WO2007132621A1 - 組電池および車両 - Google Patents

組電池および車両 Download PDF

Info

Publication number
WO2007132621A1
WO2007132621A1 PCT/JP2007/058385 JP2007058385W WO2007132621A1 WO 2007132621 A1 WO2007132621 A1 WO 2007132621A1 JP 2007058385 W JP2007058385 W JP 2007058385W WO 2007132621 A1 WO2007132621 A1 WO 2007132621A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bipolar electrodes
secondary battery
bipolar
secondary batteries
Prior art date
Application number
PCT/JP2007/058385
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Nakamura
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2007800158920A priority Critical patent/CN101438454B/zh
Priority to EP07741821A priority patent/EP2017918B1/en
Priority to US12/294,749 priority patent/US7997367B2/en
Publication of WO2007132621A1 publication Critical patent/WO2007132621A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • H01M10/0418Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes with bipolar electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an assembled battery and a vehicle including the assembled battery, and more particularly, to an assembled battery configured by stacking a plurality of bipolar secondary batteries and a vehicle including the assembled battery.
  • Japanese Patent Laid-Open No. 2 0 5-7-7 1 7 8 4 discloses a cooling battery in a stacked battery in which a plurality of single cells are stacked in series. Discloses a structure to which is attached. Each of the plurality of unit cells is configured by connecting another current collector in series via a polymer electrolyte layer to a current collector having a positive electrode active material layer on one side and a negative electrode active material layer on the back surface.
  • the heat dissipation effect of the cooling tab at the center of the thickness when stacked is maximized, and the heat dissipation effect of the cooling tab gradually decreases toward both ends in the thickness direction. The surface area or thickness is adjusted.
  • the objective of this invention is providing the assembled battery which can cool the inside while achieving size reduction, and a vehicle provided with the assembled battery.
  • the present invention is an assembled battery comprising a plurality of stacked secondary batteries.
  • Each of the plurality of secondary batteries includes a plurality of bipolar electrodes stacked in the same direction as the stacking direction of the plurality of secondary batteries.
  • a positive electrode is formed on the first main surface of each of the plurality of bipolar electrodes.
  • a negative electrode is formed on the second main surface of each of the plurality of bipolar electrodes.
  • Each of the secondary batteries has two adjacent bipolar electrodes. And a plurality of electrolytes disposed between one positive electrode of the two adjacent bipolar electrodes and the other negative electrode of the two adjacent bipolar electrodes.
  • the assembled battery is a heat dissipating member arranged so as to form a first cooling passage through which a cooling medium flows between at least one pair of adjacent first and second secondary batteries among a plurality of secondary batteries. Is further provided.
  • the heat dissipating member has conductivity.
  • the positive electrodes of the first and second secondary batteries or the negative electrodes of the first and second secondary batteries are electrically connected by a heat dissipation member.
  • the assembled battery is located on the opposite side of the first secondary battery with respect to the second secondary battery and the second secondary battery among the plurality of secondary batteries, and the second 2 Another heat dissipating member is further provided so as to form a second cooling passage through which the cooling medium flows between the secondary battery and the adjacent third secondary battery.
  • the heat radiating member is arranged such that the cooling medium from the cooling device flows in the first direction through the first cooling passage with respect to the cooling device that supplies the cooling medium.
  • the other heat radiating member is arranged so that the cooling medium from the cooling device flows in the second direction opposite to the first direction through the second cooling passage with respect to the cooling device.
  • the assembled battery further includes a housing that houses therein a plurality of secondary batteries, a heat radiating member, and another heat radiating member.
  • a plurality of heat radiating fins are provided on the outer wall of the housing.
  • the plurality of electrolytes are solid electrolytes or gel electrolytes.
  • a secondary battery is provided.
  • the secondary battery includes a plurality of stacked bipolar electrodes.
  • a positive electrode is formed on the first main surface of each of the plurality of bipolar electrodes.
  • a negative electrode is formed on the second main surface of each of the plurality of bipolar electrodes.
  • a secondary battery is provided for every two adjacent bipolar electrodes among a plurality of bipolar electrodes, and is arranged between one positive electrode of two adjacent bipolar electrodes and the other negative electrode of two adjacent bipolar electrodes.
  • a plurality of electrolytes is provided.
  • the assembled battery further includes a heat dissipating member that forms a first cooling passage through which a cooling medium flows along the bipolar electrode arranged at one end in the stacking direction among the plurality of bipolar electrodes.
  • a heat dissipating member that forms a first cooling passage through which a cooling medium flows along the bipolar electrode arranged at one end in the stacking direction among the plurality of bipolar electrodes.
  • an insulating member is disposed between the secondary battery and the heat dissipation member.
  • the secondary battery, the heat radiating member, and the insulating member are formed in a spiral shape around a predetermined axis.
  • the heat radiating member is previously formed into a spiral shape.
  • the assembled battery includes: another heat radiating member that forms a second cooling passage through which a cooling medium flows along the bipolar electrode arranged at the other end in the stacking direction among the plurality of bipolar electrodes; On the other hand, it further comprises an insulating member disposed on the opposite side of the bipolar electrode disposed on the other end.
  • the secondary battery, the heat radiating member, the other heat radiating member, and the insulating member are formed in a spiral shape around a predetermined axis.
  • the vehicle includes a seat disposed in the vehicle interior and an assembled battery disposed under the seat.
  • the assembled battery includes a plurality of secondary batteries stacked.
  • Each of the plurality of secondary batteries has a plurality of bipolar electrodes stacked in the same direction as the stacking direction of the plurality of secondary batteries.
  • a positive electrode is formed on the first main surface of each of the plurality of bipolar electrodes.
  • a negative electrode is formed on the second main surface of each of the plurality of bipolar electrodes.
  • Each of the plurality of secondary batteries is provided for every two adjacent bipolar electrodes among the plurality of bipolar electrodes, and has one positive electrode of two adjacent bipolar electrodes and the other negative electrode of two adjacent bipolar electrodes.
  • the assembled battery is arranged so as to form a first cooling passage through which a cooling medium flows between at least one pair of adjacent first and second secondary batteries among the plurality of secondary batteries.
  • a heat radiating member is further included.
  • the heat dissipating member has conductivity.
  • the positive electrodes of the first and second secondary batteries or the negative electrodes of the first and second secondary batteries are electrically connected by a heat dissipation member.
  • the assembled battery is located on the opposite side of the first secondary battery with respect to the second secondary battery and the second secondary battery among the plurality of secondary batteries, and the second 2 It further includes another heat dissipating member arranged so as to form a second cooling passage through which the cooling medium flows between the secondary battery and the adjacent third secondary battery.
  • the heat radiating member is arranged so that the cooling medium from the cooling device flows in the first direction through the first cooling passage with respect to the cooling device that supplies the cooling medium.
  • the cooling medium from the cooling device is the second cooling
  • the passage is arranged to flow in a second direction opposite to the first direction.
  • the assembled battery further includes a housing that houses a plurality of secondary batteries, a heat radiating member, and another heat radiating member.
  • a plurality of heat radiating fins are provided on the outer wall of the housing.
  • the plurality of electrolytes are solid electrolytes or gel electrolytes.
  • the vehicle includes a seat disposed in the vehicle interior and an assembled battery disposed under the seat.
  • the assembled battery includes a secondary battery.
  • the secondary battery has a plurality of stacked bipolar electrodes.
  • a positive electrode is formed on the first main surface of each of the plurality of bipolar electrodes.
  • a negative electrode is formed on the second main surface of each of the plurality of bipolar electrodes.
  • a secondary battery is provided for each of two adjacent bipolar electrodes of a plurality of bipolar electrodes, and is between one positive electrode of two adjacent bipolar electrodes and the other negative electrode of two adjacent bipolar electrodes. It further has a plurality of electrolytes arranged.
  • the assembled battery further includes a heat dissipating member that forms a first cooling passage through which a cooling medium flows along the bipolar electrode arranged at one end in the stacking direction among the plurality of bipolar electrodes.
  • an insulating member is disposed between the secondary battery and the heat dissipation member.
  • the secondary battery, the heat radiating member, and the insulating member are formed in a spiral shape around a predetermined axis.
  • the heat radiating member is previously formed into a spiral shape.
  • the assembled battery includes: another heat radiating member that forms a second cooling passage through which a cooling medium flows along the bipolar electrode arranged at the other end in the stacking direction among the plurality of bipolar electrodes; On the other hand, it further includes a bipolar electrode disposed at the other end and an insulating member disposed on the opposite side.
  • the secondary battery, the heat radiating member, the other heat radiating member, and the insulating member are formed in a spiral shape around a predetermined axis.
  • FIG. 1 is a perspective view showing an assembled battery according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a part of the assembled battery 100 of FIG.
  • FIG. 3 is a cross-sectional view of the assembled battery according to line III-III in FIG.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of an automobile equipped with an assembled battery according to the present invention.
  • FIG. 5 is a schematic plan view of the automobile shown in FIG.
  • FIG. 6 is a top view schematically showing the configuration of battery pack 120 in FIGS. 4 and 5.
  • FIG. 7 is a side view schematically showing the configuration of the battery pack 120 in FIG.
  • FIG. 8 shows the assembled battery of the second embodiment.
  • FIG. 9 is a perspective view showing the entire assembled battery of the third embodiment.
  • FIG. 10 is a perspective view showing an example of a manufacturing method of the assembled battery 100 A shown in FIG.
  • FIG. 11 is an enlarged cross-sectional view showing a range surrounded by a two-dot chain line XI in FIG.
  • FIG. 12 is a perspective view showing the entire assembled battery of the fourth embodiment.
  • FIG. 1 is a perspective view showing an assembled battery according to an embodiment of the present invention.
  • an assembled battery 100 includes a plurality of stacked bipolar secondary batteries 4.
  • each of the plurality of bipolar secondary batteries 4 includes a plurality of bipolar electrodes and a plurality of electrolytes.
  • the plurality of bipolar electrodes are stacked in the same direction as the stacking direction of the plurality of bipolar secondary batteries 4.
  • a positive electrode is formed on the first main surface of each of the plurality of bipolar electrodes.
  • a negative electrode is formed on the second main surface of each of the plurality of bipolar electrodes. That is, a positive electrode and a negative electrode are formed on both surfaces of each bipolar electrode.
  • the plurality of electrolytes are provided for every two adjacent bipolar electrodes among the plurality of bipolar electrodes.
  • Each electrolyte is disposed between one positive electrode of two adjacent bipolar electrodes and the other negative electrode of two adjacent bipolar electrodes.
  • the assembled battery 100 further includes a plurality of negative electrode current collector plates 21 and a plurality of positive electrode current collector plates 23.
  • multiple bipolar secondary batteries 4, multiple negative current collectors 2 1 and a plurality of positive current collector plates 2 3 are assembled from the lower side to the upper side of the assembled battery 1 0 0 2, positive current collector plate 2 3, bipolar secondary battery 4, negative current collector plate 2 1, bipolar secondary Stacked in order of battery 4.
  • the negative electrodes of the two bipolar secondary batteries 4 arranged above and below one negative current collector 21 are electrically connected by the negative current collector 21.
  • the positive electrodes of the two bipolar secondary batteries 4 arranged above and below one positive current collector plate 23 are electrically connected by the positive current collector plate 23.
  • the plurality of bipolar secondary batteries 4 are electrically connected in parallel.
  • the length in the stacking direction of the plurality of bipolar electrodes (the thickness of the bipolar secondary battery 4) is significantly shorter than the length and width of the plane perpendicular to the stacking direction.
  • the width and length of the plane described above are about 10 to 15.
  • a plurality of through holes (cooling passages) 2 A are formed in each of the plurality of negative electrode current collectors 21 and the plurality of positive electrode current collectors 23.
  • a plurality of bipolar secondary batteries can be cooled by flowing a cooling medium (for example, cooling air or cooling water) through the plurality of through holes 2A.
  • a cooling medium for example, cooling air or cooling water
  • the negative electrode current collector plate 21 and the positive electrode current collector plate 23 are arranged for two bipolar secondary batteries adjacent to each other in the stacking direction among a plurality of bipolar secondary batteries.
  • the negative electrode current collector plate 21 (and the positive electrode current collector plate 2 3) also functions as a heat radiating member when a cooling medium flows therein.
  • the inside of the assembled battery 10 ° can be cooled while the assembled battery 100 is downsized.
  • a cooling medium is caused to flow through the cooling passage, heat is exchanged between the heat radiating member and the cooling medium. Therefore, the temperature on the outlet side of the cooling passage is higher than the temperature on the inlet side of the cooling passage.
  • multiple heat dissipation members for example, the assembly shown in FIG. In the case where the cooling medium is allowed to flow from the front side to the back side of the battery 100), temperature variations tend to occur among the plurality of bipolar secondary batteries 4.
  • At least one of the plurality of heat radiating members is cooled in the direction opposite to the direction in which the cooling medium flows in the other heat radiating member (first direction) (second direction).
  • the medium flows.
  • first direction is the direction from the front side to the back side of the assembled battery 100
  • second direction is the direction from the back side to the front side of the assembled battery 100.
  • FIG. 1 is a view showing a part of the assembled battery 100 of FIG.
  • the assembled battery includes three bipolar secondary batteries 4.
  • the voltage output from each bipolar secondary battery 4 is about 200 V, for example.
  • FIG. 2 two negative current collector plates 21 and two positive current collector plates 23 are shown.
  • the negative current collector 21 and the positive current collector 23 are electrically connected to the negative and positive electrodes of the bipolar secondary battery 4, respectively.
  • the two negative current collectors 21 are connected to the terminal T1.
  • the two positive current collector plates 23 are connected to the terminal T2.
  • a voltage of 20 0 V is output between the terminals T 1 and T 2 when the assembled battery is discharged.
  • each bipolar secondary battery 4 When charging the assembled battery, each bipolar secondary battery 4 is charged by applying a predetermined voltage (eg, about 200 V) between terminals T 1 and T 2.
  • a predetermined voltage eg, about 200 V
  • FIG. 3 is a cross-sectional view of the assembled battery according to the line I I I—I I I in FIG.
  • each of the plurality of bipolar secondary batteries 4 has a plurality of stacked power supplies. 2007/058385 Including pole sheet 25.
  • the stacking direction of the plurality of electrode sheets 25 is the same as the stacking direction of the plurality of bipolar secondary batteries 4.
  • the electrode sheet 25 includes a positive electrode active material layer 28 forming a positive electrode, a negative electrode active material layer 26 forming a negative electrode, and an electrolyte layer 2 interposed between the positive electrode active material layer 28 and the negative electrode active material layer 26. It consists of 7 and.
  • the electrolyte layer 27 is a layer formed from a material exhibiting ionic conductivity.
  • the electrolyte layer 27 may be a solid electrolyte or a gel electrolyte.
  • the plurality of electrode sheets 25 are laminated so that the positive electrode active material layer 28 and the negative electrode active material layer 26 face each other at positions adjacent to each other in the lamination direction. Between the plurality of electrode sheets 25, sheet-shaped current collector foils 29 are provided. A positive electrode active material layer 28 is formed on one surface 29 b of the current collector foil 29, and a negative electrode active material layer 26 is formed on the other surface 29 a of the current collector foil 29.
  • the positive electrode active material layer 28 and the negative electrode active material layer 26 are, for example, snow. It is formed on the surface of the current collector foil 29 by the sputtering.
  • a pair of a positive electrode active material layer 28, a current collector foil 29 and a negative electrode active material layer 26 disposed between the electrolyte layers 27 adjacent to each other in the stacking direction of the electrode sheet 25 is a bipolar electrode 30. Is configured. In the bipolar secondary battery 4, both a positive electrode active material layer 28 that forms a positive electrode and a negative electrode active material layer 26 that forms a negative electrode are formed on one bipolar electrode 30.
  • the plurality of electrode sheets 25 includes an electrode sheet 25 m disposed on the side closest to the negative electrode current collector plate 21, and an electrode sheet 25 n disposed on the side closest to the positive electrode current collector plate 23. including.
  • the electrode sheet 25 m is provided such that the negative electrode active material layer 26 is disposed at the end on the negative electrode current collector plate 21 side.
  • the positive electrode active material layer 28 is provided at the end on the electrode sheet 25 n and the positive electrode current collector plate 23 side.
  • the negative electrode current collector plate 2 1 is brought into contact with the negative electrode active material layer 26 of the electrode sheet 25 m, and the positive electrode current collector plate 2 3 is pressed against the positive electrode active material layer 28 of the electrode sheet 25 n. Is done.
  • a plurality of through holes 2 A are formed in the negative electrode current collector plate 21 and the positive electrode current collector plate 23 to allow the cooling medium to pass therethrough.
  • Bipolar secondary battery 4 During charging / discharging of multiple bipolar electrodes 30 in the stacking direction of 30 Current flows. As a result, heat is generated inside the bipolar secondary battery 4. Heat dissipating members (the positive electrode current collector plate 23 and the negative electrode current collector plate 21) are provided at both ends of the plurality of bipolar electrodes 30 in the stacking direction. The temperature of the heat radiating member is lowered by flowing a cooling medium through these heat radiating members.
  • the bipolar secondary battery 4 is significantly shorter than the length and width of the plane perpendicular to the stacking direction. Therefore, the heat generated in the bipolar secondary battery 4 smoothly moves to the heat radiating members at both ends in the stacking direction of the plurality of bipolar electrodes 30. Therefore, the bipolar secondary battery 4 can be efficiently cooled.
  • the current collector foil 29 is made of, for example, aluminum. In this case, even if the active material layer provided on the surface of the current collector foil 29 contains a solid polymer electrolyte, the mechanical strength of the current collector foil 29 can be sufficiently ensured.
  • the current collector foil 29 may be formed by coating aluminum on the surface of a metal other than an anoroleum such as copper, titanium, Eckel, stainless steel (SUS), or an alloy thereof.
  • the positive electrode active material layer 28 includes a positive electrode active material and a solid polymer electrolyte.
  • the positive electrode active material layer 28 is composed of a supporting salt (lithium salt) for enhancing ionic conductivity, a conductive auxiliary agent for enhancing electron conductivity, and NMP (N-methyl-2-pyrrolidone as a solvent for adjusting slurry viscosity.
  • AI BN azobisisobutyronitrile
  • a composite oxide of lithium and a transition metal generally used in a lithium ion secondary battery can be used.
  • the positive electrode active material it was example, if, L i C O_ ⁇ L i ⁇ C o based composite oxide such as 2, L i N I_ ⁇ L i ⁇ N i based composite oxides such as 2, spinel L i Mn 2 ⁇ L i ⁇ ⁇ based composite oxide such as 4, L i F e ⁇ 2 etc. L i. such as F e composite oxides.
  • L i F e P_ ⁇ phosphate compound or sulfate compound of transition metal and lithium such as 4; V 2 0 5, Mn_ ⁇ 2, T i S 2, Mo S 2, transition metal oxides, such as Mo O 3 goods and sulfides; P B_ ⁇ 2, AgO N i OOH, and the like.
  • the solid polymer electrolyte is not particularly limited as long as it is a polymer exhibiting ionic conductivity, Examples thereof include polyethylene oxide (PEO), polypropylene oxide (PPo), and copolymers thereof. Such polyalkylene O sulfoxides based polymer, L i BF 4, L i PF 6, L i N (S0 2 CF 3) 2, L i N ( S_ ⁇ 2 C 2 F 5) 2 and lithium salt of Dissolves easily.
  • the solid polymer electrolyte is contained in at least one of the positive electrode active material layer 28 and the negative electrode active material layer 26. More preferably, the solid polymer electrolyte is contained in both the positive electrode active material layer 28 and the negative electrode active material layer 26.
  • Li (C 2 F 5 S0 2 ) 2 N Li BF 4 , Li PF 6 , Li N (S0 2 C 2 F 5 ) 2 , or a mixture of these.
  • acetylene black, carbon black, graphite and the like can be used. .
  • the negative electrode active material layer 26 includes a negative electrode active material and a solid polymer electrolyte.
  • the negative electrode active material layer is composed of a supporting salt (lithium salt) for enhancing ionic conductivity, a conductive auxiliary agent for enhancing electronic conductivity, and NMP (N-methyl-2-pyridone) as a solvent for adjusting slurry viscosity.
  • a supporting salt lithium salt
  • a conductive auxiliary agent for enhancing electronic conductivity
  • NMP N-methyl-2-pyridone
  • AIBN Azobisisoptyronitrile
  • the negative electrode active material materials generally used in lithium ion secondary batteries can be used. However, when a solid electrolyte is used, it is preferable to use a strong oxide or a composite oxide of lithium and a metal oxide or metal as the negative electrode active material. More preferably, the negative electrode active material is a composite oxide of carbon or lithium and a transition metal. More preferably, the transition metal is titanium. In other words, the negative electrode active material is more preferably titanium oxide or a composite oxide of titanium and lithium.
  • a solid polymer electrolyte such as polyethylene oxide (PEO), polypropylene oxide (PPO), and a copolymer thereof can be used.
  • the solid electrolyte includes a supporting salt (lithium salt) for ensuring ionic conductivity.
  • the supporting salt use Li BF 4 , Li PF 6 , Li N (S 0 2 CF 3 ) 2 , Li N (S 0 2 C 2 F 5 ) 2 , or a mixture thereof. Can do.
  • specific examples of materials for forming the positive electrode active material layer 28, the negative electrode active material layer 26, and the electrolyte layer 27 are shown in Table 1 and Table 3.
  • Table 1 shows specific examples when the electrolyte layer 27 is an organic solid electrolyte
  • Table 2 shows specific examples when the electrolyte layer 27 is an inorganic solid electrolyte
  • Table 3 shows the electrolyte. A specific example in the case where the layer 27 is a gel electrolyte will be shown.
  • the electrolyte used in the secondary battery is a liquid.
  • dilute sulfuric acid is used as the electrolyte.
  • the electrolyte, the positive electrode, and the negative electrode are stored in a sealed bag or case, so that the heat generated in the secondary battery is once transmitted to the container and released from the container to the outside.
  • the electrolyte of the bipolar secondary battery 4 is solid or gel, there is no container for accommodating the electrolyte. Therefore, the heat generated inside the secondary battery is smoothly transferred to the heat radiating members (that is, the negative electrode current collector plate 21 and the positive electrode current collector 2 3). Therefore, according to the present embodiment, the inside of the assembled battery can be efficiently cooled.
  • the positive electrode current collector plate 23 and the negative electrode current collector plate 21 have a certain degree of strength.
  • each of the plurality of bipolar secondary batteries 4 is sandwiched between the positive current collector plate 23 and the negative current collector plate 21.
  • the gap between the positive current collector plate 2 3 and the bipolar secondary battery 4 or the negative current collector plate 21 A gap with the bipolar secondary battery 4 can be eliminated. As a result, the strength of the assembled battery 100 can be ensured.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of an automobile equipped with an assembled battery according to the present invention.
  • FIG. 5 is a schematic plan view of the automobile shown in FIG.
  • the vehicle 1 according to the present invention is, for example, an electric vehicle powered by a chargeable / dischargeable power source, or an internal combustion engine such as a gasoline engine or a diesel engine, and can be charged / discharged.
  • This is a hybrid vehicle that uses a simple power source as a power source.
  • the assembled battery 100 shown in FIGS. 1 to 3 is mounted on these vehicles as a power source.
  • the car 1 has a front seat 1 2 a, 1 2 b (see FIG. 5) and a rear seat 6 disposed in the boarding space (chamber) 50.
  • boarding space 50 The assembled battery 100 and the battery pack 120 including the cooling mechanism shown in FIGS. 1 to 3 are disposed under the front seat 12a.
  • the battery pack 1 2 0 is surrounded by a cover 5 and a floor surface 2 0 0 arranged below the front seats 1 2 a and 1 2 b.
  • the front seats 1 2 a and 1 2 b correspond to “seats” provided in the vehicle of the present invention.
  • the battery pack 1 2 0 may be disposed under the front seat 1 2 b.
  • the space under the front seats 1 2 a and 1 2 b makes it easier to secure a space for storing the battery pack 1 2 0.
  • the car body is composed of a part that collapses in the event of a collision and a part that protects the passenger without collapsing. That is, by disposing the battery pack 1 2 0 under the front seat 1 2 a (or the front seat 1 2 b), the assembled battery can be protected from the impact even when the vehicle body receives a strong impact.
  • the direction indicated by the arrow UPR indicates the ceiling direction (upward) of the automobile 1
  • the direction indicated by the arrow FR indicates the forward direction (traveling direction) of the automobile 1.
  • the direction indicated by the arrow L H in FIG. 5 indicates the left side direction (left side direction) of the automobile 1.
  • FIG. 6 is a top view schematically showing the configuration of battery pack 120 in FIGS. 4 and 5.
  • FIG. 7 is a side view schematically showing the configuration of the battery pack 120 in FIG.
  • battery pack 1 2 0 includes battery pack 1 0 0, intake duct 3 1 A, 3 2 A, exhaust duct 3 1 B, 3 2 B, and intake fan 3 Includes 3 A and 3 3 B. Note that the exhaust ducts 3 1 B and 3 2 B are not shown in FIG. 7 in order to prevent the figure from becoming complicated.
  • Intake fans 3 3 A and 3 3 B are connected to intake ducts 3 1 A and 3 2 A, respectively.
  • the intake fan 3 3 A operates, the cooling air is introduced into the through hole 2 A through the intake duct 3 1 A, and the cooling air is discharged from the exhaust duct 3 1 B.
  • the intake fan 3 3 B operates, the cooling air is introduced into the through hole 2 A through the intake duct 3 2 A, and the cooling air is discharged from the exhaust duct 3 2 B.
  • cooling air is introduced into the negative electrode current collector plate 21 from the intake fan 3 3 A through the intake duct 3 1 A.
  • the inside of the positive current collector 23 Cooling air is introduced from the intake fan 3 3 B through the intake duct 3 2 A to the heat member.
  • the negative electrode current collector plate 21 and the positive electrode current collector plate 23 are alternately arranged along the stacking direction of the plurality of bipolar secondary batteries 4. Therefore, the cooling air can flow in opposite directions between the heat dissipating members adjacent to each other in the stacking direction of the plurality of bipolar secondary batteries 4.
  • cooling air may be sent from one intake fan to the negative current collector 21 and the positive current collector 23.
  • Embodiment 1 it is possible to cool the inside of the assembled battery while reducing the size of the assembled battery.
  • FIG. 8 shows the assembled battery of the second embodiment.
  • assembled battery 100 includes a casing 10 1 1 and a stacked battery 1 1 0.
  • the stacked battery 110 is accommodated in the housing 110.
  • the stacked battery 110 shown in FIG. 8 has a configuration similar to that of the assembled battery 100 in Embodiment 1, and includes a plurality of bipolar secondary batteries and a plurality of heat dissipation members. Therefore, the following description regarding the configuration of stacked battery 110 shown in FIG. 8 will not be repeated.
  • a plurality of radiating fins 10 2 are provided on the outer wall of the casing 10 1.
  • Stacked battery 1 1 0 is housed inside casing 1 0 1 while being pressurized along the stacking direction of a plurality of bipolar secondary batteries, and is positioned above and below stacked battery 1 1 0. It is sandwiched between the two inner walls of the body 1 0 1. As a result, the stacked battery 110 can be restrained. Although not shown in FIG. 8, the surface of the laminated battery 110 is covered with an insulating film.
  • bipolar secondary battery 110 When charging / discharging the stacked battery 110, electrons and ions are moved inside the bipolar secondary battery.
  • a bipolar secondary battery When charging, a bipolar secondary battery has multiple bipolar electrodes. Expands in the stacking direction (the expanded bipolar secondary battery returns to its original state when discharged). When charging and discharging are repeated, gaps are created between the electrodes, and the battery performance may be degraded due to changes in internal resistance.
  • the casing 1 0 1 is a restraining member of the stacked battery 1 1 0.
  • the battery can be restrained without using a member such as a restraining plate or a restraining band.
  • FIG. 9 is a perspective view showing the entire assembled battery of the third embodiment.
  • the assembled battery 10 O A includes a bipolar secondary battery 4 A, an insulating film 24, and a heat radiating member 2B.
  • the insulating film 24 is provided between the bipolar secondary battery 4 and the heat radiating member 2B.
  • a plurality of through-holes 2A for flowing a cooling medium are formed inside the heat radiating member 2B.
  • the heat dissipation member 2B is preferably made of metal.
  • the shape of the assembled battery 10 O A is a cylinder extending along the central axis 4 1.
  • the assembled battery 10 O A is formed so that its cross-sectional shape is circular when cut along a plane orthogonal to the central axis 41.
  • the assembled battery 10 O A may be formed so that its cross-sectional shape is an ellipse or an ellipse.
  • FIG. 10 is a perspective view showing an example of a manufacturing method of the assembled battery 100 A shown in FIG. Referring to FIG. 10, bipolar secondary battery 4 A and insulating film 24 are wound several times.
  • the bipolar secondary battery 4 A and the insulating film 24 have a substantially rectangular thin film shape.
  • the heat radiating member 2 B is formed in advance in the shape shown in FIG. 9 (spiral with respect to the central axis 41) by a mold or the like.
  • the assembled battery 10 O A is manufactured by inserting the bipolar secondary battery 4 and the insulating film 24 wound around the heat radiating member 2 B.
  • the assembled battery 10 OA may be manufactured by winding the heat radiating member 2 B together with the bipolar secondary battery 4 A and the insulating film 24. However, assembled battery 1 0 OA In order to increase the strength of 058385, it is preferable to use a heat dissipating member formed in a swirl shape in advance.
  • FIG. 11 is an enlarged cross-sectional view showing a range surrounded by a two-dot chain line XI in FIG.
  • bipolar secondary battery 4 A is different from bipolar secondary battery 4 in that it further includes a negative current collector 21 and a positive current collector 23. Since the configuration of the other parts of bipolar secondary battery 4 A is the same as the configuration of the corresponding part of bipolar secondary battery 4, the following description will not be repeated.
  • the plurality of electrode sheets 25 When the plurality of electrode sheets 25 are wound, the plurality of electrode sheets 25 includes an electrode sheet 25 m disposed on the innermost side, an electrode sheet 25 n disposed on the outermost side, including.
  • the electrode sheet 25 m is provided so that the negative electrode active material layer 26 is disposed at the inner peripheral end thereof.
  • the electrode sheet 25 ⁇ is provided so that the positive electrode active material layer 28 is disposed at the outer peripheral end.
  • the negative electrode current collector plate 21 is laminated so as to be in contact with the negative electrode active material layer 26 of the electrode sheet 25 m.
  • the positive electrode current collector plate 23 is laminated so as to be in contact with the positive electrode active material layer 28 of the electrode sheet 25 n.
  • the insulating film 24 is provided so as to be in contact with the positive current collector 23 (in FIG. 11, the insulating film 24 is in contact with the positive current collector 23).
  • a heat radiating member 2 B is provided outside the insulating film 2 4. That is, in Embodiment 3, the heat radiating member 2 B is provided along the bipolar electrode 30 disposed at one end in the stacking direction of the plurality of bipolar electrodes among the plurality of bipolar electrodes 30.
  • the insulating film 24 causes a short circuit between the positive current collector 2 3 and the negative current collector 21, that is, the positive current collector 23 and the negative current collector.
  • the plate 21 is prevented from being electrically connected to the heat radiating member 2B.
  • the negative current collector 21 and the positive current collector 23 may not be included in the bipolar secondary battery 4A.
  • the bipolar secondary battery 4A is in the form of a thin film.
  • a battery having a small capacity and a large capacity can be realized by winding a thin film.
  • the thin film shown in FIG. Although it is necessary to cut and stack at 5 intervals, the assembled battery of the third embodiment is easier to manufacture than the assembled battery of the first embodiment.
  • the inside of the assembled battery can be appropriately cooled while reducing the size of the assembled battery.
  • FIG. 12 is a perspective view showing the entire assembled battery of the fourth embodiment.
  • the assembled battery 10 0 B further includes a heat radiating member 2 C. Further, in the assembled battery 100 B, an insulating film 24 is provided between the heat radiating member 2 B and the heat radiating member 2 C.
  • the assembled battery 1 0 0 B is different from the assembled battery 1 0 0 A in these points. Since the other parts of assembled battery 1 0 0 B are the same as the corresponding parts of assembled battery 1 0 O A, the following description will not be repeated.
  • the heat radiating member 2 B is provided outside the positive electrode current collector plate 2 3 of the bipolar secondary battery 4 shown in FIG. 11.
  • the heat radiating member 2 C is provided outside the negative electrode current collector plate 21. Provided.
  • the heat dissipating member 2B is provided along the bipolar electrode 30 arranged at one end in the stacking direction of the plurality of bipolar electrodes among the plurality of bipolar electrodes 30 and the other end.
  • a heat release member 2 C is provided along the bipolar electrode 30 disposed in the base plate.
  • the assembled battery 100 B is cooled, for example, by passing cooling air sent from a cooling fan (not shown in FIG. 12) through the heat dissipating members 2 B and 2 C.
  • the method for manufacturing the assembled battery 100 B is the same as the method for manufacturing the assembled battery shown in FIG.
  • the heat dissipating members 2 B and 2 C and the insulating film 24 are integrated into a spiral shape in advance.
  • the thin-film bipolar secondary battery 4 A is wound several times.
  • the assembled battery 10 0 B can be manufactured by inserting the bipolar secondary battery 4 A into the gap between the heat dissipating members 2 B and 2 C shown in Fig. 2.
  • the assembled battery 100 B may be produced by stacking the heat radiating members 2 B and 2 C, the insulating vinyl 24 and the bipolar secondary battery 4 A.
  • the positive electrode current collector plate 23 is in direct contact with the heat radiating member 2B.
  • an insulating film 24 is provided between the positive electrode current collector plate 23 and the heat dissipation member 2B. That is, in the fourth embodiment, since there is no insulating film between the current collector plate and the heat radiating member, the heat dissipation of the assembled battery can be improved as compared with the third embodiment.
  • negative electrode current collector plate 21 is in contact with the heat dissipation member.
  • this heat radiating member is the heat radiating member 2 B, and in the case of the fourth embodiment, the heat radiating member is 2 C.
  • the heat dissipation of the assembled battery can be improved as compared with the third embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Battery Mounting, Suspending (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 自動車の動力源に用いられる組電池(100)において、負極集電板(21)および正極集電板(23)は、複数のバイポーラ2次電池のうち積層方向に隣り合う2つのバイポーラ2次電池ごとに配置される。負極集電板(21)(および正極集電板(23))は、その内部に冷却媒体が流れることにより放熱部材としても機能する。組電池(100)の冷却を行なうために正極集電板(23)(あるいは負極集電板(21))に冷却用タブを接続しなくてもよいため、組電池(100)では正極集電板(23)(あるいは負極集電板(21))からはみ出る部分が存在しない。よって組電池(100)の小型化を図りながら、組電池(100)の内部を冷却できる。

Description

明細書 組電池および車両 技術分野
本発明は、 組電池、 およびその組電池を備える車両に関し、 特に複数のバイポ ーラ 2次電池を積層することにより構成される組電池と、 その組電池を備える車 両とに関する。
背景技術
従来の 2次電池の冷却構造に関し、 たとえば特開 2 0 0 5— 7 1 7 8 4号公報 は、 複数の単電池を直列に積層した積層型電池において複数の集電体に冷却用タ ブが取り付けられた構造を開示する。 複数の単電池の各々は、 片面に正極活物質 層を、 その裏面に負極活物質層を有する集電体に、 別の集電体をポリマー電解質 層を介して直列に接続することにより構成される。 この積層型電池では、 積層時 の厚みの中心にある冷却用タブの放熱効果が最大となり、 厚さ方向の両端側に向 かって冷却用タブの放熱効果が漸減するように、 たとえば冷却用タブの表面積あ るいは厚み等が調整される。
上述の積層型電池では冷却用タブが集電体からはみ出る。 つまり、 上述の積層 型電池では冷却用タブを設けることによって電池の幅方向の長さが必然的に大き くなる。 しかしながら特開 2 0 0 5— 7 1 7 8 4号公報は、 このような問題に対 する具体的な解決方法を開示していない。
発明の開示
本発明の目的は、 小型化を図りながらその内部を冷却可能な組電池、 および、 その組電池を備える車両を提供することである。
本発明は要約すれば、 組電池であって、 積層された複数の 2次電池を備える。 複数の 2次電池の各々は、 複数の 2次電池の積層方向と同一方向に積層された複 数のバイポーラ電極を含む。 複数のバイポーラ電極の各々の第 1の主表面には、 正極が形成される。 複数のバイポーラ電極の各々の第 2の主表面には、 負極が形 成される。 複数の 2次電池の各々は、 複数のバイポーラ電極のうち隣り合う 2つ のバイポーラ電極ごとに設けられ、 隣り合う 2つのバイポーラ電極の一方の正極 と、 隣り合う 2つのバイポーラ電極の他方の負極との間に配置される複数の電解 質をさらに含む。 組電池は、 複数の 2次電池のうち、 少なくとも 1対の隣り合う 第 1および第 2の 2次電池の間に、 冷却媒体が流れる第 1の冷却通路を形成する ように配置される放熱部材をさらに備える。
好ましくは、 放熱部材は、 導電性を有する。 第 1および第 2の 2次電池の正極 同士、 または、 第 1および第 2の 2次電池の負極同士は、 放熱部材によって電気 的に接続される。
好ましくは、 組電池は、 第 2の 2次電池と、 複数の 2次電池のうち第 2の 2次 電池に対して第 1の 2次電池と反対側に位置し、 かつ、 第 2の 2次電池と隣り合 う第 3の 2次電池との間に、 冷却媒体が流れる第 2の冷却通路を形成するように 配置される他の放熱部材をさらに備える。
より好ましくは、 放熱部材は、 冷却媒体を供給する冷却装置に対して、 冷却装 置からの冷却媒体が第 1の冷却通路を第 1の向きに流れるように配置される。 他 の放熱部材は、 冷却装置に対して、 冷却装置からの冷却媒体が、 第 2の冷却通路 を第 1の向きと逆の第 2の向きに流れるように配置される。
好ましくは、 組電池は、 複数の 2次電池と、 放熱部材と、 他の放熱部材とを内 部に収容する筐体をさらに備える。 筐体の外壁には、 複数の放熱フィンが設けら れる。
好ましくは、 複数の電解質は、 固体電解質またはゲル状電解質である。
本発明の他の局面に従うと、 組電池であって、 2次電池を備える。 2次電池は、 積層された複数のバイポーラ電極を含む。 複数のバイポーラ電極の各々の第 1の 主表面には、 正極が形成される。 複数のバイポーラ電極の各々の第 2の主表面に は、 負極が形成される。 2次電池は、 複数のバイポーラ電極のうち隣り合う 2つ のバイポーラ電極ごとに設けられ、 隣り合う 2つのバイポーラ電極の一方の正極 と、 隣り合う 2つのバイポーラ電極の他方の負極との間に配置される複数の電解 質をさらに含む。 組電池は、 複数のバイポーラ電極のうち、 積層方向における一 方端に配置されるバイポーラ電極に沿って冷却媒体が流れる第 1の冷却通路を形 成する放熱部材をさらに含む。 好ましくは、 2次電池と放熱部材との間には、 絶縁部材が配置される。 2次電 池と放熱部材と絶縁部材とは、 所定の軸を中心に渦巻状に形成される。
より好ましくは、 放熱部材は、 予め渦巻状に成型される。
好ましくは、 組電池は、 複数のバイポーラ電極のうち、 積層方向における他方 端に配置されるバイポーラ電極に沿って冷却媒体が流れる第 2の冷却通路を形成 する他の放熱部材と、 他の放熱部材に対して、 他方端に配置されるバイポーラ電 極と反対側に配置される絶縁部材とをさらに備える。 2次電池と、 放熱部材と、 他の放熱部材と、 絶縁部材とは、 所定の軸を中心に渦卷状に形成される。
本発明のさらに他の局面に従うと、 車両であって、 車室内部に配置されたシー トと、 シートの下に配置される組電池とを備える。 組電池は、 積層された複数の 2次電池を含む。 複数の 2次電池の各々は、 複数の 2次電池の積層方向と同一方 向に積層された複数のバイポーラ電極を有する。 複数のバイポーラ電極の各々の 第 1の主表面には、 正極が形成される。 複数のバイポーラ電極の各々の第 2の主 表面には、 負極が形成される。 複数の 2次電池の各々は、 複数のバイポーラ電極 のうち隣り合う 2つのバイポーラ電極ごとに設けられ、 隣り合う 2つのバイポー ラ電極の一方の正極と、 隣り合う 2つのバイポーラ電極の他方の負極との間に配 置される複数の電解質をさらに有する。 組電池は、 複数の 2次電池のうち、 少な くとも 1対の隣り合う第 1および第 2の 2次電池の間に、 冷却媒体が流れる第 1 の冷却通路を形成するように配置される放熱部材ををさらに含む。
好ましくは、 放熱部材は、 導電性を有する。 第 1および第 2の 2次電池の正極 同士、 または、 第 1および第 2の 2次電池の負極同士は、 放熱部材によって電気 的に接続される。
好ましくは、 組電池は、 第 2の 2次電池と、 複数の 2次電池のうち第 2の 2次 電池に対して第 1の 2次電池と反対側に位置し、 かつ、 第 2の 2次電池と隣り合 う第 3の 2次電池との間に、 冷却媒体が流れる第 2の冷却通路を形成するように 配置される他の放熱部材をさらに含む。
より好ましくは、 放熱部材は、 冷却媒体を供給する冷却装置に対して、 冷却装 置からの冷却媒体が第 1の冷却通路を第 1の向きに流れるように配置され、 他の放熱部材は、 冷却装置に対して、 冷却装置からの冷却媒体が、 第 2の冷却 通路を第 1の向きと逆の第 2の向きに流れるように配置される。
好ましくは、 組電池は、 複数の 2次電池と、 放熱部材と、 他の放熱部材とを内 部に収容する筐体をさらに含む。 筐体の外壁には、 複数の放熱フィンが設けられ る。
好ましくは、 複数の電解質は、 固体電解質またはゲル状電解質である。
本発明のさらに他の局面に従うと、 車両であって、 車室内部に配置されたシー トと、 シートの下に配置される組電池とを備える。 組電池は、 2次電池を含む。
2次電池は、 積層された複数のバイポーラ電極を有する。 複数のバイポーラ電極 の各々の第 1の主表面には、 正極が形成される。 複数のバイポーラ電極の各々の 第 2の主表面には、 負極が形成される。 2次電池は、 複数のパイポーラ電極のう ち隣り合う 2つのバイポーラ電極ごとに設けられ、 隣り合う 2つのバイポーラ電 極の一方の正極と、 隣り合う 2つのバイポーラ電極の他方の負極との間に配置さ れる複数の電解質をさらに有する。 組電池は、 複数のバイポーラ電極のうち、 積 層方向における一方端に配置されるバイポーラ電極に沿って冷却媒体が流れる第 1の冷却通路を形成する放熱部材をさらに含む。
好ましくは、 2次電池と放熱部材との間には、 絶縁部材が配置ざれる。 2次電 池と放熱部材と絶縁部材とは、 所定の軸を中心に渦巻状に形成される。
より好ましくは、 放熱部材は、 予め渦巻状に成型される。
好ましくは、 組電池は、 複数のバイポーラ電極のうち、 積層方向における他方 端に配置されるバイポーラ電極に沿って冷却媒体が流れる第 2の冷却通路を形成 する他の放熱部材と、 他の放熱部材に対して、 他方端に配置されるバイポーラ電 極と反対側に配置される絶縁部材とをさらに含む。 2次電池と、 放熱部材と、 他 の放熱部材と、 絶縁部材とは、 所定の軸を中心に渦卷状に形成される。
したがって本発明によれば、 組電池の小型化を図りながら組電池内部の冷却を 可能にする。
図面の簡単な説明
図 1は、 本発明の実施の形態による組電池を示す斜視図である。
図 2は、 図 1の組電池 1 0 0の一部を取り出して示十図である。
図 3は、 図 2の I I I一 I I I線に従う組電池の断面図である。 図 4は、 本発明による組電池を搭載した自動車の実施の形態を示す断面模式図 である。
図 5は、 図 4に示した自動車の平面透視模式図である。
図 6は、 図 4および図 5の電池パック 1 2 0の構成を模式的に示す上面図であ る。
図 7は、 図 6の電池パック 1 2 0の構成を模式的に示す側面図である。
図 8は、 実施の形態 2の組電池を示す図である。
図 9は、 実施の形態 3の組電池の全体を示す斜視図である。
図 1 0は、 図 9に示す組電池 1 0 0 Aの製造方法の一例を示す斜視図である。 図 1 1は、 図 1 0中の 2点鎖線 X Iで囲まれた範囲を拡大して示す断面図であ る。
図 1 2は、 実施の形態 4の組電池の全体を示す斜視図である。
発明を実施するための最良の形態
以下において、 本発明の実施の形態について図面を参照して詳しく説明する。 なお、 図中同一符号は同一または相当部分を示す。
[実施の形態 1 ]
図 1は、 本発明の実施の形態による組電池を示す斜視図である。
図 1を参照して、 組電池 1 0 0は、 積層された複数のバイポーラ 2次電池 4を 備える。 詳細は後述するが、 複数のバイポーラ 2次電池 4の各々は、 複数のバイ ポーラ電極と、 複数の電解質とを含む。 複数のバイポーラ電極は、 複数のバイポ ーラ 2次電池 4の積層方向と同一方向に積層される。 複数のバイポーラ電極の 各々の第 1の主表面には、 正極が形成される。 複数のバイポーラ電極の各々の第 2の主表面には、 負極が形成される。 つまり、 各バイポーラ電極の両面には正極 および負極がそれぞれ形成される。
複数の電解質は、 複数のバイポーラ電極のうち隣り合う 2つのバイポーラ電極 ごとに設けられる。 各電解質は、 隣り合う 2つのバイポーラ電極の一方の正極と、 隣り合う 2つのバイポーラ電極の他方の負極との間に配置される。
組電池 1 0 0は、 さらに、 複数の負極集電板 2 1と、 複数の正極集電板 2 3と を備える。 図 1に示すように複数のバイポーラ 2次電池 4、 複数の負極集電板 2 1、 および複数の正極集電板 2 3は、 組電池 1 0 0の下側から上側に向かって正 極集電板 2 3、 バイポーラ 2次電池 4、 負極集電板 2 1、 バイポーラ 2次電池 4 の順に積層される。
1つの負極集電板 2 1の上下に配置される 2つのバイポーラ 2次電池 4の各々 の負極は、 その負極集電板 2 1によって電気的に接続される。 1つの正極集電板 2 3の上下に配置される 2つのバイポーラ 2次電池 4の各々の正極は、 その正極 集電板 2 3によって電気的に接続される。 これにより複数のバイポーラ 2次電池 4は電気的に並列接続される。 これにより本実施の形態によれば組電池 1 0 0の 容量を高くすることができる。
バイポーラ 2次電池 4において、 複数のバイポーラ電極の積層方向の長さ (バ ィポーラ 2次電池 4の厚み) は、 積層方向に直交する平面の長さおよび幅に比較 して大幅に短い。 一例を示すと、 各バイポーラ 2次電池 4において複数の電極シ 一トの積層方向の長さを 1とした場合、 上述の平面の幅および長さは 1 0〜1 5 程度となる。 各バイポーラ 2次電池 4に含まれる複数のバイポーラ電極の積層方 向と同一方向に複数のバイポーラ 2次電池 4を積層することで、 電池の容量を高 めながら組電池のサイズが大きくなることを防ぐことができる。
複数の負極集電扳 2 1および複数の正極集電扳 2 3の各々には複数の貫通孔 (冷却通路) 2 Aが形成される。 複数の貫通孔 2 Aに冷却媒体 (たとえば冷却風 や冷却水等) を流すことによって複数のバイポーラ 2次電池を冷却することがで きる。 - 要するに組電池 1 0 0において、 負極集電板 2 1および正極集電板 2 3は、 複 数のバイポーラ 2次電池のうち積層方向に隣り合う 2つのバイポーラ 2次電池ご とに配置される。 負極集電板 2 1 (および正極集電板 2 3 ) は、 その内部に冷却 媒体が流れることにより放熱部材としても機能する。
よって本実施の形態においては、 組電池 1 0 0の冷却を行なうために正極集電 板 2 3 (あるいは負極集電板 2 1·) に冷却用タブを接続しなくてもよい。 つまり 組電池 1 0 0では正極集電板 2 3 (あるいは負極集電板 2 1 ) からはみ出る部分 が存在しない。 これにより本実施の形態によれば、 組電池 1 0 0の小型化を図り ながら、 組電池 1 0◦の内部を冷却できる。 冷却通路に冷却媒体を流した場合には放熱部材と冷却媒体との間で熱交換が行 なわれる。 よって冷却通路の排出口側の温度が冷却通路の導入口側の温度よりも 高くなる。 複数の負極集電板 2 1および複数の正極集電板 2 3 (以下、 「複数の 放熱部材」 とも称する) の間で冷却媒体の流れる向きを同一とした場合 (たとえ ば図 1に示す組電池 1 0 0の前面から背面に冷却媒体を流す場合) には、 複数の バイポーラ 2次電池 4の間で温度のばらつきが生じやすくなる。
本実施の形態では、 複数の放熱部材のうちの少なくとも 1つの放熱部材におい て、 他の放熱部材において冷却媒体が流れる向き (第 1の向き) とは逆の向き (第 2の向き) に冷却媒体が流れる。 これにより複数のバイポーラ 2次電池 4の 間での温度のばらつきを低減することができる。 ここで第 1の向きを組電池 1 0 0の前面から背面への向きとした場合には第 2の向きは組電池 1 0 0の背面から 前面への向きとなる。
特に図 1に示すように、 複数の放熱部材同士の間で冷却媒体の流れる向きが第 1の向きと第 2の向きとで交互になることが好ましい。 このように冷却媒体を複 数の放熱部材に流すことで複数のバイポーラ 2次電池 4の間の温度ばらつきをよ り低減できる。 これにより複数のバイポーラ 2次電池 4の間で温度に依存する特 性 (たとえば S O C (State of. Charge) など) を均一にすることができる。 図 2は、 図 1の組電池 1 0 0の一部を取り出して示す図である。
図 2において、 組電池は 3つのバイポーラ 2次電池 4を含む。 各バイポーラ 2 次電池 4から出力される電圧は、 たとえば約 2 0 0 Vである。
図 2では 2つの負極集電板 2 1と 2つの正極集電板 2 3とを示す。 負極集電板 2 1およぴ正極集電板 2 3はバイポーラ 2次電池 4の負極および正極にそれぞれ 電気的に接続される。 2つの負極集電板 2 1は端子 T 1に接続される。 また 2つ の正極集電板 2 3は端子 T 2に接続される。 これにより組電池の放電時には端子 T l , T 2間に 2 0 0 Vの電圧が出力される。
なお組電池の充電時には端子 T 1, T 2間に所定の電圧 (たとえば約 2 0 0 V) を印加することにより、 各バイポーラ 2次電池 4が充電される。
図 3は、 図 2の I I I— I I I線に従う組電池の断面図である。
図 3を参照して、 複数のバイポーラ 2次電池 4の各々は、 積層された複数の電 2007/058385 極シート 2 5を含む。 複数の電極シート 2 5の積層方向は複数のバイポーラ 2次 電池 4の積層方向と同じである。
電極シート 2 5は、 正極をなす正極活物質層 2 8と、 負極をなす負極活物質層 2 6と、 正極活物質層 2 8と負極活物質層 2 6との間に介在する電解質層 2 7と から構成されている。 電解質層 2 7は、 イオン伝導性を示す材料から形成される 層である。 電解質層 2 7は、 固体電解質であっても良いし、 ゲル状電解質であつ ても良い。 電解質層 2 7を介在させることによって、 正極活物質層 2 8および負 極活物質層 2 6間のイオン伝導がスムーズになり、 バイポーラ 2次電池 4の出力 を向上させることができる。
複数の電極シート 2 5は、 積層方向に隣り合う位置で正極活物質層 2 8と負極 活物質層 2 6とが対向するように積層されている。 複数の電極シート 2 5間には、 それぞれシート状の集電箔 2 9が設けられている。 集電箔 2 9の一方の面 2 9 b に正極活物質層 2 8が形成され、 集電箔 2 9の他方の面 2 9 aに負極活物質層 2 6が形成されている。 正極活物質層 2 8および負極活物質層 2 6は、 たとえばス ノ、。ッタリングにより集電箔 2 9の表面上に形成されている。
電極シート 2 5の積層方向に隣り合う電解質層 2 7間に配置された、 正極活物 質層 2 8、 集電箔 2 9およぴ負極活物質層 2 6の組が、 バイポーラ電極 3 0を構 成している。 バイポーラ 2次電池 4では、 1つのバイポーラ電極 3 0に、 正極を なす正極活物質層 2 8と負極をなす負極活物質層 2 6との双方が形成されている。 複数の電極シート 2 5は、 負極集電板 2 1に最も近い側に配置される電極シー ト 2 5 mと、 正極集電板 2 3に最も近い側に配置される電極シート 2 5 nとを含 む。 電極シート 2 5 mは、 負極集電板 2 1側の端に負極活物質層 2 6が配置され るように設けられている。 電極シート 2 5 n 、 正極集電板 2 3側の端に正極活 物質層 2 8が配置されるように設けられている。 これにより電極シート 2 5 mの '負極活物質層 2 6に負極集電板 2 1が接触され、 電極シート 2 5 nの正極活物質 層 2 8に正極集電板 2 3力 S接角虫される。
負極集電板 2 1および正極集電板 2 3に.は冷却媒体を通すための複数の貫通孔 2 Aが形成される。
バイポーラ 2次電池 4の充放電時には複数のバイポーラ電極 3 0の積層方向に 電流が流れる。 これによりバイポーラ 2次電池 4の内部において熱が発生する。 複数のバイポーラ電極 30の積層方向の両端に放熱部材 (正極集電板 23および 負極集電板 21) が設けられる。 これらの放熱部材に冷却媒体を流すことで放熱 部材の温度が低下する。
上述のように、 複数のバイポーラ電極の積層方向の長さ (バイポーラ 2次電池
4の厚み) は、 積層方向に直交する平面の長さおよび幅に比較して大幅に短い。 よって、 バイポーラ 2次電池 4の内部で発生した熱は複数のパイポーラ電極 30 の積層方向の両端の放熱部材にスムーズに移動する。 よってバイポーラ 2次電池 4を効率よく冷却することができる。
続いて、 図 3中のバイポーラ 2次電池 4を構成する各部材について詳細な説明 を行なう。 集電箔 29は、 たとえばアルミニウムから形成されている。 この場合、 集電箔 29の表面に設けられる活物質層が固体高分子電解質を含んでも、 集電箔 29の機械的強度を十分に確保することができる。 集電箔 29は、 銅、 チタン、, エッケル、 ステンレス鋼 (SUS) もしくはこれらの合金等、 ァノレミニゥム以外 の金属の表面にアルミニゥムを被膜することによつて形成されても良い。
正極活物質層 28は、 正極活物質および固体高分子電解質を含む。 正極活物質 層 28は、 イオン伝導性を高めるための支持塩 (リチウム塩) 、 電子伝導性を高 めるための導電助剤、 スラリー粘度の調整溶媒としての NMP (N—メチル一 2 —ピロリ ドン) 、 重合開始剤としての A I BN (ァゾビスィソブチロニトリル) 等を含んでも良い。
正極活物質としては、 リチウムイオン 2次電池で一般的に用いられる、 リチウ ムと遷移金属との複合酸化物を使用することができる。 正極活物質として、 たと えば、 L i C o〇 2等の L i · C o系複合酸化物、 L i N i〇 2等の L i ■ N i 系複合酸化物、 スピネル L i Mn 24等の L i · Μη系複合酸化物、 L i F e 〇2等の L i . F e系複合酸化物などが挙げられる。 その他、 L i F e P〇4等 の遷移金属とリチウムとのリン酸化合物や硫酸化合物; V205、 Mn〇2、 T i S2、 Mo S2、 Mo O 3等の遷移金属酸化物や硫化物; P b〇2、 AgO N i OOH等が挙げられる。
固体高分子電解質は、 イオン伝導性を示す高分子であれば、 特に限定されず、 たとえば、 ポリエチレンォキシド (PEO) 、 ポリプロピレンォキシド (P P o) 、 これらの共重合体などが挙げられる。 このようなポリアルキレンォキシド 系高分子は、 L i BF4、 L i PF6、 L i N (S02CF3) 2、 L i N (S〇2 C2F5) 2等のリチウム塩を容易に溶解する。 固体高分子電解質は、 正極活物質 層 28および負極活物質層 26の少なくとも一方に含まれる。 より好ましくは、 固体高分子電解質は、 正極活物質層 28および負極活物質層 26の双方に含まれ る。
支持塩としては、 L i (C2F5 S02) 2N、 L i BF4、 L i PF6、 L i N (S02C2F5) 2、 もしくはこれらの混合物等を使用することができる。 導電 助剤としては、 アセチレンブラック、 カーボンブラック、 グラフアイ ト等を使用 することができる。 .
負極活物質層 26は、 負極活物質および固体高分子電解質を含む。 負極活物質 層は、 イオン伝導性を高めるための支持塩 (リチウム塩) 、 電子伝導性を高める ための導電助剤、 スラリー粘度の調整溶媒としての NMP (N—メチル一2—ピ 口リ ドン) 、 重合開始剤としての A I BN (ァゾビスイソプチロニトリル) 等を 含んでも良い。
負極活物質としては、 リチウムイオン 2次電池で一般的に用いられる材料を使 用することができる。 但し、 固体電解質を使用する場合、 負極活物質として、 力 一ボンもしくはリチウムと金属酸ィ匕物もしくは金属との複合酸化物を用いること が好ましい。 より好ましくは、 負極活物質は、 カーボンもしくはリチウムと遷移 金属との複合酸化物である。 さらに好ましくは、 遷移金属はチタンである。 つま り、 負極活物質は、 チタン酸化物もしくはチタンとリチウムとの複合酸化物であ ることがさらに好ましい。
電解質層 27を形成する固体電解質としては、 たとえば、 ポリエチレンォキシ ド (PEO) 、 ポリプロピレンォキシド (PPO) 、 これらの共重合体等、 固体 高分子電解質を使用することができる。 固体電解質は、 イオン伝導性を確保する ための支持塩 (リチウム塩) を含む。 支持塩としては、 L i BF4、 L i PF6、 L i N (S 02CF3) 2、 L i N (S 02C2F5) 2、 もしくはこれらの混合物 等を使用することができる。 さらに、 正極活物質層 2 8、 負極活物質層 2 6および電解質層 2 7を形成する 材料の具体例を表 1力ゝら表 3に示す。 表 1は、 電解質層 2 7が有機系固体電解質 である場合の具体例を示し、 表 2は、 電解質層 2 7が無機系固体電解質である場 合の具体例を示し、 表 3は、 電解質層 2 7がゲル状電解質である場合の具体例を 示す。
【表 1】
Figure imgf000014_0001
【表 2】
Figure imgf000015_0001
【表 3 】
Figure imgf000016_0001
多くの場合、 2次電池に用いられる電解質は液体である。 たとえば鉛蓄電池の 場合には電解液に稀硫酸が用いられる。 このような 2次電池では電解質、 正極、 負極は密閉された袋あるいはケース等に収納されるので、 2次電池の内部に生じ た熱は一旦容器に伝達され、 容器から外部に放出される。 つまり、 このような 2 次電池では電解質 (電解液) を収納する容器が存在するために、 2次電池の内部 における冷却を効率的に行なうことは容易ではない。
これに対し、 本実施の形態ではバイポーラ 2次電池 4の電解質は固体またはゲ ル状であるので、 電解質を収納するための容器は存在しない。 よって、 2次電池 の内部の内部に生じた熱は放熱部材 (つまり負極集電板 2 1および正極集電扳 2 3 ) にスムーズに伝達される。 よって本実施の形態によれば組電池の内部を効率 的に冷却することが可能になる。
また、 正極集電板 2 3および負極集電板 2 1はある程度の強度を有する。 本実 施の形態では複数のバイポーラ 2次電池 4の各々は正極集電板 2 3および負極集 電板 2 1により挟まれる。 正極集電板 2 3および負極集電板 2 1をバイポーラ 2 次電池 4に挟んだときに正極集電板 2 3とバイポーラ 2次電池 4との隙間、 ある いは負極集電板 2 1とバイポーラ 2次電池 4との隙間をなくすことができる。 こ れによって組電池 1 0 0の強度を確保することができる。
続いて、 図 1〜図 3に示す組電池の適用例、 および、 組電池の冷却方法の具体 例について説明する。
図 4は、 本発明による組電池を搭載した自動車の実施の形態を示す断面模式図 である。
図 5は、 図 4に示した自動車の平面透視模式図である。
図 4および図 5を参照して、 本発明による自動車 1はたとえば充放電可能な電 源を動力源とする電気自動車、 あるいは、 ガソリンエンジンやディーゼルェンジ ン等の内.燃機関と、 充放電可能な電源とを動力源とするハイプリッド車両等であ る。 図 1〜図 3に示す組電池 1 0 0はこれらの自動車に電源として搭載されてい る。
自動車 1はその搭乗空間 (ΐ室) 5 0内において、 フロントシート 1 2 a, 1 2 b (図 5参照) とリアシート 6とが配置されている。 搭乗空間 5 0内において、 フロントシート 1 2 a下に、 図 1〜図 3に示す組電池 1 0 0および冷却機構を含 む電池パック 1 2 0が配置されている。 電池パック 1 2 0は、 フロントシート 1 2 a , 1 2 b下に配置されたカバー 5および床面 2 0 0により囲まれた状態とな つている。 フロントシート 1 2 a , 1 2 bは本発明の車両が備える 「シート」 に 対応する。
なお電池パック 1 2 0はフロントシート 1 2 b下に配置されていてもよい。 フ ロントシート 1 2 a, 1 2 bの下は自動車 1の他の部分に比較して電池パック 1 2 0を収納する空間を確保しやすい。 また多くの場合、 車体は、 衝突時につぶれ る部分と、 つぶれずに乗員を保護する部分から構成されている。 つまりフロント シート 1 2 a (あるいはフロントシート 1 2 b ) の下に電池パック 1 2 0を配置 することにより車体が強い衝撃を受けた場合にも組電池を衝撃から保護できる。 なお図 4における矢印 U P Rで示す方向は自動車 1の天井方向 (上方) を示し、 矢印 F Rで示した方向は自動車 1の前方方向 (進行方向) を示す。 また、 図 5に おける矢印 L Hで示す方向は、 自動車 1の車両左側の方向 (左側側面方向) を示 す。
図 6は、 図 4および図 5の電池パック 1 2 0の構成を模式的に示す上面図であ る。
図 7は、 図 6の電池パック 1 2 0の構成を模式的に示す側面図である。
図 6および図 7を参照して、 電池パック 1 2 0は、 組電池 1 0 0と、 吸気ダク ト 3 1 A, 3 2 Aと、 排気ダクト 3 1 B, 3 2 Bと、 吸気ファン 3 3 A, 3 3 B とを含む。 なお図が煩雑になるのを防ぐため図 7では排気ダクト 3 1 B , 3 2 B は示していない。
吸気ファン 3 3 A, 3 3 Bは、 吸気ダクト 3 1 A, 3 2 Aにそれぞれ接続され る。 吸気ファン 3 3 Aが動作すると、 吸気ダクト 3 1 Aを介して冷却風が貫通孔 2 Aに導入され、 排気ダクト 3 1 Bから冷却風が排出される。 吸気ファン 3 3 B が動作すると、 吸気ダクト 3 2 Aを介して冷却風が貫通孔 2 Aに導入され、 排気 ダクト 3 2 Bから冷却風が排出される。
ここで図 7に示すように、 負極集電板 2 1に対しては吸気ファン 3 3 Aから吸 気ダクト 3 1 Aを介して冷却風が導入される。 一方、 正極集電板 2 3の内部の放 熱部材に対しては吸気ファン 3 3 Bから吸気ダク ト 3 2 Aを介して冷却風が導入 される。 負極集電板 2 1および正極集電板 2 3は複数のバイポーラ 2次電池 4の 積層方向に沿って交互に配置される。 よって複数のバイポーラ 2次電池 4の積層 方向に沿って隣り合う放熱部材間で冷却風の流れる方向を互いに逆向きとするこ とができる。 なお、 吸気ファン 3 3 A, 3 3 Bに代えて 1台の吸気ファンから冷 却風が負極集電板 2 1および正極集電板 2 3に送られるように構成されていても よい。
以上のように実施の形態 1によれば、 組電池の小型化を図りながら組電池の内 部の冷却を可能にする。
[実施の形態 2 ]
図 8は、 実施の形態 2の組電池を示す図である。
図 8を参照して、 組電池 1 0 0は筐体 1 0 1と積層型電池 1 1 0とを備える。 積層型電池 1 1 0は筐体 1 0 1の内部に収容される。 なお、 図 8に示す積層型電 池 1 1 0は実施の形態 1における組電池 1 0 0と同様の構成を有し、 複数のバイ ポーラ 2次電池および複数の放熱部材を備える。 よって図 8に示す積層型電池 1 1 0の構成に関する以後の説明は繰返さない。 実施の形態 2によれば積層型電池 1 1 0を筐体 1 0 1に収納することによって実施の形態 1の組電池よりも剛性を 強化することができる。
筐体 1 0 1の外壁には複数の放熱フィン 1 0 2が設けられる。 これにより実施 の形態 2によれば積層型電池 1 1 0の内部を冷却できるだけでなく、 積層型電池 1 1 0の外部も冷却できるので、 組電池 1 0 0の冷却性能を全体的に高めること ができる。
積層型電池 1 1 0は複数のバイポーラ 2次電池の積層方向に沿って加圧された 状態で筐体 1 0 1の内部に収納され、 積層型電池 1 1 0に対して上下に位置する 筐体 1 0 1の 2つの内壁により挟まれる。 これにより積層型電池 1 1 0を拘束す ることが可能になる。 なお、 図 8には示さないが積層型電池 1 1 0の表面は絶縁 フィルムで覆われる。
積層型電池 1 1 0の充放電時には、 バイポーラ 2次電池の内部で電子■イオン の移動が行なわれる。 充電時にはバイポーラ 2次電池は複数のバイポーラ電極の 積層方向に膨張する (膨張したバイポーラ 2次電池は放電時に元の状態に戻る) 。 充放電を繰り返し行なうと、 電極間に隙間が生じ、 内部抵抗が変化することによ つて、 電池性能が劣化するおそれがある。
実施の形態 2では、 筐体 1 0 1が積層型電池 1 1 0の拘束部材となる。 これに より、 電極に生じる寸法変化のばらつきを小さく抑え、 電池性能の劣化を抑制で きる。 また、 実施の形態 2によれば、 たとえば拘束プレートや拘束バンド等の部 材を用いずに電池を拘束できる。
[実施の形態 3 ]
図 9は、 実施の形態 3の組電池の全体を示す斜視図である。
図 9を参照して、 組電池 1 0 O Aは、 バイポーラ 2次電池 4 Aと、 絶縁フィル ム 2 4と、 放熱部材 2 Bとを備える。 絶縁フィルム 2 4はバイポーラ 2次電池 4 と放熱部材 2 Bとの間に設けられる。 放熱部材 2 Bの内部には冷却媒体を流すた めの複数の貫通孔 2 Aが形成される。 放熱性をよくするために放熱部材 2 Bは金 属で形成されていることが好ましい。
組電池 1 0 O Aの形状は中心軸 4 1に沿って延びる円柱である。 組電池 1 0 0
Aは中心軸 4 1に直交する平面で切断した場合の断面形状が円形となるように形 成されている。 ただし組電池 1 0 O Aは、 その断面形状が長円または楕円になる ように形成されていてもよい。
また、 組電池 1 0 O Aの冷却は、 たとえば冷却ファン (図 9には示さず) から 送られる冷却風を放熱部材 2 Bの貫通孔 2 Aに通すことによって行なわれる。 図 1 0は、 図 9に示す組電池 1 0 0 Aの製造方法の一例を示す斜視図である。 図 1 0を参照して、 バイポーラ 2次電池 4 Aおよび絶縁フィルム 2 4は複数回、 卷回される。 バイポーラ 2次電池 4 Aおよび絶縁フィルム 2 4は略矩形の薄膜形 状を有する。 一方、 放熱部材 2 Bは、 金型等によって図 9に示す形状 (中心軸 4 1に対して渦巻き状) に予め形成されている。 この放熱部材 2 Bに卷回されたバ ィポーラ 2次電池 4および絶縁フィルム 2 4を挿入することによって組電池 1 0 O Aが作製される。
なお、 放熱部材 2 Bをバイポーラ 2次電池 4 Aおよび絶縁フイルム 2 4ととも に巻くことによって組電池 1 0 O Aが作製されてもよい。 ただし組電池 1 0 O A 058385 の強度を高くするためには、 予め渦卷き状に形成された放熱部材を用いるほうが 好ましい。
図 1 1は、 図 1 0中の 2点鎖線 X Iで囲まれた範囲を拡大して示す断面図であ る。
図 1 1および図 3を参照して、 バイポーラ 2次電池 4 Aは負極集電扳 2 1と正 極集電板 2 3とをさらに備える点でバイポーラ 2次電池 4と異なる。 なおバイポ ーラ 2次電池 4 Aの他の部分の構成はバイポーラ 2次電池 4の対応する部分の構 成と同様であるので以後の説明は繰返さない。
複数の電極シート 2 5は、 複数の電極シート 2 5が卷回された場合に、 最も内 周側に配置される電極シート 2 5 mと、 最も外周側に配置される電極シート 2 5 nとを含む。 電極シート 2 5 mは、 その内周側の端に負極活物質層 2 6が配置さ れるように設けられている。 電極シート 2 5 ηは、 その外周側の端に正極活物質 層 2 8が配置されるように設けられている。 電極シート 2 5 mの負極活物質層 2 6に接触するように負極集電板 2 1が積層されている。 電極シート 2 5 nの正極 活物質層 2 8に接触するように正極集電板 2 3が積層される。
絶縁フイルム 2 4は正極集電板 2 3に接触するように設けられる (図 1 1では 絶縁フイルム 2 4は正極集電板 2 3に接触している) 。 なお、 絶縁フイルム 2 4 の外側には放熱部材 2 Bが設けられる。 つまり、 実施の形態 3においては複数の バイポーラ電極 3 0のうち、 複数のバイポーラ電極の積層方向における一方端に 配置されるバイポーラ電極 3 0に沿って放熱部材 2 Bが設けられる。
また、 図 9に示すように組電池を作製した際に、 絶縁フィルム 2 4によって、 正極集電板 2 3と負極集電板 2 1との短絡、 すなわち正極集電板 2 3と負極集電 板 2 1とが放熱部材 2 Bによって電気的に接続されることが防止される。
なお負極集電板 2 1および正極集電板 2 3はバイポーラ 2次電池 4 Aに含まれ ていなくてもよレヽ。
上述のようにバイポーラ 2次電池 4 Aは薄膜状である。 薄膜の長さを長くする ほど電池の容量を大きくすることができる。 実施の形態 3によれば、 薄膜を巻く ことによって小型でありながら容量が大きい電池を実現できる。 また、 実施の形 態 1におけるバイポーラ 2次電池を製造するには、 図 1 0に示す薄膜を所定の大 5 きさに切断して積層することが必要になるが、 実施の形態 3の組電池は実施の形 態 1の組電池に比較して製造が容易になる。
また組電池 1 0 O Aにおいて中心軸 4 1に近い部分においても、 放熱部材 2 B に冷却媒体を流すことで放熱が促進される。 すなわち実施の形態 3によればバイ ポーラ 2次電池を卷回することによって構成された組電池に対して適切な冷却を 行なうことができる。
このように実施の形態 3によれば組電池を小型化しながら組電池内部の冷却を 適切に行なうことができる。
[実施の形態 4 ]
図 1 2は、 実施の形態 4の組電池の全体を示す斜視図である。
図 1 2および図 9を参照して、 組電池 1 0 0 Bと組電池 1 0 0 Aとの相違点を 説明する。 まず組電池 1 0 0 Bは放熱部材 2 Cをさらに備える。 さらに組電池 1 0 0 Bにおいて放熱部材 2 Bと放熱部材 2 Cとの間には絶縁フイルム 2 4が設け られる。 これらの点で組電池 1 0 0 Bは組電池 1 0 0 Aと異なる。 組電池 1 0 0 Bの他の部分については組電池 1 0 O Aの対応する部分と同様であるので以後の 説明は繰返さない。
また、 バイポーラ 2次電池 4 Aの断面の構造は図 1 1に示す構造と同様である ので以後の説明は繰返さない。 実施の形態 4においては、 図 1 1に示すバイポー ラ 2次電池 4の正極集電板 2 3の外側に放熱部材 2 Bが設けられ、 負極集電板 2 1の外側に放熱部材 2 Cが設けられる。
つまり、 実施の形態 4においては複数のバイポーラ電極 3 0のうち、 複数のバ ィポーラ電極の積層方向における一方端に配置されるバイポーラ電極 3 0に沿つ て放熱部材 2 Bが設けられ、 他方端に配置されるバイポーラ電極 3 0に沿って放 熱部材 2 Cが設けられる。
なお、 組電池 1 0 0 Bの冷却は、 たとえば冷却ファン (図 1 2には示さず) か ら送られる冷却風を放熱部材 2 B , 2 Cに通すことによって行なわれる。
また、 組電池 1 0 0 Bの製造方法は図 1 0に示す組電池の製造方法と同様であ る。 予め放熱部材 2 B , 2 Cおよび絶縁フイルム 2 4を一体化して渦巻状に形成 する。 次に薄膜状のバイポーラ 2次電池 4 Aが複数回、 卷回される。 そして図 1 2に示す放熱部材 2 B, 2 Cの隙間にバイポーラ 2次電池 4 Aを挿入することで 組電池 1 0 0 Bが作製ざれる。 なお、 放熱部材 2 B , 2 C、 絶縁フイノレム 2 4、 およびバイポーラ 2次電池 4 Aを重ねて卷くことにより組電池 1 0 0 Bを作製し てもよい。
実施の形態 4において正極集電板 2 3は放熱部材 2 Bに直接接する。 一方、 実 施の形態 3においては正極集電板 2 3と放熱部材 2 Bとの間には絶縁フィルム 2 4が設けられる。 つまり実施の形態 4では集電板と放熱部材との間に絶縁フィル ムが存在しないため実施の形態 3よりも組電池の放熱性を高めることができる。 なお、 実施の形態 3、 実施の形態 4ともに負極集電板 2 1は放熱部材に接する。 この放熱部材は実施の形態 3の場合には放熱部材 2 Bであり、 実施の形態 4の場 合には放熱部材 2 Cである。
以上のように実施の形態 4によれば実施の形態 3よりも組電池の放熱性を高め ることができる。
今回開示された実施の形態はすべての点で例示であって制限的なものではない と考えられるべきである。 本発明の範囲は上記した説明ではなくて請求の範囲に よって示され、 請求の範囲と均等の意味および範囲内でのすべての変更が含まれ ることが意図される。

Claims

請求の範囲
1 . 積層された複数の 2次電池を備え、
前記複数の 2次電池の各々は、
前記複数の 2次電池の積層方向と同一方向に積層された複数のバイポーラ電極 を含み、
前記複数のバイポーラ電極の各々の第 1の主表面には、 正極が形成され、 前記複数のバイポーラ電極の各々の第 2の主表面には、 負極が形成され、 前記複数のバイポーラ電極のうち隣り合う 2つのバイポーラ電極ごとに設けら れ、 前記隣り合う 2つのバイポーラ電極の一方の前記正極と、 前記隣り合う 2つ のバイポーラ電極の他方の前記負極との間に配置される複数の電解質をさらに含 み、
前記複数の 2次電池のうち、 少なくとも 1対の隣り合う第 1および第 2の 2次 電池の間に、 冷却媒体が流れる第 1の冷却通路を形成するように配置される放熱 部材をさらに備える、 組電池。
2 . 前記放熱部材は、 導電性を有し、
前記第 1および第 2の 2次電池の前記正極同士、 または、 前記第 1および第 2 の 2次電池の前記負極同士は、 前記放熱部材によって電気的に接続される、 請求 の範囲第 1項に記載の組電池。
3 . 前記組電池は、
前記第 2の 2次電池と、 前記複数の 2次電池のうち前記第 2の 2次電池に対し て前記第 1の 2次電池と反対側に位置し、 かつ、 前記第 2の 2次電池と隣り合う 第 3の 2次電池との間に、 前記冷却媒体が流れる第 2の冷却通路を形成するよう に配置される他の放熱部材をさらに備える、 請求の範囲第 1項に記載の組電池。
4 . 前記放熱部材は、 前記冷却媒体を供給する冷却装置に対して、 前記冷却装 置からの前記冷却媒体が第 1の冷却通路を第 1の向きに流れるように配置され、 前記他の放熱部材は、 前記冷却装置に対して、 前記冷却装置からの前記冷却媒 体が、 前記第 2の冷却通路を前記第 1の向きと逆の第 2の向きに流れるように配 置される、 請求の範囲第 3項に記載の組電池。 '
5 . 前記複数の 2次電池と、 前記放熱部材と、 前記他の放熱部材とを内部に収 容する筐体をさらに備え、 '
前記筐体の外壁には、 複数の放熱フィンが設けられる、 請求の範囲第 1項に記 載の組電池。
6 . 前記複数の電解質は、 固体電解質またはゲル状電解質である、 請求の範囲 第 1項に記載の組電池。
7 . 2次電池を備え、
前記 2次電池は、
積層された複数のバイポーラ電極を含み、
' 前記複数のバイポーラ電極の各々の第 1の主表面には、 正極が形成され、 前記複数のバイポーラ電極の各々の第 2の主表面には、 負極が形成され、 前記複数のバイポーラ電極のうち隣り合う 2つのバイポーラ電極ごとに設けら れ、 前記隣り合う 2つのバイポーラ電極の一方の前記正極と、 前記隣り合う 2つ のバイポーラ電極の他方の前記負極との間に配置される複数の電解質をさらに含 み、
前記複数のバイポーラ電極のうち、 前記積層方向における一方端に配置される バイポーラ電極に沿って冷却媒体が流れる第 1の冷却通路を形成する放熱部材を さらに備える、 組電池。
8 . 前記 2次電池と前記放熱部材との間には、 絶縁部材が配置され、
前記 2次電池と前記放熱部材と前記絶緣部材とは、 所定の軸を中心に渦巻状に 形成される、 請求の範囲第 7項に記載の組電池。
9 . 前記放熱部材は、 予め渦巻状に成型される、 請求の範囲第 8項に記載の組 電池。
1 0 . 前記組電池は、
前記複数のバイポーラ電極のうち、 前記積層方向における他方端に配置される バイポーラ電極に沿って前記冷却媒体が流れる第 2の冷却通路を形成する他の放 熱部材と、
前記他の放熱部材に対して、 前記他方端に配置されるバイポーラ電極と反対側 に配置される絶縁部材とをさらに備え、 前記 2次電池と、 前記放熱部材と、 前記他の放熱部材と、 前記絶縁部材とは、 所定の軸を中心に渦巻状に形成される、 請求の範囲第 7項に記載の組電池。
1 1 . 車室内部に配置されたシートと、
前記シートの下に配置される組電池とを備え、
前記組電池は、
積層された複数の 2次電池を含み、
前記複数の 2次電池の各々は、
前記複数の 2次電池の積層方向と同一方向に積層された複数のバイポーラ電極 を有し、
前記複数のバイポーラ電極の各々の第 1の主表面には、 正極が形成され、 前記複数のバイポーラ電極の各々の第 2の主表面には、 負極が形成され、 前記複数の 2次電池の各々は、
前記複数のバイポーラ電極のうち隣り合う 2つのバイポーラ電極ごとに設けら れ、 前記隣り合う 2つのバイポーラ電極の一方の前記正極と、 前記隣り合う 2つ のバイポーラ電極の他方の前記負極との間に配置される複数の電解質をさらに有 し、
前記組電池は、
前記複数の 2次電池のうち、 少なくとも 1対の隣り合う第 1および第 2の 2次 電池の間に、 冷却媒体が流れる第 1の冷却通路を形成するように配置される放熱 部材をさらに含む、 車両。
1 2 . 前記放熱部材は、 導電性を有し、
前記第 1および第 2の 2次電池の前記正極同士、 または、 前記第 1および第 2 の 2次電池の前記負極同士は、 前記放熱部材によって電気的に接続される、 請求 の範囲第 1 1項に記載の車両。
1 3 . 前記組電池は、
前記第 2の 2次電池と、 前記複数の 2次電池のうち前記第 2の 2次電池に対し て前記第 1の 2次電池と反対側に位置し、 かつ、 前記第 2の 2次電池と隣り合う 第 3の 2次電池との間に、 前記冷却媒体が流れる第 2の冷却通路を形成するよう に配置される他の放熱部材をさらに含む、 請求の範囲第 1 1項に記載の車両。
1 4 . 前記放熱部材は、 前記冷却媒体を供給する冷却装置に対して、 前記冷却 装置からの前記冷却媒体が第 1の冷却通路を第 1の向きに流れるように配置され、 前記他の放熱部材は、 前記冷却装置に対して、 前記冷却装置からの前記冷却媒 体が、 前記第 2の冷却通路を前記第 1の向きと逆の第 2の向きに流れるように配 置される、 請求の範囲第 1 3項に記載の車両。
1 5 . 前記組電池は、
前記複数の 2次電池と、 前記放熱部材と、 前記他の放熱部材とを内部に収容す る筐体をさらに含み、
前記筐体の外壁には、 複数の放熱フィンが設けられる、 請求の範囲第 1 1項に 記載の車両。
1 6 . 前記複数の電解質は、 固体電解質またはゲル状電解質である、 請求の範 囲第 1 1項に記載の車両。
1 7 . 車室内部に配置されたシートと、
前記シートの下に配置される組電池とを備え、
前記組電池は、 2次電池を含み、
前記 2次電池は、
積層された複数のバイポーラ電極を有し、
前記複数のバイポーラ電極の各々の第 1の主表面には、 正極が形成され、 前記複数のバイポーラ電極の各々の第 2の主表面には、 負極が形成され、 前記 2次電池は、
前記複数のバイポーラ電極のうち隣り合う 2つのバイポーラ電極ごとに設けら れ、 前記隣り合う 2つのバイポーラ電極の一方の前記正極と、 前記隣り合う 2つ のバイポーラ電極の他方の前記負極との間に配置される複数の電解質をさらに有 し、
前記組電池は、
前記複数のバイポーラ電極のうち、 前記積層方向における一方端に配置される バイポーラ電極に沿って冷却媒体が流れる第 1の冷却通路を形成する放熱部材を さらに含む、 車両。
1 8 . 前記 2次電池と前記放熱部材との間には、'絶縁部材が配置され、 前記 2次電池と前記放熱部材と前記絶縁部材とは、 所定の軸を中心に渦卷状に 形成される、 請求の範囲第 1 7項に記載の車両。
1 9 . 前記放熱部材は、 予め渦巻状に成型される、 請求の範囲第 1 8項に記載 の車両。
2 0 . 前記組電池は、
前記複数のバイポーラ電極のうち、 前記積層方向における他方端に配置される バイポーラ電極に沿って前記冷却媒体が流れる第 2の冷却通路を形成する他の放 熱部材と、
前記他の放熱部材に対して、 前記他方端に配置されるバイポーラ電極と反対側 に配置される絶緣部材とをさらに含み、
前記 2次電池と、 前記放熱部材と、 前記他の放熱部材と、 前記絶縁部材とは、 所定の軸を中心に渦卷状に形成される、 請求の範囲第 1 7項に記載の車両。
PCT/JP2007/058385 2006-05-11 2007-04-11 組電池および車両 WO2007132621A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800158920A CN101438454B (zh) 2006-05-11 2007-04-11 电池组以及车辆
EP07741821A EP2017918B1 (en) 2006-05-11 2007-04-11 Assembly battery, and vehicle with assembly battery
US12/294,749 US7997367B2 (en) 2006-05-11 2007-04-11 Assembled battery and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-132905 2006-05-11
JP2006132905A JP4857896B2 (ja) 2006-05-11 2006-05-11 組電池および車両

Publications (1)

Publication Number Publication Date
WO2007132621A1 true WO2007132621A1 (ja) 2007-11-22

Family

ID=38693721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/058385 WO2007132621A1 (ja) 2006-05-11 2007-04-11 組電池および車両

Country Status (5)

Country Link
US (1) US7997367B2 (ja)
EP (1) EP2017918B1 (ja)
JP (1) JP4857896B2 (ja)
CN (1) CN101438454B (ja)
WO (1) WO2007132621A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100143774A1 (en) * 2008-12-09 2010-06-10 Man-Seok Han Rechargeable battery and electrode assembly
WO2010085474A1 (en) * 2009-01-21 2010-07-29 Advanced Battery Concepts, LLC Bipolar battery assembly
US20100297479A1 (en) * 2008-02-12 2010-11-25 Toyota Jidosha Kabushiki Kaisha All-solid lithium secondary battery
US20120177960A1 (en) * 2011-01-07 2012-07-12 Hiroshi Tasai Electric storage device and electric storage apparatus
US9531031B2 (en) 2011-10-24 2016-12-27 Advanced Battery Concepts, LLC Bipolar battery assembly
US9685677B2 (en) 2011-10-24 2017-06-20 Advanced Battery Concepts, LLC Bipolar battery assembly
US10141598B2 (en) 2011-10-24 2018-11-27 Advanced Battery Concepts, LLC Reinforced bipolar battery assembly
JP2019114512A (ja) * 2017-12-26 2019-07-11 株式会社豊田自動織機 蓄電装置
US10446822B2 (en) 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly
US10615393B2 (en) 2011-10-24 2020-04-07 Advanced Battery Concepts, LLC Bipolar battery assembly
US11888106B2 (en) 2019-05-24 2024-01-30 Advanced Battery Concepts, LLC Battery assembly with integrated edge seal and methods of forming the seal

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4857896B2 (ja) * 2006-05-11 2012-01-18 トヨタ自動車株式会社 組電池および車両
JP4839955B2 (ja) * 2006-05-11 2011-12-21 トヨタ自動車株式会社 電池パックおよび車両
US8486552B2 (en) 2008-06-30 2013-07-16 Lg Chem, Ltd. Battery module having cooling manifold with ported screws and method for cooling the battery module
US9759495B2 (en) 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
FR2940632B1 (fr) * 2008-12-30 2011-08-19 Renault Sas Dispositif pour refroidir les batteries d'un vehicule notamment electrique et vehicule equipe d'un tel dispositif
US8403030B2 (en) 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US8663829B2 (en) 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8399119B2 (en) 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
DE102009040814A1 (de) * 2009-09-10 2011-03-17 Behr Gmbh & Co. Kg Verfahren zur Herstellung eines Energiespeicherhalters für ein Fahrzeug
DE102010007633A1 (de) * 2010-02-05 2011-08-11 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Fahrzeug mit elektrischer Antriebsvorrichtung
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
WO2013030883A1 (ja) * 2011-08-30 2013-03-07 トヨタ自動車株式会社 車両
KR20130068982A (ko) * 2011-12-16 2013-06-26 (주)브이이엔에스 배터리 모듈 어셈블리 및 그를 갖는 전기자동차
US8986872B2 (en) 2012-02-15 2015-03-24 GM Global Technology Operations LLC Battery design
US9105950B2 (en) 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
US9605914B2 (en) 2012-03-29 2017-03-28 Lg Chem, Ltd. Battery system and method of assembling the battery system
US9379420B2 (en) 2012-03-29 2016-06-28 Lg Chem, Ltd. Battery system and method for cooling the battery system
US10256514B2 (en) * 2012-04-12 2019-04-09 Johnson Controls Technology Llc Air cooled thermal management system for HEV battery pack
US8852781B2 (en) 2012-05-19 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
US9306199B2 (en) 2012-08-16 2016-04-05 Lg Chem, Ltd. Battery module and method for assembling the battery module
US9083066B2 (en) 2012-11-27 2015-07-14 Lg Chem, Ltd. Battery system and method for cooling a battery cell assembly
US8852783B2 (en) 2013-02-13 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing the battery cell assembly
US10020531B2 (en) 2013-03-14 2018-07-10 Enerdel, Inc. Battery system with internal cooling passages
US9647292B2 (en) 2013-04-12 2017-05-09 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
US9184424B2 (en) 2013-07-08 2015-11-10 Lg Chem, Ltd. Battery assembly
US9257732B2 (en) 2013-10-22 2016-02-09 Lg Chem, Ltd. Battery cell assembly
US9444124B2 (en) 2014-01-23 2016-09-13 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US9484559B2 (en) 2014-10-10 2016-11-01 Lg Chem, Ltd. Battery cell assembly
US9412980B2 (en) 2014-10-17 2016-08-09 Lg Chem, Ltd. Battery cell assembly
US9786894B2 (en) 2014-11-03 2017-10-10 Lg Chem, Ltd. Battery pack
US9627724B2 (en) 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
CN107112470B (zh) * 2015-05-12 2020-04-03 奥林巴斯株式会社 医疗设备用电池组件以及医疗设备单元
US9960465B2 (en) 2015-07-30 2018-05-01 Lg Chem, Ltd. Battery pack
CN106560946B (zh) 2015-10-02 2021-04-20 松下知识产权经营株式会社 电池
US9755198B2 (en) 2015-10-07 2017-09-05 Lg Chem, Ltd. Battery cell assembly
CN105390638B (zh) * 2015-12-10 2017-10-24 华霆(合肥)动力技术有限公司 电池模组温差均衡装置
JP6870914B2 (ja) 2016-03-15 2021-05-12 株式会社東芝 非水電解質電池、電池パック及び車両
US11289746B2 (en) 2016-05-03 2022-03-29 Bosch Battery Systems Llc Cooling arrangement for an energy storage device
JP2018101489A (ja) * 2016-12-19 2018-06-28 株式会社豊田自動織機 蓄電装置
WO2018142919A1 (ja) * 2017-01-31 2018-08-09 株式会社豊田自動織機 蓄電装置
JP6828470B2 (ja) * 2017-01-31 2021-02-10 株式会社豊田自動織機 蓄電装置
JP6828471B2 (ja) * 2017-01-31 2021-02-10 株式会社豊田自動織機 蓄電装置
DE102017202359A1 (de) 2017-02-14 2018-08-16 Bayerische Motoren Werke Aktiengesellschaft Energiespeichermodul, energiespeichersystem, fahrzeug und verfahren zum messen einer zellenspannung
JP6824777B2 (ja) * 2017-02-28 2021-02-03 株式会社豊田自動織機 蓄電装置
JP6773589B2 (ja) * 2017-03-15 2020-10-21 住友重機械工業株式会社 極低温冷凍機
JP6693453B2 (ja) * 2017-03-17 2020-05-13 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法
JP6805979B2 (ja) * 2017-06-30 2020-12-23 株式会社豊田自動織機 蓄電装置およびその製造方法
JP7031429B2 (ja) * 2018-03-27 2022-03-08 株式会社豊田自動織機 蓄電装置
JP7014669B2 (ja) * 2018-04-04 2022-02-01 株式会社豊田自動織機 蓄電装置
DE102018110528A1 (de) * 2018-05-02 2019-11-07 Witzenmann Gmbh Kontaktier- und Temperiereinrichtung für eine Batteriezelle, Batteriezelle, Batterieanordnung und Verfahren zu deren Kontaktierung und Temperierung
JP7099038B2 (ja) * 2018-05-10 2022-07-12 トヨタ自動車株式会社 蓄電装置
JP6963532B2 (ja) * 2018-05-23 2021-11-10 株式会社豊田自動織機 蓄電装置
US20220143233A1 (en) * 2019-04-23 2022-05-12 Aionx Antimicrobial Technologies, Inc. Improved battery-activated metal ionic antimicrobial surfaces
JP7143832B2 (ja) * 2019-10-18 2022-09-29 トヨタ自動車株式会社 組電池の冷却装置
JP7318524B2 (ja) * 2019-12-26 2023-08-01 株式会社豊田自動織機 温度調節システム
CN112563555B (zh) * 2020-12-24 2022-05-17 常德中科多源电力融合技术研究院 一种电池卷针及大容量方形金属壳锂离子电池
US11981195B2 (en) * 2021-03-22 2024-05-14 Honda Motor Co., Ltd. Duct surface heat exchanger for vehicles
JP7371657B2 (ja) * 2021-03-30 2023-10-31 トヨタ自動車株式会社 車両
CN114039086B (zh) * 2021-11-09 2023-11-10 长沙理工大学 一种热管理系统一体化集成的锂离子电池结构
CN117691283A (zh) 2022-09-02 2024-03-12 通用汽车环球科技运作有限责任公司 无极耳的双极型固态电池组

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030746A (ja) * 1998-07-15 2000-01-28 Toyota Motor Corp バイポーラ型リチウムイオン2次電池
JP2000100471A (ja) * 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
JP2003017127A (ja) * 2001-07-04 2003-01-17 Nissan Motor Co Ltd 電池システム
JP2003288863A (ja) * 2002-03-28 2003-10-10 Tdk Corp 電気化学デバイス
JP2004063397A (ja) * 2002-07-31 2004-02-26 Nissan Motor Co Ltd 電池、組電池、および車両
JP2004139775A (ja) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd 積層型電池、組電池および車両
JP2004158222A (ja) * 2002-11-01 2004-06-03 Mamoru Baba 多層積層電池
JP2005071784A (ja) 2003-08-25 2005-03-17 Nissan Motor Co Ltd 冷却用タブを有するバイポーラ電池
JP2005353536A (ja) * 2004-06-14 2005-12-22 Nissan Motor Co Ltd 組電池

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4578324A (en) 1984-10-05 1986-03-25 Ford Aerospace & Communications Corporation Active cooling system for electrochemical cells
FR2694136B1 (fr) 1992-07-27 1994-09-30 Bertin & Cie Batterie d'accumulateurs électriques équipée de moyens de refroidissement et ensemble de telles batteries.
JP3312852B2 (ja) 1996-09-26 2002-08-12 松下電器産業株式会社 蓄電池電源装置
US6220383B1 (en) * 1997-10-13 2001-04-24 Denso Corporation Electric power unit
JPH11144771A (ja) 1997-11-11 1999-05-28 Japan Storage Battery Co Ltd 電池の放熱装置
JP3799463B2 (ja) 1998-12-28 2006-07-19 大阪瓦斯株式会社 電池モジュール
JP2001283803A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd 電動車輌に用いる組電池システム
JP3777981B2 (ja) * 2000-04-13 2006-05-24 トヨタ自動車株式会社 車両用電源装置
JP4242665B2 (ja) * 2002-05-13 2009-03-25 パナソニック株式会社 組電池の冷却装置及び二次電池
JP4066763B2 (ja) 2002-09-30 2008-03-26 日産自動車株式会社 バイポーラー電池とその製造方法並びに車両
JP5292663B2 (ja) 2004-03-17 2013-09-18 日産自動車株式会社 組電池及び該組電池を搭載した車輌
FR2876223B1 (fr) * 2004-10-01 2006-11-10 Valeo Climatisation Sa Dispositif pour le refroidissement de batteries d'un vehicule a motorisation electrique et/ou hybride
KR100853621B1 (ko) * 2004-10-26 2008-08-25 주식회사 엘지화학 전지팩의 냉각 시스템
US7662508B2 (en) * 2004-11-30 2010-02-16 Samsung Sdi Co., Ltd. Secondary battery module
US7526346B2 (en) * 2004-12-10 2009-04-28 General Motors Corporation Nonlinear thermal control of a PEM fuel cell stack
JP4774783B2 (ja) * 2005-03-30 2011-09-14 トヨタ自動車株式会社 駆動用電池パック搭載構造
EP1864845B1 (en) * 2005-03-30 2012-01-18 Toyota Jidosha Kabushiki Kaisha Cooling structure for secondary battery
JP4363350B2 (ja) * 2005-03-30 2009-11-11 トヨタ自動車株式会社 二次電池の冷却構造
JP4385020B2 (ja) * 2005-06-02 2009-12-16 本田技研工業株式会社 車両用電源装置
JP4274165B2 (ja) * 2005-10-06 2009-06-03 トヨタ自動車株式会社 車両搭載機器の冷却装置
KR100905392B1 (ko) * 2006-04-03 2009-06-30 주식회사 엘지화학 이중 온도조절 시스템의 전지팩
JP4857896B2 (ja) * 2006-05-11 2012-01-18 トヨタ自動車株式会社 組電池および車両
JP4839955B2 (ja) * 2006-05-11 2011-12-21 トヨタ自動車株式会社 電池パックおよび車両
JP2007311124A (ja) * 2006-05-17 2007-11-29 Toyota Motor Corp 電池パックおよび車両
JP4952191B2 (ja) * 2006-10-27 2012-06-13 トヨタ自動車株式会社 蓄電装置及び冷却システム
JP2008114706A (ja) * 2006-11-02 2008-05-22 Toyota Motor Corp 蓄電装置および自動車
JP4390802B2 (ja) * 2006-12-15 2009-12-24 トヨタ自動車株式会社 車載バッテリ冷却構造
JP4363447B2 (ja) * 2007-01-24 2009-11-11 トヨタ自動車株式会社 電池の冷却装置、冷却装置付属電池及び車両
KR100942985B1 (ko) * 2007-03-21 2010-02-17 주식회사 엘지화학 냉매 유량의 분배 균일성이 향상된 중대형 전지팩 케이스
KR20090030545A (ko) * 2007-09-20 2009-03-25 에스케이에너지 주식회사 고용량 배터리 시스템의 균등 송풍 냉각구조
JP5092657B2 (ja) * 2007-09-28 2012-12-05 三菱自動車工業株式会社 バッテリユニット
DE102008051085A1 (de) * 2008-10-09 2010-04-15 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Batterieanordnung
JP2010272251A (ja) * 2009-05-19 2010-12-02 Sanyo Electric Co Ltd バッテリシステム
KR20110026193A (ko) * 2009-09-07 2011-03-15 삼성전자주식회사 발열체 냉각 시스템 및 배터리 냉각 시스템
US8268472B2 (en) * 2009-09-30 2012-09-18 Bright Automotive, Inc. Battery cooling apparatus for electric vehicle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030746A (ja) * 1998-07-15 2000-01-28 Toyota Motor Corp バイポーラ型リチウムイオン2次電池
JP2000100471A (ja) * 1998-09-22 2000-04-07 Mitsubishi Cable Ind Ltd シート電池
JP2003017127A (ja) * 2001-07-04 2003-01-17 Nissan Motor Co Ltd 電池システム
JP2003288863A (ja) * 2002-03-28 2003-10-10 Tdk Corp 電気化学デバイス
JP2004063397A (ja) * 2002-07-31 2004-02-26 Nissan Motor Co Ltd 電池、組電池、および車両
JP2004139775A (ja) * 2002-10-16 2004-05-13 Nissan Motor Co Ltd 積層型電池、組電池および車両
JP2004158222A (ja) * 2002-11-01 2004-06-03 Mamoru Baba 多層積層電池
JP2005071784A (ja) 2003-08-25 2005-03-17 Nissan Motor Co Ltd 冷却用タブを有するバイポーラ電池
JP2005353536A (ja) * 2004-06-14 2005-12-22 Nissan Motor Co Ltd 組電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2017918A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100297479A1 (en) * 2008-02-12 2010-11-25 Toyota Jidosha Kabushiki Kaisha All-solid lithium secondary battery
US9017839B2 (en) * 2008-02-12 2015-04-28 Toyota Jidosha Kabushiki Kaisha All-solid lithium secondary battery
US20100143774A1 (en) * 2008-12-09 2010-06-10 Man-Seok Han Rechargeable battery and electrode assembly
WO2010085474A1 (en) * 2009-01-21 2010-07-29 Advanced Battery Concepts, LLC Bipolar battery assembly
US8357469B2 (en) 2009-01-21 2013-01-22 Advanced Battery Concepts, LLC Bipolar battery assembly
US20120177960A1 (en) * 2011-01-07 2012-07-12 Hiroshi Tasai Electric storage device and electric storage apparatus
US8846226B2 (en) * 2011-01-07 2014-09-30 Lithium Energy Japan Electric storage device and electric storage apparatus
US9553329B2 (en) 2011-10-24 2017-01-24 Advanced Battery Concepts, LLC Bipolar battery assembly
US9531031B2 (en) 2011-10-24 2016-12-27 Advanced Battery Concepts, LLC Bipolar battery assembly
US9685677B2 (en) 2011-10-24 2017-06-20 Advanced Battery Concepts, LLC Bipolar battery assembly
US9825336B2 (en) 2011-10-24 2017-11-21 Advanced Battery Concepts, LLC Bipolar battery assembly
US9859543B2 (en) 2011-10-24 2018-01-02 Advanced Battery Concepts, LLC Bipolar battery assembly
US10141598B2 (en) 2011-10-24 2018-11-27 Advanced Battery Concepts, LLC Reinforced bipolar battery assembly
US10446822B2 (en) 2011-10-24 2019-10-15 Advanced Battery Concepts, LLC Bipolar battery assembly
US10615393B2 (en) 2011-10-24 2020-04-07 Advanced Battery Concepts, LLC Bipolar battery assembly
JP2019114512A (ja) * 2017-12-26 2019-07-11 株式会社豊田自動織機 蓄電装置
US11888106B2 (en) 2019-05-24 2024-01-30 Advanced Battery Concepts, LLC Battery assembly with integrated edge seal and methods of forming the seal

Also Published As

Publication number Publication date
CN101438454B (zh) 2011-05-25
US20100163325A1 (en) 2010-07-01
US7997367B2 (en) 2011-08-16
CN101438454A (zh) 2009-05-20
JP2007305425A (ja) 2007-11-22
EP2017918A1 (en) 2009-01-21
EP2017918B1 (en) 2012-06-06
EP2017918A4 (en) 2011-03-23
JP4857896B2 (ja) 2012-01-18

Similar Documents

Publication Publication Date Title
JP4857896B2 (ja) 組電池および車両
JP4839955B2 (ja) 電池パックおよび車両
JP4569534B2 (ja) 組電池
WO2007132622A1 (ja) 電池パックおよび車両
JP6510633B2 (ja) 効率的な冷却構造の電池パックケース
JP4923679B2 (ja) 積層型電池
JP4501905B2 (ja) 組電池
JP4462245B2 (ja) 2次電池、積層2次電池および組電池
JP5704358B2 (ja) 高出力リチウム単電池及び該高出力リチウム単電池を備えた高出力リチウム電池パック
JP4274256B2 (ja) 蓄電装置用電極及び蓄電装置
JP5526289B2 (ja) 新規な構造の電池パック
JP4748010B2 (ja) 電源装置
JP4513815B2 (ja) 蓄電装置
JP4661020B2 (ja) バイポーラリチウムイオン二次電池
WO2007052714A1 (ja) 駆動システム
CN104321926A (zh) 具有提高的冷却效率的电池单元
WO2008090704A1 (ja) 2次電池
JP6217987B2 (ja) 組電池
JP2004134210A (ja) 積層型電池、組電池および車両
EP2597704A2 (en) Secondary battery having a differential lead structure
JP2006066083A (ja) 組電池
JP2009117105A (ja) 電池ユニット
JP4311442B2 (ja) 蓄電装置
JP5418391B2 (ja) セパレータ
JP2007234453A (ja) 2次電池およびその車両搭載構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07741821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12294749

Country of ref document: US

Ref document number: 2007741821

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200780015892.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE