WO2007135975A1 - 窒素含有合金、及びそれを使用した蛍光体の製造方法 - Google Patents

窒素含有合金、及びそれを使用した蛍光体の製造方法 Download PDF

Info

Publication number
WO2007135975A1
WO2007135975A1 PCT/JP2007/060203 JP2007060203W WO2007135975A1 WO 2007135975 A1 WO2007135975 A1 WO 2007135975A1 JP 2007060203 W JP2007060203 W JP 2007060203W WO 2007135975 A1 WO2007135975 A1 WO 2007135975A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
alloy
nitrogen
raw material
less
Prior art date
Application number
PCT/JP2007/060203
Other languages
English (en)
French (fr)
Inventor
Naoto Kijima
Hiromu Watanabe
Keiichi Seki
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006184667A external-priority patent/JP2008013627A/ja
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US12/301,470 priority Critical patent/US8123980B2/en
Priority to CN2007800182648A priority patent/CN101448914B/zh
Priority to KR1020087027538A priority patent/KR101390731B1/ko
Priority to EP07743638A priority patent/EP2022834A4/en
Publication of WO2007135975A1 publication Critical patent/WO2007135975A1/ja
Priority to US13/343,888 priority patent/US8636920B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum

Definitions

  • the present invention relates to a nitrogen-containing alloy as a raw material for producing a phosphor based on nitride or oxynitride, and a phosphor based on a nitride or oxynitride based on this nitrogen-containing alloy. It relates to a manufacturing method.
  • Phosphors are used in fluorescent lamps, fluorescent display tubes (VFD), field emission displays (FED), plasma display panels (PDP), cathode ray tubes (CRT), white light emitting diodes (LE D), etc. Yes.
  • VFD fluorescent display tubes
  • FED field emission displays
  • PDP plasma display panels
  • CRT cathode ray tubes
  • LE D white light emitting diodes
  • any of these applications in order to make the phosphor emit light, it is necessary to supply the phosphor with energy for exciting the phosphor, such as vacuum ultraviolet rays, ultraviolet rays, visible rays, and electron beams. It is excited by an excitation source having high energy and emits ultraviolet rays, visible rays, and infrared rays.
  • an excitation source having high energy and emits ultraviolet rays, visible rays, and infrared rays.
  • the luminance of the phosphor decreases.
  • the fluorescent substance represented by this is disclosed.
  • These phosphors are synthesized by nitriding an alkaline earth metal to synthesize an alkaline earth metal nitride and adding silicon nitride thereto, or by using an alkaline earth metal and an imide of silicon as a raw material. It is synthesized by heating in a nitrogen or argon stream. In either case, alkaline earth metal nitrides sensitive to air and moisture must be used as raw materials. However, there was a problem in industrial production.
  • Patent Document 2 listed below discloses an oxtolide represented by the general formula MSiON: Eu.
  • M is Sr
  • SrCO, A1N, and SiN are mixed at a ratio of 1: 2: 1 to reduce the atmosphere.
  • the obtained phosphor is only an oxynitride phosphor, and no nitride phosphor containing no oxygen is obtained.
  • the raw material powder is used for the purpose of promoting the solid-phase reaction between the raw material mixed powders during firing. It is necessary to heat by increasing the contact area between the ends. Therefore, these phosphors are synthesized in a compression-molded state at a high temperature, that is, a very hard sintered body. Therefore, the sintered body obtained in this way must be pulverized to a fine powder suitable for the intended use of the phosphor.
  • alkaline earth metal nitrides such as 3 2 strontium (Sr N)
  • nitrides of divalent metals are unstable in a moisture-containing atmosphere that easily reacts with moisture to form hydroxides. This is especially true for Sr N and Sr metal powders.
  • Patent Document 3 discloses an example of a method for producing an aluminum nitride-based phosphor, which describes that transition elements, rare earth elements, aluminum, and alloys thereof can be used as raw materials. However, there are no actual examples using alloys as raw materials. It is characterized by using Al metal as the Al source. In addition, it differs from the present invention in that it uses a combustion synthesis method that ignites the raw material and instantaneously raises the temperature to a high temperature (3000 K), and it is assumed that it is difficult to obtain a high-quality phosphor by this method.
  • Patent Document 1 Japanese Translation of Special Publication 2003-515665
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-206481
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-54182
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a phosphor capable of industrially producing a phosphor having high characteristics, particularly high brightness. That is. Another object of the present invention is to provide a phosphor obtained by the method for producing the phosphor, a phosphor-containing composition and a light emitting device using the phosphor, and an image display device and an illumination device using the light emitting device. Is to provide.
  • Another object of the present invention is to provide a nitrogen-containing alloy and an alloy powder that can be used in the method for producing the phosphor.
  • the present inventors have intensively studied a method for producing a phosphor.
  • two or more kinds of metal elements constituting the phosphor are used as all or part of the raw material.
  • the temperature change during the heat treatment is kept constant. It has been found that the amount that can be heated at one time can be increased by controlling below the range.
  • the gist of the present invention is the following (1) to (33).
  • a method for producing a phosphor comprising a step of heating a phosphor material in a nitrogen-containing atmosphere, wherein two or more metal elements constituting the phosphor are used as part or all of the phosphor material.
  • the above-mentioned alloy hereinafter referred to as “phosphor raw material alloy”
  • the melting point of the phosphor raw material alloy is 100 ° C. lower than the melting point of the melting point.
  • a method for producing a phosphor characterized by heating under conditions where the temperature change per minute in a temperature range up to 30 ° C is within 50 ° C.
  • a part or all of the phosphor raw material alloy is a nitrogen-containing alloy having a total metal element content of 97% by weight or less;
  • a nitride or oxynitride containing one or more metal elements constituting the phosphor is used together with the phosphor material alloy;
  • the phosphor raw material alloy powder having an angle of repose of 45 degrees or less is used as the phosphor raw material alloy.
  • the phosphor raw material is heated in a baking container, and the ratio of the mass of the phosphor raw material to the mass of the baking container represented by the following formula [A] is: 0.1.
  • a part or all of the phosphor raw material alloy is a nitrogen-containing alloy having a total metal element content of 97% by weight or less;
  • a nitride or oxynitride containing one or more metal elements constituting the phosphor is used together with the phosphor material alloy;
  • the phosphor raw material alloy powder having an angle of repose of 45 degrees or less is used as the phosphor raw material alloy.
  • the phosphor raw material alloy is heated in a nitrogen-containing atmosphere to produce the nitrogen-containing alloy (hereinafter referred to as “primary nitriding step”).
  • NI represents the nitrogen content (% by weight) of the nitrogen-containing alloy
  • NP represents the nitrogen content (% by weight) of the phosphor to be produced.
  • a step of heating the nitrogen-containing alloy as a part or all of the phosphor raw material in a nitrogen-containing atmosphere (hereinafter referred to as “secondary nitriding step”) from the melting point of the nitrogen-containing alloy.
  • secondary nitriding step A step of heating at a temperature of 300 ° C or higher!
  • the method Prior to the secondary nitriding step, the method includes a step of cooling the nitrogen-containing alloy to a temperature that is 100 ° C. or more lower than the melting point of the nitrogen-containing alloy (6). (10) The method for producing a phosphor according to any one of the above. [0025] (12) The method for producing a phosphor according to any one of (6) to (11), further comprising a step of pulverizing the nitrogen-containing alloy prior to the secondary nitriding step.
  • the weight median diameter D of the phosphor raw material alloy is 100 m or less.
  • the phosphor material together with the phosphor material alloy, contains 1 wt% or more of a nitride or oxynitride containing one or more metal elements constituting the phosphor.
  • a method for producing a phosphor comprising a step of heating a phosphor material in a nitrogen-containing atmosphere, wherein the phosphor material alloy is used as part or all of the phosphor material, and A part or all of the phosphor raw material alloy is a nitrogen-containing alloy having a nitrogen content of 10% by weight or more.
  • a method for producing a phosphor comprising: a firing step of firing the alloy powder obtained by solidification in a nitrogen-containing atmosphere.
  • the phosphor is a tetravalent metallic element M 4 including at least Si, (1) to be characterized by containing one or more metal elements other than Si (17) ⁇ A method for producing the phosphor according to any one of the above.
  • NI represents the nitrogen content (% by weight) of the nitrogen-containing alloy
  • NP represents the nitrogen content (% by weight) of the phosphor to be produced.
  • a divalent nitrogen-containing alloy according to, characterized in that it comprises an alkaline earth metal element as the metal element M 2 (26).
  • Activating element M 1 is Cr, Mn, Fe, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb force.
  • the divalent metal element M 2 is one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, and Zn
  • the trivalent metal element M 3 is Al, Ga
  • One or more elements selected from the group consisting of In and Sc and at least a tetravalent metal element including Si
  • M 4 is selected from the group force consisting of Si, Ge, Sn, Ti, Zr, and Hf 1 It is an element more than species (28) Is a nitrogen-containing alloy according to (29).
  • 50 mol% or more of the divalent metal element M 2 is Ca and Z or Sr
  • 50 mol% or more of the trivalent metal element M 3 is A1
  • an alloy powder as a phosphor raw material is at least one metallic element containing the activating element M 1 at least one repose of the alloy powder
  • An alloy powder for a phosphor material characterized by having an angle of 45 degrees or less.
  • the present invention it is possible to suppress the rapid progress of the nitriding reaction in the heating step when the phosphor is manufactured using the phosphor raw material alloy as a part or all of the raw material. Therefore, it is possible to industrially produce a phosphor having high characteristics, particularly high brightness.
  • FIG. 1 is a schematic perspective view showing an embodiment of a light emitting device of the present invention.
  • FIG. 2a is a schematic cross-sectional view showing an embodiment of a bullet-type light emitting device of the present invention.
  • 2b is a schematic cross-sectional view showing an example of the surface-mounted light-emitting device of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the illumination device of the present invention.
  • FIG. 4 is a schematic diagram showing a gas atomizing apparatus suitable for refinement and solidification of molten alloy.
  • FIG. 5 is a chart showing a TG-DTA analysis result of the nitrogen-containing alloy obtained in Example 19.
  • FIG. 6 is a chart showing a powder X-ray diffraction pattern of the nitrogen-containing alloy obtained in Example 11.
  • FIG. 7 is a chart showing a powder X-ray diffraction pattern of the nitrogen-containing alloy obtained in Example 12.
  • FIG. 8 is a chart showing a powder X-ray diffraction pattern of the nitrogen-containing alloy obtained in Example 13. is there.
  • FIG. 9 is a chart showing a powder X-ray diffraction pattern of the nitrogen-containing alloy obtained in Example 14.
  • FIG. 10 is a chart showing the TG-DTA analysis results of the alloy powder before primary nitriding in Comparative Example 1.
  • FIG. 11 is a chart showing a powder X-ray diffraction pattern of the phosphor obtained in Example 12.
  • FIG. 12 is a chart showing a powder X-ray diffraction pattern of the phosphor obtained in Example 13.
  • FIG. 13 is a chart showing an emission spectrum of the surface mount light emitting device obtained in Example 20.
  • FIG. 14 is an optical micrograph of the alloy powder produced in Example 27.
  • FIG. 15 is an optical micrograph of the alloy powder produced in Comparative Example 19.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • an alloy includes a solid solution of two or more metals, a eutectic, an intermetallic compound, and a material in which these coexist, and may include a nonmetallic element.
  • the phosphor production method of the present invention (hereinafter sometimes simply referred to as “the production method of the present invention”;) is a phosphor production method comprising a step of heating a phosphor material in a nitrogen-containing atmosphere.
  • a phosphor material an alloy having two or more metal elements constituting the phosphor (hereinafter referred to as “phosphor material alloy”) is used.
  • the nitriding reaction is an exothermic reaction, if a large amount of phosphor raw material is nitrided by heating at a time in the heating step, a runaway reaction accompanied by a sudden exotherm occurs, and this exotherm causes the phosphor raw material to Part of the constituent elements volatilizes or the phosphor raw material alloy particles In some cases, the light emission characteristics of the phosphors that are often fused are deteriorated, or the phosphors cannot be obtained.
  • the temperature change of the outer wall of the firing container filled with the phosphor raw material in a specific temperature range is small (that is, no rapid exothermic reaction occurs). Is important.)
  • the above specific temperature range is usually a temperature range from 100 ° C lower than the melting point of the phosphor raw material alloy to 30 ° C lower than the melting point, preferably the melting point. More than 150 ° C lower temperature, more preferably 200 ° C lower than the melting point, preferably lower than the melting point, more preferably higher than the melting point, 100 ° C higher than the melting point! .
  • the range of temperature change per minute in the heating step of the production method of the present invention is usually within 50 ° C, preferably within 30 ° C, more preferably within 20 ° C, still more preferably, 10 Within ° C. If the temperature change in the heating step is too large, the light emission characteristics of the phosphor tend to deteriorate, and in some cases, the phosphor may not be obtained.
  • the lower limit of the range of temperature change per minute in the heating step is not particularly limited, but is usually 0.1 ° C or higher from the viewpoint of productivity.
  • the numerical value of the “temperature change per minute in the heating process” above, which may decrease in temperature in the heating process indicates an absolute value.
  • the above “temperature change per minute in the heating step” refers to the temperature of the outer wall of the firing container (however, the height near the height of 1Z2 filled with the phosphor material) (This temperature may be referred to as the “temperature of the side wall of the firing vessel” hereinafter.)
  • the temperature measurement interval is usually 30 seconds or shorter, preferably 20 seconds or shorter, more preferably 10 seconds or shorter.
  • the lower limit of the temperature measurement interval is usually 1 second or longer.
  • the force temperature measurement interval that regulates the temperature change per minute.
  • the range of temperature change per 10 minutes is usually within 100 ° C, Preferably it is within 80 ° C, more preferably within 50 ° C.
  • the lower limit of the temperature change per 10 minutes is not particularly limited, but is usually 0.5 ° C or higher.
  • the side wall temperature of the baking container is substantially the same as the furnace temperature when no sudden heat generation occurs during the heating process. Therefore, when the value of the formula [B] becomes larger than the change in the furnace temperature or the like, it usually means that a rapid exothermic reaction is taking place.
  • the production method of the present invention is not particularly limited as long as the above-described conditions are satisfied, but a method for adjusting the temperature change in the heating step will be described below.
  • the temperature change in the heating step can be adjusted to the above range.
  • the following methods 1) to 4) can be mentioned, and the production method of the present invention preferably satisfies at least one of the following 1) to 4). From the viewpoint, it is particularly preferable to satisfy at least 1).
  • a part or all of the phosphor raw material alloy is a nitrogen-containing alloy having a total metal element content of 97% by weight or less.
  • a nitride or oxynitride containing one or more metal elements constituting the phosphor together with the phosphor material alloy is used.
  • a phosphor raw material alloy powder having an angle of repose of 45 degrees or less is used.
  • the production method of the present invention satisfies any two or more of the above 1) to 4) as necessary. You may do it. Thereby, the calorific value per fixed time can be further reduced. If the above 1) is satisfied, the above 1) and 2) above may be satisfied in addition to the above 1), even though one or more of the above 2) to 4) may be satisfied. It is preferable to satisfy the above 1) and 3). Alternatively, it is preferable that the above 2) and 3) are satisfied. Since the degree of the effect obtained by the above 1) to 4) may vary depending on other conditions such as the composition and shape of the alloy for the phosphor material, the firing device, the firing atmosphere, and the firing temperature, the above 1) to It is preferable to adjust the selection in 4) as appropriate.
  • the firing container since the firing container has a function of absorbing heat emitted from the phosphor material, the ratio of the mass of the phosphor material to the sum of the mass of the firing container and the mass of the phosphor material is reduced. Then, there is a tendency that the rapid exothermic reaction in the heating process can be suppressed.
  • the value of [A] varies depending on the composition and shape of the phosphor raw material alloy used (particularly, the particle size of the alloy powder), the total metal element content of the nitrogen-containing alloy, and other manufacturing conditions. Usually, it is 0.01 or more, preferably 0.05 or more, and usually 0.5 or less, preferably 0.2 or less.
  • the value of the formula [A] is usually 0.3 or more, Above all, it is preferable to set it in the range of 0.4 or more, usually 0.95 or less, and more preferably 0.8 or less.
  • the value of the formula [A] is usually 0.35 or more, particularly 0.45 or more, and usually 0.95 or less, A range of 0.8 or less is also preferable from the viewpoint of the characteristics of the obtained phosphor and productivity.
  • the value of the formula [A] is usually 0.35 or more, particularly 0.45 or more, and usually 0.6 or less, In the range of 0.4 or less, the characteristics of the obtained phosphor and the viewpoint of productivity are also preferable.
  • the value of the formula [A] is usually 0.1 or more, particularly 0.2 or more, and usually 0.8 or less, A range of 0.6 or less is preferable from the viewpoint of the characteristics and productivity of the obtained phosphor.
  • the value of the formula [A] is set to 0.24 or more, preferably 0.4 or more so that a high-quality phosphor can be obtained. It is preferable to adjust the manufacturing conditions.
  • the heat is 0.71jZKZg
  • the specific heat of boron nitride material of the firing vessel
  • the specific heat of molybdenum is 0.26jZKZg
  • the specific heat of alumina is 0.6j / K / g
  • the specific heat of aluminum nitride is 1.2jZKZg.
  • the specific heat of the phosphor material varies depending on the nitrogen-containing alloy, nitride, and Z or oxynitride described later as the phosphor material.
  • the value of [ ⁇ '] also varies, the value of the equation [ ⁇ '] is usually 0.05 or more, especially 0.1 or more, and usually 0.9 or less, especially 0.75 or less.
  • a material having a high thermal conductivity or a large specific heat as the firing container.
  • a firing vessel made of boron nitride, molybdenum, or alumina it is particularly preferable to use a firing vessel made of boron nitride.
  • the spacing between the firing containers can be adjusted to improve heat dissipation, a cooling device can be installed near the firing container, a firing container with a large surface area can be used, or the number of firing containers placed in the firing furnace can be reduced. It is possible to adjust the amount of heat accumulation by adjusting.
  • the ratio of the volume of the phosphor material to the volume of the processing chamber of the firing apparatus (hereinafter referred to as "filling ratio of phosphor material in the firing container”) ) Is important from the viewpoint of productivity.
  • the specific range of the ratio of the volume of the phosphor raw material to the processing chamber volume of the firing apparatus is usually 8% or more, preferably 20% or more, more preferably 25% or more, and usually 80% or less, preferably 60 % Or less, more preferably 40% or less.
  • the filling rate power of the phosphor raw material in the firing container S If the ratio is lower than this range, the phosphor can be easily prepared according to the present invention even if any one of the above 1) to 4) is not satisfied. Although it can be manufactured, productivity tends to be low. On the other hand, if the filling rate of the phosphor raw material in the baking container is higher than this range, the deterioration of the baking apparatus may be accelerated.
  • the phosphor of the present invention is produced through the following steps. That is, first, a metal as a raw material and its alloy are weighed (raw material weighing step). Then, these raw materials are melted (melting step) and alloyed to produce an alloy for phosphor raw materials. After that, nitriding is performed by heating the phosphor raw material alloy in a nitrogen-containing atmosphere (heating step. Also referred to as “secondary nitriding step” as appropriate.) O In addition to these steps, if necessary The forging process, grinding process, classification process, primary nitriding process, cooling process, etc. may be performed accordingly. Yes.
  • one or more phosphor raw material alloys can be used as long as a phosphor having a target composition is obtained.
  • a primary nitriding step is performed, or a nitrogen-containing alloy described later is added in the secondary nitriding step.
  • the temperature increase rate in the secondary nitriding process should be adjusted!
  • an after-mentioned oxynitride or oxynitride may be mixed in the secondary nitriding step.
  • the angle of repose is 45 degrees or less by adopting a method (for example, gas atomizing method) having the following steps (a) to (c) in the pulverization step. It is possible to obtain an alloy powder for a phosphor raw material, or to use an alloy powder for a phosphor raw material having an angle of repose of 45 degrees or less through a secondary nitriding process.
  • a method for example, gas atomizing method
  • the raw material is made to have the following general formula [3] It is preferable to produce an alloy for a phosphor raw material by weighing the metal and its alloy (hereinafter sometimes simply referred to as “raw metal”).
  • a metal, an alloy of the metal, or the like can be used as a raw material.
  • the raw materials corresponding to the elements contained in the phosphor of the present invention may be used alone or in combination of two or more in any combination and ratio.
  • the Eu raw materials and Ce raw material to be used as a raw material of the activating element M 1 preferably the use of Eu metal and Ce metal! /,. This is the ability to easily obtain raw materials.
  • the purity of the metal used for the production of the alloy is preferably high.
  • the metal raw material of the activator element M 1 has impurities of 0.1 mol. It is preferred to use metals that have been purified to less than or equal to 0.1%, preferably less than or equal to 0.01% by mole.
  • the raw material of the activator elements M 1 other elements, divalent, trivalent, that use tetravalent various metals.
  • the concentration of impurities contained in any of them is preferably 0.1 mol% or less, more preferably 0.01 mol% or less.
  • the content of each element is usually 500 ppm or less, preferably lOO ppm or less.
  • the shape of the raw material metal is not limited, but usually a granular or lump shape having a diameter of several millimeters and several tens of millimeters is used.
  • those with a diameter of 10 mm or more are called agglomerates, and those less than that are called granules.
  • the divalent alkaline earth metal element as the metal element M 2, that as a raw material thereof, granular shape such as massive but not limited, to select an appropriate shape depending on the chemical nature of the raw materials Is preferred.
  • granular shape such as massive but not limited, to select an appropriate shape depending on the chemical nature of the raw materials Is preferred.
  • Ca is stable in the atmosphere in either granular or massive form and can be used.
  • Sr is chemically more active, it is preferable to use a massive raw material.
  • the metal element lost due to volatilization, reaction with the crucible material, or the like during melting may be preliminarily weighed and added as necessary.
  • the resulting phosphor raw material alloy contains two or more metal elements constituting the phosphor produced in the present invention (hereinafter sometimes referred to as “the phosphor of the present invention”).
  • the phosphor of the present invention contains two or more alloys constituting the phosphor produced in the present invention.
  • two or more alloys and Z or metal can be used to produce the phosphor of the present invention.
  • a resistance heating method for example, a resistance heating method, an electron beam method, an arc melting method, a high frequency induction heating method (hereinafter sometimes referred to as “high frequency melting method”), and the like can be used. It is also possible to melt these methods in any combination of two or more.
  • the material of the crucible that can be used at the time of melting is alumina, strong rucia, graphite.
  • the melting point of Si is 1410 ° C, which is about the same as that of alkaline earth metals (for example, Ca has a boiling point of 1494 ° C, Sr has a boiling point of 1350 ° C, and Ba has a boiling point of 1537 ° C).
  • alkaline earth metals for example, Ca has a boiling point of 1494 ° C, Sr has a boiling point of 1350 ° C, and Ba has a boiling point of 1537 ° C.
  • si raw materials ie, si and Z or an alloy containing si
  • alkaline earth metal raw materials ie, alkaline earth metal and Z or alkaline earth metal. It is preferable to melt an alloy containing This makes it possible to melt both the alkaline earth metal source and the Si source. Furthermore, by melting the alkaline earth metal raw material after melting the Si raw material in this way, the purity of the resulting phosphor raw material alloy is improved, and the characteristics of the phosphor using the raw material as a raw material are improved. There is also an effect of significant improvement.
  • the melting method is not limited and any of the above melting methods can be used. Among them, the arc melting method and the high-frequency melting method can be used. Particularly preferred is the high frequency melting method.
  • the high frequency melting method is the high frequency melting method.
  • melting is performed according to the following procedure.
  • Alloys containing alkaline earth metal elements are highly reactive with oxygen and must be melted in a vacuum or inert gas rather than in the atmosphere. Under such conditions, the high frequency melting method is usually preferred.
  • Si is a semiconductor and is difficult to melt by induction heating using high frequency.
  • the resistivity of aluminum at 20 ° C is 2.8 X 1CT 8 ⁇ -m
  • the resistivity of polycrystalline Si for semiconductor is 10 5 ⁇ 'm or more. Since it is difficult to directly melt a material with such a high specific resistance at high frequency, generally, a conductive susceptor is used, and heat is transferred to Si by heat conduction or radiation to melt it.
  • the shape of the susceptor is not limited, and may be a disk shape or a tubular shape. However, it is preferable to use a crucible.
  • the material of the susceptor graphite, molybdenum, silicon carbide, etc., which are not limited as long as the raw material can be melted, are generally used. However, they are very expensive and have a problem that they easily react with alkaline earth metals.
  • crucibles capable of melting alkaline earth metals alumina, strong Lucia, etc.
  • a known conductive crucible such as graphite
  • Si metal and alkaline earth are heated by indirect heating. It is difficult to melt the metal at the same time. Therefore, this problem can be solved by melting in the following order.
  • an alkaline earth metal is melted using an insulating crucible to obtain an alloy containing Si and an alkaline earth metal element.
  • the Si metal may be cooled during the above steps i) and ii), or the alkaline earth metal may be continuously melted without cooling.
  • a crucible coated with a strong container suitable for melting alkaline earth metal such as Lucia and alumina can be used.
  • Si metal and metal M are melted by indirect heating using a conductive crucible to obtain a conductive alloy (mother alloy).
  • the melting point of the obtained alloy is as low as SU.
  • the alloy of Si and A1 is particularly preferred because it has a melting point near 1010 ° C, which is lower than the boiling point of alkaline earth metal elements.
  • the master alloy is conductive.
  • the mixing ratio (molar ratio) of Si and metal M is such that the metal M is usually in the range of 0.01 or more and 5 or less when the number of moles of Si is 1. It is preferable to produce a metal alloy having a melting point lower than the boiling point of the metal element.
  • Si metal can also be added to the master alloy containing Si.
  • the melting time of other raw material metals other than melting the alkaline earth metal after melting the Si metal there is no particular limitation on the melting time of other raw material metals other than melting the alkaline earth metal after melting the Si metal, but usually the amount of the raw material metal or the melting point is large. Thaw those with a high value first.
  • a mother alloy of Si and the trivalent metal element M 3 is manufactured. At this time, preferably, Si and the trivalent metal element M 3 are alloyed at a Si: M 3 ratio in the general formula [3].
  • the specific temperature condition and melting time at the time of melting the raw material may be set to an appropriate temperature and time according to the raw material to be used.
  • the atmosphere at the time of melting the raw material is arbitrary as long as the phosphor raw material alloy can be obtained, but an argon atmosphere is preferable even though an inert gas atmosphere is preferred. In addition, only one kind of inert gas may be used. Two or more kinds of inert gases may be used in any combination and ratio. ⁇ Furthermore, the pressure at the time of melting the raw material is arbitrary as long as the phosphor raw material alloy is obtained. However, 1 ⁇ 10 3 Pa or more is preferable, and 1 ⁇ 10 5 Pa or less is preferable. Furthermore, it is desirable to carry out under atmospheric pressure from the viewpoint of safety.
  • alloy for a phosphor raw material is obtained by melting the raw material.
  • This phosphor raw material alloy is usually obtained as a molten alloy, but there are many technical problems in producing a phosphor directly from this molten alloy. Therefore, it is preferable to obtain a solidified body (hereinafter referred to as “alloy lump” as appropriate) through a forging process in which the molten alloy is poured into a mold and molded.
  • the atmosphere during fabrication is preferably an argon atmosphere, even though an inert gas atmosphere is preferred. In this case, only one kind of inert gas may be used, or two or more kinds may be used in any combination and ratio. [0103] ⁇ Crushing of alloy lump ⁇
  • the phosphor raw material alloy Prior to the heating step, the phosphor raw material alloy is preferably powdered with a desired particle size. Therefore, the alloy lump obtained in the forging process is then pulverized (pulverization process)
  • the phosphor raw material alloy powder having a desired particle size and particle size distribution (hereinafter, sometimes simply referred to as “alloy powder”) is preferable.
  • the pulverization method is not particularly limited! /, For example, dry method, ethylene glycol, hexane
  • This pulverization step may be divided into a plurality of steps such as a coarse pulverization step, a medium pulverization step, and a fine pulverization step as necessary.
  • the entire pulverization process can be pulverized using the same apparatus, but the apparatus used may be changed depending on the process.
  • the coarse pulverization step is a step of pulverizing so that approximately 90% by weight of the alloy powder has a particle size of 1 cm or less, such as jaw crusher, gyratory crusher, crushing roll, impact crusher, A grinding device can be used.
  • the medium pulverization process is a process in which approximately 90% by weight of the alloy powder is pulverized to a particle size of 1 mm or less.
  • Use a pulverizer such as a cone crusher, crushing roll, hammer mill, or disk mill.
  • the pulverization step is a step of pulverizing the alloy powder so as to have a weight median diameter described later.
  • a pulverizer such as a ball mill, a tube mill, a rod mill, a roller mill, a stamp mill, an edge runner, a vibration mill, or a jet mill is used. Can be used.
  • the crusher pressure varies depending on the device. Usually, the gauge pressure is in the range of 0. OlMPa or more and 2 MPa or less, with 0.05 MPa or more and less than 0.4 MPa being preferred. 0. IMPa or more, 0.3 MPa The following is more preferable. If the gauge pressure is too low, the resulting particle size is large If the particle size is too high, the particle size of the obtained particles may be too small.
  • the powder contact part is preferably made of alumina, silicon nitride, tungsten carbide, zirconia, or the like.
  • the pulverization step is preferably performed in an inert gas atmosphere.
  • inert gas atmosphere There are no particular restrictions on the type of inert gas, but usually a single atmosphere or a mixed atmosphere of two or more of gases such as nitrogen, argon, and helium can be used. Among these, nitrogen is particularly preferable from the viewpoint of economy.
  • the oxygen concentration in the atmosphere is not limited as long as the acidity of the alloy powder can be prevented, but it is usually preferably 10% by volume or less, particularly preferably 5% by volume or less.
  • the lower limit of the oxygen concentration is usually about 10 ppm.
  • the alloy powder may be cooled as necessary so that the temperature of the alloy powder does not rise during the pulverization step.
  • the alloy powder obtained as described above uses, for example, a sieving device using a mesh such as a vibrating screen or a shifter; an inertia classifier such as an air separator; a centrifuge such as a cyclone. Desired weight median diameter D and particle size
  • the coarse particles are classified and then recycled to a pulverizer, and classification and Z or recycling are continuous.
  • This classification step is also preferably performed in an inert gas atmosphere.
  • inert gas atmosphere There are no particular restrictions on the type of inert gas, but usually a single atmosphere of nitrogen, argon, helium, or a mixed atmosphere of two or more is used, and power from the viewpoint of economy. Nitrogen is particularly preferred.
  • the oxygen concentration in the inert gas atmosphere is preferably 10% by volume or less, particularly 5% by volume or less. Yes.
  • the alloy powder used in the primary nitriding process and the secondary nitriding process which will be described later, needs to be adjusted in particle size according to the activity of the metal element constituting the alloy powder, and its weight median diameter D is
  • the alloy contains Sr, the reactivity with the atmospheric gas is high, so the weight median diameter D of the alloy powder is usually 5 ⁇ m or more, preferably 8 ⁇ m or more, more preferably 10 ⁇ m. m or less
  • the distance is 13 m or more. If the particle size of the alloy powder is smaller than the aforementioned weight median diameter D, the heat generation rate during reactions such as nitriding tends to increase.
  • the alloy powder may be easily oxidized in the atmosphere, so that oxygen may be easily taken into the resulting phosphor, and handling may be difficult.
  • the particle size of the alloy powder is larger than the above-mentioned range of the weight median diameter D.
  • the proportion of alloy particles having a particle size of 10 m or less contained in the alloy powder is preferably 80 wt% or less.
  • the proportion of alloy particles having a particle size of 45 ⁇ m or more is 40 wt%. The following is preferable.
  • QD is not particularly limited, but is usually 0.59 or less.
  • a small QD value means a narrow particle size distribution
  • the phosphor raw material alloy obtained as described above (wherein the phosphor raw material alloy may be in the form of a powder or a lump, but the aforementioned phosphor raw material alloy It is preferably a powder.), And nitriding by heating Z or a nitrogen-containing alloy described later in a nitrogen-containing atmosphere. In the heating process, a secondary nitriding process described later is essential, and the following primary nitriding process is performed as necessary.
  • a primary nitridation step is performed before the secondary nitridation step as necessary.
  • This primary nitriding step is a step of producing a nitrogen-containing alloy described later by nitriding alloy powder (however, it may be a granular or massive alloy). Specifically, it is a step of preliminary nitriding by heating the alloy powder for a predetermined time in a predetermined temperature range in a nitrogen-containing atmosphere.
  • the material is converted from the phosphor raw material alloy to the nitrogen-containing alloy, and the weight thereof is increased.
  • the weight increase of the alloy powder at this time is represented by the weight increase rate represented by the following formula [4].
  • the degree of nitridation can be controlled by reaction conditions such as nitrogen partial pressure, temperature, and heating time.
  • the weight increase rate power of the alloy powder obtained by the above formula [4] is usually 0.5% by weight or more, especially 1% by weight or more, It is preferable to adjust reaction conditions so that it may become 5 weight% or more.
  • the upper limit of the rate of weight increase is not particularly limited, but theoretically it is usually 40% by weight or less, preferably 31% by weight or less.
  • the primary nitriding step can be repeated two or more times. When the primary nitriding step is repeated, there is no particular limitation on the number of times, but considering the production cost, it is usually 3 times or less, preferably 2 times or less.
  • the primary nitriding step can be performed by either a continuous method or a batch method. Since preferable reaction conditions differ between the continuous method and the batch method, the following description will be divided into the case of the continuous method and the case of the batch method, depending on the reaction conditions of the primary nitriding step.
  • a rotary kiln When the primary nitriding step is performed in a continuous manner, for example, a rotary kiln, a tunnel furnace, a belt furnace, a fluidized firing furnace or the like can be used, and among these, a rotary kiln is preferably used.
  • the alloy powder When using the rotary kiln method, the alloy powder is heated while rotating a refractory cylindrical furnace core tube in which a nitrogen-containing gas is circulated. By inclining the core tube and continuously supplying alloy powder, continuous processing becomes possible.
  • the alloy powder When a rotary kiln is used, the alloy powder can be agitated during heating, so it is possible to suppress the fusion of the alloy powders and improve the gas-solid contact efficiency. As a result, the heating time can be shortened and uniform nitriding treatment can be realized.
  • the rotary kiln one having a structure in which atmospheric gas can be circulated is preferable, and one in which the residence time and charging speed of the alloy powder can be controlled is preferable.
  • nitriding may be performed while dropping the alloy powder in a nitrogen atmosphere using a vertical furnace.
  • the rotational speed of the furnace core tube is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually 1 rpm or more, preferably 2 rpm or more, particularly preferably 3 rpm or more, and usually 10 rpm or less, preferably 20 rpm or less, particularly Preferably it is 8 rpm or less. Outside this range, it may be difficult to control the dynamics of the alloy powder in the core tube. That is, if the rotational speed is too slow, the alloy powder tends to adhere to the inner wall of the core tube and stay. On the other hand, when the rotational speed is too high, the alloy powder does not fall while being pressed against the inner wall of the core tube due to centrifugal force, and the stirring efficiency tends to decrease.
  • the inclination angle of the core tube with respect to the horizontal is arbitrary as long as a nitrogen-containing alloy is obtained, but it is usually 0.6 ° or more, preferably 1 ° or more, particularly preferably 1.7 ° or more, and usually 6 °. Below, it is preferably 5 ° or less, particularly preferably 3.4 ° or less. Outside this range, the supply rate of the alloy powder tends to be difficult to control.
  • the alloy powder is put into the core tube. It is preferable to prevent adhesion. That is, when the alloy powder adheres to the core tube, discharge of the object to be processed may be hindered, and stable processing may be difficult.
  • the core tube is heated from the outside with a heater or the like, if the alloy powder adheres to the core tube, the deposit may act as a heat insulating material, and the heating temperature may be substantially reduced. Deposits may be peeled off due to the difference in thermal expansion coefficient between the core tube and the alloy powder when the core tube is cooled after the completion of the primary nitriding process. In order to maintain a constant level of nitridation in the primary nitriding process, it is always necessary to apply vibrations to the core tube to peel off the deposits or to physically remove the deposits. I prefer to keep removing the kimono!
  • the material of the parts that come into contact with the alloy powder such as a firing vessel and a furnace core tube is arbitrary as long as a nitrogen-containing alloy can be obtained.
  • a nitrogen-containing alloy for example, acid aluminum, boron nitride, graphite, acid ⁇ Calcium, magnesium oxide, molybdenum, tungsten, etc. can be used. Quartz can also be used if the operating temperature is approximately 1100 ° C or less.
  • aluminum oxide and boron nitride are particularly preferable. Note that only one type of material may be used, or two or more types may be used in any combination and ratio.
  • the atmosphere during heating must contain nitrogen element, and nitrogen and rare gas elements such as argon are preferably used, even though it is preferable to circulate a mixture of nitrogen gas and inert gas other than nitrogen. It is preferable to distribute the mixed gas. This is a force capable of controlling the reaction rate by mixing inert gas with nitrogen gas.
  • the inert gas may be used alone or in combination of two or more in any combination and ratio.
  • the nitrogen concentration in the atmosphere is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually 0.1% by volume or more, preferably 1% by volume or more, more preferably 3% by volume or more, and is particularly limited to the upper limit. However, it is preferably 80% by volume or less. If the nitrogen concentration in the atmosphere is too low, the progress of nitriding may be insufficient. On the other hand, if the nitrogen concentration is too high, the heating temperature There are cases where control becomes difficult and adhesion of the alloy to the core tube or the like increases.
  • the oxygen concentration in the atmosphere is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually 30 Oppm or less, preferably lOOppm or less, and preferably close to 0, but usually 0.1 lppm or more, Preferably it is lppm or more. If the oxygen concentration in the atmosphere is too high, oxygen may be mixed into the nitrogen-containing alloy and further to the finally obtained phosphor, and the emission peak wavelength may be shortened or the luminance may be reduced.
  • reducing gas for example, hydrogen, carbon monoxide, hydrocarbon, ammonia, etc.
  • reducing gas may be used individually by 1 type, and 2 or more types may be used together by arbitrary combinations and ratios.
  • the pressure at the time of heating is arbitrary as long as a nitrogen-containing alloy is obtained, but it is preferable to set the pressure to be equal to or higher than atmospheric pressure in order to prevent mixing of oxygen in the atmosphere. If the pressure is too low, the sealing property of the heating furnace is poor, and in some cases, a large amount of oxygen may be mixed to obtain a high-quality phosphor.
  • the nitrogen partial pressure in the atmosphere during heating is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually atmospheric pressure or lower, preferably 0.09 MPa or lower, more preferably 0.08 MPa or lower, 0. 0005 MPa or more, preferably 0. OOlMPa or more.
  • the higher the nitrogen partial pressure the higher the nitriding rate, but if the nitrogen partial pressure is too high, the heat generation rate is too high, the temperature of the alloy powder exceeds the melting point of the alloy forming the alloy powder, and the alloy particles There is a possibility of fusion, and nitriding may not proceed uniformly.
  • the nitrogen partial pressure is too low, the time required for the primary nitriding step becomes longer, and industrial problems such as an increased amount of atmospheric gas (for example, argon gas) are generated.
  • atmospheric gas for example, argon gas
  • Sr and the like may volatilize from the alloy and the composition may shift.
  • a predetermined amount of alloy powder is supplied into the apparatus per unit time.
  • at least a theoretically necessary amount of nitrogen per unit time is supplied into the apparatus. Specifically, it is usually 5% by weight or more with respect to the weight of the alloy powder supplied per unit time, preferably Is 10% by weight or more, and the upper limit is not particularly limited, but it is preferable that nitrogen-containing atmospheric gas containing 200% by weight or less of nitrogen is supplied into the apparatus.
  • the flow direction of the nitrogen-containing atmospheric gas may be countercurrent or cocurrent with the alloy powder supply direction, but is usually countercurrent.
  • the heating temperature is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually 150 ° C lower than the melting point of the phosphor raw material alloy, preferably at least 100 ° C lower than the melting point of the phosphor raw alloy. Also, it is usually good to heat in a temperature range below 10 ° C lower than the melting point of the phosphor raw material alloy. More specifically, the heating temperature varies depending on the alloy composition, for example, usually 800 ° C or higher, preferably 900 ° C or higher, and usually 2500 ° C or lower, preferably 1500 ° C or lower. If the heating temperature is too low, the nitriding reaction tends to progress insufficiently. On the other hand, if the temperature is too high, the adhesion of the alloy powder to the core tube tends to increase.
  • the heating temperature refers to the core tube temperature at the time of heating.
  • the temperature lower than the melting point of the phosphor raw material alloy by 100 ° C means the temperature at which the nitriding of the phosphor raw material alloy starts approximately.
  • the melting point of an alloy such as a phosphor raw material alloy or a nitrogen-containing alloy is defined as thermogravimetry-differential heat ((thermogravimetry- dif ferential) as described in the Examples section below.
  • Thermal analysis hereinafter abbreviated as “TG-DTA” as appropriate.
  • TG-DTA Thermal analysis: hereinafter abbreviated as “TG-DTA” as appropriate.
  • the heating time in the above temperature range is arbitrary as long as a nitrogen-containing alloy is obtained. Usually 0.1 minute or more, preferably 1 minute or more, and usually 1 hour Below, it is preferably 30 minutes or less, more preferably 8 minutes or less. If the heating time is too long, the composition may shift due to volatilization of the alkaline earth metal, and if the heating time is too short, the progress of nitriding may be insufficient.
  • the primary nitriding step is performed in a batch system, for example, a tubular furnace, a general atmosphere heating furnace, a rotary kiln, or the like can be used.
  • the alloy powder is usually filled in a fire-resistant firing container (tray, crucible, etc.) and heated in the apparatus.
  • the shape of the firing container filled with the alloy powder is arbitrary as long as a nitrogen-containing alloy can be obtained, but it is not sealed and the filling layer height is too high so that the contact efficiency between the firing atmosphere and the alloy powder is increased. None is preferred.
  • the packed bed height is usually 30 mm or less, preferably 20 mm or less, more preferably 15 mm or less, and usually 3 mm or more, preferably 5 mm or more. This is because if the packed bed height is too high, the nitriding reaction may not proceed uniformly, while if the packed bed height is too low, the productivity may decrease.
  • the material of the portion that comes into contact with the alloy powder such as a firing vessel is an arbitrary force as long as a nitrogen-containing alloy is obtained.
  • acid aluminum, boron nitride, graphite, acid calcium, acid magnesium , Molybdenum, tungsten, or the like can be used. Quartz can also be used if the operating temperature is approximately 1100 ° C or lower.
  • boron nitride which is preferably graphite, aluminum oxide, boron nitride, or quartz. Note that only one type of material may be used, or two or more types may be used in any combination and ratio.
  • the atmosphere during heating is preferably an atmosphere in which a nitrogen atmosphere and an inert gas atmosphere are mixed.
  • an atmosphere in which nitrogen and a rare gas element such as argon are mixed is preferable. This is because the reaction rate can be controlled by mixing an inert gas atmosphere with a nitrogen atmosphere.
  • the inert gas may be used alone or in combination of two or more in any combination and ratio.
  • the nitrogen concentration in the atmosphere is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually 0.1% by volume or more, preferably 1% by volume or more, more preferably 3% by volume or more, and usually 99% by volume. Below, it is preferably 20% by volume or less, more preferably 10% by volume or less. If the nitrogen concentration in the atmosphere is too low, alkaline earth metals may volatilize, while nitrogen If the concentration is too high, the progress of nitriding may become non-uniform.
  • the oxygen concentration in the atmosphere is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually the same as in the case of the continuous method.
  • a reducing gas hydrogen, carbon monoxide, hydrocarbon, ammonia, etc.
  • a reducing gas hydrogen, carbon monoxide, hydrocarbon, ammonia, etc.
  • the pressure at the time of heating is arbitrary as long as a nitrogen-containing alloy can be obtained. However, as in the case of the continuous method, it is preferable to set the pressure to be equal to or higher than the atmospheric pressure in order to prevent mixing of oxygen in the atmosphere.
  • the nitrogen partial pressure in the atmosphere during heating is arbitrary as long as a nitrogen-containing alloy is obtained.
  • the heating temperature is arbitrary as long as a nitrogen-containing alloy is obtained, but is usually 150 ° C lower than the melting point of the phosphor raw material alloy, preferably at least 100 ° C lower than the melting point of the phosphor raw alloy. Also, heating is usually performed at a temperature not higher than the melting point of the phosphor raw material alloy, preferably not higher than 10 ° C lower than the melting point of the phosphor raw material alloy, more preferably not higher than 50 ° C lower than the melting point of the phosphor raw material alloy. Good.
  • the specific heating temperature varies depending on the alloy composition, but is usually 800 ° C or higher, preferably 900 ° C or higher, and usually 2500 ° C or lower, preferably 1500 ° C or lower. .
  • the heating temperature refers to the furnace temperature during heating.
  • the melting point of the alloy is as described in the section of the continuous method.
  • the heating time varies depending on other conditions such as the type of apparatus and the heating temperature, but tends to require a longer heating time than in the continuous method, and is usually 10 minutes or longer, preferably 20 minutes or longer. It is usually 48 hours or less. If the heating time is too long, the alkaline earth metal The composition may deviate due to the occurrence of heat, and if the heating time is too short, the progress of nitriding may be insufficient.
  • the heating time refers to the holding time at the maximum temperature.
  • the temperature range from 150 ° C lower than the melting point of the phosphor raw material alloy to 10 ° C lower than the melting point of the phosphor raw alloy it is preferable to raise the temperature slowly.
  • the rate of temperature rise in this temperature range is usually 9 ° CZ min or less, especially 7 ° CZ min or less, and the lower limit of the temperature rise rate is not particularly limited, but from the viewpoint of productivity.
  • it is preferably 0.1 ° CZ or more, more preferably 0.5 ° CZ or more.
  • the power at the start of heating is also 150 ° C lower than the melting point of the phosphor raw material alloy, and there are no particular restrictions on the temperature raising conditions up to the temperature. In some cases, considering the responsiveness of the firing device to temperature control, etc., the melting point of the phosphor raw material alloy is 150 ° C lower and further lower than the temperature. You may slow down to:
  • the nitrogen-containing alloy refers to an alloy after completion of the above-described primary nitriding step.
  • the nitrogen-containing alloy contains two or more metal elements constituting the phosphor of the present invention. Further, the nitrogen-containing alloy mainly contains nitrogen as a component other than the metal element.
  • the total metal element content (wt%) obtained by the following formula [5] can be used. It shows that nitriding is progressing, so that this all metal element content rate is small.
  • the total metal element content (% by weight) of the nitrogen-containing alloy is the content of all metal elements contained in the nitrogen-containing alloy.
  • the specific range is arbitrary as long as the phosphor of the present invention can be obtained.
  • 60% by weight or more preferably 70% by weight or more, more preferably 76% by weight or more, and usually 97% by weight or less, preferably It is 95 weight% or less, More preferably, it is 93 weight% or less.
  • the total metal element content is larger than the above range, the primary nitriding step The effect of may not be obtained. Also, it is unlikely that the total metal element content is smaller than the above range.
  • the degree of nitriding of the nitrogen-containing alloy can also be defined using the nitrogen content (% by weight).
  • the nitrogen content can be determined, for example, by measuring the nitrogen content with an oxygen-nitrogen simultaneous analyzer (manufactured by Leco) and using the following equation [6].
  • Nitrogen content of nitrogen-containing alloy (wt%)
  • the specific range of the nitrogen content obtained by the above formula [6] is arbitrary as long as the phosphor of the present invention is obtained, but is usually 1% by weight or more, preferably 2% by weight or more, and more preferably. It is 5% by weight or more, and is usually 31% by weight or less, preferably 25% by weight or less. If the nitrogen content is too small, the suppression of heat generation in the secondary nitriding process described later may be insufficient, and if it is too large, it may be uneconomical in terms of time and energy. When a nitrogen-containing alloy having a nitrogen content of 10% by weight or more, preferably 12% by weight or more is used as the phosphor material, heat generation is suppressed in the secondary nitriding step described later. Regardless of the value of the above formula [A], which has a large effect, it tends to be able to produce a high-quality phosphor, and is particularly preferable.
  • the nitrogen-containing alloy preferably further satisfies the following formula [7].
  • NI represents the nitrogen content (% by weight) of the nitrogen-containing alloy
  • NP represents the nitrogen content (% by weight) of the phosphor to be produced.
  • the above formula [7] represents the degree of nitridation of the nitrogen-containing alloy with respect to the nitrogen-containing alloy based on the nitrogen content of the phosphor produced by the secondary nitriding process described later. is there.
  • the nitrogen content of the nitrogen-containing alloy after the completion of the primary nitriding step is smaller than the nitrogen content of the phosphor.
  • the value of the above formula [7] is an arbitrary force as long as the phosphor of the present invention can be obtained.
  • NIZNP in the above equation [7] is smaller than the above range, the progress of nitridation in the primary nitriding process may be insufficient, and the heat generation rate in the secondary nitriding process will increase, and the characteristic There is a tendency for high phosphors to be obtained.
  • the value of NIZNP in the above equation [7] is larger than the above range, the nitrogen-containing alloy itself tends to be unstable and difficult to handle.
  • the reactivity of the alloy as a raw material is determined by the composition, weight median diameter D, and the like. For example, when Sr is included, weight median diameter D force,
  • the 50 50 has high reactivity between the raw material and nitrogen. Therefore, when using a highly reactive material, it is preferable to increase the degree of nitriding in the primary nitriding step. On the other hand, when using a less reactive material, nitriding in the primary nitriding step is not recommended. It is preferable to keep the degree low.
  • the reactivity of the alloy powder made of the phosphor raw material alloy obtained in the pulverization step to nitrogen can be estimated by performing TG-DTA measurement of the alloy powder in a nitrogen stream. Specifically, in the temperature range from 100 ° C lower than the melting point of the phosphor raw material alloy to 1500 ° C, the alloy powder and nitrogen are reacted under atmospheric pressure, and the weight of the alloy powder is measured by TG-DTA measurement. Is measured to determine the rate of weight increase.
  • the weight increase rate of the alloy powder is usually 5 wt% Z or more, especially 10 wt% Z or more, or
  • the nitrogen concentration in the atmosphere of the primary nitriding step so that it is usually 300 wt% Z or less, especially 150 wt% Z or less, and especially 100 wt% Z or less. (The speed shall be 10 ° CZ).
  • the batch method When the batch method is used, if a nitrogen concentration is selected such that the rate of weight increase is greater than the above range, the heat generated during the primary nitriding process tends to be too large, and the heat generated when producing a large amount of nitrogen-containing alloy In some cases, the alloy material may be melted or phase-separated, or nitrides may be decomposed to deteriorate the phosphor characteristics. On the other hand, if the nitrogen concentration is selected such that the rate of weight increase is smaller than the above range, the productivity will decrease due to the reason that the nitriding reaction does not proceed sufficiently. Or the brightness of the phosphor may decrease.
  • the oxygen content of the nitrogen-containing alloy can be determined, for example, by measuring the oxygen content with an oxygen-nitrogen simultaneous analyzer (manufactured by Leco) and using the following equation [8].
  • the oxygen content (wt%) of the nitrogen-containing alloy is arbitrary as long as the phosphor of the present invention can be obtained, but is usually 7.5 wt% or less, preferably 5 wt% or less, and usually 0. 1% by weight or more. If the oxygen content is too high, the brightness of the phosphor obtained may be lowered.
  • the nitrogen-containing alloy as described above is further nitrided by the secondary nitriding step, or the alloy powder of the nitrogen-containing alloy and the alloy powder obtained by the pulverizing step (alloy powder before primary nitriding), etc. And further nitriding by a secondary nitriding step, the phosphor of the present invention can be obtained. At this time, since the heat generation rate in the secondary nitriding process can be controlled, it is possible to mass-produce phosphors made of alloys.
  • the weight median diameter D of the alloy powder of the nitrogen-containing alloy before the secondary nitriding step constitutes the alloy
  • the particle size is not limited as long as the phosphor of the present invention can be obtained, but usually the same range as the alloy powder of the phosphor raw material alloy (alloy powder before the primary nitriding step) is preferred.
  • the alloy powder made of the nitrogen-containing alloy obtained in the primary nitriding step may be once cooled after the primary nitriding step and before the secondary nitriding step (cooling step). ).
  • the apparatus used in the primary nitriding process is different from the apparatus used in the secondary nitriding process, the apparatus is usually used after cooling the alloy powder until the temperature of the alloy powder becomes 200 ° C or lower and using it in the secondary nitriding process Prepare.
  • the apparatus used in the primary nitriding step and the apparatus used in the secondary nitriding step are the same, it is preferable to cool once before switching or replacing the atmosphere in the apparatus. Without cooling, there is a possibility that the temperature of the alloy powder will rise and melt due to sudden fluctuations in the nitrogen partial pressure, or the alloy powder may be altered when it comes into contact with the atmosphere at high temperatures.
  • the cooling temperature in this case is usually from the melting point of the nitrogen-containing alloy 1
  • the temperature is lower than 00 ° C., preferably a temperature lower than the melting point of the nitrogen-containing alloy by 200 ° C. or higher, and the lower limit is not particularly limited, but is usually room temperature or higher.
  • the weight median diameter D of the alloy powder which also has a nitrogen-containing alloy strength after grinding, is usually 100 m or less, and is the primary nitriding step
  • Nitrogen-containing alloys after the primary nitriding process tend to be less likely to explode dust with a higher critical oxygen concentration than alloy powders before the primary nitriding process in the same particle size range. Is more improved.
  • the nitrogen-containing alloy after the primary nitriding process may be hydrolyzed in the atmosphere or oxidized and mixed with oxygen, dry air, nitrogen atmosphere, or inert gas atmosphere such as argon It is particularly preferable to handle in a nitrogen atmosphere which is preferable to handle in the inside. Only one inert gas may be used. Two or more inert gases may be used in any combination and ratio.
  • the oxygen concentration in the atmosphere is usually 5% by volume or less, preferably 4% by volume or less, and usually 0.1 ppm or more. Care must be taken as oxygen concentrations may be too high if the oxygen concentration is too high.
  • the reactivity between the raw material alloy and nitrogen in the secondary nitriding step described later can be controlled. Different power depending on other conditions Compared to the case where the primary nitriding process is not performed, the amount of phosphors that can be produced at one time can be increased by 1.5 times or more, and preferably by 2 times or more.
  • a phosphor is obtained by nitriding the phosphor material.
  • a nitrogen-containing alloy preferably the alloy thereof obtained by the primary nitriding step, which may be an alloy for a phosphor raw material (preferably an alloy powder thereof) that has not undergone the primary nitriding step, is used. Powder) may be used, or both may be used in combination.
  • the ratio of the nitrogen-containing alloy powder in the mixture is preferably 20% by weight or more.
  • All A nitrogen-containing alloy having a metal element content of 97% by weight or less is preferable (corresponding to 1).
  • it is preferable that a part or all of the phosphor raw material alloy is a nitrogen-containing alloy having a nitrogen content of 10% by weight or more. This is because if the amount of the nitrogen-containing alloy or the nitrogen content of the nitrogen-containing alloy is too small, the advantage of performing the primary nitriding step may not be sufficiently obtained.
  • the nitriding treatment in the secondary nitriding step is performed by filling the phosphor material into a firing container such as a crucible or a tray and heating in a nitrogen-containing atmosphere. Specifically, the following procedure is used.
  • a phosphor material is filled in a firing container.
  • the material of the firing container used here is arbitrary as long as the effect of the production method of the present invention is obtained, and examples thereof include boron nitride, silicon nitride, carbon, aluminum nitride, tungsten and the like. Of these, boron nitride is preferable because of its excellent corrosion resistance.
  • the above materials may be used alone, or two or more may be used in any combination and ratio.
  • the shape of the firing container used here is arbitrary as long as the effect of the production method of the present invention is obtained.
  • the bottom surface of the baking container may be a rounded or elliptical shape such as a circle or a polygon such as a triangle or a quadrangle, and the height of the baking container is arbitrary as long as it enters the heating furnace, and is low. It can be expensive or expensive. In particular, it is preferable to select a shape with good heat dissipation.
  • the firing container filled with the phosphor material may be referred to as a firing apparatus ("heating furnace").
  • the firing apparatus used here is optional as long as the effects of the production method of the present invention can be obtained, but an apparatus capable of controlling the atmosphere in the apparatus is preferred, and an apparatus capable of controlling the pressure is also preferred.
  • hot isostatic press (HIP) hot isostatic press
  • resistance heating type vacuum pressurizing atmosphere heat treatment furnace, etc. are preferred.
  • the nitrogen-containing gas used in the nitriding treatment includes a gas containing a nitrogen element, such as nitrogen, ammonia, or a mixed gas of nitrogen and hydrogen.
  • Nitrogen-containing gas May be used alone, or two or more may be used in any combination and ratio.
  • the oxygen concentration in the system affects the oxygen content of the phosphor to be produced, and if the content is too high, high light emission cannot be obtained.Therefore, the lower the oxygen concentration in the nitriding atmosphere, the better 0. 1% by volume or less, preferably 10 ppm or less, more preferably 10 ppm or less.
  • an oxygen getter such as carbon or molybdenum may be placed in the in-system heating portion to lower the oxygen concentration.
  • oxygen getters may be used alone, or two or more oxygen getters may be used in any combination and ratio.
  • the nitriding treatment is performed by heating the phosphor raw material in a state of being filled with a nitrogen-containing gas or in a circulating state, and the pressure at that time is somewhat reduced from atmospheric pressure, atmospheric pressure or increased pressure. Any state of pressure may be used. However, in order to prevent oxygen from being mixed in the atmosphere, it is preferable that the pressure be higher than atmospheric pressure. If the pressure is less than the atmospheric pressure, if the heating furnace is not tightly sealed, a large amount of oxygen may be mixed to obtain a high-quality phosphor.
  • the pressure of the nitrogen-containing gas is preferably at least a gauge pressure of 0.2 MPa or more, more preferably lOMPa or more, and preferably 200 MPa or less.
  • the heating temperature of the phosphor raw material is arbitrary as long as the phosphor of the present invention is obtained, but is usually 800 ° C or higher, preferably 1000 ° C or higher, more preferably 1200 ° C or higher, and usually 2200 °. C or lower, preferably 2100 ° C or lower, more preferably 2000 ° C or lower. If the heating temperature is lower than 800 ° C, the time required for nitriding may be very long.
  • the heating temperature is higher than 2200 ° C, the nitride produced will volatilize or decompose, resulting in a shift in the chemical composition of the resulting nitride phosphor, making it impossible to obtain a phosphor with high characteristics and reproducibility. May be bad.
  • the heating temperature varies depending on the alloy composition, etc., it is usually 300 ° C or higher, particularly 400 ° C or higher, more preferably 500 ° C or higher, especially 700 ° C higher than the melting point of the phosphor raw material alloy. A temperature higher than C is preferred.
  • the melting point of the alloy is as described in the section of the primary nitriding step.
  • the heating time (holding time at the maximum temperature) during the nitriding treatment may be a time required for the reaction between the phosphor raw material and nitrogen, but is usually 1 minute or longer, preferably 10 minutes or longer, more preferably 30 More than 60 minutes, more preferably 60 minutes or more. If the heating time is shorter than 1 minute, the nitriding reaction will not be completed. There is a possibility that a phosphor with high characteristics cannot be obtained. Moreover, the upper limit of the heating time is determined by the production efficiency, and is usually 24 hours or less.
  • the phosphor of the present invention using nitride or oxynitride as a base material can be obtained by nitriding the phosphor material.
  • the nitriding reaction proceeds rapidly, and the present invention May degrade the properties of the phosphor. Therefore, when heat treatment of a large amount of phosphor raw material is desired at a time, it is preferable to adjust the temperature rising condition as follows, since the rapid nitriding reaction can be further suppressed.
  • the reason for slowing the heating rate in the temperature range up to 100 ° C lower than the melting point of the alloy to be heated and 30 ° C lower than the temperature force melting point is as follows.
  • the above-mentioned “melting point of the phosphor raw material alloy to be heated” “Is the melting point of the phosphor raw material alloy.
  • the phosphor is generally synthesized by filling a phosphor raw material in a firing container such as a crucible or a tray and heating in a heating furnace. At this time, productivity can be increased by shortening the residence time of the phosphor raw material in the furnace. Therefore, the heating rate up to the temperature range required for the reaction depends on the capacity of the heating furnace and the heat resistance of the crucible. It is preferable that the speed is as fast as the impact characteristics allow. However, in the case of producing phosphors industrially using alloys such as phosphor raw material alloys and nitrogen-containing alloys as raw materials, if the temperature rise rate is high, the alloy powder melts due to heat generated during nitriding, resulting in alloy particles.
  • the obtained phosphor tends to decrease, and in some cases, no light is emitted.
  • the diameter of the firing container is the same, if the amount of the alloy powder is small, the heat dissipation is high, and the amount of heat generated during the nitriding reaction is small. Yes. However, if the phosphor material is filled in a large amount, the heat dissipation is reduced, so it is desirable to suppress heat generation during the nitriding reaction.
  • the synthesis of phosphors, particularly nitride phosphors usually involves using an expensive reactor because the reaction is carried out under high temperature and pressure. Therefore, it is desirable to increase the filling amount of the phosphor material per time in order to reduce the cost.
  • the temperature rise rate in a specific temperature range described later (corresponding to 2)).
  • a specific temperature range described later corresponding to 2
  • the nitriding reaction proceeds rapidly between the melting point and the melting point of 100 ° C lower than the melting point of the phosphor raw material alloy, and the weight of the raw material increases. Although it may increase rapidly, there is an effect that if the heating rate is decelerated in this temperature range, this rapid weight increase will not occur.
  • the temperature range in which the rate of temperature increase is decelerated is usually 100 ° C lower than the melting point of the phosphor raw material alloy, the temperature force is 30 ° C lower than the melting point, and is the temperature range up to the temperature, preferably Is 150 ° C. lower than the melting point of the alloy for the phosphor raw material, more than the temperature, more preferably 200 ° C. lower than the melting point, more than the temperature, preferably less than the melting point, more preferably more than 100 ° C. more than the melting point. It is the temperature range up to the high temperature.
  • the temperature lower by 100 ° C. than the melting point of the phosphor raw material alloy roughly means the temperature at which nitriding starts.
  • the nitriding reaction proceeds rapidly in the temperature range from the temperature 30 ° C lower than the melting point to the melting point, it is often difficult to control the progress of the nitriding reaction by the heating rate.
  • the temperature in the temperature range up to 100 ° C. lower than the melting point and 30 ° C. lower than the melting point is the temperature in the furnace during the heat treatment, that is, the set temperature of the baking apparatus.
  • the rate of temperature increase is usually 9 ° CZ or less, preferably 7 ° CZ or less. If the heating rate is faster than this, rapid accumulation of reaction heat cannot be avoided, and high-luminance phosphors tend not to be obtained. Further, the lower limit of the heating rate is not particularly limited, but is usually 0.1 ° CZ or more from the viewpoint of productivity, preferably 0. More than 5 ° CZ min.
  • the temperature raising conditions in the temperature range lower than the temperature lower by 100 ° C than the melting point of the phosphor raw material alloy are not particularly limited, and may be raised rapidly or slowly. Considering the responsiveness of the temperature control of the heating furnace, it is even lower than the temperature 100 ° C lower than the melting point of the alloy! From the temperature, the heating rate may be reduced to 9 ° CZ or less.
  • the rate of temperature rise is not particularly limited, but from a temperature 30 ° C lower than the melting point, Even in the temperature range up to the melting point, it is usually preferable to raise the temperature slowly at 9 ° CZ min or less, especially 7 ° CZ min or less, usually 0.1 ° CZ min or more, especially 0.5 ° CZ min or more. .
  • the melting point force The rate of temperature rise to that temperature is usually 9 ° CZ min or less, particularly 7 ° CZ min or less, usually 0.1 ° It is preferable that the temperature is CZ or more, particularly 0.5 ° CZ or more, but it is 10 ° C higher than the melting point! Therefore, it is preferable to increase the productivity by increasing the temperature rising rate in this high temperature range to 10 ° C Z min or more, for example, 10 ° CZ min to 100 ° CZ min.
  • the melting point of the phosphor raw material alloy is as described in the section of the primary nitriding step.
  • the phosphor of the present invention can be produced by nitriding the alloy for phosphor raw material and Z or nitrogen-containing alloy.
  • the phosphor obtained by the secondary nitriding step may be subjected to a reheating step if necessary, and may be subjected to a heat treatment (reheat treatment) to grow particles. This may improve the characteristics of the phosphor, such as the growth of particles and the phosphor being able to obtain high light emission.
  • the material may be once cooled to room temperature and then heated again.
  • the heating temperature in the reheating treatment is usually 1200 ° C or higher, preferably 1300 ° C or higher, more preferably 1400 ° C or higher, particularly preferably 1500 ° C or higher, and usually 2200 ° C or lower, Preferably 2100 ° C or less, more preferably 2000 ° C or less, particularly preferably 1900 ° C It is as follows. When heated below 1200 ° C, the effect of growing phosphor particles tends to be small. On the other hand, if heating is performed at a temperature exceeding 2200 ° C, the phosphor may be decomposed just by consuming unnecessary heating energy. In addition, in order to prevent the phosphor from being decomposed, the pressure of nitrogen, which is a part of the atmospheric gas, is extremely increased, and thus the manufacturing cost tends to increase.
  • the atmosphere during the reheating treatment of the phosphor is basically preferably a nitrogen gas atmosphere, an inert gas atmosphere or a reducing atmosphere.
  • the inert gas and reducing gas may be used alone or in combination of two or more in any combination and ratio.
  • the oxygen concentration in the atmosphere is usually 1OOOppm or less, preferably 1OOppm or less, more preferably 1Oppm or less. If reheating treatment is performed in an oxidizing atmosphere such as in an oxygen-containing gas or in the air where the oxygen concentration exceeds lOOOOppm, the phosphor may be oxidized and the target phosphor may not be obtained. However, an atmosphere containing a trace amount of oxygen of 0.1 ppm to 10 ppm is preferable because phosphors can be synthesized at a relatively low temperature.
  • the pressure condition during the reheating treatment is preferably set to a pressure equal to or higher than atmospheric pressure in order to prevent the mixing of oxygen in the atmosphere. If the pressure is too low, the sealing property of the baking apparatus is poor as in the heating step described above, and in this case, a large amount of oxygen may be mixed, resulting in high characteristics and the inability to obtain a phosphor.
  • the heating time (retention time at the maximum temperature) during the reheating treatment is usually 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer, and usually 100 hours or shorter. Is 24 hours or less, more preferably 12 hours or less. If the heating time is too short, the particle growth tends to be insufficient. On the other hand, if the heating time is too long, useless heating energy tends to be consumed, and nitrogen may be desorbed from the surface of the phosphor and the light emission characteristics may deteriorate.
  • the obtained phosphor may be used for various purposes by performing post-processing steps such as a dispersion step, a classification step, a washing step, and a drying step as necessary.
  • Dispersion process In the dispersion process, mechanical force is applied to the agglomerated phosphor due to particle growth and sintering during the nitriding process, and it is crushed.
  • a method such as pulverization using an air current such as a jet mill or a media such as a ball mill or a bead mill can be used.
  • the phosphor powder dispersed by the above method can be adjusted to a desired particle size distribution by performing a classification process.
  • a classification process for example, a screening device using a mesh such as a vibratory screen or a shifter, an inertia classifier such as an air separator or a water tank device, or a centrifugal classifier such as a cyclone can be used.
  • the phosphor is coarsely pulverized by, for example, a jaw crusher, a stamp mill, a hammer mill or the like, and then washed using a neutral or acidic solution (hereinafter sometimes referred to as “cleaning medium”).
  • cleaning medium a neutral or acidic solution
  • water As a neutral solution used here, it is preferable to use water.
  • the type of water that can be used is not particularly limited, but demineralized water or distilled water is preferred.
  • the electrical conductivity of the water used is usually at least 0.0063 mSZm, usually at most lmSZm, preferably at most 0.5 mSZm.
  • the temperature of water is usually preferably room temperature (about 25 ° C), preferably 40 ° C or higher, more preferably 50 ° C or higher, and preferably 90 ° C or lower, more preferably 80 °. By using hot water or hot water of C or less, it is possible to reduce the number of washings for obtaining the target phosphor.
  • an acidic aqueous solution is preferred as the acidic solution.
  • an aqueous solution in which one or more mineral acids such as hydrochloric acid and sulfuric acid are diluted can be used.
  • the concentration of the acid in the aqueous acid solution is usually 0.1 ImolZl or more, preferably 0.2 molZl or more, and usually 5 molZl or less, preferably 2 molZl or less. It is preferable to use an acidic aqueous solution rather than a neutral aqueous solution in terms of the efficiency of reducing the amount of dissolved ions in the phosphor.
  • the acid concentration of the acid aqueous solution used for this cleaning exceeds 5 molZl, the phosphor surface is dissolved. There are cases. On the other hand, if the acid concentration of the acidic solution is less than 0.1 ImolZl, the effect using the acid tends to be insufficient.
  • the acidic solution used for cleaning is corrosive such as hydrofluoric acid. Strong acid is not required.
  • cleaning medium only one type of cleaning medium may be used. Two or more types of cleaning media may be used in any combination and ratio.
  • the method for washing the phosphor is not particularly limited. Specifically, the obtained phosphor particles are placed in the neutral or acidic solution (washing medium) described above and stirred for a predetermined time. And a method of solid-liquid separation of the phosphor particles after that.
  • the stirring method for cleaning the phosphor there is no particular limitation on the stirring method for cleaning the phosphor, and it is sufficient that the phosphor particles can be uniformly dispersed.
  • a chip stirrer or a stirrer can be used.
  • the amount of the cleaning medium is not particularly limited, but if it is too small, a sufficient cleaning effect cannot be obtained, and if it is excessively large, a large amount of cleaning medium is required, which is unreasonable. It is preferably 2 times or more, more preferably 5 times or more the weight of the body, and more preferably 1000 times or less, especially 100 times or less the weight of the phosphor to be washed.
  • the stirring time is usually 1 minute or longer, and usually 1 hour or shorter, as long as the phosphor can be sufficiently brought into contact with the cleaning medium as described above.
  • the method for solid-liquid separation of the cleaning medium and the phosphor particles is not particularly limited, and examples thereof include filtration, centrifugation, and decantation.
  • the method for cleaning phosphor particles is not limited to the above-described method of stirring and dispersing phosphor particles in a cleaning medium and performing solid-liquid separation after dispersion.
  • a method of exposing the particles to a fluid of a cleaning medium may be used.
  • Such a cleaning step may be performed a plurality of times.
  • washing with water and washing with an acidic solution may be combined, but in that case, washing with an acidic solution is performed to prevent the acid from adhering to the phosphor. After that, it is preferable to perform washing with water.
  • washing with an acidic solution may be performed, followed by washing with water.
  • the above-described pulverization step and classification step may be performed between the washing steps.
  • the phosphor was washed by performing the following water dispersion test on the phosphor after washing. It is preferable to carry out until the electrical conductivity of the supernatant liquid becomes a predetermined value or less. That is, the washed phosphor is pulverized or pulverized with a dry ball mill or the like as necessary, classified with a sieve or a water tank, and sized to a desired weight median diameter, and then 10 weights of the phosphor.
  • the phosphor particles having a specific gravity heavier than that of water are naturally precipitated by stirring and dispersing in double water for a predetermined time, for example, 10 minutes, and then standing for 1 hour.
  • the electrical conductivity of the supernatant liquid at this time is measured, and the above washing operation is performed as necessary until the electrical conductivity is usually 50 mSZm or less, preferably 1 OmSZm or less, more preferably 5 mSZm or less. repeat.
  • the water used for the water dispersion test of this phosphor is not particularly limited, but demineralized water or distilled water is preferred in the same manner as the water of the washing medium described above, and the electrical conductivity is usually 0. 0064 mSZm or more, and usually lmSZm or less, preferably 0.5 mSZm or less.
  • the temperature of water used in the water dispersion test of the phosphor is usually room temperature (about 25 ° C).
  • the electrical conductivity of the supernatant liquid in the phosphor aqueous dispersion test can be measured using an electric conductivity meter “EC METER CM-30G” manufactured by Toa Decike Co., Ltd.
  • the oxygen content of the phosphor may be reduced by performing the cleaning step. This is presumably because an impurity phase containing oxygen, for example, a hydroxide produced by hydrolysis of a nitride having poor crystallinity is removed.
  • Nitride with poor crystallinity is hydrolyzed to form hydroxide such as Sr (OH)
  • the phosphor can be dried until it is free of attached moisture and can be used.
  • the washed phosphor slurry may be dehydrated with a centrifuge or the like, and the obtained dehydrated cake may be filled in a drying tray. Thereafter, it is dried in a temperature range of 100 ° C. to 200 ° C. until the water content becomes 0.1% by weight or less.
  • the obtained dried cake is passed through a sieve or the like and lightly crushed to obtain a phosphor.
  • the phosphor is used as a powder and is used in a state dispersed in another dispersion medium. Therefore, in order to facilitate these dispersion operations, various surface treatments are performed on phosphors as a normal method among those skilled in the art. In the case of a phosphor that has been subjected to a powerful surface treatment, it is appropriate to understand that the stage before the surface treatment is performed is the phosphor according to the present invention.
  • the phosphor raw material alloy and the nitrogen-containing alloy can be produced through the steps (a) to (c) described below, in addition to the method described above. Thereby, an alloy powder for a phosphor material having an angle of repose of 45 ° or less can be obtained (corresponding to the above 4)).
  • the molten alloy is refined in a gas and solidified to obtain a powder.
  • the (b) miniaturization step and (c) solidification step are, for example, powdered by a method of spraying molten alloy, a method of quenching by a roll or a gas flow, and miniaturizing into a ribbon shape, an atomizing method, or the like. Among these, it is preferable to use the atomizing method.
  • the atomizing method refers to a method in which a liquid is dropped or blown out by a nozzle, pulverized by a jet fluid to form droplets, and solidified into powder.
  • the atomizing method include a water atomizing method, a gas atomizing method, and a centrifugal force atomizing method.
  • the gas atomization method is particularly preferable because the alloy powder that is formed with less contamination of impurities such as oxygen becomes spherical.
  • the leviatomization method can also be used.
  • the leviatomization method is a combination of gas atomization method and levitation dissolution. By using this method, contact between the crucible and the raw material can be avoided.
  • a raw material metal or alloy is weighed in the same manner as described in ⁇ Weighing raw materials ⁇ . Then, in the same manner as described in ⁇ melting of raw material ⁇ , the raw material is melted and alloyed to prepare a molten alloy of phosphor raw material alloy.
  • the obtained molten alloy is then subjected to (b) a refinement step. At this time, the molten alloy is used as it is.
  • the molten alloy, which can be used in the refinement process is once cooled and fabricated to obtain an ingot of the alloy, which is then melted again ( b) May be used in the miniaturization process! Further, (b) the miniaturization step and (c) the solidification step may be performed in one step. In particular, with the gas atomization method, these steps can be easily performed in one step.
  • Fig. 4 shows an example of a schematic diagram of an alloy powder feeder using the gas atomization method.
  • the raw material metal and Z or alloy (melting the raw material metal as described above to prepare the molten alloy, this is directly used for the gas atomization.
  • the molten alloy is once solidified, forged, and then melted. In the following description of the atomizing method, these are simply referred to as “raw material alloys”).
  • the obtained molten alloy is also passed through a fine hole force provided at the bottom of the crucible 103 in the melting chamber 101 to create a flow of molten metal or droplets.
  • a jet stream of gas is sprayed, and the molten metal flowing down is sequentially refined by the energy of the jet stream of the pulverized gas, and the generated fine droplets are solidified in the injection chamber 105 to produce an alloy powder.
  • coarse particles of the obtained alloy powder are directly collected in the collection chamber 106, and fine particles are collected in the cyclone 107.
  • a molten metal receptacle for removing uncrushed molten metal can also be provided in the injection chamber 105.
  • the pressure in the dissolution chamber 101 is arbitrary as long as the phosphor of the present invention can be produced, but usually from 1 X 10 3 Pa or more, and usually from 1 X 10 5 Pa or less, from the viewpoint of safety. It is more preferable to carry out at atmospheric pressure or less.
  • the atmosphere of the melting chamber 101 is preferably an inert gas atmosphere in order to prevent metal oxidation.
  • the inert gas include rare gas elements such as helium, neon, and argon. Among them, argon is preferable.
  • the inert gas is
  • 1 type may be used alone 2 or more types may be used in any combination and ratio
  • the material of the crucible 103 is arbitrary as long as the phosphor of the present invention can be produced.
  • acid aluminum, acid calcium, magnesium oxide, graphite, boron nitride, etc. can be used.
  • Aluminum oxide or boron nitride is preferable because contamination with impurities can be avoided.
  • the raw material of the crucible 103 may be used alone, or two or more kinds may be used in any combination and ratio.
  • the melting method of the raw material alloy is not limited, but it is preferably melted by a high-frequency melting method as in the melting step of the above-mentioned ⁇ melting of raw material ⁇ .
  • the molten metal in the crucible 103 is supplied with electric power to the high-frequency induction coil 102 so that the melting point is higher than the freezing point of the alloy or metal used as a raw material, preferably 1450 ° C or higher, more preferably 1480 ° C or higher, and usually 1800 ° Hold at C or lower, preferably 1700 ° C or lower, more preferably 1600 ° C or lower.
  • Ceramics with high heat resistance are usually used for the injection nozzle 104, and among them, acid-aluminum, acid-calcium, and boron nitride are preferable. Further, the inner diameter of the nozzle is a force appropriately selected according to the viscosity of the molten metal, etc. Usually 0.5 mm or more, preferably 1 mm or more, and usually 5 mm or less, preferably 3 mm or less.
  • an inert gas is preferred.
  • a rare gas such as nitrogen or argon is preferable.
  • Inert gas is 1 Species may be used alone. Two or more species may be used in any combination and ratio.
  • the temperature of the pulverization gas is not limited, but is usually room temperature.
  • the pulverization gas injection pressure is arbitrary as long as an alloy powder having a desired particle diameter can be obtained, but is usually 10 kgZcm 2 (0.998 MPa) or more, preferably 20 kgZcm 2 (l. 96 MPa) or more, usually 100 kgZcm 2 ( 9. 8MPa) or less, 80kg / cm 2 (7.84MPa) or less.
  • the injection pressure is outside this range, the yield tends to decrease.
  • the atmosphere in the injection chamber 105 and the recovery chamber 106 is more preferably a nitrogen atmosphere or a nitrogen-containing inert gas atmosphere because it is preferable that the atmosphere is an inert gas atmosphere or a nitrogen atmosphere. .
  • the nitrogen concentration in the ejection chamber 105 and the recovery chamber 106 is arbitrary as long as the phosphor of the present invention can be produced, but is usually 0.1% or more, preferably 10% or more, more preferably 20% or more, and usually 100 % Or less. If the nitrogen concentration is too low, the metal composition with high volatility may volatilize from the particle surface during the pulverization process and the alloy powder collection process, and the surface composition may shift.
  • the pressure in the injection chamber 105 and the recovery chamber 106 is usually near atmospheric pressure, and the temperature of the injection chamber 105 and the recovery chamber 106 is particularly limited as long as it is not higher than the melting point of the phosphor raw material alloy. There is no.
  • the temperature of the injection chamber 105 is usually 950 ° C or lower and 0 ° C or higher.
  • the temperature of the recovery chamber 106 is usually 0 ° C or higher, preferably 20 ° C or higher, and usually 400 ° C or lower, especially 40 ° C or lower! /.
  • the (c) solidification step it is preferable to rapidly cool molten alloy droplets generated by the jet fluid. Rapid cooling refers to an operation of cooling more rapidly than a high temperature.
  • the time required for the molten alloy liquid droplets to solidify is arbitrary as long as the phosphor of the present invention can be produced, but is usually 1 minute or less, preferably 30 seconds or less, more preferably 10 seconds or less, and still more preferably. 3 seconds or less.
  • an alloy powder is produced by pulverizing by colliding a pulverized gas against a molten metal dropped through a narrow hole.
  • the pulverized gas and Z or the nitrogen concentration in the atmosphere of the injection chamber 105 and the recovery chamber 106 are controlled during the above-described (b) miniaturization step and (c) solidification step.
  • the above-described primary nitriding step can be simultaneously performed to produce a nitrogen-containing alloy. In this case, for example, the following i) and ii) are more preferable, which are preferably performed in the following i).
  • At least one of the pulverized gas, the injection chamber 105, and the recovery chamber 106 has a high-concentration nitrogen-containing atmosphere.
  • the nitrogen concentration at this time is preferably 90% by volume or more, preferably 95% by volume or more, more preferably 98% by volume or more, preferably close to 100% by volume.
  • the temperature at the bottom of the injection nozzle 104 and the crucible 103 varies depending on the melting point of the alloy, but is usually 900 ° C or higher, preferably 1000 ° C or higher, and usually 1300 ° C or lower, preferably 1200 ° C. Below. In this case, for example, heating may be performed by a high-frequency melting method, or the temperature may be designed to be the above-described temperature by heat conduction from the melting chamber 101.
  • the alloy powder produced in this manner is subjected to classification treatment as necessary, and used in the primary nitriding step and the Z or secondary nitriding step described above.
  • the above-mentioned desired weight median diameter D using a sieve using a mesh such as a vibrating screen or shifter, an inertia classifier such as an air separator, or a centrifuge such as a cyclone is used.
  • the oxygen concentration in the inert gas atmosphere that is preferably performed in an inert gas atmosphere is preferably 10% or less, particularly preferably 5% or less.
  • the type of inert gas usually one or more of nitrogen, argon, helium, etc. are used, and particularly from the viewpoint of economy, nitrogen is preferred.
  • the powder is obtained as an alloy powder formed of the phosphor raw material alloy or the nitrogen-containing alloy also by the atomizing method described above.
  • (a) by melting the molten alloy obtained in the melting step it is possible to carry out a consistent process from the raw metal to the production of the alloy powder and further the nitrogen-containing alloy. it can.
  • transfer means pipeline, belt conveyor, etc.
  • the phosphor of the phosphor can be changed from the raw metal. It is also possible to carry out the manufacturing process consistently.
  • the alloy powder produced by the atomization method or the like described in [IV] above (the phosphor powder alloy or the alloy powder formed of a nitrogen-containing alloy) preferably has the following characteristics:
  • the angle of repose refers to the angle formed by the generatrix of the cone and the horizontal plane when the granular material is gently dropped into a flat plane and deposited in a conical shape.
  • the angle of repose usually corresponds to 45 degrees or less (said 4). ), Preferably 40 degrees or less, more preferably 35 degrees or less, and the smaller the better. This is because the smaller the angle of repose, the higher the fluidity and the better the handleability for industrial operations. On the other hand, if the angle of repose is too large, transport and transportation tend to be difficult due to low fluidity.
  • the collapse angle is the angle of the mountain that remains after a certain impact is applied to the granular material that forms the angle of repose.
  • the collapse angle is usually 25 degrees or less, preferably 20 degrees or less, more preferably 15 degrees or less, Smaller is preferable.
  • the difference angle is preferably 20 degrees or less. This is because if the difference angle is too large, a flushing phenomenon occurs and control tends to be difficult immediately, which is not preferable.
  • the average circularity can be used as an index for quantitatively expressing the spherical property. it can.
  • the average circularity is obtained by the following equation, and represents the approximate degree of each particle size with a perfect circle in the projected particle diagram.
  • Average circularity Perimeter length of a perfect circle equal to the projected area of the particle Perimeter length of the projected view of the Z particle
  • the average circularity is usually 0.7 or more, preferably 0.8 or more, more preferably
  • the number ratio of true spherical alloy particles having an average circularity of 0.9 or more is usually 20% or more, preferably 40% or more.
  • the weight median diameter D depends on the activity of the metal element constituting the alloy powder.
  • the particle size is usually 0.1 m or more, preferably 1 ⁇ m or more, more preferably 3 m or more, and 100 m or less, preferably 50 m or less, more preferably 30 m or less.
  • the weight median diameter D of the alloy powder is usually 5 ⁇ m or more, preferably 8 ⁇ m or more.
  • the thickness is preferably 10 ⁇ m or more, particularly preferably 13 m or more.
  • weight median diameter D is smaller than the above range, the rate of heat generation during reactions such as nitridation is high.
  • the reaction such as nitriding inside the alloy particles becomes insufficient, and the luminance may decrease.
  • the tap density refers to the density when a certain vibration (tapping) is applied. That is, in this specification, the tap density is a value obtained by measuring as follows. About lOg of alloy powder is put into a glass measuring cylinder with a capacity of 10 ml, and the position force of about 1 cm in height is 5 cm on the table until the volume does not change at intervals of about 50 Z minutes to 500 times Z minutes. (Typically 200 to 800 times) After tapping manually, measure the volume (V) of the alloy powder. Subtract the tare weight of the graduated cylinder from the total weight, measure the net weight (W) of the alloy powder, and calculate the value calculated by the following equation [9] as the tap density.
  • the tap density is usually 1.9 gZml or more, preferably 2 gZml or more, and usually 4 gZml or less. It is preferably 3 gZml or less. If the tap density is too low, the productivity of filling the reaction vessel may be reduced in the production of the phosphor. If the tap density is too high, the contact efficiency between the alloy particles and the firing atmosphere such as nitrogen may decrease in the firing step.
  • the oxygen content is usually 2% by weight or less, preferably 1% by weight or less.
  • the lower limit is usually 0.05% by weight or more, preferably 0.1% by weight or more.
  • the carbon content is 0.2% by weight or less, and more preferably 0.1% by weight or less.
  • the molten alloy hot water can be instantly formed into droplets and cooled, so that it has a uniform microstructure.
  • An alloy powder is obtained. Also, since the same molten metal continuously forms droplets, the particles When the difference in composition between the two is extremely small and an alloy powder can be obtained, the effect is also obtained. Moreover, an alloy powder with high fluidity and few impurities can be obtained.
  • an alloy to be nitrided (that is, an alloy for phosphor raw material and Z or a nitrogen-containing alloy) is added in the presence of nitride or oxynitride.
  • nitride or oxynitride Preferably, it may be heated after being mixed with nitride or oxynitride (corresponding to 3).
  • the nitride or oxynitride is a nitride or oxynitride containing one or more metal elements constituting the phosphor of the present invention (hereinafter sometimes referred to as “raw material nitride”). Is used).
  • the composition of the raw material nitride is not particularly limited as long as it can be combined with the above-described raw material alloy or the like to obtain the target phosphor composition. Therefore, the raw material nitride, as well as the composition of the phosphor described above, more may contain a metal element 1 or more than Si in gesture et preferred include tetravalent metal elements M 4 including at least Si Favor More preferably, it contains a divalent metal element M 2 and a tetravalent metal element M 4 .
  • the divalent metal element M 2 is preferably an alkaline earth metal element.
  • the composition of the raw material nitride is the same constituent element as the target phosphor.
  • the raw material nitride preferably has a composition represented by the above general formula [1], more preferably a composition represented by the above general formula [2].
  • Specific examples of the material nitride include phosphors such as A1N, SiN, CaN, SrN, and EuN.
  • Constituent element nitrides CaAlSiN, (Sr, Ca) AlSiN, (Sr, Ca) Si N, SrSiN
  • nitride containing a composite nitride containing. Note that only one type of raw material nitride may be used, or two or more types may be used in any combination and ratio.
  • the raw material nitride may contain a trace amount of oxygen.
  • Raw material nitride oxygen Z oxygen
  • the ratio of + nitrogen is arbitrary as long as the phosphor of the present invention is obtained, but it is usually 0.5 or less, preferably 0.3 or less, and particularly preferably 0.2 or less. If the proportion of oxygen in the raw material nitride is too high, the brightness may decrease. [0256]
  • the weight median diameter D of the raw material nitride is particularly limited unless it interferes with mixing with other raw materials.
  • the specific weight median diameter D of the raw material nitride is the phosphor
  • the mixing ratio of the raw material nitride to the total amount of the phosphor raw material that is, the mixing ratio with respect to the total of the above-mentioned alloy (phosphor raw material alloy or alloy powder formed from a nitrogen-containing alloy) and the raw material nitride Is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, and further preferably 15% by weight or more. If the mixing ratio of the raw material nitride is too low, the effect of improving the luminance of the obtained phosphor tends to be insufficient.
  • the upper limit of the mixing ratio of the raw material nitride is not particularly limited, but if the mixing ratio of the raw material nitride is too high, the luminance of the resulting phosphor is improved, but the productivity tends to decrease. Usually 85% by weight or less.
  • the phosphor of the present invention is produced using alloy powder as a raw material
  • the alloy powder when the alloy powder is melted by heat generated during nitriding in the secondary nitriding step, the alloy particles are fused to each other, so that There is a possibility that the gas cannot penetrate and the nitriding reaction does not proceed to the inside of the alloy particles! For this reason, the brightness of the obtained phosphor tends to decrease, and in some cases, no light is emitted.
  • these points can be improved by mixing the raw material nitride with the alloy powder.
  • the diameter of the nitriding reaction vessel is the same, if the filling amount of the alloy powder is small, the heat dissipation is high and the accumulation of heat generated during the nitriding reaction is small. There is no such phenomenon as melting, phase separation, or decomposition of nitride or oxynitride.
  • the energy at the time of synthesis is Increasing the amount of filling per time when the amount of energy consumed is large is preferable for reducing costs. If the reaction vessel is filled with a large amount of alloy, the heat dissipation is reduced, so that the generated heat may cause melting of the alloy, phase separation, or decomposition of nitride or oxynitride.
  • the phosphor produced by the production method of the present invention (hereinafter sometimes referred to as “the phosphor of the present invention”) will be described below.
  • the phosphor of the present invention is preferably a phosphor based on nitride or oxynitride.
  • the matrix of the phosphor means a crystal or glass (amorphous) capable of dissolving the activating element, and the crystal or glass (amorphous) itself does not contain the activating element. Including those that emit light.
  • composition of the phosphor of the present invention is not particularly limited as long as it is produced by the production method of the present invention, but at least a tetravalent metal element M 4 containing Si and a metal element other than Si 1 it has more preferably containing activating element M 1 in the preferred gesture et al include the kinds.
  • the metal element other than Si an alkaline earth metal element is preferable.
  • the phosphor of the present invention preferably includes an activating element M 1 a divalent metal element M 2 and a tetravalent metal element M 4 containing at least Si.
  • M 2 valent metal element M 2 trivalent metallic element M 3, and more preferably contains a tetravalent metal elements M 4 including at least Si.
  • the activating element M 1 the force may be used emitting ions that can be contained various crystal matrix constituting the phosphor of the nitride or oxynitride as a matrix Cr, Mn, Fe, Ce One or more selected from the group consisting of Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb The use of these elements is preferable because it is possible to produce a phosphor with high emission characteristics.
  • the activator element M 1 preferably contains one or more of Mn, Ce, Pr, and Eu, and particularly contains Ce, Z, or Eu, and exhibits high-luminance red or yellow light emission. It is more preferable because a body can be obtained. Further, in order to provide a variety of functions such as to impart the or phosphorescent increasing the brightness, even if a co-activator is contained one or more other than Ce and Z or Eu as activator elements M 1 Ryo.
  • Divalent metal element M 2 is one or more elements selected from the group force consisting of Mg, Ca, Sr, Ba, and Zn
  • trivalent metal element M 3 consists of Al, Ga, In, and Sc at least one element Ru selected group power
  • tetravalent metal elements M 4 is Si, Ge, Sn, Ti, Zr, and it is one or more elements H Harinaru group force is also selected, the light emitting It is preferable because a phosphor having high characteristics can be obtained.
  • divalent and 50 mol% or more of the metal elements M 2 to adjust the composition so that the Ca and Z or Sr emission characteristics of high phosphor is obtained.
  • a divalent or higher 80 mole percent of the metal element M 2 Ca and Z or is more and more preferably tool 90 mol% to the Sr C a and Z or Sr and still more preferably tool divalent to Most preferably, all of the metal elements M 2 are Ca and Z or Sr.
  • trivalent least 50 mole percent of the metal element M 3 is phosphor having high light-emitting property by adjusting the composition so that A1 is obtained.
  • tetravalent and 50 mol% or more of the metal elements M 4 is adjusting the composition such that Si emission characteristics of high phosphor containing at least Si is obtained.
  • all of tetravalent metal elements M over 80 mol% is preferably in the Si of 4, 90 or more mole% and more preferably to Si instrument tetravalent metal elements M 4 including at least Si Si is preferable.
  • a divalent metal elements M 2 of 50 mol% or more Ca and Z or Sr, and 50 mol% or more of the trivalent metal elements M 3 is A1, and at least Si
  • Si By making Si more than 50 mol% of the tetravalent metal element M 4 contained, a phosphor with particularly high emission characteristics can be obtained. Since it can manufacture, it is preferable.
  • the phosphor of the present invention preferably has a chemical composition represented by the following general formula [1].
  • a, b, c, d, e, and f are values within the following ranges.
  • M 1 represents the activator element M 1
  • M 2 represents the divalent metal element M 2
  • M 3 represents the trivalent metal element M 3
  • M 4 represents the tetravalent metal element M 4 containing at least Si.
  • a is usually at least 0.0001, preferably at least 0.000, more preferably at least 0.001, more preferably at least 0.002, particularly preferably at least 0.004, and usually at most 0.15. It is preferable to mix the raw materials so that it is preferably 0.1 or less, more preferably 0.05 or less, even more preferably 0.04 or less, and particularly preferably 0.02 or less.
  • c is usually 0.5 or more, preferably 0.6 or more, more preferably 0.8 or more, and usually 1.5 or less, preferably 1.4 or less, more preferably 1.2 or less.
  • Mixing raw materials is also preferable from the viewpoint of emission intensity.
  • d is less than 0.5 or d is greater than 1.5, a heterogeneous phase is produced during the manufacturing process.
  • the yield of the phosphor tends to be low.
  • d is usually 0.5 or more, preferably 0.6 or more, more preferably 0.8 or more, and usually 1.5 or less, preferably 1.4 or less, more preferably 1.2 or less.
  • e is a coefficient indicating the content of nitrogen
  • the oxygen in the phosphor represented by the general formula [1] may be mixed as an impurity in the raw material metal, or may be introduced during a manufacturing process such as a pulverization step or a nitriding step. .
  • the ratio of oxygen f is preferably 0 ⁇ f ⁇ 0.5 within a range in which a decrease in the light emission characteristics of the phosphor is acceptable.
  • the phosphor represented by the following general formula [2] can be obtained.
  • a, ⁇ b, ⁇ c, d, e, ⁇ f, and ⁇ g are values within the following ranges.
  • M 1 ′ is Cr, Mn, Fe, Ce, Pr, Nd, S m, Eu, Tb, Dy, Ho, Er, Tm, and M 1 in the general formula [1].
  • An activating element selected from the group consisting of Yb is represented.
  • the activator element M 1 ′ preferably contains one or more of Mn, Ce, Pr and Eu, and particularly preferably contains Eu and Z or Ce.
  • M 2 ' represents Mg and / or Ba, and is preferably Mg. Inclusion of Mg can increase the emission peak wavelength of the phosphor.
  • Range of a, ⁇ usually 0.00001 or more, preferably ⁇ to 0.001 or more, more preferably ⁇ to 0.002 or more, and usually 0.15 or less, preferably 0.05 or less, more preferably 0.01 or less.
  • the range of b ' is usually 0.1 or more, preferably 0.4 or more, more preferably 0.7 or more, and usually 0.99999 or less.
  • the range of c ' is usually 0 or more and usually less than 1, preferably 0.5 or less, more preferably 0.3 or less.
  • the range of d ' is usually 0 or more, and usually less than 1, preferably 0.5 or less, more preferably 0.2 or less.
  • the range of e ' is usually 0.5 or more, preferably 0.8 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.2 or less, more preferably 1.1 or less.
  • the range of f ' is usually 0.5 or more, preferably 0.8 or more, more preferably 0.9 or more, and usually 1.5 or less, preferably 1.2 or less, more preferably 1.1 or less.
  • the range of g is usually 0.8X (2Z3 + e, + 4Z3Xf,) or more, preferably 0.9X (2Z3 + e '+ 4Z3Xf') or more, more preferably 2.5 or more, and usually 1.2X (2/3 + e, + 4Z3Xf,) or less, preferably 1. IX (2Z3 + e, + 4Z3Xf,) or less, more preferably 3.5 or less.
  • Oxygen contained in the phosphor of the present invention may be mixed as an impurity in the raw metal, or mixed during a manufacturing process such as a pulverization process or a nitriding process.
  • the oxygen content is usually 5% by weight or less, preferably 2% by weight or less, and most preferably 1% by weight or less as long as the deterioration of the light emission characteristics of the phosphor is acceptable.
  • Specific examples of the phosphor composition include (Sr, Ca, Mg) AlSiN: Eu, (Sr, Ca, Mg) AlS.
  • the phosphor produced by the present invention may have the following characteristics, for example.
  • the emission color of the phosphor of the present invention can be set to a desired emission color such as blue, blue-green, green, yellow-green, yellow, orange, and red by adjusting the chemical composition.
  • the phosphor of the present invention is a phosphor having a large amount of Sr substitution and contains Eu as the activator element M 1 , the peak is considered in view of the use as an orange to red phosphor. It is preferable to have the following characteristics when measuring an emission spectrum when excited with light having a wavelength of 465 nm.
  • the above-mentioned phosphor has a peak wavelength ⁇ p (nm) in the above-mentioned emission spectrum, which is usually larger than 590, especially 600 or more, and usually 650 nm or less, especially 640 or less. It is preferable.
  • the emission peak wavelength ⁇ is too short, it tends to be yellowish, while when it is too long, it tends to be dark reddish, and any of them may be deteriorated in characteristics as orange or red light. Absent.
  • the above phosphors have a width at half maximum of the emission peak in the above-described emission spectrum (hereinafter referred to as "FWHM" as appropriate) force.
  • FWHM width at half maximum of the emission peak in the above-described emission spectrum
  • a GaN system Light emitting diodes can be used.
  • the emission spectrum of the phosphor of the present invention can be measured by, for example, a fluorescence measuring apparatus (Japanese) equipped with a 150 W xenon lamp as an excitation light source and a multi-channel CCD detector C7041 (manufactured by Hamamatsu Photo-TAS) as a spectrum measuring apparatus. (Manufactured by Honko Co., Ltd.) or the like.
  • the emission peak wavelength and the half-value width of the emission peak can also calculate the obtained emission spectrum power.
  • the phosphor of the present invention has a weight median diameter D force of usually 3 ⁇ m or more, particularly 5 ⁇ m or more.
  • Weight median diameter D is usually preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less.
  • the luminance may decrease or the phosphor particles may aggregate.
  • the weight median diameter D is too large, such as uneven coating or dispenser
  • 50 can be measured using an apparatus such as a laser diffraction Z scattering type particle size distribution measuring apparatus.
  • the phosphor of the present invention also has excellent temperature characteristics. Specifically, the ratio of the emission peak intensity value in the emission spectrum diagram at 150 ° C to the emission peak intensity value in the emission spectrum diagram at 25 ° C when light having a peak at a wavelength of 455 nm is irradiated. Usually, it is 55% or more, preferably 60% or more, particularly preferably 70% or more.
  • the phosphor of the present invention is excellent in temperature characteristics not only in terms of luminance, but also in terms of luminance. Specifically, the ratio of the luminance at 150 ° C to the luminance at 25 ° C when irradiated with light having a peak at a wavelength of 455 nm is usually 55% or more, preferably 60% or more, particularly Preferably it is 70% or more.
  • MCPD7000 multi-channel spectrum measuring device manufactured by Otsuka Electronics as an emission spectrum device, and color brightness as a luminance measuring device.
  • a BM5A a stage equipped with a cooling mechanism using a Peltier element and a heating mechanism using a heater, and a device equipped with a 150W xenon lamp as the light source
  • the measurement can be performed as follows. Place the cell containing the phosphor sample on the stage and change the temperature in the range of 20 ° C to 150 ° C. Confirm that the surface temperature of the phosphor is constant at the measurement temperature.
  • the emission spectrum is measured by exciting the phosphor with light having a peak wavelength of 455 nm extracted from the light source by spectroscopy with a diffraction grating. Measure the emission spectrum power. Obtain the emission peak intensity.
  • the measured value of the surface temperature of the phosphor on the side irradiated with the excitation light is a value corrected using the measured temperature value by a radiation thermometer and a thermocouple.
  • the phosphor of the present invention is more preferable as its internal quantum efficiency is higher.
  • the value is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more. If the internal quantum efficiency is low, the luminous efficiency tends to decrease, which is not preferable.
  • the phosphor of the present invention is preferably as its absorption efficiency is high.
  • the value is usually 0.5 or more, preferably 0.6 or more, more preferably 0.7 or more. If the absorption efficiency is low, the luminous efficiency tends to decrease, which is not preferable.
  • the phosphor of the present invention can be suitably used for various light-emitting devices (“light-emitting device of the present invention” to be described later) by virtue of its high brightness and high color rendering properties.
  • the phosphor of the present invention is an orange or red phosphor
  • a white light emitting device with high color rendering can be realized by combining a green phosphor, a blue phosphor, and the like.
  • the light-emitting device thus obtained can be used as a light-emitting portion (particularly a liquid crystal backlight) or an illumination device of an image display device.
  • the phosphor of the present invention can be used alone.
  • an orange light emitting device can be manufactured by combining a near-ultraviolet LED and the orange phosphor of the present invention.
  • the phosphor of the present invention can be used by mixing with a liquid medium.
  • the phosphor of the present invention is used for a light emitting device or the like, it is preferably used in a form dispersed in a liquid medium. What dispersed the fluorescent substance of this invention in the liquid medium is suitably " This is referred to as “the phosphor-containing composition of the present invention”.
  • the type of the phosphor of the present invention to be contained in the phosphor-containing composition of the present invention There is no limitation on the type of the phosphor of the present invention to be contained in the phosphor-containing composition of the present invention.
  • the power described above can be arbitrarily selected.
  • the phosphor of the present invention to be contained in the phosphor-containing composition of the present invention may be only one kind, or two or more kinds may be used in any combination and ratio.
  • the phosphor-containing composition of the present invention may contain a phosphor other than the phosphor of the present invention, if necessary.
  • the liquid medium used in the phosphor-containing composition of the present invention is not particularly limited as long as the performance of the phosphor is not impaired within the intended range.
  • any inorganic material and Z or organic material can be used as long as it exhibits a liquid property under the desired use conditions and suitably disperses the phosphor of the present invention and does not cause a favorable reaction. Materials can be used.
  • the inorganic material for example, a solution obtained by hydrolytic polymerization of a solution containing a metal alkoxide, a ceramic precursor polymer, or a metal alkoxide by a sol-gel method, or an inorganic material obtained by solidifying a combination thereof (for example, siloxane) Inorganic materials having bonds).
  • Examples of the organic material include thermoplastic resin, thermosetting resin, and photocurable resin.
  • methacrylic resin such as methyl polymethacrylate
  • styrene resin such as polystyrene, styrene-acrylonitrile copolymer
  • polycarbonate resin polyester resin
  • phenoxy resin examples include polybulal alcohols; cenorose resins such as ethenosenorelose, senorelose acetate, and senorelose acetate butyrate; epoxy resins; phenol resins; silicone resins.
  • the silicon-containing compound refers to a compound having a silicon atom in the molecule, for example, an organic material (silicone material) such as polyorganosiloxane, an oxygen silicate, a nitride nitride, an oxynitride cation.
  • organic material such as polyorganosiloxane, an oxygen silicate, a nitride nitride, an oxynitride cation.
  • Inorganic materials such as borosilicate, phosphosilicate, alkali silicate, etc. Glass materials can be mentioned. Of these, silicon-based materials are preferable from the viewpoint of easy handling.
  • the silicone-based material usually refers to an organic polymer having a siloxane bond as a main chain.
  • Examples thereof include a compound represented by the following formula (i) and Z or a mixture thereof.
  • R 1 to R 6 may be the same or different and are selected from the group power of organic functional group, hydroxyl group, and hydrogen nuclear power.
  • M, D, T and Q are each a number of 0 or more and less than 1, and
  • M + D + T + Q a number that satisfies l.
  • the silicone material is used for sealing a semiconductor light emitting device that can be used as a first light emitter described later, the silicone material is sealed with a liquid silicone material and then cured by heat or light. Can be used.
  • Silicone-based materials are usually classified by addition polymerization curing type according to the mechanism of curing.
  • silicone-based materials such as a condensation polymerization curing type, an ultraviolet curing type, and a peroxide crosslinking type.
  • silicone-based materials such as a condensation polymerization curing type, an ultraviolet curing type, and a peroxide crosslinking type.
  • addition polymerization curing type addition type silicone resin
  • condensation curing type condensation type silicone resin
  • ultraviolet curing type ultraviolet curing type
  • An addition-type silicone material refers to a material crosslinked with a polyorganosiloxane chain strength organic addition bond.
  • Typical examples include compounds having a Si—C—C—Si bond at the cross-linking point obtained by reacting butylsilane and hydrosilane in the presence of an addition catalyst such as a Pt catalyst.
  • an addition catalyst such as a Pt catalyst.
  • Commercially available products such as “LPS-1400”, “LPS-2410” and “LPS-3400” manufactured by Shin-Etsu Chemical Co., Ltd. It is done.
  • examples of the condensation type silicone material include a compound having a Si—O—Si bond obtained by hydrolysis of poly (alkoxysilane) polycondensation at a crosslinking point.
  • Specific examples include compounds represented by the following general formulas (ii) and Z or (iii), and polycondensates obtained by hydrolysis and polycondensation of Z or oligomers thereof.
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent organic group.
  • M represents an integer of 1 or more representing the valence of M
  • n represents an integer of 1 or more representing the number of X groups.
  • m n.
  • M represents at least one element selected from silicon, aluminum, zirconium, and titanium
  • X represents a hydrolyzable group
  • Y 1 represents a monovalent organic compound.
  • Y 2 is represents a u-valent organic group
  • s represents an integer of 1 or more representing the valence of M, t, 1 or more
  • s 1 represents an integer that is less than or equal
  • u is 2 It represents the above integer.
  • the condensation type silicone material may contain a curing catalyst.
  • a curing catalyst for example, a metal chelate compound or the like can be preferably used.
  • the metal chelate compound preferably contains Zr, preferably containing one or more of Ti, Ta, and Zr. Only one curing catalyst may be used. Two or more curing catalysts may be used in any combination and ratio.
  • condensation-type silicone material for example, semiconductor light-emitting device components described in Japanese Patent Application Nos. 2006-47274 to 47727 and Japanese Patent Application No. 2006-176468 are suitable.
  • condensation-type silicone materials particularly preferred materials will be described below.
  • Silicone-based materials generally have a problem of poor adhesion to semiconductor light-emitting elements, substrates on which elements are arranged, packages, etc., but silicone-based materials with high adhesion are characterized by the following characteristics [1] A condensation type silicone material having one or more of [3] is preferred.
  • the content of silicon is 20% by weight or more.
  • the solid Si nuclear magnetic resonance (NMR) spectrum measured by the method described in detail later has at least one peak derived from Si of (a) and Z or (b) below.
  • the peak top position is in the region where the chemical shift is 40 ppm or more and Oppm or less with respect to tetramethoxysilane, and the peak half-value width is 0.3 ppm or more and 3. Oppm or less.
  • the silanol content is from 0.1% by weight to 10% by weight.
  • the silicone-based material having the above-mentioned features [1] and [2] that the silicone-based material having the feature [1] is preferred
  • a silicone material having all the above features [1] to [3] is more preferable.
  • the basic skeleton of the conventional silicone-based material is organic resin such as epoxy resin having carbon-carbon and carbon-oxygen bonds as the basic skeleton, whereas the basic skeleton of the silicone-based material of the present invention is glass (key acid). It is the same inorganic siloxane bond as salt glass). This siloxane bond has the following excellent characteristics as a silicone-based material, as is apparent from the comparative table power of chemical bonds in Table 1 below.
  • silicone-based silicone materials formed with a skeleton in which siloxane bonds are three-dimensionally bonded with a high degree of cross-linking are heat and light resistant close to inorganic materials such as glass or rocks. It can be understood that the protective film is rich in.
  • a silicone-based material having a methyl group as a substitution group has no absorption in the ultraviolet region, so that photolysis hardly occurs and has excellent light resistance.
  • the silicone content of the silicone material suitable for the present invention is usually 20% by weight or more, and of these, 25% by weight or more is preferable, and 30% by weight or more is more preferable.
  • the upper limit is usually 7% by weight of the silicon content power of the glass, which is only SiO.
  • the range is 47% by weight or less.
  • the silicon content of the silicone-based material is analyzed by, for example, inductively coupled plasma spectrometry (hereinafter referred to as Ml “ICP”) using the following method, It can be calculated based on the result.
  • ICP inductively coupled plasma spectrometry
  • the peak region of (a) and Z or (b) derived from the silicon atom directly bonded to the carbon atom of the organic group is measured. At least one, preferably multiple peaks are observed.
  • the half-width of the peak described in (a) is generally described in (b) described later, since the constraint of molecular motion is small. Usually smaller than the peak of the listed 3. Oppm or less, preferably 2. Oppm or less, and usually 0.3ppm or more.
  • the full width at half maximum of the peak described in (b) is usually 5. Oppm or less, preferably 4. Oppm or less, and usually 0.3 ppm or more, preferably 0.4 ppm or more.
  • the half width of the peak is too small, Si atoms in the environment will not be involved in siloxane crosslinking, and trifunctional silane will remain in an uncrosslinked state. It may be a member that is less heat resistant and weather resistant than other materials.
  • the chemical shift value of the silicone material suitable for the present invention can be calculated based on the results of solid Si-NMR measurement, for example, using the following method.
  • analysis of measurement data is performed by a method of dividing and extracting each peak by, for example, waveform separation analysis using a Gaussian function or a Lorentle function.
  • Probe 7.5mm ⁇ CP / MAS probe
  • optimization calculation is performed by nonlinear least square method with the center position, height, and half width of the peak shape created by Lorentz waveform and Gaussian waveform or a mixture of both as variable parameters. Do.
  • the silicone material suitable for the present invention has a silanol content of usually 0.1% by weight or more, preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, and more preferably. Is less than 5% by weight.
  • silanol content usually 0.1% by weight or more, preferably 0.3% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less, and more preferably. Is less than 5% by weight.
  • the silanol content of the silicone-based material can be found, for example, in the section of (Solid Si-NMR ⁇ Vector Measurement and Calculation of Silanol Content) in Feature [2] (Solid Si-N MR Spectrum)> above.
  • the solid Si-NMR spectrum was measured using the method described above, and the ratio of the silanol-derived silicon atoms to the total peak area (% )) And compared with the separately analyzed content of silicon.
  • the silicone material suitable for the present invention contains an appropriate amount of silanol
  • the silanol usually hydrogen bonds to the polar portion present on the surface of the device, thereby exhibiting adhesiveness.
  • the polar part include a hydroxyl group and oxygen of a metalloxane bond.
  • the silicone material suitable for the present invention is usually heated in the presence of an appropriate catalyst to form a covalent bond by dehydration condensation with the hydroxyl group on the surface of the device, thereby further strengthening the adhesion. Sex can be expressed.
  • the content of the liquid medium of the phosphor-containing composition of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, but usually 50% by weight or more with respect to the entire phosphor-containing composition of the present invention. It is preferably 75% by weight or more, usually 99% by weight or less, preferably 95% by weight or less.
  • the amount of the liquid medium is large, no particular problem occurs.
  • the liquid is usually mixed at the blending ratio as described above. It is desirable to use a medium. On the other hand, if there is too little liquid medium, it may not be fluid and difficult to handle.
  • the liquid medium mainly has a role as a minder.
  • Liquid media may be used alone or in any combination of two or more And may be used in combination in a ratio.
  • other thermosetting resins such as epoxy resin should be used to the extent that the durability of the silicon-containing compound is not impaired. You may contain.
  • the content of other thermosetting resin is usually 25% by weight or less, preferably 10% by weight or less based on the total amount of the liquid medium as a binder.
  • the phosphor-containing composition of the present invention may contain other components in addition to the phosphor and the liquid medium as long as the effects of the present invention are not significantly impaired.
  • other components may be used alone, or two or more may be used in any combination and ratio.
  • the phosphor of the present invention can be easily fixed at a desired position.
  • the phosphor-containing composition of the present invention is used in the production of a light-emitting device, the phosphor-containing composition of the present invention is molded at a desired position, and the liquid medium is cured.
  • the phosphor can be sealed, and the phosphor of the present invention can be easily fixed at a desired position.
  • the light-emitting device of the present invention includes a first light-emitting body (excitation light source), a second light-emitting body that emits visible light by irradiation with light from the first light-emitting body, and
  • the second light emitter contains one or more of the phosphors of the present invention described above as the first phosphor.
  • the phosphor of the present invention used in the light emitting device of the present invention is not particularly limited in its composition and emission color as long as it is the above-described phosphor of the present invention.
  • the phosphor of the present invention when the phosphor of the present invention is represented by the general formula [2] and contains Eu as the activator element M 1 , the phosphor of the present invention usually has light emitted from an excitation light source. Under irradiation, the phosphor emits fluorescence in the orange or red region (hereinafter sometimes referred to as “the orange or red phosphor of the present invention”).
  • the phosphor of the present invention is an orange or red phosphor, 590 ⁇ ! ⁇ 640nm Those having an emission peak in the above wavelength range are preferred. Any one of the phosphors of the present invention may be used alone, or two or more of them may be used in any combination and ratio.
  • the weight median diameter D of the phosphor of the present invention used in the light emitting device of the present invention is usually 1
  • It is preferably in the range of 0 ⁇ m or more, especially 15 ⁇ m or more, and usually 30 ⁇ m or less, especially 20 ⁇ m or less. If the weight median diameter D is too small, the brightness decreases and the phosphor particles
  • phosphor of the present invention used in the light emitting device of the present invention include the phosphor of the present invention described in the section of ⁇ Phosphor composition ⁇ described above, and [Examples] described later.
  • the configuration of the light-emitting device of the present invention is limited except that the light-emitting device of the present invention has a first light emitter (excitation light source) and at least uses the phosphor of the present invention as the second light emitter. It is possible to arbitrarily adopt a known device configuration. A specific example of the device configuration will be described later.
  • the orange! / And red region emission peak preferably has an emission peak in the wavelength range of 590 nm to 670 nm.
  • an excitation light source as described later is used as the first light-emitting device, and the above-described orange to red phosphors are used.
  • a phosphor that emits green fluorescence hereinafter referred to as “green phosphor” as appropriate
  • a phosphor that emits blue fluorescence hereinafter referred to as “blue phosphor” as appropriate
  • a fluorescence that emits yellow fluorescence It is obtained by using known phosphors such as a body (hereinafter referred to as “yellow phosphor” as appropriate) in any combination and using a known device configuration.
  • the white color of the white light-emitting device is defined by JISZ8701, (yellowish) white, (greenish) white, (bluedish) white, (purpley) white and white. It is meant to include everything, and of these, white is preferred.
  • the first light emitter in the light emitting device of the present invention emits light that excites a second light emitter described later.
  • the emission wavelength of the first illuminant is not particularly limited as long as it overlaps the absorption wavelength of the second illuminant described later, and an illuminant having a wide emission wavelength region can be used.
  • a light emitter having an emission wavelength from the ultraviolet region to the blue region is used, and it is particularly preferable to use a light emitter having an emission wavelength from the near ultraviolet region to the blue region.
  • the specific value of the emission peak wavelength of the first illuminant is usually preferably 200 nm or more.
  • blue light it is desirable to use an illuminant having an emission peak wavelength of usually 420 nm or more, preferably 430 nm or more, and usually 500 nm or less, preferably 480 nm or less. . Both are from the viewpoint of color purity of the light emitting device.
  • a semiconductor light emitting element is generally used, and specifically, a light emitting LED, a semiconductor laser diode (hereinafter abbreviated as "LD" as appropriate), and the like. Can be used.
  • examples of the illuminant that can be used as the first illuminant include an organic electroluminescent luminescence element and an inorganic electroluminescent luminescent element.
  • what can be used as the first light emitter is not limited to those exemplified in this specification.
  • a GaN-based LED or LD using a GaN-based compound semiconductor is preferable.
  • GaN-based LEDs and LDs are extremely low power and extremely low power when combined with the phosphor of the present invention, which has significantly higher emission output and external quantum efficiency than SiC LEDs that emit light in this region. This is because bright light emission can be obtained.
  • GaN-based LEDs and LDs usually have a light emission intensity that is more than 100 times that of SiC.
  • GaN-based L with nGaN emission layer is particularly preferred because its emission intensity is very strong.
  • the light emission intensity of the multiple quantum well structure of InGaN layer and GaN layer is not.
  • the value of X + Y is usually a value in the range of 0.8 to 1.2.
  • these light-emitting layers doped with Zn or Si and those without dopants are preferred for adjusting the light-emitting characteristics.
  • GaN-based LEDs have these light-emitting layers, p-layers, n-layers, electrodes, and substrates as basic constituent elements.
  • the light-emitting layers are n-type and p-type AlGaN layers, GaN layers, or In layers. Sand with Ga N layer etc.
  • first light emitter may be used, or two or more may be used in any combination and ratio.
  • the second light emitter in the light emitting device of the present invention is a light emitter that emits visible light when irradiated with light from the first light emitter described above, and the phosphor of the present invention described above as the first phosphor (for example, it contains an orange or red phosphor) and a second phosphor described later (for example, a green phosphor, a blue phosphor, a yellow phosphor, etc.) as appropriate according to its use. Further, for example, the second light emitter is configured by dispersing first and second phosphors in a sealing material.
  • metal oxides typified by Sr Si N, etc., Ca (PO) C1, etc.
  • Oxysulfides such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and other rare earth metal ions, Ag, Cu, Au, A combination of metal ions such as Al, Mn, and Sb as activators or coactivators can be mentioned.
  • Preferred examples of the crystalline matrix include, for example, sulfur such as (Zn, Cd) S, SrGaS, SrS, ZnS, etc.
  • Oxidides such as Y ⁇ S; ( ⁇ , Gd) Al O, YAIO, BaMgAl O, (Ba, Sr) (M
  • Al (Ba, Sr, Mg) 0-Al O, BaAl Si O, SrAl O, Sr Al O, Y Al O, etc.
  • Phosphate such as Sr P 2 O, (La, Ce) PO and the like can be mentioned.
  • the crystal matrix and the activator element or coactivator element are not particularly limited in element composition, and can be partially replaced with elements of the same family, and the obtained phosphor is visible from near ultraviolet. Any material that absorbs light in a region and emits visible light can be used.
  • phosphors that can be used in the present invention are not limited to these.
  • phosphors that differ only in part of the structure are omitted as appropriate.
  • the second light emitter in the light emitting device of the present invention contains at least the above-described phosphor of the present invention as the first phosphor.
  • Any one of the phosphors of the present invention may be used alone, or two or more thereof may be used in any combination and ratio.
  • a phosphor that emits the same color fluorescence as the phosphor of the present invention (the same color combined phosphor) may be used as the first phosphor.
  • the phosphor of the present invention is represented by the general formula [2] and contains Eu as the activator element M 1
  • the phosphor of the present invention is usually an orange to red phosphor.
  • another type of orange or red phosphor can be used in combination with the phosphor of the present invention.
  • any one can be used as long as the effects of the present invention are not significantly impaired.
  • the emission peak wavelength of the orange to red phosphor that is the same color combined phosphor is usually 570 nm or more, preferably 580 nm or more, more preferably 585 nm or more, and usually 780 ⁇ m or less, preferably 700 nm or less, more preferably. It is preferable that the wavelength range is 680 nm or less.
  • Such an orange tan red phosphor is composed of, for example, fractured particles having a red fracture surface, and emits light in the red region (Mg, Ca, Sr, Ba) Si N: Eu. Will be
  • Examples include the body.
  • An acid containing at least one element selected from the group consisting of Ti, Zr, Hf, Nb, Ta, W, and Mo A phosphor containing nitride and Z or oxysulfuric acid, wherein the phosphor contains an oxynitride having an alpha sialon structure in which part or all of the A1 element is substituted with Ga element. It can be used for any reason. These are phosphors containing oxynitride and Z or oxysulfuric acid.
  • Eu-activated oxysulfurite fireflies such as (La, Y) O S: Eu
  • Active tungstate phosphor, Eu-activated sulfur phosphor such as (Ca, Sr) S: Eu, YAIO: E
  • Eu-activated aluminate phosphors such as 3 u, Ca Y (SiO) O: Eu, LiY (SiO) O: Eu, (
  • Ce-activated aluminate phosphor such as Ce (Mg, Ca, Sr, B
  • Eu-activated oxides such as Eu, nitrides or oxynitride phosphors, (Mg, Ca, Sr, Ba
  • Ce-activated acid oxide such as Ce, nitride or oxynitride phosphor, (Sr, Ca, B
  • Eu activated oxynitride phosphors such as u activated sialon, (Gd, Y, Lu, La) O: Eu, Bi, etc.
  • Eu Bi-activated oxide phosphor, (Gd, Y, Lu, La) OS: Eu, Bi-activated oxysulfur such as Eu and Bi
  • SrY S Eu
  • Ce activated sulfide phosphors such as Eu and Ce
  • CaLa S Ce activated sulfur such as Ce
  • Eu such as Mn, Mn-activated phosphate phosphor, (Y, Lu) WO: Eu, Mo-activated, such as Eu, Mo Nugstenate phosphor, (Ba, Sr, Ca) Si N: Eu, Ce (where x, y, z is an integer of 1 or more xyz
  • Eu, Ce activated nitride phosphors such as (Ca, Sr, Ba, Mg) (PO) (F, CI,
  • the red phosphor includes ⁇ -diketonate, ⁇ -diketone, aromatic carboxylic acid, or a red organic phosphor having a rare earth element ion complex with a ligand such as Bronsted acid, a perylene-based phosphor.
  • Pigments eg, dibenzo ⁇ [f, f ']-4,4', 7,7'-tetraphenyl ⁇ diindeno [1,2,3-cd: l, 2 ', 3,1 lm] perylene
  • Anthraquinone pigments lake pigments, azo pigments, quinacridone pigments, anthracene pigments, isoindoline pigments, isoindolinone pigments, phthalocyanine pigments, triphenylmethane basic dyes, indanthrone
  • red phosphors include (Ca, Sr, Ba) Si (N, O): Eu, (Ca, Sr, B
  • (Sr, Ba) SiO 2: Eu is preferable as the orange phosphor.
  • any one of the orange to red phosphors exemplified above may be used alone, or two or more may be used in any combination and ratio.
  • the second light emitter in the light emitting device of the present invention may contain a phosphor (that is, the second phosphor) in addition to the first phosphor described above, depending on the application.
  • This second phosphor Is a phosphor having an emission peak wavelength different from that of the first phosphor.
  • these second phosphors are used to adjust the color tone of light emitted from the second phosphor, so that the second phosphor has a fluorescence of a color different from that of the first phosphor.
  • phosphors that emit light.
  • examples of the second phosphor include a first phosphor such as a green phosphor, a blue phosphor, and a yellow phosphor. Use phosphors that emit different colors.
  • the weight median diameter of the second phosphor used in the light emitting device of the present invention is usually 10 m or more, particularly 12 ⁇ m or more, and usually 30 ⁇ m or less, especially 25 ⁇ m or less. It is preferable that If the weight median diameter D is too small, the brightness decreases and the phosphor particles aggregate.
  • the emission peak wavelength of the blue phosphor is usually 420 nm or more, preferably 430 nm or more, more preferably 440 nm or more, and usually 490 nm or less, preferably 480 nm or less, more preferably 470 nm or less, more preferably 460 nm or less. It is preferable to be in the wavelength range.
  • Such a blue phosphor is composed of a growing particle force having an almost hexagonal shape as a regular crystal growth shape, and emits light in the blue region (Ba, Sr, Ca) MgAlO: Eu.
  • blue phosphors include Sn-activated phosphate phosphors such as Sr PO: Sn, (
  • Active aluminate phosphor, Ce-activated thiogallate fluorescence such as SrGa S: Ce, CaGa S: Ce
  • Eu-activated halophosphate phosphors such as Mn and Sb, BaAl Si O: Eu, (Sr, Ba) MgSi O:
  • Eu-activated silicate phosphor such as Eu
  • Sr P O Eu-activated phosphate phosphor such as Eu
  • ZnS A
  • g, ZnS Sulphide phosphors such as Ag and Al
  • Y SiO Ce activated silicate phosphors such as Ce, CaW
  • Tungstate phosphors such as O, (Ba, Sr, Ca) BPO: Eu, Mn, (Sr, Ca) (PO)
  • Eu-activated oxynitride phosphors such as EuSi Al ON, La Ce Al (Si Al) (N O
  • Ce-activated oxynitride phosphors such as
  • blue phosphor for example, naphthalimide, benzoxazole, styryl, coumarin, vilarizone, triazol compound fluorescent dyes, thulium complexes and other organic phosphors are used. It is also possible to use it.
  • Sr (PO 4) (CI, F): Eu or Ba MgSi 2 O: Eu is included. Also this
  • the blue phosphors exemplified above may be used alone or in any combination of two or more. Can be used in combination and ratio.
  • the emission peak wavelength of the yellow phosphor is usually in the wavelength range of 530 nm or more, preferably 540 nm or more, more preferably 550 nm or more, and usually 620 nm or less, preferably 600 nm or less, more preferably 580 nm or less. Is preferred.
  • Examples of such a yellow phosphor include various oxide-based, nitride-based, oxynitride-based, sulfur-based, and oxysulfide-based phosphors.
  • RE M O Ce (where RE is selected from the group consisting of Y, Tb, Gd, Lu, and Sm.
  • M represents at least one element selected from the group forces consisting of Al, Ga, and Sc. ) Or M a M b M c O: Ce (where M a is a divalent metal
  • M b is a trivalent metal element
  • the M e represents a tetravalent metallic element.
  • Garnet-based phosphor having a garnet structure represented by AE M d O: Eu (where AE is Ba, Sr, Ca, Mg)
  • And Zn force Group force represents at least one element selected, and M d represents Si and Z or Ge. ), Etc., oxynitride phosphors in which part of the constituent oxygen of these phosphors is replaced by nitrogen, AEAlSiN
  • AE represents at least one element selected from the group force of Ba, Sr, Ca, Mg, and Zn force.
  • Phosphors activated with Ce such as nitride-based phosphors with CaAlSiN structure, etc.
  • Other yellow phosphors include CaGa S: Eu, (Ca, Sr) Ga S: Eu, (Ca, S
  • Phosphors activated with Eu such as oxynitride phosphors having an N structure, (M Eu Mn)
  • X represents one or more elements selected from the group consisting of F, Cl, and Br forces.
  • A, B, and P represent numbers satisfying 0.001 ⁇ A ⁇ 0.3, 0 ⁇ B ⁇ 0.3, 0 ⁇ P ⁇ 0.2, respectively.
  • Eu-activated or Eu-Mn co-activated halogenated borate phosphors include brilliant sulfoflavine FF (Colour Index Num ber 56205), basic yellow HG (Colour Index Number 46040), eosine (Colour In dex Number 45380), rhodamine 6G (Colour Index Number 45160). ) And other fluorescent dyes can also be used.
  • the yellow phosphors exemplified above may be used alone, or two or more may be used in any combination and ratio.
  • the emission peak wavelength of the green phosphor is preferably 500 nm or more, particularly 510 nm or more, more preferably 515 nm or more, and usually 550 nm or less, especially 542 nm or less, and further preferably 535 nm or less. If this emission peak wavelength is too short, it tends to be bluish, while if it is too long, it tends to be yellowish, and the characteristics as green light may deteriorate.
  • the green phosphor is composed of, for example, fractured particles having a fracture surface, and emits light in the green region (Mg, Ca, Sr, Ba) Si ON: a mouth expressed by Eu Pium activation
  • Examples thereof include alkaline earth silicon oxynitride phosphors.
  • green phosphors include SrAlO: Eu, (Ba, Sr, Ca) AlO: Eu, etc.
  • Mn-activated silicate phosphor such as Mn, CeMgAl 2 O 3: Tb, Y A1 0: Tb-activated key such as Tb
  • Ce activated silicate phosphor such as Ce, CaSc O: Ce activated oxide phosphor such as Ce, Eu activated Eu-activated oxynitride phosphors such as sialon, BaMgAl 2 O: Eu, Mn such as Eu, Mn
  • Activated aluminate phosphor such as SrAl O: Eu, (La, Gd
  • Tb-activated oxysulfide phosphor such as Tb
  • LaPO Ce
  • Tb-activated phosphorus such as Ce
  • Acid phosphors, sulfide phosphors such as ZnS: Cu, Al, ZnS: Cu, Au, Al, (Y, Ga, Lu, Sc, La) BO: Ce, Tb, Na Gd BO: Ce, Tb , (Ba, Sr) (Ca, Mg, Zn) BO: K,
  • Ce, Tb activated borate phosphor such as Ce, Tb, Ca Mg (SiO) CI: Eu, Mn such as Eu, Mn
  • Mn-activated halosilicate phosphors such as M Si O N: Eu, M Si O N: Eu (however, M
  • the green phosphor a pyridine phthalimide condensed derivative, a benzoxazinone, a quinazolinone, a coumarin, a quinophthalone, a naltaric imide, or the like, or an organic phosphor such as a terbium complex is used. It is also possible.
  • the green phosphors exemplified above may be used alone or in combination of two or more in any combination and ratio.
  • the second phosphor one kind of phosphor may be used alone, or two or more kinds of phosphors may be used in any combination and ratio. Further, the ratio of the first phosphor to the second phosphor is also arbitrary as long as the effects of the present invention are not significantly impaired. Accordingly, the amount of the second phosphor used, the combination of phosphors used as the second phosphor, and the ratio thereof may be arbitrarily set according to the use of the light emitting device.
  • the second phosphor described above yellow phosphor, blue phosphor, green phosphor, etc.
  • the type thereof are appropriately selected according to the use of the light emitting device. do it.
  • the light emitting device of the present invention is configured as an orange or red light emitting device, only the first phosphor (orange or red phosphor) may be used, and the use of the second phosphor is not necessary. Usually unnecessary.
  • the light emitting device of the present invention is configured as a white light emitting device
  • a desired light emitting device The first phosphor, the first phosphor (orange or red phosphor), and the second phosphor may be appropriately combined so that white light can be obtained.
  • examples of preferred and combination of the first phosphor, the first phosphor, and the second phosphor The following combinations (i) to (m) are listed.
  • a blue phosphor (such as a blue LED) is used as the first phosphor, a red phosphor (such as the phosphor of the present invention) is used as the first phosphor, and a second phosphor As a green phosphor.
  • a near-ultraviolet illuminant (such as a near-ultraviolet LED) is used as the first illuminant, and a red phosphor (such as the phosphor of the present invention) is used as the first illuminant.
  • a blue phosphor and a green phosphor are used in combination as the phosphor.
  • a blue phosphor (such as a blue LED) is used as the first phosphor, an orange phosphor (such as the phosphor of the present invention) is used as the first phosphor, and the second phosphor Use green phosphor as body
  • (Ca, Sr) AlSiNi 3: Eu which is exemplified as a deep red phosphor in the following Table d), Table h) and Table 5) below, is the Ca to the total amount of Ca and Sr. of and the amount force 0 mole 0/0 above, a phosphor having a peak emission wavelength in 700nm or less wavelength range of 630 nm, may be a phosphor of the present invention.
  • a white light emitting device combining a near-ultraviolet LED, one or more of the blue-green phosphors shown in the table below, and the orange or red phosphor of the present invention.
  • Tanenu is a two or more phosphors of the ⁇ phosphor shown in the following Table, Fc white light emitting device in combination with one or more of the deep red phosphors shown in the table below
  • Blue LED (Ba, Sr) 3 Si 6 0 12 N 2 : Eu Orange or (Ca, Sr) AISiNi 3 : Eu red phosphor of the present invention Semiconductor light emitting device Blue phosphor Green phosphor Orange to red phosphor
  • the phosphor of the present invention is mixed with other phosphors (here, mixing means that different types of phosphors are not necessarily mixed). Meaning).
  • mixing means that different types of phosphors are not necessarily mixed Meaning.
  • a preferable phosphor mixture is obtained.
  • the types of phosphors to be mixed and their proportions.
  • the first and Z or second phosphors are usually used by being dispersed in a liquid medium which is a sealing material.
  • liquid medium examples include the same ones as described in the above-mentioned ⁇ phosphor-containing composition ⁇ .
  • the liquid medium can contain a metal element that can be a metal oxide having a high refractive index in order to adjust the refractive index of the sealing member.
  • metal elements that give a metal oxide having a high refractive index include Si, Al, Zr, Ti, Y, Nb, and B. These metal elements may be used alone or in combination of two or more in any combination and ratio.
  • the presence form of such a metal element is not particularly limited as long as the transparency of the sealing member is not impaired.
  • the metal element has a particulate shape. May exist.
  • the structure inside the particles may be amorphous or crystalline, but in order to give a high refractive index, a crystalline structure is preferred.
  • the particle diameter is usually not more than the emission wavelength of the semiconductor light emitting device, preferably not more than lOOnm, more preferably not more than 50nm, and particularly preferably not more than 30nm so as not to impair the transparency of the sealing member.
  • the above metal elements are formed into particles in the sealing member. Can be present.
  • the liquid medium may further contain known additives such as a diffusing agent, a filler, a viscosity modifier, and an ultraviolet absorber.
  • the other configurations of the light-emitting device of the present invention are not particularly limited as long as the light-emitting device includes the above-described first light-emitting body and second light-emitting body.
  • the above-described first light-emitting apparatus is mounted on an appropriate frame.
  • a light emitter and a second light emitter are arranged.
  • the second light emitter is excited by the light emission of the first light emitter (that is, the first and second phosphors are excited) to emit light, and the light emission of the first light emitter is generated.
  • the light emission of Z or the second light emitter will be arranged so as to be extracted to the outside.
  • the first phosphor and the second phosphor are not necessarily mixed in the same layer.
  • the second phosphor is contained on the layer containing the first phosphor.
  • the phosphor may be contained in a separate layer for each color development of the phosphor, such as by laminating layers.
  • members other than the above-described excitation light source (first light emitter), phosphor (second light emitter), and frame may be used.
  • examples thereof include the aforementioned sealing materials.
  • the sealing material is used between the excitation light source (first light emitter), the phosphor (second light emitter), and the frame. Can be used for the purpose of bonding.
  • the present invention is not limited to the following embodiments, and does not depart from the gist of the present invention.
  • the range can be arbitrarily modified and implemented.
  • FIG. 1 shows the figure.
  • reference numeral 1 denotes a phosphor-containing portion (second light emitter)
  • reference numeral 2 denotes a surface-emitting GaN LD as an excitation light source (first light emitter)
  • reference numeral 3 denotes a substrate.
  • LD (2) and phosphor-containing part (second light emitter) (1) are produced separately, and their surfaces are brought into contact with each other by an adhesive or other means.
  • the phosphor-containing portion (second light emitter) may be formed (molded) on the light emitting surface of the LD (2).
  • the LD (2) and the phosphor-containing portion (second light emitter) (1) can be brought into contact with each other.
  • the light from the excitation light source (first illuminant) is converted into the phosphor. Since it is possible to avoid the loss of light amount that is reflected by the film surface of the containing portion (second light emitter) and oozes out, the light emission efficiency of the entire device can be improved.
  • Fig. 2 (a) is a typical example of a light emitting device of a form generally referred to as a cannonball type.
  • FIG. 6 is a schematic cross-sectional view showing an example of a light emitting device having a (first light emitter) and a phosphor-containing portion (second light emitter).
  • reference numeral 5 is a mount lead
  • reference numeral 6 is an inner lead
  • reference numeral 7 is an excitation light source (first light emitter)
  • reference numeral 8 is a phosphor-containing resin part
  • reference numeral 9 is a conductive wire
  • Reference numeral 10 denotes a mold member.
  • FIG. 2 (b) is a typical example of a light-emitting device of a form referred to as a surface-mount type, in which an excitation light source (first light emitter) and a phosphor-containing portion (second light emitter) 1 is a schematic cross-sectional view showing an embodiment of a light emitting device having
  • reference numeral 22 denotes an excitation light source (first light emitter)
  • reference numeral 23 denotes a phosphor-containing resin part as a phosphor-containing part (second light emitter)
  • reference numeral 24 denotes a frame
  • reference numeral 25 denotes conductivity.
  • Wires 26 and 27 refer to electrodes, respectively.
  • the use of the light-emitting device of the present invention is not particularly limited, and since the color reproduction range that can be used in various fields where a normal light-emitting device is used is wide and color rendering is high, the illumination device is particularly preferred. And as a light source for image display devices.
  • the above-described light-emitting device may be used by being appropriately incorporated into a known lighting device.
  • a surface emitting illumination device (11) incorporating the above-described light emitting device (4) as shown in FIG. 3 can be mentioned.
  • Fig. 3 is a cross-sectional view schematically showing an embodiment of the illumination device of the present invention.
  • the surface-emitting illumination device has a large number of light-emitting devices (13) (described above) on the bottom surface of a rectangular holding case (12) whose inner surface is light-opaque such as a white smooth surface.
  • the light-emitting device (4)) is disposed outside the light-emitting device (13) with a power supply and a circuit (not shown) for driving the light-emitting device (13), and is placed on the lid of the holding case (12).
  • a diffuser plate (14) such as a milky white acrylic plate is fixed to the corresponding part for uniform light emission.
  • the specific configuration of the image display device is not limited, but it is preferably used together with a color filter.
  • the image display device is a color image display device using a color liquid crystal display element
  • the light emitting device is used as a backlight, and an optical shutter using liquid crystal and a color filter having red, green, and blue pixels are provided. By combining these, an image display device can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Luminescent Compositions (AREA)

Abstract

 高特性、特に高輝度な蛍光体を工業的に生産することができる蛍光体の製造方法。この蛍光体の製造方法に用いることのできる、窒素含有合金、及び合金粉末。蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方法であって、蛍光体原料の一部又は全部として、蛍光体を構成する金属元素を2種以上有する合金を使用し、かつ、前記加熱工程において1分間当たりの温度変化が50°C以内となる条件下で加熱する蛍光体の製造方法。原料の一部又は全部として蛍光体原料用合金を用いて蛍光体を製造する際の加熱処理中の急激な窒化反応の進行を抑制することができ、よって、高特性、特に高輝度な蛍光体を工業的に生産することが可能となる。

Description

明 細 書
窒素含有合金、及びそれを使用した蛍光体の製造方法
発明の分野
[0001] 本発明は、窒化物又は酸窒化物を母体とする蛍光体の製造原料としての窒素含有 合金と、この窒素含有合金を原料とした窒化物又は酸窒化物を母体とする蛍光体の 製造方法に関する。
発明の背景
[0002] 蛍光体は、蛍光灯、蛍光表示管 (VFD)、フィールドェミッションディスプレイ (FED )、プラズマディスプレイパネル (PDP)、陰極線管(CRT)、白色発光ダイオード (LE D)などに用いられている。これらのいずれの用途においても、蛍光体を発光させるた めには、蛍光体を励起するためのエネルギーを蛍光体に供給する必要があり、蛍光 体は真空紫外線、紫外線、可視光線、電子線などの高いエネルギーを有する励起 源により励起されて、紫外線、可視光線、赤外線を発する。しかしながら、蛍光体は 前記のような励起源に長時間曝されると、蛍光体の輝度が低下するという問題があつ た。
[0003] そこで、近年、従来のケィ酸塩蛍光体、リン酸塩蛍光体、アルミン酸塩蛍光体、ホウ 酸塩蛍光体、硫化物蛍光体、酸硫化物蛍光体などの蛍光体に代わり、三元系以上 の窒化物について多くの新規物質が合成されている。近年、特に窒化珪素をベース とした多成分窒化物や酸窒化物において優れた特性を有する蛍光体が開発されて いる。
[0004] 下記特許文献 1に、一般式 M Si N: Eu [ここで、 Mは Ca、 Sr、及び Baからなる群 力 選択される少なくとも一種のアルカリ土類金属元素であり、かつ、 x、 y、及び zは z = 2Z3x+4Z3yを満たす数である。 ]で表される蛍光体が開示されている。これら の蛍光体は、アルカリ土類金属を窒化することによりアルカリ土類金属の窒化物を合 成し、これに窒化珪素を加えて合成するか、あるいは、アルカリ土類金属及び珪素の イミドを原料として窒素又はアルゴン気流中で加熱することにより合成されている。い ずれも空気や水分に敏感なアルカリ土類金属窒化物を原料として使用しなくてはな らず、工業的な製造には問題があった。
[0005] また、下記特許文献 2に、一般式 M Si O N : Euで表されるォキシュトリド、一
16 15 6 32
般式 MSiAl O N :Eu、 M Si Al O N : Eu、 MSi Al ON :Eu及び M Si Al
2 3 2 13 18 12 18 36 5 2 9 3 5
ON : Euで表されるサイアロン構造を有する酸窒化物蛍光体が開示されている。特
10
に、 Mが Srの場合に、 SrCOと A1Nと Si Nとを 1: 2 : 1の割合で混合し、還元雰囲気
3 3 4
(水素含有窒素雰囲気)中で加熱したところ、 SrSiAl O N: Eu2+が得られたことが
2 3 2
記載されている。
この場合、得られる蛍光体は、酸窒化物蛍光体のみであり、酸素を含まない窒化物 蛍光体は得られていない。
[0006] また、上記窒化物又は酸窒化物蛍光体は、使用される原料粉末の反応性がいず れも低いことから、焼成時に原料混合粉末の間の固相反応を促進する目的で原料粉 末間の接触面積を大きくして加熱する必要がある。そのため、これらの蛍光体は、高 温において圧縮成形した状態、すなわち非常に硬い焼結体の状態で合成される。よ つて、この様にして得られた焼結体は、蛍光体の使用目的に適した微粉末状態まで 粉砕する必要がある。ところが、硬い焼結体となっている蛍光体を通常の機械的粉砕 方法、例えばジョークラッシャーやボールミルなどを使用して長時間に渡り多大なェ ネルギーをかけて粉砕すると、蛍光体の母体結晶中に多数の欠陥を発生させ、蛍光 体の発光強度を著しく低下させてしまうと 、う不都合が生じて 、た。
[0007] また、窒化物又は酸窒化物蛍光体の製造にぉ 、て、窒化カルシウム (Ca N )、窒
3 2 ィ匕ストロンチウム(Sr N )などのアルカリ土類金属窒化物を使用することが好ましいと
3 2
されて 、るが、一般に 2価の金属の窒化物は水分と反応して水酸化物を生成しやす ぐ水分含有雰囲気下で不安定である。特に、 Sr Nや Sr金属の粉末の場合はこの
3 2
傾向が著しぐ取り扱いが非常に難しい。
[0008] 以上の理由から、新たな蛍光体原料及びその製造方法が求められていた。
[0009] 近年、金属を出発原料とした窒化物蛍光体の製造方法が下記特許文献 3に記載さ れている。特許文献 3には窒化アルミニウム系蛍光体の製造方法の一例が開示され 、原料として、遷移元素、希土類元素、アルミニウム及びその合金が使用できる旨が 記載されている。しかし、実際に合金を原料として用いた実施例は記載されておらず 、 Al源として Al金属を用いることを特徴としている。また、原料に着火し、瞬時に高温 (3000K)まで上昇させる燃焼合成法を用いる点で、本発明と大きく異なり、この方法 で高特性の蛍光体を得ることは困難であると推測される。即ち、瞬時に 3000Kという 高温まで昇温させる方法では付活元素を均一に分布させることは難しぐ特性の高 い蛍光体を得ることは困難である。また、合金原料力も得られるアルカリ土類金属元 素を含む窒化物蛍光体、更に珪素を含む窒化物蛍光体に関する記載は無い。 特許文献 1 :特表 2003— 515665号公報
特許文献 2:特開 2003 - 206481号公報
特許文献 3:特開 2005 - 54182号公報
[0010] 本発明者等が検討した結果、合金を原料として窒化物又は酸窒化物を母体とする 蛍光体を製造する場合において、加熱時に窒化反応が急速に進み、発生した熱に よって原料の溶融や分相、あるいは窒化物の分解が起こり、蛍光体の特性が低下す る場合があることがわ力つた。特に、生産性を上げるために一度に大量の原料を加熱 処理したり、原料の充填密度を上げたりすると、場合によっては蛍光体が得られない 場合があることがわ力 た。
発明の概要
[0011] 本発明は、上述の課題に鑑みてなされたものであって、その目的は、高特性、特に 高輝度な蛍光体を工業的に生産することができる蛍光体の製造方法を提供すること である。また、本発明の目的は、この蛍光体の製造方法により得られる蛍光体、及び この蛍光体を用いた蛍光体含有組成物及び発光装置と、この発光装置を用いた画 像表示装置及び照明装置を提供することである。
また、前記の蛍光体の製造方法に用いることのできる、窒素含有合金、及び合金粉 末を提供することも目的とする。
[0012] 本発明者等は、上述の課題に鑑み、蛍光体の製造方法につ!、て鋭意検討した結 果、原料の全部又は一部として、蛍光体を構成する金属元素を 2種以上含有する合 金 (以下、「蛍光体原料用合金」と称する場合がある。)を用いて蛍光体を製造する際 に、蛍光体原料を加熱する工程において、加熱処理中の温度変化を一定の範囲以 下に制御すると一度に加熱することのできる量を増やすことができることを見出した。 [0013] 即ち、本発明は以下の(1)〜(33)を要旨とするものである。
[0014] (1) 蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方法 であって、蛍光体原料の一部又は全部として、蛍光体を構成する金属元素を 2種以 上有する合金 (以下、「蛍光体原料用合金」と称す。)を使用し、かつ、前記加熱工程 にお 、て、前記蛍光体原料用合金の融点より 100°C低 、温度カも該融点より 30°C 低い温度までの温度域における 1分間当たりの温度変化が 50°C以内となる条件下 で加熱することを特徴とする蛍光体の製造方法。
[0015] (2) 下記 1)〜4)のうちのいずれか一つ以上を満たすことを特徴とする(1)に記載の 蛍光体の製造方法。
1)前記蛍光体原料用合金の一部又は全部が、全金属元素含有率が 97重量%以 下である窒素含有合金である;
2)前記蛍光体原料用合金の融点より 100°C低!、温度力 該融点より 30°C低!、温 度までの温度域における昇温速度を 9°CZ分以下とする;
3)前記蛍光体原料として、前記蛍光体原料用合金と共に、前記蛍光体を構成する 金属元素を 1種又は 2種以上含有する窒化物又は酸窒化物を用いる;及び
4)前記蛍光体原料用合金として、安息角が 45度以下である蛍光体原料用合金粉 末を用いる。
[0016] (3) 少なくとも前記 1)及び前記 2)を満たすことを特徴とする(2)に記載の蛍光体の 製造方法。
[0017] (4) 少なくとも前記 2)及び前記 3)を満たすことを特徴とする(2)に記載の蛍光体の 製造方法。
[0018] (5) 前記加熱工程において、前記蛍光体原料を焼成容器内で加熱する方法であ つて、下記式 [A]で表される、焼成容器の質量に対する蛍光体原料の質量の割合が 0. 1以上であることを特徴とする(1)な 、し (4)の 、ずれかに記載の蛍光体の製造方 法。
(蛍光体原料の質量) Z{ (焼成容器の質量) + (蛍光体原料の質量) } 〜[A] [0019] (6) 蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方法 であって、蛍光体原料の一部又は全部として、蛍光体原料用合金を使用し、かつ、 下記 1)〜4)のうちのいずれか一つ以上を満たすことを特徴とする蛍光体の製造方 法。
1)前記蛍光体原料用合金の一部又は全部が、全金属元素含有率が 97重量%以 下である窒素含有合金である;
2)前記蛍光体原料用合金の融点より 100°C低!、温度力 該融点より 30°C低!、温 度までの温度域における昇温速度を 9°CZ分以下とする;
3)前記蛍光体原料として、前記蛍光体原料用合金と共に、前記蛍光体を構成する 金属元素を 1種又は 2種以上含有する窒化物又は酸窒化物を用いる;及び
4)前記蛍光体原料用合金として、安息角が 45度以下である蛍光体原料用合金粉 末を用いる。
[0020] (7) 前記窒素含有合金の窒素含有率が 0. 8重量%以上、 27重量%以下であるこ とを特徴とする(6)に記載の蛍光体の製造方法。
[0021] (8) 前記蛍光体原料用合金を、窒素含有雰囲気下で加熱することにより前記窒素 含有合金を製造する工程 (以下「一次窒化工程」と称す。 )を有することを特徴とする (6)又は(7)に記載の蛍光体の製造方法。
[0022] (9) 前記窒素含有合金が下記式 [7]を満足することを特徴とする(6)ないし (8)の V、ずれかに記載の蛍光体の製造方法。
0. 03≤NI/NP≤0. 9 - -- [7]
式 [7]において、
NIは、窒素含有合金の窒素含有率 (重量%)を表し、
NPは、製造される蛍光体の窒素含有率 (重量%)を表す。
[0023] (10) 前記窒素含有合金を蛍光体原料の一部又は全部として、窒素含有雰囲気下 で加熱する工程 (以下「二次窒化工程」と称す。)が、該窒素含有合金の融点より 300 °C以上高!、温度で加熱する工程であることを特徴とする(6)な 、し (9)の 、ずれかに 記載の蛍光体の製造方法。
[0024] (11) 前記二次窒化工程に先立ち、前記窒素含有合金を該窒素含有合金の融点 より 100°C以上低 、温度まで冷却する工程を有することを特徴とする(6)な 、し(10) の!、ずれかに記載の蛍光体の製造方法。 [0025] (12) 前記二次窒化工程に先立ち、前記窒素含有合金を粉砕する工程を有するこ とを特徴とする(6)ないし( 11)の 、ずれかに記載の蛍光体の製造方法。
[0026] (13) 前記蛍光体原料用合金の重量メジアン径 D が 100 m以下であることを特
50
徴とする(6)ないし( 12)の 、ずれかに記載の蛍光体の製造方法。
[0027] (14) 前記蛍光体原料が、前記蛍光体原料用合金と共に、前記蛍光体を構成する 金属元素を 1種又は 2種以上含有する窒化物又は酸窒化物を 1重量%以上含有す ることを特徴とする(6)な 、し( 13)の 、ずれかに記載の蛍光体の製造方法。
[0028] (15) 前記蛍光体原料用合金のタップ密度が 1. 9gZml以上であることを特徴とす る(6)な 、し(14)の 、ずれかに記載の蛍光体の製造方法。
[0029] (16) 蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方 法であって、蛍光体原料の一部又は全部として、蛍光体原料用合金を使用し、かつ 、前記蛍光体原料用合金の一部又は全部が、窒素含有率が 10重量%以上である 窒素含有合金であることを特徴とする蛍光体の製造方法。
[0030] (17) 蛍光体原料用合金を用いる蛍光体の製造方法であって、
(a)蛍光体を構成する少なくとも 1種の金属元素及び少なくとも 1種の付活元素 M1と を溶融させて、これらの元素を含む合金溶湯を得る融解工程、
(b)該合金溶湯を不活性ガス中で微細化する微細化工程、
(c)該微細化した合金溶湯を凝固させる凝固工程、及び、
(d)該凝固させて得られた合金粉末を窒素含有雰囲気下で焼成する焼成工程 を有することを特徴とする蛍光体の製造方法。
[0031] (18) 前記蛍光体が、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素 の 1種以上とを含むことを特徴とする( 1)ないし( 17)の ヽずれかに記載の蛍光体の 製造方法。
[0032] (19) 前記蛍光体が、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4 価の金属元素 M4とを含むことを特徴とする(18)に記載の蛍光体の製造方法。
[0033] (20) 前記蛍光体が、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを 特徴とする(19)に記載の蛍光体の製造方法。
[0034] (21) 前記蛍光体が、さらに 3価の金属元素 M3を含むことを特徴とする(19)ないし ( 20)の 、ずれかに記載の蛍光体の製造方法。
[0035] (22) 窒化物又は酸窒化物を母体とする蛍光体の製造原料としての合金であって、 該合金が少なくとも 1種の金属元素と、少なくとも 1種の付活元素 M1とを含有し、全金 属元素含有率が 97重量%以下であり、窒素を含有することを特徴とする窒素含有合 金。
[0036] (23) 窒素含有率が 0. 8重量%以上、 27重量%以下であることを特徴とする(22) に記載の窒素含有合金。
[0037] (24) 下記式 [7]を満足することを特徴とする(22)又は(23)に記載の窒素含有合 金。
0. 03≤NI/NP≤0. 9 - -- [7]
式 [7]において、
NIは、窒素含有合金の窒素含有率 (重量%)を表し、
NPは、製造される蛍光体の窒素含有率 (重量%)を表す。
[0038] (25) 少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種類以上と を含むことを特徴とする(22)な 、し (24)の 、ずれかに記載の窒素含有合金。
[0039] (26)
Figure imgf000009_0001
2価の金属元素 M2、及び少なくとも Siを含む 4価の金属元素 M
4を含むことを特徴とする(25)に記載の窒素含有合金。
[0040] (27) 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特徴とする(26) に記載の窒素含有合金。
[0041] (28) 更に 3価の金属元素 M3を含むことを特徴とする(26)又は(27)に記載の窒素 含有合金。
[0042] (29) 付活元素 M1が Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm 、及び Yb力 なる群力 選ばれる 1種以上の元素であることを特徴とする(22)ないし (28)の 、ずれかに記載の窒素含有合金。
[0043] (30) 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から選ばれる 1種 以上の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群から選ばれ る 1種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hfからなる群力 選ばれる 1種以上の元素であることを特徴とする(28)又 は(29)に記載の窒素含有合金。
[0044] (31) 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元 素 M3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元素 M4の 50モル
%以上が Siであることを特徴とする(30)に記載の窒素含有合金。
[0045] (32) 付活元素 M1として Euを、 2価の金属元素 M2として Ca及び/又は Srを、 3価 の金属元素 M3として A1を、少なくとも Siを含む 4価の金属元素 M4として Siを含むこと を特徴とする(30)又は(31)に記載の窒素含有合金。
[0046] (33) 蛍光体原料用としての合金粉末であって、該合金粉末が少なくとも 1種の金 属元素と、少なくとも 1種の付活元素 M1とを含有し、該合金粉末の安息角が 45度以 下であることを特徴とする蛍光体原料用合金粉末。
[0047] 本発明によれば、原料の一部又は全部として蛍光体原料用合金を用いて蛍光体を 製造する際の加熱工程における急激な窒化反応の進行を抑制することができ、よつ て、高特性、特に高輝度な蛍光体を工業的に生産することが可能となる。
また、本発明によれば、蛍光体原料として優れている、窒素含有合金や、安息角が 小さいことを特徴とする合金粉末を提供することも可能となる。
図面の簡単な説明
[0048] [図 1]本発明の発光装置の一実施例を示す模式的斜視図である。
[図 2]図 2aは、本発明の砲弾型発光装置の一実施例を示す模式的断面図であり、図
2bは、本発明の表面実装型発光装置の一実施例を示す模式的断面図である。
[図 3]本発明の照明装置の一実施例を示す模式的断面図である。
[図 4]合金溶湯の微細化、凝固に好適なガスアトマイズ装置を示す模式図である。
[図 5]実施例 19で得られた窒素含有合金の TG— DTA分析結果を示すチャートであ る。
[図 6]実施例 11で得られた窒素含有合金の粉末 X線回折パターンを示すチャートで ある。
[図 7]実施例 12で得られた窒素含有合金の粉末 X線回折パターンを示すチャートで ある。
[図 8]実施例 13で得られた窒素含有合金の粉末 X線回折パターンを示すチャートで ある。
[図 9]実施例 14で得られた窒素含有合金の粉末 X線回折パターンを示すチャートで ある。
[図 10]比較例 1における一次窒化前の合金粉末の TG— DTA分析結果を示すチヤ ートである。
[図 11]実施例 12で得られた蛍光体の粉末 X線回折パターンを示すチャートである。
[図 12]実施例 13で得られた蛍光体の粉末 X線回折パターンを示すチャートである。
[図 13]実施例 20で得られた表面実装型発光装置の発光スペクトルを示すチャートで ある。
[図 14]実施例 27で製造された合金粉末の光学顕微鏡写真である。
[図 15]比較例 19で製造された合金粉末の光学顕微鏡写真である。
詳細な説明
[0049] 以下、本発明の実施の形態について詳細に説明する力 本発明は以下の実施の 形態に限定されるものではなぐその要旨の範囲内で種々変形して実施することがで きる。
なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載さ れる数値を下限値及び上限値として含む範囲を意味する。
また、本明細書において、合金とは 2種以上の金属の固溶体、共晶、金属間化合 物、及びこれらが共存するものも含むものとし、非金属元素を含んでいてもよいものと する。
[0050] [蛍光体の製造方法]
本発明の蛍光体の製造方法 (以下、単に「本発明の製造方法」と称する場合がある 。;)は、蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方 法であって、蛍光体原料の一部又は全部として、蛍光体を構成する金属元素を 2種 以上有する合金 (以下、「蛍光体原料用合金」と称す。)を使用するものである。
[0051] 窒化反応は、発熱反応であるため、前記加熱工程において一度に大量の蛍光体 原料を加熱により窒化しようとすると、急激な発熱を伴う暴走反応が起こり、その発熱 により、蛍光体原料の構成元素の一部が揮発したり、蛍光体原料用合金の粒子同士 が融着したりすることが多ぐ得られる蛍光体の発光特性が低下する場合や、蛍光体 が得られない場合がある。そこで、本発明の製造方法のように、加熱工程における温 度変化の範囲を調整すると、一度に処理する蛍光体原料の量を増やしても急激な窒 化反応の進行を抑制することができ、高特性な蛍光体を工業的に生産することが可 能となる。
[0052] 本発明の製造方法においては、前記加熱工程において、特定の温度域における 蛍光体原料を充填する焼成容器外壁の温度変化が小さ ヽこと (即ち、急激な発熱反 応が起きていないことを意味する。)が重要である。上記の特定の温度域とは、通常、 前記蛍光体原料用合金の融点より 100°C低!ヽ温度から該融点より 30°C低!ヽ温度ま での温度域であり、好ましくは該融点より 150°C低い温度以上、より好ましくは該融点 より 200°C低い温度以上、また、好ましくは該融点以下、より好ましくは該融点より 10 0°C高!、温度以下までの温度域である。
[0053] 本発明の製造方法の前記加熱工程における 1分間当たりの温度変化の範囲として は、通常 50°C以内、好ましくは 30°C以内、より好ましくは 20°C以内、更に好ましくは 、 10°C以内である。前記加熱工程における温度変化が大き過ぎると、蛍光体の発光 特性が低下する傾向にあり、場合によっては、蛍光体が得られないこともある。前記 加熱工程における 1分間当たりの温度変化の範囲の下限に特に制限はないが、生 産性の観点から、通常、 0. 1°C以上である。但し、前記加熱工程において、温度が 下がることがあってもよぐ上記の「前記加熱工程における 1分間当たりの温度変化」 の数値は、絶対値を示すものとする。
[0054] また、上記の「前記加熱工程における 1分間当たりの温度変化」は、焼成容器の外 側の壁の温度 (ただし、蛍光体原料を充填した高さの、 1Z2の高さ付近の位置に温 度計を設置するものとする。以下、この温度を「焼成容器の側壁温度」と称する場合 がある。)を、一定時間間隔でタングステン レニウム合金熱電対、白金熱電対、ロジ ゥムー白金熱電対等や放射温度計を用いて測定し、この測定値から 1分間当たりの 温度変化を、下記式 [B]より求めた値である。
温度変化 (°CZ分)
= 時刻 T分での温度 時刻 (T 1)分での温度 ·'· [Β] [0055] 前記式 [B]で表される温度変化がノイズでないことを確認するため、ある程度以下 の間隔で温度をモニターすることが好ましい。具体的には、温度の測定間隔を、通常 30秒以下、好ましくは 20秒以下、より好ましくは 10秒以下とする。尚、温度の測定間 隔の下限としては、通常 1秒以上である。
また、前記式 [B]では、 1分間当たりの温度変化について規定している力 温度の 測定間隔に特に制限はなぐ例えば、 10分間当たりの温度変化の範囲としては、通 常 100°C以内、好ましくは 80°C以内、より好ましくは 50°C以内である。 10分間当たり の温度変化の範囲の下限に特に制限はないが、通常 0. 5°C以上である。
なお、この焼成容器の側壁温度は、加熱工程中、急激な発熱が起こらない場合に は、炉内温度とほぼ一致する。従って、前記式 [B]の値が炉内温度の変化等より大き くなる場合、通常、急激な発熱反応が起きていることを意味する。
[0056] 本発明の製造方法としては、上述の条件を満たして 、れば特に制限はな 、が、前 記加熱工程における温度変化を調整する方法について以下に説明する。
[0057] 窒化反応によって生じる一定時間当たりの発熱量を減らすと (即ち、急激な窒化反 応の進行を抑制すると)、前記加熱工程における温度変化を上述の範囲に調整する ことができる。具体的には、下記 1)〜4)の方法が挙げられ、本発明の製造方法とし ては、下記 1)〜4)のうちのいずれか一つ以上を満たすことが好ましぐ生産性の観 点から、特に、少なくとも 1)を満たすことが好ましい。
なお、下記 1)〜4)の詳細については、後述する。
[0058] 1)前記蛍光体原料用合金の一部又は全部が、全金属元素含有率が 97重量%以 下である窒素含有合金である
2)前記蛍光体原料用合金の融点より 100°C低!、温度力 該融点より 30°C低!、温 度までの温度域における昇温速度を 9°CZ分以下とする
3)前記蛍光体原料として、前記蛍光体原料用合金と共に、前記蛍光体を構成する 金属元素を 1種又は 2種以上含有する窒化物又は酸窒化物を用いる
4)前記蛍光体原料用合金として、安息角が 45度以下である蛍光体原料用合金粉 末を用いる
[0059] 本発明の製造方法は、必要に応じて、上記 1)〜4)のうちのいずれか 2つ以上を満 たしていてもよい。これにより、一定時間当たりの発熱量をさらに減少させることができ る。上記 1)を満たす場合には、上記 1)にカ卩えて、上記 2)〜4)のうちのいずれか 1つ 以上を満たしていてもよぐ中でも、上記 1)及び上記 2)、又は、上記 1)及び上記 3) を満たすことが好ましい。あるいは、上記 2)及び上記 3)を満たすことが好ましい。蛍 光体原料用合金の組成や形状、焼成装置、焼成雰囲気、焼成温度等のその他の条 件によって、上記 1)〜4)により得られる効果の程度が異なる場合があるので、上記 1 )〜4)の選択を適宜調整することが好ま ヽ。
[0060] なお、一度に処理する蛍光体原料の量を増やし、かつ得られる蛍光体の発光特性 を向上させるためには、上記 1)〜4)を満たすことが好ましいが、下記式 [A]で表され る、蛍光体原料の焼成に用いる焼成容器の質量に対する蛍光体原料の質量の割合 を適切な値に調整することにより、上記 1)〜4)を満たさなくとも、前記加熱工程にお ける 1分間当たりの温度変化の範囲を、 50°C以内となるようにしてもよい。また、上記 1)〜4)のうちのいずれか一つを満たすことにカ卩えて下記式 [A]の値を調整すること により、前記加熱工程における 1分間当たりの温度変化を調整してもよい。
(蛍光体原料の質量) Z{ (焼成容器の質量) + (蛍光体原料の質量) } 〜[A]
[0061] 即ち、焼成容器は、蛍光体原料から発せられる熱を吸収する機能を有するため、焼 成容器の質量と、蛍光体原料の質量との合計に対する、蛍光体原料の質量の比を 小さくすると、加熱工程における急激な発熱反応の進行を抑制することができる傾向 にある。
[0062] 本発明の製造方法が、上記 1)〜4)をいずれも満たさない場合の、好ましい前記式
[A]の値としては、用いる蛍光体原料用合金の組成や形状 (特に、合金粉末の粒径 )、あるいは、窒素含有合金の全金属元素含有率や、その他の製造条件等によって も異なるが、通常、 0. 01以上、好ましくは 0. 05以上、また、通常 0. 5以下、好ましく は 0. 2以下である。
本発明の製造方法が上記 1)〜4)のうちいずれか 1つ以上を満たす場合は、上記 1 )〜4)を 、ずれも満たさな 、場合と比較して、前記式 [A]の値が大き 、場合でも高特 性の蛍光体を得ることができる。具体的な数値範囲は以下の通りである。
[0063] 本発明の製造方法が上記 1)を満たす場合は、前記式 [A]の値を、通常 0. 3以上、 中でも 0. 4以上、また、通常 0. 95以下、中でも 0. 8以下の範囲とすること力 得られ る蛍光体の特性、及び生産性の観点力 好ま 、。
また、本発明の製造方法が上記 1)及び上記 2)を満たす場合は、前記式 [A]の値 を、通常 0. 35以上、中でも 0. 45以上、また、通常 0. 95以下、中でも 0. 8以下の範 囲とすることが、得られる蛍光体の特性、及び生産性の観点力も好ましい。
また、本発明の製造方法が上記 1)及び上記 3)を満たす場合は、前記式 [A]の値 を、通常 0. 35以上、中でも 0. 45以上、また、通常 0. 6以下、中でも 0. 4以下の範 囲とすることが、得られる蛍光体の特性、及び生産性の観点力も好ましい。
また、本発明の製造方法が上記 1)及び上記 4)を満たす場合は、前記式 [A]の値 を、通常 0. 1以上、中でも 0. 2以上、また、通常 0. 8以下、中でも 0. 6以下の範囲 とすることが、得られる蛍光体の特性、及び生産性の観点力 好ましい。
[0064] 製造コストを低下させるためには、一度に処理できる蛍光体原料の量を増やすこと が好ましい。従って、本発明の製造方法を工業的に実施する場合は、前記式 [A]の 値を 0. 24以上、好ましくは 0. 4以上とした上で、高特性の蛍光体が得られるように製 造条件を調整することが好まし ヽ。
[0065] なお、前記式 [A]では、蛍光体原料と焼成容器との量比を便宜上、質量を用いて 表したが、より正確に記載すると、前記式 [A]で規定される値は、下記式 [Α']のよう に、質量と比熱の積 (即ち、熱容量)で表される。
蛍光体原料の質量 (g) X比熱 Z
{ (焼成容器の質量 (g) X比熱) + (蛍光体原料の質量 (g) X比熱)卜" [Α'] [0066] ここで、例えば、実施例 1で用いた蛍光体原料用合金 (Eu Sr Ca AlSi)の比
0.008 0.792 0.2 熱は 0. 71jZKZgであり、窒化ホウ素(焼成容器の材質)の比熱は 2. 9jZKZgで あり、モリブデンの比熱は 0. 26jZKZgであり、アルミナの比熱は 0. 6j/K/g,窒 化アルミニウムの比熱は 1. 2jZKZgである。
蛍光体原料の組成によって、さらには、蛍光体原料として後述する窒素含有合金 や、窒化物及び Z又は酸窒化物を用いることによって、蛍光体原料の比熱が異なつ てくることから、好ましい前記式 [Α']の値も変動するが、前記式 [Α']の値は、通常 0. 05以上、中でも 0. 1以上、また、通常 0. 9以下、中でも 0. 75以下とすることが好まし い。
[0067] 従って、焼成容器による吸熱量を大きくするために、焼成容器として、熱伝導度が 高いか、あるいは、比熱が大きい材質のものを用いることが好ましい。具体的には、 窒化ホウ素製、モリブデン製、アルミナ製等の焼成容器を用いることが好ましぐ中で も、窒化ホウ素製の焼成容器を用いることが特に好ましい。
[0068] なお、一度に処理する蛍光体原料の量をさらに増やしたい場合は、焼成装置内や 焼成容器内の熱の蓄積量を出来る限り減らす工夫を行うとよい。例えば、焼成容器と 焼成容器の間隔を調整して放熱性を向上させたり、焼成容器付近に冷却装置を設 けたり、表面積の広い焼成容器を用いたり、焼成炉内に入れる焼成容器の数量を調 整したりすることにより、熱の蓄積量を調整することができる。
[0069] また、本発明の製造方法を工業的に実施する場合、焼成装置の処理室容積に対 する、蛍光体原料の体積の比 (以下、「蛍光体原料の焼成容器内充填率」と称する。 )が生産性の観点から重要である。焼成装置の処理室容積に対する、蛍光体原料の 体積の比の具体的範囲としては、通常 8%以上、好ましくは 20%以上、より好ましくは 25%以上、また、通常 80%以下、好ましくは 60%以下、より好ましくは 40%以下で ある。蛍光体原料の焼成容器内充填率力 Sこの範囲より低い場合は、通常、上記 1)〜 4)の何れか 1つ以上を満たさない場合であっても、本発明に従って、蛍光体を容易 に製造することが出来るが、生産性が低い傾向にある。一方、蛍光体原料の焼成容 器内充填率がこの範囲より高いと、焼成装置の劣化が早まる可能性がある。
[0070] 以下に、本発明の製造方法の各工程について詳細に説明する。
上記 1)〜4)についても併せて詳細に説明する。
[0071] 本発明の蛍光体の製造方法では、以下の工程を経て本発明の蛍光体を製造する 即ち、まず、原料となる金属やその合金を秤量する (原料秤量工程)。そして、これ らの原料を融解させて (融解工程)合金化して蛍光体原料用合金を製造する。その 後、蛍光体原料用合金を窒素含有雰囲気下で加熱することにより窒化を行なう (加熱 工程。また、適宜、「二次窒化工程」ともいう。 ) oまた、これらの工程に加え、必要に応 じて铸造工程、粉砕工程、分級工程、一次窒化工程、冷却工程などを行なってもよ い。
なお、蛍光体原料用合金としては、目的とする組成の蛍光体が得られればよぐ 1 種又は 2種以上の蛍光体原料用合金を用いることができる。
[0072] 上記 1)を満たすためには、一次窒化工程を行なうか、二次窒化工程において後述 の窒素含有合金を加えればょ 、。
上記 2)を満たすためには、二次窒化工程における昇温速度を調整すればよ!、。 上記 3)を満たすためには、二次窒化工程にお!、て後述の酸ィ匕物又は酸窒化物を 混合すればよい。
上記 4)を満たすためには、粉砕工程にぉ 、て、後述の(a)〜(c)の工程を有する 方法 (例えば、ガスアトマイズ法)を採用することにより、安息角が 45度以下である蛍 光体原料用合金粉末を得るか、二次窒化工程にぉ ヽて安息角が 45度以下である蛍 光体原料用合金粉末を用いて行えばょ ヽ。
[0073] [I]蛍光体原料用合金の製造
{原料の秤量)
本発明の蛍光体の製造方法を用いて、例えば、後掲の一般式 [1]で表される組成 を有する蛍光体を製造する場合、下記一般式 [3]の組成となるように、原料となる金 属やその合金 (以下、単に「原料金属」と言う場合がある。)を秤量して蛍光体原料用 合金を製造することが好ま ヽ。
M1 M2 M" M4 - -- [3]
(但し、
Figure imgf000017_0001
a、 b、 c、 dはそれぞれ後掲の一般式 [1]におけると同義で ある。)
[0074] 原料としては、金属、当該金属の合金などを用いることができる。また、本発明の蛍 光体が含む元素に対応した原料は、それぞれ、 1種のみを用いてもよぐ 2種以上を 任意の組み合わせ及び比率で併用してもよい。ただし、原料の中でも、付活元素 M1 の原料として使用する Eu原料や Ce原料としては、 Eu金属や Ce金属を使用すること が好まし!/、。これは原料の入手が容易である力 である。
[0075] 合金の製造に使用される金属の純度は、高いことが好ましい。具体的には、合成さ れる蛍光体の発光特性の点から、付活元素 M1の金属原料としては不純物が 0. 1モ ル%以下、好ましくは 0. 01モル%以下まで精製された金属を使用することが好まし い。付活元素 M1以外の元素の原料としては、 2価、 3価、 4価の各種金属等を使用す る。付活元素 M1と同様の理由から、いずれも含有される不純物濃度は 0. 1モル%以 下であることが好ましぐ 0. 01モル%以下であることがより好ましい。例えば、不純物 として Fe、 Ni、及び Coからなる群力も選ばれる少なくとも一種を含有する場合、各々 の元素の含有量は、通常 500ppm以下、好ましくは lOOppm以下である。
[0076] 原料金属の形状に制限は無いが、通常、直径数 mm力 数十 mmの粒状又は塊状 のものが用いられる。なお、ここでは直径 10mm以上のものを塊状、それ未満のもの を粒状と呼んでいる。
[0077] 2価の金属元素 M2としてアルカリ土類金属元素を用いる場合、その原料としては、 粒状、塊状など形状は問わないが、原料の化学的性質に応じて適切な形状を選択 することが好ましい。例えば、 Caは粒状、塊状のいずれでも大気中で安定であり、使 用可能であるが、 Srは化学的により活性であるため、塊状の原料を用いることが好ま しい。
[0078] なお、融解時に揮発やルツボ材質との反応等により損失する金属元素については 、必要に応じて、予め過剰に秤量し添加してもよい。
[0079] {原料の融解)
原料の秤量後、当該原料を融解させて合金化して蛍光体原料用合金を製造する( 融解工程)。得られる蛍光体原料用合金は、本発明で製造される蛍光体 (以下「本発 明の蛍光体」と称する場合がある。 )を構成する金属元素を 2種以上含有するもので ある。なお、本発明の蛍光体を構成する金属元素を 1つの蛍光体原料用合金が全て 含有していなくても、後述の一次窒化工程又は二次窒化工程において、 2種以上の 合金及び Z又は金属を併用することにより、本発明の蛍光体を製造することができる
[0080] 原料金属を融解する方法に特に制限はなぐ任意の方法を採用することができる。
例えば、抵抗加熱法、電子ビーム法、アーク融解法、高周波誘導加熱法 (以下、「高 周波融解法」と称する場合がある。)等を用いることができる。また、これらの方法を 2 種以上任意に組み合わせて融解することも可能である。 [0081] また、融解時に用いることのできるルツボの材質としては、アルミナ、力ルシア、黒鉛
、モリブデン等が挙げられる。
[0082] ただし、特に、 Siと 2価の金属元素 M2としてアルカリ土類金属元素を含む蛍光体原 料用合金を製造する場合、次の点に留意することが好ましい。
[0083] 即ち、 Siの融点は 1410°Cであり、アルカリ土類金属の沸点と同程度である(例え ば、 Caの沸点は 1494°C、 Srの沸点は 1350°C、 Baの沸点は 1537°Cである)。特に
、 Srの沸点が Siの融点より低いため、 Srと Siを同時に融解させることは極めて困難で ある。
そこで、本発明では、 siの原料 (即ち、 si及び Z又は siを含む合金)を先に融解さ せて、その後、アルカリ土類金属原料 (即ち、アルカリ土類金属及び Z又はアルカリ 土類金属を含む合金)を融解することが好ましい。これにより、アルカリ土類金属の原 料と Siの原料とをともに融解させることが可能である。さらに、このように Siの原料を融 解した後でアルカリ土類金属の原料を融解することにより、得られる蛍光体原料用合 金の純度が向上し、それを原料とする蛍光体の特性が著しく向上するという効果も奏 される。
[0084] 以下、このように Siとアルカリ土類金属元素とを含む蛍光体原料用合金を製造する 場合について詳しく説明する。
[0085] Siとアルカリ土類金属元素とを含む蛍光体原料用合金を製造する場合、融解法に 制限は無ぐ前記の融解法を任意に採用できるが、中でも、アーク融解法、高周波融 解法が好ましぐ高周波融解法が特に好ましい。以下、(1)アーク融解'電子ビーム 融解の場合、(2)高周波融解の場合を例に更に詳しく説明する。
[0086] (1)アーク融解法'電子ビーム融解法の場合
アーク融解'電子ビーム融解の場合は、以下の手順で融解を行う。
i) Si金属又は Siを含む合金を電子ビームあるいはアーク放電により融解する。 ii)次いで間接加熱によりアルカリ土類金属を融解し、 Siとアルカリ土類金属とを含 む合金を得る。
ここで、 Siを含む溶湯にアルカリ土類金属が溶け込んだ後、電子ビームあるいはァ ーク放電により加熱及び Z又は攪拌して混合を促進しても良い。 [0087] (2)高周波融解法の場合
アルカリ土類金属元素を含む合金は酸素との反応性が高いため、大気中ではなく 真空あるいは不活性ガス中で融解する必要がある。このような条件では通常、高周波 融解法が好ましい。し力しながら、 Siは半導体であり、高周波を用いた誘導加熱によ る融解が困難である。例えば、アルミニウムの 20°Cにおける比抵抗率は 2. 8 X 1CT8 Ω -mであるのに対し、半導体用多結晶 Siの比抵抗率は 105 Ω 'm以上である。この ように比抵抗率が大きいものを直接高周波融解することは困難であるため、一般に導 電性のサセプタを用い、熱伝導や放射により Siに熱移動を行って融解する。
[0088] サセプタの形状に制限はなぐディスク状、管状なども可能であるが坩堝を用いるこ とが好ましい。
[0089] また、サセプタの材質は、原料の融解が可能であれば制限はなぐ黒鉛、モリブデ ン、炭化珪素などが一般に用いられる。しかし、これらは、非常に高価であり、また、 アルカリ土類金属と反応しやすいという問題点がある。一方、アルカリ土類金属を融 解可能な坩堝 (アルミナ、力ルシアなど)は絶縁体であり、サセプタとして使用すること が難しい。従って、アルカリ土類金属と Si金属とを坩堝に仕込んで高周波融解するに あたり、公知の導電性の坩堝 (黒鉛など)をサセプタとして使用して、間接的な加熱に より Si金属とアルカリ土類金属とを同時に融解することは困難である。そこで、次のよ うな順序で融解することで、この問題点を解決する。
i) Si金属を導電性の坩堝を使用して間接加熱により融解する。
ii)次に、絶縁性の坩堝を使用して、アルカリ土類金属を融解することにより、 Siとァ ルカリ土類金属元素とを含む合金を得る。
[0090] 上記 i)、 ii)の工程の間で Si金属を冷却しても良 、し、冷却せず連続してアルカリ土 類金属を融解しても良い。連続して行う場合には導電性の容器にアルカリ土類金属 の融解に適した力ルシア、アルミナなどで被覆した坩堝を使用することもできる。
[0091] 更に具体的な工程を記述すると、以下の通りである。
i) Si金属と金属 M (例えば Al、 Ga)を導電性の坩堝を使用して間接加熱により融解 し、導電性の合金 (母合金)を得る。
ii)次いで、アルカリ土類金属耐性坩堝を使用して、 i)の母合金を融解させた後、ァ ルカリ土類金属を高周波により融解させることにより、 Siとアルカリ土類金属元素とを 含む合金を得る。
[0092] Si金属あるいは Siを含む母合金を先に融解させ、次 ヽでアルカリ土類金属を融解 させる具体的方法としては、例えば、 Si金属あるいは Siを含む母合金を先に融解さ せ、そこにアルカリ土類金属を添加する方法等が挙げられる。
[0093] また、 Siを 2価の金属元素 M2以外の金属 Mと合金化して導電性を付与することもで きる。この場合、得られる合金の融点が SUり低いことが好ましい。 Siと A1の合金は、 融点が 1010°C付近と、アルカリ土類金属元素の沸点より融点が低くなるので特に好 ましい。
[0094] Siと 2価の金属元素 M2以外の金属 Mとの母合金を用いる場合、その糸且成には特に 制限はないが、母合金が導電性を有していることが好ましい。この場合、 Siと金属 M との混合割合 (モル比)は、 Siのモル数を 1とした場合に、金属 Mが、通常 0. 01以上 、 5以下の範囲となるようにして、アルカリ土類金属元素の沸点よりも融点の低い母合 金を製造することが好まし 、。
なお、 Siを含む母合金に、さらに Si金属をカ卩えることもできる。
[0095] 本発明において、 Si金属を融解させた後にアルカリ土類金属を融解させること以外 に、他の原料金属の融解時期には特に制限はないが、通常、量が多いもの、もしくは 、融点が高いものを先に融解させる。
付活元素 M1を均一に分散させるため、また、付活元素 M1の添加量は少量である ため、 Si金属を融解させた後に付活元素 M1の原料金属を融解させることが好ましい
[0096] 前述の一般式 [3]で表され、 4価の金属元素 M4が Siであり、 2価の金属元素 M2と して少なくとも Srを含む蛍光体原料用合金を製造する場合、次のような手順で融解さ せることが好ましい。
(1) Siと 3価の金属元素 M3との母合金を製造する。この際、好ましくは Siと 3価の金 属元素 M3とは、一般式 [3]における Si: M3比で合金化する。
(2) (1)の母合金を融解させた後、 Srを融解させる。
(3) その後、 Sr以外の 2価の金属元素、付活元素 M1を融解させる。 [0097] ところで、 、ずれの原料を融解する場合でも、原料の融解時の具体的な温度条件 及び融解させる時間は、用いる原料に応じて適切な温度及び時間を設定すればよ い。
また、原料の融解時の雰囲気は蛍光体原料用合金が得られる限り任意であるが、 不活性ガス雰囲気が好ましぐ中でもアルゴン雰囲気が好ましい。なお、不活性ガス は 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもょ ヽ さらに、原料の融解時の圧力は蛍光体原料用合金が得られる限り任意であるが、 1 X 103Pa以上が好ましぐ 1 X 105Pa以下が好ましい。更に、安全性の面から、大気 圧以下で行なうことが望まし 、。
[0098] {溶湯の铸造 }
原料の融解により蛍光体原料用合金が得られる。この蛍光体原料用合金は通常は 合金溶湯として得られるが、この合金溶湯カゝら直接蛍光体を製造するには技術的課 題が多く存在する。そのため、この合金溶湯を金型に注入して成型する铸造工程を 経て、凝固体 (以下適宜、「合金塊」という)を得ることが好ましい。
[0099] ただし、この铸造工程において溶融金属の冷却速度によって偏祈が生じ、溶融状 態で均一組成であったものが組成分布に偏りが生じることもある。従って、冷却速度 はできるだけ速いことが望ましい。また、金型は銅などの熱伝導性のよい材料を使用 することが好ましぐ熱が放散しやすい形状であることが好ましい。また、必要に応じ て水冷などの手段により金型を冷却する工夫をすることも好ましい。
[0100] このような工夫により、例えば厚さに対して底面積の大きい金型を用い、溶湯を金 型へ注湯後、できるだけ早く凝固させることが好ましい。
[0101] また、合金の組成によって偏祈の程度は異なるので必要な分析手段、例えば ICP 発光分光分析法などによって、得られた凝固体の数箇所より試料を採取して組成分 析を行い、偏祈の防止に必要な冷却速度を定めることが好ましい。
[0102] なお、铸造時の雰囲気は、不活性ガス雰囲気が好ましぐ中でもアルゴン雰囲気が 好ましい。この際、不活性ガスは 1種のみを用いてもよぐ 2種以上を任意の組み合わ せ及び比率で併用してもょ 、。 [0103] {合金塊の粉砕 }
加熱工程に先立ち、蛍光体原料用合金は、所望の粒径の粉末状にすることが好ま しい。そこで、铸造工程で得られた合金塊は、次いで粉砕することにより(粉砕工程)
、所望の粒径、粒度分布を有する蛍光体原料用合金粉末 (以下、単に「合金粉末」と 称する場合がある。)とすることが好ましい。
[0104] 粉砕方法に特に制限はな!/、が、例えば、乾式法や、エチレングリコール、へキサン
、アセトン等の有機溶媒を用いる湿式法で行うことが可能である。
[0105] 以下、乾式法を例に詳しく説明する。
この粉砕工程は、必要に応じて、粗粉砕工程、中粉砕工程、微粉砕工程等の複数 の工程に分けてもよい。この場合、全粉砕工程を同じ装置を用いて粉砕することもで きるが、工程によって使用する装置を変えてもよい。
[0106] ここで、粗粉砕工程とは、合金粉末のおおよそ 90重量%が粒径 lcm以下になるよ うに粉碎する工程であり、ジョークラッシャー、ジャィレトリークラッシャー、クラッシング ロール、インパクトクラッシャーなどの粉砕装置を使用することができる。中粉砕工程と は、合金粉末のおおよそ 90重量%が粒径 lmm以下になるように粉砕する工程であ り、コーンクラッシャー、クラッシングロール、ハンマーミル、ディスクミルなどの粉砕装 置を使用することができる。微粉砕工程とは、合金粉末が後述する重量メジアン径に なるように粉砕する工程であり、ボールミル、チューブミル、ロッドミル、ローラーミル、 スタンプミル、エッジランナー、振動ミル、ジェットミルなどの粉砕装置を使用すること ができる。
[0107] 中でも、不純物の混入を防止する観点から、最終の粉砕工程においては、ジェット ミルを使用することが好ましい。ジェットミルを用いるためには、粒径 2mm以下程度に なるまで予め合金塊を粉砕しておくことが好ましい。ジェットミルでは、主に、ノズル元 圧から大気圧に噴射される流体の膨張エネルギーを利用して粒子の粉砕を行うため 、粉砕圧力により粒径を制御すること、不純物の混入を防止することが可能である。 粉砕圧力は、装置によっても異なる力 通常、ゲージ圧で 0. OlMPa以上、 2MPa以 下の範囲であり、中でも、 0. 05MPa以上、 0. 4MPa未満が好ましぐ 0. IMPa以上 、 0. 3MPa以下がさらに好ましい。ゲージ圧が低すぎると得られる粒子の粒径が大き すぎる可能性があり、高すぎると得られる粒子の粒径が小さすぎる可能性がある。
[0108] さらに、いずれの場合も粉砕工程中に鉄等の不純物の混入が起こらないよう、粉砕 機の材質と被粉砕物の関係を適切に選択する必要がある。例えば、接粉部は、セラ ミックライニングが施されていることが好ましぐセラミックの中でも、アルミナ、窒化ケィ 素、タングステンカーバイド、ジルコユア等が好ましい。
[0109] また、合金粉末の酸ィ匕を防ぐため、粉砕工程は不活性ガス雰囲気下で行うことが好 ましい。不活性ガスの種類に特に制限はないが、通常、窒素、アルゴン、ヘリウムなど の気体のうち 1種単独雰囲気又は 2種以上の混合雰囲気を用いることができる。中で も、経済性の観点から窒素が特に好ましい。
[0110] さらに、雰囲気中の酸素濃度は合金粉末の酸ィ匕が防止できる限り制限はないが、 通常 10体積%以下、特に 5体積%以下が好ましい。また、酸素濃度の下限としては 、通常、 lOppm程度である。特定の範囲の酸素濃度とすることによって、粉砕中に合 金の表面に酸化被膜が形成され、安定化すると考えられる。酸素濃度が 5体積%より 高い雰囲気中で粉砕工程を行う場合、粉砕中に粉塵が爆発する可能性があるため、 粉塵を生じさせな!/ヽような設備を設けることが好ま ヽ。
[0111] なお、粉砕工程中に合金粉末の温度が上がらないように必要に応じて冷却してもよ い。
[0112] {合金粉末の分級 }
上述したようにして得られた合金粉末は、例えば、バイブレーティングスクリーン、シ フタ一などの網目を使用した篩い分け装置;エアセパレータ等の慣性分級装置;サイ クロン等の遠心分離機などを使用して、前述の所望の重量メジアン径 D 及び粒度
50 分布に調整 (分級工程)してから、これ以降の工程に供することが好ましい。
[0113] なお、粒度分布の調整においては、粗粒子を分級し、粉砕機にリサイクルすること が好ましぐ分級及び Z又はリサイクルが連続的であることがさらに好ましい。
[0114] この分級工程についても、不活性ガス雰囲気下で行うことが好ましい。不活性ガス の種類に特に制限はないが、通常、窒素、アルゴン、ヘリウムなどの 1種単独雰囲気 又は 2種以上の混合雰囲気が用いられ、経済性の観点力 窒素が特に好ましい。ま た、不活性ガス雰囲気中の酸素濃度は 10体積%以下、特に 5体積%以下が好まし い。
[0115] 後述の一次窒化工程や二次窒化工程で用いる合金粉末は、当該合金粉末を構成 する金属元素の活性度により粒径を調整する必要があり、その重量メジアン径 D は
50
、通常の場合、 100 μ m以下、好ましくは 80 μ m以下、特に好ましくは 60 μ m以下、 また、 0. 1 m以上、好ましくは 0. 5 μ m以上、特に好ましくは 1 μ m以上である。ま た、合金が Srを含有する場合は、雰囲気ガスとの反応性が高いため、合金粉末の重 量メジアン径 D は、通常 5 μ m以上、好ましくは 8 μ m以上、より好ましくは 10 μ m以
50
上、特に好ましくは 13 m以上とすることが望ましい。合金粉末の粒径が前述の重量 メジアン径 D の範囲よりも小さいと、窒化等の反応時の発熱速度が上昇する傾向に
50
あるので、反応の制御が困難となる場合や、また、合金粉末が大気中で酸化されや すくなるので、得られる蛍光体に酸素が取り込まれやすくなる等、取り扱いが難しくな る場合がある。一方で、合金粉末の粒径が前述の重量メジアン径 D の範囲よりも大
50
きいと、合金粒子内部での窒化等の反応が不十分となる場合がある。
[0116] また、合金粉末中に含まれる、粒径 10 m以下の合金粒子の割合は 80重量%以 下であることが好ましぐ粒径 45 μ m以上の合金粒子の割合は 40重量%以下である ことが好ましい。
また、 QDの値は、特に制限はないが、通常 0. 59以下である。ここで、 QDとは、積 算値が 25%及び 75%の時の粒径値をそれぞれ D 、D と表記し、 QD= (D — D
25 75 75 2
) / (D +D )と定義する。 QDの値が小さいことは粒度分布が狭いことを意味する
5 75 25
[0117] [II]加熱工程
本発明においては、上述のようにして得られた蛍光体原料用合金 (ここで、蛍光体 原料用合金は、粉末状であっても塊状であってもよいが、前述の蛍光体原料用合金 粉末であることが好ましい。)、及び Z又は後述する窒素含有合金を窒素含有雰囲 気中で加熱することにより窒化する。加熱工程では、後述の二次窒化工程を必須とし 、必要に応じて下記の一次窒化工程を行う。
[0118] {ー次窒化工程 }
本発明の蛍光体を工業的に効率よく製造する観点から、上記 1)を満たす製造方法 としたい場合には、必要に応じて、二次窒化工程の前に一次窒化工程を行なう。この 一次窒化工程は、合金粉末 (但し、粒状、塊状の合金であってもよい。)を窒化するこ とで、後述する窒素含有合金を製造する工程である。具体的には、窒素含有雰囲気 下、所定の温度域で所定の時間、合金粉末を加熱することにより、予備的に窒化を 行なう工程である。このような一次窒化工程の導入により、後述する二次窒化工程に おける合金と窒素との反応性を制御することができ、合金力も蛍光体を工業的に生 産することが可能となる。
[0119] 合金粉末は、本工程において窒化されることにより、その材質が蛍光体原料用合金 から窒素含有合金に変換され、その重量が増加する。本明細書において、この際の 合金粉末の重量増加は、下記式 [4]で表される重量増加率で表すものとする。
(一次窒化工程後の窒素含有合金の重量一一次窒化工程前の合金粉末の重量)
Z—次窒化工程前の合金粉末の重量 X 100 —[4]
[0120] 本工程では、窒素分圧、温度、加熱時間等の反応条件により窒化の程度を制御す ることがでさる。
後述する二次窒化工程の反応条件、合金粉末の組成等によっても異なるが、上記 式 [4]で求められる合金粉末の重量増加率力 通常 0. 5重量%以上、中でも 1重量 %以上、特に 5重量%以上となるように反応条件を調整することが好ましい。また、重 量増加率の上限に特に制限はないが、理論上、通常 40重量%以下、好ましくは 31 重量%以下となる。合金粉末の重量増加率を上記の範囲内となるように調整するた めに、一次窒化工程を 2回以上繰り返し行なうこともできる。一次窒化工程を繰り返し て行なう場合、その回数に特に制限はないが、製造コストを考えると、通常 3回以下、 中でも 2回以下が好ましい。
[0121] また、一次窒化工程は、連続方式でも回分方式でも行なうことができる。連続方式 の場合と回分方式の場合とで好ましい反応条件が異なるため、以下、一次窒化工程 の反応条件にっ ヽて、連続方式で行なう場合と回分方式で行なう場合に分けて説明 する。
なお、生産性の観点から回分方式よりも連続方式で行なうことが好ましい。即ち、一 次窒化工程を連続方式で行なう場合、回分方式と比較してより高濃度の窒素を流通 させ、より高温、より短時間で加熱することが好ましい。
[0122] <連続方式の場合 >
装置の形式
一次窒化工程を連続方式で行なう場合、例えば、ロータリーキルン、トンネル炉、ベ ルト炉、流動焼成炉等の装置を用いることが可能であり、中でも、ロータリーキルンを 用いることが好ましい。
ロータリーキルン方式を用いる場合、窒素含有ガスを流通させた耐火性の円筒形 炉心管を回転させながら合金粉末を加熱する。炉心管を傾斜させ、合金粉末を連続 供給することにより、連続処理が可能となる。ロータリーキルンを用いると、加熱中に 合金粉末を攪拌することができることから、合金粉末同士の融着を抑制し、気固の接 触効率を向上させることが可能である。その結果、加熱時間の短縮、かつ、均一な窒 化処理を実現することができる。ロータリーキルンとしては、雰囲気ガスが流通可能な 構造であるものが好ましぐさらには、合金粉末の滞留時間及び投入速度が制御でき るものが好ましい。
なお、縦型炉を用いて、合金粉末を窒素雰囲気中で落下させながら、窒化させても 良い。
[0123] 炉心管の回転速度は窒素含有合金が得られる限り任意であるが、通常 lrpm以上 、好ましくは 2rpm以上、特に好ましくは 3rpm以上、また、通常 lOOrpm以下、好まし くは 20rpm以下、特に好ましくは 8rpm以下である。この範囲を外れると、炉心管内で の合金粉末の動態を制御することが困難となることがある。すなわち、回転速度が遅 すぎると、合金粉末が炉心管の内壁に付着し、滞留する傾向がある。一方、回転速 度が速すぎると、遠心力により合金粉末が炉心管の内壁に押し付けられたまま落下 せず、攪拌効率が低下する傾向にある。
[0124] 炉心管の水平に対する傾斜角は窒素含有合金が得られる限り任意であるが、通常 0. 6° 以上、好ましくは 1° 以上、特に好ましくは 1. 7° 以上、また、通常 6° 以下、 好ましくは 5° 以下、特に好ましくは 3. 4° 以下である。この範囲を外れると、合金粉 末の供給速度が制御しにくくなる傾向にある。
[0125] ロータリーキルンを用いて一次窒化工程を行なう場合は、合金粉末の炉心管への 付着を防止することが好ましい。即ち、合金粉末が炉心管へ付着すると、被処理物の 排出を妨げ、安定した処理が困難となる可能性がある。また、炉心管をヒーター等で 外部から加熱する場合、合金粉末が炉心管へ付着していると、付着物が断熱材とし て作用し、加熱温度が実質的に低下する場合がある。付着物は、一次窒化工程終了 後、炉心管を冷却する際に、炉心管と合金粉末との熱膨張率の違いなどにより剥離 して除去される場合もあるが、窒素含有合金の排出速度を一定とし、かつ、一次窒化 工程における窒化の程度を一定に保っためには、炉心管に振動等を加えて付着物 を剥離させたり、物理的に付着物を搔き落としたりする等、常に付着物を除去し続け ることがより好まし!/、。
[0126] 装置の材質
連続方式で用いる装置において、焼成容器、炉心管等の合金粉末と接触する部品 の材質は窒素含有合金が得られる限り任意であるが、例えば、酸ィ匕アルミニウム、窒 化ホウ素、黒鉛、酸ィ匕カルシウム、酸化マグネシウム、モリブデン、タングステン等を 用いることができる。使用時の温度がおおよそ 1100°C以下の場合は、石英も用いる ことができる。これらの中でも、炉心管の材質としては、酸ィ匕アルミニウム、窒化ホウ素 が特に好ましい。なお、前記材質は、 1種のみを用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用してもょ 、。
[0127] 加熱時の雰囲気
加熱時の雰囲気は、窒素元素を含有することを必須とし、窒素ガスと窒素以外の不 活性ガスとを混合したガスを流通させることが好ましぐ中でも、窒素と、アルゴン等の 希ガス類元素とを混合したガスを流通させることが好ましい。これは、窒素ガスに不活 性ガスを混合することで反応速度を制御することができる力 である。なお、前記の不 活性ガスは、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用 してちよい。
[0128] 雰囲気中の窒素濃度は窒素含有合金が得られる限り任意であるが、通常 0. 1体積 %以上、好ましくは 1体積%以上、さらに好ましくは 3体積%以上、また、上限に特に 制限はないが、好ましくは 80体積%以下である。雰囲気中の窒素濃度が低すぎると 、窒化の進行が不十分となる場合があり、一方、窒素濃度が高すぎると、加熱温度の 制御が難しくなる場合や、炉心管等への合金の付着が多くなる場合がある。
[0129] また、雰囲気中の酸素濃度は窒素含有合金が得られる限り任意であるが、通常 30 Oppm以下、好ましくは lOOppm以下、また、 0に近いことが好ましいが、通常 0. lpp m以上、好ましくは lppm以上である。雰囲気中の酸素濃度が高すぎると、窒素含有 合金、更には最終的に得られる蛍光体中に酸素が混入し、発光ピーク波長が短波長 化したり輝度が低下したりすることがある。
[0130] また、酸素の混入を避ける目的で、爆発限界に達しな!/ヽ量の還元性ガス (例えば、 水素、一酸化炭素、炭化水素、アンモニア等)を雰囲気中に混合することが好ましい 。なお、還元性ガスは、 1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及 び比率で併用してもよい。
[0131] 加熱時の圧力は窒素含有合金が得られる限り任意であるが、大気中の酸素の混入 を防ぐために大気圧以上の圧力とすることが好ましい。圧力が低すぎると、加熱炉の 密閉性が悪 、場合には多量の酸素が混入して特性の高 、蛍光体を得ることができ ない場合がある。
[0132] 加熱時の雰囲気中における窒素分圧は窒素含有合金が得られる限り任意であるが 、通常大気圧以下、好ましくは 0. 09MPa以下、さらに好ましくは 0. 08MPa以下で あり、また、通常 0. 0005MPa以上、好ましくは 0. OOlMPa以上である。窒素分圧 が高いほど窒化速度は大きくなるが、窒素分圧があまりにも高すぎると、発熱速度が 大きすぎて合金粉末の温度が当該合金粉末を形成する合金の融点を超え、合金粒 子が融着する可能性があり、窒化が均一に進行しないことがある。一方、窒素分圧が 低すぎると、一次窒化工程に要する時間が長くなる、消費される雰囲気ガス (例えば 、アルゴンガス等が挙げられる。)の量が多くなる等、工業的に課題が生じることがあり 、また、合金から Sr等が揮発して組成がずれる場合もある。
[0133] 窒素供給量,速度
連続方式の場合、単位時間あたり所定量の合金粉末が装置内に供給されるように することが好ましい。また、供給された合金粉末を所望の程度まで窒化するためには 、少なくとも、単位時間あたり理論上必要な量の窒素を装置内に供給する。具体的に は、単位時間あたり供給される合金粉末の重量に対し、通常 5重量%以上、好ましく は 10重量%以上、また、上限には特に制限はないが、通常 200重量%以下の窒素 を含有する窒素含有雰囲気ガスが装置内に供給されることが好ましい。
なお、上記の窒素含有の雰囲気ガスの流通方向は合金粉末の供給方向に対し、 向流であっても併流であっても構わないが、通常、向流とする。
[0134] 加熱条件
加熱温度は窒素含有合金が得られる限り任意であるが、通常は蛍光体原料用合金 の融点より 150°C低 、温度以上、好ましくは蛍光体原料用合金の融点より 100°C低 い温度以上、また、通常は蛍光体原料用合金の融点より 10°C低い温度以下の温度 範囲で加熱するとよい。より具体的な加熱温度としては、合金の組成によっても異な る力 例えば、通常 800°C以上、好ましくは 900°C以上、また通常 2500°C以下、好ま しくは 1500°C以下である。加熱温度が低すぎると窒化反応の進行が不十分となる傾 向にあり、一方、温度が高すぎると炉心管への合金粉末の付着が多くなる傾向がある 。なお、ここで加熱温度は、加熱時の炉心管温度を指している。
[0135] また、蛍光体原料用合金の融点より 100°C低!、温度とは、おおよそ、蛍光体原料用 合金の窒化が開始される温度を意味している。
[0136] なお、本明細書において、蛍光体原料用合金、窒素含有合金等の合金の融点は、 後述の実施例の項に記載されるように、熱重量 ·示差熱((thermogravimetry— dif ferential thermal analysis :以下適宜「TG— DTA」と略す。)測定による吸熱ピ ークから求めることができるものであり、合金の組成によって異なる力 おおよそ 900 °C以上 1300°C以下である。ただし、明確な融点を示さない合金の場合は、分解開 始温度を合金の融点とみなす。また、複数種の合金を用いる場合は、当該合金の中 でも最も融点の低 、合金の融点を、合金の融点とする。
[0137] 前記の温度範囲で加熱する時間(最高温度での保持時間)は窒素含有合金が得ら れる限り任意である力 通常 0. 1分以上、好ましくは 1分以上、また、通常 1時間以下 、好ましくは 30分以下、さらに好ましくは 8分以下である。加熱時間が長すぎると、ァ ルカリ土類金属の揮発により組成がずれる場合があり、加熱する時間が短すぎると、 窒化の進行が不十分となる場合がある。
[0138] <回分方式の場合 > 装置の形式
一次窒化工程を回分方式で行なう場合、例えば、管状炉、一般的な雰囲気加熱炉 、ロータリーキルン等を用いることができる。具体的操作としては、通常、合金粉末を 耐火性の焼成容器(トレイやルツボ等)に充填してカゝら装置内にて加熱を行なう。
[0139] 焼成容器
合金粉末を充填する焼成容器の形状は窒素含有合金が得られる限り任意であるが 、焼成雰囲気と合金粉末との接触効率が高くなるように、密閉構造でなぐかつ、充 填層高が高すぎないものが好ましい。充填層高は、通常 30mm以下、好ましくは 20 mm以下、さらに好ましくは 15mm以下、また、通常 3mm以上、好ましくは 5mm以上 である。充填層高が高すぎると窒化反応が均一に進行しないことがあり、一方、充填 層高が低すぎると生産性が低下することがあるからである。
[0140] 焼成容器等の合金粉末と接触する部分の材質は窒素含有合金が得られる限り任 意である力 例えば、酸ィ匕アルミニウム、窒化ホウ素、黒鉛、酸ィ匕カルシウム、酸ィ匕マ グネシゥム、モリブデン、タングステン等を用いることができる。使用時の温度がおお よそ 1100°C以下の場合は、石英も使用することができる。これらの中でも、黒鉛、酸 化アルミニウム、窒化ホウ素、石英を用いることが好ましぐ窒化ホウ素を用いることが さらに好ましい。なお、前記材質は、 1種のみを用いてもよぐ 2種以上を任意の組み 合わせ及び比率で併用してもょ 、。
[0141] 加熱時の雰囲気
加熱時の雰囲気は、窒素雰囲気と不活性ガス雰囲気とを混合した雰囲気であるこ と力 子ましく、中でも、窒素と、アルゴン等の希ガス類元素とを混合した雰囲気である ことが好ましい。これは、窒素雰囲気に不活性ガス雰囲気を混合することで反応速度 を制御することができるからである。なお、前記の不活性ガスは、 1種のみを用いても よぐ 2種以上を任意の組み合わせ及び比率で併用してもょ 、。
[0142] 雰囲気中の窒素濃度は窒素含有合金が得られる限り任意であるが、通常 0. 1体積 %以上、好ましくは 1体積%以上、さらに好ましくは 3体積%以上、また、通常 99体積 %以下、好ましくは 20体積%以下、さらに好ましくは 10体積%以下である。雰囲気 中の窒素濃度が低すぎると、アルカリ土類金属等が揮発する場合があり、一方、窒素 濃度が高すぎると、窒化の進行が不均一となることがある。
[0143] 雰囲気中の酸素濃度は窒素含有合金が得られる限り任意であるが、通常は、連続 方式の場合と同様である。
[0144] また、連続方式の場合と同様に、爆発限界に達しない量の還元性ガス (水素、一酸 化炭素、炭化水素、アンモニア等)を混合することが好ましい。
[0145] 加熱時の圧力は窒素含有合金が得られる限り任意であるが、連続方式の場合と同 様、大気中の酸素の混入を防ぐために大気圧以上の圧力とすることが好ましい。
[0146] 加熱時の雰囲気中における窒素分圧は窒素含有合金が得られる限り任意であるが
、通常は、連続方式の場合と同様である。
[0147] 加熱条件
加熱温度は窒素含有合金が得られる限り任意であるが、通常は蛍光体原料用合金 の融点より 150°C低 、温度以上、好ましくは蛍光体原料用合金の融点より 100°C低 い温度以上、また、通常は蛍光体原料用合金の融点以下、好ましくは蛍光体原料用 合金の融点より 10°C低い温度以下、より好ましくは蛍光体原料用合金の融点より 50 °C低い温度以下で加熱するとよい。より具体的な加熱温度としては、合金組成によつ ても異なるが、例えば、通常 800°C以上、好ましくは 900°C以上、また、通常 2500°C 以下、好ましくは 1500°C以下である。加熱温度が低すぎると、一次窒化工程が完了 するまでに長時間を要する傾向にあり、場合によっては窒化の進行が不完全となるこ と力 Sある。一方、加熱温度が高すぎると、一次窒化工程において窒化反応の制御が 困難となり、窒化の進行が不均一となることがある。また、蛍光体原料用合金の融点 付近の温度で加熱を行なうと、合金粉末が容器に付着したり、合金粒子が融着したり して窒素との接触効率が低下する傾向にある。なお、ここで加熱温度とは、加熱時の 炉内温度を指している。
[0148] また、前記の合金の融点については、連続方式の場合の項で説明したとおりである
[0149] 加熱時間は、装置の形式や加熱温度等の他の条件によって異なるが、連続方式で 行なう場合よりも長時間の加熱を要する傾向にあり、通常 10分以上、好ましくは 20分 以上、また、通常 48時間以下である。加熱時間が長すぎると、アルカリ土類金属の揮 発により組成がずれる場合があり、加熱時間が短すぎると、窒化の進行が不十分とな る場合〖こある。ここで加熱時間とは、最高温度での保持時間をさす。
[0150] また、蛍光体原料用合金の融点より 150°C低!ヽ温度から蛍光体原料用合金の融点 より 10°C低い温度までの温度範囲においては、ゆっくりと昇温することが好ましい。こ の温度範囲における昇温速度は、通常 9°CZ分以下、中でも 7°CZ分以下とすること が好ましぐまた、昇温速度の下限には特に制限はないが、生産性の観点から、通常 0. 1°CZ分以上、中でも 0. 5°CZ分以上とすることが好ましい。
[0151] なお、加熱開始時力も蛍光体原料用合金の融点より 150°C低 、温度までの昇温条 件については特に制限はなぐ急速に昇温してもゆっくり昇温してもよいが、場合によ つては、焼成装置の温度制御に対する応答性などを勘案して、蛍光体原料用合金 の融点より 150°C低 、温度より更に低 、温度から、昇温速度を 9°CZ分以下に減速 してちよい。
[0152] 窒素含有合金
本明細書において、窒素含有合金とは、上述の一次窒化工程終了後の合金のこと を指す。
窒素含有合金は本発明の蛍光体を構成する金属元素を 2種以上含有するもので ある。また、窒素含有合金は、金属元素以外の成分として主として窒素を含有する。 窒化の程度を表す指標の一つとして、下記式 [5]で求められる全金属元素含有率( 重量%)を用いることができる。この全金属元素含有率が小さいほど、窒化が進んで いることを示す。
全金属元素含有率 (重量%)
= 100— { (一次窒化工程後の窒素含有合金の重量一一次窒化工程前の合金の 重量) Z—次窒化工程後の窒素含有合金の重量 } X 100 · · · [5]
[0153] 窒素含有合金の全金属元素含有率 (重量%)とは、窒素含有合金中に含まれる全 ての金属元素の含有率である。その具体的範囲は本発明の蛍光体が得られる限り 任意である力 通常 60重量%以上、好ましくは 70重量%以上、より好ましくは 76重 量%以上、また、通常 97重量%以下、好ましくは 95重量%以下、より好ましくは 93 重量%以下である。全金属元素含有率が上記範囲よりも大きくなると、一次窒化工程 による効果が得られない場合がある。また、全金属元素含有率が上記範囲よりも小さ くなることは理論的に考えられにくい。
[0154] また、窒素含有合金の窒化の程度は、窒素含有率 (重量%)を用いて規定すること もできる。窒素含有率は、例えば、酸素窒素同時分析装置 (Leco社製)により窒素含 有量を測定し、下記式 [6]により求めることができる。
窒素含有合金の窒素含有率 (重量%)
= (窒素含有量 Z窒素含有合金の重量) X 100 - [6]
[0155] 上記式 [6]で求められる窒素含有率の具体的範囲は、本発明の蛍光体が得られる 限り任意であるが、通常 1重量%以上、好ましくは 2重量%以上、更に好ましくは 5重 量%以上であり、また、通常 31重量%以下、好ましくは 25重量%以下である。窒素 含有率が小さすぎると後述の二次窒化工程における発熱の抑制が不十分となる可 能性があり、大きすぎると時間、エネルギーの点で不経済となる可能性がある。 尚、上記式 [6]で求められる窒素含有率が 10重量%以上、好ましくは 12重量%以 上である窒素含有合金を蛍光体原料として用いると、後述の二次窒化工程において 発熱を抑制する効果が大きぐ上記式 [A]の値に関わらず、高特性の蛍光体を製造 できる傾向にあり、特に好ましい。
[0156] また、窒素含有合金は、さらに下記式 [7]を満たすことが好ましい。
0. 03≤NI/NP≤0. 9 - -- [7]
式 [7]において、
NIは、窒素含有合金の窒素含有率 (重量%)を表し、
NPは、製造される蛍光体の窒素含有率 (重量%)を表す。
[0157] ここで、上記式 [7]は、窒素含有合金について、後述の二次窒化工程により製造さ れる蛍光体の窒素含有率を基準として、窒素含有合金の窒化の程度を表したもので ある。一次窒化工程完了後の窒素含有合金の窒素含有率は、当然ながら、蛍光体 の窒素含有率よりも小さくなる。上記式 [7]の値は、本発明の蛍光体が得られる限り 任意である力 通常 0. 03以上、好ましくは 0. 04以上、より好ましくは 0. 05以上、さ らに好ましくは 0. 1以上、特に好ましくは 0. 15以上、また、通常 0. 9以下、好ましく は 0. 85以下である。 [0158] 上記式 [7]の NIZNPの値が上記範囲よりも小さいと、一次窒化工程における窒化 の進行が不十分なことがあり、二次窒化工程の際の発熱速度が大きくなり、特性の高 い蛍光体が得られに《なる傾向がある。一方、上記式 [7]の NIZNPの値が上記範 囲よりも大きいと、窒素含有合金自体が不安定となり、取り扱いが難しくなる傾向があ る。
[0159] 二次窒化工程を円滑に進行させるためには、原料とする合金の反応性によって、 例えば上記式 [5]、 [6]、 [7]で表せるような窒素含有合金の窒化の進行の程度を適 宜調整することが好ましい。ここで、原料とする合金の反応性は、組成や重量メジアン 径 D 等によって決まる。例えば、 Srを含む場合や重量メジアン径 D 力 、さい場合
50 50 は原料と窒素との反応性が高い。したがって、反応性の高い原料を用いる場合には 、一次窒化工程における窒化の程度を高くしておくことが好ましぐ逆に、反応性の 低い原料を用いる場合には、一次窒化工程における窒化の程度を低くしておくこと が好ましい。
[0160] また、粉砕工程で得られた蛍光体原料用合金からなる合金粉末の窒素に対する反 応性は、該合金粉末を、窒素気流中で TG— DTA測定を行なうことにより見積もるこ とができる。具体的には、蛍光体原料用合金の融点から 100°C低い温度から 1500 °Cまでの温度範囲において、大気圧下、合金粉末と窒素とを反応させ、 TG-DTA 測定により合金粉末の重量を測定し、重量増加速度を求める。
[0161] この時、連続方式を用いる場合は特に問題はないが、回分方式を用いる場合は、 合金粉末の重量増加速度が、通常 5重量%Z時以上、中でも 10重量%Z時以上、 また、通常 300重量%Z時以下、中でも 150重量%Z時以下、特には 100重量%Z 時以下となるように、一次窒化工程の雰囲気中の窒素濃度を選択することが好ましい (ただし、昇温速度を 10°CZ分としたものとする)。回分方式を用いる場合、重量増加 速度が上記範囲より大きくなるような窒素濃度を選択すると、一次窒化工程において 発熱が大きくなり過ぎる傾向にあり、大量に窒素含有合金を製造する際に発生した 熱により合金原料が溶融あるいは分相したり、窒化物が分解したりして蛍光体の特性 が低下する場合がある。一方、この重量増加速度が上記範囲より小さくなるような窒 素濃度を選択すると、窒化反応が充分に進行しない等の理由により、生産性が低下 したり、蛍光体の輝度が低下したりする場合がある。
[0162] また、窒素含有合金の酸素含有率は、例えば、酸素窒素同時分析装置 (Leco社 製)により酸素含有量を測定し、下記式 [8]により求めることができる。
窒素含有合金の酸素含有率 (重量%)
= (酸素含有量 Z窒素含有合金の重量) X 100 - [8]
[0163] 窒素含有合金の酸素含有率 (重量%)は、本発明の蛍光体が得られる限り任意で あるが、通常 7. 5重量%以下、好ましくは 5重量%以下、また、通常 0. 1重量%以上 である。酸素含有率が高すぎると得られる蛍光体の輝度が低下する可能性がある。
[0164] 上記のような窒素含有合金は、二次窒化工程によりさらに窒化することで、あるいは 、窒素含有合金の合金粉末と粉砕工程で得られた合金粉末 (一次窒化前の合金粉 末)等とを混合し、二次窒化工程によりさらに窒化すると、本発明の蛍光体を得ること ができる。また、この際、二次窒化工程における発熱速度を制御することができるた め、合金を原料とした蛍光体の大量生産が可能となる。
[0165] 二次窒化工程前の窒素含有合金の合金粉末の重量メジアン径 D は、合金を構成
50
する金属元素の活性度により粒径を調整することが好ましい。本発明の蛍光体が得 られる限りその具体的な範囲に制限は無いが、通常は、蛍光体原料用合金の合金 粉末 (一次窒化工程前の合金粉末)と同様の範囲が好ま 、。
[0166] (冷却及び粉砕)
一次窒化工程を行なった場合、一次窒化工程終了後、二次窒化工程の前に、一 次窒化工程で得られた窒素含有合金カゝらなる合金粉末を一旦冷却してもよ 、 (冷却 工程)。
[0167] 一次窒化工程で用いる装置と二次窒化工程で用いる装置とが異なる場合は、通常 、合金粉末の温度が 200°C以下になるまで冷却してから取り出して二次窒化工程で 用いる装置に仕込む。また、一次窒化工程で用いる装置と二次窒化工程で用いる装 置とが同一である場合においても、装置内の雰囲気の切り替えや置換等に先立ち、 一旦冷却することが好ましい。冷却を行なわないと、急激な窒素分圧の変動により合 金粉末の温度が急上昇して溶融したり、高温で大気と接触した際に合金粉末が変質 したりする可能性がある。この場合の冷却温度は、通常、窒素含有合金の融点より 1 00°C以上低 、温度、好ましくは窒素含有合金の融点より 200°C以上低 、温度であり 、下限には特に制限はないが、通常、室温以上である。
[0168] 冷却後は、必要に応じて、粉砕及び/又は混合を行なう。粉砕後の窒素含有合金 力もなる合金粉末の重量メジアン径 D は、通常 100 m以下であり、一次窒化工程
50
前の合金粉末と同様であることが好まし 、。
[0169] 一次窒化工程後の窒素含有合金は、同じ粒径範囲の一次窒化工程前の合金粉末 と比較して、より限界酸素濃度が高ぐ粉塵爆発し難い傾向があるため、取り扱い性 及び安全性がより向上している。し力しながら、一次窒化工程後の窒素含有合金は 大気中で加水分解される、あるいは酸化されて酸素が混入する可能性があるため、 乾燥空気、窒素雰囲気、或いはアルゴン等の不活性ガス雰囲気中で扱うことが好ま しぐ窒素雰囲気で扱うことが特に好ましい。なお、不活性ガスは、 1種のみを用いて もよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ 、。
雰囲気中の酸素濃度は、通常 5体積%以下、好ましくは 4体積%以下、また、通常 0. lppm以上である。酸素濃度が高すぎると、酸ィ匕される可能性があるので注意を 要する。
このような一次窒化工程を導入すると、後述する二次窒化工程における原料合金と 窒素との反応性を制御することができる。その他の条件によっても異なる力 一次窒 化工程を行わない場合と比較して、一度に製造できる蛍光体の量を 1. 5倍以上、好 ましくは 2倍以上に増やすことができる。
[0170] <二次窒化工程 (窒化処理工程) >
二次窒化工程においては、蛍光体原料に対して窒化処理を施すことにより、蛍光 体を得る。この際、蛍光体原料としては、一次窒化工程を経ていない蛍光体原料用 合金 (好ましくは、その合金粉末)を用いてもよぐ一次窒化工程により得られた窒素 含有合金 (好ましくは、その合金粉末)を用いてもよぐ両者を併用してもよい。ただし 、工業的な生産性の観点から、窒素含有合金の合金粉末のみ、又は、蛍光体原料 用合金の合金粉末と窒素含有合金の合金粉末との混合物に対して窒化処理を施す ことが好ましい。更に、前記混合物に対して窒化処理を施す場合、当該混合物中の 窒素含有合金粉末の割合が 20重量%以上となるようにすることが好ましい。また、全 金属元素含有率が 97重量%以下の窒素含有合金であることが好ましく(前記 1)に 相当する。)、特に蛍光体原料用合金の一部又は全部が、窒素含有率 10重量%以 上の窒素含有合金であることが好ま 、。窒素含有合金の量な 、しは窒素含有合金 の窒素含有率が少なすぎると一次窒化工程を行なったことの利点が十分に得られな い可能性があるからである。
[0171] 二次窒化工程における窒化処理は、蛍光体原料を、例えばルツボ、トレイ等の焼成 容器に充填して窒素含有雰囲気下で加熱することにより行なう。具体的には、以下の 手順により行なう。
[0172] 即ち、まず、蛍光体原料を焼成容器に充填する。ここで使用する焼成容器の材質 は本発明の製造方法の効果が得られる限り任意であるが、例えば、窒化ホウ素、窒 化珪素、炭素、窒化アルミニウム、タングステン等が挙げられる。中でも、窒化ホウ素 が耐食性に優れることから好ましい。なお、前記の材質は、 1種のみを用いてもよぐ 2 種以上を任意の組み合わせ及び比率で併用してもよ!、。
[0173] また、ここで使用する焼成容器の形状は本発明の製造方法の効果が得られる限り 任意である。例えば、焼成容器の底面が、円形、楕円形等の角のない形や、三角形 、四角形等の多角形であってもよいし、焼成容器の高さも加熱炉に入る限り任意であ り、低いものでも高いものでもよい。中でも、放熱性のよい形状を選択することが好ま しい。
[0174] この蛍光体原料を充填した焼成容器を、焼成装置(「加熱炉」と称する場合もある。
)に納める。ここで使用する焼成装置としては、本発明の製造方法の効果が得られる 限り任意であるが、装置内の雰囲気を制御できる装置が好ましぐさらに圧力も制御 できる装置が好ましい。例えば、熱間等方加圧装置 (HIP)、抵抗加熱式真空加圧雰 囲気熱処理炉等が好まし 、。
また、加熱開始前に、焼成装置内に窒素を含むガスを流通して系内を十分にこの 窒素含有ガスで置換することが好ましい。必要に応じて、系内を真空排気した後、窒 素含有ガスを流通しても良 ヽ。
[0175] 窒化処理の際に使用する窒素含有ガスとしては、窒素元素を含むガス、例えば窒 素、アンモニア、或いは窒素と水素の混合気体等が挙げられる。なお、窒素含有ガス は、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ い。系内の酸素濃度は製造される蛍光体の酸素含有量に影響し、余り高い含有量と なると高い発光が得られなくなるため、窒化処理雰囲気中の酸素濃度は、低いほど 好ましぐ通常 0. 1体積%以下、好ましくは lOOppm以下、より好ましくは lOppm以 下とする。また、必要に応じて、炭素、モリブデン等の酸素ゲッターを系内加熱部分 に入れて、酸素濃度を低下させても良い。なお、酸素ゲッターは、 1種のみで用いて もよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ 、。
[0176] 窒化処理は、窒素含有ガスを充填した状態或 、は流通させた状態で蛍光体原料を 加熱することにより行なうが、その際の圧力は大気圧よりも幾分減圧、大気圧或いは 加圧の何れの状態でも良い。ただし、大気中の酸素の混入を防ぐためには大気圧以 上とすることが好ましい。圧力を大気圧未満にすると加熱炉の密閉性が悪い場合に は多量の酸素が混入して特性の高 、蛍光体を得ることができな 、可能性がある。窒 素含有ガスの圧力は少なくともゲージ圧で 0. 2MPa以上が好ましぐ中でも lOMPa 以上がより好ましぐまた、 200MPa以下が好ましい。
[0177] 蛍光体原料の加熱温度は本発明の蛍光体が得られる限り任意であるが、通常 800 °C以上、好ましくは 1000°C以上、更に好ましくは 1200°C以上、また、通常 2200°C 以下、好ましくは 2100°C以下、更に好ましくは 2000°C以下である。加熱温度が 800 °Cより低いと、窒化処理に要する時間が非常に長くなる可能性がある。一方、加熱温 度が 2200°Cより高いと、生成する窒化物が揮発或いは分解し、得られる窒化物蛍光 体の化学組成がずれて、特性の高い蛍光体が得られず、また、再現性も悪いものと なる可能性がある。
[0178] また、加熱温度は、合金の組成等によっても異なるが、蛍光体原料用合金の融点よ り通常 300°C以上、中でも 400°C以上、更には 500°C以上、特には 700°C以上高い 温度であることが好ましい。なお、合金の融点については、前述の一次窒化工程の 項で説明した通りである。
[0179] 窒化処理時の加熱時間 (最高温度での保持時間)は、蛍光体原料と窒素との反応 に必要な時間で良いが、通常 1分以上、好ましくは 10分以上、より好ましくは 30分以 上、更に好ましくは 60分以上とする。加熱時間が 1分より短いと窒化反応が完了せず 特性の高い蛍光体が得られない可能性がある。また、加熱時間の上限は生産効率 の面力 決定され、通常 24時間以下である。
このように蛍光体原料に対して窒化処理することにより、窒化物又は酸窒化物を母 体とする本発明の蛍光体を得ることができる。
[0180] ところで、二次窒化工程にお!、ては、一度に大量の蛍光体原料につ!、て窒化処理 を行なう場合、その他の条件によっては、窒化反応が急激に進行し、本発明の蛍光 体の特性を低下させる可能性がある。そこで、一度に大量の蛍光体原料の加熱処理 を行いたい場合、以下のように昇温条件を調整すると、急激な窒化反応の進行をさら に抑えることができ、好ましい。
[0181] 即ち、二次窒化工程において、加熱する蛍光体原料用合金の融点より 100°C低い 温度から前記融点より 30°C低!、温度までの温度域 (以下、「昇温速度を減速する温 度域」と称す場合がある)の加熱を、 9°CZ分以下の昇温速度で行なう。このように、 加熱する合金の融点より 100°C低!、温度力 融点より 30°C低 、温度までの温度域 で昇温速度を減速する理由は次の通りである。但し、蛍光体原料用合金に代えて窒 素含有合金を用いる場合や、蛍光体原料用合金と窒素含有合金とを併用する場合 であっても、前記の「加熱する蛍光体原料用合金の融点」とは、蛍光体原料用合金 の融点とする。
[0182] 蛍光体は、一般的に蛍光体原料をルツボ、トレイ等の焼成容器に充填し、加熱炉 内で加熱することにより合成される。この際、蛍光体原料の炉内での滞留時間を短く することで、生産性を高めることができるため、反応に必要な温度域までの昇温速度 は、加熱炉の能力と坩堝等の耐熱衝撃特性が許す範囲で速いことが好ましい。 しかしながら、蛍光体原料用合金、窒素含有合金等の合金を原料として蛍光体を 工業的に生産する場合においては、昇温速度が速いと、窒化時の発熱により合金粉 末が溶融し、合金粒子同士が融着し、内部まで窒素ガスが侵入できず、合金粒子の 内部まで窒化反応が進行しない場合がある。このため、得られる蛍光体の輝度が低 下する傾向にあり、場合によっては発光しな 、場合もある。
[0183] 焼成容器の直径が同一の場合において、合金粉末の充填量が少なければ、放熱 性が高ぐ窒化反応時の発熱量の蓄積が少ないため、上述したような現象は生じな い。しかし、蛍光体原料の充填量が多いと、放熱性が低下するため、窒化反応時の 発熱を抑制することが望まれる。
一方で、蛍光体、特に窒化物蛍光体の合成は、高温高圧下で反応を行なうため、 通常は高価な反応装置を使用することになる。そのため、一回あたりの蛍光体原料 の充填量を増やすことがコスト低減のためには望まれる。
[0184] そこで、本発明の蛍光体の製造方法では、後述する特定の温度域において昇温速 度を減速することが好ましい(前記 2)に相当する)。これにより、蛍光体原料用合金、 窒素含有合金等の合金を原料として蛍光体を工業的に生産する場合であっても、反 応熱の蓄積による蛍光体特性の低下を避けることが可能となる。特に、蛍光体原料 用合金に Srを含む場合にお ヽて、蛍光体原料用合金の融点より 100°C低!ヽ温度か ら融点の間で、急激に窒化反応が進み、原料の重量が急激に増加することがあるが 、この温度域で昇温速度を減速すると、この急激な重量増加が起こらなくなるという効 果がある。
[0185] 前記の昇温速度を減速する温度域は、通常、蛍光体原料用合金の融点より 100°C 低!、温度力 該融点より 30°C低 、温度までの温度域であり、好ましくは蛍光体原料 用合金の融点より 150°C低 、温度以上、より好ましくは該融点より 200°C低 、温度以 上、また、好ましくは該融点以下、より好ましくは該融点より 100°C以上高い温度以下 までの温度域である。
ここで、蛍光体原料用合金の融点より 100°C低い温度とは、おおよそ、窒化が開始 される温度を意味する。また、該融点より 30°C低い温度から該融点までの温度域で は、窒化反応が急激に進行するため、昇温速度による窒化反応の進行の制御は困 難であることが多い。
なお、前記の融点より 100°C低 、温度力も融点より 30°C低 、温度までの温度域の 温度とは、加熱処理の際の炉内温度、即ち、焼成装置の設定温度をさす。
[0186] 昇温速度を減速する温度域において、昇温速度は通常 9°CZ分以下であり、好ま しくは 7°CZ分以下である。これよりも速い昇温速度では、急激な反応熱の蓄積を避 けることができず、高輝度の蛍光体が得られない傾向にある。また、昇温速度の下限 には特に制限はないが、通常、生産性の観点から 0. 1°CZ分以上であり、好ましくは 0. 5°CZ分以上である。
[0187] なお、蛍光体原料用合金の融点より 100°C低い温度より更に低い温度域における 昇温条件については特に制限はなぐ急速に昇温してもゆっくり昇温してもよい。また 、加熱炉の温度制御の応答性などを勘案して、合金の融点より 100°C低い温度より 更に低!、温度から、昇温速度を 9°CZ分以下に減速してもよ 、。
[0188] また、蛍光体原料用合金の融点より 30°C低い温度に到達した後も加熱を続ける場 合、その昇温速度に特に制限はないが、該融点より 30°C低い温度から該融点までの 温度域においても、通常 9°CZ分以下、特に 7°CZ分以下、また、通常 0. 1°CZ分 以上、特に 0. 5°CZ分以上で、ゆっくり昇温することが好ましい。該融点よりも更に高 い温度にまで加熱する場合にあっても、該融点力 その温度までの昇温速度も、通 常 9°CZ分以下、特に 7°CZ分以下、通常 0. 1°CZ分以上、特に 0. 5°CZ分以上で あることが好ま 、が、該融点より 10°C高!、温度から更にそれよりも高温域にお!ヽて は、昇温速度を減速することによる効果は特になぐこの高温域の昇温速度は 10°C Z分以上、例えば 10°CZ分〜 100°CZ分として生産性を高めることが好ましい。
[0189] なお、蛍光体原料用合金の融点については、前述の一次窒化工程の項で説明し た通りである。
以上のように蛍光体原料用合金及び Z又は窒素含有合金を窒化することにより、 本発明の蛍光体を製造することができる。
[0190] [III]その他の付カ卩工程
膽ロ熱工程)
二次窒化工程により得られた蛍光体は、必要に応じて再加熱工程を行ない、再度 、加熱処理 (再加熱処理)をすることにより粒子成長させても良い。これにより、粒子が 成長し、蛍光体が高い発光を得ることが可能となる等、蛍光体の特性が向上する場 合がある。
[0191] この再加熱工程では、一度室温まで冷却してから、再度加熱を行なってもよい。再 加熱処理を行なう場合の加熱温度は、通常 1200°C以上、好ましくは 1300°C以上、 より好ましくは 1400°C以上、特に好ましくは 1500°C以上であり、また、通常 2200°C 以下、好ましくは 2100°C以下、より好ましくは 2000°C以下、特に好ましくは 1900°C 以下である。 1200°C未満で加熱すると、蛍光体粒子を成長させる効果が小さくなる 傾向にある。一方、 2200°Cを超える温度で加熱すると、無駄な加熱エネルギーを消 費してしまうだけでなぐ蛍光体が分解する場合がある。また、蛍光体の分解を防止 するためには雰囲気ガスの一部となる窒素の圧力を非常に高くすることになるため、 製造コストが高くなる傾向にある。
[0192] 蛍光体の再加熱処理時の雰囲気は、基本的には窒素ガス雰囲気、不活性ガス雰 囲気又は還元性雰囲気が好ましい。なお、不活性ガス及び還元性ガスは、それぞれ 、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよい。 また、雰囲気中の酸素濃度は、通常 lOOOppm以下、好ましくは lOOppm以下、より 好ましくは lOppm以下とする。酸素濃度が lOOOppmを越えるような酸素含有ガス中 や大気中など酸化雰囲気下で再加熱処理すると、蛍光体が酸化され、目的の蛍光 体を得ることができない可能性がある。ただし、 0. lppm〜10ppmの微量酸素を含 有する雰囲気とすることで比較的低温での蛍光体の合成が可能となるので好ましい
[0193] 再加熱処理時の圧力条件は、大気中の酸素の混入を防ぐためには大気圧以上の 圧力とすることが好ましい。圧力が低すぎると、前述の加熱工程と同様に焼成装置の 密閉性が悪 、場合には多量の酸素が混入し、特性の高!、蛍光体を得ることができな い可能性がある。
[0194] 再加熱処理時の加熱時間(最高温度での保持時間)は、通常 1分間以上、好ましく は 10分間以上、より好ましくは 30分間以上であり、また、通常 100時間以下、好まし くは 24時間以下、より好ましくは 12時間以下である。加熱時間が短すぎると粒子成 長が不十分となる傾向にある。一方、加熱時間が長すぎると、無駄な加熱エネルギー が消費される傾向にあり、また、蛍光体の表面から窒素が脱離して発光特性が低下 する場合もある。
[0195] {後処理工程 }
得られた蛍光体は、必要に応じて、分散工程、分級工程、洗浄工程、乾燥工程等 の後処理工程を行なって力 各種用途に用いてもょ 、。
[0196] 〈分散工程〉 分散工程では、窒化工程中の粒子成長、焼結などにより凝集している蛍光体に機 械的な力を加え、解砕する。例えば、ジェットミルなどの気流による解砕や、ボールミ ル、ビーズミル等のメディアによる解砕などの方法が使用できる。
[0197] 〈分級工程〉
上記の手法により分散された蛍光体の粉末は、分級工程を行なうことにより所望の 粒度分布に調整できる。分級には、例えば、バイブレーティングスクリーン、シフター 等の網目を使用した篩い分け装置、エアセパレータ、水簸装置等の慣性分級装置 や、サイクロン等の遠心分級機を使用することができる。
[0198] 〈洗浄工程〉
洗浄工程では、蛍光体を、例えばジョークラッシャー、スタンプミル、ハンマーミル等 で粗粉砕した後、中性又は酸性の溶液 (以下、「洗浄媒」と称する場合がある。)を用 いて洗浄する。
ここで用いる中性の溶液としては、水を用いることが好ましい。使用可能な水の種類 は、特に制限はないが、脱塩水又は蒸留水が好ましい。用いる水の電気伝導度は、 通常 0. 0064mSZm以上、また、通常 lmSZm以下、好ましくは 0. 5mSZm以下 である。また、水の温度は、通常、室温(25°C程度)が好ましいが、好ましくは 40°C以 上、さらに好ましくは 50°C以上、また、好ましくは 90°C以下、さらに好ましくは 80°C以 下の温水又は熱水を用いることにより、目的とする蛍光体を得るための洗浄回数を低 減することも可能である。
[0199] また、酸性の溶液としては酸性の水溶液が好ま Uヽ。酸性水溶液の種類に特に制 限はないが、塩酸、硫酸などの鉱酸の 1種又は 2種以上を希釈した水溶液が使用で きる。酸水溶液の酸の濃度は、通常 0. ImolZl以上、好ましくは 0. 2molZl以上、 また、通常 5molZl以下、好ましくは 2molZl以下である。中性の水溶液ではなぐ酸 性の水溶液を用いると、蛍光体の溶解イオン量の低減効率の点で好ましいが、この 洗浄に用いる酸水溶液の酸濃度が 5molZlを超えると、蛍光体表面を溶解する場合 がある。一方、酸性の溶液の酸濃度が 0. ImolZl未満であると、酸を用いた効果が 十分に得られな 、傾向にある。
[0200] なお、本発明においては、洗浄に用いる酸性の溶液としてフッ酸のような腐食性の 強い酸は必要としない。
また、洗浄媒は、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率 で行なってもよい。
[0201] 蛍光体を洗浄する方法としては、特に制限はないが、具体的には、得られた蛍光体 粒子を上述の中性又は酸性の溶液 (洗浄媒)に入れて所定時間撹拌することにより 分散させ、その後、蛍光体粒子を固液分離する方法等が挙げられる。
[0202] 蛍光体を洗浄する際の撹拌手法には特に制限はなぐ蛍光体粒子を均一に分散さ せることができればよい。例えば、チップスターラーや撹拌機等を用いることができる
[0203] 洗浄媒の量には特に制限はないが、過度に少ないと十分な洗浄効果が得られず、 過度に多いと大量の洗浄媒を要し、不合理であることから、洗浄する蛍光体の重量 の 2重量倍以上、中でも 5重量倍以上であることが好ましぐまた、洗浄する蛍光体の 重量の 1000重量倍以下、中でも 100重量倍以下であることが好ましい。
撹拌時間は、蛍光体と上述のような洗浄媒とを十分に接触させることができるような 時間であれば良ぐ通常 1分以上、また、通常 1時間以下である。
[0204] 洗浄媒と蛍光体粒子とを固液分離する手法には、特に制限はなぐ例えば、濾過、 遠心分離、デカンテーシヨン等が挙げられる。
[0205] ただし、蛍光体粒子の洗浄方法は、上述のような、洗浄媒中で蛍光体粒子を撹拌 し、分散した後の固液分離を行なう手法に限定されるものではなぐ例えば、蛍光体 粒子を洗浄媒の流体にさらす方法等であっても良い。
[0206] また、このような洗浄工程は複数回行なっても良い。複数回の洗浄工程を行なう場 合、水による洗浄と酸性の溶液による洗浄とを組み合わせて行なっても良いが、その 場合、蛍光体への酸の付着を防止するために、酸性の溶液で洗浄した後、水による 洗浄を行なうようにすることが好ましい。また、水による洗浄後、酸性の溶液で洗浄し 、その後、水による洗浄を行なってもよい。
また、複数回の洗浄工程を行なう場合、洗浄工程の間に前述の粉砕工程や分級ェ 程を行なっても良い。
[0207] 蛍光体の洗浄は、洗浄後の蛍光体にっ 、て、次のような水分散試験を行な 、、そ の時の上澄み液の電気伝導度が所定の値以下となるまで行なうことが好ましい。 即ち、洗浄後の蛍光体を、必要に応じて乾式ボールミル等で解砕ないし粉砕し、篩 又は水簸により分級を行なって所望の重量メジアン径に整粒し、その後、当該蛍光 体の 10重量倍の水中で所定時間、例えば 10分間撹拌して分散させた後、 1時間静 置することにより、水よりも比重の重い蛍光体粒子を自然沈降させる。このときの上澄 み液の電気伝導度を測定し、その電気伝導度が、通常 50mSZm以下、好ましくは 1 OmSZm以下、より好ましくは 5mSZm以下となるまで、必要に応じて上述の洗浄操 作を繰り返す。
[0208] この蛍光体の水分散試験に用いられる水としては、特に制限はないが、上述の洗 浄媒の水と同様に脱塩水又は蒸留水が好ましぐ特に電気伝導度は、通常 0. 0064 mSZm以上、また、通常 lmSZm以下、好ましくは 0. 5mSZm以下である。また、 上記蛍光体の水分散試験に用いられる水の温度は、通常、室温(25°C程度)である
[0209] このような洗浄を行なうことにより、蛍光体の輝度をさらに向上させることができる。
[0210] なお、上記蛍光体の水分散試験における上澄み液の電気伝導度の測定は、東亜 ディケーケ一社製電気伝導度計「EC METER CM— 30G」等を用いて行なうこと ができる。
[0211] 上記蛍光体の水分散試験における上澄み液の電気伝導度は、蛍光体の構成成分 がー部溶解した結果、イオンとなって水中に溶け出すことにより上昇する。上記上澄 み液の電気伝導度が低い、ということは、蛍光体中のこの水溶性成分の含有量が少 ないことを意味する。
[0212] また、洗浄工程を行なうことにより、蛍光体の酸素含有量も減少することがある。これ は、酸素を含む不純物相、例えば結晶性の悪い窒化物が加水分解して生じた水酸 化物が除去されるためと推察される。
[0213] 例えば、本発明の蛍光体では、洗浄すると、以下のようなことが起きていると推測す ることがでさる。
(1)結晶性の悪い窒化物等が加水分解して、例えば Sr(OH)などの水酸ィ匕物とな
2
り、水中に溶け出す。温水、あるいは希薄な酸で洗浄すると、これらが効率よく除去さ れ、電気伝導度が低下する。一方で、洗浄媒の酸濃度が高過ぎたり、酸性の溶液に さらす時間が長過ぎたりすると、母体の蛍光体自体が分解する場合がある。
(2)前記の加熱工程において加熱時に使用する窒化ホウ素(BN)製ルツボカ 混 入したホウ素が、水溶性のホウ素窒素 アルカリ土類ィ匕合物を形成して蛍光体に混 入するが、上記洗浄によりこれが分解され、除去される。
[0214] 洗浄による発光効率及び輝度向上の理由は完全には明ら力とはされていないが、 焼成直後の蛍光体を空気中に取り出したときわずかなアンモニア臭が感じられるとこ ろから、洗浄により、この未反応又は反応不十分な部分が分解して生成した部分が 除去されたこと〖こよると考免られる。
[0215] 〈乾燥工程〉
上記洗浄後は、蛍光体を付着水分がなくなるまで乾燥させて、使用に供することが できる。具体的な操作の例を挙げると、洗浄を終了した蛍光体スラリーを遠心分離機 等で脱水し、得られた脱水ケーキを乾燥用トレイに充填すればよい。その後、 100°C 〜200°Cの温度範囲で含水量が 0. 1重量%以下となるまで乾燥する。得られた乾燥 ケーキを篩等に通し、軽く解砕し、蛍光体を得る。
[0216] なお、蛍光体は多くの場合、粉体で使用され、他の分散媒中に分散した状態で使 用される。従って、これらの分散操作を容易にするため、蛍光体に各種表面処理を 行なうことが当業者の中では通常の手法として行われている。力かる表面処理が行わ れた蛍光体にあっては表面処理が行われる前の段階が本発明による蛍光体と理解 するのが適切である。
[0217] [IV]アトマイズ法等による合金の製造
ところで、蛍光体原料用合金及び窒素含有合金は、上述した方法により製造する ほか、以下に説明する(a)〜(c)の工程を経て製造することもできる。これにより、安 息角が 45度以下である蛍光体原料用合金粉末を得ることができる(前記 4)に相当す る)。
(a)蛍光体を構成する金属 Ln、 Ca、 Sr、 M"、 M"1及び MIVの原料のうち、
2種以上を溶融させて、これらの元素を含む合金溶湯を用意する (融解工程)。
(b)合金溶湯を不活性ガス中で微細化する (微細化工程)。 (c)微細化した合金溶湯を凝固させ、合金粉末を得る (凝固工程)。
[0218] 即ち、この方法は、合金溶湯をガス中で微細化し、これを凝固させて粉末を得るも のである。前記 (b)微細化工程及び (c)凝固工程は、例えば、合金溶湯を噴霧する 方法、ロールやガス流により急冷し、リボン状に微細化する方法やアトマイズ法等によ り粉末ィ匕することが好ましぐ中でもアトマイズ法を用いることが好ましい。
[0219] アトマイズ法とは、液体を滴下又はノズルで吹き出し、ジェット流体によって粉砕して 液滴とし、凝固させて粉末化する方法を指す。アトマイズ法としては、例えば、水アト マイズ法、ガスアトマイズ法、遠心力アトマイズ法等が挙げられる。中でも、酸素等の 不純物の混入が少なぐ生成する合金粉末が球状になることから、ガスアトマイズ法 が特に好ましい。なお、本発明においてレビアトマイズ法も使用可能である。レビアト マイズ法とは、ガスアトマイズ法にレビテーシヨン溶解を組み合わせたもので、これを 用いると、ルツボと原料との接触を避けることができる。
[0220] まず、蛍光体原料用合金を製造するには、 {原料の秤量 }に記載の方法と同様に、 原料となる金属や合金を秤量する。そして、 {原料の融解 }の記載の方法と同様にし て、原料を融解させて合金化し、蛍光体原料用合金の合金溶湯を用意する。
[0221] 得られた合金溶湯は、ついで、(b)微細化工程に供される。この際、合金溶湯は、 そのまま (b)微細化工程に供しても良ぐこの合金溶湯を一旦冷却して铸造し、合金 の铸塊 (インゴット)を得てから、これを再度融解して (b)微細化工程に供しても良!、。 また、(b)微細化工程と (c)凝固工程とを一工程で行なっても良い。特に、ガスアト マイズ法であれば、これらの工程を一工程で容易に実施することができる。
[0222] 以下、そのガスアトマイズ法を例に説明する。
図 4にガスアトマイズ法による合金粉末ィ匕装置の模式図を例示する。この図 4の装 置では、誘導コイル 102を設けた溶解室 101において、原料となる金属及び Z又は 合金 (前述の如ぐ原料金属を融解して合金溶湯を調製し、これをそのままガスアトマ ィズ法により粉末化する場合と、この合金溶湯を一旦凝固、铸造し、これを融解する 場合とがあるが、以下のアトマイズ法の説明においてこれらを単に「原料合金」と称す 。)を融解し、得られた合金溶湯を、溶解室 101内のルツボ 103の底部に設けた細穴 力も流し、溶湯の流れ又は液滴を作る。流出した溶湯に、噴射ノズル 104から粉砕ガ スのジェット流を吹き付けて、その粉砕ガスのジェット流のエネルギーで、流下してくる 溶湯を順次、微細化し、生成した微細な液滴を噴射室 105内で凝固させて合金粉末 を作製する。通常、得られた合金粉末の粗粒子は回収室 106で直接回収し、細粒子 はサイクロン 107にて回収する。なお、未粉砕の溶湯を除去する溶湯受けを噴射室 1 05に設けることもできる。
[0223] 溶解室 101の圧力は本発明の蛍光体を製造できる限り任意であるが、通常 1 X 103 Pa以上、また、通常 1 X 105Pa以下が好ましぐ安全性の面から、大気圧以下で行な うことがより好ましい。さらに、溶解室 101の雰囲気としては、金属の酸化を防ぐため 不活性ガス雰囲気が好ましい。不活性ガスとしては、例えば、ヘリウム、ネオン、アル ゴン等の希ガス類元素が挙げられ、中でもアルゴンが好ましい。なお、不活性ガスは
1種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ ヽ
[0224] ルツボ 103の材質としては、本発明の蛍光体を製造できる限り任意であるが、例え ば、酸ィ匕アルミニウム、酸ィ匕カルシウム、酸化マグネシウム、黒鉛、窒化ホウ素等が使 用でき、不純物の混入を避けることができることから、酸ィ匕アルミニウム又は窒化ホウ 素が好ましい。なお、ルツボ 103の原料は、 1種を用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもょ 、。
[0225] 原料合金の融解方法に制限は無いが、前述の {原料の融解 }の融解工程と同様に 、高周波融解法で融解することが好ましい。ルツボ 103内の溶湯は、高周波誘導コィ ル 102に電力を供給することにより、原料として用いる合金又は金属の凝固点以上、 好ましくは 1450°C以上、さらに好ましくは 1480°C以上、また、通常 1800°C以下、好 ましくは 1700°C以下、さらに好ましくは 1600°C以下で保持する。
[0226] 噴射ノズル 104は、通常、耐熱性の高いセラミックスが使用され、中でも酸ィ匕アルミ ユウム、酸ィ匕カルシウム、窒化ホウ素製が好ましい。また、ノズルの内径は、溶湯の粘 性等により適宜選択される力 通常 0. 5mm以上、好ましくは lmm以上、また、通常 5mm以下、好ましくは 3mm以下である。
[0227] 粉砕ガスは、合金溶湯に直接衝突させることから、不活性ガスが好ま ヽ。不活性 ガスの中でも、窒素あるいはアルゴン等の希ガスが好ましい。なお、不活性ガスは 1 種を単独で用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用してもよ ヽ。
[0228] 粉砕ガスの温度に制限は無いが、通常、室温である。
また、粉砕ガスの噴射圧は所望の粒径の合金粉末が得られる限り任意であるが、 通常 10kgZcm2 (0. 98MPa)以上、好ましくは 20kgZcm2 (l. 96MPa)以上、通 常 100kgZcm2 (9. 8MPa)以下、 80kg/cm2 (7. 84MPa)以下である。噴射圧が この範囲を外れると、収率が低下する傾向にある。
[0229] 噴射室 105及び回収室 106の雰囲気は、不活性ガス雰囲気又は窒素雰囲気であ ることが好ましぐ経済的な理由から、窒素雰囲気又は窒素含有不活性ガス雰囲気 であることがさらに好ましい。
噴射室 105及び回収室 106の窒素濃度は、本発明の蛍光体を製造できる限り任意 であるが、通常 0. 1%以上、好ましくは 10%以上、さらに好ましくは 20%以上、また、 通常 100%以下である。窒素濃度が低すぎると、粉末化の過程、及び合金粉末の回 収過程で粒子表面から揮発性の高い金属成分が揮発して表面の組成がずれる場合 がある。
[0230] 噴射室 105及び回収室 106の圧力は、通常、大気圧付近であり、また、噴射室 10 5及び回収室 106の温度については、蛍光体原料用合金の融点以下であれば特に 制限はない。噴射室 105の温度は、通常は 950°C以下、 0°C以上である。また、回収 室 106の温度は、通常 0°C以上、中でも 20°C以上、また、通常 400°C以下、中でも 4 0°C以下であることが好まし!/、。
[0231] (c)凝固工程においては、ジェット流体によって生成した合金溶湯の液滴を急冷す ることが好ましい。急冷とは高温度より急速に冷却する操作のこという。合金溶湯の液 滴が凝固するまでにかかる時間は本発明の蛍光体を製造できる限り任意であるが、 通常 1分以下、好ましくは 30秒以下、より好ましくは 10秒以下であり、さらに好ましく は 3秒以下である。上記のガスアトマイズ法では、細穴を通して落下させた溶湯に粉 砕ガスを衝突させることにより、粉砕させて合金粉末を製造している。この際、微粒子 に粉砕された瞬間から、表面力 の熱幅射と粉砕ガスにより急速に冷却される状態と なり、体積に対して、熱が放散する表面積が大きいので急冷凝固が可能となり、好ま しい。 [0232] ガスアトマイズ法では、上述した (b)微細化工程、(c)凝固工程にぉ 、て、粉砕ガス 、及び Z又は噴射室 105や回収室 106の雰囲気中の窒素濃度等を制御すると、合 金粉末を製造しながら同時に上述した一次窒化工程を進行させ、窒素含有合金を 製造することができる。この場合、例えば、下記 i)のようにすることが好ましぐ下記 i) 及び ii)とすることがさらに好ましい。
[0233] i)粉砕ガス、噴射室 105及び回収室 106のうちいずれか 1つ以上を高濃度の窒素 含有雰囲気とする。この時の窒素濃度は、 100体積%に近いことが好ましぐ通常 90 体積%以上、好ましくは 95体積%以上、さらに好ましくは 98体積%以上である。
[0234] ii)噴射ノズル 104やルツボ 103の底部の温度を、合金の融点によっても異なるが、 通常 900°C以上、好ましくは 1000°C以上、また通常 1300°C以下、好ましくは 1200 °C以下にする。この場合、例えば、高周波融解法で加熱しても良いし、溶解室 101か らの熱伝導で上述の温度となるように設計しても良 、。
[0235] このようにして製造された合金粉末は、必要に応じて分級処理を行って、前述の一 次窒化工程及び Z又は二次窒化工程に用いられる。例えばバイブレーティングスク リーン、シフターなどの網目を使用した篩い分け装置、エアセパレータ等の慣性分級 装置、サイクロン等の遠心分離機を使用して、前述の所望の重量メジアン径 D
50及び 粒度分布に調整される。
[0236] この分級工程にっ 、ても、不活性ガス雰囲気下で行うことが好ましぐ不活性ガス雰 囲気中の酸素濃度は 10%以下、特に 5%以下が好ましい。不活性ガスの種類に特 に制限はないが、通常、窒素、アルゴン、ヘリウムなどの 1種又は 2種以上が用いられ 、特に経済性の観点力 窒素が好ましい。
[0237] 以上のように、上記のアトマイズ法などによっても、蛍光体原料用合金又は窒素含 有合金で形成された合金粉末として得られる。特に、この上記の方法によれば、 (a) 融解工程で得られる合金溶湯を粉末化することにより、原料金属から合金粉末、さら には窒素含有合金の製造までを一貫した工程で行なうことができる。また、更に、得 られた合金粉末及び Z又は窒素含有合金を、二次窒化工程で用いる焼成装置まで 移送する移送手段 (パイプライン、ベルトコンベア等)を設けることにより、原料金属か ら蛍光体の製造までを一貫して行うことも可能である。 [0238] [V]アトマイズ法等により製造される合金粉末の特性
上記 [IV]に記載のアトマイズ法等により製造される合金粉末 (蛍光体原料用合金 又は窒素含有合金で形成された合金粉末)は、好ましくは、次のような特性を有する
[0239] 流動性
流動性を示す指標として、安息角、崩潰角、差角がある。これらの測定は、 Carrら、 Chemical Engineering, Jan. 18, (1965) 166— 167【こ記載される方法【こ従つ て行うことができ、例えば、パウダテスタ PT—N型 (ホソカワミクロン株式会社製)を用 いて測定することができる。
[0240] 安息角とは、粉粒体を漏斗等力 静かに平面状に落下させ、円錐状に堆積させた 時に、前記円錐の母線と水平面とのなす角をいう。
本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その安息角は、通常 45度以下 (前記 4)に相当する。)、好ましくは 40度 以下であり、より好ましくは 35度以下であり、小さいほど好ましい。安息角が小さいほ ど流動性が高ぐ工業的に操作する場合、取り扱い性が良いからである。一方、安息 角が大きすぎると、流動性が低ぐ輸送、運搬が困難となる傾向にある。
[0241] 崩潰角とは、安息角を作っている粉粒体に一定の衝撃を与えて崩壊した後、残る 山の角度をいう。
本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その崩潰角は、通常 25度以下、好ましくは 20度以下、より好ましくは 15 度以下であり、小さいほど好ましい。
[0242] また、安息角から崩潰角をひ!、た角度を差角と!、う。
本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その差角は 20度以下が好ましい。差角が大きすぎると、フラッシング現 象が起こりやすぐ制御が困難になる傾向にあり、好ましくないからである。
[0243] 安息角、崩潰角、差角が小さぐ流動性が高い合金粉末を原料として使用すると、 取り扱い性が向上し、輸送'運搬しやすくなるという効果が得られる。
[0244] 形状 本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その合金粒子の形状については、球状性を数量的に表す指標として平 均円形度を用いることができる。
ここで、平均円形度は、以下の式で求められ、粒子の投影図において各粒径の真 円との近似程度を表す。
平均円形度 =粒子の投影面積に等しい真円の周囲長さ Z粒子の投影図の周囲 長さ
[0245] 本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その平均円形度は、通常 0. 7以上、好ましくは 0. 8以上、より好ましくは
0. 9以上であり、 1に近いほど好ましい。
また、本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造され たものである場合、その平均円形度が 0. 9以上である真球状の合金粒子の個数割 合は、通常 20%以上、好ましくは 40%以上である。
[0246] 重量メジアン径 D
50
本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その重量メジアン径 D は、合金粉末を構成する金属元素の活性度に
50
より粒径を調整する必要があり、通常の場合、 0. 1 m以上、好ましくは 1 μ m以上、 さらに好ましくは 3 m以上、また 100 m以下、好ましくは 50 m以下、さらに好ま しくは 30 m以下である。また、 Srを含有する場合は、雰囲気ガスとの反応性が高い ため、合金粉末の重量メジアン径 D は、通常 5 μ m以上、好ましくは 8 μ m以上、より
50
好ましくは 10 μ m以上、特に好ましくは 13 m以上とすることが望ましい。
前述の重量メジアン径 D の範囲よりも小さいと、窒化等の反応時の発熱速度が大
50
きくなり、反応の制御が困難となる場合がある。一方で前述の重量メジアン径 D の範
50 囲よりも大きいと、合金粒子内部での窒化等の反応が不十分となり、輝度が低下する 場合がある。
[0247] タップ密度
タップ密度とは、一定の振動(タッピング)を加えた場合の密度をいう。即ち、本明細 書において、タップ密度とは、次のように測定して得た値である。 合金粉末約 lOgを容量 10mlのガラス製メスシリンダーに入れて、高さ約 lcm 5c mの位置力もテーブル上に 50回 Z分〜 500回 Z分程度の間隔で、体積が変化しな くなるまで (通常 200回〜 800回)手動でタッピングした後、合金粉末の体積 (V)を測 定する。総重量からメスシリンダーの風袋重量を差し引き、合金粉末の正味の重量( W)を測定し、下式 [9]で計算した値をタップ密度と言う。
タップ密度^ !!^ ^^ ^^) 〜[9]
[0248] 本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、そのタップ密度は、通常 1. 9gZml以上、好ましくは 2gZml以上、また 通常 4gZml以下であり、好ましくは 3gZml以下である。タップ密度が低すぎると、蛍 光体の製造において、反応容器に充填しにくぐ生産性が低下する場合がある。タツ プ密度が高過ぎると、焼成工程において合金粒子と窒素等の焼成雰囲気との接触 効率が低下する場合がある。
[0249] 酸素及び炭素含有量
本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その酸素含有量は、通常 2重量%以下であり、 1重量%以下が好ましい 。下限は通常 0. 05重量%以上であり、 0. 1重量%以上が好ましい。
本発明で用いる蛍光体原料用合金粉末が前述のアトマイズ法等で製造されたもの である場合、その炭素含有量は、 0. 2重量%以下であり、 0. 1重量%以下がさらに 好ましい。
[0250] 合金粉末の酸素及び炭素含有量がこの範囲を外れると、得られる蛍光体の発光特 性が低下する傾向にあり、好ましくない。
前述のガスアトマイズ法等を用いて合金の粉末ィ匕を行なうと、ジェットミル等を用い て合金を機械的に粉砕する場合と比較して、不純物の混入が少なくなる。不純物が 少ない合金粉末を原料として使用すると、得られる蛍光体の輝度が向上するという効 果が得られる。
[0251] また、合金の粉末化に、特に前述のガスアトマイズ法を用いると、均一に溶融された 合金の湯を瞬間的に液滴化すると共に冷却することができるため、均一な微細組織 を有する合金粉末が得られる。また、同じ溶湯カゝら連続的に液滴をつくるため、粒子 間の組成差が極めて小さ 、合金粉末を得ることができると 、う効果も得られる。しかも 、流動性が高ぐ不純物の少ない合金粉末を得ることができる。
[0252] [VI]合金粉末と窒化物又は酸窒化物との混合
前記の一次窒化工程及び Z又は二次窒化工程にぉ ヽては、窒化対象である合金 (即ち、蛍光体原料用合金及び Z又は窒素含有合金)を、窒化物又は酸窒化物の 存在下で、好ましくは、窒化物又は酸窒化物と混合してから加熱してもよい(前記 3) に相当する)。前記の窒化物又は酸窒化物としては、本発明の蛍光体を構成する金 属元素を 1種又は 2種以上含有する窒化物又は酸窒化物(以下、「原料窒化物」と称 す場合がある)を用いる。
[0253] 原料窒化物の組成は、前述の原料合金等と合わせて目的の蛍光体組成とすること ができるものであればよぐ特に制限はない。従って、原料窒化物は、前述した蛍光 体の組成と同様に、少なくとも Siを含む 4価の金属元素 M4を含むことが好ましぐさら に Si以外の金属元素 1種以上を含むことがより好ましぐ
Figure imgf000055_0001
2価の金属元 素 M2、及び 4価の金属元素 M4を含むことがさらに好ましい。ここで、 2価の金属元素 M2としては、アルカリ土類金属元素が好ましい。また、均一な蛍光体を得る上では、 原料窒化物の組成を、目的の蛍光体と同一の構成元素とすることが、好ましい。例え ば、原料窒化物は、前述の一般式 [1]で表される組成であることが好ましぐ前述の 一般式 [2]で表される組成であることがより好ましい。
[0254] 原料窒化物の具体例としては、 A1N、 Si N、 Ca N、 Sr N、 EuN等の蛍光体を
3 4 3 2 3 2
構成する元素の窒化物、 CaAlSiN、 (Sr, Ca)AlSiN、 (Sr, Ca) Si N、 SrSiN
3 3 2 5 8 2 等の蛍光体を構成する元素の複合窒化物、 (Sr, Ca)AlSiN: Eu、 (Sr, Ca)AlSi
3
N: Ce、 (Sr, Ca) Si N: Eu、 SrSiN: Eu、 Sr Ca Si O N: Eu等の付活元素
3 2 5 8 2 1-x x 2 2 2
を含む複合窒化物等が挙げられる。なお、原料窒化物は、 1種のみを用いてもよぐ 2 種以上を任意の組み合わせ及び比率で併用してもよ!、。
[0255] また、原料窒化物は、微量の酸素を含んでいてもよい。原料窒化物の酸素 Z (酸素
+窒素)の割合は本発明の蛍光体が得られる限り任意であるが、通常 0. 5以下、中 でも 0. 3以下、特には 0. 2以下とすることが好ましい。原料窒化物中の酸素の割合 が多すぎると輝度が低下する可能性がある。 [0256] 原料窒化物の重量メジアン径 D は、他の原料との混合に支障がない限り、特に制
50
限は無い。ただし、他の原料と混合しやすいことが好ましぐ例えば、合金粉末と同程 度であることが好ましい。原料窒化物の具体的な重量メジアン径 D の値は、蛍光体
50
が得られる限り任意であるが、 200 m以下であることが好ましぐより好ましくは 100 μ m以下、特に好ましくは 80 μ m以下、さらに好ましくは 60 μ m以下、また、 0. 1 ^ m以上であることが好ましぐより好ましくは 0. 5 m以上である。
[0257] 原料窒化物の蛍光体原料全体量に対する混合割合、即ち、前述の合金 (蛍光体 原料用合金又は窒素含有合金で形成された合金粉末)と原料窒化物との合計に対 する混合割合は、通常 1重量%以上、好ましくは 5重量%以上、より好ましくは 10重 量%以上、さらに好ましくは 15重量%以上である。原料窒化物の混合割合が低すぎ ると、得られる蛍光体の輝度の向上効果が不十分となる傾向がある。一方、原料窒化 物の混合割合の上限は、特に制限は無いが、原料窒化物の混合割合が高すぎると 、得られる蛍光体の輝度は向上するものの、生産性が低下する傾向にあるため、通 常、 85重量%以下とする。
[0258] このように一次窒化工程及び Z又は二次窒化工程にぉ 、て合金に原料窒化物を 混合すると、窒化時の単位体積当たりの発熱速度が抑えられる。この結果、発生した 熱により原料の溶融や分相、あるいは窒化物の分解が起こり、得られる蛍光体の特 性が低下すると 、う現象を抑制することができる。
[0259] 例えば、合金粉末を原料として本発明の蛍光体を製造する場合、二次窒化工程に おいて窒化時の発熱により合金粉末が溶融すると、合金粒子同士が融着し、内部ま で窒素ガスが侵入できず、合金粒子の内部まで窒化反応が進行しな!、可能性がある 。このため、得られる蛍光体の輝度が低下する傾向にあり、場合によっては発光しな い場合もある。しかし、合金粉末に原料窒化物を混合することにより、これらの点が改 善される。
[0260] また、窒化反応容器の直径が同一の場合において、合金粉末の充填量が少なけ れば、放熱性が高ぐ窒化反応時の発熱量の蓄積が少ないため、発生した熱による 合金の溶融や分相、あるいは窒化物又は酸窒化物の分解と 、つた現象は生じな 、。 しかし、蛍光体の合成には、高温下で反応を行なうことになるため、合成時のエネル ギー消費量が大きぐ一回あたりの充填量を増やすことがコスト低減のためには好ま しい。そして、反応容器の合金充填量が多いと、放熱性が低下するため、発生した熱 による合金の溶融や分相、あるいは窒化物又は酸窒化物の分解が生じる可能性が ある。
[0261] これに対し、一次窒化工程及び Z又は二次窒化工程において合金に原料窒化物 を混合すると、窒化反応容器の合金充填量を増やした上で発熱量を抑え、効率的な 窒化処理を行なえる。これは、窒化物又は酸窒化物の融点は、通常、合金と比較し て高いため、合金に原料窒化物を混合すると、蛍光体原料全体の放熱性を向上させ ることによるものと考えられ、したがって、窒化時の合金の溶融を防ぎ、窒化反応を円 滑に進行させることにより、高特性の蛍光体が高い生産性で得られるようになる。
[0262] [蛍光体]
以下に本発明の製造方法により製造される蛍光体 (以下、「本発明の蛍光体」と称 する場合がある。)について説明する。本発明の蛍光体としては、窒化物又は酸窒化 物を母体とする蛍光体であることが好まし 、。
なお、本明細書において、蛍光体の母体とは、付活元素を固溶し得る結晶又はガ ラス (アモルファス)を意味し、付活元素を含有せずに、結晶又はガラス (アモルファス )それ自体が発光するものも含むものとする。
[0263] {蛍光体の組成 }
本発明の蛍光体は、本発明の製造方法により製造されたものであれば、その組成 に特に制限はないが、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素 の 1種類以上とを含むことが好ましぐさらに付活元素 M1を含有することがより好まし い。ここで、 Si以外の金属元素としては、アルカリ土類金属元素が好ましい。
本発明の蛍光体は、付活元素 M1 2価の金属元素 M2、及び少なくとも Siを含む 4 価の金属元素 M4を含むことが好ましぐ付活元素 M 2価の金属元素 M2、 3価の金 属元素 M3、及び少なくとも Siを含む 4価の金属元素 M4を含むことがより好ましい。
[0264] 付活元素 M1としては、窒化物又は酸窒化物を母体とする蛍光体を構成する結晶 母体に含有可能な各種の発光イオンを使用することができる力 Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及び Ybよりなる群から選ばれる 1種以上 の元素を使用すると、発光特性の高い蛍光体を製造することが可能なので好ましい。 また、付活元素 M1としては Mn、 Ce、 Pr及び Euの 1種又は 2種以上を含むことが好 ましぐ特に Ce及び Z又は Euを含むことが高輝度の赤色又は黄色発光を示す蛍光 体を得ることができるので更に好ましい。また、輝度を上げることや蓄光性を付与する など様々な機能を持たせるために、付活元素 M1としては Ce及び Z又は Eu以外に共 付活剤を 1種又は複数種含有させても良 ヽ。
[0265] 付活元素 M1以外の元素としては、各種の 2価、 3価、 4価の金属元素が使用可能 である。 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znよりなる群力 選ばれる 1種 以上の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scよりなる群力 選ばれ る 1種以上の元素であり、 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、及び Hはりなる 群力も選ばれる 1種以上の元素であることが、発光特性の高い蛍光体を得ることがで きるので好ましい。
[0266] また、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srとなるように組成を 調整すると発光特性の高い蛍光体が得られるので好ましい。中でも、 2価の金属元素 M2の 80モル%以上を Ca及び Z又は Srとすることがより好ましぐ 90モル%以上を C a及び Z又は Srとすることが更に好ましぐ 2価の金属元素 M2の全てを Ca及び Z又 は Srとすることが最も好ま 、。
[0267] また、 3価の金属元素 M3の 50モル%以上が A1となるように組成を調整すると発光 特性の高い蛍光体が得られるので好ましい。中でも、 3価の金属元素 M3の 80モル% 以上を A1とすることが好ましぐ 90モル%以上を A1とすることがより好ましぐ 3価の金 属元素 M3の全てを A1とすることが最も好まし 、。
[0268] また、少なくとも Siを含む 4価の金属元素 M4の 50モル%以上が Siとなるように組成 を調整すると発光特性の高い蛍光体が得られるので好ましい。中でも、少なくとも Si を含む 4価の金属元素 M4の 80モル%以上を Siとすることが好ましく、 90モル%以上 を Siとすることがより好ましぐ 4価の金属元素 M4の全てを Siとすることが好ましい。
[0269] 特に、 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、かつ、 3価の 金属元素 M3の 50モル%以上が A1であり、かつ、少なくとも Siを含む 4価の金属元素 M4の 50モル%以上が Siとなるようにすることにより、発光特性が特に高い蛍光体が 製造できるので好ましい。
[0270] 中でも、本発明の蛍光体としては、下記一般式 [1]で表される化学組成を有するこ とが好ましい。
M1 M2 M3 M4 N O [1]
a b c d e f
但し、 a、 b、 c、 d、 e、 fはそれぞれ下記の範囲の値である。
0. 00001≤a≤0. 15
a + b = l
0. 5≤c≤l. 5
0. 5≤d≤l. 5
2. 5≤e≤3. 5
0≤f≤0. 5
尚、前記一般式 [1]において、 M1は前記付活元素 M1を表し、 M2は前記 2価の金 属元素 M2を表し、 M3は前記 3価の金属元素 M3を表し、 M4は前記少なくとも Siを含 む 4価の金属元素 M4を表す。
[0271] また、前記一般式 [1]における a〜fの数値範囲の好適理由は次の通りである。
[0272] aが 0. 00001より小さいと十分な発光強度が得られない傾向にあり、 aが 0. 15より 大きいと濃度消光が大きくなつて発光強度が低くなる傾向にある。従って、 aは通常 0 . 00001以上、好ましく ίま 0. 0001以上、より好ましく ίま 0. 001以上、更に好ましく【ま 0. 002以上、特に好ましくは 0. 004以上で、通常 0. 15以下、好ましくは 0. 1以下、 より好ましくは 0. 05以下、更に好ましくは 0. 04以下、特に好ましくは 0. 02以下とな るように原料を混合することが好まし 、。
[0273] aと bの合計は、蛍光体の結晶母体中において付活元素 M1が 2価の金属元素 M2 の原子位置を置換するので、通常 1となるように原料混合組成を調整する。
[0274] cが 0. 5より小さい場合も、 cが 1. 5より大きい場合も、製造時に異相が生じ、前記蛍 光体の収率が低くなる傾向にある。従って、 cは通常 0. 5以上、好ましくは 0. 6以上、 より好ましくは 0. 8以上で、通常 1. 5以下、好ましくは 1. 4以下、より好ましくは 1. 2 以下となるように原料を混合することが発光強度の観点力 も好ましい。
[0275] dが 0. 5より小さい場合も、 dが 1. 5より大きい場合も、製造時に異相が生じ、前記 蛍光体の収率が低くなる傾向にある。従って、 dは通常 0. 5以上、好ましくは 0. 6以 上、より好ましくは 0. 8以上で、通常 1. 5以下、好ましくは 1. 4以下、より好ましくは 1 . 2以下となるように、原料を混合することが発光強度の観点からも好ましい。
[0276] eは窒素の含有量を示す係数であり、
[数 1]
2 Λ
e=— Γ— hcH—― d
3 3
となる。この式に 0. 5≤c≤l . 5, 0. 5≤d≤l . 5を代人すれば、、 eの範囲は
1. 84≤e≤4. 17
となる。しかしながら、前記一般式 [1]で表される蛍光体組成において、窒素の含有 量を示す eが 2. 5未満であると蛍光体の収率が低下する傾向にある。また、 eが 3. 5 を超えても蛍光体の収率が低下する傾向にある。従って、 eは通常 2. 5≤e≤3. 5で ある。
[0277] 前記一般式 [1]で表される蛍光体中の酸素は、原料金属中の不純物として混入す る場合、粉砕工程、窒化工程などの製造プロセス時に導入される場合などが考えら れる。酸素の割合である fは蛍光体の発光特性の低下が容認できる範囲で 0≤f≤0 . 5が好ましい。
[0278] 前記一般式 [1]で表される蛍光体の中でも、下記一般式 [2]で表される蛍光体とす ることがでさる。
M1 Sr Ca M2' Al Si N [2]
a, b, c, d, e, f, g,
但し、 a,ゝ b,ゝ c,、 d,、 e,ゝ f,ゝ g,はそれぞれ下記の範囲の値である。
0. 00001≤a'≤0. 15
0. l≤b'≤0. 99999
0≤c' < l
0≤d' < l
a' +b ' +c' +d' = l
0. 5≤e'≤l . 5
0. 5≤f,≤l . 5 0.8X(2/3 + e,+4/3Xf,)≤g,≤l.2X(2/3 + e, +4/3Xf,)
[0279] ここで、 M1'は前記一般式 [1]における M1と同様に、 Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 S m、 Eu、 Tb、 Dy、 Ho、 Er、 Tm及び Ybからなる群から選ばれる付活元素を表す。付 活元素 M1'としては中でも、 Mn、 Ce、 Pr及び Euの 1種又は 2種以上を含むことが好 ましぐ特に Eu及び Z又は Ceを含むことが好ましい。
[0280] M2'は Mg及び/又は Baを表し、好ましくは Mgである。 Mgを含有させることにより、 蛍光体の発光ピーク波長を長波長化することができる。
[0281] a,の範囲 ίま、通常 0.00001以上、好ましく ίま 0.001以上、より好ましく ίま 0.002 以上であり、また、通常 0.15以下、好ましくは 0.05以下、より好ましくは 0.01以下 である。
[0282] b'の範囲は、通常 0.1以上であり、好ましくは 0.4以上、より好ましくは 0.7以上で あり、また、通常 0.99999以下である。
[0283] c'の範囲は、通常 0以上であり、また通常 1未満、好ましくは 0.5以下、より好ましく は 0.3以下である。
[0284] d'の範囲は、通常 0以上であり、また通常 1未満、好ましくは 0.5以下、より好ましく は 0.2以下である。
[0285] a'、 、 c'、d'相互の関係は通常、
a'+b'+c'+d'=l
を満足する。
[0286] e'の範囲は通常、 0.5以上、好ましくは 0.8以上、より好ましくは 0.9以上であり、 また通常 1.5以下、好ましくは 1.2以下、より好ましくは 1.1以下である。
[0287] f'の範囲は通常、 0.5以上であり、好ましくは 0.8以上、より好ましくは 0.9以上で あり、また通常 1.5以下であり、好ましくは 1.2以下、より好ましくは 1. 1以下である。
[0288] g,の範囲は、通常 0.8X (2Z3 + e,+4Z3Xf,)以上であり、好ましくは 0.9X ( 2Z3 + e'+4Z3Xf')以上、より好ましくは 2.5以上であり、また通常 1.2X (2/3 + e,+4Z3Xf,)以下であり、好ましくは 1. IX (2Z3 + e,+4Z3Xf,)以下、より 好ましくは 3.5以下である。
[0289] 以下に、一般式 [2]において b'の値力 0.4≤b'≤0.99999の範囲であり、かつ 、 d' =0である蛍光体を「Sr置換量が多い蛍光体」と略記する場合がある。
[0290] 本発明の蛍光体に含まれる酸素は、原料金属中の不純物として混入するもの、粉 砕工程、窒化工程などの製造プロセス時に混入するものなどが考えられる。
酸素の含有量は蛍光体の発光特性低下が容認できる範囲で通常 5重量%以下、 好ましくは 2重量%以下、最も好ましくは 1重量%以下である。
[0291] 蛍光体の組成の具体例としては、 (Sr, Ca, Mg)AlSiN : Eu、 (Sr, Ca, Mg)AlS
3
iN : Ce、 (Sr, Ca, Ba) Si N : Eu、 (Sr, Ca, Ba) Si N : Ce等が挙げられる。
3 2 5 8 2 5 8
[0292] {蛍光体の特性 }
本発明で製造される蛍光体は、例えば、以下のような特性を有する場合がある。
[0293] <発光色>
本発明の蛍光体の発光色は、化学組成等を調整することにより、青色、青緑色、緑 色、黄緑色、黄色、橙色、赤色等、所望の発光色とすることができる。
[0294] 発光スペクトル
例えば、本発明の蛍光体が、前記の Sr置換量が多い蛍光体であり、かつ、付活元 素 M1として Euを含有する場合、橙色ないし赤色蛍光体としての用途に鑑みて、ピー ク波長 465nmの光で励起した場合における発光スペクトルを測定した場合に、以下 の特徴を有することが好まし 、。
[0295] まず、上記の蛍光体は、上述の発光スペクトルにおけるピーク波長 λ p (nm)力 通 常 590應より大きく、中でも 600應以上、また、通常 650nm以下、中でも 640應 以下の範囲であることが好ましい。この発光ピーク波長 λ ρが短過ぎると黄味を帯び る傾向がある一方で、長過ぎると暗赤味を帯びる傾向があり、何れも橙色ないし赤色 光としての特性が低下する場合があるので好ましくない。
[0296] また、上記の蛍光体は、上述の発光スペクトルにおける発光ピークの半値幅 (foil w idth at half maximum。以下適宜「FWHM」と略称する。)力 通常 50nmより大きく 、中でも 70nm以上、更には 75nm以上、また、通常 120nm未満、中でも lOOnm以 下、更には 90nm以下の範囲であることが好ましい。この半値幅 FWHMが狭過ぎる と発光強度が低下する場合があり、広過ぎると色純度が低下する場合がある。
[0297] なお、上記の蛍光体をピーク波長 465nmの光で励起するには、例えば、 GaN系 発光ダイオードを用いることができる。また、本発明の蛍光体の発光スペクトルの測定 は、例えば、励起光源として 150Wキセノンランプを、スペクトル測定装置としてマル チチャンネル CCD検出器 C7041 (浜松フォト-タス社製)を備える蛍光測定装置(日 本分光社製)等を用いて行うことができる。発光ピーク波長、及び発光ピークの半値 幅は、得られる発光スペクトル力も算出することができる。
[0298] 重量メジアン径 D
50
本発明の蛍光体は、その重量メジアン径 D 力 通常 3 μ m以上、中でも 5 μ m以上
50
、また、通常 30 μ m以下、中でも 20 μ m以下の範囲であることが好ましい。重量メジ アン径 D
50力小さすぎると、輝度が低下する場合や、蛍光体粒子が凝集してしまう場 合がある。一方、重量メジアン径 D が大きすぎると、塗布ムラやディスペンサー等の
50
閉塞が生じる傾向がある。
なお、本発明における蛍光体の重量メジアン径 D
50は、例えばレーザー回折 Z散 乱式粒度分布測定装置等の装置を用いて測定することができる。
[0299] 温度特性
本発明の蛍光体は、温度特性にも優れるものである。具体的には、波長 455nmに ピークを有する光を照射した場合における 25°Cでの発光スペクトル図中の発光ピー ク強度値に対する 150°Cでの発光スペクトル図中の発光ピーク強度値の割合力 通 常 55%以上であり、好ましくは 60%以上、特に好ましくは 70%以上である。
また、通常の蛍光体は温度上昇と共に発光強度が低下するので、該割合が 100% を越えることは考えられにくいが、何らかの理由により 100%を超えることがあっても 良い。ただし 150%を超えるようであれば、温度変化により色ずれを起こす傾向となる
[0300] 本発明の蛍光体は、上記発光ピーク強度に関してだけでなぐ輝度の点からも温度 特性に優れたものである。具体的には、波長 455nmにピークを有する光を照射した 場合の 25°Cでの輝度に対する 150°Cでの輝度の割合も、通常 55%以上であり、好 ましくは 60%以上、特に好ましくは 70%以上である。
[0301] 尚、上記温度特性を測定する場合は、例えば、発光スペクトル装置として大塚電子 製 MCPD7000マルチチャンネルスペクトル測定装置、輝度測定装置として色彩輝 度計 BM5A、ペルチェ素子による冷却機構とヒーターによる加熱機構を備えたステ ージ及び光源として 150Wキセノンランプを備える装置を用いて、以下のように測定 することができる。ステージに蛍光体サンプルを入れたセルを載せ、温度を 20°Cから 150°Cの範囲で変化させる。蛍光体の表面温度が測定温度で一定となったことを確 認する。次いで、光源から回折格子で分光して取り出したピーク波長 455nmの光で 蛍光体を励起して発光スペクトル測定する。測定された発光スペクトル力 発光ピー ク強度を求める。ここで、蛍光体の励起光照射側の表面温度の測定値は、放射温度 計と熱電対による温度測定値を利用して補正した値を用いる。
[0302] その他
本発明の蛍光体は、その内部量子効率が高いほど好ましい。その値は、通常 0. 5 以上、好ましくは 0. 6以上、更に好ましくは 0. 7以上である。内部量子効率が低いと 発光効率が低下する傾向にあり、好ましくない。
[0303] 本発明の蛍光体は、その吸収効率も高いほど好ましい。その値は通常 0. 5以上、 好ましくは 0. 6以上、更に好ましくは 0. 7以上である。吸収効率が低いと発光効率が 低下する傾向にあり、好ましくない。
[0304] {蛍光体の用途)
本発明の蛍光体は、高輝度であり、演色性が高いという特性を生力して、各種の発 光装置 (後述する「本発明の発光装置」)に好適に用いることができる。例えば、本発 明の蛍光体が橙色ないし赤色蛍光体である場合、緑色蛍光体、青色蛍光体等を組 み合わせれば、高演色性の白色発光装置を実現することができる。こうして得られた 発光装置を、画像表示装置の発光部 (特に液晶用バックライトなど)や照明装置とし て使用することができる。また、本発明の蛍光体を単独で使用することも可能であり、 例えば、近紫外 LEDと本発明の橙色蛍光体とを組み合わせれば、橙色発光装置を 製造することができる。
[0305] {蛍光体含有組成物 }
本発明の蛍光体は、液体媒体と混合して用いることもできる。特に、本発明の蛍光 体を発光装置等の用途に使用する場合には、これを液体媒体中に分散させた形態 で用いることが好ましい。本発明の蛍光体を液体媒体中に分散させたものを、適宜「 本発明の蛍光体含有組成物」と呼ぶものとする。
[0306] <蛍光体 >
本発明の蛍光体含有組成物に含有させる本発明の蛍光体の種類に制限は無ぐ 上述したもの力も任意に選択することができる。また、本発明の蛍光体含有組成物に 含有させる本発明の蛍光体は、 1種のみであってもよぐ 2種以上を任意の組み合わ せ及び比率で併用してもよい。更に、本発明の蛍光体含有組成物には、必要に応じ て本発明の蛍光体以外の蛍光体を含有させてもよい。
[0307] <液体媒体 >
本発明の蛍光体含有組成物に使用される液体媒体としては、該蛍光体の性能を目 的の範囲で損なわない限りにおいて特に限定されない。例えば、所望の使用条件下 において液状の性質を示し、本発明の蛍光体を好適に分散させるとともに、好ましく な ヽ反応を生じな!ヽものであれば、任意の無機系材料及び Z又は有機系材料が使 用できる。
[0308] 無機系材料としては、例えば、金属アルコキシド、セラミック前駆体ポリマー若しくは 金属アルコキシドを含有する溶液をゾルーゲル法により加水分解重合して成る溶液、 又はこれらの組み合わせを固化した無機系材料 (例えばシロキサン結合を有する無 機系材料)等を挙げることができる。
[0309] 有機系材料としては、例えば、熱可塑性榭脂、熱硬化性榭脂、光硬化性榭脂等が 挙げられる。具体的には、例えば、ポリメタアクリル酸メチル等のメタアクリル榭脂;ポリ スチレン、スチレン—アクリロニトリル共重合体等のスチレン榭脂;ポリカーボネート榭 脂;ポリエステル榭脂;フエノキシ榭脂;プチラール榭脂;ポリビュルアルコール;ェチ ノレセノレロース、セノレロースアセテート、セノレロースアセテートブチレート等のセノレロー ス系榭脂;エポキシ榭脂;フエノール榭脂;シリコーン榭脂等が挙げられる。
[0310] これらの中で特に照明など大出力の発光装置に蛍光体を用いる場合には、耐熱性 や耐光性等を目的として珪素含有ィ匕合物を使用することが好ましい。
[0311] 珪素含有化合物とは、分子中に珪素原子を有する化合物をいい、例えば、ポリオ ルガノシロキサン等の有機材料 (シリコーン系材料)、酸ィ匕ケィ素、窒化ケィ素、酸窒 化ケィ素等の無機材料、及びホウケィ酸塩、ホスホケィ酸塩、アルカリケィ酸塩等の ガラス材料を挙げることができる。中でも、ハンドリングの容易さ等の点から、シリコー ン系材料が好ましい。
[0312] 上記シリコーン系材料とは、通常、シロキサン結合を主鎖とする有機重合体をいい
、例えば下記式 (i)で表される化合物及び Z又はそれらの混合物が挙げられる。
[0313] [化 1]
(R1R2R3Si01/2)M(R4R5Si02/2)D(R6Si03/2)T(Si04/2)Q 式 (i)
[0314] 上記式 (i)において、 R1から R6は同じであっても異なってもよぐ有機官能基、水酸 基、水素原子力 なる群力 選択される。
また、上記式 (i)において、 M、 D、 T及び Qは、各々 0以上 1未満の数であり、且つ
、 M + D+T+Q = lを満足する数である。
[0315] 該シリコーン系材料は、後述の第 1の発光体として用いることができる半導体発光 素子の封止に用いる場合、液状のシリコーン系材料を用いて封止した後、熱や光に よって硬化させて用いることができる。
[0316] シリコーン系材料を硬化のメカニズムにより分類すると、通常、付加重合硬化タイプ
、縮重合硬化タイプ、紫外線硬化タイプ、パーオキサイド架硫タイプなどのシリコーン 系材料を挙げることができる。これらの中では、付加重合硬化タイプ (付加型シリコー ン榭脂)、縮合硬化タイプ (縮合型シリコーン榭脂)、紫外線硬化タイプが好適である 。以下、付加型シリコーン系材料、及び縮合型シリコーン系材料について説明する。
[0317] 付加型シリコーン系材料とは、ポリオルガノシロキサン鎖力 有機付加結合により架 橋されたものをいう。代表的なものとしては、例えばビュルシランとヒドロシランを Pt触 媒などの付加型触媒の存在下反応させて得られる Si -C-C- Si結合を架橋点に 有する化合物等を挙げることができる。これらは市販のものを使用することができ、例 えば付加重合硬化タイプの具体的商品名としては信越ィ匕学工業社製「LPS - 1400 」「LPS— 2410」「LPS— 3400」等が挙げられる。
[0318] 一方、縮合型シリコーン系材料とは、例えば、アルキルアルコキシシランの加水分 解'重縮合で得られる Si— O— Si結合を架橋点に有する化合物を挙げることができる 具体的には、下記一般式 (ii)及び Z又は (iii)で表される化合物、及び Z又はそ のオリゴマーを加水分解 ·重縮合して得られる重縮合物が挙げられる。
[0319] Mm+X Y1 _ (ii)
式 (ii)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少なく とも 1種の元素を表し、 Xは、加水分解性基を表し、 Y1は、 1価の有機基を表し、 mは 、 Mの価数を表す 1以上の整数を表し、 nは、 X基の数を表す 1以上の整数を表す。 但し、 m≥nである。
[0320] MS+X Y' _ (iii)
式 (iii)中、 Mは、ケィ素、アルミニウム、ジルコニウム、及びチタンより選択される少な くとも 1種の元素を表し、 Xは、加水分解性基を表し、 Y1は、 1価の有機基を表し、 Y2 は、 u価の有機基を表し、 sは、 Mの価数を表す 1以上の整数を表し、 tは、 1以上、 s 1以下の整数を表し、 uは、 2以上の整数を表す。
[0321] また、縮合型シリコーン系材料には、硬化触媒を含有させてもよい。この硬化触媒と しては、例えば、金属キレートイ匕合物などを好適なものとして用いることができる。金 属キレート化合物は、 Ti、 Ta、 Zrの何れか 1以上を含むものが好ましぐ Zrを含むも のが更に好ましい。なお、硬化触媒は、 1種のみを用いてもよぐ 2種以上を任意の組 み合わせ及び比率で併用してもょ 、。
[0322] このような縮合型シリコーン系材料としては、例えば特願 2006— 47274号〜 4727 7号明細書及び特願 2006— 176468号明細書に記載の半導体発光デバイス用部 材が好適である。
[0323] 縮合型シリコーン系材料の中で、特に好ましい材料について、以下に説明する。
シリコーン系材料は、一般に半導体発光素子や素子を配置する基板、パッケージ 等との接着性が弱いことが課題とされるが、密着性が高いシリコーン系材料として、特 に、以下の特徴〔1〕〜〔3〕のうち 1つ以上を有する縮合型シリコーン系材料が好まし い。
[0324] 〔1〕ケィ素含有率が 20重量%以上である。
〔2〕後に詳述する方法によって測定した固体 Si 核磁気共鳴 (NMR)スペクトルに おいて、下記 (a)及び Z又は (b)の Siに由来するピークを少なくとも 1つ有する。 (a)ピークトップの位置がテトラメトキシシランを基準としてケミカルシフト一 40ppm 以上、 Oppm以下の領域にあり、ピークの半値幅が 0. 3ppm以上、 3. Oppm以下で あるピーク。
(b)ピークトップの位置がテトラメトキシシランを基準としてケミカルシフト一 80ppm 以上、 40ppm未満の領域〖こあり、ピークの半値幅が 0. 3ppm以上 5. Oppm以下 であるピーク。
〔3〕シラノール含有率が 0. 1重量%以上、 10重量%以下である。
[0325] 本発明においては、上記の特徴〔1〕〜〔3〕のうち、特徴〔1〕を有するシリコーン系材 料が好ましぐ上記の特徴〔1〕及び〔2〕を有するシリコーン系材料がより好ましぐ上 記の特徴〔1〕〜〔3〕を全て有するシリコーン系材料が特に好ましい。
以下、上記の特徴〔1〕〜〔3〕について説明する。
[0326] く特徴〔1〕(ケィ素含有率)〉
従来のシリコーン系材料の基本骨格は炭素 炭素及び炭素 酸素結合を基本骨 格としたエポキシ榭脂等の有機榭脂であるが、これに対し本発明のシリコーン系材料 の基本骨格はガラス (ケィ酸塩ガラス)などと同じ無機質のシロキサン結合である。こ のシロキサン結合は、下記表 1の化学結合の比較表力もも明らかなように、シリコーン 系材料として優れた以下の特徴がある。
[0327] (I)結合エネルギーが大きぐ熱分解 '光分解し難いため、耐光性が良好である。
(II)電気的に若干分極して!/ヽる。
(III)鎖状構造の自由度は大きぐフレキシブル性に富む構造が可能であり、シロキサ ン鎖中心に自由回転可能である。
(IV)酸ィ匕度が大きぐこれ以上酸化されない。
(V)電気絶縁性に富む。
[0328] [表 1] 化学結合比較表
Figure imgf000069_0001
[0329] これらの特徴から、シロキサン結合が 3次元的に、し力も高架橋度で結合した骨格 で形成されるシリコーン系のシリコーン系材料は、ガラス或いは岩石などの無機質に 近ぐ耐熱性及び耐光性に富む保護皮膜となることが理解できる。特にメチル基を置 換基とするシリコーン系材料は、紫外領域に吸収を持たないため光分解が起こり難く 、耐光性に優れる。
[0330] 本発明に好適なシリコーン系材料のケィ素含有率は、通常 20重量%以上であるが 、中でも 25重量%以上が好ましぐ 30重量%以上がより好ましい。一方、上限として は、 SiOのみ力もなるガラスのケィ素含有率力 7重量%であるという理由から、通常
2
47重量%以下の範囲である。
[0331] なお、シリコーン系材料のケィ素含有率は、例えば以下の方法を用いて誘導結合 咼周波プラズマ分光 (inductively coupled plasma spectrometry:以下適: Ml「ICP」と 略する。)分析を行ない、その結果に基づいて算出することができる。
[0332] [ケィ素含有率の測定]
シリコーン系材料を白金るつぼ中にて大気中、 450°Cで 1時間、次いで 750°Cで 1 時間、 950°Cで 1. 5時間保持して焼成し、炭素成分を除去した後、得られた残渣少 量に 10倍量以上の炭酸ナトリウムをカ卩えてバーナー加熱し溶融させ、これを冷却し て脱塩水を加え、更に塩酸にて pHを中性程度に調整しつつケィ素として数 ppm程 度になるよう定容し、 ICP分析を行なう。
[0333] 〈特徴〔2〕(固体 Si— NMRスペクトル)〉
本発明に好適なシリコーン系材料の固体 Si— NMR^ぺクトルを測定すると、有機 基の炭素原子が直接結合したケィ素原子に由来する前記 (a)及び Z又は (b)のピー ク領域に少なくとも 1本、好ましくは複数本のピークが観測される。 [0334] ケミカルシフト毎に整理すると、本発明に好適なシリコーン系材料において、(a)に 記載のピークの半値幅は、分子運動の拘束が小さいために、全般に後述の (b)に記 載のピークの場合より小さぐ通常 3. Oppm以下、好ましくは 2. Oppm以下、また、通 常 0. 3ppm以上の範囲である。
一方、(b)に記載のピークの半値幅は、通常 5. Oppm以下、好ましくは 4. Oppm以 下、また、通常 0. 3ppm以上、好ましくは 0. 4ppm以上の範囲である。
[0335] 上記のケミカルシフト領域において観測されるピークの半値幅が大き過ぎると、分 子運動の拘束が大きくひずみの大きな状態となり、クラックが発生し易ぐ耐熱'耐候 耐久性に劣る部材となる場合がある。例えば、四官能シランを多用した場合や、乾燥 工程において急速な乾燥を行ない大きな内部応力を蓄えた状態などにおいて、半 値幅範囲が上記の範囲より大きくなる。
[0336] また、ピークの半値幅が小さ過ぎると、その環境にある Si原子はシロキサン架橋に 関わらないことになり、三官能シランが未架橋状態で残留する例など、シロキサン結 合主体で形成される物質より耐熱 '耐候耐久性に劣る部材となる場合がある。
[0337] 但し、大量の有機成分中に少量の Si成分が含まれるシリコーン系材料においては 、—80ppm以上に上述の半値幅範囲のピークが認められても、良好な耐熱'耐光性 及び塗布性能は得られな 、場合がある。
[0338] 本発明に好適なシリコーン系材料のケミカルシフトの値は、例えば以下の方法を用 いて固体 Si— NMR測定を行ない、その結果に基づいて算出することができる。また 、測定データの解析(半値幅ゃシラノール量解析)は、例えばガウス関数やローレン ッ関数を使用した波形分離解析等により、各ピークを分割して抽出する方法で行なう
[0339] [固体 Si— NMRスペクトル測定及びシラノール含有率の算出]
シリコーン系材料について固体 Si— NMRスペクトルを行なう場合、以下の条件で 固体 Si— NMRスペクトル測定及び波形分離解析を行なう。また、得られた波形デー タより、シリコーン系材料について、各々のピークの半値幅を求める。また、全ピーク 面積に対するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノール となっているケィ素原子の比率 (%)を求め、別に分析したケィ素含有率と比較するこ とによりシラノール含有率を求める。
[0340] [装置条件]
装置: Chemagnetics社 InfinityCMX- 400核磁気共鳴分光装置
29Si共鳴周波数: 79. 436MHz
プローブ: 7. 5mm φ CP/MAS用プローブ
測定温度:室温
試料回転数: 4kHz
測定法:シングルパルス法
1Hデカップリング周波数: 50kHz
29Siフリップ角: 90°
29Si90°ノ レス幅: 5. O /z s
繰り返し時間: 600s
積算回数: 128回
観測幅: 30kHz
ブロードニングフアクター: 20Hz
基準試料:テトラメトキシシラン
[0341] シリコーン系材料については、 512ポイントを測定データとして取り込み、 8192ポィ ントにゼロフィリングしてフーリエ変換する。
[0342] [波形分離解析法]
フーリエ変換後のスペクトルの各ピークについてローレンツ波形及びガウス波形或 いは両者の混合により作成したピーク形状の中心位置、高さ、半値幅を可変パラメ一 タとして、非線形最小二乗法により最適化計算を行なう。
なお、ピークの同定は、 AIChE Journal, 44(5), p. 1141, 1998年等を参考にする。
[0343] く特徴〔3〕(シラノール含有率) >
本発明に好適なシリコーン系材料は、シラノール含有率が、通常 0. 1重量%以上、 好ましくは 0. 3重量%以上、また、通常 10重量%以下、好ましくは 8重量%以下、更 に好ましくは 5重量%以下の範囲である。シラノール含有率を低くすることにより、シラ ノール系材料は経時変化が少なぐ長期の性能安定性に優れ、吸湿及び透湿性何 れも低い優れた性能を有する。但し、シラノールが全く含まれない部材は密着性に劣 るため、シラノール含有率に上記のごとく最適な範囲が存在する。
[0344] なお、シリコーン系材料のシラノール含有率は、例えば上記く特徴〔2〕(固体 Si—N MRスペクトル)〉の(固体 Si— NMR ^ベクトル測定及びシラノール含有率の算出)の 項にぉ 、て説明した方法を用いて固体 Si— NMRスペクトル測定を行な 、、全ピーク 面積に対するシラノール由来のピーク面積の比率より、全ケィ素原子中のシラノール となっているケィ素原子の比率 (%)を求め、別に分析したケィ素含有率と比較するこ とにより算出することができる。
[0345] また、本発明に好適なシリコーン系材料は、適当量のシラノールを含有しているた め、通常は、デバイス表面に存在する極性部分にシラノールが水素結合し、密着性 が発現する。極性部分としては、例えば、水酸基やメタロキサン結合の酸素等が挙げ られる。
[0346] また、本発明に好適なシリコーン系材料は、通常、適当な触媒の存在下で加熱する ことにより、デバイス表面の水酸基との間に脱水縮合による共有結合を形成し、更に 強固な密着性を発現することができる。
[0347] 一方、シラノールが多過ぎると、系内が増粘して塗布が困難になったり、活性が高く なり加熱により軽沸分が揮発する前に固化したりすることによって、発泡や内部応力 の増大が生じ、クラックなどを誘起する場合がある。
[0348] <液体媒体の含有率 >
本発明の蛍光体含有組成物の液体媒体の含有率は、本発明の効果を著しく損な わない限り任意であるが、本発明の蛍光体含有組成物全体に対して、通常 50重量 %以上、好ましくは 75重量%以上であり、通常 99重量%以下、好ましくは 95重量% 以下である。液体媒体の量が多い場合には特段の問題は起こらないが、発光装置と した場合に所望の色度座標、演色指数、発光効率等を得るには、通常、上記のよう な配合比率で液体媒体を用いることが望ましい。一方、液体媒体が少な過ぎると流 動性がなく取り扱い難くなる可能性がある。
[0349] 液体媒体は、本発明の蛍光体含有組成物にぉ 、て、主にノ インダーとしての役割 を有する。液体媒体は、 1種を単独で用いてもよいが、 2種以上を任意の組み合わせ 及び比率で併用してもよい。例えば、耐熱性や耐光性等を目的として珪素含有化合 物を使用する場合は、当該珪素含有ィ匕合物の耐久性を損なわない程度に、ェポキ シ榭脂など他の熱硬化性榭脂を含有してもよい。この場合、他の熱硬化性榭脂の含 有量は、バインダーである液体媒体全量に対して通常 25重量%以下、好ましくは 10 重量%以下とすることが望まし 、。
[0350] <その他の成分 >
なお、本発明の蛍光体含有組成物には、本発明の効果を著しく損なわない限り、 蛍光体及び液体媒体以外に、その他の成分を含有させてもよい。また、その他の成 分は、 1種のみを用いてもよぐ 2種以上を任意の組み合わせ及び比率で併用しても よい。
[0351] <蛍光体含有組成物の利点 >
本発明の蛍光体含有組成物によれば、本発明の蛍光体を所望の位置に容易に固 定できる。例えば、本発明の蛍光体含有組成物を発光装置の製造に用いる場合、本 発明の蛍光体含有組成物を所望の位置に成形し、液体媒体を硬化させれば、当該 液体媒体で本発明の蛍光体を封止することができ、所望の位置に本発明の蛍光体 を容易に固定することが可能となる。
[0352] {発光装置)
次に、本発明の発光装置について説明する。
本発明の発光装置 (以下、適宜「発光装置」という)は、第 1の発光体 (励起光源)と 、当該第 1の発光体からの光の照射によって可視光を発する第 2の発光体とを有する 発光装置であって、該第 2の発光体が、前述の本発明の蛍光体の 1種又は 2種以上 を第 1の蛍光体として含有するものである。
[0353] 本発明の発光装置に用いる本発明の蛍光体としては、前述の本発明の蛍光体で あれば、その組成や発光色に特に制限はない。例えば、本発明の蛍光体が、前記一 般式 [2]で表され、かつ、付活元素 M1として Euを含有する場合、本発明の蛍光体は 、通常は、励起光源からの光の照射下において、橙色ないし赤色領域の蛍光を発す る蛍光体 (以下「本発明の橙色ないし赤色蛍光体」と言う場合がある。)となる。具体 的に、本発明の蛍光体が橙色ないし赤色蛍光体である場合は、 590ηπ!〜 640nm の波長範囲に発光ピークを有するものが好ましい。本発明の蛍光体は、何れか 1種 を単独で使用してもよく、 2種以上を任意の組み合わせ及び比率で併用してもょ 、。
[0354] また、本発明の発光装置に用いる本発明の蛍光体の重量メジアン径 D は、通常 1
50
0 μ m以上、中でも 15 μ m以上、また、通常 30 μ m以下、中でも 20 μ m以下の範囲 であることが好ましい。重量メジアン径 D が小さ過ぎると、輝度が低下し、蛍光体粒
50
子が凝集してしまう傾向がある。一方、重量メジアン径 D が大き過ぎると、塗布ムラ
50
やディスペンサー等の閉塞が生じる傾向がある。
[0355] また、本発明の発光装置に用いられる本発明の蛍光体の好ましい具体例としては、 前述の {蛍光体の組成 }の欄に記載した本発明の蛍光体や、後述の [実施例]の欄の 各実施例に用いた蛍光体が挙げられる。
[0356] 本発明の発光装置は、第 1の発光体 (励起光源)を有し、且つ、第 2の発光体として 少なくとも本発明の蛍光体を使用している他は、その構成は制限されず、公知の装 置構成を任意にとることが可能である。装置構成の具体例については後述する。
[0357] 本発明の発光装置の発光スペクトルにおける橙色な!/、し赤色領域の発光ピークと しては、 590nm〜670nmの波長範囲に発光ピークを有するものが好ましい。
[0358] 本発明の発光装置のうち、特に白色発光装置として、具体的には、第 1の発光体と して後述するような励起光源を用い、上述のような橙色ないし赤色蛍光体の他、後述 するような緑色の蛍光を発する蛍光体 (以下、適宜「緑色蛍光体」という)、青色の蛍 光を発する蛍光体 (以下、適宜「青色蛍光体」という)、黄色の蛍光を発する蛍光体( 以下、適宜「黄色蛍光体」という)等の公知の蛍光体を任意に組み合わせて使用し、 公知の装置構成をとることにより得られる。
[0359] ここで、該白色発光装置の白色とは、 JISZ8701により規定された、(黄みの)白、( 緑みの)白、(青みの)白、(紫みの)白及び白の全てを含む意であり、このうち好まし くは白である。
[0360] <発光装置の構成 (発光体) >
[第 1の発光体]
本発明の発光装置における第 1の発光体は、後述する第 2の発光体を励起する光 を発光するものである。 [0361] 第 1の発光体の発光波長は、後述する第 2の発光体の吸収波長と重複するもので あれば、特に制限されず、幅広い発光波長領域の発光体を使用することができる。 通常は、紫外領域から青色領域までの発光波長を有する発光体が使用され、近紫 外領域から青色領域までの発光波長を有する発光体を使用することが特に好ましい
[0362] 第 1の発光体の発光ピーク波長の具体的数値としては、通常 200nm以上が望まし い。このうち、近紫外光を励起光として用いる場合には、通常 300nm以上、好ましく は 330nm以上、より好ましくは 360nm以上、また、通常 420nm以下の発光ピーク波 長を有する発光体を使用することが望ましい。また、青色光を励起光として用いる場 合には、通常 420nm以上、好ましくは 430nm以上、また、通常 500nm以下、好まし くは 480nm以下の発光ピーク波長を有する発光体を使用することが望ま 、。何れ も、発光装置の色純度の観点からである。
[0363] 第 1の発光体としては、一般的には半導体発光素子が用いられ、具体的には発光 LEDや半導体レーザーダイオード(semiconductor laser diode。以下、適宜「LD」と 略称する。)等が使用できる。その他、第 1の発光体として使用できる発光体としては 、例えば、有機エレクト口ルミネッセンス発光素子、無機エレクト口ルミネッセンス発光 素子等が挙げられる。但し、第 1の発光体として使用できるものは本明細書に例示さ れるものに限られない。
[0364] 中でも、第 1の発光体としては、 GaN系化合物半導体を使用した GaN系 LEDや L Dが好ましい。なぜなら、 GaN系 LEDや LDは、この領域の光を発する SiC系 LED等 に比し、発光出力や外部量子効率が格段に大きぐ本発明の蛍光体と組み合わせる ことによって、非常に低電力で非常に明るい発光が得られるからである。例えば、 20 mAの電流負荷に対し、通常 GaN系 LEDや LDは SiC系の 100倍以上の発光強度 を有する。 GaN系 LEDや LDにおいては、 Al Ga N発光層、 GaN発光層又は In G
X Y X
a N発光層を有しているものが好ましい。 GaN系 LEDにおいては、それらの中でも I γ
n Ga N発光層を有するものは発光強度が非常に強いので特に好ましぐ GaN系 L
X Y
EDにおいては、 In Ga N層と GaN層の多重量子井戸構造のものが発光強度は非
X Y
常に強いので特に好ましい。 [0365] なお、上記において X+Yの値は通常 0. 8〜1. 2の範囲の値である。 GaN系 LED にお!/、て、これら発光層に Znや Siをドープしたものやドーパント無しのものが発光特 性を調節する上で好まし 、ものである。
[0366] GaN系 LEDはこれら発光層、 p層、 n層、電極、及び基板を基本構成要素としたも のであり、発光層を n型と p型の Al Ga N層、 GaN層、又は In Ga N層などでサンド
X Y X Y
イッチにしたへテロ構造を有しているもの力 発光効率が高くて好ましぐ更にへテロ 構造を量子井戸構造にしたもの力 発光効率が更に高いため、より好ましい。
なお、第 1の発光体は、 1個のみを用いてもよぐ 2個以上を任意の組み合わせ及び 比率で併用してもよい。
[0367] [第 2の発光体]
本発明の発光装置における第 2の発光体は、上述した第 1の発光体からの光の照 射によって可視光を発する発光体であり、第 1の蛍光体として前述の本発明の蛍光 体 (例えば、橙色ないし赤色蛍光体)を含有するとともに、その用途等に応じて適宜、 後述する第 2の蛍光体 (例えば、緑色蛍光体、青色蛍光体、黄色蛍光体等)を含有 する。また、例えば、第 2の発光体は、第 1及び第 2の蛍光体を封止材料中に分散さ せて構成される。
[0368] 上記第 2の発光体中に用いられる、本発明の蛍光体以外の蛍光体の糸且成には特 に制限はないが、結晶母体となる、 Y O、 YVO、 Zn SiO、 Y Al O 、 Sr SiO等
2 3 4 2 4 3 5 12 2 4 に代表される金属酸化物、 Sr Si N等に代表される金属窒化物、 Ca (PO ) C1等に
2 5 8 5 4 3 代表されるリン酸塩及び ZnS、 SrS、 CaS等に代表される硫化物、 Y O S、 La O S
2 2 2 2 等に代表される酸硫化物等に Ce、 Pr、 Nd、 Pm、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、 Yb等の希土類金属のイオンや Ag、 Cu、 Au、 Al、 Mn、 Sb等の金属のイオンを付活 元素又は共付活元素として組み合わせたものが挙げられる。
[0369] 結晶母体の好ましい例としては、例えば、 (Zn, Cd)S、 SrGa S、 SrS、 ZnS等の硫
2 4
化物; Y Ο S等の酸硫化物; (Υ, Gd) Al O 、 YAIO、 BaMgAl O 、 (Ba, Sr)(M
2 2 3 5 12 3 10 17
g, Mn)Al O 、 (Ba, Sr, Ca)(Mg, Zn, Mn)Al O 、 BaAl O 、 CeMgAl O
10 17 10 17 12 19 11 19
、 (Ba, Sr, Mg)0-Al O、 BaAl Si O、 SrAl O、 Sr Al O 、 Y Al O 等のアル
2 3 2 2 8 2 4 4 14 25 3 5 12 ミン酸塩; Y SiO、 Zn SiO等の珪酸塩; SnO、 Υ Ο等の酸化物; GdMgB O 、 ( Y, Gd)BO等の硼酸塩; Ca (PO ) (F, CI)、 (Sr, Ca, Ba, Mg) (PO ) CI等の
3 10 4 6 2 10 4 6 2 ハロリン酸塩; Sr P O、 (La, Ce)PO等のリン酸塩等を挙げることができる。
2 2 7 4
[0370] 但し、上記の結晶母体及び付活元素又は共付活元素は、元素組成には特に制限 はなく、同族の元素と一部置き換えることもでき、得られた蛍光体は近紫外から可視 領域の光を吸収して可視光を発するものであれば用いることが可能である。
[0371] 具体的には、蛍光体として以下に挙げるものを用いることが可能である力 これらは あくまでも例示であり、本発明で使用できる蛍光体はこれらに限られるものではない。 なお、以下の例示では、前述の通り、構造の一部のみが異なる蛍光体を、適宜省略 して示している。
[0372] [第 1の蛍光体]
本発明の発光装置における第 2の発光体は、第 1の蛍光体として、少なくとも上述 の本発明の蛍光体を含有する。本発明の蛍光体は、何れか 1種を単独で使用しても よぐ 2種以上を任意の組み合わせ及び比率で併用してもよい。また、第 1の蛍光体と しては、本発明の蛍光体以外にも、本発明の蛍光体と同色の蛍光を発する蛍光体( 同色併用蛍光体)を用いてもよい。例えば、本発明の蛍光体が、前記一般式 [2]で 表され、かつ、付活元素 M1として Euを含有する場合において、通常、本発明の蛍光 体は橙色ないし赤色蛍光体であるので、第 1の蛍光体として、本発明の蛍光体と共 に他種の橙色ないし赤色蛍光体を併用することができる。
[0373] 該橙色ないし赤色蛍光体としては、本発明の効果を著しく損なわない限り任意のも のを使用することができる。
この際、同色併用蛍光体である橙色ないし赤色蛍光体の発光ピーク波長は、通常 570nm以上、好ましくは 580nm以上、より好ましくは 585nm以上、また、通常 780η m以下、好ましくは 700nm以下、より好ましくは 680nm以下の波長範囲にあることが 好適である。
[0374] このような橙色な ヽし赤色蛍光体としては、例えば、赤色破断面を有する破断粒子 から構成され、赤色領域の発光を行なう(Mg, Ca, Sr, Ba) Si N: Euで表されるュ
2 5 8
一口ピウム賦活アルカリ土類シリコンナイトライド系蛍光体、規則的な結晶成長形状と してほぼ球形状を有する成長粒子から構成され、赤色領域の発光を行なう (Y, La, Gd, Lu) O S :Euで表されるユーロピウム賦活希土類ォキシカルコゲナイド系蛍光
2 2
体等が挙げられる。
[0375] 更【こ、特開 2004— 300247号公報【こ記載された、 Ti、 Zr、 Hf、 Nb、 Ta、 W、及び Moよりなる群から選ばれる少なくも 1種類の元素を含有する酸窒化物及び Z又は酸 硫ィ匕物を含有する蛍光体であって、 A1元素の一部又は全てが Ga元素で置換された アルファサイアロン構造をもつ酸窒化物を含有する蛍光体も、本発明にお ヽて用いる ことができる。なお、これらは酸窒化物及び Z又は酸硫ィ匕物を含有する蛍光体である
[0376] また、そのほか、赤色蛍光体としては、 (La, Y) O S: Eu等の Eu付活酸硫ィ匕物蛍
2 2
光体、 Y(V, P) 0 : Eu、 Y O : Eu等の Eu付活酸化物蛍光体、(Ba, Mg) SiO : E
4 2 3 2 4 u, Mn、(Ba, Sr, Ca, Mg) SiO : Eu, Mn等の Eu, Mn付活珪酸塩蛍光体、 LiW
2 4 2
O : Eu, LiW O : Eu, Sm、 Eu W O、 Eu W O : Nbゝ Eu W O : Sm等の Eu付
8 2 8 2 2 9 2 2 9 2 2 9
活タングステン酸塩蛍光体、(Ca, Sr) S :Eu等の Eu付活硫ィ匕物蛍光体、 YAIO : E
3 u等の Eu付活アルミン酸塩蛍光体、 Ca Y (SiO ) O :Eu、 LiY (SiO ) O :Eu、(
2 8 4 6 2 9 4 6 2
Sr, Ba, Ca) SiO : Eu、 Sr BaSiO : Eu等の Eu付活珪酸塩蛍光体、(Y, Gd) Al
3 5 2 5 3 5
O : Ce、(Tb, Gd) Al O : Ce等の Ce付活アルミン酸塩蛍光体、(Mg, Ca, Sr, B
12 3 5 12
a) Si (N, O) : Euゝ (Mg, Ca, Sr, Ba) Si(N, O) : Euゝ (Mg, Ca, Sr, Ba)AlSi
2 5 8 2
(N, O) : Eu等の Eu付活酸ィ匕物、窒化物又は酸窒化物蛍光体、 (Mg, Ca, Sr, Ba
3
)AlSi(N, O) : Ce等の Ce付活酸ィ匕物、窒化物又は酸窒化物蛍光体、 (Sr, Ca, B
3
a, Mg) (PO ) CI : Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍光体、 Ba MgSi O
10 4 6 2 3 2 8
: Eu, Mn、 (Ba, Sr, Ca, Mg) (Zn, Mg) Si O : Eu, Mn等の Eu, Mn付活珪酸
3 2 8
塩蛍光体、 3. 5MgO-0. 5MgF -GeO : Mn等の Mn付活ゲノレマン酸塩蛍光体、 E
2 2
u付活ひサイアロン等の Eu付活酸窒化物蛍光体、(Gd, Y, Lu, La) O : Eu, Bi等
2 3
の Eu, Bi付活酸化物蛍光体、 (Gd, Y, Lu, La) O S :Eu, Bi等の Eu, Bi付活酸硫
2 2
化物蛍光体、 (Gd, Y, Lu, La)VO : Eu, Bi等の Eu, Bi付活バナジン酸塩蛍光体
4
、 SrY S : Eu, Ce等の Eu, Ce付活硫化物蛍光体、 CaLa S : Ce等の Ce付活硫ィ匕
2 4 2 4
物蛍光体、 (Ba, Sr, Ca) MgP O : Eu, Mn、 (Sr, Ca, Ba, Mg, Zn) P O : Eu,
2 7 2 2 7
Mn等の Eu, Mn付活リン酸塩蛍光体、(Y, Lu) WO : Eu, Mo等の Eu, Mo付活タ ングステン酸塩蛍光体、(Ba, Sr, Ca) Si N: Eu, Ce (但し、 x、 y、 zは、 1以上の整 x y z
数を表す。)等の Eu, Ce付活窒化物蛍光体、(Ca, Sr, Ba, Mg) (PO ) (F, CI,
10 4 6
Br, OH) : Eu, Mn等の Eu, Mn付活ハロリン酸塩蛍光体、((Y, Lu, Gd, Tb) _ _ Sc Ce ) (Ca, Mg) (Mg, Zn) Si Ge O 等の Ce付活珪酸塩蛍光体等 y 2 1 2 z 12+ δ
を用いることも可能である。
[0377] 赤色蛍光体としては、 β ジケトネート、 βージケトン、芳香族カルボン酸、又は、 ブレンステッド酸等のァ-オンを配位子とする希土類元素イオン錯体力 なる赤色有 機蛍光体、ペリレン系顔料 (例えば、ジベンゾ { [f, f' ] -4, 4' , 7, 7'—テトラフエ- ル}ジインデノ [1, 2, 3— cd: l,, 2' , 3, 一 lm]ペリレン)、アントラキノン系顔料、レー キ系顔料、ァゾ系顔料、キナクリドン系顔料、アントラセン系顔料、イソインドリン系顔 料、イソインドリノン系顔料、フタロシアニン系顔料、トリフエ-ルメタン系塩基性染料、 インダンスロン系顔料、インドフエノール系顔料、シァニン系顔料、ジォキサジン系顔 料等を用いることも可能である。
[0378] 以上の中でも、赤色蛍光体としては、 (Ca, Sr, Ba) Si (N, O) : Eu、 (Ca, Sr, B
2 5 8
a) Si (N, O) : Euゝ (Ca, Sr, Ba)AlSi (N, O) : Euゝ (Ca, Sr, Ba)AlSi(N, O) :
2 3 3
Ce、 (Sr, Ba) SiO : Eu、 (Ca, Sr) S :Eu、 (La, Y) O S :Eu又は Eu錯体を含むこ
3 5 2 2
とが好ましく、より好ましくは(Ca, Sr, Ba) Si (N, O) : Eu、 (Ca, Sr, Ba) Si (N, O
2 5 8
) : Euゝ (Ca, Sr, Ba)AlSi (N, O) : Euゝ (Ca, Sr, Ba)AlSi(N, O) : Ceゝ (Sr, B
2 3 3
a) SiO : Eu、 (Ca, Sr) S :Eu又は(La, Y) O S :Eu、もしくは Eu (ジベンゾィルメタ
3 5 2 2
ン) · 1, 10—フエナント口リン錯体等の j8—ジケトン系 Eu錯体又はカルボン酸系 Eu
3
錯体を含むことが好ましぐ (Ca, Sr, Ba) Si (N, O) : Eu、 (Sr, Ca)AlSiN : Eu
2 5 8 3 又は(La, Y) O S :Euが特に好ましい。
2 2
[0379] また、以上例示の中でも、橙色蛍光体としては(Sr, Ba) SiO : Euが好ましい。
3 5
以上例示した橙色ないし赤色蛍光体は、いずれか 1種を単独で用いてもよぐ 2種 以上を任意の組み合わせ及び比率で併用してもょ 、。
[0380] [第 2の蛍光体]
本発明の発光装置における第 2の発光体は、その用途に応じて、上述の第 1の蛍 光体以外にも蛍光体 (即ち、第 2の蛍光体)を含有していてもよい。この第 2の蛍光体 は、第 1の蛍光体とは発光ピーク波長が異なる蛍光体である。通常、これらの第 2の 蛍光体は、第 2の発光体の発光の色調を調節するために使用されるため、第 2の蛍 光体としては第 1の蛍光体とは異なる色の蛍光を発する蛍光体を使用することが多い 。上記のように、第 1の蛍光体として橙色ないし赤色蛍光体を使用する場合、第 2の 蛍光体としては、例えば緑色蛍光体、青色蛍光体、黄色蛍光体等の第 1の蛍光体と は異なる色を発する蛍光体を用いる。
[0381] 本発明の発光装置に使用される第 2の蛍光体の重量メジアン径は、通常 10 m以 上、中でも 12 μ m以上、また、通常 30 μ m以下、中でも 25 μ m以下の範囲であるこ とが好ましい。重量メジアン径 D が小さ過ぎると、輝度が低下し、蛍光体粒子が凝集
50
してしまう傾向がある。一方、重量メジアン径 D が大き過ぎると、塗布ムラやディスぺ
50
ンサ一等の閉塞が生じる傾向がある。
[0382] く青色蛍光体〉
第 2の蛍光体として青色蛍光体を使用する場合、当該青色蛍光体は本発明の効果 を著しく損なわない限り任意のものを使用することができる。この際、青色蛍光体の発 光ピーク波長は、通常 420nm以上、好ましくは 430nm以上、より好ましくは 440nm 以上、また、通常 490nm以下、好ましくは 480nm以下、より好ましくは 470nm以下、 更に好ましくは 460nm以下の波長範囲にあることが好適である。
[0383] このような青色蛍光体としては、規則的な結晶成長形状としてほぼ六角形状を有す る成長粒子力 構成され、青色領域の発光を行なう(Ba, Sr, Ca) MgAl O : Euで
10 17 表されるユーロピウム賦活バリウムマグネシウムアルミネート系蛍光体、規則的な結晶 成長形状としてほぼ球形状を有する成長粒子から構成され、青色領域の発光を行な う(Mg, Ca, Sr, Ba) (PO ) (CI, F): Euで表されるユウ口ピウム賦活ハロリン酸力
5 4 3
ルシゥム系蛍光体、規則的な結晶成長形状としてほぼ立方体形状を有する成長粒 子から構成され、青色領域の発光を行なう(Ca, Sr, Ba) B O Cl:Euで表されるュ
2 5 9
ゥロピウム賦活アルカリ土類クロロボレート系蛍光体、破断面を有する破断粒子から 構成され、青緑色領域の発光を行なう(Sr, Ca, Ba)Al O: Eu又は(Sr, Ca, Ba)
2 4 4
Al O : Euで表されるユウ口ピウム賦活アルカリ土類アルミネート系蛍光体等が挙
14 25
げられる。 [0384] また、そのほか、青色蛍光体としては、 Sr P O : Sn等の Sn付活リン酸塩蛍光体、 (
2 2 7
Sr, Ca, Ba)Al O : Eu又は(Sr, Ca, Ba) Al O : Euゝ BaMgAl O : Euゝ(Ba
2 4 4 14 25 10 17
, Sr, Ca) MgAl O : Eu, BaMgAl O : Eu, Tb, Sm、 BaAl O : Eu等の Eu付
10 17 10 17 8 13
活アルミン酸塩蛍光体、 SrGa S : Ce、 CaGa S : Ce等の Ce付活チォガレート蛍光
2 4 2 4
体、(Ba, Sr, Ca) MgAl O : Eu, Mn等の Eu, Mn付活アルミン酸塩蛍光体、(Sr
10 17
, Ca, Ba, Mg) (PO ) CI: Euゝ (Ba, Sr, Ca) (PO ) (CI, F, Br, OH): Eu,
10 4 6 2 5 4 3
Mn, Sb等の Eu付活ハロリン酸塩蛍光体、 BaAl Si O : Eu、 (Sr, Ba) MgSi O :
2 2 8 3 2 8
Eu等の Eu付活珪酸塩蛍光体、 Sr P O : Eu等の Eu付活リン酸塩蛍光体、 ZnS :A
2 2 7
g、 ZnS :Ag, Al等の硫化物蛍光体、 Y SiO : Ce等の Ce付活珪酸塩蛍光体、 CaW
2 5
O等のタングステン酸塩蛍光体、(Ba, Sr, Ca) BPO : Eu, Mn、 (Sr, Ca) (PO )
4 5 10 4
•nB O : Euゝ 2SrO-0. 84P O ·0· 16B O : Eu等の Eu, Mn付活硼酸リン酸塩
6 2 3 2 5 2 3
蛍光体、 Sr Si O - 2SrCl: Eu等の Eu付活ハロ珪酸塩蛍光体、 SrSi Al ON : E
2 3 8 2 9 19 31 u、EuSi Al ON 等の Eu付活酸窒化物蛍光体、 La Ce Al (Si Al ) (N O
9 19 31 1 -x x 6-z z 10-z
) (ここで、 x、及び yは、それぞれ 0≤x≤l、 0≤z≤6を満たす数である。)、 La z 1 -x-y
Ce Ca Al(Si Al ) (N O ) (ここで、 x、 y、及び zは、それぞれ、 0≤x≤ 1、 0≤y x y 6 z z 10 z z
≤1、 0≤z≤6を満たす数である。)等の Ce付活酸窒化物蛍光体等を用いることも可 能である。
[0385] また、青色蛍光体としては、例えば、ナフタル酸イミド系、ベンゾォキサゾール系、ス チリル系、クマリン系、ビラリゾン系、トリァゾール系化合物の蛍光色素、ツリウム錯体 等の有機蛍光体等を用いることも可能である。
[0386] 以上の例示の中でも、青色蛍光体としては、(Ca、Sr, Ba) MgAl O : Eu、 (Sr,
10 17
Ca, Ba, Mg) (PO ) (CI, F) : Eu又は(Ba, Ca, Mg, Sr) SiO : Euを含むこと
10 4 6 2 2 4
が好ましく、(Caゝ Sr, Ba) MgAl O : Euゝ (Sr, Ca, Ba, Mg) (PO ) (CI, F) :
10 17 10 4 6 2
Eu又は(Ba, Ca, Sr) MgSi O : Euを含むことがより好ましぐ BaMgAl O : Eu、
3 2 8 10 17
Sr (PO ) (CI, F) : Eu又は Ba MgSi O : Euを含むことがより好ましい。また、こ
10 4 6 2 3 2 8
のうち照明用途及びディスプレイ用途としては(Sr, Ca, Ba, Mg) (PO ) CI: Eu
10 4 6 2 又は(Ca、 Sr, Ba) MgAl O : Euが特に好ましい。
10 17
[0387] 以上例示した青色蛍光体は、いずれか 1種を単独で用いてもよぐ 2種以上を任意 の組み合わせ及び比率で併用してもょ 、。
[0388] く黄色蛍光体〉
第 2の蛍光体として黄色蛍光体を使用する場合、当該黄色蛍光体は本発明の効果 を著しく損なわない限り任意のものを使用することができる。この際、黄色蛍光体の発 光ピーク波長は、通常 530nm以上、好ましくは 540nm以上、より好ましくは 550nm 以上、また、通常 620nm以下、好ましくは 600nm以下、より好ましくは 580nm以下 の波長範囲にあることが好適である。
[0389] このような黄色蛍光体としては、各種の酸化物系、窒化物系、酸窒化物系、硫ィ匕物 系、酸硫化物系等の蛍光体が挙げられる。
特に、 RE M O : Ce (ここで、 REは、 Y、 Tb、 Gd、 Lu、及び Smからなる群から選
3 5 12
ばれる少なくとも 1種類の元素を表し、 Mは、 Al、 Ga、及び Scからなる群力も選ばれ る少なくとも 1種類の元素を表す。)や Ma Mb Mc O : Ce (ここで、 Maは 2価の金属
3 2 3 12
元素、 Mbは 3価の金属元素、 Meは 4価の金属元素を表す。)等で表されるガーネット 構造を有するガーネット系蛍光体、 AE MdO: Eu (ここで、 AEは、 Ba、 Sr、 Ca、 Mg
2 4
、及び Zn力 なる群力 選ばれる少なくとも 1種類の元素を表し、 Mdは、 Si、及び Z 又は Geを表す。)等で表されるオルソシリケート系蛍光体、これらの系の蛍光体の構 成元素の酸素の一部を窒素で置換した酸窒化物系蛍光体、 AEAlSiN
3: Ce (ここで
、 AEは、 Ba、 Sr、 Ca、 Mg及び Zn力 なる群力 選ばれる少なくとも 1種類の元素を 表す。)等の CaAlSiN構造を有する窒化物系蛍光体等の Ceで付活した蛍光体等
3
が挙げられる。
[0390] また、その他、黄色蛍光体としては、 CaGa S: Eu、 (Ca, Sr) Ga S: Eu、 (Ca, S
2 4 2 4
r) (Ga, Al) S: Eu等の硫化物系蛍光体、 Cax (Si, Al) (O, N) : Eu等の SiAlO
2 4 12 16
N構造を有する酸窒化物系蛍光体等の Euで付活した蛍光体、(M Eu Mn )
1 -A-A A A 2
(BO ) (PO ) X(但し、 Mは、 Ca、 Sr、及び Baからなる群より選ばれる 1種以上
3 1 -P 4 P
の元素を表し、 Xは、 F、 Cl、及び Br力もなる群より選ばれる 1種以上の元素を表す。 A、 B、及び Pは、各々、 0. 001≤A≤0. 3, 0≤B≤0. 3, 0≤P≤0. 2を満たす数 を表す。)等の Eu付活又は Eu, Mn共付活ハロゲン化ホウ酸塩蛍光体等を用いるこ とも可能である。 [0391] また、黄色蛍光体としては、例えば、 brilliant sulfoflavine FF (Colour Index Num ber 56205)、 basic yellow HG (Colour Index Number 46040)、 eosine (Colour In dex Number 45380)、 rhodamine 6G (Colour Index Number 45160)等の蛍光染 料等を用いることも可能である。
[0392] 以上例示した黄色蛍光体は、いずれか 1種を単独で用いてもよぐ 2種以上を任意 の組み合わせ及び比率で併用してもょ 、。
[0393] く緑色蛍光体〉
第 2の蛍光体として緑色蛍光体を使用する場合、当該緑色蛍光体は本発明の効果 を著しく損なわない限り任意のものを使用することができる。この際、緑色蛍光体の発 光ピーク波長は、通常 500nm以上、中でも 510nm以上、更には 515nm以上、また 、通常 550nm以下、中でも 542nm以下、更には 535nm以下の範囲であることが好 ましい。この発光ピーク波長が短過ぎると青味を帯びる傾向がある一方で、長過ぎる と黄味を帯びる傾向があり、何れも緑色光としての特性が低下する場合がある。
[0394] 緑色蛍光体として具体的には、例えば、破断面を有する破断粒子から構成され、緑 色領域の発光を行なう(Mg, Ca, Sr, Ba) Si O N: Euで表されるユウ口ピウム付活
2 2 2
アルカリ土類シリコンォキシナイトライド系蛍光体等が挙げられる。
[0395] また、その他の緑色蛍光体としては、 Sr Al O : Eu、 (Ba, Sr, Ca)Al O: Eu等
4 14 25 2 4 の Eu付活アルミン酸塩蛍光体、(Sr, Ba)Al Si O: Eu、 (Ba, Mg) SiO: Eu、(B
2 2 8 2 4 a, Sr, Ca, Mg) SiO: Eu、 (Ba, Sr, Ca) (Mg, Zn) Si O: Eu、 (Ba, Ca, Sr,
2 4 2 2 7
Mg) (Sc, Y, Lu, Gd) (Si, Ge) O : Eu等の Eu付活珪酸塩蛍光体、 Y SiO: C
9 2 6 24 2 5 e, Tb等の Ce, Tb付活珪酸塩蛍光体、 Sr P O—Sr B O: Eu等の Eu付活硼酸リ
2 2 7 2 2 5
ン酸塩蛍光体、 Sr Si O - 2SrCl: Eu等の Eu付活ハロ珪酸塩蛍光体、 Zn SiO:
2 3 8 2 2 4
Mn等の Mn付活珪酸塩蛍光体、 CeMgAl O : Tb、Y A1 0 : Tb等の Tb付活ァ
11 19 3 5 12
ルミン酸塩蛍光体、 Ca Y (SiO ) O :Tb、 La Ga SiO : Tb等の Tb付活珪酸塩蛍
2 8 4 6 2 3 5 14
光体、(Sr, Ba, Ca) Ga S: Eu, Tb, Sm等の Eu, Tb, Sm付活チォガレート蛍光
2 4
体、 Y (Al, Ga) O : Ceゝ (Y, Ga, Tb, La, Sm, Pr, Lu) (Al, Ga) O : Ce等の
3 5 12 3 5 12
Ce付活アルミン酸塩蛍光体、 Ca Sc Si O : Ceゝ Ca (Sc, Mg, Na, Li) Si O :
3 2 3 12 3 2 3 12
Ce等の Ce付活珪酸塩蛍光体、 CaSc O: Ce等の Ce付活酸化物蛍光体、 Eu付活 サイアロン等の Eu付活酸窒化物蛍光体、 BaMgAl O : Eu, Mn等の Eu, Mn
10 17
付活アルミン酸塩蛍光体、 SrAl O: Eu等の Eu付活アルミン酸塩蛍光体、(La, Gd
2 4
, Y) O S :Tb等の Tb付活酸硫化物蛍光体、 LaPO: Ce, Tb等の Ce, Tb付活リン
2 2 4
酸塩蛍光体、 ZnS : Cu, Al、 ZnS : Cu, Au, Al等の硫化物蛍光体、(Y, Ga, Lu, S c, La) BO: Ce, Tb、 Na Gd B O: Ce, Tb、(Ba, Sr) (Ca, Mg, Zn) B O: K,
3 2 2 2 7 2 2 6
Ce, Tb等の Ce, Tb付活硼酸塩蛍光体、 Ca Mg (SiO ) CI: Eu, Mn等の Eu, Mn
8 4 4 2
付活ハロ珪酸塩蛍光体、 (Sr, Ca, Ba) (Al, Ga, In) S : Eu等の Eu付活チォアル
2 4
ミネート蛍光体やチォガレート蛍光体、 (Ca, Sr) (Mg, Zn) (SiO ) CI: Eu, Mn
8 4 4 2
等の Eu, Mn付活ハロ珪酸塩蛍光体、 M Si O N :Eu、 M Si O N: Eu (但し、 M
3 6 9 4 3 6 12 2
はアルカリ土類金属元素を表す。)等の Eu付活酸窒化物蛍光体等を用いることも可 能である。
[0396] また、緑色蛍光体としては、ピリジン フタルイミド縮合誘導体、ベンゾォキサジノン 系、キナゾリノン系、クマリン系、キノフタロン系、ナルタル酸イミド系等の蛍光色素、テ ルビゥム錯体等の有機蛍光体を用いることも可能である。
[0397] 以上例示した緑色蛍光体は、いずれか 1種を単独で使用してもよぐ 2種以上を任 意の組み合わせ及び比率で併用してもょ 、。
[0398] く第 2の蛍光体の選択〉
上記第 2の蛍光体としては、 1種類の蛍光体を単独で使用してもよぐ 2種以上の蛍 光体を任意の組み合わせ及び比率で併用してもよい。また、第 1の蛍光体と第 2の蛍 光体との比率も、本発明の効果を著しく損なわない限り任意である。従って、第 2の蛍 光体の使用量、並びに、第 2の蛍光体として用いる蛍光体の組み合わせ及びその比 率等は、発光装置の用途等に応じて任意に設定すればよい。
[0399] 本発明の発光装置において、以上説明した第 2の蛍光体 (黄色蛍光体、青色蛍光 体、緑色蛍光体等)の使用の有無及びその種類は、発光装置の用途に応じて適宜 選択すればよい。例えば、本発明の発光装置を橙色ないし赤色発光の発光装置とし て構成する場合には、第 1の蛍光体 (橙色ないし赤色蛍光体)のみを使用すればよく 、第 2の蛍光体の使用は通常は不要である。
[0400] 一方、本発明の発光装置を白色発光の発光装置として構成する場合には、所望の 白色光が得られるように、第 1の発光体と、第 1の蛍光体 (橙色ないし赤色蛍光体)と 、第 2の蛍光体を適切に組み合わせればよい。具体的に、本発明の発光装置を白色 発光の発光装置として構成する場合における、第 1の発光体と、第 1の蛍光体と、第 2 の蛍光体との好まし 、組み合わせの例としては、以下の(i)〜(m)の組み合わせが挙 げられる。
[0401] (i)第 1の発光体として青色発光体 (青色 LED等)を使用し、第 1の蛍光体として赤色 蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として緑色蛍光体を使用する。
[0402] (ii)第 1の発光体として近紫外発光体 (近紫外 LED等)を使用し、第 1の蛍光体として 赤色蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として青色蛍光体及び緑 色蛍光体を併用する。
[0403] (iii)第 1の発光体として青色発光体 (青色 LED等)を使用し、第 1の蛍光体として橙 色蛍光体 (本発明の蛍光体等)を使用し、第 2の蛍光体として緑色蛍光体を使用する
[0404] 上記の蛍光体の組み合わせについて、さらに具体例を以下の表 a)〜h)に挙げる。
但し、以下の表 d)、表 h)、及び後掲の表 5)で深赤色蛍光体として例示している (C a,Sr)AlSiNi 3: Euとは、 Caと Srの合計量に対する Caの量力 0モル0 /0以上であり、 波長 630nm以上 700nm以下の範囲に発光ピーク波長を有する蛍光体であり、本 発明の蛍光体であってもよい。
[0405] [表 2]
青色 LEDと本発明の橙色ないし赤色蛍光体とを
組み合わせた橙色ないし赤色発光装置
Figure imgf000086_0001
b)青色 LEDと、下記表に示す黄色蛍光体のうちの 1種又は 2種以上の蛍光体と、
Figure imgf000086_0002
c)青色 LEDと、下記表に示す緑色蛍光体のうちの 1種又は 2種以上の蛍光体と、
Figure imgf000086_0003
d)青色 LEDと、下記表に示す緑色蛍光体のうちの 1種又は 2種以上の蛍光体と、
Figure imgf000086_0004
表 3] e)近紫外 LEDと本発明の橙色ないし赤色蛍光体とを組み合わせた橙色ないし赤色発光装置
Figure imgf000087_0001
f)近紫外 LEDと、下記表に示す青緑色蛍光体のうちの 1種又は 2種以上の蛍光体と、 本発明の橙色ないし赤色蛍光体とを組み合わせた白色発光装置
Figure imgf000087_0002
g)近紫外 LEDと、下記表に示す青色蛍光体のうちの 1種又は 2種以上の蛍光体と、 下記表に示す緑色蛍光体のうちの 1種又は 2種以上の蛍光体と、
本発明の橙色ないし赤色蛍光体とを組み合わせた白色発光装置
Figure imgf000087_0003
表: 4]
h)近紫外 LEDと、下記表に示す黄色蛍光体のうちの 1種又は 2種以上の蛍光体と、下記表に示す綠色蛍光体のうちの1種ヌは 2種以上の蛍光体と、 の 色ないし 色蛍光体と、下記表に示す深赤色蛍光体のうちの 1種又は 2種以上の蛍光体とを組み合わせ fc白色発光装置
Figure imgf000088_0001
[0408] これらの組み合わせの中でも、半導体発光素子と蛍光体を、下記の表 1)〜7)に示 す組み合わせで使用した発光装置が特に好ましレ、。
[0409] [表 5]
1)
Figure imgf000089_0001
5)
半導体発光素子 青色蛍光体 橙色ないし赤色蛍光体 深赤色蛍光体 青色 LED Ca3(Sc,Mg)2Si3012: Ce 本発明の橙色ないし (Ca,Sr)AISiNi3:Eu 赤色蛍光体
青色 LED (Ba,Sr)2Si04:Eu 本発明の橙色ないし (Ca,Sr)AISiNi3:Eu 赤色蛍光体
青色 LED (Ca,Sr)Sc204;Ce 本発明の橙色ないし (Ca,Sr)AISiNi3:Eu 赤色蛍光体
青色 LED (Ca.Sr,Ba)Si2N202: Eu 本発明の橙色ないし (Ca,Sr)A!SiNi3:Eu 赤色蛍光体
青色 LED (Sr,Ba,Ca)Ga2S4:Eu 本発明の橙色ないし (Ca,Sr)AISiNi3:Eu 赤色蛍光体
青色 LED (Ba,Sr)3Si6012N2:Eu 本発明の橙色ないし (Ca,Sr)AISiNi3:Eu 赤色蛍光体 半導体発光素子 青色蛍光体 緑色蛍光体 橙色ないし赤色蛍光体
近紫外 LED BaMgAI10On7 Eu Ca3(Sc,Mg)2Si3012:Ce 本発明の橙色ないし赤色蛍光体
近紫外 LED BaMgAI10O17 Eu (Ca,Sr)Sc204:Ce 本発明の橙色ないし赤色蛍光体
近紫外 LED BaMgAI10O17 (Ba,Sr)2Si04:Eu 本発明の橙色ないし赤色蛍光体
近紫外 LED BaMgAI10O17 Eu (Ca,Sr,曰 a)Si2N22:Eu 本発明の橙色ないし赤色蛍光体
近紫外 LED BaMgAl-,0O17 Eu 2SrO-0. 84P2O5-0. 16B203:Eu本発明の橙色ないし赤色蛍光体
近紫外 LED BaMgAi10017 Eu Sr2Si308'2SrCI2:Eu 本発明の橙色ないし赤色蛍光体
近紫外し ED (Sr,Ca,Ba,Mg)5(P04)3CI: Eu (Ba,Sr)2Si04:Eu 本発明の橙色ないし赤色蛍光体
近紫外 LED BaMgAI10O17:Eu (Ba,Sr)3Si6012N2:Eu 本発明の橙色ないし赤色蛍光体
近紫外 LED (Sr,Ca,Ba,Mg)5(P04)3CI: Eu (Ba,Sr)3Si6012N2:Eu 本発明の橙色ないし赤色蛍光体
Figure imgf000090_0001
〔 s〕ffi0410 [0411] また、本発明の蛍光体は、他の蛍光体と混合 (ここで、混合とは、必ずしも蛍光体同 士が混ざり合っている必要はなぐ異種の蛍光体が組み合わされていることを意味す る。)して用いることができる。特に、上記に記載の組み合わせで蛍光体を混合すると 、好ましい蛍光体混合物が得られる。なお、混合する蛍光体の種類やその割合に特 に制限はない。
[0412] <封止材料 >
本発明の発光装置において、上記第 1及び Z又は第 2の蛍光体は、通常、封止材 料である液体媒体に分散させて用いられる。
該液体媒体としては、前述の {蛍光体含有組成物 }の項で記載したのと同様のもの が挙げられる。
[0413] また、該液体媒体は、封止部材の屈折率を調整するために、高 、屈折率を有する 金属酸ィ匕物となり得る金属元素を含有させることができる。高 、屈折率を有する金属 酸化物を与える金属元素の例としては、 Si、 Al、 Zr、 Ti、 Y、 Nb、 B等が挙げられる。 これらの金属元素は単独で使用されてもよぐ 2種以上が任意の組み合わせ及び比 率で併用されてもよい。
[0414] このような金属元素の存在形態は、封止部材の透明度を損なわなければ特に限定 されず、例えば、メタロキサン結合として均一なガラス層を形成していても、封止部材 中に粒子状で存在していてもよい。粒子状で存在している場合、その粒子内部の構 造はアモルファス状であっても結晶構造であってもよいが、高屈折率を与えるために は結晶構造であることが好ましい。また、その粒子径は、封止部材の透明度を損なわ ないために、通常は、半導体発光素子の発光波長以下、好ましくは lOOnm以下、更 に好ましくは 50nm以下、特に好ましくは 30nm以下である。例えばシリコーン系材料 に、酸化珪素、酸ィ匕アルミニウム、酸ィ匕ジルコニウム、酸化チタン、酸化イットリウム、 酸ィ匕ニオブ等の粒子を混合することにより、上記の金属元素を封止部材中に粒子状 で存在させることができる。
また、上記液体媒体としては、更に、拡散剤、フィラー、粘度調整剤、紫外線吸収剤 等公知の添加剤を含有して 、てもよ 、。
[0415] <発光装置の構成 (その他) > 本発明の発光装置は、上述の第 1の発光体及び第 2の発光体を備えていれば、そ のほかの構成は特に制限されないが、通常は、適当なフレーム上に上述の第 1の発 光体及び第 2の発光体を配置してなる。この際、第 1の発光体の発光によって第 2の 発光体が励起されて (即ち、第 1及び第 2の蛍光体が励起されて)発光を生じ、且つ、 この第 1の発光体の発光及び Z又は第 2の発光体の発光が、外部に取り出されるよう に配置されることになる。この場合、第 1の蛍光体と第 2の蛍光体とは必ずしも同一の 層中に混合されなくてもよぐ例えば、第 1の蛍光体を含有する層の上に第 2の蛍光 体を含有する層が積層する等、蛍光体の発色毎に別々の層に蛍光体を含有するよう にしてもよい。
[0416] また、本発明の発光装置では、上述の励起光源 (第 1の発光体)、蛍光体 (第 2の発 光体)及びフレーム以外の部材を用いてもよい。その例としては、前述の封止材料が 挙げられる。該封止材料は、発光装置において、蛍光体 (第 2の発光体)を分散させ る目的以外にも、励起光源 (第 1の発光体)、蛍光体 (第 2の発光体)及びフレーム間 を接着する目的で用いたりすることができる。
[0417] <発光装置の実施形態 >
以下、本発明の発光装置について、具体的な実施の形態を挙げて、より詳細に説 明するが、本発明は以下の実施形態に限定されるものではなぐ本発明の要旨を逸 脱しな 、範囲にぉ 、て任意に変形して実施することができる。
[0418] 本発明の発光装置の一例における、励起光源となる第 1の発光体と、蛍光体を有 する蛍光体含有部として構成された第 2の発光体との位置関係を示す模式的斜視図 を図 1に示す。図 1中の符号 1は蛍光体含有部 (第 2の発光体)、符号 2は励起光源( 第 1の発光体)としての面発光型 GaN系 LD、符号 3は基板を表す。相互に接触した 状態をつくるために、 LD (2)と蛍光体含有部 (第 2の発光体)(1)とそれぞれ別個に 作製し、それらの面同士を接着剤やその他の手段によって接触させてもよいし、 LD ( 2)の発光面上に蛍光体含有部 (第 2の発光体)を製膜 (成型)させてもょ ヽ。これらの 結果、 LD (2)と蛍光体含有部 (第 2の発光体)(1)とを接触した状態とすることができ る。
[0419] このような装置構成をとつた場合には、励起光源 (第 1の発光体)からの光が蛍光体 含有部 (第 2の発光体)の膜面で反射されて外にしみ出るという光量損失を避けること ができるので、装置全体の発光効率を良くすることができる。
[0420] 図 2 (a)は、一般的に砲弾型と言われる形態の発光装置の代表例であり、励起光源
(第 1の発光体)と蛍光体含有部 (第 2の発光体)とを有する発光装置の一実施例を 示す模式的断面図である。該発光装置 (4)において、符号 5はマウントリード、符号 6 はインナーリード、符号 7は励起光源 (第 1の発光体)、符号 8は蛍光体含有榭脂部、 符号 9は導電性ワイヤ、符号 10はモールド部材をそれぞれ指す。
[0421] また、図 2 (b)は、表面実装型と言われる形態の発光装置の代表例であり、励起光 源 (第 1の発光体)と蛍光体含有部 (第 2の発光体)とを有する発光装置の一実施例 を示す模式的断面図である。図中、符号 22は励起光源 (第 1の発光体)、符号 23は 蛍光体含有部 (第 2の発光体)としての蛍光体含有榭脂部、符号 24はフレーム、符 号 25は導電性ワイヤ、符号 26及び符号 27は電極をそれぞれ指す。
[0422] <発光装置の用途 >
本発明の発光装置の用途は特に制限されず、通常の発光装置が用いられる各種 の分野に使用することが可能である力 色再現範囲が広ぐ且つ、演色性も高いこと から、中でも照明装置や画像表示装置の光源として、とりわけ好適に用いられる。
[0423] {照明装置)
本発明の発光装置を照明装置に適用する場合には、前述のような発光装置を公知 の照明装置に適宜組み込んで用いればよい。例えば、図 3に示されるような、前述の 発光装置 (4)を組み込んだ面発光照明装置(11)を挙げることができる。
[0424] 図 3は、本発明の照明装置の一実施形態を模式的に示す断面図である。この図 3 に示すように、該面発光照明装置は、内面を白色の平滑面等の光不透過性とした方 形の保持ケース(12)の底面に、多数の発光装置(13) (前述の発光装置 (4)に相当 )を、その外側に発光装置(13)の駆動のための電源及び回路等(図示せず。)を設 けて配置し、保持ケース(12)の蓋部に相当する箇所に、乳白色としたアクリル板等 の拡散板(14)を発光の均一化のために固定してなる。
[0425] そして、面発光照明装置(11)を駆動して、発光装置(13)の励起光源 (第 1の発光 体)に電圧を印加することにより光を発光させ、その発光の一部を、蛍光体含有部( 第 2の発光体)としての蛍光体含有榭脂部における前記蛍光体が吸収し、可視光を 発光し、一方、蛍光体に吸収されなかった青色光等との混色により演色性の高い発 光が得られ、この光が拡散板(14)を透過して、図面上方に出射され、保持ケース(1 2)の拡散板(14)面内において均一な明るさの照明光が得られることとなる。
[0426] {画像表示装置)
本発明の発光装置を画像表示装置の光源として用いる場合には、その画像表示 装置の具体的構成に制限は無いが、カラーフィルターとともに用いることが好ましい。 例えば、画像表示装置として、カラー液晶表示素子を利用したカラー画像表示装置 とする場合は、上記発光装置をバックライトとし、液晶を利用した光シャッターと赤、緑 、青の画素を有するカラーフィルターとを組み合わせることにより画像表示装置を形 成することができる。
実施例
[0427] 以下、本発明を実施例によりさらに具体的に説明するが、本発明はその要旨を超 えない限り以下の実施例に限定されるものではな 、。
後述の各実施例及び各比較例にぉ 、て、各種の評価は以下の手法で行った。
[0428] 重量変化、及び融点の測定
各実施例及び各比較例の合金粉末又は窒素含有合金 lOmgを用いて、熱重量- 差熱 (thermogravimetry— differential thermal analysis: TG― DTA)測定装]^、 f ルカ一.エイエックスエス株式会社製、 TG-DTA2000)〖こより、雰囲気ガス(窒素、 アルゴン、又は窒素とアルゴンとの混合ガス) lOOmlZ分流通下、昇温速度 10°CZ 分で室温から 1500°Cまで加熱し、重量変化につ!、て測定を行った。
なお、測定結果を示すグラフ(図 5、及び図 10)において、左側の縦軸はサンプル 温度 (°C)を、右側の縦軸は重量変化速度(%Z時)を示す。
また、アルゴン気流中での TG— DTA測定において、融解に伴う吸熱を検出し、吸 熱ピークが現れる温度を融点とした。なお、融点の測定においては、 Au (融点 1063 °C)及び Si (融点 1410°C)を用いて温度校正を行った。
[0429] 重量増加率の測定
重量増加率は、一次窒化工程前の合金粉末、及び一次窒化工程後の窒素含有合 金の重量を測定し、下記式 [4]により求めた。
(一次窒化工程後の窒素含有合金の重量一一次窒化工程前の合金粉末の重量)
Z—次窒化工程前の合金粉末の重量 X 100 〜[4]
[0430] 全金属元素含有率の測定
全金属元素含有率は、一次窒化工程前の合金粉末、及び一次窒化工程後の窒素 含有合金の重量を測定して、下記式 [5]により求めた。
全金属元素含有率 (重量%)
= 100— { (一次窒化工程後の窒素含有合金の重量一一次窒化工程前の合金の 重量) Z—次窒化工程後の窒素含有合金の重量 } X 100 · · · [5]
[0431] 窒素含有率の測定
窒素含有率は、酸素窒素同時分析装置 (Leco社製)により、窒素含有合金又は蛍 光体の窒素含有量を測定し、窒素含有合金の窒素含有率は下記式 [6]により、また 、蛍光体の窒素含有率は下記式 [6A]により求めることができる。
窒素含有合金の窒素含有率 (重量%)
= (窒素含有量 Z—次窒化工程後の窒素含有合金の重量) X 100 - [6] 蛍光体の窒素含有率 (重量%)
= (窒素含有量 Z蛍光体の重量) X 100 〜[6A]
[0432] 酸素含有率の測定
酸素含有率は、酸素窒素同時分析装置 (Leco社製)により、窒素含有合金又は蛍 光体の酸素含有量を測定し、窒素含有合金の酸素含有率は下記式 [8]により、また 、蛍光体の酸素含有率は下記式 [8A]により求めることができる。
窒素含有合金の酸素含有率 (重量%)
= (酸素含有量 Z—次窒化工程後の窒素含有合金の重量) X 100 - [8] 蛍光体の酸素含有率 (重量%)
= (酸素含有量 Z蛍光体の重量) X 100 〜[8A]
[0433] NlZNPの算出方法
NIZNPは、窒素含有率の測定結果から、下記式 [7]により求めた。
0. 03≤NI/NP≤0. 9 - -- [7] 式 [7]において、
NIは、窒素含有合金中に含まれる窒素含有率 (重量%)を表し、
NPは、製造される蛍光体中に含まれる窒素含有率 (重量%)を表す。
[0434] 合金粉末の重量メジアン径 D の測定
50
気温 25°C、湿度 70%の環境下において、エチレングリコールに合金粉末サンプル を分散させ、レーザー回折式粒度分布測定装置 (堀場製作所 LA— 300)により粒 径範囲 0. 1 μ m〜600 μ mにて測定して得られた重量基準粒度分布曲線力 求め 、積算値が 50%のときの粒径値を重量メジアン径 D とした。また、この積算値が 25
50
%及び 75%の時の粒径値をそれぞれ D 、D とし、 QD二(D — D ) / (Ό + D
25 75 75 25 75 2
)で QDを算出した。
5
[0435] 蛍光体の重量メジアン径 D の測定
50
測定前に、超音波分散器 (株式会社カイジョー製)を用いて周波数を 19KHz、超 音波の強さを 5Wとし、 25秒間試料を超音波で分散させた。なお、分散液には、再凝 集を防止するため界面活性剤を微量添加した水を用いた。
重量メジアン径の測定にぉ 、ては、レーザー回折 Z散乱式粒度分布測定装置 (堀 場製作所製)を使用した。
[0436] [X線粉末回折測定]
Philips社製 XPert MPDを用いて、大気中で以下の条件で測定した。 ステップサイズ [° 2Th. ] 0. 0500
スタート position [。 2Th. ] 10. 0350
終了 pos. [° 2Th. ] 89. 9350
X線出力設定 45kV, 40mA
発散スリット (DS)サイズ [° ] 1. 0000
受光スリット(RS)サイズ [mm] 1. 0000
スキャンの種類 CONTINUOUS
スキャンステップ時間 [s] 33. 0000
測定温度 [°C] 0. 00
ゴ-ォメータ半径 [mm] 200. 00 フォーカス— DS間の距離 [mm] 91. 00
照射幅 [mm] 10. 00
試料幅 [mm] 10. 00
スキャン軸 ゴニ才
入射側モノクロメータ なし
ターゲット Cu
CuK a (1. 541A)
[0437] 化学組成の分析
Iし P免光分光分析法 (Inductively Coupled Plasma— Atomic Emission Spectrome try;以下、「ICP法」と称する場合がある。)により、ジョバイボン社製 ICP化学分析装 置「JY 38S」を使用して分析した。
[0438] 水分散試験における上澄み液の電気伝導度の測定
篩により分級して重量メジアン径 9 μ mに整粒した後(ただし、洗浄後の蛍光体粒子 の重量メジアン径が 9 mの場合は、この操作は行わない。)、この蛍光体粒子を蛍 光体重量の 10倍量の水に入れ、スターラーを用いて 10分間撹拌して分散させた。 1 時間放置後、蛍光体が沈降していることを確認し、上澄み液の電気伝導度を測定し た。
電気伝導度は東亜ディケーケ一社製電気伝導度計「EC METER CM— 30G」 を用いて、測定した。洗浄及び測定は室温で行った。
なお、各実施例及び各比較例で洗浄及び蛍光体の水分散試験に使用して 、る水 の電気伝導度は、 0. 03mSZmである。
[0439] 発光スペクトルの測定
蛍光体の発光スペクトルは、励起光源として 150Wキセノンランプを、スペクトル測 定装置としてマルチチャンネル CCD検出器 C7041 (浜松フォト-タス社製)を備える 蛍光測定装置(日本分光社製)用いて測定した。励起光源からの光を焦点距離が 10 cmである回折格子分光器に通し、波長 465nmの励起光のみを光ファイバ一を通じ て蛍光体に照射した。励起光の照射により蛍光体から発生した光を焦点距離が 25c mである回折格子分光器により分光し、 300nm以上、 800nm以下の波長範囲にお いてスペクトル測定装置により各波長の発光強度を測定し、パーソナルコンピュータ による感度補正等の信号処理を経て発光スペクトルを得た。
[0440] 発光ピーク波長、相対発光ピーク強度及び相対輝度の測定
発光ピーク波長は、得られた発光スペクトル力 読み取った。
また、相対発光ピーク強度 (以下、単に「発光ピーク強度」と称する場合がある。)は
、下記の参考例 1の蛍光体の発光ピーク強度を基準とした相対値で表した。
また、 JIS Z8724に準拠して算出した XYZ表色系における刺激値 Yから、下記の 参考例 1における蛍光体の刺激値 Yの値を 100%とした相対輝度(以下、単に「輝度
」と称する場合がある。)を算出した。なお、輝度は励起青色光をカットして測定した。 参考例 1
金属元素組成比が£11 :じ& :八1: 31=0. 008 : 0. 992 : 1: 1 (モル比)となるように、 C a N (CERAC社製 200mesh pass)、 A1N (トクャマ社製グレード F)、 Si N (宇部
3 2 3 4 興産社製 SN— E10)、及び Eu O (信越ィ匕学社製)をアルゴン雰囲気中で秤量し、
2 3
アルミナ乳鉢を用いて混合した。得られた原料混合物を窒化ホウ素製ルツボへ充填 し、雰囲気加熱炉中にセットした。装置内を 1 X 10_2Paまで真空排気した後、排気を 中止し、装置内へ窒素を 0. IMPaまで充填した後、 1600°Cまで昇温し、 1600°Cで 5時間保持した。得られた焼成物をアルミナ乳鉢で粉砕し、粒径 100 m以下のもの を採取することにより蛍光体を得た。励起波長 465nmにおける、この蛍光体の発光 ピーク波長は 648nmであった。
[0441] 色度座標の測定
発光スペクトルの 480nm〜800nmの波長領域のデータから、 JIS Z8701で規定 される XYZ表色系における色度座標 Xと yを算出した。
[0442] 式 [A]の値の算出
焼成容器の質量 (g)、及び蛍光体原料 (g)の質量を測定し、下記式 [A]に代入す ることにより、式 [A]の値を算出した。
(蛍光体原料の質量) /{ (焼成容器の質量) + (蛍光体原料の質量) } … [A] [0443] 加熱工程における 1分当たりの温度変化の測定
焼成容器の側壁の温度を、 10秒間間隔でタングステン—レニウム合金熱電対を用 いて測定した。なお、温度計は、焼成容器の外側の壁面で、蛍光体原料を充填した 高さの、 1Z2の高さの位置に設置した。得られた測定値から 1分間当たりの温度変 化を下記式 [B]により求めた。
温度変化 (°CZ分) =時刻 T分での温度 時刻 (T 1)分での温度 ·'·[Β] [0444] 実施例 1
合金の製造
金属元素組成比が A1: Si=l:l (モル比)となるように各原料金属を秤量し、黒鉛ル ッボに充填し、高周波誘導式溶融炉を用いてアルゴン雰囲気下で原料金属を溶融 した。その後、ルツボカも金型へ注湯して凝固させ、金属元素組成比が Al:Si=l:l である合金 (母合金)を得た。
[0445] 続いて、 Eu:Sr:Ca:Al:Si=0.008:0.792:0.2: 1: 1 (モル比)となるよう母合 金、その他原料金属を秤量した。炉内を真空排気した後、排気を中止し、炉内にァ ルゴンを所定圧まで充填した。この炉内でカルシアルッボを用いて母合金を溶解し、 次いで、原料金属である Sr、 Eu、及び Caをカ卩えた。全成分が融解されて溶湯が誘 導電流により撹拌されるのを確認した後、ルツボカ 水冷された銅製の金型 (厚さ 40 mmの板状)へ溶湯を注湯して凝固させた。
[0446] 得られた厚み 40mmの板状合金につ 、て ICP法で組成分析を行った。板状合金 の重心付近一点と、板状合金の端面付近一点力も約 10gサンプリングし、 ICP法によ り元素分析を行ったところ、
板状合金の中心部 Eu:Sr:Ca:Al:Si=0.009:0.782:0.212:1:0.986, 板状合金の端面 Eu:Sr:Ca:Al:Si=0.009:0.756:0.210:1:0.962 であり、分析精度の範囲において実質的に同一組成であった。従って、 Euを始め、 各々の元素が均一に分布していると考えられた。
[0447] 得られた合金は Sr (Si Al ) と類似した粉末 X線回折パターンを示し、 A1B型
0.5 0.5 2 2 のアルカリ土類シリサイドと呼ばれる金属間化合物と同定された。
[0448] 粉砕工程
得られた合金を、アルミナ乳鉢を用いて窒素雰囲気中でその粒径が約 lmm以下 になるまで粉砕した。得られた合金粉末を超音速ジェット粉砕機(日本-ユーマチック 工業株式会社、 PJM— 80SP)を用いて、窒素雰囲気中 (酸素濃度 2体積%)、粉砕 圧力 0. 15MPa、原料供給速度 0. 8kgZ時でさらに粉砕した。
[0449] 得られた合金粉末の重量メジアン径 D 、 QD、及び粒度分布を測定したところ、重
50
量メジアン径 D は 14. 2 m、 QDは 0. 38であり、また、 10 μ m以下の合金粒子の
50
割合は全体の 28. 6%、 45 m以上の合金粒子の割合は 2. 9%であった。また、こ の合金粉末の酸素含有率は 0. 3重量%、窒素含有率は 0. 3重量%以下 (検出限界 以下)だった。
また、得られた合金粉末について、アルゴン気流中で融点測定を行ったところ、融 解開始温度は 1078°C付近であり、融点は 1121°Cであった。
[0450] 一次窒化工程
得られた合金粉末 40gを内径 54mmの窒化ホウ素製ルツボに充填し、管状電気炉 内で窒素含有アルゴンガス(窒素:アルゴン = 2: 98 (体積比) ) 2LZ分流通下、常圧 下で、室温から 950°Cまでは昇温速度 4°CZ分で加熱し、 950°Cから 1100°Cまでは 昇温速度 2°CZ分で加熱し、最高到達温度(1100°C)で 5時間保持した。その後、窒 素含有アルゴンガス(窒素:アルゴン = 2: 98 (体積比) ) 2L/分の流通下、 950°Cま で 5°CZ分で冷却し、その後、約 10°CZ分で室温になるまで放冷し、窒素含有合金 を製造した。
[0451] 得られた窒素含有合金を取り出して秤量した。重量増加率は 4. 5重量%、全金属 元素含有率は 95. 7重量%であった。さらに、得られた窒素含有合金について、前 述の方法により、窒素含有率、及び酸素含有率を求めた。その結果を表 7に示す。 なお、本実施例の一次窒化工程における温度は、炉内温度、即ち、焼成装置にお V、て設定することができる温度を示して 、る。以下の各実施例及び各比較例にぉ ヽ ても同様である。
[0452] 二次窒化工程
一次窒化工程で得られた窒素含有合金を、窒素気流中、粒径が 53 m以下にな るまでアルミナ乳鉢を用いて粉砕し、目開き 53 μ mの篩 、を通過したものを採取した 。得られた合金粉末を内径 54mmの窒化ホウ素製ルツボに充填し、これを熱間等方 加圧装置 (HIP)内にセットした。前記装置内を 5 X 10_1Paまで真空排気した後、 30 0°Cに加熱し、 300°Cで真空排気を 1時間継続した。その後、窒素を IMPaまで充填 して、室温付近まで冷却した。その後、 0. IMPaまで放圧し、再び IMPaまで窒素を 充填する操作を二回繰り返し、加熱開始前に約 0. IMPaに調圧した。次いで、炉内 温度が 950°Cになるまで昇温速度 600°CZ時で加熱した。この時、内圧は、約 0. 5 MPaまで上昇した。炉内温度が 950°Cから 1100°Cになるまで、昇温速度 66. Ί。じ/ 時で加熱し、 1100°Cで 30分間保持した。その後、温度を 1100°Cに保ったまま、窒 素圧力を約 3時間かけて 140MPaまで昇圧し、さらに、その後、約 1時間かけて炉内 温度が 1900°Cに、炉内圧力が 190MPaになるまで昇温及び昇圧し、この状態で 2 時間保持した。続いて、 3時間かけて 400°C以下になるまで冷却して放冷した。 12時 間後、室温付近まで冷却した蛍光体を得た。なお、上記で記載の温度は炉内温度で あり、即ち、焼成装置 (本実施例においては、 HIP)において設定することができる温 度である(以下の実施例についても、特に断りのない限り、同様とする)。
[0453] 得られた蛍光体をアルミナ乳鉢で粉砕し、発光特性 (発光ピーク波長、相対発光ピ ーク強度、相対輝度、及び色度座標)について測定を行った。得られた結果を表 9に 示す。
なお、この実施例において、前記式 [A]の値は 0. 50 (容器質量 40g,原料質量 40 g)であり、加熱工程における、 1分間当たりの温度変化は 2°CZ分以下であった。
[0454] 実施例 2
後処理工程
実施例 1で得られた蛍光体を、室温において、重量比で 10倍量の水に入れ、スタ 一ラーを用いて 10分間攪拌し、分散させた。 1時間静置後、蛍光体が沈降しているこ とを確認し、濾過することにより、蛍光体を分離した。この操作を 15回繰り返した。吸 引濾過を行うことにより、得られた蛍光体を脱水した後、重量比で 10倍量の 0. 5N塩 酸に入れ、スターラーを用いて 10分間攪拌し、分散させた。 1時間静置後、濾過する ことにより蛍光体を分離し、さらに重量比で 10倍量の水に分散させて濾過する操作 を 3回繰り返した。前述した通りに電気伝導度の測定を行ったところ、上澄み液の電 気伝導度は 1. 90mSZmであった。脱水した後、 120°Cで 12時間乾燥し、蛍光体を 得られた蛍光体について重量メジアン径 D を測定したところ、 12. であった
50
。得られた蛍光体について、発光特性を測定した。その結果を表 9に示す。実施例 1 で得られた蛍光体に洗浄処理を施すことにより、相対発光ピーク強度及び相対輝度 が向上していることがわかる。また、式 [A]の値及び加熱工程における 1分間当たり の温度変化を表 8に示す。
[0455] 実施例 3
一次窒化工程の加熱条件を、最高到達温度を 1050°C、最高到達温度での保持 時間を 10時間としたこと以外は実施例 1と同様に行った。得られた窒素含有合金に ついて重量増加率、及び全金属元素含有率を算出し、その結果を表 7に示す。 続いて、実施例 1と同様に二次窒化工程を行って蛍光体を得た。得られた蛍光体 について、発光特性を測定した。その結果を表 9に示す。また、式 [A]の値及び加熱 工程における 1分間当たりの温度変化を表 8に示す。
[0456] 実施例 4
実施例 3で得られた蛍光体を、実施例 2と同様の方法で、水で 15回、 0. 5N塩酸で 1回洗浄した。続いて、上澄みの電気伝導度が 1. 52mSZmになるまで水で 5回洗 浄した。その後、分級を行うことにより、粒径範囲が 3 μ m以上 30 m以下である蛍 光体を得た。
得られた蛍光体について重量メジアン径 D を測定したところ、 7. であった。
50
得られた蛍光体について、発光特性を測定した。その結果を表 9に示す。得られた蛍 光体は、実施例 3で得られた蛍光体よりも相対発光ピーク強度及び相対輝度が向上 していることがわかる。また、式 [A]の値及び加熱工程における 1分間当たりの温度 変化を表 8に示す。
[0457] 実施例 5
一次窒化工程にお!、て、加熱雰囲気を窒素含有アルゴンガス(窒素:アルゴン = 7 : 93 (体積比) ) 2L/分流通下としたこと以外は実施例 3と同様に窒素含有合金を製 造した。得られた窒素含有合金について重量増加率、及び全金属元素含有率を求 めた。その結果を表 7に示す。実施例 3と比較して、炉内の窒素濃度を上げたことに より重量増加率が大きぐかつ、全金属元素含有率が小さくなつていることがわかる。 続いて、実施例 1と同様に二次窒化工程を行って蛍光体を得た。得られた蛍光体 について、発光特性を測定した。その結果を表 9に示す。実施例 3で得られた蛍光体 よりも発光特性が向上していることがわかる。また、式 [A]の値及び加熱工程におけ る 1分間当たりの温度変化を表 8に示す。
[0458] 実施例 6
一次窒化工程にお!、て、加熱雰囲気を窒素含有アルゴンガス(窒素:アルゴン =4 : 96 (体積比) ) 2L/分流通下としたこと以外は実施例 3と同様に窒素含有合金を製 造した。得られた窒素含有合金について重量増加率、及び全金属元素含有率を求 めた。その結果を表 7に示す。
続いて、実施例 1と同様に二次窒化工程を行って蛍光体を得た。得られた蛍光体 について、発光特性を測定した。その結果を表 9に示す。また、式 [A]の値及び加熱 工程における 1分間当たりの温度変化を表 8に示す。
[0459] 実施例 7
一次窒化工程にお!、て、加熱雰囲気を窒素含有アルゴンガス(窒素:アルゴン = 5 : 95 (体積比) ) 2LZ分流通下、最高到達温度(1050°C)での保持時間を 5時間とし たこと以外は実施例 3と同様に窒素含有合金を製造した。得られた窒素含有合金に ついて重量増加率、及び全金属元素含有率を算出し、その結果を表 7に示す。 続いて、実施例 1と同様に二次窒化工程を行って蛍光体を得た。得られた蛍光体 について、発光特性を測定した。その結果を表 9に示す。また、式 [A]の値及び加熱 工程における 1分間当たりの温度変化を表 8に示す。
[0460] 実施例 8
一次窒化工程にお!、て、加熱雰囲気を窒素含有アルゴンガス(窒素:アルゴン = 5 : 95 (体積比) ) 2LZ分流通下としたこと以外は実施例 3と同様に蛍光体を製造した。 得られた窒素含有合金について重量増加率、及び全金属元素含有率を求めた。そ の結果を表 7に示す。
続いて、実施例 1と同様に二次窒化工程を行って蛍光体を得た。得られた蛍光体 について、発光特性を測定した。その結果を表 9に示す。また、式 [A]の値及び加熱 工程における 1分間当たりの温度変化を表 8に示す。 [0461] 実施例 9
実施例 1と同様にして製造した合金粉末を用いて、以下の条件で一次窒化工程を 行った。合金粉末 40gを内径 54mmの窒化ホウ素製ルツボに充填し、雰囲気焼成炉 を使用して、室温から 900°Cまでは、真空中、昇温速度 20°CZ分で加熱した。 900 °Cで、窒素含有アルゴンガス(窒素:アルゴン =5:95 (体積比))をゲージ圧で 0.01 MPaまで充填した。この圧力を保持したまま、窒素含有アルゴンガス(窒素:アルゴン =5:95(体積比))1し7分流通下、 900°Cから 1050°Cまで昇温速度 2°CZ分で昇 温し、最高到達温度 1050°Cで 4時間保持した。次いで、 200°C以下になるまで約 2 時間かけて冷却した後、室温になるまで放冷し、窒素含有合金を製造した。得られた 窒素含有合金について重量増加率、及び全金属元素含有率を算出し、その結果を 表 7に示す。
続いて、実施例 1と同様に二次窒化工程を行って蛍光体を得た。得られた蛍光体 について、発光特性を測定した。その結果を表 9に示す。また、式 [A]の値及び加熱 工程における 1分間当たりの温度変化を表 8に示す。
[0462] 実施例 10
一次窒化工程において、加熱雰囲気を窒素気流中、最高到達温度を 1030°C、最 高到達温度での保持時間を 8時間としたこと以外は、実施例 1と同様に行い、窒素含 有合金を製造した。
得られた窒素含有合金について、窒素 '酸素の含有量の分析を行ったところ、窒素 含有率は 1.10重量%、酸素含有率は 1.66重量%であった。また、重量増加率は、 約 3重量%、全金属元素含有率は 97重量%であった。
また、前記の窒素'酸素の含有量の分析結果、及び ICP法分析結果から、得られた 窒素含有合金の元素組成比は、 Al:Si:Ca:Sr:Eu:N:O=l:0.922:0.214:0. 734:0.008:0.11:0. 14であること力 Sわ力つた。
得られた窒素含有合金を実施例 1と同様に二次窒化工程を行い、蛍光体を製造し た。
また、得られた蛍光体の発光特性についても測定した。その結果を表 9に示す。 次いで、得られた蛍光体について実施例 4と同様に洗浄処理を行った後、酸素含 有率、窒素含有率及び NIZNPを求めた。その結果を表 9に示す。また、式 [A]の値 及び加熱工程における 1分間当たりの温度変化を表 8に示す。
[0463] 実施例 11
実施例 1で得られた合金粉末に対して以下の条件で一次窒化工程を行ったこと、 及び一次窒化工程終了後、粉砕処理を行わな力つたこと以外は、実施例 1と同様に 蛍光体を製造した。
ロータリーキルン内の雰囲気全体をアルゴンに置換し、直径 90mm、全長 1500m mであるアルミナ製炉心管を傾斜角 1. 9° に設定した。炉心管に対して向流方向で 窒素 (0. 7LZ分)、水素 (0. 2LZ分)、及びアルゴン (5LZ分)を含有する混合ガス 流通下、炉心管を 5rpmで回転させながら、スクリューフィーダ一を用いて合金粉末を 400gZ時で連続して供給した。ヒーター温度を 1100°Cとした。この時、合金粉末の 均熱帯 (ここでは、炉心管の中央部 150mm程度を指す。)滞留時間は 3分間であつ た。炉心管力 出てきた一次窒化工程終了後の窒素含有合金を雰囲気がアルゴン に置換された容器に回収後、急冷したところ、粉末状であることが確認された。
得られた窒素含有合金について、窒素及び酸素の含有量の分析を行ったところ、 窒素含有率は 3. 7重量%、酸素含有率は 1. 2重量%であった。
また、得られた窒素含有合金の粉末 X線回折パターンを図 6に示す。 A1B型のァ
2 ルカリ土類シリサイドと呼ばれる金属間化合物の一つである Sr (Si Al ) と類似し
0. 5 0. 5 2 た粉末 X線回折パターンが主相であり、その他に、 SrSi (PDF No. 16— 0008)、 S rSi (PDF No. 19 1285)等の金属間化合物が検出された。
2
続いて、得られた窒素含有合金について実施例 1と同様に二次窒化工程を行って 蛍光体を製造した。得られた蛍光体について、発光特性を測定し、その結果を表 9に 示す。
また、得られた蛍光体について実施例 2と同様に洗浄処理を行った後、酸素含有 率及び窒素含有率を求めた。その結果を表 9に示す。また、式 [A]の値及び加熱ェ 程における 1分間当たりの温度変化を表 8に示す。
[0464] 実施例 12
実施例 1で得られた合金粉末 40gを内径 54mmの窒化ホウ素製ルツボに入れ、雰 囲気焼成炉を用いて一次窒化工程を行った。炉内を真空にし、室温から 900°Cまで 昇温速度 20°CZ分で加熱した。次いで、窒素含有アルゴンガス(窒素:アルゴン =5 : 95 (体積比))をゲージ圧で 0. OlMPaまで充填した。圧力を保持したまま、窒素含 有アルゴンガス(窒素:アルゴン = 5 : 95 (体積比)) 1LZ分流通下、 900。C力ら 1050 °Cまで昇温速度 2°CZ分で加熱し、 1050°Cで 4時間保持した。続いて、 900°Cまで 冷却した後、雰囲気ガスを窒素に置換して、 900°Cから 1050°Cまで昇温速度 2°CZ 分で加熱し、 1050°Cで 4時間保持した。サンプル温度が 200°Cになるまで約 2時間 かけて冷却し、室温付近になるまで放冷した。
得られた窒素含有合金について酸素含有率、及び窒素含有率を算出し、その結果 を表 7に示す。
また、得られた窒素含有合金の粉末 X線回折パターンを図 7に示す。粉末 X線回折 ノ ターン【こお ヽて、 SrSi (PDF No. 16— 0008)、 SrSi (No. 19— 1285)等の金
2
属間化合物とともに、 Sr(Si A1 ) と類似した相が検出された。
0. 5 0. 5 2
次いで、得られた窒素含有合金について、室温から 1900°Cまでの温度範囲を 60 0°CZ時で昇温したこと以外は実施例 1と同様に二次窒化工程を行ない、さらに実施 例 4と同様に洗浄処理、及び分級処理を行った。得られた蛍光体について、発光特 性を測定し、その結果を表 9に示す。また、酸素含有率、窒素含有率及び NIZNPを 求め、その結果を表 9に示す。また、式 [A]の値及び加熱工程における 1分間当たり の温度変化を表 8に示す。また、得られた蛍光体の粉末 X線回折パターンを図 11に 示す。
実施例 13
実施例 1で得られた合金粉末 40gを内径 54mmの窒化ホウ素製ルツボに入れ、雰 囲気焼成炉を用いて一次窒化工程を行った。室温力も 900°Cまで真空中で昇温速 度 20°CZ分で加熱し、 900°Cで窒素含有アルゴンガス(窒素:アルゴン = 5: 95 (体 積比))をゲージ圧で 0. OlMPaまで充填した。圧力を保持したまま、窒素含有アル ゴンガス(窒素:アルゴン = 5 : 95 (体積比)) 1LZ分流通下、 900。Cから 1050。Cまで 昇温速度 2°CZ分で加熱し、 1050°Cで 3時間保持した。その後、室温まで放冷し、 再び窒素含有アルゴンガス(窒素:アルゴン = 5: 95 (体積比) ) 1L/分流通下、 900 °Cから 1050°Cまで昇温速度 2°CZ分で加熱し、 1050°Cで 3時間保持した。その後、 室温まで冷却し、雰囲気ガスを窒素に置換して、 900°Cから 1050°Cまで昇温速度 2 °CZ分で加熱し、 1050°Cで 3時間保持した。 200°Cまで約 2時間かけて冷却し、室 温付近になるまで放冷した。
得られた窒素含有合金について酸素含有率、及び窒素含有率を算出し、その結果 を表 7に示す。
また、得られた窒素含有合金の粉末 X線回折パターンを図 8に示す。粉末 X線回折 ノ ターン【こお ヽて、 SrSi (PDF No. 16— 0008)、 SrSi (PDF No. 19— 1285)
2
等の金属間化合物が検出された。
得られた窒素含有合金 142gを直径 85mmの窒化ホウ素製ルツボに充填し、室温 力も 1900°Cまで昇温速度 600°CZ時で加熱したこと以外は実施例 1と同様に二次 窒化工程を行ない、さらに実施例 4と同様に洗浄処理、及び分級処理を行った。得ら れた蛍光体について、発光特性を測定した。その結果を表 9に示す。また、酸素含有 率、窒素含有率及び NIZNPを求めた。その結果を表 9に示す。また、式 [A]の値及 び加熱工程における 1分間当たりの温度変化を表 8に示す。また、得られた蛍光体の 粉末 X線回折パターンを図 12に示す。
実施例 14
実施例 1で得られた合金粉末に対して以下の条件で一次窒化工程を行ったこと、 及び一次窒化工程終了後、粉砕処理を行わな力つたこと以外は、実施例 1と同様に 蛍光体を製造した。
雰囲気ロータリーキルン全体を真空引きした後、窒素(2. 5LZ分)とアルゴン(2. 5 L/分)との混合ガスを導入することにより、ガス置換を行ない、直径 90mm、全長 15 00mmであるアルミナ製炉心管を傾斜角 1. 9° に設定した。また、ヒーター温度を 1 100°Cに設定した。炉心管に対して向流方向で窒素(0. 7LZ分)、水素(0. 2L/ 分)、及びアルゴン(5LZ分)を含有する混合ガス流通下、炉心管を 5rpmで回転さ せながら、スクリューフィーダ一を用いて合金粉末を 220g/時で連続して供給した。 この時、合金粉末の均熱帯滞留時間 (フィード開始から排出開始までの時間 X均熱 帯長さ Z炉心管全長)は約 3分間であった。炉心管カゝら出てきた一次窒化工程終了 後の窒素含有合金を、雰囲気がアルゴンに置換された容器に回収し、急冷した。 一次窒化工程終了後の窒素含有合金について、分析を行ったところ、窒素含有率 は 8. 9重量%、酸素含有率は 2. 9重量%であった。
また、得られた窒素含有合金の粉末 X線回折パターンを図 9に示す。図 9から、 SrS i (PDF No. 16— 0008)、 SrSi (PDF No. 19 1285)等の金属間ィ匕合物力 S検
2
出されたことがわかる。
続いて、得られた窒素含有合金について、以下の条件で二次窒化工程を行った。 前記 HIP内を 5 X 10_1Paまで真空排気した後、 300°Cに加熱し、 300°Cにて真空排 気を 1時間継続した。その後、室温で窒素雰囲気約 49MPaまで昇圧した。次いで、 900°Cになるまで昇温速度 600°CZ時で加熱し、 1100°Cになるまで、昇温速度 66 . 7°CZ時で加熱した。この時、圧力は約 140MPaであった。その後、約 1. 5時間か けて炉内温度を 1900°Cまで、内圧を 190MPaまで昇温及び昇圧し、この状態で 1 時間保持し、室温まで放冷して蛍光体を得た。得られた蛍光体をアルミナ乳鉢で 50 m以下まで解砕し、発光特性を測定した。その結果を表 9に示す。また、式 [A]の 値及び加熱工程における 1分間当たりの温度変化を表 8に示す。また、実施例 2と同 様に蛍光体の洗浄処理を行った後、分析を行って酸素含有率、窒素含有率及び NI ZNPを求めた。その結果を表 9に示す。
[0467] 実施例 15
一次窒化工程終了後、得られた窒素含有合金について窒素雰囲気中でアルミナ 乳鉢を用いて粉砕処理を行い、窒素雰囲気中で目開き 53 μ mの篩いを通過させた こと以外は、実施例 14と同様に二次窒化工程を行ない、蛍光体を製造した。
得られた蛍光体について、実施例 14と同様に発光特性を測定した。その結果を表 9に示す。また、実施例 2と同様に蛍光体の洗浄処理を行った後、分析を行って酸素 含有率、窒素含有率及び NIZNPを求めた。その結果を表 9に示す。また、式 [A]の 値及び加熱工程における 1分間当たりの温度変化を表 8に示す。
[0468] 実施例 16
合金粉末の供給速度を 71gZ時、窒素 (0. 25LZ分)及びアルゴン (5LZ分)を含 有する混合ガス流通下としたこと、並びにヒーター温度を 1080°Cとして加熱処理を 行ったこと以外は、実施例 14と同様にして一次窒化工程を行った。この時、合金粉 末の均熱帯滞留時間 (フィード開始から排出開始までの時間 X均熱帯長さ Z炉心管 全長)は約 3分間であった。炉心管から出てきた一次窒化工程終了後の窒素含有合 金を、雰囲気がアルゴンに置換された容器に回収し、急冷した。
一次窒化工程終了後の窒素含有合金について、分析を行ったところ、窒素含有率 は 5. 5重量%、酸素含有率は 2. 8重量%であった。
この窒素含有合金について実施例 14と同様に二次窒化処理を行ない、蛍光体を 製造した。実施例 14と同様に発光特性を測定した。その結果を表 9に示す。また、実 施例 2と同様に蛍光体の洗浄処理を行った後、分析を行って酸素含有率、窒素含有 率及び NIZNPを求めた。その結果を表 9に示す。また、式 [A]の値及び加熱工程 における 1分間当たりの温度変化を表 8に示す。
[0469] 実施例 17
窒素(2. 5LZ分)とアルゴン(2. 5LZ分)との混合ガスを雰囲気ロータリーキルン 全体に流通させながら、さらに、炉心管内に、傾斜した炉心管の下部から、窒素(2. 5LZ分)、アルゴン (2. 5LZ分)、水素 (0. 2LZ分)の混合ガスを供給したこと、及 び合金粉末の供給速度を 0. 3kgZ時としたこと以外は実施例 14と同様の条件で一 次窒化工程を行った。
一次窒化工程終了後の窒素含有合金について、分析を行ったところ、窒素含有率 は 14. 4重量%、酸素含有率は 2. 2重量%であった。
続いて、得られた窒素含有合金を実施例 1と同様に粉砕した。得られた合金粉末の 重量メジアン径 D mi. μ mであり、 45 μ m以上の合金粒子の割合は 1%以下、
50
100 m以上の粒子の割合は 0. 1%未満、 5 m以下の合金粒子の割合は 12%、 QDは 0. 36であった。
このようにして得られた窒素含有合金を実施例 14と同様の条件で窒化し、実施例 1 4と同様に発光特性を測定した。その結果を表 9に示す。また、式 [A]の値及び加熱 工程における 1分間当たりの温度変化を表 8に示す。
[0470] 実施例 18
式 [A]の値を 0. 50とした (蛍光体原料の焼成容器内充填率は 35体積%だつた。 ) こと以外は実施例 17と同様の条件で蛍光体を製造した。得られた蛍光体の発光特 性を実施例 17と同様に測定した。その結果を表 9に示す。
[0471] 実施例 19
実施例 17で得られた一次窒化工程終了後の窒素含有合金を、アルミナ乳鉢を用 いて 500 m以下まで解砕した。次いで、粉砕部がジルコユアでライニングされたジ エツトミル (サンレックス工業製 ナノグラインデイングミル NJ— 50)を用いて、窒素雰 囲気中(酸素濃度 1体積%以下)、粉砕圧 0. 3MPa、原料供給速度 0. 3kgZ時で 粉砕した。得られた合金粉末を目開き 53 mの篩いを通過させたところ、重量メジァ ン径 D 力 2. 8 mであり、 20 μ m付近に粒径分布のピークを有する合金粉末が
50
得られた。得られた合金粉末の 45 μ m以上の合金粒子の割合は 6%、 5 μ m以下の 合金粒子の割合は 18%、 QDは 0. 60であった。
このようにして得られた窒素含有合金を実施例 14と同様の条件で窒化することによ り蛍光体を得た (但し、蛍光体原料の焼成容器内充填率は 26体積%とした)。得られ た蛍光体について実施例 14と同様に発光特性を測定した。その結果を表 9に示す。 また、式 [A]の値及び加熱工程における 1分間当たりの温度変化を表 8に示す。 また、得られた窒素含有合金 10. 16mgを窒化ホウ素製容器に入れ、窒素ガス 10 OmlZ分流通下、室温から 1300°Cまで昇温速度 10°CZ分で加熱した。前述の TG DTA測定を行って、昇温中の重量変化を調べた。その結果を図 5に示す。
[0472] [表 7]
Figure imgf000111_0001
Figure imgf000111_0002
二次窒化工程条件 1分間当たりの 温度奕化 式 [A]の値 (°C 分) 実施例 1 0.50 2以下 実施例 2 0.50 2以下 実施例 3 0.50 2以下 実施例 4 0.50 2以下 実施例 5 0.50 2以下 実施例 6 0.50 2以下 実施例 7 0.50 2以下 実施例 8 0.50 2以下 実施例 9 0.50 2以下 実施例 10 0.50 2以下 実施例 1 1 0.50 2以下 実施例 12 0.50 2以下 実施例 13 0.50 2以下 実施例 14 0.50 2以下 実施例 15 0.50 2以下 実施例 16 0.50 2以下 実施例 17 0.38 2以下 実施例 18 0.50 2以下 実施例 19 0.38 2以下 比較例 1 0.50 100以上 比較例 2 0.50 約 80
Figure imgf000113_0001
ここで、実施例 17と実施例 19とを比較すると、実施例 17の方が、 QDが小さぐ得ら れた蛍光体の発光ピーク強度も実施例 17の方が優れている。従って、二次窒化工 程開始前の合金粉末の粒径分布がシャープであると発光特性が向上する傾向にあ り、より好ましいことがわかる。
[0476] 比較例 1
一次窒化工程を行わな力つたこと以外は、実施例 1と同様に蛍光体の製造を試み たところ、黒色の塊が得られた。この合金塊について実施例 1と同様に発光特性を測 定してみたが発光は観測されな力つた。得られた溶融合金塊について、窒素含有率 、酸素含有率、及び全金属元素含有率等を測定した。その結果を表 7及び表 9に示 す。
[0477] また、実施例 1の粉砕工程で得られた一次窒化される前の合金粉末 13mgを窒化 ホウ素製容器に入れ、窒素ガス lOOmlZ分流通下、室温から 1300°Cまで昇温速度 10°CZ分で加熱して、 TG— DTA測定を行った。その結果、 1090°C〜1100°Cに おいて、発熱が起こると共に重量が増加した。 TG— DTA測定中の重量変化速度を 図 10に示す。図 10から、加熱開始後、 113分前後(1100°C付近)で瞬間的に重量 が増加しているのがわかる。このピーク時(1100°C付近)における重量増加速度は、 1628%Z時であった。
また、式 [A]の値及び加熱工程における 1分間当たりの温度変化を表 8に示す。実 施例と比較して、本比較例では 1分間当たりの温度変化が非常に大きくなつており、 炉内にて急激な発熱反応が起きたものと推測される。
これらのことから比較例 1では、急激な発熱によって、合金粉末が瞬間的に融解し、 比表面積が減少して窒化が進行しな力つたものと考えられる。
[0478] 比較例 2
一次窒化工程を窒素気流中、 1030°Cで 2時間行ったこと以外は、実施例 1と同様 に行い、窒素含有合金を製造した。得られた窒素含有合金について、窒素含有率、 及び酸素含有率の分析を行ったところ、窒素含有率は 0. 64重量%、酸素含有率は 1. 39重量%であった。また、重量増加率、及び全金属元素含有率についても算出 した。その結果を表 7に示す。
得られた窒素含有合金について実施例 1と同様に二次窒化工程を行ない、蛍光体 の製造を試みて、発光特性を実施例 1と同様に評価したが、発光が観測されなかつ た。その結果を表 9に示す。得られた蛍光体の窒素含有率は 22重量%であった。 また、式 [A]の値及び加熱工程における 1分間当たりの温度変化を表 8に示す。実 施例と比較して、本比較例では 1分間当たりの温度変化が非常に大きくなつており、 炉内にて急激な発熱反応が起きたものと推測される。
比較例 2は、一次窒化工程の温度が低ぐ時間も短力つたことから、一次窒化工程 において窒化反応が充分に進行していな力つたため、二次窒化工程における窒化 反応の速度を適切に制御できず、発光特性が低下したものと考えられる。従って、特 性の高い蛍光体を得るためには、一次窒化工程を適切な条件で行う必要があると考 えられる。
[0479] 実施例 20
赤色蛍光体として、実施例 1で得られた蛍光体(Sr Ca AlSiN: Eu と、
0. 792 0. 2 3 0. 008 緑色蛍光体として、 CaSc O: Ce と(以下、蛍光体 (A)と称する場合がある。 )を
2 4 0. 01
用いて、以下のような手順により、図 2 (b)に示す構成の白色発光装置を作製した。
[0480] 第1の発光体としては45511111 46011111の波長で発光する青色1^:0〔22〕 (Cree 社製 C460— EZ)を用いた。この青色 LED〔22〕を、フレーム〔24〕の凹部の底の電 極〔27〕に、接着剤として銀ペーストを使ってダイボンディングした。次に、ワイヤ〔25〕 として直径 25 μ mの金線を使用して青色 LED [22]とフレーム〔24〕の電極〔26〕とを 結?^ 7こ。
[0481] 上記 2種の蛍光体 (赤色蛍光体及び緑色蛍光体)の蛍光体混合物とシリコーン榭 脂 (東レダウ社製 JCR6101UP)とを、蛍光体—シリコーン榭脂混合物中の各蛍光 体の含有量が、赤色蛍光体 0. 8重量%、緑色蛍光体 6. 2重量%の割合となるように 、良く混合し、この蛍光体 シリコーン榭脂混合物 (蛍光体含有組成物)を、上記フレ ーム〔24〕の凹部内に注入した。
これを 150°Cで 2時間保持し、シリコーン榭脂を硬化させることにより、蛍光体含有 部〔23〕を形成して表面実装型白色発光装置を得た。なお、本実施例の説明におい て、図 2 (b)に対応する部位の符号を〔〕内に示す。
[0482] 得られた表面実装型発光装置を、その青色 LED〔22〕に 20mAの電流を通電して 駆動し、発光させたところ、いずれの実施例の発光装置においても白色光が得られ た。
得られた表面実装型白色発光装置について、発光スペクトルを測定した。その結 果を図 13に示す。得られた発光スぺ外ルより算出された各種発光特性の値 (全光 束、光出力、色度座標、色温度、色偏差、演色評価数)を表 10に示す。なお、表 10 において、 Tcpは相関色温度(単位 K)を表し、 Duvは色偏差を表す。
このように、本発明の蛍光体を任意の緑色蛍光体と組み合わせて使用することで、 演色性の高い発光装置を得ることが出来る。
[表 10] 全允束 (lm) 3.9
光出力(mW) 12.9
X 0.346
色度座檁
y 0.364
Tcp 5000
Duv 5.8
Ra 89
R01 89
R02 96
R03 96
R04 84
R05 88
R06 94
R07 88
R08 77
R09 43
R10 91
R1 1 86
R12 63
R13 92
R14 98
R15 83 [0484] 参考例 2
合金の製造
金属元素組成比が A1: Si= l : l (モル比)となるように各原料金属を秤量し、黒鉛ル ッボに充填し、高周波誘導式溶融炉を用いてアルゴン雰囲気下で原料金属を溶融 したその後、ルツボカも金型へ注湯して凝固させ、金属元素組成比が Al: Si= 1: 1 である合金 (母合金)を得た。
[0485] 続いて、 Eu: Sr: Ca :Al: Si=0. 008 : 0. 792 : 0. 2 : 1: 1 (モル比)となるよう母合 金、その他原料金属を秤量した。炉内を 5 X 10_2Paまで真空排気した後、排気を中 止し、炉内にアルゴンを所定圧まで充填した。この炉内でカルシアルッボを用いて母 合金を溶解し、次いで、原料金属である Sr、 Eu、及び Caをカ卩えた。全成分が融解さ れて溶湯が誘導電流により撹拌されるのを確認した後、ルツボカゝら水冷された銅製の 金型 (厚さ 40mmの板状)へ溶湯を注湯して凝固させた。
[0486] 得られた厚み 40mmの板状合金につ 、て ICP法で組成分析を行った。板状合金 の重心付近一点と、板状合金の端面付近一点力も約 10gサンプリングし、 ICP法によ り元素分析を行ったところ、分析精度の範囲において実施例 1で得られた板状合金と 実質的に同一糸且成であった。従って、 Euを始め、各々の元素が均一に分布している と考えられた。
[0487] 得られた合金は Sr (Si Al ) と類似した粉末 X線回折パターンを示し、 A1B型
0. 5 0. 5 2 2 のアルカリ土類シリサイドと呼ばれる金属間化合物と同定された。
[0488] 得られた合金を窒素雰囲気 (酸素濃度 4%)下で 60分間アルミナ乳鉢を用いて粉 砕し、目開き 53 mの篩い下を回収して合金粉末を得た。以下、この合金粉末を「参 考例 2で得られた合金粉末」 t ヽぅ。
[0489] 窒化処理
前述のようにして得られた合金粉末 10gを窒化ホウ素製ルツボ(内径 54mm)に充 填し、熱間等方加圧装置 (HIP)内にセットした。装置内を 5 X 10_1Paまで真空排気 した後、 300°Cに加熱し、 300°Cで真空排気を 1時間継続した。その後、窒素を IMP aまで充填し、冷却した後、 0. IMPaまで放圧し、再び IMPaまで窒素を充填する操 作を二回繰り返した。加熱開始前に 50MPaまで窒素を充填し、 600°CZ時で炉内 温度 950°Cまで昇温し、内圧を 135MPaまで約 50MPaZ時で昇圧した。続いて、 炉内温度 950°Cから 1150°Cまで 66. 7°CZ時 (約 1. 11°CZ分)で昇温し、同時に 内圧を 135MPaから 160MPaまで昇圧した。その後、炉内温度 1850°C、内圧 180 MPaになるまで約 600°CZ時で昇温、昇圧し、この温度及び圧力で 1時間保持した 。得られた焼成物を粉砕、洗浄、分級して重量メジアン径 D 力 ¾ μ mである蛍光体
50
を得た。
[0490] 得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
が生成して!/、た。この蛍光体の組成は、仕込み組成で Eu Sr Ca AlSiN
O. 008 0. 792 0. 2 3 である。以下、この蛍光体を「参考例 2の蛍光体」と略記する。
[0491] 実施例 21
参考例 2で得られた合金粉末 18. 6gと参考例 2の蛍光体 10gを混合したものを窒 化ホウ素製ルツボに充填したこと以外は、参考例 2と同様の条件で窒化処理したとこ ろ、参考例 2の蛍光体と同一構造の蛍光体が得られた。この蛍光体について、前述 の方法で 465nm励起による発光スペクトルを測定した。得られた発光スペクトルから 、参考例 1の蛍光体を 100%として発光ピーク強度、及び輝度を求めた。結果を表 1 1に示す。表 11には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を 併記した。
[0492] 実施例 22
参考例 2で得られた合金粉末 22. 9gと参考例 2の蛍光体 5. 7gを混合したものを窒 化ホウ素製ルツボに充填したこと以外は、参考例 2と同様の条件で窒化処理したとこ ろ、参考例 2の蛍光体と同一構造の蛍光体が得られた。この蛍光体について、前述 の方法で 465nm励起による発光スペクトルを測定した。得られた発光スペクトルから 、参考例 1の蛍光体を 100%として発光ピーク強度、及び輝度を求めた。結果を表 1 1に示す。表 11には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を 併記した。
[0493] 実施例 23
参考例 2で得られた合金粉末 28. 5gと参考例 2の蛍光体 15. 3gを混合したものを 窒化ホウ素製ルツボに充填したこと以外は、参考例 2と同様の条件で窒化処理したと ころ、参考例 2の蛍光体と同一構造の蛍光体が得られた。この蛍光体について、前述 の方法で 465nm励起による発光スペクトルを測定した。得られた発光スペクトルから 、参考例 1の蛍光体を 100%として発光ピーク強度、及び輝度を求めた。結果を表 1 1に示す。表 11には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を 併記した。
[0494] 実施例 24
参考例 2で得られた合金粉末 25. 7gと参考例 2の蛍光体 2. 9gを混合したものを窒 化ホウ素製ルツボに充填したこと以外は、参考例 2と同様の条件で窒化処理したとこ ろ、参考例 2の蛍光体と同一構造の蛍光体が得られた。この蛍光体について、前述 の方法で 465nm励起による発光スペクトルを測定した。得られた発光スペクトルから 、参考例 1の蛍光体を 100%として発光ピーク強度、及び輝度を求めた。結果を表 1 1に示す。表 11には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を 併記した。
[0495] 実施例 25
参考例 2で得られた合金粉末 27. 2gと参考例 2の蛍光体 1. 4gを混合したものを窒 化ホウ素製ルツボに充填したこと以外は、参考例 2と同様の条件で窒化処理したとこ ろ、参考例 2の蛍光体と同一構造の蛍光体が得られた。この蛍光体について、前述 の方法で 465nm励起による発光スペクトルを測定した。得られた発光スペクトルから 、参考例 1の蛍光体を 100%として発光ピーク強度、及び輝度を求めた。結果を表 1 1に示す。表 11には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を 併記した。
[0496] 実施例 30
参考例 2で得られた合金粉末 18. 6gを窒化ホウ素製ルツボに充填したこと以外は 、参考例 2と同様の条件で窒化処理を行った。得られた蛍光体について、前述の方 法で 465nm励起による発光スペクトルを測定した。得られた発光スペクトルから、参 考例 1の蛍光体を 100%として発光ピーク強度、及び輝度を求めた。結果を表 11〖こ 示す。表 11には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を併記 した。 [0497] 比較例 4
参考例 2で得られた合金粉末 28. 5gを窒化ホウ素製ルツボに充填したこと以外は 、参考例 2と同様の条件で、窒化処理を行ったところ、わずかに表面が赤色を帯びた 黒色の塊が得られ、発光を示さな力つた。表 11に、式 [A]の値及び加熱工程におけ る 1分間当たりの温度変化を示す。
[0498] [表 11]
Figure imgf000121_0001
[0499] 以上の結果力 次のことが分かる。
即ち、合金を原料として蛍光体を製造する場合、反応容器への充填量が多い場合 には、蛍光体が得られない場合がある(比較例 4)。また、蛍光体を混合しなかった場 合には、蛍光体を混合した場合に比べて得られる蛍光体の発光特性が低下する傾 向にある(実施例 30)。
これに対して、窒化物原料を共存させて窒化処理を行った場合には、合金の充填 量が多くても発光特性に優れた蛍光体を得ることができる(実施例 21〜25)。
[0500] 実施例 26
実施例 1と同様の条件で蛍光体原料用合金を製造し、分析の精度の範囲内にお V、て実施例 1と同一の板状の蛍光体原料用合金を得た。
[0501] この板状合金を、窒素気流中でアルミナ乳鉢を用いて粉砕し、重量メジアン径 D
50 力 0 mの合金粉末を得た。
前述の方法によりアルゴン気流中で合金粉末の融点を測定したところ、融解開始 温度は 1078°C付近であり、融点は 1121°Cであった。
[0502] 得られた合金粉末 10gを窒化ホウ素製ルツボ(内径 54mm)に充填し、熱間等方加 圧装置 (HIP)内にセットした。装置内を 5 X 10_1Paまで真空排気した後、 300°Cに なるまで加熱し、 300°Cで真空排気を 1時間継続した。その後、窒素を IMPaになる まで充填し、冷却した後、 0. IMPaまで放圧し、再び IMPaまで窒素を充填する操 作を 2回繰り返した。加熱開始前に 50MPaまで窒素を充填してから、 600°CZ時で 炉内温度 1000°Cまで昇温し、同時に内圧を 135MPaまで約 50MPaZ時で昇圧し た。続いて、炉内温度 1000°C力ら 1200°Cまで 66. 7°CZ時で昇温し、同時に内圧 を 135MPaから 160MPaまで昇圧した。その後、炉内温度 1850°C、内圧 190MPa になるまで 600°CZ時で昇温、昇圧し、この温度及び圧力で 1時間保持して蛍光体 を得た。
得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
が生成していた。
[0503] 実施例 26において、合金の融点(1121°C)より 100°C低い温度(1021°C)から合 金の融点より 30°C低い温度(1091°C)までの温度域の昇温速度は、 1. i CZ分で ある。
得られた蛍光体について、前述の方法により 465nm励起による発光特性を測定し た。その結果を表 12に示す。表 12には、式 [A]の値及び加熱工程における 1分間 当たりの温度変化を併記した。
[0504] 実施例 31
HIP内での窒化処理において、昇温速度 600°CZ時で炉内温度 950°C (内圧 130 MPa)まで昇温した後、 950°Cで 2. 5時間保持し、その後、炉内温度 1850°C (内圧 190MPa)まで 600°CZ時で昇温したこと以外は実施例 26と同様に窒化処理を行い 、蛍光体を得た。
比較例 5において、合金の融点(1121°C)より 100°C低い温度(102 から合金 の融点より 30°C低い温度(1091°C)までの温度域の昇温速度は、 10°CZ分である。 得られた蛍光体について、実施例 1と同様に発光特性を測定し、その結果を表 12 に示す。表 12には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を併 曰じした。
[0505] 実施例 32
HIP内での窒化処理において、昇温速度 570°CZ時で炉内温度 1850°C (内圧 19 OMPa)まで昇温したこと以外は実施例 26と同様に窒化処理を行 、、蛍光体を得た 比較例 6において、合金の融点(1121°C)より 100°C低い温度(102 から合金 の融点より 30°C低い温度(1091°C)までの温度域の昇温速度は、 9. 5°CZ分である 得られた蛍光体について、実施例 26と同様に発光特性を測定し、その結果を表 12 に示す。表 12には、式 [A]の値及び加熱工程における 1分間当たりの温度変化を併 曰じした。
[0506] [表 12]
Figure imgf000124_0001
※ここで昇温速度とは、合金の融点(1 1 21 )より 1 00¾低い温度(1 021 aC)から 合金の融点より 30¾低い温度(1 091 °C)までの温度域の昇温速度を示している。
[0507] 表 12より、合金の融点(1121°C)より 100°C低い温度(1021°C)から合金の融点よ り 30°C低い温度(1091°C)までの温度域をゆっくり昇温することにより、得られる蛍光 体の輝度が向上して 、ることがわかる(実施例 26)。
これは、特定の温度域において、昇温速度を減速した実施例 26では、昇温速度が 速い実施例 31及び実施例 32と比べて、窒化による反応熱の蓄積が減少したためで あると推測できる。
なお、実施例 31及び 32から、式 [A]の値が小さいと上記 1)〜4)を満たさなくても 蛍光体を製造することができることがわかる。
[0508] 実施例 27
合金の製造
実施例 1と同様の条件で蛍光体原料用合金を製造し、分析の精度の範囲内にお V、て実施例 1と同一の板状の蛍光体原料用合金を得た。
[0509] 合金の粉末ィ匕
得られた板状合金を、図 4に示す構成の超小型ガスアトマイズ装置を用いて粉末化 した。
即ち、この板状合金を酸化アルミニウム製ルツボに入れ、溶解室中で、真空中、 10 00°Cまで加熱した後、アルゴン雰囲気下、約 1530°Cで融解した。溶解室 101をゲ ージ圧で約 0. 05MPaの加圧として、合金を融解した溶湯を、内径 2mmの酸化アル ミニゥム製噴射ノズル 104から窒素雰囲気の噴射室 (圧力大気圧) 105に流出させた 。これと同時に、粉砕ガス(窒素)を噴射圧 50kgfZcm2 (4. 9MPa)で合金を融解し た溶湯に噴射し、液滴を粉末化した。窒素雰囲気の回収室 (圧力大気圧) 106で捕 集された粉末を目開き 53 μ mの篩いに通過させて、合金粉末を得た。
[0510] 得られた合金粉末の安息角、崩潰角、差角、タップ密度、重量メジアン径 D 、酸素
50 含有量、及び炭素含有量を表 13に示した。
また、この金粉末の光学顕微鏡写真(図 14)より、得られた合金粉末の大部分が真 球状であることがわかった。
[0511] 蛍光体の製造
この合金粉末 32gを内径 54mmの窒化ホウ素製ルツボに充填し、熱間等方加圧装 置 (HIP)内にセットし、装置内を 5 X 10_1Paまで真空排気した後、 300°Cに加熱し、 300°Cで真空排気を 1時間継続した。その後、窒素を IMPaまで充填し、冷却後に 0 . IMPaまで放圧し、再び IMPaまで窒素を充填する操作を二回繰り返した。加熱開 始前に 50MPaまで窒素を充填し、 3時間で 1800°C、 180MPaまで昇温 '昇圧し、こ の状態で 1時間保持して蛍光体を得た。
[0512] 得られた蛍光体の粉末 X線回折測定の結果、 CaAlSiNと同型の斜方晶の結晶相
3
が生成していた。
前述の方法で 465nm励起における発光特性を測定し、相対輝度と発光ピーク波 長を求めた。その結果を表 13に示す。表 13には、式 [A]の値及び加熱工程におけ る 1分間当たりの温度変化を併記した。
[0513] 実施例 28
サイクロン 107で捕集された合金粉末を目開き 53 μ mの篩いを通過させて、合金 粉末としたこと以外は実施例 27と同様にして蛍光体を得た。
合金粉末の粉体特性等の測定結果、及び蛍光体の相対輝度と発光ピーク波長の 測定結果を表 13に示す。表 13には、式 [A]の値及び加熱工程における 1分間当た りの温度変化を併記した。
[0514] 実施例 29
ガスアトマイズ装置のルツボ 103及びノズル 104を黒鉛製としたこと以外は、実施例 28と同様にして合金粉末を得、同様に蛍光体を得た。 合金粉末の粉体特性等の測定結果、及び蛍光体の相対輝度と発光ピーク波長の 測定結果を表 13に示す。表 13には、式 [A]の値及び加熱工程における 1分間当た りの温度変化を併記した。
[0515] 比較例 7
実施例 27と同様の方法で铸造した合金を、ガスアトマイズ装置を用いずに、アルミ ナ乳鉢を用いて窒素雰囲気 (酸素濃度 4%以下)中で 3時間粉砕し、目開き 53 μ m の篩い下を回収した。
得られた合金粉末は、光学顕微鏡写真(図 15)により、球状ではなぐ不定形であ ることがわかった。
得られた合金粉末の粉体特性等の測定結果を表 13に示す。表 13には、式 [A]の 値及び加熱工程における 1分間当たりの温度変化を併記した。
得られた合金粉末を用いて、実施例 27と同様に熱間等方加圧装置 (HIP)内で処 理して蛍光体を製造しょうとしたところ、黒色の塊が得られ、 465nm励起による発光 は認められなかった。
[0516] [表 13]
Figure imgf000127_0001
以上の結果から、本発明によれば、不純物の混入が少なぐまた流動性の高い蛍 光体原料用合金粉末を用いて、高輝度の蛍光体が得られることが分かる。
なお、実施例 29では、黒鉛製のルツボ及びノズル力も炭素が混入したために、実 施例 27, 28のものと比較して蛍光体の輝度が低下したものと考えられる。
本出願は、 2006年 5月 19日出願の日本特許出願(特願 2006— 140557)、 2006 年 6月 1日出願の日本特許出願 (特願 2006 - 153632)、 2006年 7月 4日出願の日 本特許出願 (特願 2006— 184667)及び 2006年 9月 29日出願の日本特許出願( 特願 2006— 267714)に基づいており、その全体が引用により援用される。

Claims

請求の範囲
[1] 蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方法であ つて、
蛍光体原料の一部又は全部として、蛍光体を構成する金属元素を 2種以上有する 合金 (以下、「蛍光体原料用合金」と称す。)を使用し、かつ、
前記加熱工程にぉ ヽて、前記蛍光体原料用合金の融点より 100°C低!ヽ温度から 該融点より 30°C低い温度までの温度域における 1分間当たりの温度変化が 50°C以 内となる条件下で加熱することを特徴とする蛍光体の製造方法。
[2] 下記 1)〜4)のうちの少なくとも一つを満たすことを特徴とする請求項 1に記載の蛍 光体の製造方法。
1)前記蛍光体原料用合金の一部又は全部が、全金属元素含有率が 97重量%以 下である窒素含有合金である;
2)前記蛍光体原料用合金の融点より 100°C低!、温度力 該融点より 30°C低!、温 度までの温度域における昇温速度を 9°CZ分以下とする;
3)前記蛍光体原料として、前記蛍光体原料用合金と共に、前記蛍光体を構成する 金属元素を 1種又は 2種以上含有する窒化物又は酸窒化物を用いる;及び
4)前記蛍光体原料用合金として、安息角が 45度以下である蛍光体原料用合金粉 末を用いる。
[3] 少なくとも前記 1)及び前記 2)を満たすことを特徴とする請求項 2に記載の蛍光体の 製造方法。
[4] 少なくとも前記 2)及び前記 3)を満たすことを特徴とする請求項 2に記載の蛍光体の 製造方法。
[5] 前記加熱工程において、前記蛍光体原料を焼成容器内で加熱する方法であって 、下記式 [A]で表される、焼成容器の質量に対する蛍光体原料の質量の割合が 0. 1以上であることを特徴とする請求項 1に記載の蛍光体の製造方法。
(蛍光体原料の質量) Z{ (焼成容器の質量) + (蛍光体原料の質量) } 〜[A]
[6] 蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方法であ つて、 蛍光体原料の一部又は全部として、蛍光体原料用合金を使用し、かつ、 下記 1)〜4)のうちの少なくとも一つを満たすことを特徴とする蛍光体の製造方法。
1)前記蛍光体原料用合金の一部又は全部が、全金属元素含有率が 97重量%以 下である窒素含有合金である;
2)前記蛍光体原料用合金の融点より 100°C低!、温度力 該融点より 30°C低!、温 度までの温度域における昇温速度を 9°CZ分以下とする;
3)前記蛍光体原料として、前記蛍光体原料用合金と共に、前記蛍光体を構成する 金属元素を 1種又は 2種以上含有する窒化物又は酸窒化物を用いる;及び
4)前記蛍光体原料用合金として、安息角が 45度以下である蛍光体原料用合金粉 末を用いる。
[7] 前記窒素含有合金の窒素含有率が 0. 8重量%以上、 27重量%以下であることを 特徴とする請求項 6に記載の蛍光体の製造方法。
[8] 前記蛍光体原料用合金を、窒素含有雰囲気下で加熱することにより前記窒素含有 合金を製造する工程 (以下「一次窒化工程」と称す。 )を有することを特徴とする請求 項 6又は請求項 7に記載の蛍光体の製造方法。
[9] 前記窒素含有合金が下記式 [7]を満足することを特徴とする請求項 6に記載の蛍 光体の製造方法。
0. 03≤NI/NP≤0. 9 - -- [7]
式 [7]において、
NIは、窒素含有合金の窒素含有率 (重量%)を表し、
NPは、製造される蛍光体の窒素含有率 (重量%)を表す。
[10] 前記窒素含有合金を蛍光体原料の一部又は全部として、窒素含有雰囲気下で加 熱する工程 (以下「二次窒化工程」と称す。)が、該窒素含有合金の融点より 300°C 以上高い温度で加熱する工程であることを特徴とする請求項 6に記載の蛍光体の製 造方法。
[11] 前記二次窒化工程に先立ち、前記窒素含有合金を該窒素含有合金の融点より 10 0°C以上低い温度まで冷却する工程を有することを特徴とする請求項 6に記載の蛍 光体の製造方法。
[12] 前記二次窒化工程に先立ち、前記窒素含有合金を粉砕する工程を有することを特 徴とする請求項 6に記載の蛍光体の製造方法。
[13] 前記蛍光体原料用合金の重量メジアン径 D 力 100 m以下であることを特徴とす
50
る請求項 6に記載の蛍光体の製造方法。
[14] 前記蛍光体原料が、前記蛍光体原料用合金と共に、前記蛍光体を構成する金属 元素を 1種又は 2種以上含有する窒化物又は酸窒化物を 1重量%以上含有すること を特徴とする請求項 6に記載の蛍光体の製造方法。
[15] 前記蛍光体原料用合金のタップ密度が 1. 9gZml以上であることを特徴とする請 求項 6に記載の蛍光体の製造方法。
[16] 蛍光体原料を窒素含有雰囲気下で加熱する工程を有する蛍光体の製造方法であ つて、
蛍光体原料の一部又は全部として、蛍光体原料用合金を使用し、かつ、 前記蛍光体原料用合金の一部又は全部が、窒素含有率が 10重量%以上である 窒素含有合金であることを特徴とする蛍光体の製造方法。
[17] 蛍光体原料用合金を用いる蛍光体の製造方法であって、
(a)蛍光体を構成する少なくとも 1種の金属元素及び少なくとも 1種の付活元素 M1と を溶融させて、これらの元素を含む合金溶湯を得る融解工程、
(b)該合金溶湯を不活性ガス中で微細化する微細化工程、
(c)該微細化した合金溶湯を凝固させる凝固工程、及び、
(d)該凝固させて得られた合金粉末を窒素含有雰囲気下で焼成する焼成工程 を有することを特徴とする蛍光体の製造方法。
[18] 前記蛍光体が、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種 以上とを含むことを特徴とする請求項 1に記載の蛍光体の製造方法。
[19] 前記蛍光体が、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価の金 属元素 M4とを含むことを特徴とする請求項 18に記載の蛍光体の製造方法。
[20] 前記蛍光体が、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特徴と する請求項 19に記載の蛍光体の製造方法。
[21] 前記蛍光体が、さらに 3価の金属元素 M3を含むことを特徴とする請求項 19に記載 の蛍光体の製造方法。
[22] 前記蛍光体が、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種 以上とを含むことを特徴とする請求項 6に記載の蛍光体の製造方法。
[23] 前記蛍光体が、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価の金 属元素 M4とを含むことを特徴とする請求項 22に記載の蛍光体の製造方法。
[24] 前記蛍光体が、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特徴と する請求項 23に記載の蛍光体の製造方法。
[25] 前記蛍光体が、さらに 3価の金属元素 M3を含むことを特徴とする請求項 23に記載 の蛍光体の製造方法。
[26] 前記蛍光体が、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種 以上とを含むことを特徴とする請求項 16に記載の蛍光体の製造方法。
[27] 前記蛍光体が、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価の金 属元素 M4とを含むことを特徴とする請求項 26に記載の蛍光体の製造方法。
[28] 前記蛍光体が、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特徴と する請求項 27に記載の蛍光体の製造方法。
[29] 前記蛍光体が、さらに 3価の金属元素 M3を含むことを特徴とする請求項 27に記載 の蛍光体の製造方法。
[30] 前記蛍光体が、少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種 以上とを含むことを特徴とする請求項 17に記載の蛍光体の製造方法。
[31] 前記蛍光体が、付活元素 M1と、 2価の金属元素 M2と、少なくとも Siを含む 4価の金 属元素 M4とを含むことを特徴とする請求項 30に記載の蛍光体の製造方法。
[32] 前記蛍光体が、 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特徴と する請求項 31に記載の蛍光体の製造方法。
[33] 前記蛍光体が、さらに 3価の金属元素 M3を含むことを特徴とする請求項 31に記載 の蛍光体の製造方法。
[34] 窒化物又は酸窒化物を母体とする蛍光体の製造原料としての合金であって、 該合金が少なくとも 1種の金属元素と、
少なくとも 1種の付活元素 M1とを含有し、 全金属元素含有率が 97重量%以下であり、窒素を含有することを特徴とする窒素 含有合金。
[35] 窒素含有率が 0. 8重量%以上、 27重量%以下であることを特徴とする請求項 34 に記載の窒素含有合金。
[36] 下記式 [7]を満足することを特徴とする請求項 34に記載の窒素含有合金。
0. 03≤NI/NP≤0. 9 - -- [7]
式 [7]において、
NIは、窒素含有合金の窒素含有率 (重量%)を表し、
NPは、製造される蛍光体の窒素含有率 (重量%)を表す。
[37] 少なくとも Siを含む 4価の金属元素 M4と、 Si以外の金属元素の 1種類以上とを含む ことを特徴とする請求項 34に記載の窒素含有合金。
[38]
Figure imgf000133_0001
2価の金属元素 M2、及び少なくとも Siを含む 4価の金属元素 M4を含 むことを特徴とする請求項 37に記載の窒素含有合金。
[39] 2価の金属元素 M2としてアルカリ土類金属元素を含むことを特徴とする請求項 38 に記載の窒素含有合金。
[40] 更に 3価の金属元素 M3を含むことを特徴とする請求項 38に記載の窒素含有合金
[41] 付活元素 M1が Cr、 Mn、 Fe、 Ce、 Pr、 Nd、 Sm、 Eu、 Tb、 Dy、 Ho、 Er、 Tm、及 び Yb力もなる群力も選ばれる 1種以上の元素であることを特徴とする請求項 34に記 載の窒素含有合金。
[42] 2価の金属元素 M2が Mg、 Ca、 Sr、 Ba、及び Znからなる群から選ばれる 1種以上 の元素であり、 3価の金属元素 M3が Al、 Ga、 In、及び Scからなる群から選ばれる 1 種以上の元素であり、少なくとも Siを含む 4価の金属元素 M4が Si、 Ge、 Sn、 Ti、 Zr、 及び Hfからなる群力 選ばれる 1種以上の元素であることを特徴とする請求項 40に 記載の窒素含有合金。
[43] 2価の金属元素 M2の 50モル%以上が Ca及び Z又は Srであり、 3価の金属元素 M 3の 50モル%以上が A1であり、少なくとも Siを含む 4価の金属元素 M4の 50モル%以 上が Siであることを特徴とする請求項 42に記載の窒素含有合金。
[44] 付活元素 M1として Euを、 2価の金属元素 M2として Ca及び/又は Srを、 3価の金 属元素 M3として A1を、少なくとも Siを含む 4価の金属元素 M4として Siを含むことを特 徴とする請求項 42に記載の窒素含有合金。
[45] 付活元素 M1として Euを、 2価の金属元素 M2として Ca及び/又は Srを、 3価の金 属元素 M3として A1を、少なくとも Siを含む 4価の金属元素 M4として Siを含むことを特 徴とする請求項 43に記載の窒素含有合金。
[46] 蛍光体原料用としての合金粉末であって、該合金粉末が少なくとも 1種の金属元素 と、少なくとも 1種の付活元素 M1とを含有し、該合金粉末の安息角が 45度以下であ ることを特徴とする蛍光体原料用合金粉末。
PCT/JP2007/060203 2006-05-19 2007-05-18 窒素含有合金、及びそれを使用した蛍光体の製造方法 WO2007135975A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/301,470 US8123980B2 (en) 2006-05-19 2007-05-18 Nitrogen-containing alloy and method for producing phosphor using same
CN2007800182648A CN101448914B (zh) 2006-05-19 2007-05-18 含氮合金以及使用该含氮合金的荧光体制造方法
KR1020087027538A KR101390731B1 (ko) 2006-05-19 2007-05-18 질소 함유 합금, 및 그것을 사용한 형광체의 제조 방법
EP07743638A EP2022834A4 (en) 2006-05-19 2007-05-18 NITROGENIC ALLOY AND THEIR USE FOR THE PREPARATION OF PHOSPHORUS
US13/343,888 US8636920B2 (en) 2006-05-19 2012-01-05 Nitrogen-containing alloy and method for producing phosphor using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2006140557 2006-05-19
JP2006-140557 2006-05-19
JP2006-153632 2006-06-01
JP2006153632 2006-06-01
JP2006-184667 2006-07-04
JP2006184667A JP2008013627A (ja) 2006-07-04 2006-07-04 蛍光体の製造方法、蛍光体原料用合金粉末及びその製造方法
JP2006-267714 2006-09-29
JP2006267714 2006-09-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/301,470 A-371-Of-International US8123980B2 (en) 2006-05-19 2007-05-18 Nitrogen-containing alloy and method for producing phosphor using same
US13/343,888 Division US8636920B2 (en) 2006-05-19 2012-01-05 Nitrogen-containing alloy and method for producing phosphor using same

Publications (1)

Publication Number Publication Date
WO2007135975A1 true WO2007135975A1 (ja) 2007-11-29

Family

ID=38723287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/060203 WO2007135975A1 (ja) 2006-05-19 2007-05-18 窒素含有合金、及びそれを使用した蛍光体の製造方法

Country Status (6)

Country Link
US (2) US8123980B2 (ja)
EP (1) EP2022834A4 (ja)
KR (1) KR101390731B1 (ja)
CN (2) CN101448914B (ja)
TW (1) TWI422667B (ja)
WO (1) WO2007135975A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132954A1 (ja) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置、画像表示装置、並びに窒素含有化合物
WO2010114061A1 (ja) 2009-03-31 2010-10-07 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
EP2246409A1 (en) * 2008-01-21 2010-11-03 Nichia Corporation Light emitting device
US20130234586A1 (en) * 2008-05-19 2013-09-12 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
JP2016527163A (ja) * 2013-05-23 2016-09-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 粉末状の前駆材料を製造する方法、粉末状の前駆材料およびその使用方法
CN107437576A (zh) * 2016-05-26 2017-12-05 日亚化学工业株式会社 发光装置

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200830580A (en) * 2007-01-05 2008-07-16 Solidlite Corp High color saturation three wavelength white-light LED
DE102008017356A1 (de) * 2008-04-04 2009-10-15 Airbus Deutschland Gmbh Nachleuchtende Beschichtung für Innenkabinen
CN102216421B (zh) * 2008-08-12 2014-12-17 三星电子株式会社 制备β-SiAlON磷光体的方法
US8158026B2 (en) * 2008-08-12 2012-04-17 Samsung Led Co., Ltd. Method for preparing B-Sialon phosphor
US9428688B2 (en) 2008-11-17 2016-08-30 Cree, Inc. Phosphor composition
DE102009022682A1 (de) * 2009-05-26 2010-12-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung einer Leuchtdiode
CN102216418B (zh) * 2009-06-09 2014-01-15 电气化学工业株式会社 β型塞隆荧光体、其用途及其制造方法
KR20110000286A (ko) * 2009-06-26 2011-01-03 삼성전자주식회사 (옥시)나이트라이드 형광체의 제조방법, 이로부터 얻어진 (옥시)나이트라이드 형광체 및 이를 구비한 백색 발광 소자
WO2011001359A1 (en) * 2009-07-02 2011-01-06 Koninklijke Philips Electronics N.V. Green emitting material
WO2011024818A1 (ja) 2009-08-26 2011-03-03 三菱化学株式会社 白色半導体発光装置
EP2363264A1 (de) * 2010-03-02 2011-09-07 Linde AG Verfahren zum Spitzgießen von Kunststoffteilen
JP2012060097A (ja) 2010-06-25 2012-03-22 Mitsubishi Chemicals Corp 白色半導体発光装置
TWI418610B (zh) * 2011-03-07 2013-12-11 Ind Tech Res Inst 螢光材料、及包含其之發光裝置
CN102344799B (zh) * 2011-07-26 2014-01-08 彩虹集团公司 一种稀土掺杂的氮氧化物荧光粉的制备方法
EP2760970B1 (en) * 2011-09-30 2015-12-16 General Electric Company Phosphor materials and related devices
KR101876103B1 (ko) 2011-10-12 2018-07-06 우베 고산 가부시키가이샤 산질화물 형광체 분말, 산질화물 형광체 분말 제조용 질화규소 분말 및 산질화물 형광체 분말의 제조 방법
US20140042675A1 (en) * 2012-08-07 2014-02-13 Bureau Of Energy Ministry Of Economic Affairs Method for manufacturing an aluminum nitride particle and application thereof
EP2915866A4 (en) * 2012-10-31 2016-06-01 Ocean S King Lighting Science&Technology Co Ltd ALUMINATE-BASED LUMINESCENT MATERIAL AND PROCESS FOR PREPARING THE SAME
US9657223B2 (en) * 2013-01-04 2017-05-23 Korea Institute Of Machinery & Materials Method of stabilizing alpha-sialon phosphor raw powder, alpha-sialon phosphor composition obtained therefrom, and method of manufacturing alpha-sialon phosphor
US8941295B2 (en) * 2013-04-29 2015-01-27 Kai-Shon Tsai Fluorescent material and illumination device
EP2803715B1 (en) * 2013-05-16 2020-02-26 LG Innotek Co., Ltd. Phosphor and light emitting device package including the same
CN103785845B (zh) * 2014-01-21 2015-08-05 北京科技大学 一种微细球形Sm-Fe-N系永磁粉的制备方法
KR101580739B1 (ko) * 2014-06-05 2015-12-28 엘지전자 주식회사 발광 장치
US20160115384A1 (en) * 2014-10-28 2016-04-28 Cree, Inc. Phosphor composition with enhanced emission under the eye sensitivity curve
KR102357584B1 (ko) * 2014-12-17 2022-02-04 삼성전자주식회사 질화물 형광체, 백색 발광장치, 디스플레이 장치 및 조명장치
DE102015103326A1 (de) 2015-03-06 2016-09-08 Osram Gmbh Leuchtstoffpartikel mit einer Schutzschicht und Verfahren zur Herstellung der Leuchtstoffpartikel mit der Schutzschicht
DE102015120775A1 (de) * 2015-11-30 2017-06-01 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement und Hintergrundbeleuchtung für ein Display
DE102016200324A1 (de) * 2016-01-14 2017-07-20 MTU Aero Engines AG Verfahren zum Ermitteln einer Konzentration wenigstens eines Werkstoffs in einem Pulver für ein additives Herstellverfahren
DE102016204449A1 (de) * 2016-03-17 2017-09-21 Plasmatreat Gmbh Vorrichtung zur Umformung metallischer Bauteile sowie damit durchgeführtes Verfahren
JP7141047B2 (ja) 2017-02-28 2022-09-22 株式会社小糸製作所 蛍光体
WO2019156099A1 (ja) * 2018-02-06 2019-08-15 日清フーズ株式会社 馬鈴薯澱粉及び馬鈴薯澱粉組成物
EP3830020A4 (en) * 2018-08-03 2022-04-20 Board of Regents, The University of Texas System METHODS AND COMPOSITIONS FOR IMPROVED DISPERSION OF LUMINOPHORE IN A POLYMER MATRIX
WO2022040334A1 (en) 2020-08-18 2022-02-24 Enviro Metals, LLC Metal refinement
KR102250882B1 (ko) * 2020-09-04 2021-05-17 주식회사 이앤이 고체 폐기물의 재활용품 제조 방법

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515665A (ja) 1999-11-30 2003-05-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 昼光の蛍光を有する顔料
JP2003206481A (ja) 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源として少なくとも1つのledを備えた照明ユニット
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2005054182A (ja) 2003-07-24 2005-03-03 Toyo Aluminium Kk 窒化アルミニウム系蛍光体及びその製造方法
JP2006047277A (ja) 2004-07-08 2006-02-16 Nitto Denko Corp 衝撃試験装置及び衝撃試験方法
JP2006047274A (ja) 2004-07-07 2006-02-16 East Japan Railway Co 経路誘導システム
JP2006140557A (ja) 2004-11-10 2006-06-01 Minowa Koa Inc 超音波プローブ
JP2006153632A (ja) 2004-11-29 2006-06-15 Tokyo Keiso Co Ltd 流量計
JP2006176468A (ja) 2004-12-24 2006-07-06 Shin Etsu Chem Co Ltd 窒素化合物、レジスト組成物及びパターン形成方法
JP2006184667A (ja) 2004-12-28 2006-07-13 Pentax Corp タンデムレーザ走査ユニット
JP2006267714A (ja) 2005-03-24 2006-10-05 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
JP2006307182A (ja) * 2005-04-01 2006-11-09 Mitsubishi Chemicals Corp 蛍光体の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095604A (ja) 1996-09-17 1998-04-14 Shin Etsu Chem Co Ltd 高α型窒化ケイ素の製造方法
US6080954A (en) * 1996-12-27 2000-06-27 Neturen Co., Ltd Heat treatment method and apparatus using thermal plasma, and heat treated substance produced thereby
JPH11166179A (ja) 1997-12-03 1999-06-22 Futaba Corp 蛍光体及びその製造方法
AU2003221442A1 (en) * 2002-03-22 2003-10-08 Nichia Corporation Nitride phosphor and method for preparation thereof, and light emitting device
US7094289B2 (en) * 2002-08-07 2006-08-22 Shoei Chemical Inc. Method for manufacturing highly-crystallized oxide powder
JP3837588B2 (ja) * 2003-11-26 2006-10-25 独立行政法人物質・材料研究機構 蛍光体と蛍光体を用いた発光器具
JP4511849B2 (ja) * 2004-02-27 2010-07-28 Dowaエレクトロニクス株式会社 蛍光体およびその製造方法、光源、並びにled
JP2005298721A (ja) 2004-04-14 2005-10-27 Nichia Chem Ind Ltd 酸窒化物蛍光体及びそれを用いた発光装置
US7391060B2 (en) * 2004-04-27 2008-06-24 Matsushita Electric Industrial Co., Ltd. Phosphor composition and method for producing the same, and light-emitting device using the same
US20080025902A1 (en) * 2004-04-27 2008-01-31 Arizona Board Of Regents, A Body Corpate Acting On Behalf Of Arizona State University Method To Synthesize Highly Luminescent Doped Metal Nitride Powders
JP4524468B2 (ja) * 2004-05-14 2010-08-18 Dowaエレクトロニクス株式会社 蛍光体とその製造方法および当該蛍光体を用いた光源並びにled
WO2006001194A1 (ja) 2004-06-24 2006-01-05 Sumitomo Electric Industries, Ltd. 蛍光体及びその製法並びにそれを用いた粒子分散型elデバイス
EP1837386B1 (en) * 2004-12-28 2016-11-23 Nichia Corporation Nitride phosphor, method for producing same and light-emitting device using nitride phosphor
JP4979194B2 (ja) 2005-01-21 2012-07-18 東洋アルミニウム株式会社 窒化アルミニウム系蛍光体
EP1867695A4 (en) * 2005-04-01 2013-03-27 Mitsubishi Chem Corp ALLOY POWDER AS A RAW MATERIAL FOR FUNCTIONAL AND PHOSPHOROUS INORGANIC MATERIAL
TW200801158A (en) * 2006-02-02 2008-01-01 Mitsubishi Chem Corp Complex oxynitride phosphor, light-emitting device using the same, image display, illuminating device, phosphor-containing composition and complex oxynitride
EP1990396A4 (en) 2006-02-28 2011-05-11 Mitsubishi Chem Corp PHOSPHOROLE MATERIAL AND METHOD FOR PRODUCING AN ALLOY FOR PHOSPHOROUS RAW MATERIAL

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515665A (ja) 1999-11-30 2003-05-07 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 昼光の蛍光を有する顔料
JP2003206481A (ja) 2001-09-25 2003-07-22 Patent Treuhand Ges Elektr Gluehlamp Mbh 光源として少なくとも1つのledを備えた照明ユニット
JP2004300247A (ja) 2003-03-31 2004-10-28 Mitsubishi Chemicals Corp 蛍光体及びそれを用いた発光装置、並びに照明装置
JP2005054182A (ja) 2003-07-24 2005-03-03 Toyo Aluminium Kk 窒化アルミニウム系蛍光体及びその製造方法
JP2006047274A (ja) 2004-07-07 2006-02-16 East Japan Railway Co 経路誘導システム
JP2006047277A (ja) 2004-07-08 2006-02-16 Nitto Denko Corp 衝撃試験装置及び衝撃試験方法
JP2006140557A (ja) 2004-11-10 2006-06-01 Minowa Koa Inc 超音波プローブ
JP2006153632A (ja) 2004-11-29 2006-06-15 Tokyo Keiso Co Ltd 流量計
JP2006176468A (ja) 2004-12-24 2006-07-06 Shin Etsu Chem Co Ltd 窒素化合物、レジスト組成物及びパターン形成方法
JP2006184667A (ja) 2004-12-28 2006-07-13 Pentax Corp タンデムレーザ走査ユニット
JP2006267714A (ja) 2005-03-24 2006-10-05 Sanyo Electric Co Ltd 照明装置及び投写型映像表示装置
JP2006307182A (ja) * 2005-04-01 2006-11-09 Mitsubishi Chemicals Corp 蛍光体の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AICHE JOURNAL, vol. 44, no. 5, 1998, pages 1141
CARR ET AL., CHEMICAL ENGINEERING, vol. 18, January 1965 (1965-01-01), pages 166 - 167
HORIKAWA T.: "Fukugo Kinzoku Chikkabutsu Sr2Si5N8:Eu2+ no Gosei to Keiko Tokusei", THE JAPAN INSTITUTE OF METALS KOEN GAIYO, 21 March 2006 (2006-03-21), pages 441 + ABSTR. NO. 802, 803, XP003019421 *
See also references of EP2022834A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008132954A1 (ja) 2007-04-18 2008-11-06 Mitsubishi Chemical Corporation 蛍光体及びその製造方法、蛍光体含有組成物、発光装置、照明装置、画像表示装置、並びに窒素含有化合物
EP2246409A1 (en) * 2008-01-21 2010-11-03 Nichia Corporation Light emitting device
CN101925665A (zh) * 2008-01-21 2010-12-22 日亚化学工业株式会社 发光装置
EP2246409A4 (en) * 2008-01-21 2012-05-30 Nichia Corp LIGHT-EMITTING COMPONENT
US8951440B2 (en) * 2008-05-19 2015-02-10 Intematix Corporation Nitride-based red-emitting phosphors in RGB (red-green-blue) lighting systems
US20150315464A1 (en) * 2008-05-19 2015-11-05 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
US20130234586A1 (en) * 2008-05-19 2013-09-12 Intematix Corporation Nitride-Based Red-Emitting Phosphors in RGB (Red-Green-Blue) Lighting Systems
CN102361956A (zh) * 2009-03-31 2012-02-22 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
US8828272B2 (en) 2009-03-31 2014-09-09 Mitsubishi Chemical Corporation Phosphor, method for producing phosphor, phosphor-containing composition, light-emitting device, lighting system and image display device
CN102361956B (zh) * 2009-03-31 2014-10-29 三菱化学株式会社 荧光体、荧光体的制造方法、含荧光体组合物、发光装置、照明装置和图像显示装置
US8574459B2 (en) 2009-03-31 2013-11-05 Mitsubishi Chemical Corporation Phosphor, method for producing phosphor, phosphor-containing composition, light-emitting device, lighting system and image display device
JP5754374B2 (ja) * 2009-03-31 2015-07-29 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
WO2010114061A1 (ja) 2009-03-31 2010-10-07 三菱化学株式会社 蛍光体、蛍光体の製造方法、蛍光体含有組成物、発光装置、照明装置及び画像表示装置
JP2016527163A (ja) * 2013-05-23 2016-09-08 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 粉末状の前駆材料を製造する方法、粉末状の前駆材料およびその使用方法
CN107437576A (zh) * 2016-05-26 2017-12-05 日亚化学工业株式会社 发光装置
CN107437576B (zh) * 2016-05-26 2021-03-16 日亚化学工业株式会社 发光装置

Also Published As

Publication number Publication date
KR20090018903A (ko) 2009-02-24
CN102816566A (zh) 2012-12-12
CN101448914A (zh) 2009-06-03
CN101448914B (zh) 2012-10-03
TWI422667B (zh) 2014-01-11
TW200811269A (en) 2008-03-01
US20120171360A1 (en) 2012-07-05
KR101390731B1 (ko) 2014-04-30
US20090140205A1 (en) 2009-06-04
US8123980B2 (en) 2012-02-28
US8636920B2 (en) 2014-01-28
EP2022834A1 (en) 2009-02-11
EP2022834A4 (en) 2011-11-23

Similar Documents

Publication Publication Date Title
WO2007135975A1 (ja) 窒素含有合金、及びそれを使用した蛍光体の製造方法
JP5353192B2 (ja) 蛍光体、及びその製造方法
KR101422046B1 (ko) 무기 기능재 원료용 합금 분말 및 형광체
JP5594924B2 (ja) 蛍光体、蛍光体含有組成物、発光装置、画像表示装置、照明装置、及び蛍光体の製造方法
JP2007291352A (ja) 蛍光体及びそれを使用した発光装置
JP5239182B2 (ja) 蛍光体及びそれを使用した発光装置
JP5332136B2 (ja) 窒素含有合金、及びそれを使用した蛍光体の製造方法
JP2008230873A (ja) 蛍光体原料用金属材料、及び蛍光体の製造方法、蛍光体、並びに蛍光体含有組成物、発光装置、画像表示装置及び照明装置
JP2012207228A (ja) 蛍光体及びそれを使用した発光装置
JP5130639B2 (ja) 蛍光体及びそれを使用した発光装置
JP2009221318A (ja) 蛍光体の製造方法、蛍光体含有組成物、発光装置、並びに画像表示装置及び照明装置
JP5403134B2 (ja) 蛍光体及びそれを使用した発光装置
JP2008013627A (ja) 蛍光体の製造方法、蛍光体原料用合金粉末及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780018264.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087027538

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12301470

Country of ref document: US

Ref document number: 2007743638

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12301470

Country of ref document: US