WO2007129651A1 - 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼 - Google Patents

耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼 Download PDF

Info

Publication number
WO2007129651A1
WO2007129651A1 PCT/JP2007/059344 JP2007059344W WO2007129651A1 WO 2007129651 A1 WO2007129651 A1 WO 2007129651A1 JP 2007059344 W JP2007059344 W JP 2007059344W WO 2007129651 A1 WO2007129651 A1 WO 2007129651A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
weather resistance
steel
quenching
stainless steel
Prior art date
Application number
PCT/JP2007/059344
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Inoue
Hotaka Homma
Original Assignee
Nippon Steel & Sumikin Stainless Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel & Sumikin Stainless Steel Corporation filed Critical Nippon Steel & Sumikin Stainless Steel Corporation
Priority to CN200780000502.2A priority Critical patent/CN101321886B/zh
Publication of WO2007129651A1 publication Critical patent/WO2007129651A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/55Hardenability tests, e.g. end-quench tests
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to martensitic stainless steel for disc brakes of motorcycles, and relates to martensitic stainless steel for disc brakes having excellent weather resistance.
  • motorcycle disc brakes are required to have characteristics such as wear resistance, weather resistance, and toughness. In general, the higher the hardness, the greater the wear resistance. On the other hand, if the hardness is too high, so-called brake squealing occurs between the brake and the pad. Therefore, the hardness of the brake should be 32 to 38HRC (conforms to JISZ 2245. Rockwell hardness C scale). It is done. Because of these required characteristics, martensitic stainless steel is used for motorcycle disc brake materials.
  • JP-A-57-198249 discloses a steel composition that stably obtains the desired hardness in a wider quenching temperature range than conventional steels.
  • JP-A-08-060309 discloses motorcycle disc brake steel that can be used as-quenched with low Mil steel. This In this steel, instead of lowering Mil, Ni and Cu are added, which have the same effect as a hostite forming element.
  • martensite stainless steel is used for two-wheel disc brakes.
  • the weather resistance may not be sufficient.
  • its weathering resistance is a problem in particularly harsh chloride environments. This is said to be the starting point of MnS in steel, but it has not been elucidated.
  • Japanese Patent Laid-Open No. 10-152760 discloses an invention that improves weather resistance by reducing Mn and increasing Cu. Furthermore, Japanese Patent Application Laid-Open No. 2000-026941 discloses that the weather resistance is improved by adding soot. Disclosure of the invention
  • an object of the present invention is to provide a martensite stainless steel for disc brakes which is advantageous in solving the above-mentioned problems of the prior art and having excellent weather resistance.
  • the gist of the present invention is as follows.
  • martensitic stainless steel for disc brakes having excellent weather resistance can be provided.
  • the present inventors have conducted a detailed study on a motorcycle disc brake material that can be used as-quenched.
  • weather resistance not only the weather resistance after quenching when actually mounted on a motorcycle, but also the weather resistance before quenching was regarded as important. This is because when a disc was manufactured, it occurred before quenching.
  • the disc sliding surface is ground, so there is no problem with the firing before quenching, but depending on the design of the disc, there may be a portion that is not ground. In that case, the problem is the occurrence of cracking before quenching.
  • the present inventors examined mainly the weather resistance in a chloride environment, and as a result of studying the means for improving the weather resistance of the disk material not only after quenching but also before quenching, P, As, It was found that addition of a small amount of Sb and Bi improves weather resistance. In other words, we found that the addition of trace amounts of one or more of P, As, Sb, and Bi improves the weathering resistance in chloride environments. This effect is remarkable especially when Cu and Ti are not included and the Mn content is high, but it has also been found that a combination with Cu and Ti is also effective. After further investigation, it was confirmed that the combination of P and Bi exhibited this effect of improving weather resistance even when added in a very small amount.
  • C is an element essential for obtaining a predetermined hardness after quenching, and is added in combination with N so as to achieve a predetermined hardness level. If added over 10%, the hardness will be too hard, causing problems such as brake squealing and deterioration of toughness. If less than 0.01%, N must be added excessively in order to obtain hardness, so 0.01% is made the lower limit.
  • N is an essential element for obtaining a predetermined hardness after quenching, and is added in combination with C so as to obtain a predetermined hardness level. However, if added over 0.025%, the hardenability is lowered, so 0.025% is made the upper limit. Also, if N is less than 0.005%, it will increase the steelmaking cost, so 0.005% is the lower limit.
  • C + N is an amount directly related to the hardness after quenching.
  • Predetermined HRC To obtain 32-38, it is necessary to make it 0.06% or more and 0.1% or less
  • the upper limit is set to 2%.
  • Mn is a component inevitably contained in steel, but is an important austenite forming element.
  • Cr is a basic element for ensuring the weather resistance required for a two-wheel disc brake material. If its content is less than 10%, sufficient weather resistance can be obtained even with the present invention. Can not. Also, Cr is a ferrite-forming element, so if added over 14%, the austenite phase generation temperature range is reduced, and a ferrite phase that does not transform into the martensite phase is generated in the quenching temperature range. It becomes impossible to satisfy the hardness after quenching. Therefore, the Cr addition amount should be 10% or more and 14% or less.
  • Ni like Mn, is an austenite-forming element and is an effective element for securing the austenite phase at high temperatures and ensuring hardenability. In order to obtain the effect, 0.02% or more must be added. However, since Ni is expensive, it is preferable to suppress its content as much as possible in terms of production cost. If it exceeds 2%, the toughness is reduced, so 2% is the upper limit. And
  • A1 is very useful as a deoxidizer. In order to obtain the effect, addition of 0.001% or more is necessary. However, if it exceeds 0.1%, the durability will be reduced, so 0.1% is made the upper limit.
  • S is a component inevitably contained in the steel, but in the present invention, if it exceeds 0.01%, CaS is likely to be formed, so 0.01% is made the upper limit. Further, if S is less than 0.001%, the steelmaking cost is increased, so 0.001% is preferably set as the lower limit.
  • V is an unavoidable impurity, but its content up to about 0.5% that does not degrade the workability is acceptable.
  • the present inventors have found that the weather resistance can be improved by adding a small amount of P, As, Sb, and Bi. The reason for this is not clear, but may be related to MnS, which degrades corrosion resistance. In other words, P, As, Sb, and Bi are thought to suppress the precipitation of MnS.
  • These elements are effective whether added alone or in combination, and by adding one or more kinds, the weather resistance can be improved. These elements require a total addition of 0.05% or more in order to exert their effects, but in order to ensure toughness, the total is 0.5% or less.
  • the addition of Cu, Ti, Mo, and Nb can further improve the properties of steel for disc brakes.
  • Cu is an effective element for securing the austenite phase and ensuring hardenability.
  • Addition of Cu can reduce Mn, improving weather resistance.
  • Cu is also effective in suppressing disc softening caused by brake braking heat. If the content is less than 0.01%, the effect of addition is not remarkable, and if it exceeds 2%, the toughness deteriorates. Therefore, Cu is preferably 0.01% or more and 2% or less.
  • is an element that improves weather resistance. It is presumed to suppress the formation of MnS by forming Ti-based sulfides. For manifestation of the effect Is preferably contained in an amount of 0.01% or more. However, excessive addition of soot is not preferable because it forms carbonitride and consumes C and N. Therefore, the upper limit of Ti is preferably 0.5%.
  • Mo is an element that can remarkably improve the temper softening resistance when added in an appropriate amount. Although this mechanism is not yet clear, it is thought that it suppresses the precipitation and coarsening of Cr carbide, suppresses dislocation motion even at high temperatures, and improves temper softening resistance. However, if the content is less than 0.01%, the effect of addition is not remarkable, so the lower limit is preferably 0.01%. On the other hand, addition exceeding 2% degrades toughness, so the upper limit is preferably 2%.
  • Nb is an element that can significantly improve the temper softening resistance when added in an amount of 0.01% or more. This mechanism is not yet clear, but Nb has a large correlation with N, and is thought to suppress the precipitation and coarsening of Cr nitride, suppress dislocation motion, and improve temper softening resistance. .
  • NbN has no strengthening function, and further, as NbN is consumed, the solid solution strengthening effect of N is reduced. Furthermore, it is preferable to avoid excessive addition exceeding 1% because it causes a decrease in hardenability.
  • Equation 1 the P expressed by the following (Equation 1) is 80 or more. Need to be coordinated with each other.
  • rp is less than 80, the ferrite phase remains even after quenching, and the specified hardness level may not be reached.
  • the quenching temperature is preferably 900 ° C. or higher and 1 100 ° C. or lower because an excessively high temperature leads to an increase in manufacturing time and cost. Even when quenching from the temperature range, the steel of the present invention satisfies a predetermined hardness range.
  • a steel slab such as a slab or ingot containing the above-mentioned components, the remaining Fe and inevitable impurities (hereinafter also simply referred to as a slab) is melted and hot rolled to a thickness of about 2 to 8 mm. After that, annealing is performed in the range of 750 ° C to 900 ° C to soften, and then pickling to obtain a product.
  • Finishing with shot plasters is also possible without pickling.
  • the product may be annealed without being pickled.
  • a steel slab having a chemical composition shown in Table 1 and having a thickness of 200 iam was melted, and then a hot-rolled sheet having a thickness of 6 mm was obtained by hot rolling. Furthermore, soft annealing was performed by heating to 850 ° C and gradually cooling.
  • the hardenability evaluation test was performed by a Rockwell hardness test (HRC) in accordance with J IS Z 2245 for a quenching material which was kept at a temperature of 850 to 1100 ° C. for 10 minutes and then cooled with water. HRC 32 to 38 passed.
  • HRC Rockwell hardness test
  • both the specimen surfaces were polished by # 240 as in the pre-quenched material and a 240 hour salt spray test (conforming to JI S Z 2371) was conducted to investigate the degree of rusting. Those that did not occur were accepted, and those that did occur were rejected.
  • Table 2 shows the evaluation results.
  • Steels A to J are the invention steels according to claim 1, which have passed the quenching resistance before and after quenching, passed the quenching hardness and the heat resistance temperature, and exhibited extremely excellent properties. ing. 2
  • Steel K to Steel T are the invention steels according to claim 2, which are characterized by addition. These steels also pass the quenching resistance before and after quenching, pass the quenching hardness and heat resistance temperature, and exhibit very excellent properties.
  • U steel to steel, and steel to AD steel are the steels of the present invention according to claim 3 and are characterized by the addition of Ti. These steels are also very good in properties, with good weather resistance before and after quenching, and also passed quenching hardness and heat resistance temperature.
  • AE steel to AN steel are the steels of the present invention according to claim 4, characterized by the addition of Mo and Nb. These steels also pass the weather resistance before and after quenching. The quenching hardness is also acceptable. Furthermore, with the addition of Mo and Nb, the heat-resistant temperature is increased with respect to the steel with no additive, indicating a very good quality.
  • AO steel which is a comparative steel, has poor weather resistance because the total amount of P, As, Sb, and Bi is less than 0.05%.
  • AP steel and AQ steel have Cu and Ti added, respectively, so the weather resistance after quenching is acceptable, but the total amount of P, As, Sb and B i is less than 0.05%.
  • the weather resistance before quenching is poor. Since AR steel has an a p of 80 or less, the hardness after quenching does not reach the acceptance standard, which is not preferable.
  • AS steel has a large amount of C + N, the hardness after quenching is too hard than the acceptance standard, which is not preferable.
  • AT steel is not preferable because the hardness after quenching does not reach the acceptance standard because C + N is low.
  • AU steel has poor Cr resistance due to its low Cr content. Since AV steel has a large amount of Cr, rp is 80 or less, and the hardness after quenching does not reach the acceptance standard, which is not preferable.
  • AW steel is not preferable because the total amount of P, As, Sb, and Bi is more than 0.5%, causing deterioration of toughness.
  • AX steel is unfavorable because it contains a lot of Mn and causes toughness deterioration. From the above, it is clear that the steel of the present invention has excellent quenching resistance while satisfying quenching hardness and heat resistance.
  • Example 3 Steel pieces with a thickness of 200 MI having the chemical components shown in Table 3 were melted. A component system containing trace amounts of P and Bi. As and Sb are not added. Thereafter, various evaluation test pieces were produced in the same manner as in Example 1. In addition, a weather resistance test, a hardenability test, and a temper softening test were performed in the same manner as in Example 1. Table 4 shows the evaluation results.
  • BM steel which is a comparative steel, has too little P and Bi added, so it does not exhibit the effect of improving weather resistance and is inferior in weather resistance.
  • the steel of the present invention has excellent quenching resistance while satisfying quenching hardness and heat resistance.
  • martensitic stainless steel for disc brakes having excellent weather resistance can be provided. Therefore, not only the producer but also the person who uses the steel of the present invention can obtain a great profit, and the industrial value of the present invention is extremely high.

Description

明 細 書 耐銹性に優れたディスクブレーキ用マルテンサイ ト系ステンレス鋼 技術分野
本発明は、 二輪車のディスクブレーキ用マルテンサイ ト系ステン レス鋼に関し、 耐銹性に優れたディスクブレーキ用マルテンサイ ト 系ステンレス鋼に関するものである。 背景技術
二輪車のディスクブレーキは、 耐磨耗性、 耐銹性、 靱性等の特性 が要求される。 耐磨耗性は、 一般に、 硬さが高いほど、 大きくなる 。 一方、 硬さが高すぎると、 ブレーキとパッ ドの間で、 いわゆる、 ブレーキの鳴きが生じるため、 ブレーキの硬さは、 32〜38HRC ( J I S Z 2245に準拠。 ロックウェル硬さ Cスケール) が求められる。 こ れらの要求特性から、 二輪車ディスクブレーキ材料には、 マルテン サイ ト系ステンレス鋼が用いられている。
従来、 SUS420 J 2 ( J I S G 4304規定) を焼入れ焼戻しして所望の硬 さに調節し、 ブレーキとしていたが、 この場合、 焼入れと焼戻しの 2つの熱処理工程を必要とする。 そこで、 特開昭 57— 198249号公報 において、 それまでの従来鋼より広い焼入れ温度域で、 安定して所 望の硬さを得る鋼組成が開示された。
これは、 成分系を、 低 C , N化し、 かつ、 それによるオーステナ イ ト温度域の縮小、 つまり、 焼入れ温度域が狭くなることを、 ォー ステナイ ト形成元素である Mn添加で補ったものである。
また、 特開平 08— 060309号公報において、 低 Mil鋼で焼入れままで 使用できるオートバイディスクブレーキ用鋼が開示されている。 こ の鋼は、 Milを低下させる代わりに、 ォ一ステナイ ト形成元素として 同様の効果を持つ、 Niおよび Cuを添加したものである。
二輪ディスクブレーキ用にマルテンサイ ト系ステンレス鋼が用い られている理由の 1つは、 優れた耐銹性を持っていることである。 しかし、 Cr含有量が 12%程度で、 Mnを大量に含有する場合、 その耐 銹性が十分でない場合がある。 例えば、 特に厳しい塩化物環境にお いて、 その耐銹性が問題となる。 これは、 鋼中の MnSが発銹起点と なっていると言われているが、 解明されているわけではない。
特開平 10— 152760号公報には、 Mnを低減して、 Cuを増加すること により、 耐銹性を改善する発明が開示されている。 さらに、 特開 20 00— 026941号公報には、 Πを添加することにより、 耐銹性を改善す ることが開示されている。 発明の開示
しかしながら、 特開昭 57— 198249号公報、 特開平 08— 060309号公 報、 特開平 10— 号公報、 および、 特開 2000— 026941号公報に 記載の発明では、 耐銹性の改善は見られるものの、 いまだ十分では なく、 さらに耐銹性を改善した二輪ディスクブレーキ用鋼が求めら れている。
そこで、 本発明は、 上記従来技術の問題点を有利に解決して、 耐 銹性に優れたディスクブレーキ用マルテンサイ ト系ステンレス鋼を 提供することを目的とする。
本発明の要旨は以下の通りである。
( 1 ) 質量%で、 C : 0, 以上 0. 10%以下、 Sし · 0.05%以上 2 %以下、 Mil: 0.2%以上 2.0%以下、 S : 0.0】%以下、 N : 0.005% 以上 0.025%以下、 Cr : 10%以上 14%以下、 N 0, 02%以上 2 %以 下、 A1 : 0.001%以上 0.1%以下、 V : 0.5%以下、 C + N : 0.06% 以上 0. 1%以下を含有し、 さらに、 P, As, Sb, Biのうちの 1種ま たは 2種以上を、 その合計量で、 0.05%以上 0.5%以下含有し、 残 部 Feおよび不可避的不純物からなり、 下記 (式 1 ) で表されるァ p が 80以上であることを特徴とする耐銹性に優れたディスクブレーキ 用マルテンサイ ト系ステンレス鋼。
r P = 420 [% C ] + 470 [% N] + 23 [ Ni] + 9 [%Cu] + 7 [ %Mnl - 11.5 [%Cr] - 11.5 [%Si] -52 [%ΑΠ - 12 [%Mo] 一 23 [% V] -47 [%Nb] + 189 … (式 1 )
( 2 ) 質量%で、 C : 0.01%以上 0.10%以下、 Si: 0.05%以上 2 %以下、 Mn: 0.2%以上 2.0%以下、 S : 0.01%以下、 N : 0.005 % 以上 0.025%以下、 Cr: 10%以上 14%以下、 Ni : 0.02%以上 2 %以 下、 A1 : 0.001%以上 0. 1%以下、 V : 0.5%以下、 C + N : 0.06% 以上 0. 1%以下を含有し、 さらに、 P : 0, 005%以上 0.05%未満、 Bi : 0.005%以上 0.05%未満、 かつ、 P +Bi : 0.01%以上 0.05%未満 を含有し、 残部 Feおよび不可避的不純物からなり、 下記 (式 1 ) で 表される T Pが 80以上であることを特徴とする耐銹性に優れたディ スクブレーキ用マルテンサイ ト系ステンレス鋼。
r P =420 [¾ C ] + 470 [%N] +23 [%Ni] + 9 [%Cu] 4- 7 [ %Mn - 11.5 [ Cr] - 11.5 [%Si] -52. [%A1] 一 12 [%Mo] 一 23 [ V] -47 [%Nb] + 189 … (式 1 )
( 3 ) さらに、 質量%で、 Cu: 0.01%以上 2 %以下を含有するこ とを特徴とする前記 ( 1 ) または ( 2 ) に記載の耐銹性に優れたデ イスクブレーキ用マルテンサイ 卜系ステンレス鋼。
( 4 ) さらに、 質量%で、 Ti : 0.01%以上 0.5%以下を含有する ことを特徴とする前記 ( 1 ) 〜 ( 3 ) のいずれかに記載の耐銹性に 優れたディスクブレーキ用マルテンサイ ト系ステンレス鋼。
( 5 ) さらに、 質量%で、 Mo: 0.01%以上 2 %以下、 Nb: 0.01% 以上 1 %以下のうちの 1種または 2種を含有することを特徴とする 前記 ( 1 ) 〜 ( 4 ) のいずれかに記載の耐銹性に優れたディスクプ レーキ用マルテンサイ ト系ステンレス鋼。
本発明により、 優れた耐銹性を有するディスクブレーキ用マルテ ンサイ ト系ステンレス鋼を提供することができる。 発明を実施するための最良の形態
本発明を実施するための最良の形態と限定条件について、 詳細に 説明する。
本発明者らは、 焼入れままで使用できる二輪車ディスクブレーキ 材料について、 詳細な検討を行った。 その中で、 耐銹性に関する検 討では、 実際に二輪車に装着して使用する時の焼入れ後の耐銹性だ けでなく、 焼入れ前の耐銹性も重要視した。 これは、 ディスク製造 時に、 焼入れ前に発銹することがあつたからである。
ディスクの製造において、 ディスク摺動面は研削されるので、 焼 入れ前の発銹は、 問題ない場合がほとんどであるが、 ディスクのデ ザインによっては、 研削されない部分が存在する場合がある。 その 場合、 焼入れ前の発銹が問題となる。
焼入れ前後でのディスク材の耐銹性を比較すると、 焼入れ前のデ イスク材が劣位となるようである。 これは、 ディスク材では、 炭窒 化物が多いことによると考えられる。
本発明者らは、 塩化物環境での耐銹性を中心に検討し、 焼入れ後 のみならず、 焼入れ前のディスク材の耐銹性を向上する手段の検討 を進めた結果、 P, As , Sb, B iの微量添加が、 耐銹性を高めること を見出した。 すなわち、 P, As , Sb, B iの 1種または 2種以上を、 微量添加することにより、 塩化物環境での耐銹性が向上することを 見出した。 この効果は、 特に、 Cu, Tiを含まず、 Mn含有量が多い場合に、 顕 著であるが、 Cuや Tiと組み合わせも有効であることも見出した。 さ らなる検討の後、 Pと Biの組み合わせでは、 極微量の添加において も、 この耐銹性向上効果が発現することを確認した。
本発明者らは、 以上の知見を基に詳細な検討を進め、 発明を完成 した。
初めに、 各成分に関する限定条件を述べる。 なお、 %は質量%を 意味する。
Cは、 焼入れ後、 所定の硬さを得るために必須の元素であり、 所 定の硬度レベルになるように、 Nと組み合わせて添加する。 0. 10% を超えて添加すると、 硬度が硬すぎて、 ブレーキの鳴き、 靭性劣化 等の不具合を生じるので、 0. 10%を上限とする。 また、 0.01%未満 では、 硬さを得るために、 Nを過大に添加しなければならないので 、 0.01%を下限とする。
Nは、 Cと同様に、 焼入れ後に、 所定の硬度を得るために必須の 元素であり、 所定の硬度レベルになるように、 Cと組み合わせて添 加する。 しかし、 0.025%を超えて添加すると、 焼入れ性の低下を 招くので、 0.025%を上限とする。 また、 Nを 0.005%未満とするこ とは、 製鋼コス トの増大を招くので、 0.005 %を下限とする。
C + Nは、 焼入れ後の硬さに直接関係する量である。 所定の HRC : 32〜38を得るためには、 0.06%以上 0. 1%以下とする必要がある
Siは、 脱酸材として有用であるので、 0.05%以上添加する。 しか し、 フェライ ト形成元素として非常に強力であり、 r Pを相互調整 するためには、 抑制する必要があり、 その上限を 2 %とする。 コス ト低減のため、 Mn, Cu, Ni等のオーステナイ ト形成元素の合計量を 抑制する場合は、 その上限は 1 %が好ましい。 Mnは、 鋼中に不可避的に含まれる成分であるが、 重要なオーステ ナイ ト形成元素である。 本発明では、 Ni, とともに、 高温でのォ ーステナイ ト相を確保して、 焼入れ性を確保するため、 0.2%以上 の添加を必要とする。 2.0%を超えると、 本発明をもってしても、 耐銹性の劣化が見られるので、 2.0%を上限とする。
Crは、 二輪ディスクブレーキ材料として必要な耐銹性を確保する ための基本元素であり、 その含有量が 10%未満では、 本発明をもつ てしても、 十分な耐銹性を得ることができない。 また、 Crは、 フエ ライ ト形成元素であるため、 14%を超えて添加すると、 オーステナ イ ト相生成温度域が縮小し、 焼入れ温度域で、 マルテンサイ ト相に 変態しないフェライ ト相が生成し、 焼入れ後の硬さを満足すること ができなくなる。 よって、 Cr添加量は、 10%以上 14%以下とする。
Niは、 Mnと同じくオーステナイ ト形成元素であり、 高温でオース テナイ ト相を確保して、 焼入れ性を確保するために有効な元素であ る。 その効果を得るためには、 0.02%以上の添加が必要である。 し かし、 Niは高価であるため、 製造コス ト上は、 その含有量をできる だけ抑制した方が好ましく、 また、 2 %を超えて添加すると、 靭性 の低下を招くので、 2 %を上限とする。
A1は、 脱酸剤として非常に有用である。 その効果を得るためには 、 0.001%以上の添加が必要である。 しかし、 0.1%を超えると耐銹 性の低下が見られるので、 0.1%を上限とする。
Sは、 鋼中に不可避的に含まれる成分であるが、 本発明で、 0.01 %を超えると、 CaSが生成し易いので、 0.01%を上限とする。 また 、 Sを 0.001%未満とすることは、 製鋼コス トの増大を招くので、 0 .001%を下限とすることが好ましい。
Vは、 不可避的不純物であるが、 加工性を劣化させない 0.5%程 度までの含有は、 許容される。 本発明者らは、 P, As, Sb, Biを微量添加することにより、 耐銹 性を向上させることができることを見出した。 この理由は明確でな いが、 耐食性を劣化させる MnSと関係があると考えられる。 すなわ ち、 P, As, Sb, Biが、 MnSの析出を抑制していると考えられる。
これらの元素は、 単独で添加しても、 組み合わせて添加しても、 有効であり、 1種または 2種以上添加することにより、 耐銹性を向 上させることができる。 これらの元素は、 その効果を発現するため には、 合計で 0.05%以上の添加が必要であるが、 靭性を確保するた め、 合計で 0.5%以下とする。
また、 Pと Biの両方を添加すると、 相乗効果が現れ、 極微量でも 、 上記耐銹性向上効果が発現することを見出した。 この機構につい ては不明であるが、 Pは、 0.005%以上 0.05%未満、 Biは 0.005 %以 上 0.05%未満で、 P +Biは、 0.01%以上 0.05%未満とする。 P , Bi それぞれが 0.005%未満であると、 耐銹性向上効果が発現しない。 P +Biが 0.05%以上であると、 P, Biそれぞれが単独で耐銹性向上 効果を発現し、 P, Biの両方を添加することによる相乗効果が小さ くなる。
これらの成分に加えて、 Cu, Ti, Mo, Nbの添加により、 さらに、 ディスクブレーキ用鋼としての特性を向上させることができる。
は、 Mn, Niと同じく、 オーステナイ ト相を確保し、 焼入れ性を 確保するために有効な元素である。 Cu添加により、 Mnを低減するこ とができるので、 耐銹性が向上する。 また、 Cuは、 ブレーキ制動発 熱によるディスクの軟化を抑制することに効果的である。 0.01%未 満の含有量では、 添加効果が顕著でなく、 2 %を超えると、 靭性が 劣化するので、 Cuは、 0.01%以上 2 %以下が好ましい。
Πは、 耐銹性を向上させる元素である。 Ti系硫化物を形成して、 MnSの形成を抑制するためと推定している。 その効果発現のために は、 0.01%以上の含有が好ましい。 しかし、 Πを過剰に添加すると 、 炭窒化物を形成し、 C, Nを消費するので、 好ましくない。 した がって、 Tiの上限は、 0.5%が好ましい。
Moは、 適量添加により、 焼戻し軟化抵抗を顕著に向上させること ができる元素である。 この機構はいまだ明らかではないが、 Cr炭化 物の析出および粗大化を抑制し、 高温でも転位運動を抑制可能で、 焼戻し軟化抵抗を向上させていると考えられる。 しかし、 0.01%未 満では添加効果が顕著でないので、 下限は 0.01%が好ましい。 一方 、 2 %を超える添加は、 靭性を劣化させるので、 上限は 2 %が好ま しい。
Nbも、 Nとともに、 0.01%以上の添加で、 焼戻し軟化抵抗を顕著 に向上させることができる元素である。 この機構は、 いまだ明らか ではないが、 Nbは、 Nと相関が大きく、 Cr窒化物の析出おょぴ粗大 化を抑制し、 転位運動を抑制し、 焼戻し軟化抵抗を向上させている と考えられる。
しかし、 NbNの形で析出し易く、 この形で析出すると、 NbNには、 強化機能がなく、 さらに、 NbNとして Nが消費されることに伴って 、 Nの固溶強化効果を減少させるので、 また、 さらには、 焼入れ性 を減少させる原因となるので、 1 %を超える過剰の添加は避けるの が好ましい。
さらに、 以上の各元素は、 その成分範囲の中で、 900〜1100°Cの 温度範囲で、 安定して焼入れを行うために、 次の (式 1 ) で表され るァ Pが、 80以上となるよう相互に調整される必要がある。
r pが 80未満であると、 焼入れしてもフェライ ト相が残り、 所定 の硬度レベルに達しない場合がある。
7 P = 420 [% C] + 470 [ N] +23 [ Ni] + 9 [%Cu] + 7 [ Mn] 一 11.5 [%Cr] - 11.5 [%Si] -52 [ ΑΠ 一 12 [%Μο] - 23 [ % V ] - 47 [ % Nb] + 1 89 … (式 1 )
焼入れ温度は、 高温すぎると、 製造時間の増大、 コス トの増加を 招くので、 900 °C以上 1 100°C以下が好ましい。 その温度範囲からの 焼入れでも、 本発明鋼は、 所定の硬さ範囲を満足する。
次に、 製造方法について、 詳細に説明する。
以上述べてきた成分と残部 Feおよび不可避的不純物を含むスラブ 、 インゴッ ト等の鋼片 (以下、 単にスラブともいう。 ) を溶製し、 熱間圧延によって、 2〜 8 mm程度の熱延板とした後、 7 50°C〜 900°C の範囲で焼鈍を行って、 軟化させた後、 酸洗して製品とする。
酸洗せずに、 ショ ッ トプラス トによる仕上げでもよい。 また、 酸 洗せずに、 焼鈍ままで製品とする場合もある。
これらは、 ディスク製造工程において、 ディスク形状に加工され た後、 900〜1 100°Cに加熱されてから、 焼入れられ、 両面を研削さ れて、 ブレーキディスクとなる。 実施例
以下、 実施例に従って、 さらに、 詳細に本発明を説明する。
(実施例 1 )
表 1 に示す化学成分を有する、 厚み 200iamの鋼片を溶製した後、 熱間圧延によって、 厚さ 6 mmの熱延板を得た。 さらに、 850 °Cまで 加熱して徐冷する、 軟化焼鈍を施した。
^ β ^ β ^0§
表 1 :質量%)
Figure imgf000011_0001
*表中 0. 0 (質量%)は、 無添加で分析検出限界以下の不可避的不純物としての含有を示す。
表 1 (続き) (質量%)
Figure imgf000012_0001
*表中 0. 0 (質量%)は、 無添加で分析検出限界以下の不可避的不純物としての含有を示す。
これらの鋼板から、 耐銹性評価試験片、 焼入れ性評価試験片を採 取し、 残りの鋼板には、 950〜 1000°Cで 10分間保持後、 水冷する焼 入れ処理を施した。
耐銹性評価試験は、 試験片両面を、 # 240研磨し、 240時間の塩水 噴霧試験 (Sa l t Spr ay Tes t: SSTともいう。 ) (J I S Z 2371準拠) を行い、 発銹程度を調査した。 発銹しないものを合格、 発銹したも のを不合格とした。
焼入れ性評価試験は、 850〜1100°Cの温度に 10分間保持した後に 、 水冷した焼入れ材を、 J IS Z 2245に準拠した、 ロックウェル硬さ 試験 (HRC) で行った。 HRCで 32から 38が合格である。
焼入れ処理を施した鋼板から、 各種試験片を採取し、 評価試験を 行った。 焼戻し軟化特性に関しては、 500°Cから 650°Cで 1時間の焼 戻しを行った後、 焼入れ材の硬さ試験と同様に、 ロックウェル試験 で評価した。 焼戻し後の硬さ力 を下回わらない温度を、 耐熱 温度と規定した。 耐熱温度 500°C以上が合格である。
また、 耐銹性試験は、 焼入れ前の材料と同様に試験片両面を、 # 240研磨し、 240時間の塩水噴霧試験 (J I S Z 2371準拠) を行い、 発 銹程度を調査した。 発銹しないものを合格、 発銹したものを不合格 とした。
表 2に評価結果を示す。 A鋼〜 J鋼は、 請求の範囲 1 に記載の本 発明鋼であり、 焼入れ前後の耐銹性は合格であり、 焼入れ硬度およ び耐熱温度も合格であり、 非常に優れた性質を示している。 2
Figure imgf000014_0001
K鋼〜 T鋼は、 請求の範囲 2に記載の本発明鋼であり、 添加が 特徴である。 これらの鋼も、 焼入れ前後の耐銹性は合格であり、 焼 入れ硬度および耐熱温度も合格であり、 非常に優れた性質を示して いる。
U鋼〜 Ζ鋼、 ΑΑ鋼〜 AD鋼は、 請求の範囲 3に記載の本発明鋼であ り、 T i添加が特徴である。 これらの鋼も、 焼入れ前後の耐銹性は合 格であり、 焼入れ硬度および耐熱温度も合格であり、 非常に優れた 性質を示している。
AE鋼〜 AN鋼は、 請求の範囲 4に記載の本発明鋼であり、 Mo, Nbの 添加が特徴である。 これらの鋼も、 焼入れ前後の耐銹性は合格であ る。 また、 焼入れ硬度も合格である。 さらには、 Mo, Nb添加により 、 耐熱温度が、 無添加の鋼に対して上昇しており、 非常に優れた性 質を示している。
これら本発明鋼に対し、 比較鋼である、 AO鋼は、 P, As , Sb, B i の合計量が 0. 05 %未満であるため、 耐銹性が劣っている。 AP鋼、 AQ 鋼は、 それぞれ、 Cu, T i添加であるため、 焼入れ後の耐銹性は合格 であるが、 P, As , Sb, B iの合計量が 0. 05 %未満であるため、 焼入 れ前の耐銹性が劣っている。 AR鋼は、 ァ pが 80以下であるため、 焼 入れ後の硬度が、 合格基準に達せず好ましくない。
AS鋼は、 C + Nが多いために、 焼入れ後の硬度が合格基準より硬 くなり過ぎ、 好ましくない。 AT鋼は、 C + Nが少ないため、 焼入れ 後の硬度が合格基準に達せず、 好ましくない。 AU鋼は、 Crが少ない ため、 耐銹性が劣っている。 AV鋼は、 C rが多いために、 r pが 80以 下となり、 焼入れ後の硬度が合格基準に達せず、 好ましくない。
AW鋼は、 P, As , Sb, B iの合計量が 0. 5 %超であるため、 靭性劣 化を引き起こし、 好ましくない。 AX鋼は、 Mnが多いため、 靭性劣化 を引き起こし、 好ましくない。 以上から、 本発明鋼は、 焼入れ硬度、 および、 耐熱性を満足しつ つ、 非常に耐銹性に優れていることが明らかである。
(実施例 2 )
表 3に示す化学成分を有する厚み 200MIの鋼片を溶製した。 Pお よび B iを極微量含む成分系である。 As, Sbは無添加である。 その後 、 実施例 1 と同様の方法で各種評価試験片を作製した。 また、 実施 例 1 と同様の方法で、 耐銹性試験、 焼入れ性試験、 焼戻し軟化試験 を行った。 評価結果を表 4に示す。
表 3 (質量%)
Figure imgf000017_0001
*表中 0. 0 (質量%)は、 無添加で分析検出限界以下の不可避的不純物としての含有を示す。
表 4
Figure imgf000018_0001
BA鋼から BL鋼は、 本発明鋼であり、 焼入れ前後の耐銹性は合格で あり、 焼入れ硬度および耐熱温度も合格であり、 非常に優れた性質 を示している。 これに対し、 比較鋼である BM鋼は、 Pおよび B i添加 量が少なすぎるため、 耐銹性向上効果が発現せず、 耐銹性が劣って いる。
以上から、 本発明鋼は、 焼入れ硬度、 および、 耐熱性を満足しつ つ、 非常に耐銹性に優れていることが明らかである。 産業上の利用可能性
本発明により、 優れた耐銹性を有するディスクブレーキ用マルテ ンサイ ト系ステンレス鋼を提供することができる。 したがって、 製 造者のみならず、 本発明鋼を利用する者は、 多大な利益を得ること ができるので、 本発明の工業的価値は、 極めて高い。

Claims

1. 質量%で、
C : 0.01%以上 0.10%以下、
Si : 0.05%以上 2 %以下、
Mn: 0.2%以上 2.0%以下、
S : 0.01%以下、
N : 0.005%以上 0.025%以下、
Cr: 10%以上 14%以下、 の
i : 0.02%以上 2 %以下、 範
A1 : 0.001%以上 0.1%以下、 囲
V : 0.5%以下、
C + N : 0.06%以上 0.1%以下を含有し、
さらに、 P , As, Sb, Biのうちの 1種または 2種以上を、 その合 計量で、 0.05%以上 0.5%以下含有し、 残部 Feおよび不可避的不純 物からなり、 下記 (式 1 ) で表される r Pが 80以上であることを特 徵とする耐銹性に優れたディスクブレーキ用マルテンサイ ト系ステ ンレス鋼。
r P = 420 [% C] + 470 [%N] +23 [%Ni] + 9 [%Cu] + 7 [ %Mn] - 11.5 [ Cr] - 11.5 [%Si] -52 [%A1] - 12 [%Mo] ― 23 [% V] -47 [%Nb] + 189 … (式 1 )
2. 質量%で、
C : 0.01%以上 0.10%以下、
Si : 0.05%以上 2 %以下、
Mn: 0.2%以上 2.0%以下、
S : 0.01%以下、
N : 0.005 %以上 0.025 %以下、 Cr: 10%以上 14%以下、
Ni: 0.02%以上 2 %以下、
A1 : 0.001%以上 0. 1%以下、
V : 0.5%以下、
C + N : 0.06%以上 0. 1%以下を含有し、
さらに、
P : 0.005 %以上 0.05%未満、
Bi : 0.005 %以上 0.05%未満、 かつ、
P +Bi : 0.01%以上 0.05%未満を含有し、 残部 Feおよび不可避的 不純物からなり、 下記 (式 1 ) で表される r Pが 80以上であること を特徴とする耐銹性に優れたディスクブレーキ用マルテンサイ ト系 ステンレス鋼。
r P = 420 [% C ] + 470 [% N〕 + 23 [%Ni] + 9 [%Cu] + 7 [ %Mn] - 11.5 [%Cr] - 11.5 [%Si] -52 [%A1] 一 12 [%Mo] 一 23 [% V] -47 [%Nb] + 189 … (式 1 )
3. さらに、 質量%で、 Cu: 0.01%以上 2 %以下を含有すること を特徴とする請求の範囲 1 または 2に記載の耐銹性に優れたディス クブレーキ用マルテンサイ ト系ステンレス鋼。
4. さらに、 質量%で、 Ti : 0.01%以上 0.5%以下を含有するこ とを特徴とする請求の範囲 1〜 3のいずれかに記載の耐銹性に優れ たディスクブレーキ用マルテンサイ ト系ステンレス鋼。
5. さらに、 質量%で、 Mo: 0.01%以上 2 %以下、 Nb : 0.01%以 上 1 %以下のうちの 1種または 2種を含有することを特徴とする請 求の範囲 1 〜 4のいずれかに記載の耐銹性に優れたディスクブレー キ用マルテンサイ ト系ステンレス鋼。
PCT/JP2007/059344 2006-05-01 2007-04-24 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼 WO2007129651A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200780000502.2A CN101321886B (zh) 2006-05-01 2007-04-24 耐锈性优异的盘式制动器用马氏体系不锈钢

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006127160 2006-05-01
JP2006-127160 2006-05-01
JP2007081151A JP5191679B2 (ja) 2006-05-01 2007-03-27 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP2007-081151 2007-03-27

Publications (1)

Publication Number Publication Date
WO2007129651A1 true WO2007129651A1 (ja) 2007-11-15

Family

ID=38667760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059344 WO2007129651A1 (ja) 2006-05-01 2007-04-24 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼

Country Status (4)

Country Link
JP (1) JP5191679B2 (ja)
KR (1) KR101011879B1 (ja)
CN (1) CN101321886B (ja)
WO (1) WO2007129651A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119881A1 (ja) * 2008-03-27 2009-10-01 新日鐵住金ステンレス株式会社 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP2009280912A (ja) * 2008-04-25 2009-12-03 Jfe Steel Corp 低炭素マルテンサイト系Cr含有鋼
CN102782170A (zh) * 2010-02-24 2012-11-14 新日铁住金不锈钢株式会社 焊接区的耐蚀性优良的低铬不锈钢
TWI555859B (zh) * 2014-09-17 2016-11-01 Nippon Steel & Sumikin Sst Stainless steel with mattress iron and its manufacturing method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5544197B2 (ja) * 2010-03-17 2014-07-09 新日鐵住金ステンレス株式会社 溶接部の特性に優れたマルテンサイトステンレス鋼および鋼材
CN103453275A (zh) * 2012-06-01 2013-12-18 洪泽东俊机械有限公司 采油用球形空气包及其空气包材质
CN103802346B (zh) * 2013-10-31 2015-10-28 东莞市维美电器有限公司 一种家用榨油机的榨膛及其制备材料
CN103757563B (zh) * 2013-12-24 2016-04-06 六安市振华汽车变速箱有限公司 一种高硬度耐磨低碳不锈钢材料及其制备方法
CN108707826B (zh) * 2018-06-14 2019-05-24 汶上海纬机车配件有限公司 一种用于低温环境的高速列车制动盘的材料
CN110629110A (zh) * 2018-06-25 2019-12-31 宝山钢铁股份有限公司 一种抗蒸汽腐蚀氧化和高温持久性能良好的超超临界火电机组用钢及其制备方法
KR20220024982A (ko) * 2019-09-03 2022-03-03 닛테츠 스테인레스 가부시키가이샤 마르텐사이트계 스테인리스 강판 및 마르텐사이트계 스테인리스강 부재
CN113061804A (zh) * 2021-03-03 2021-07-02 陈兆启 一种高耐腐蚀不锈钢及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331599A (ja) * 1992-05-28 1993-12-14 Kawasaki Steel Corp 耐海水生物付着性に優れるFe−Cr合金
JPH06200355A (ja) * 1992-12-28 1994-07-19 Aichi Steel Works Ltd 耐食性、被削性の優れたステンレス鋼
JP2000063995A (ja) * 1998-08-12 2000-02-29 Sanyo Special Steel Co Ltd 耐銹・耐候性を有する快削鋼
JP2005126735A (ja) * 2003-10-21 2005-05-19 Jfe Steel Kk 耐焼戻し軟化性に優れたブレーキディスクおよびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3504518B2 (ja) * 1998-11-30 2004-03-08 日鐵住金溶接工業株式会社 マルテンサイト系ステンレス鋼の溶接材料ならびに溶接継手およびその製造方法
US6464803B1 (en) * 1999-11-30 2002-10-15 Nippon Steel Corporation Stainless steel for brake disc excellent in resistance to temper softening
JP3491030B2 (ja) * 2000-10-18 2004-01-26 住友金属工業株式会社 ディスクブレ−キロ−タ−用ステンレス鋼
JP4144283B2 (ja) * 2001-10-18 2008-09-03 住友金属工業株式会社 マルテンサイト系ステンレス鋼

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05331599A (ja) * 1992-05-28 1993-12-14 Kawasaki Steel Corp 耐海水生物付着性に優れるFe−Cr合金
JPH06200355A (ja) * 1992-12-28 1994-07-19 Aichi Steel Works Ltd 耐食性、被削性の優れたステンレス鋼
JP2000063995A (ja) * 1998-08-12 2000-02-29 Sanyo Special Steel Co Ltd 耐銹・耐候性を有する快削鋼
JP2005126735A (ja) * 2003-10-21 2005-05-19 Jfe Steel Kk 耐焼戻し軟化性に優れたブレーキディスクおよびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119881A1 (ja) * 2008-03-27 2009-10-01 新日鐵住金ステンレス株式会社 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP2009256787A (ja) * 2008-03-27 2009-11-05 Nippon Steel & Sumikin Stainless Steel Corp 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP2009280912A (ja) * 2008-04-25 2009-12-03 Jfe Steel Corp 低炭素マルテンサイト系Cr含有鋼
CN102782170A (zh) * 2010-02-24 2012-11-14 新日铁住金不锈钢株式会社 焊接区的耐蚀性优良的低铬不锈钢
CN102782170B (zh) * 2010-02-24 2015-07-01 新日铁住金不锈钢株式会社 焊接区的耐蚀性优良的低铬不锈钢
TWI555859B (zh) * 2014-09-17 2016-11-01 Nippon Steel & Sumikin Sst Stainless steel with mattress iron and its manufacturing method

Also Published As

Publication number Publication date
CN101321886A (zh) 2008-12-10
KR101011879B1 (ko) 2011-02-07
JP2007321245A (ja) 2007-12-13
CN101321886B (zh) 2014-04-02
JP5191679B2 (ja) 2013-05-08
KR20080011397A (ko) 2008-02-04

Similar Documents

Publication Publication Date Title
JP5191679B2 (ja) 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
US8607941B2 (en) Steel sheet for brake disc, and brake disc
JP2009256787A (ja) 耐銹性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP5714185B2 (ja) ステンレス鋼製ブレーキディスクとその製造方法
JP4569360B2 (ja) 焼戻し軟化抵抗と靭性に優れるブレーキディスク
JP5200332B2 (ja) 焼戻し軟化抵抗の大きいブレーキディスク
JP6786418B2 (ja) ブレーキディスク用マルテンサイト系ステンレス鋼、およびブレーキディスク
WO2004097058A1 (ja) ディスクブレーキ用マルテンサイト系ステンレス鋼
JP4832834B2 (ja) 焼き入れ性に優れた耐熱ディスクブレーキ用マルテンサイト系ステンレス鋼板
JP7300859B2 (ja) ブレーキマルテンサイト系ステンレス鋼板およびその製造方法、ブレーキディスク、ならびにマルテンサイト系ステンレス鋼スラブ
JP4496908B2 (ja) 耐焼戻し軟化性に優れるブレーキディスクおよびその製造方法
JP2002146482A (ja) 耐反り性を改善したディスクブレーキ用鋼板およびディスク
JP3477108B2 (ja) 耐食性に優れたディスクブレーキ用マルテンサイト系ステンレス鋼
JP5553651B2 (ja) 耐熱ディスクブレーキ用マルテンサイト系ステンレス鋼
JP4308622B2 (ja) 耐焼戻し軟化性に優れたブレーキディスクおよびその製造方法
JP5278889B2 (ja) ディスクブレーキ用マルテンサイト系ステンレス鋼
JP2002030346A (ja) 成形性に優れたCr含有耐熱耐食鋼板の製造方法
JP3900169B2 (ja) ディスクブレーキ用マルテンサイト系ステンレス鋼
JP2005298848A (ja) 鋼板の熱間プレス方法
JP4975448B2 (ja) 靭性に優れた655MPa級マルテンサイト系ステンレス鋼及びその製造方法
JP7180147B2 (ja) 耐食性耐摩耗鋼板
JP6838422B2 (ja) 高強度鋼板およびその製造方法
JP4188328B2 (ja) 二輪車ディスクブレーキ用マルテンサイト系ステンレス鋼板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780000502.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077026813

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742779

Country of ref document: EP

Kind code of ref document: A1