 3の実施形態における、図 10のステップ S52〜55の処理によ り求められた閾値レベルを含む PIエラーレート範囲と、再生線速度を 4倍速に設定し た状態においてステップ S52〜55の処理により求められた PIエラーレート範囲と、再 生線速度を 6倍速に設定した状態においてステップ S52〜55の処理により求められ た PIエラーレート範囲とをそれぞれ示す図、 Bは本発明の第 3の実施形態において、 基準速度における閾値レベルに相当する PIエラーレート Xが再生線速度の上昇に関 係なく閾値レベルに維持されるために必要な透過率変化の一例を概略的に示す図
[図 15]本発明の第 3の実施の形態における、 CAV記録時における記録媒体の半径 位置と再生線速との関係を示す図。
符号の説明
1 情報記録再生装置
3 記録媒体
5 光ピックアップ部
7 パワー調整部
9 サーボ回路
11 記録再生データ処理部
13 コンピュータ
13a 第 1のメモリ
13b 第 2のメモリ
15 レーザダイオードユニット
17 レーザダイオードドライバ
19 光量調整素子
21 ビームスプリッタ
23 立ち上げミラー
25 スピンドノレモータ 27 対物レンズ
29 ァクチユエータ
31 モニタ用フォトダイオード
33 アンプ
35 サンプルホールド回路
37 APC回路
38 LCドライノ
41 インタフェース
43 バッファ
45 変復調部
発明を実施するための最良の形態
[0017] 以下、本発明の実施の形態について図面を用いて説明する。
[0018] (第 1の実施の形態)
図 1は、本発明の第 1の実施の形態に係わる情報記録再生装置 1の概略構成を示 すブロック図である。
[0019] 図 1において、符号 3は、例えば円盤状の保護層と、スパイラル状または同心円状 に形成された記録トラックを含み、保護層に積層された円盤状の記録層とを有する記 録媒体である。例えば、この記録媒体 3としては、 CD、 DVD, Blu-ray Disc, HD D VD等を用いることができる。
[0020] 第 1の実施の形態に係わる情報記録再生装置 1は、所望速度で回転する記録媒体
3の記録トラックに対して情報を記録する機能、および記録媒体 3の記録トラック上に 記録された情報を再生する機能をそれぞれ有する装置である。
[0021] 例えば、本実施形態においては、記録トラックは、その一構成例として、径方向に 沿って交互に配置されたランドおよびグループの内の少なくとも一方を有しており、そ のランドおよびグループの内の少なくとも一方は、所定周波数で蛇行されており、そ の一部が例えば位相変調されることにより、記録トラックのアドレス情報等の情報がそ の変調部分に含まれてレ、る。
[0022] すなわち、情報記録再生装置 1は、回転する記録媒体 3の記録トラックに対して光 をスポット照射することにより情報を記録および/または再生するための光ピックアツ プ部(光ヘッド部) 5と、記録媒体 3に照射される光の記録媒体 3上におけるパワーを 調整するためのパワー調整部 7とを備えている。
[0023] また、情報記録再生装置 1は、記録媒体 3の回転速度制御、光ピックアップ部 5によ り記録媒体 3の記録トラック上に照射されるスポット光のフォーカス位置制御、および 記録トラックに対するスポット光の追跡制御(トラッキング制御)を行うためのサーボ制 御系としてのサーボ回路 9を備えている。
[0024] さらに、情報記録再生装置 1は、記録媒体 3に記録したい情報に対応するデータ ( 以下、記録データとする)を生成する機能、および光ピックアップ部 5により得られた 記録媒体 3に記録された情報に対応するデータ(以下、再生データとする)を生成す る機能を有する記録再生データ処理部 11を備えている。
[0025] そして、情報記録再生装置 1は、光ピックアップ部 5、パワー調整部 7、サーボ回路 9
、および記録再生データ処理部 11を制御するコンピュータ 13を備えている。
[0026] コンピュータ 13は、処理結果を表すデータ等を記憶するための例えば HDD (Hard
Disk Drive)、 FLASH MEMORY等の第 1のメモリ 13aと、コンピュータ 13のメインメ モリであり、例えば第 1のメモリ 13aからロードされてきた複数のプログラム Pを保持す る第 2のメモリ 13bとを備えている。この複数のプログラム Pは、コンピュータ 13に対し て上記制御動作を実行させるプログラムである。
[0027] 光ピックアップ部 5は、図 1に示すように、情報記録および/または再生用の光とし てレーザ光を出射するレーザダイオード(LD)ユニット 15と、この LDユニット 15を駆 動制御することにより、 LDユニット 15から出力されるレーザ光の出力波形を制御する
LDドライバ 17とを備えてレ、る。
[0028] また、光ピックアップ部 5は、 LDユニット 15から出力されたレーザ光の光量を調整 するための素子として、後述する LC(Light Control)ドライバからの印加電圧変化によ り光透過率が変化する液晶素子から構成された光量調整素子(Light Control Eleme nt) 19を備えている。
[0029] 例えば本実施形態では、光ピックアップ部 5における LDユニット 15および光量調 整素子 19は、その両要素を介して案内されるレーザ光の光軸が記録媒体 3の保護 層表面に略平行となるように配置されている。
[0030] また、例えば、本実施形態に係わる光量調整素子 19における制御条件(印加電圧 )変化と光透過率変化との関係の一例を図 2に示す。図 2に示すグラフにおいて、横 軸は制御条件(印加電圧)変化を表し(単位:ボルト [V])、縦軸は光透過率変化(単 位[%])を表している。
[0031] 図 3に示すように、本実施形態では、光量調整素子 19は、初期状態(非電圧印加 状態)において、約 10%減衰する特性を有している。
[0032] また、光ピックアップ部 5は、 LDユニット 15から出力され光量調整素子 19を介して 進行するレーザ光の光路上に配置されたビームスプリッタ 21を備えている。このビー ムスプリッタ 21は、光量調整素子 19を介して進行してくるレーザ光を透過させ、かつ 後述する立ち上げミラーを介して送られてくる光を反射させる機能を有している。
[0033] さらに、光ピックアップ部 5は、ビームスプリッタ 21を透過してきたレーザ光の光路上 に配置された立ち上げミラー 23を備えている。この立ち上げミラー 23は、ビームスプ リツタ 21を透過してきたレーザ光を、その光軸に対して直交し、かつ記録媒体 3に向 力 方向に反射させるように構成されてレ、る。
[0034] さらに、光ピックアップ部 5は、記録媒体 3を、立ち上げミラー 23に対向し、かつその 立ち上げミラー 23により反射されたレーザ光の光軸が保護層表面に直交するように 支持するとともに、その記録媒体 3を回転駆動させるスピンドルモータ 25を有している
[0035] そして、光ピックアップ部 5は、立ち上げミラー 23および記録媒体 3の保護層表面間 に介在された対物レンズ 27を有している。この対物レンズ 27は、立ち上げミラー 23 により反射されたレーザ光を、記録媒体 3の記録トラックに対して集束させてスポット 光として照射する機能を有してレ、る。
[0036] 光ピックアップ部 5は、この対物レンズ 27を、少なくとも記録媒体 3の径方向および 記録媒体 3に対して離近する方向に沿って移動可能に構成され、かつサーボ回路 9 に電気的に接続されたァクチユエータ 29を有している。このァクチユエータ 29は、サ ーボ回路 9からの制御に基づいて対物レンズ 27を移動させることにより、光スポットの フォーカス位置およびトラッキング位置の調整をそれぞれ行うように構成されている。 [0037] 対物レンズ 27は、再生時において、記録媒体 3の記録トラックから反射されてきた 光(反射光)を受光し、所定のビーム径の平行光として出力する機能を有しており、立 ち上げミラー 23は、対物レンズ 27を介して送られてきた反射光を反射させてビームス プリッタ 21に送る機能を有してレ、る。
[0038] そして、ビームスプリッタ 21は、立ち上げミラー 23を介して送られてきた反射光を反 射させる機能を有している。
[0039] 光ピックアップ部 5は、ビームスプリッタ 21により反射された反射光の光路上に配置 されており、この反射光を受光して電気信号 (以下、 RF信号と記載する)に変換する 受光部 30を有している。
[0040] パワー調整部 7は、ビームスプリッタ 21を透過し、かつ立ち上げミラー 23を透過した レーザ光の一部のパワー(強度)を常時モニタし、このモニタ結果を、再生時におい て記録媒体 3に対して照射されるレーザ光の該記録媒体 3上におけるパワーを表す モニタ信号 (モニタ用電気信号、例えばモニタ電流)として出力するモニタ用フォトダ ィオード(以下、単にモニタダイオードとする) 31を有している。
[0041] また、パワー調整部 7は、モニタダイオード 31に電気的に接続されており、モニタダ ィオード 31から出力されたモニタ信号を増幅するアンプ 33を有している。
[0042] アンプ 33はコンピュータ 13に電気的に接続されており、コンピュータ 13は、アンプ
33により増幅されたモニタ信号を受信することにより、再生時における記録媒体 3上 の照射レーザ光のパワーをモニタ可能になっている。
[0043] また、パワー調整部 7は、アンプ 33およびコンピュータ 13に対して電気的に接続さ れたサンプルホールド回路(S/H) 35を有してレ、る。このサンプルホールド回路 35 は、コンピュータ 13の APC (Automatic Power Control)実行時(オン時)において、ァ ンプ 33から出力されたモニタ信号の値をサンプリングしてホールドする機能を有して いる。
[0044] さらに、パワー調整部 7は、サンプルホールド回路 35および LDドライバ 17に対して 電気的に接続された APC回路 37を有している。この APC回路 37は、 APC実行時 において、サンプルホールド回路 35によりサンプル Zホールドされたモニタ信号の値 に基づいて、そのモニタ信号の値が、記録媒体 3上の照射レーザ光の所定のパワー 値 (パワーレベル)に対応する所定の値に略一致するように LDドライバ 17を介して L Dユニット 15に与える駆動電流を制御することにより、 LDユニット 15から出力される レーザ光の出力波形(出力パワーレベルを含む)を制御(フィードバック制御)する機 能を有している。
[0045] そして、パワー調整部 7は、光量調整素子ドライバ(LCドライノく) 38を有してレ、る。こ の LCドライバ 38は、コンピュータ 5の制御の下で光量調整素子 13に印加する電圧を 制御することにより、光量調整素子 13の透過率を制御する機能を有している。
[0046] 記録再生データ処理部 11は、記録時においては、接続機器から入力された記録 データ(ビット列データ)を受け取るインタフェース 41と、このインタフェース 41に電気 的に接続されており、インタフェース 41により受け取られた記録データを保持するバ ッファ 43と、このバッファ 43に電気的に接続された変復調部 45とを有している。この インタフェース 41、バッファ 43、および変復調部 45は、それぞれコンピュータ 13に電 気的に接続されており、それぞれの動作は、例えばコンピュータ 13により制御される ように構成されている。
[0047] 変復調部 45は、記録時においては、コンピュータ 13の制御に基づいて、バッファ 4 3に保持された記録データに対して所定単位毎 {本実施形態では、 ECC (Error Corr ection Code)ブロック単位毎とする } }にエラー訂正符号 {例えば、 PI (Parity Inner)訂 正符号および/または PO (Parity Outer)訂正符号等 } }を付加する機能を有してい る。
[0048] なお、 ECCブロックは、記録媒体 3に対して記録されるデータの単位を表している。
[0049] 例えば、本実施形態の記録媒体 3が DVDの場合、 ECCブロックは、 182バイト(17 2バイトのデータ + 10バイトの PI訂正符号) X 208行(192行 + 16行の PO訂正符号 )で構成されている。すなわち、 172バイト X 12行が 1データフレームとなり、これが 1 6個集められて 1つの ECCブロックが構成されている。
[0050] 例えば、本実施形態においては、エラー訂正符号が付加された後の各 ECCブロッ クの各フレームの記録データは、コンピュータ 13による蛇行記録トラック走查により得 られたゥォブル信号から抽出された記録トラックの蛇行周波数を有するクロック(ゥォ ブノレクロック)に基づいて、そのビットの値力 の場合に信号レベルをハイレベルか らローレベル、あるいはローレベルからハイレベルに変化させる信号に変換され、こ の変換後のデータ {NRZI(Non Return to Zero Inverted)データ }が記録媒体 3の記 録トラックに書き込まれる記録信号 (記録マーク、ピット)に対応するデータとなってい る。
[0051] なお、本実施形態では、この NRZIデータのエッジが変化するまでのビット長(ラン レングス;記録信号長)は、変調方式等により異なるが、例えば NT{Nは、記録媒体 3 の種類によって異なり、例えば記録媒体 3が DVDの場合、 3以上の整数、記録媒体 3が Blu_ray DISCの場合、 2以上の整数、 Tはゥォブルクロックの周期)となるように 構成されている。
[0052] すなわち、本実施形態によれば、記録媒体 3の記録トラックには、その媒体 3上にお けるパワーレベルが記録パワーレベルに自動的にフィードバック制御され、かつ出力 波形が変形 (例えばマルチパルス化)されたレーザ光が照射され、 NRZIデータそれ ぞれのランレングスに対応する記録信号が記録媒体 3の記録トラック上に書き込まれ るようになっている。
[0053] このレーザ光の出力波形制御(マルチパルス制御)は、ライトストラテジと呼ばれて おり、そのマルチパルスの幅を記録媒体 3上のレーザ光のパワーレベルに応じて適 宜設定することにより、一定パワーレベルのレーザ光を継続して照射することに起因 する記録信号の劣化を防止することができる。
[0054] また、変復調部 45は、再生時においては、受光部 30により得られた RF信号を増幅 し、増幅した RF信号から、ゥォブル変調信号、トラッキング制御の誤差 (エラー)を表 すトラッキングエラー信号、およびフォーカス制御の誤差を表すフォーカスエラー信 号をそれぞれ生成する機能、および RF信号から再生データ(ビット列データ)を復調 (複号化)する機能をそれぞれ有している。復調された再生データは、コンピュータ 1 3に送られ、このコンピュータ 13によりエラー検出処理、検出されたエラーが訂正可 能であるか否力、を判断する判断処理、訂正可能である場合にエラー訂正を行う訂正 処理等が行われる。この訂正処理後の再生データは、コンピュータ 13の処理により バッファ 43に保持される。
[0055] インタフェース 41は、再生時においては、このインタフェース 41に接続された情報 出力機器の制御に従って、バッファ 43に保持された再生データを情報出力機器に 対して出力する機能を有している。
[0056] コンピュータ 13には、記録媒体 3の線速度(記録および/または再生時に媒体 3上 を進むレーザ光の速度;例えば、 1倍速、 2倍速、 · · ·、 32倍速等)の設定情報、 EC Cブロック欠陥判定登録処理実行命令、試し書き実行命令等の各種情報や命令をュ 一ザの操作によりコンピュータ 13に入力するための入力部 47が接続されている。
[0057] すなわち、サーボ回路 9は、コンピュータ 13からの指示に従ってスピンドルモータ 2 5を駆動制御して、記録媒体 3を、入力部 47により設定入力された線速度を一定に 保持しながら回転させる機能(CLV : Constant Linear Velocity)、あるいは設定線速 度をベースにして角速度を一定に保持しながら(CAV : Constant Angular Velocity) 回転させる機能を有してレ、る。
[0058] また、サーボ回路 9は、変復調部 45により得られたトラッキングエラー信号およびフ オーカスエラー信号に基づいてァクチユエータ 29を制御することにより、記録媒体 3 の記録トラック上に照射されるスポット光のフォーカス位置制御およびトラッキング制 御をそれぞれ行う機能を有してレヽる。
[0059] 本実施形態において、コンピュータ 13から LCドライバ 38を介して印加される制御 情報により、出力レーザ光の光量が変化するように構成された光量調整素子 19とし て、コンピュータ 13から LCドライバ 38を介して与えられる印加電圧変化により光透過 率が変化する液晶素子を用いたが、本発明はこの構成に限定されるものではない。
[0060] 例えば、本発明に係る光量調整部として、コンピュータ 13からドライバを介して印加 される電圧の変化により光減衰量 (言い換えれば透過光量)が変化する可変光減衰 器 {可変 ND (Neutral Density)フィルタ等 }、偏光素子(波長板、液晶素子等)および ビームスプリッタから構成された素子を用いることも可能である。
[0061] 例えば、偏光素子を、図 1における光量調整素子 19の代わりに配置し、ビームスプ リツタ 21を組み合わせることにより、本発明に係る光量調整部を構成することも可能 である。
[0062] この構成によれば、コンピュータ 13からドライバを介して印加される制御情報により 偏光素子の光学軸方向(偏光方向)を入射レーザ光の偏光方向から所定角度変化 させて、この偏光素子通過後のレーザ光における所定割合の光量分と残りの割合の 光量分とをビームスプリッタ 21により分けることにより、入射レーザ光における、偏光 素子およびビームスプリッタ 21を通過した後の光透過率を変化させることができる。
[0063] 一方、上述したように、本実施形態に係わるコンピュータ 13は、光ピックアップ部 5 における LDドライバ 17および光量調整素子 19の制御処理、パワー調整部 7の制御 処理、サーボ回路 9の制御処理、および記録再生データ処理部 11におけるエラー検 出および/または訂正に関する処理を、第 2のメモリ 13bにロードされた対応するプロ グラム Pに従って実行するように構成されている。
[0064] 次に、第 1の実施形態に関する情報記録再生装置 1の具体的動作として、記録媒 体 3の記録トラックに記録された記録データを再生する場合におけるコンピュータ 13 のパワー調整部 7、 LDドライバ 17、および光量調整素子 19に対する制御処理を中 心に説明する。
[0065] 本実施形態に関する情報記録再生装置 1においては、コンピュータ 13の後掲図 2 に示す処理およびパワー調整部 7の動作に基づいて、光量調整素子 19によるレー ザ光の透過率変化と記録媒体 3上に照射されるレーザ光のパワーレベル変化との関 係を表すパワー変化情報、具体的に述べれば、光量調整素子 19に対する印加電圧 値 (光量調整素子制御条件)とモニタダイオード 31から出力されアンプ 33により増幅 されたモニタ信号の値との関係を表すパワー変化情報が予め生成されており、生成 されたパワー変化情報は、例えばファイル形式によりパワー変化情報ファイル Fとして 第 1のメモリ 13aに記憶されてレ、る。
[0066] すなわち、コンピュータ 13は、第 2のメモリ 13bにロードされている少なくとも 1つの プログラム Pに従って、図 3に示す処理を実行する。
[0067] 最初に、ステップ S1として、コンピュータ 13は、記録媒体 3上の照射レーザ光のパ ワーレベルを所定レベル(例えば、 0.35 mW, 0.7 mW, 2mW等、以下、所定パワーレ ベルと記載する)に設定し、この設定した所定パワーレベルに基づいてサンプノレホー ルド回路 35を APCオン制御する。
[0068] この APCオン制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号の値をサンプノレホールドして APC回路 37に出力する。 [0069] このとき、 APC回路 37は、このサンプルホールドされたモニタ信号の値に対応する パワーレベル(モニタパワーレベル)が所定パワーレベルに略一致するように、 LDド ライバ 17を介して LDユニット 15に与える駆動電流を制御して、 LDユニット 15から出 力されるレーザ光の出力パワーレベルを制御する。この結果、記録媒体 3の記録トラ ックには、その媒体 3上におけるパワーレベルが所定パワーレベルに自動的にフィー ドバック制御されたレーザ光が照射される。
[0070] コンピュータ 13は、ステップ S1において、上記レーザ光出力パワーレベルおよびこ のレーザ光出力パワーレベルに対応するモニタ信号値(モニタパワーレベル)を互い に関連付けて第 1のメモリ 13aに記憶する。
[0071] 次いで、ステップ S2において、コンピュータ 13は、 APC制御をオン状態力 オフ状 態に切り換える。
[0072] この APCオフ制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号の値に関係なぐホールドされているモニタ信号の値を出力する。
[0073] このとき、 APC回路 37は、サンプルホールド回路 35から出力されたモニタ信号の 値に対応するパワーレベル(ホールドパワーレベル)が上記所定パワーレベルに略 一致するように、 LDドライバ 17を介して LDユニット 15に与える駆動電流を制御して 、 LDユニット 15から出力されるレーザ光の出力パワーレベルを、上記ホールドパヮ 一レベルに一定に制御する。この結果、光ピックアップ部 5の動作により、記録媒体 3 には、 LDユニット 15からのレーザ光力 その出力パワーレベルがホールドパワーレ ベルに一定制御された状態で照射される。
[0074] このとき、ステップ S3および S4において、コンピュータ 13は、 LCドライバ 38を介し て光量調整素子 19に対する印加電圧を制御して、光量調整素子 19への電圧非印 加状態におけるモニタパワーレベルに対する印加電圧制御時のモニタパワーレベル の割合 (すなわち、光量調整素子 19の光透過率)を調整し、この割合を 100%から 所望の割合 (例えば、 50%)まで低下させる {低下処理中におけるステップ S4の判断 は NO (N) }。
[0075] なお、光量調整素子 19の光透過率が 100%とは、電圧非印加状態における光量 調整素子 19の光透過率を意味しており、光量調整素子 19の光透過率が 50%とは、 その電圧非印加状態におけるモニタパワーレベルに対する印加電圧制御時におけ るモニタパワーレベルの割合が略 50%の場合を意味している。
[0076] すなわち、コンピュータ 13は、 LCドライバ 38を介して光量調整素子 19に対する印 加電圧を制御して、 LDユニット 15から出力されるレーザ光の出力パワーレベルが一 定の状態において、光量調整素子 19の光透過率を低下させることにより、記録媒体 3上のパワーレベルを低減させる。
[0077] 上記光透過率低下処理によりステップ S4の判断において光量調整素子 19の光透 過率が所望の割合(略 50%)まで低下すると {ステップ S4→YES (Y) }、コンピュータ 13は、この光量調整素子 19の光透過率が略 50%のときの印加電圧値を、上記光透 過率 50%に対応する制御条件として、対応するモニタ信号値 (あるいはモニタパヮ 一レベル)と関連付けて第 1のメモリ 13aに記憶する(ステップ S5)。
[0078] この結果、第 1のメモリ 13aには、記録媒体 3上の所定パワーレベルに対応するレー ザ光出力パワーレベルとモニタ信号値との関係を表す情報、および光透過率 50% に対応する印加電圧値とモニタ信号値との関係を表す情報がそれぞれ記憶されて おり、この 2つの情報から、レーザ光出力パワーレベルと光透過率 50%に対応する 印加電圧値との関係を表す情報が第 1のメモリ 13aに記憶されていることになる。
[0079] この関係を参照することにより、コンピュータ 13は、 LDユニット 15から出力されるレ 一ザ光の出力パワーレベルを一定に保持した状態においても、光量調整素子 19に 対する印加電圧値を変化させることにより、上記一定のレーザ光出力パワーレベル に基づくモニタパワーレベルを、非光量調整制御時 (光量調整素子 19に対する電圧 非印加時)のモニタパワーレベルを 100%とした場合、この 100%から所望の値であ る例えば 50%に設定することが可能になる。
[0080] 言い換えれば、コンピュータ 13は、モニタパワーレベルを一定に保持した状態にお レ、ても、光量調整素子 19に対する印加電圧値を変化させることにより、レーザ光出力 パワーレベルを、非光量調整制御時(光量調整素子 19に対する電圧非印加時)のレ 一ザ光出力パワーレベル(モニタパワーレベルは一定)を 100%とした場合、この 10 0%から所望の値である例えば 200% (モニタパワーレベルは一定)に設定すること が可能になる。 [0081] 図 3においては、光量調整素子 19の光透過率 100% (非電圧印加時)におけるモ 二タパワーレベルに対する印加電圧制御時のモニタパワーレベルの割合を所望の値 である 50%に設定するための処理について説明した力 上記割合 (すなわち、光量 調整素子 19の光透過率)を所定の範囲内において複数段階 (例えば 90%、 70%、 50%、 30%、 10%)で変化させながら、図 3に示す処理を繰り返し実行することによ り、光量調整素子 19の光透過率 100。/ο (非電圧印加時)におけるモニタパワーレべ ノレに対する印加電圧制御時のモニタパワーレベルの割合を所定の範囲内において 任意の値に設定することが可能になる。
[0082] すなわち、図 4に示すように、コンピュータ 13は、図 3に示すステップ S1および S2の 処理を実行する。この結果、光ピックアップ部 5の動作により、記録媒体 3には、 LDュ ニット 15からのレーザ光が、その出力パワーレベルがホールドパワーレベル(所定パ ワーレベルに対応する)に一定制御された状態で照射される。また、上記所定パワー レベルに対応するレーザ光出力パワーレベルおよびレーザ光出力パワーレベルに 対応するモニタ信号値 (モニタパワーレベル)が互いに関連付けられ、パワー変化情 報ファイル Fの構成要素として第 1のメモリ 13aに記憶される。
[0083] 次いで、コンピュータ 13は、所定の範囲内(例えば、 90%〜0%)における複数段 階の光透過率(90%、 70%、 50%、 30%、 10%)の中から、何れか 1つの透過率( 例えば、 10%)を選択する(ステップ S10)。
[0084] 透過率選択後、コンピュータ 13は、図 3に示すステップ S3および S4と同様に、光 量調整素子 19に対する印加電圧を制御して、光量調整素子 19への電圧非印加状 態におけるモニタパワーレベルに対する印加電圧制御時のモニタパワーレベルの割 合 (光量調整素子 19の光透過率)を調整し、この割合を 100%から選択値(10%)に 到達するまで低下させる(ステップ S4→NO)。
[0085] 上記光透過率低下処理により、ステップ S4の判断において光量調整素子 19の光 透過率が選択値(10%)に到達すると(ステップ S4→ YES)、コンピュータ 13は、図 3 に示すステップ S5と同様に、光量調整素子 19の光透過率が選択値 10%になったと き(光量調整素子 19への電圧非印加状態におけるモニタパワーレベルに対する印 加電圧制御時のモニタパワーレベルの割合が 10%になったとき)の印加電圧値を、 上記光透過率 10%に対応する制御条件として、対応するモニタ信号値 (あるいはモ 二タパワーレベル)およびレーザ光出力パワーレベルに関連付けて第 1のメモリ 13a に、パワー変化情報ファイル Fの構成要素として記憶する(ステップ S5)。
[0086] 続いて、コンピュータ 13は、複数段階の光透過率(90%、 70%、 50%、 30%、 10 %)の全てが選択されたか否か判断する (ステップ Sl l)。今、光透過率 10%を選択 した状態であるため、ステップ S11の判断は NOとなり、コンピュータ 13は、ステップ S 10の処理に戻って、未選択の複数の光透過率(90。/。、 70%, 50%、 30。/。)の中か ら、何れか 1つの透過率を選択し、ステップ S3、ステップ S4、およびステップ SI 1の 処理を、ステップ S11の判断が YES、すなわち、全ての光透過率(90。/o、 70%、 50 %、 30%)を選択するまで繰り返し実行する。
[0087] この結果、第 1のメモリ 13aには、複数の光透過率(90%、 70%、 50%、 30%、 10 %)に対応する複数の印加電圧値 (制御条件)と、この複数の印加電圧値それぞれ に対応する複数のモニタ信号値 (モニタ信号パワーレベル)との関係を表す情報、お よび所定パワーレベルに対応するレーザ光出力パワーレベルとこのレーザ光出力パ ワーレベルに対応するモニタ信号値(モニタパワーレベル)との関係を表す情報がそ れぞれパワー変化情報ファイル Fの構成要素として第 1のメモリ 13aに記憶される。
[0088] ここで、図 5は、パワー変化情報ファイル Fとして求められた制御条件(印加電圧)変 ィ匕 (光量調整素子 19の光透過率変化に対応)と対応するモニタ信号値変化との関係 の一例を表すグラフである。図 5に示すグラフにおいて、横軸は制御条件(印加電圧 )変化を表し(単位:ボルト [V])、縦軸はモニタ信号値変化(単位 [mA: milliampere]) ¾r 表している。
[0089] なお、図 5に示す例においては、複数段階の光透過率として、所定範囲(約 0%〜 約 90%)の内で複数の値を選択しており、これら選択された複数の光透過率間の値 は、 P 接透過率間を結ぶことにより近似されている。すなわち、上述した説明では、コ ンピュータ 13は、複数の光透過率に対応する複数の印加電圧値 (制御条件)と、この 複数の印加電圧値それぞれに対応する複数のモニタ信号値 (モニタ信号パワーレべ ノレ)とを互いに関連付けた状態でパワー変化情報ファイル Fとして記憶する例を示し たが、本発明はこの構成に限定されるものではない。 [0090] すなわち、コンピュータ 13は、所定範囲内における複数の光透過率に対応する複 数の印加電圧値 (制御条件)と、この複数の印加電圧値それぞれに対応する複数の モニタ信号の値 (モニタ信号パワーレベル)との関係に基づレ、て近似されたグラフデ ータ(図 5参照)をパワー変化情報ファイル Fとして記憶することも可能である。
[0091] ここで、図 5に示すグラフデータがパワー変化情報ファイル Fとして第 1のメモリ 13a に記憶された場合における LDユニット 15から出力されるレーザ光の出力パワー設定 処理にっレ、て図 6を参照して説明する。
[0092] すなわち、図 5および図 6に示すように、再生時において、コンピュータ 13は、記録 媒体 3上の照射レーザ光のパワーレベルを所定パワーレベルに設定し、設定した所 定パワーレベルに基づいてサンプルホールド回路 35に対して APCオン制御を実行 する(図 5 ;ステップ S21)。
[0093] この APCオン制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号値をサンプノレホールドして APC回路 37に出力する。
[0094] このとき、 APC回路 37は、 LDドライバ 17を介して LDユニット 15に与える駆動電流 を制御して、 LDユニット 15から出力されるレーザ光の出力パワーレベルを所望のレ ベルに設定している
APC回路 37の駆動電流制御に並行して、コンピュータ 13は、第 1のメモリ 13aに記 憶されたパワー変化情報ファイル Fを参照し、サンプルホールドされたモニタ信号値 および設定されたレーザ光出力パワーレベルに対応する制御条件(印加電圧値)を 求める(ステップ S22)。
[0095] すなわち、ステップ S22の処理においては、図 5に示すように、レーザ光出力パワー レベル一定でのモニタ信号値変化と印加電圧値変化との関係を表すデータが求め られていることから、モニタ信号値を一定にした場合のレーザ光出力パワーレベル変 ィ匕と印加電圧値変化との関係を表すデータを求めることができる。そして、この求め たデータから、設定されたレーザ光出力パワーレベルに対応する制御条件(印加電 圧値)を求めることができる。
[0096] 次いで、コンピュータ 13は、求めた印加電圧値を光量調整素子 19に印加すること により、 LDユニット 15から出力されるレーザ光の出力パワーレベルに関係なぐ記録 媒体 3上のパワーレベルを所定パワーレベルに維持する(ステップ S23)。
[0097] すなわち、コンピュータ 13の光量調整素子 19の光透過率制御により、記録媒体 3 上のパワーレベルを所定パワーレベルに維持しながら、 APC回路 37および LDドラ ィバ 17を介して LDユニット 15から出力されるレーザ光の出力パワーレベルを所望の レベルに設定することができる。
[0098] この結果、 LDユニット 15から出力されるレーザ光のパワーレベル(レーザ光出力パ ワーレベル)を、対応するモニタパワーレベルに対する割合が上述した光透過率の 所定範囲に含まれることを条件として最大値に設定することが可能になる。
[0099] したがって、再生時において、記録媒体 3に対するレーザ光照射パワーを抑制して 記録層の劣化を防止しながら、 LDユニット 15から出射されるレーザ光に対する反射 光の影響を低減させることが可能になり、その再生特性を向上させることができる。
[0100] なお、本実施形態における再生特性とは、記録再生データ処理部 11およびコンビ ユータ 13により得られた再生データを評価する指標となるものである。例えば、本実 施形態の記録媒体 3が DVDの場合、各 ECCブロックにおける全ての行に対するエラ 一バイト数を表す PIエラーの割合(PIエラーレート:各 ECCブロックにおけるエラーバ イト数/正常バイト数)を再生特性として利用することができる。
[0101] ここで、図 7は、記録媒体 3として Blu- ray DISCを用いた場合における、記録媒体
3上のレーザ光照射パワーを一定にした状態で光量調整素子 19の光透過率を変化 (50%→90%)させた際の再生線速度変化と再生特性としてのエラーレート(例えば 、 ECCブロック毎の PIエラーレート)との関係の一例を表すグラフである。図 7に示す グラフにおいて、横軸は再生線速度の倍数変化(1は 1倍速、 2は 2倍速、 · · ·)を表し 、縦軸は PIエラーレート変化を表している。なお、 PIエラーレートが 1. 00E-03 (1. 00 X 10— 3)とは、各 ECCブロックの再生時において、 103個の再生バイト数に対して PIエラーバイトが 1個含まれることを表している。
[0102] 図 7から明らかなように、記録媒体 3上のレーザ光照射パワーを一定にした状態で 光量調整素子 19の光透過率を 90%から 50%に低下させること、言い換えれば、記 録媒体 3上のレーザ光照射パワーを一定にした状態でレーザ光出力パワーレベルを 増大させることにより、 PIエラーレート(再生特性)が向上することが分かる。 [0103] すなわち、本実施形態によれば、コンピュータ 13の図 6に示す処理により、記録媒 体 3上のレーザ光照射パワーレベルを一定に維持した状態において光量調整素子 1 9の光透過率を調整してレーザ光出力パワーレベルを増大させることができ、このレ 一ザ光出力パワーレベルの増大により、再生データの再生特性を向上させることが できる。
[0104] なお、本実施形態では、本発明に係わる光情報記録再生装置として、所定速度で 回転する記録媒体 3の記録トラックに対して情報を記録する機能、および記録媒体 3 の記録トラック上に記録された情報を再生する機能をそれぞれ有する装置として説明 したが、本発明はこの構成に限定されるものではなぐ記録媒体 3の記録トラック上に 記録された情報を再生する機能のみを有する再生専用装置にも適用可能である。
[0105] (第 2の実施の形態)
本発明の第 2の実施形態に係わる情報記録再生装置について図面を用いて説明 する。なお、第 2の実施の形態に係わる情報記録再生装置のハードウェア構成要素 は、第 1の実施の形態に係わる情報記録再生装置 1のハードウェア構成と略同様で あるため、同一の符号を付してその説明は省略または簡略化する。
[0106] 第 1の実施の形態における図 7に示すように、記録媒体 3の再生線速度の上昇によ り、その再生特性が悪化することが分かる。また、上述したように、記録媒体 3上のレ 一ザ光照射パワーレベルを一定に維持した状態において光量調整素子 19の光透 過率を減少させることにより、再生特性を向上させることができ、また、その向上度合 は再生線速度が上昇すればする程顕著になることが分かる。
[0107] 本発明の発明者等は、上記再生線速度と再生特性との関係、および光透過率と再 生特性との関係に着目し、それぞれの関係を利用することにより、記録媒体 3の記録 トラックに書き込まれたデータの欠陥管理 (ディフエタトマネジメント)を行う際の欠陥 判定登録処理を容易かつ迅速に行うことができることを考え出した。
[0108] ここで、記録媒体 3の記録トラックに書きこまれたデータが欠陥状態(ディフエタティ ブ状態)になる原因としては、記録媒体 3に対するオーバーライトの繰り返しによる記 録層の劣化、媒体 3自体の品質不良、媒体 3上の傷や汚れ等が挙げられる。記録媒 体 3の記録トラックに書き込まれたデータがこのような"ディフエクティブ"な状態になつ た場合には、このデータを今後の読み書きに使用することは適切ではないと判断す ること力 Sでき、したがって、上記データは欠陥管理 (ディフエタトマネジメント)の対象と なるわけである。
[0109] すなわち、本発明の第 2の実施の形態に係わる情報記録再生装置は、記録媒体 3 の記録トラックに書き込まれたデータの欠陥判定登録処理を、従来における欠陥判 定登録処理よりも容易かつ迅速に行うことができる欠陥管理システムとして機能する。
[0110] なお、記録媒体 3の記録トラックに書き込まれたデータの欠陥管理 (ディフヱタトマネ ジメント)とは、記録データを例えば ECCブロック単位で記録媒体 3の記録トラックに 書き込んだ後、その書き込んだ ECCブロックの再生データを読み出してベリファイし 、このべリファイの結果、 ECCブロックが欠陥ブロック(ディフエクティブブロック)であ ると判断された場合に、その ECCブロックのアドレスおよび欠陥の度合 (ディフエタト レベル)を互レ、に関連付けて管理する処理である。
[0111] ここで、第 2の実施の形態に係わる情報記録再生装置においては、例えば各 ECC ブロックが欠陥(ディフエタト)ブロックであるか否かを表す基準として、記録媒体 3が 基準線速度である例えば 2倍速で回転している状態での各 ECCブロックの再生デー タの再生特性を表す例えば PIエラーレートの閾値レベルが予め設定され、コンビュ ータ 13の第 1のメモリ 13aに記憶されている。
[0112] 通常の情報記録再生装置では、基準線速度で回転している状態の ECCブロックの 再生データの再生特性を表す PIエラーレートが閾値レベル以上である場合に、その ECCブロックを欠陥ブロック(ディフエクティブ)として判断するように構成されている。
[0113] これに対して、本発明の第 2の実施の形態に係わる情報記録再生装置によれば、 コンピュータ 13は、基準線速度(2倍速)よりも高速 (例えば 4倍速)で回転させながら 、従来の情報記録再生装置と同様の精度で、 ECCブロック力 S欠陥ブロック (ディフエ クティブ)か否かの判断処理を行うことが可能になっている。
[0114] 以下、第 2の実施形態に係わる情報記録再生装置の具体的動作として、記録デー タを ECCブロック単位で記録媒体 3に書き込み、書き込んだ ECCブロックをべリファ ィし、このべリファイ結果に基づレ、て ECCブロックの欠陥判定 (ディフエタト判定)を行 うためのコンピュータ 13の処理を中心に説明する。 [0115] 第 2の実施の形態によれば、コンピュータ 13は、第 2のメモリ 13bにロードされている 少なくとも 1つのプログラム Pに従って、図 8に示す処理を実行する。
[0116] 例えば入力部 47から ECCブロック欠陥判定登録処理の実行命令が入力されると、 コンピュータ 13は、ステップ S31として、サーボ回路 9を介してスピンドルモータ 25を 制御して、入力部 47により設定入力された、基準線速度よりも高速の例えば 4倍速で 記録媒体 3を回転させる。次いで、コンピュータ 13は、記録トラックのアドレスを確認し ながら、サーボ回路 9を介してァクチユエータ 29を駆動制御して、記録媒体 3の記録 トラックにおける所定の記録対象アドレスに対して対物レンズ 27をフォーカシングぉ よびトラッキングする。そして、コンピュータ 13は、光量調整素子 19の光透過率を基 準となる所定の値 (以下、基準光透過率とする)に設定する。
[0117] この状態で、コンピュータ 13は、記録媒体 3上の照射レーザ光のパワーレベル Pw を所定の記録パワーレベル (例えば、 8. lmW)に設定し、この設定した記録パワー レベルに基づいてサンプルホールド回路 35を APCオン制御する。
[0118] この APCオン制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号の値をサンプノレホールドして APC回路 37に出力する。
[0119] このとき、 APC回路 37は、変復調部 45により得られた、記録データにおけるある E CCブロックの NRZIデータに従って、例えばそのハイレベル状態において、サンプル ホールドされたモニタ信号の値に対応するパワーレベル(モニタパワーレベル)が記 録パワーレベルに略一致するように、 LDドライバ 17を介して LDユニット 15に与える 駆動電流を制御して、所定のライトストラテジに基づいてマルチパルス化され、かつ 出力パワーレベルが制御されたレーザ光を出力させる。
[0120] この結果、記録媒体 3の記録トラックにおける所定の記録対象アドレスには、その媒 体 3上におけるパワーレベル Pwが記録パワーレベルに自動的にフィードバック制御 されたレーザ光が照射され、ある ECCブロックの NRZIデータのランレングスに対応 する記録信号が書き込まれる。
[0121] 書き込み終了後、ベリファイ処理として、コンピュータ 13は、記録媒体 3の線速度、 対物レンズ 27の記録媒体 3の記録トラックにおける所定の記録対象アドレスに対する フォーカシングおよびトラッキングをそれぞれ維持しながら、記録媒体 3上の照射レー ザ光のパワーレベルを所定パワーレベルに設定し、この設定した所定パワーレベル に基づいてサンプルホールド回路 35を APCオン制御する(ステップ S32)。
[0122] この APCオン制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号の値をサンプノレホールドして APC回路 37に出力する。
[0123] このとき、 APC回路 37は、このサンプルホールドされたモニタ信号の値に対応する モニタパワーレベルが所定パワーレベルに略一致するように、 LDドライバ 17を介し て LDユニット 15に与える駆動電流を制御して、 LDユニット 15から出力されるレーザ 光の出力波形を制御する。この結果、光ピックアップ部 5の動作により、記録媒体 3の 記録トラックにおける所定アドレスに記録信号として書き込まれた ECCブロックに対し て、上記出力波形が制御されたレーザ光が照射される。
[0124] 照射されたレーザ光に基づいて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として検出され、変復調部 4 5を介して ECCブロックの再生データ(ビット列データ)として復号化され、コンビユー タ 13に送信される。
[0125] ステップ S33において、コンピュータ 13は、送信されてきた ECCブロックの再生デ ータから PIエラーレートを求め、次いで、ステップ S34において、求めた PIエラーレー トが第 1のメモリ 13aに記憶された閾値レベル以上か否か判断する。
[0126] ステップ S34において、 NO (求めた PIエラーレートが閾値レベル未満)と判断され た場合、この ECCブロックは正常なブロックであると判断される。このとき、コンビユー タ 13は、ステップ S31の処理に戻り、次の ECCブロックに対して上述したディフエタト 判定処理を実行する(ステップ S31〜S34参照)。
[0127] 一方、ステップ S34において、 YES (求めた PIエラーレートが閾値レベル以上であ る)と判断された場合、コンピュータ 13は、この ECCブロックに対するステップ S32で 示したベリファイ処理を、記録媒体 3の回転速度を基準速度である 2倍速に戻した状 態で再度実行して ECCブロックの再生データを求め、ステップ S33に示したように、 求めた ECCブロックの再生データ力も PIエラーレートを求める(ステップ S35)。
[0128] 次いで、コンピュータ 13は、求めた PIエラーレートが第 1のメモリ 13aに記憶された 閾値レベル以上か否かを再度判断する(ステップ S36)。 [0129] このステップ S36により NO (求めた PIエラーレートが第 1のメモリ 13aに記憶された 閾値レベル未満)と判断された場合、コンピュータ 13は、この ECCブロックは、ステツ プ S34においては、再生線速度の高速化 {基準速度(2倍速)→4倍速 }に起因して 欠陥ブロック(ディフヱクティブ)と判断されたと認識してステップ S38の処理に移行す る。
[0130] 一方、ステップ S36により YES (求めた PIエラーレートが第 1のメモリ 13aに記憶され た閾値レベル以上)と判断された場合、コンピュータ 13は、この ECCブロックは、再 生線速度の高速化 {基準速度(2倍速)→4倍速 }に関係なく欠陥ブロック (ディフエク ティブ)であると認識し、ステップ S37の処理に移行する。
[0131] ステップ S37において、コンピュータ 13は、ステップ S36の処理においてディフエク
Iエラーレートレベル)を互いに関連付けた状態で第 1のメモリ 13aに記憶する。
[0132] 続いて、ステップ S38において、コンピュータ 13は、 4倍速でディフエクティブと判断 され基準速度で正常と判断された ECCブロック (ステップ S36→YES)、あるいは 4倍 速および基準速度の何れの場合もディフエクティブと判断された ECCブロックに対す るステップ S32で示したベリファイ処理を、記録媒体 3の再生線速度を 4倍速に設定 し、かつ光量調整素子 19に対する印加電圧 (制御条件)を変化させることにより、光 量調整素子 19の光透過率の値を例えば複数段階で変化させながら順次実行して、 光透過率の複数の値それぞれに対応する ECCブロックの再生データを求める。
[0133] さらに、ステップ S38において、コンピュータ 13は、ステップ S33に示したように、光 透過率の複数の値それぞれに対応する ECCブロックの再生データから PIエラーレー ト変化特性を求める。
[0134] そして、コンピュータ 13は、ステップ S38において求められたエラーレート変化特性 において、基準再生線速度である 2倍速での PIエラーレートに相関する光透過率の 値、言い換えれば、基準速度に対応する光透過率較正値、およびこの較正値に対 応する制御条件(印加電圧値)をそれぞれ決定し、決定した制御条件(印加電圧値) を、対応する ECCブロックのアドレスおよび対応する再生線速度 (4倍速)に関連付 けて第 1のメモリ 13aに記憶する(ステップ S39)。 [0135] 次いで、コンピュータ 13は、全ての ECCブロックに対する欠陥判定登録処理(書き 込み処理、ベリファイ処理、およびディフエタト検出処理)が実行されたか否か判断す る(ステップ S40)。
[0136] この判断の結果 YESなら、コンピュータ 13は、欠陥判定登録処理を終了する。
[0137] 一方、ステップ S40の判断の結果 N〇、すなわち、欠陥判定登録処理が行われて いなレ、 ECCブロックが存在する場合には、全ての ECCブロックに対して、上述した 4 倍速による欠陥判定登録処理 (ステップ S31〜S40参照)を繰り返し実行する。
[0138] 上述したステップ S36〜S39の処理を、図 9Aおよび図 9Bを参照して詳細に説明 する。
[0139] 図 9Aは、ステップ S36において N〇と判断された場合、すなわち、 4倍速にてディフ ヱクティブと判断され、基準速度で正常と判断された ECCブロックの PIエラーレートを 、再生線速度が基準速度(2倍速)および 4倍速の場合にっレ、てそれぞれ示した図で ある。
[0140] 図 9Aに示すように、この ECCブロックの PIエラーレートは、再生線速度が 4倍速の 場合には、閾値レベル以上であり(ステップ S34の判断の結果 YES)、ディフエタティ ブと判断される。一方、再生線速度が基準速度である 2倍速の場合には、 ECCブロッ クの PIエラーレートは、閾値レベル未満であり(ステップ S36の判断の結果 NO)、正 常 ECCブロックと判断される。
[0141] すなわち、図 7に示すように、再生線速度が上昇すると、再生特性としての PIエラー レートが低下することから、図 9Aに示すように、再生線速度の高速化 {基準速度(2倍 速)→4倍速 }に起因する PIエラーレート上昇により、 ECCブロックによっては、基準 速度では正常ブロックと判断されるにも係わらず、 4倍速ではディフヱクティブと判断 される場合が生じる。
[0142] このような場合において、第 2の実施形態では、図 7に示す光量調整素子 19の光 透過率変化と PIエラーレートとの関係、すなわち、光量調整素子 19の光透過率変化 (低下)により PIエラーレートが低下する関係を利用して、上記再生線速度の高速化 に起因する PIエラーレート上昇を相殺することにより、基準速度の場合に得られた PI エラーレートと 4倍速度の場合に得られた PIエラーレートとを略一致させている。 [0143] ここで、図 9Bは、ステップ S38の処理により、光量調整素子 19に対する印加電圧を 所定範囲内で変化させてその光透過率を変化させた場合における図 9Aに示す EC Cブロックの PIエラーレートの変化特性を概略的に示す図である。なお、図 9Bにおい ては、光透過率変化により ECCブロックの PIエラーレートが線形的に変化するものと 仮定している。
[0144] 図 9Bに示すように、光量調整素子 19の光透過率が上昇すると、その ECCブロック の PIエラーレートが上昇することが分かる。したがって、この ECCブロックの再生線速 度が基準速度である 2倍速における PIエラーレート(図 9A参照)に相関する光量調 整素子 19の光透過率の値、言い換えれば、再生線速度が 4倍速における光量調整 素子 19の光透過率較正値を求めることができる。
[0145] すなわち、コンピュータ 13は、 4倍速で記録媒体 3を回転させながら、第 1のメモリ 1 3aに光透過率較正値と関連付けられて記憶されたアドレスの ECCブロックをべリファ ィする際には、光量調整素子 19に印加する電圧値を制御して、その光透過率を上 記光透過率較正値に略一致させた状態で行う。
[0146] この光透過率調整により、対応する ECCブロックの 4倍速での PIエラーレートを、基 準速度における PIエラーレートと略同一に設定することが可能となり、基準速度で記 録媒体 3を回転させながらこの ECCブロック欠陥判定登録処理を実行した場合と同 等の ECC欠陥判定登録結果を得ることができる。
[0147] なお、ステップ S36において YESと判断された場合、すなわち、 4倍速および 2倍 速何れの場合においてもディフエクテイブと判断された ECCブロックの PIエラーレー トに対しても、ステップ S38〜S40の処理が施されることにより、その ECCブロックの 4 倍速での PIエラーレートを、基準速度における PIエラーレートと略同一に設定するこ とが可能となる。
[0148] 以上述べたように、本実施形態によれば、従来、基準速度(2倍速)で記録媒体 3を 回転させながら各 ECCブロック欠陥判定登録処理を実行した場合と比べて、その基 準速度よりも高速の再生線速度でベリファイ処理を行うことができるため、容易かつ迅 速に各 ECCブロック欠陥判定登録処理を行うことができる。この結果、各 ECCブロッ クの欠陥判定登録結果についても、従来よりも容易かつ迅速に得ることができる。 [0149] また、本実施形態によれば、光量調整素子 19の光透過率を制御することにより、最 初、 4倍速にてディフエクテイブと判断された ECCブロックの PIエラーレートを、基準 速度での PIエラーレートに略一致させることができる。この結果、この記録媒体 3に対 して 2回目以降の欠陥判定登録処理を実行したとき、同一の閾値レベルを用いても、 4倍速および基準速度間の速度差に起因した PIエラーレートの差に関係なぐ各 EC Cブロックに対して欠陥判定を行うことができる。
[0150] なお、本実施形態においては、 ECCブロックの欠陥判定登録処理において用いら れる線速度を 4倍速としたが、本発明はこの構成に限定されるものではなぐ基準速 度以外の他の線速度を用いることが可能である。
[0151] (第 3の実施の形態)
本発明の第 3の実施形態に係わる情報記録再生装置について図面を用いて説明 する。なお、第 3の実施の形態に係わる情報記録再生装置のハードウェア構成要素 は、第 1の実施の形態に係わる情報記録再生装置 1のハードウェア構成と略同様で あるため、同一の符号を付してその説明は省略または簡略化する。
[0152] 本実施形態の情報記録再生装置についても、第 2の実施形態と同様に、記録媒体
3の記録トラックに書き込まれたデータの欠陥判定登録処理を、従来における欠陥判 定登録処理よりも容易かつ迅速に行うことができる欠陥管理システムとして機能する。
[0153] 第 2の実施の形態では、図 8に示すように、基準速度よりも高速の再生線速度(例え ば 4倍速)で欠陥 ECCブロックの検出処理を行レ、(ステップ S 31〜 S 34参照)、欠陥 判定された ECCブロックが検出された際に、光量調整素子 19の透過率の較正処理 を行っている。
[0154] これに対して、本実施形態では、最初に、記録媒体 3の任意のエリア {例えば、媒体
3の内側にある試し書きエリア(PCA: Power Calibration Area)やユーザデータエリア 等 }に対してレーザ光を照射して試し書きを行レ、、この試し書きにより得られたエラー レート(PIエラーレート)変化に基づいて、光量調整素子 19の光透過率、言い換えれ ば、その光透過率に対応する印加電圧値 (制御条件)を決定するように構成されてい る。
[0155] すなわち、コンピュータ 13は、第 2のメモリ 13bにロードされている少なくとも 1つの プログラム pに従って、図 10に示す処理を実行する。
[0156] 図 10に示すように、コンピュータ 13は、ステップ S51として、本実施形態に係わる E CCブロックの欠陥判定登録処理を実行するか否かを例えば周期的に繰り返し判断 している。
[0157] 今、例えばユーザの入力部 47操作によりコンピュータ 13に ECCブロックの欠陥判 定登録処理の実行命令が入力されると、ステップ S51の判断は YESとなり、コンビュ ータ 13は、ステップ S52の処理に移行する。
[0158] すなわち、ステップ S52において、コンピュータ 13は、サーボ回路 9を介してスピン ドルモータ 25を制御して、任意の線速度で記録媒体 3を回転させる。次いで、コンビ ユータ 13は、記録トラックのアドレスを確認しながら、サーボ回路 9を介してァクチユエ ータ 29を駆動制御して、記録媒体 3における例えば試し書きエリアに対して対物レン ズ 27をフォーカシングおよびトラッキングする。そして、コンピュータ 13は、光量調整 素子 19の光透過率を基準となる所定の値 (基準光透過率)に設定する。
[0159] 次いで、コンピュータ 13は、記録媒体 3上の照射レーザ光の記録パワー Pwを所定 の記録パワーレベル(例えば、 8· lmW)に設定し、この設定した記録パワーレベル に基づいてサンプルホールド回路 35を APCオン制御する。
[0160] この APCオン制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号の値をサンプノレホールドして APC回路 37に出力する。
[0161] このとき、 APC回路 37は、変復調部 45により得られた、試し書き用記録データに対 応する NRZIデータに従って、例えばそのハイレベル状態において、サンプルホール ドされたモニタ信号の値に対応するパワーレベル(モニタパワーレベル)が記録パヮ 一レベルに略一致するように、 LDドライバ 17を介して LDユニット 15に与える駆動電 流を制御して、所定のライトストラテジに基づいてマルチパルス変調され、かつ出力 パワーレベルが制御されたレーザ光を出力させる。
[0162] この結果、記録媒体 3の試し書きエリアには、その媒体 3上におけるパワーレベル P wが記録パワーレベルに自動的にフィードバック制御されたレーザ光が照射され、試 し書き用記録データに対応する NRZIデータのランレングスに対応する記録信号が 書き込まれる。 [0163] 書き込み終了後、ベリファイ処理として、コンピュータ 13は、ステップ S53において、 サーボ回路 9を介してスピンドルモータ 25を制御して記録媒体 3の線速度を基準線 速度に設定し、かつ対物レンズ 27の記録媒体 3の試し書きエリアに対するフォーカシ ングおよびトラッキングを維持しながら、記録媒体 3上の照射レーザ光のパワーレべ ルを所定パワーレベルに設定し、この設定した所定パワーレベルに基づいてサンプ ルホールド回路 35を APCオン制御する。
[0164] この APCオン制御に応じて、サンプルホールド回路 35は、アンプ 33から出力され たモニタ信号の値をサンプノレホールドして APC回路 37に出力する。
[0165] このとき、 APC回路 37は、このサンプルホールドされたモニタ信号の値に対応する モニタパワーレベルが所定パワーレベルに略一致するように、 LDドライバ 17を介し て LDユニット 15に与える駆動電流を制御して、 LDユニット 15から出力されるレーザ 光の出力波形を制御する。この結果、光ピックアップ部 5の動作により、記録媒体 3の 試し書きエリアに書き込まれた記録信号に対して、上記出力波形が制御されたレー ザ光が照射される。
[0166] 照射されたレーザ光に基づいて、対応する記録信号から反射された反射光は、光 ピックアップ部 5の動作により、受光部 30を介して RF信号として検出され、変復調部 4 5を介して試し書きデータの再生データ(ビット列データ)として復号化され、コンビュ ータ 13に送信される。
[0167] このとき、ステップ S53において、コンピュータ 13は、送信されてきた再生データか ら PIエラーレートを算出する。
[0168] 次いで、コンピュータ 13は、ステップ S52および S53の試し書き、ベリファイ、および ベリファイ結果に基づく PIエラーレート算出処理を、データ書き込み条件を変化させ ながら繰り返し実行する (ステップ S54)。
[0169] データ書き込み条件としては、例えば、記録媒体 3上の照射レーザ光の記録パワー
Pwの値(記録パワーレベル)、マルチパルス変調におけるライトストラテジ、および/ または光量調整素子 19の光透過率等が含まれる。
[0170] 例えば、ステップ S54において、コンピュータ 13は、データ書き込み条件変化として
、記録媒体 3上の照射レーザ光の記録パワー Pwの値(記録パワーレベル)を、 8. 1 mWをべストとして、その前後に変化させながら、ステップ S52および S53の試し書き 、ベリファイ、およびべリファイ結果に基づく PIエラーレート算出処理を繰り返し実行 する。
[0171] 一方、図 11は、例えばランレングス 3Tの NRZIデータに対応するレーザマルチパ ノレス変調波形を示すものであり、上段がデフォルトベストのストラテジ幅(3T 0)の変 調波形、下段がデフォルトベストのストラテジ幅(3T 0)の変調波形から 1分解能だけ 狭くなつたストラテジ幅 (3T- 1)の変調波形を示している。
[0172] 図 11に示すように、例えばステップ S54において、コンピュータ 13は、 NRZIデータ に対応するレーザマルチパルス変調波形のストラテジ幅を、デフォルトベストの状態 力 その前後(土方向)に変化させながら、ステップ S52および S53の試し書き、ベリ フアイ、およびべリファイ結果に基づく PIエラーレート算出処理を繰り返し実行する。
[0173] 図 12は、書き込み条件変化として、記録媒体 3上の照射レーザ光の記録パワー Pw の値を、 8. lmWをべストとして、その前後に変化させながら、ステップ S54の処理を 実行することにより得られたエラーレート変化特性を示すグラフ(符号 G1)である。
[0174] 図 12に示すグラフにおいて、横軸は記録パワー Pwの 8· lmWを中心としてその前 後への変化(単位: [mW])、縦軸は、 PIエラーレート変化をそれぞれ表している。
[0175] なお、図 12において、符号 G2は、再生線速度を 4倍速に設定した状態で、上記記 録媒体 3上の照射レーザ光の記録パワー Pwの値を、 8. lmWをべストとして、その前 後に変化させながら、ステップ S54の処理を実行することにより得られたエラーレート 変化特性を示すグラフであり、また、符号 G3は、線速度を 4倍速に設定し、かつ光量 調整素子 19の光透過率を減少(媒体 3上のパワーレベルは一定)させて LDユニット 15のレーザ光出力パワーレベルを上昇させた状態で、上記記録媒体 3上の照射レ 一ザ光の記録パワー Pwの値を、 8. lmWをべストとして、その前後に変化させながら 、ステップ S54の処理を実行することにより得られたエラーレート変化特性を示すダラ フである。
[0176] 図 12に示すように、書き込み条件である記録パワー Pwの値を、そのべストの値から 変化させることにより、その記録パワー Pw変化に応じてエラーレートを、閾値レベル を含むように変ィ匕させること力 Sできる。 [0177] また、図 12に示すように、再生線速度を基準速度から 4倍速に変化させると、得ら れたエラーレート変化特性は、全体的に悪化(上昇)する方向へシフトすることが分か る(G2参照)。
[0178] さらに、図 12に示すように、線速度を基準速度から 4倍速に変化させても、光量調 整素子 19の光透過率を減少(媒体 3上のパワーレベルは一定)させて LDユニット 15 のレーザ光出力パワーレベルを上昇させることにより、得られたエラーレート変化特 性は、通常の基準速度により得られたエラーレート変化特性に比べて、全体的に良 化 (低下)する方向へシフトすることが分かる(G3参照)。
[0179] 一方、図 13は、書き込み条件変化として、 NRZIデータに対応するレーザマルチパ ノレス変調波形のストラテジ幅を、デフォルトベストの状態からその前後に変化させなが ら、ステップ S54の処理を実行することにより得られたエラーレート変化特性を示すグ ラフ(符号 G11)である。
[0180] 図 13に示すグラフにおいて、横軸はデフォルトベストのストラテジ幅からの変化(0 をデフォルトべストとする)、縦軸は、 PIエラーレート変化をそれぞれ表している。
[0181] なお、図 13において、符号 G12は、線速度を 4倍速に設定した状態で、上記 NRZI データに対応するレーザマルチノ^レス変調波形のストラテジ幅を、デフォルトベスト の状態からその前後に変化させながら、ステップ S54の処理を実行することにより得 られたエラーレート変化特性を示すグラフであり、また、符号 G13は、線速度を 4倍速 に設定し、かつ光量調整素子 19の光透過率を減少(媒体 3上のパワーレベルは一 定)させて LDユニット 15のレーザ光出力パワーレベルを上昇させた状態で、上記 N RZIデータに対応するレーザマルチノ^レス変調波形のストラテジ幅を、デフォルトべ ストの状態からその前後に変化させながら、ステップ S54の処理を実行することにより 得られたエラーレート変化特性を示すグラフである。
[0182] 図 13に示すように、書き込み条件であるライトストラテジとして、レーザマルチパルス 変調波形のストラテジ幅を、そのデフォルトべストから変化させることにより、そのストラ テジ幅変化に応じてエラーレートを、閾値レベルを含むように変化させることができる
[0183] また、図 13に示すように、線速度を基準速度から 4倍速に変化させると、得られたェ ラーレート変化特性は、全体的に悪化(上昇)する方向へシフトすることが分かる(G1 2参照)。
[0184] さらに、図 13に示すように、線速度を基準速度から 4倍速に変化させても、光量調 整素子 19の光透過率を減少(媒体 3上のパワーレベルは一定)させて LDユニット 15 のレーザ光出力パワーレベルを上昇させることにより、得られたエラーレート変化特 性は、通常の基準速度により得られたエラーレート変化特性に比べて、全体的に良 化 (低下)する方向へシフトすることが分かる(G13参照)。
[0185] すなわち、図 12および図 13から明らかなように、線速度を高速化してエラーレート を悪化(上昇)させても、その悪化分に応じて光量調整素子 19の光透過率を減少さ せることにより、その悪化分を相殺することが可能になる。
[0186] ステップ S54の処理によりエラーレート変化特性が得られると、コンピュータ 13は、 第 1のメモリ 13aに記憶された閾値レベルを含むエラーレート範囲を設定する(ステツ プ S55)。
[0187] 次いで、コンピュータ 13は、試し書きデータに対するステップ S53で示したベリファ ィ処理およびエラーレート算出処理を、記録媒体 3の再生線速度を、実際に欠陥判 定登録処理において用いる線速度(例えば、 4倍速)に設定し、かつ光量調整素子 1 9に対する印加電圧(制御条件)を変化させて光量調整素子 19の光透過率の値を例 えば複数段階で変化させながら順次実行して、光透過率の複数の値それぞれに対 応する PIエラーレート変化特性を求める(ステップ S56)。
[0188] そして、コンピュータ 13は、ステップ S56において求められたエラーレート変化特性 において、基準再生線速度である 2倍速でのエラーレート閾値レベルに相関する光 透過率の値、言い換えれば、基準速度に対応する基準光透過率に対する光透過率 較正値、およびこの較正値に対応する制御条件(印加電圧値)をそれぞれ決定し、 決定した制御条件(印加電圧値)を、対応する再生線速度 (4倍速)に関連付けて第 1のメモリ 13aに記憶する(ステップ S57)。
[0189] 続いて、コンピュータ 13は、 4倍速による実際の欠陥判定登録処理、すなわち、 4倍 速による全ての ECCブロックに対する欠陥判定登録処理(図 8のステップ S31〜S34 、 S37参照)を実行する。このとき、この欠陥判定登録処理 (ステップ S31〜S34、 S3 7参照)におけるべリファイ時においては、第 1のメモリ 13aに記憶された制御条件(印 加電圧値)を用いて光量調整素子 19の光透過率を調整した状態で実行する (ステツ プ S58)。
[0190] 上述したステップ S54〜S58の処理を、図 14Aおよび図 14Bを参照して詳細に説 明する。
[0191] 図 14Aは、ステップ S52〜55の処理により求められた閾値レベルを含む PIエラー レート範囲 El {再生線速度は基準速度(2倍速) }と、再生線速度を 4倍速に設定した 状態においてステップ S52〜55の処理により求められた PIエラーレート範囲 E2、お よび再生線速度を 6倍速に設定した状態においてステップ S52〜55の処理により求 められた PIエラーレート範囲 E3をそれぞれ示す図である。
[0192] 図 14Aに示すように、 PIエラーレート範囲は、再生線速度の変化(2倍速→4倍速 →6倍速)に依存して上昇する。したがって、この再生線速度の高速化に起因する PI エラーレート範囲全体の上昇により、 ECCブロックによっては、基準速度では正常ブ ロックと判断されるにも係わらず、その基準速度を超えた高速再生線速度ではディフ エタティブと判断される場合が生じる。
[0193] 例えば、図 14Aにおける符号 XIは、閾値レベルを含む PIエラーレート範囲 E1に おいて閾値レベルに相当する PIエラーレート(基準 PIエラーレート)を表しており、基 準速度に対応する閾値レベル (基準 PIエラーレート XI)を、そのまま高速再生線速 度を用いたベリファイ処理に適用しても、上記 PIエラーレート範囲全体の変化により、 基準速度におけるベリファイ処理により得られた ECCブロック欠陥判断処理結果とは 異なる結果が生じてしまう。
[0194] このような場合において、第 3の実施形態では、図 7、図 12および図 13に示す光量 調整素子 19の光透過率変化と PIエラーレートとの関係、すなわち、光量調整素子 1 9の光透過率変化低下により PIエラーレートが低下する関係を利用して、基準速度 に対応する閾値レベル (基準 PIエラーレート XI)を、高速再生線速度(4倍速、およ び 6倍速)に応じて較正するように構成している。
[0195] ここで、図 14Bは、基準速度における閾値レベルに相当する基準 PIエラーレート X 1が再生線速度の上昇に関係なく閾値レベルに維持されるために必要な透過率変 化の一例を概略的に示す図である。なお、図 10に示す処理により、実際に欠陥判定 登録処理において用いる線速度が 6倍速である場合における光透過率較正値を求 め、再生線速度変化 {基準速度(2倍速)→4倍速→6倍速 }と、その再生線速度変化 に対応する光透過率変化(2倍速に対応する基準光透過率、 4倍速に対応する光透 過率較正値、および 6倍速に対応する光透過率較正値)との関係を近似的にグラフ 化したものが図 14Bである。
[0196] 図 14Bに示すように、再生線速度が 4倍速に上昇した際に、基準速度(2倍速)に おける閾値レベルに相当する基準 PIエラーレート XIが得られた際の光量調整素子 1 9の光透過率 (所定値) R1を、上記再生線速度上昇に起因するエラーレート上昇を 相殺するように、その基準 PIエラーレート XIに相関する光透過率 R2まで低下させる 。この結果、基準速度(2倍速)における閾値レベルに相当する基準 PIエラーレート X 1に相関する光量調整素子 19の光透過率の値、言い換えれば、基準 PIエラーレート に対応する 4倍速用の新たな閾値レベル較正値 (基準 PIエラーレート XIおよび光量 調整素子 19の光透過率較正値に基づく)を得ることができる。
[0197] なお、再生線速度が 6倍速においても同様であり、再生線速度が 6倍速に上昇した 際に、基準速度(2倍速)における閾値レベルに相当する基準 PIエラーレート XIが得 られた際の光量調整素子 19の光透過率 R1を、上記再生線速度上昇に起因するェ ラーレート上昇を相殺するように、その基準 PIエラーレート XIに相関する光透過率 R 3まで低下させる。この結果、基準速度(2倍速)における閾値レベルに相当する基準 PIエラーレート XIに相関する光量調整素子 19の光透過率の値、言い換えれば、基 準 PIエラーレートに対応する 6倍速用の新たな閾値レベル較正値 (基準 PIエラーレ ート XIおよび光量調整素子 19の光透過率較正値に基づく)を得ることができる。
[0198] このようにして、試し書きにより再生線速度を基準速度である 2倍速から、欠陥判定 登録処理で用いる 4倍速に変化させた場合における光量調整素子 19の光透過率の 較正値、およびその較正値に基づく 4倍速用の閾値レベル較正値を求めることがで きる。
[0199] この結果、コンピュータ 13は、各 ECCブロックのデータに対して欠陥判定登録処理 を行う場合において、 4倍速で記録媒体 3を回転させながら各 ECCブロックのデータ をべリファイする際には、光量調整素子 19に印加する電圧値を制御して、その光透 過率を上記光透過率較正値に略一致させた状態、すなわち、閾値レベルを 4倍速用 閾値レベル較正値に設定した状態で行う(ステップ S58参照)。
[0200] この光透過率調整により、基準速度(2倍速)よりも高速の 4倍速で記録媒体 3を回 転させながら各 ECCブロック欠陥判定登録処理を実行した場合でも、基準速度で記 録媒体 3を回転させながら各 ECCブロック欠陥判定登録処理を実行した場合と同等 の ECC欠陥判定登録結果を得ることができる。
[0201] 以上述べたように、本実施形態では、実際に欠陥 ECCブロックの検出を行うことな ぐ試し書きエリアに対して書き込み条件を、その正常時の条件 (ディフエ外条件)か ら変化、すなわち、悪化させながら試し書き用データを書き込むことにより、基準再生 速度における閾値レベルを含む PIエラーレート範囲を設定することができる。
[0202] したがって、基準再生速度よりも高速の再生速度において欠陥判定登録処理を行 う場合において、基準再生速度における閾値レベルに対応する PIエラーレートに高 レ、相関を有する光量調整素子 19の光透過率較正値、およびこの光透過率較正値に 基づく閾値レベル較正値をそれぞれ求めることが可能になる。
[0203] この結果、基準速度(2倍速)よりも高速の 4倍速で記録媒体 3を回転させながら各 E CCブロック欠陥判定登録処理を実行することが可能になり、 ECCブロック欠陥判定 登録処理を容易かつ迅速に行うことができる。
[0204] 特に、本実施形態では、実際の欠陥 ECCブロックの検出処理を行った後で光量調 整素子 19の透過率の較正処理を行うのでなぐ記録媒体 3に対する試し書きにより 得られたエラーレート(PIエラーレート)変化に基づいて、光量調整素子 19の透過率 の較正処理を行っているため、第 2実施形態よりもさらに容易かつ迅速に ECCブロッ ク欠陥判定登録処理を行うことができる。
[0205] なお、本実施形態においては、図 14Bに示す関係を表すデータ、すなわち、再生 線速度変化 {基準速度(2倍速)→4倍速→6倍速 }と、その再生線速度変化に対応 する光透過率変化(2倍速に対応する基準光透過率、 4倍速に対応する光透過率較 正値、および 6倍速に対応する光透過率較正値)との関係を表すデータ(透過率一 倍速相関データ)を第 1のメモリ 13aに記憶しておくことも可能である。 [0206] このように構成すれば、半径位置に応じて線速度が異なる CAV記録時において欠 陥判定登録処理を行う場合に特に好適である。
[0207] ここで、図 15は、 CAV記録時における記録媒体 3の半径位置と再生線速との関係 を示す図であり、図 15に示すように、記録媒体 3の半径位置 26mmにおいて 2倍速で 記録されている場合には、半径位置が 2倍の 52mmにおいては、その 2倍の 4倍速で 記録されることになる。
[0208] このような CAV記録時においても、コンピュータ 13は、その半径位置変化に基づく 再生線速度の変化に応じて、現在の再生線速度に対応する光透過率較正値、およ びこの光透過率較正値に基づく閾値レベル較正値を、第 1のメモリ 13aに記憶された 透過率一倍速相関データを参照して求めることができ、求めた光透過率較正値およ び閾値レベル較正値に基づいて、現在の再生線速度を落とすことなくべリファイを実 行すること力 Sできる。
[0209] したがって、 CAV記録時における欠陥判定登録処理を行う場合に、その再生パフ オーマンスを高く維持することが可能になる。
[0210] なお、上述した第 1〜第 3の実施形態においては、記録再生データ処理部 11およ びコンピュータ 13により得られた再生データを評価する指標となる再生特性として、 各 ECCブロックにおける PIエラーレートを用いた力 本発明はこの構成に限定される ものではなく、上記再生データ評価指標となるものであれば、各種のデータを用いる こと力 Sできる。例えば、再生データとこの再生データから抽出されたクロックとの間の 変化の割合を表すジッタを再生特性として利用することができる。
[0211] また、上述した第 2〜第 3の実施の形態においては、ディフエタトマネジメントの処理 単位として、 ECCブロックとして説明した力 本発明はこの構成に限定されるものでは なぐ任意のデータ単位を用いることができる。例えば、所定の PIライン数(閾値レべ ノレとしては、 PI訂正不能ライン数、あるいは所定の PI訂正ライン数等を設定する)を ディフエタトマネジメントの処理単位として利用することもできる。
[0212] さらに、上述した第 1〜第 3の実施の形態においては、光ピックアップ部 5における 光量調整素子 19の制御処理、パワー調整部 7の制御処理、サーボ回路 9の制御処 理、および記録再生データ処理部 11におけるエラー検出および/または訂正に関 する処理を、それぞれ対応するプログラム Pに従ってコンピュータ 13に実行させるよう に構成した力 本発明は上記構成に限定されるものではなぐ例えば 2台以上のコン ピュータにより分散して行うことも可能である。
[0213] 上述した第 1〜第 3の実施の形態においては、データ記録時においても、サンプル ホールド回路 35および APC37を用いて APCオン制御を行った力 本発明はこの構 成に限定されるものではなぐデータ記録時および再生時において別系統の APC制 御部(サンプノレホールド回路および APC回路を用いて、個別に APCオン制御を実 行するようにしてもよい。
[0214] そして、本実施形態では、図 1に示す立ち上げミラーに入射され、かつその立ち上 げミラーを透過したレーザ光の一部のパワーを、モニタダイオードにより常時モニタす るように構成したが、本発明はこの構成に限定されるものではない。例えば、光量調 整素子 19と対物レンズ 27との間の光路上、あるいはこの間の光学系から分岐された 光路上等に配置し、対応する光路上の反射光をモニタするように構成することも可能 である。
[0215] また、 LDユニットの出力端の反対側の面から出射されるレーザ光(バック側レーザ 光:通常の出力端から出射されるレーザ光とパワーが同一のレーザ光)の光路上に モニタダイオードを配置し、このモニタダイオードによりバック側レーザ光をモニタ(こ のモニタ値と光量調整素子 19の光透過率により記録媒体 3上の照射パワーをモニタ )するように構成することも可能である。
[0216] 本発明は、上述した実施の形態および変形例に限定されるものではなぐ本発明 に属する範囲内において、上記実施の形態および変形例を様々に変形して実施す ることが可能である。

Claims

請求の範囲
[1] 光源から出射され記録媒体に対して照射された光に基づいて、該記録媒体に記録 された情報から反射されてきた反射光を受光し、受光した反射光に基づいて前記記 録媒体に記録された情報を再生する光記録情報再生装置であって、
前記光源から出射された光の光量を、外部からの制御情報により調整できる光量 調整部を含み、前記光量調整部による該出射光の光量調整度合と前記記録媒体上 における該出射光のパワー変化度合との関係を表すパワー変化情報に基づいて前 記制御情報を決定することにより、該光量調整部の光量調整度合を所望の値に設定 する光量調整ユニットを備えたことを特徴とする光記録情報再生装置。
[2] 前記光量調整部は、前記外部からの制御情報により前記光量調整度合としての光 透過率が変化して該出射光の光量を調整できる光透過素子を含み、
前記光量調整ユニットは、
前記出射光の前記記録媒体上におけるパワーをモニタするパワーモニタユニットと 前記パワーモニタユニットによりモニタされたモニタパワーおよび前記パワー変化情 報に基づいて前記制御情報を制御する制御ユニットと、
を備えたことを特徴とする請求項 1記載の光記録情報再生装置。
[3] 前記制御ユニットは、前記パワーモニタユニットによりモニタされたモニタパワーを 略一定に保持しながら、前記光量調整素子の光透過率を可変制御する光透過率制 御ユニットを含むことを特徴とする請求項 1記載の光記録情報再生装置。
[4] 前記パワーモニタユニットを、前記光源からの出射光が透過する位置に配置したこ とを特徴とする請求項 2又は 3記載の光記録情報再生装置。
[5] 前記光透過率制御ユニットは、前記パワーモニタユニットによりモニタされたモニタ パワーを略一定に保持しながら、前記光量調整素子の光透過率を、前記記録媒体 に記録された情報の再生時における特性を表す再生特性が所定の特性を有するよ うに制御する再生特性制御ユニットを含むことを特徴とする請求項 2記載の光記録情 報再生装置。
[6] 前記パワー変化情報を生成して記憶する生成記憶ユニットを備え、 前記生成記憶ユニットは、
前記光源から所定のパワーレベルで出射された出射光に対する該光量調整素子 の透過率を所定の値に設定し、前記モニタされたモニタパワーに基づいて、該出射 光の前記記録媒体上でのパワーを所定のパワーレベルに維持するパワー制御ュニ ッ卜と、
前記パワー制御ユニットにより前記出射光の前記記録媒体上でのパワーが所定の パワーレベルに維持された後、該パワー制御ユニットによる制御を行うことなぐ前記 制御情報を変化させて前記光量調整素子の透過率を複数の値に変化させながら、 該透過率の複数の値それぞれに対応する前記出射光の前記記録媒体上における 複数のパワーレベルを求め、前記透過率の複数の値それぞれに対応する複数の前 記制御情報と前記複数のパワーレベルとの関係を表す情報を前記パワー変化情報 として生成する生成ユニットと、
を備えたことを特徴とする請求項 2乃至 4の内の何れ力 1項記載の光記録情報再生 装置。
[7] 前記制御ユニットは、前記生成記憶ユニットにより生成および記憶されたパワー変 化情報に基づいて前記制御情報を調整することにより、前記光源からの出射された レーザ光のパワーレベルに関係なぐ前記光源からの出射光の前記記録媒体上に おけるパワーを略一定に維持するパワー維持ユニットを含むことを特徴とする請求項 6記載の光記録情報再生装置。
[8] 前記光源からの出射光は所定の偏光方向を有しており、
前記光量調整部は、前記外部からの制御情報に基づいて所定角度偏光方向を変 化可能な偏光素子と、前記偏光素子通過後の前記出射光の偏光方向によって該出 射光を前記光量調整度合に対応する所定の割合の光量分と残りの割合の光量分と に分けるビームスプリッタとを含むことを特徴とする請求項 1記載の光記録情報再生 装置。
[9] 光源から出射され、光量調整部を介してその光量が調整された状態で記録媒体に 照射された光に基づいて、該記録媒体に記録された情報から反射されてきた反射光 を受光し、受光した反射光に基づいて前記記録媒体に記録された情報を再生する 光記録情報再生装置に備えられ、かつ前記光量調整部を制御可能なコンピュータ が実行可能な光記録情報再生用プログラムであって、
前記コンピュータに、前記光量調整部による前記光源からの出射光の光量調整度 合と前記記録媒体上における該出射光のパワー変化度合との関係を表すパワー変 化情報に基づいて前記光量調整部を制御することにより、該光量調整部の光量調整 度合を所望の値に設定する処理を実行させることを特徴とする光記録情報再生用プ ログラム。
光源から出射され、その光量が調整された状態で記録媒体に照射された光に基づ いて、該記録媒体に記録された情報から反射されてきた反射光を受光し、受光した 反射光に基づいて前記記録媒体に記録された情報を再生する光記録情報再生方 法であって、
前記光源からの出射光の前記記録媒体上におけるパワーをモニタするステップと、 前記モニタ結果および前記出射光に対する光量調整の度合と前記出射光のパヮ 一変化度合との関係を表すパワー変化情報に基づいて、前記光量調整度合を所望 の値に設定するステップと、
を含むことを特徴とする光記録情報再生方法。
PCT/JP2007/062268 2006-06-20 2007-06-19 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム WO2007148668A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006170660 2006-06-20
JP2006-170660 2006-06-20

Publications (1)

Publication Number Publication Date
WO2007148668A1 true WO2007148668A1 (ja) 2007-12-27

Family

ID=38833410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062268 WO2007148668A1 (ja) 2006-06-20 2007-06-19 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム

Country Status (1)

Country Link
WO (1) WO2007148668A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817065A (ja) * 1994-06-30 1996-01-19 Sony Corp 光ピックアップ装置
JP2005174447A (ja) * 2003-12-10 2005-06-30 Pulstec Industrial Co Ltd 光ピックアップ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0817065A (ja) * 1994-06-30 1996-01-19 Sony Corp 光ピックアップ装置
JP2005174447A (ja) * 2003-12-10 2005-06-30 Pulstec Industrial Co Ltd 光ピックアップ装置

Similar Documents

Publication Publication Date Title
CN101174434B (zh) 光学记录介质驱动设备和球面像差调节方法
US7782722B2 (en) Method of adjusting spherical aberration and focus offset and information recording/reproduction apparatus using the same
JP2006099928A (ja) 光ディスク装置、フォーカスバイアス及び球面収差補正値調整方法
JP4717925B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
US20050276212A1 (en) Information record medium, and information record apparatus and method
US20080106985A1 (en) Recording Apparatus, Recording Method, And Computer Program
JP4460569B2 (ja) 光ディスク装置及びその記録パワー設定方法
JP4545205B2 (ja) 光ディスク記録再生信号の処理方法、光ディスク記録再生装置及びプログラム
JP2007172770A (ja) 光ディスク装置
JP2004253016A (ja) レーザパワー調整方法、ディスクドライブ装置
WO2007148668A1 (ja) 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム
WO2005064606A1 (ja) 情報記録装置及び方法、並びにコンピュータプログラム
CN101110230A (zh) 光盘及光盘装置
WO2007148670A1 (ja) 光記録情報再生方法および装置、ならびに光記録情報再生用プログラム
JP4258449B2 (ja) 情報記録方法及び情報記録装置
JP4493716B2 (ja) 光記録再生方法およびシステム、ならびにプログラム
JP5380331B2 (ja) 光ディスク、光ディスク装置および再生方法
JP4470896B2 (ja) 光ディスク装置
US7940626B2 (en) Recording device and recording method, and computer program
JP2006172667A (ja) 記録パワー初期値決定方法と光学的情報記録再生装置およびそれを用いた光学的情報記録媒体
WO2007148387A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
WO2007148386A1 (ja) 光記録再生方法およびシステム、ならびにプログラム
KR100723090B1 (ko) 광 디스크, 광 디스크 장치, 광 디스크 장치의 구동 방법 및 광 디스크 장치용 프로세서
KR100684403B1 (ko) 광디스크장치의 기록파워 보상방법
JP4569557B2 (ja) ディスク装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07767156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP