WO2007126161A1 - 地下シェルター - Google Patents

地下シェルター Download PDF

Info

Publication number
WO2007126161A1
WO2007126161A1 PCT/JP2007/059797 JP2007059797W WO2007126161A1 WO 2007126161 A1 WO2007126161 A1 WO 2007126161A1 JP 2007059797 W JP2007059797 W JP 2007059797W WO 2007126161 A1 WO2007126161 A1 WO 2007126161A1
Authority
WO
WIPO (PCT)
Prior art keywords
shelter
shell
underground
inner shell
ground
Prior art date
Application number
PCT/JP2007/059797
Other languages
English (en)
French (fr)
Inventor
Tadamasa Yamaguchi
Original Assignee
Nihon Shelter System Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shelter System Co., Ltd. filed Critical Nihon Shelter System Co., Ltd.
Priority to US12/226,926 priority Critical patent/US7918056B2/en
Priority to KR1020087026462A priority patent/KR101277967B1/ko
Publication of WO2007126161A1 publication Critical patent/WO2007126161A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/04Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against air-raid or other war-like actions
    • E04H9/10Independent shelters; Arrangement of independent splinter-proof walls
    • E04H9/12Independent shelters; Arrangement of independent splinter-proof walls entirely underneath the level of the ground, e.g. air-raid galleries
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • E02D29/05Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them at least part of the cross-section being constructed in an open excavation or from the ground surface, e.g. assembled in a trench
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D13/00Large underground chambers; Methods or apparatus for making them

Definitions

  • the present invention relates to a safer underground shelter that pursues shielding, durability, and functionality in addition to earthquake resistance and waterproofing.
  • Patent Document 1 is a high-strength concrete on a pressure plate supported by a plurality of piles driven into the ground.
  • a box-shaped shelter chaff consisting of a single plate is provided, and the outer surface, which is the wall and ceiling, excluding the bottom surface of the inner shell, is covered with an outer shell made of iron plate, and the outer surface of the iron plate The structure is covered with a waterproof coating between the bottom of the shell and the pressure platen.
  • Patent Document 2 The main body structure of the basement described in Japanese Patent Application Laid-Open No. 9-87 6 0 9 (Patent Document 2) has a metal plate fixed on the outer surface side of a core material such as a shape steel, and a non-metallic interior in the inner side.
  • a core material such as a shape steel
  • a non-metallic interior in the inner side.
  • Patent Document 3 The main body structure of the basement described in Japanese Patent Laid-Open No. 1 1 1 2 1 9 1 6 (Patent Document 3) consists of a foundation slab made of reinforced concrete for the floor, a steel wall panel for the wall, and a steel roof panel for the ceiling In particular, it is characterized in that the lower end of the steel wall panel is embedded in the concrete of the foundation slab.
  • Patent Document 4 The main body structure of the basement described in Japanese Patent Laid-Open No. 1 1 1 2 1 9 1 7 (Patent Document 4) consists of a steel floor panel or reinforced concrete for the floor, a steel wall panel for the wall, and a steel frame for the ceiling.
  • the structure is made of wood board or concrete or reinforced concrete, and a concrete wall is provided on the outer surface side of the steel wall panel, which serves as anticorrosion, fouling and backfilling of the wall panel.
  • Patent Document 1 Japanese Patent Laid-Open No. 2 0 0 5-2 4 0 4 5 2
  • Patent Document 2 Japanese Patent Laid-Open No. 9-7 8 6 0 9
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-1 2 1 9 1 6
  • Patent Document 4 Japanese Patent Laid-Open No. 11-2 1 9 1 7 Disclosure of Invention
  • Patent Document 1 An underground shelter described in Japanese Patent Application Laid-Open No. 2 0 5-2 4 0 4 5 2 (Patent Document 1) is provided with a shelter inner shell made of high-strength concrete on a pressure plate and is a joint surface with the pressure plate.
  • the outer surface of the inner shell is covered with the outer shell made of iron plate, excluding the bottom of the inner shell. Therefore, it is conceivable that water intrudes from the floor to the inside of the main body of the shield, and a waterproof coating made of rubber dust is formed on the outer side of the outer shell of the shelter. By forming a waterproof coating film, water is prevented from entering from the bottom. Regarding the structure of the bottom surface of the shelter body and the pressure platen, it seems that there are still problems to be satisfied.
  • Underground shelters are designed to meet construction conditions, ground conditions, etc. against shock waves, vibration, radiation, bomb fragments, dust, gas, fire and heat, electromagnetic waves, etc. It is desirable to minimize the impact, so it is desirable to increase the installation depth and cover the ceiling surface.
  • Japanese Patent Laid-Open No. 9 7 8 60 09 (Patent Document 2), which uses the target structure as a steel basement, has a box shape consisting of a shape steel, a metal outer plate, and an inner non-metallic inner plate.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 1 1 1 2 1 9 1 6
  • Patent Document 4 Japanese Patent Application Laid-Open No. 11-2 1 9 1 7
  • Patent Document 4 is mainly made of steel panels or reinforced concrete slabs.
  • the shelter body is composed of these structural members, it can be said that there is a limit to securing sufficient strength safety and earthquake resistance against large external forces, and it is installed to improve shielding. Increasing the depth of placement is also a challenge because of the increased earth pressure.
  • Patent Document 4 the steel basement is corroded around the steel basement, and a concrete wall for protection is buried around the basement outer wall. In this case, the concretion derived from the structural calculation to resist the external force is used. It cannot be said that the basic structure that can secure the strength that should be provided in the underground shelter.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 1 1 1 2 1 9 1 6
  • the bottom of the wall panel is made of concrete. It is considered that cracks called cracks are likely to occur in the concrete that encloses the water, which may cause water leakage, and waterproofing is also an issue.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 1 1 1 2 1 9 1 7 (Patent Document 4) describes that the ceiling is made of steel beams and wooden boards, in addition to the problems of strength safety, seismic resistance, and shielding properties. If this is the case, it is a very unfavorable structure to prevent flooding during floods, but there are still problems with radiation, fire and heat shielding, insulation and airtightness.
  • an underground shelter according to the present invention includes a shell outer shell made of high-strength rebar concrete, a box-shaped shelter inner shell made of a metal plate formed inside the shell outer shell,
  • the shelter inner shell is made up of a partition wall that is divided into two or more compartments inside the shelter inner shell, and the shelter inner shell is the ceiling of the partition wall formed inside the shelter inner shell.
  • the anti-partitioning wall was formed by pouring raw concrete from an opening provided in the ceiling of the inner shell of the shelter, and then closing the opening with a metal lid.
  • the shield inner shell is formed into a compartment-resistant partition wall, and the inner shell of the shield has an opening at a ceiling portion of the barrier-resistant partition wall formed inside the inner shell of the shield. It was formed by pouring ready-mixed concrete from the opening provided in the ceiling of the wall, and then closing the opening with a metal lid, covering it in the ground and burying it. All six front, rear, left, and right sides will be composed of a shelter inner shell and an outer shell, respectively, and a uniform armor wall will be constructed over the entire surface.
  • the metal plate on the inner surface of the shelter outer shell instead of the outer surface, water and moisture can be reliably shielded in all directions while providing fire resistance and heat resistance. It can solve problems related to heat resistance and waterproofness.
  • An underground shelter according to the present invention is a box-shaped shell made of a metal plate.
  • a partition wall made of high-strength reinforced concrete was provided inside the inner shell of the shelter separately from the outer shell, and the inner shell was divided into two or more compartments.
  • the partition wall of the underground shelter according to the present invention is formed by pouring ready-mixed concrete from the opening provided in the ceiling part of the inner shell of the shelter, and then closing the opening with a lid made of a metal plate. .
  • the anti-partitioning wall of the underground shelter according to the present invention was made of high-strength reinforcing steel concrete and a metal plate.
  • the quality and shape of the shelter shell is based on structural calculations to ensure sufficient resistance against destructive external forces such as seismic motion acting on the shelter body and shock waves and blast pressure due to explosions. Set the dimensions.
  • a structure that resists external forces is formed by forming a shelter shell made of high-strength reinforced concrete based on theoretically derived numerical values. Therefore, the inner shell of the shelter can have a structure that does not bear this external force, and can satisfy the deformation resistance, waterproofness, electromagnetic wave shielding, etc. required for construction.
  • gamma radiation is shielded from the shelter inner shell made of a metal plate containing many heavy elements, which is effective in shielding gamma radiation, and the ceiling slab concrete of the same shelter outer shell containing many heavy elements. Large and heavy! / Covering the soil with a lot of elements can shield gamma radiation very effectively.
  • the shielding of neutron rays is the speed of the neutron rays so that they are easily absorbed and captured by the nucleus It is important to slow down the neutron beam sufficiently to make it a low-speed neutron beam. Since hydrogen has almost the same mass as neutrons, the effect of decelerating neutrons is extremely high. Substances containing a lot of water (water, concrete, paraffin, etc.) are used. Concrete contains a large amount of water (7 to 20%), and calcium, which is the main component of cement sand, has the ability to absorb low-velocity neutrons at the same level as hydrogen.
  • iron which is the main component of reinforcing bars, is difficult to decelerate high-speed neutrons, but absorbs about 10 times as much hydrogen as low-speed neutrons.
  • the double structure in which the outer shell made of high-strength reinforced concrete and the metal plate of the inner shell of the shelter are used as iron plates is also very effective for shielding neutrons.
  • the underground shelter according to the present invention has a structure in which the inner shell of a box-shaped shelter made of a metal plate has a chamfering surface for a haunch.
  • the underground shelter according to the present invention has a structure in which a box-shaped shelter inner shell made of a metal plate is composed of a plurality of standardized wet panels.
  • a box-shaped shelter inner shell made of a metal plate and a ground covering the whole shelter body are connected by a grounding earth member to be electrically grounded.
  • a grounding earth member a metal cord, a metal bar, a metal plate, or a combination thereof can be considered.
  • conductive fiber or conductive powder is mixed into the high-strength reinforced concrete that constitutes the shelter shell, and the shelter shell is electrically conductive.
  • the conductive fiber or conductive powder referred to here is carbon fiber, carbon powder, metal powder, or the like.
  • the outer surface side or inner shell surface side of the shelter outer shell is covered with a member containing a neutron shielding material, and the main body of the shelter is inner shell / outer shell / neutron beam shielding shell.
  • the material containing the neutron shielding material includes a high-density polyethylene resin and a member obtained by molding this polyethylene resin with boron oxide added into a flat plate or block. If this neutron beam shielding shell is weak due to heat or fire due to a polyethylene plate, etc., parts that are likely to be affected, such as the shelter entrance / exit, can be accommodated by installing them on the inner shell side of the shelter outer shell. can do.
  • the underground shield according to the present invention is formed by mixing a high-strength reinforced concrete constituting the outer shell of the shelter with a material containing powder or granular neutron shielding material.
  • the neutron shielding material here is boron carbide / concentrated boron. This enriched boron is one of two isotopes (the same number of protons and different number of neutrons) of natural boron, boron 1 10 (1 0 B) and boron 1 1 1 (1 1 B).
  • the natural abundance ratio of 10 B which has an excellent neutron absorption capacity, is increased to about 95% as a whole, compared to the concentration of 10 B, which has almost no absorption capacity. It has a neutron absorption capacity about 5 times that of boron.
  • the underground shelter according to the present invention includes the side surface of the shelter outer shell floor slab provided in the ground, and the earth retaining sheet pile, earth retaining pile, earth retaining column wall, earth retaining continuation area provided in the ground.
  • the earth retaining shelter outer shell floor slab is integrated with the middle wall.
  • Underground shelters installed in the ground are susceptible to ground liquefaction caused by large shaking and vibration such as earthquake motion, depending on the ground conditions. Under such circumstances, a large vertical upward buoyancy acts on the bottom of the underground shelter body, and even an underground shelter has a risk of rising. Even if it does not surface completely, if the ground structure is constructed in the upper part of the underground shelter, it may cause the ground structure to tilt or have a fatal adverse effect due to this ascent. . In addition, when constructing an underground shelter under such ground conditions, it is necessary to obtain a debris prior to excavation work.
  • the earth retaining work is a work to prevent the surrounding ground from collapsing due to the excavation of the ground, and there are methods such as the main pile sheet pile method, the steel sheet pile method, the column array method, and the continuous wall method. Strong soil retaining effect under suitable ground conditions, but without removing the retaining member used for retaining soil, the steel bars and shaped steel assembled to the retaining member are used for the shell outer shell floor slab. Because it is integrated with the reinforcing bars and concrete, it is extremely insensitive to liquefaction due to earthquake motions! /, Can be a structure.
  • the underground shelter includes the side surface of the shelter shell floor slab and the wall surface of the shelter shell that are installed in the ground, and the retaining sheet piles that are not removed in the ground.
  • the earth retaining shelter outer shell integrated with the underground wall was adopted.
  • the shelter shell wall surface is formed after the shelter shell slab is formed, and then the shell inner shell is installed, and then workers assemble the reinforcing bars and formwork to cover the shelter chaff and prepare the ready-mixed concrete. It is formed by pouring, but this earth retaining integrated shell
  • the shelter outer shell floor slab is formed, the luter outer shell wall surface is assembled by the workers first from the location where the shelter inner shell is to be installed, from the location where the shelter inner shell is to be installed.
  • the shelter outer shell wall surface is formed by the procedure of pouring the ready-mixed concrete on the shelter wall surface.
  • the underground shelter according to the present invention is a pile-integrated shelter in which a bottom surface of a shelter outer shell slab provided in the ground and a pile driven into the ground are connected and fixed together, and a single outer shell slab. It was supposed to have This pile is provided when a shelter is installed on soft ground. After excavating the ground, the bottom of the excavation is leveled, and this pile is driven into the ground to a stable ground. After that, the pile is cut at a predetermined height to fit within the shelter outer shell floor slab, and the concrete is formed on the bottom of the excavation to form the shield outer shell floor slab.
  • the invention's effect is provided when a shelter is installed on soft ground. After excavating the ground, the bottom of the excavation is leveled, and this pile is driven into the ground to a stable ground. After that, the pile is cut at a predetermined height to fit within the shelter outer shell floor slab, and the concrete is formed on the bottom of the excavation to form the shield outer shell floor slab.
  • the underground shelter according to the present invention is effective from the elements of seismic vibration, explosion shock wave, blast pressure, vibration 'heat' fire 'gamma rays, neutron rays, bomb fragments, dust' gas' electromagnetic waves, groundwater and flood elements.
  • the inside can be protected.
  • the underground shelter body is hard to be found and crime prevention can be improved.
  • the inner shell of the shelter is wrapped with concrete having strong alkalinity of the outer shell of the shelter.
  • An oxide film is formed on the outer surface of the iron plate to be formed, and high durability can be obtained without forming a special anticorrosion / antifouling coating film separately.
  • iron and concrete with approximately the same coefficient of thermal expansion can be effectively formed integrally with the high adhesion between them, and a strong armor wall can be provided in the ground.
  • water and moisture can reach from the shelter shell to the partition wall by separating the partition wall from the shelter shell inside the box-shaped shelter shell made of a metal plate. So that the waterproofness is not impaired.
  • the interior of the inner shell of the shelter is divided into two or more compartments, which can dramatically improve earthquake resistance and explosion resistance, and each compartment can be used according to its purpose.
  • the inside of an underground shelter can be divided into entrance / exit rooms, main rooms, sub rooms, and machine rooms.
  • the entrance / exit room is an air lock room to prevent outside polluted air from entering the main room, and the machine room that combines the mechanical equipment can isolate noise, vibration, exhaust gas, heat, etc.
  • the sub-chambers can be used as storage rooms, and each room can have functionality.
  • the ready-mixed concrete was poured from the opening provided in the ceiling of the shelter chaff, and then the opening was closed with a metal lid, and the anti-s partition wall was made of high-strength reinforcing steel concrete.
  • the strength of the filter body can be greatly increased while ensuring the waterproofness of the body.
  • the opening for pouring the ready-mixed concrete is provided so as to penetrate the outer surface side and the inner side of the inner shell of the shelter in the vertical direction.
  • Ready-mixed concrete It is possible to make a partition wall that is strong enough to assume an arbitrary wall thickness at an arbitrary position, and can withstand a fire in an emergency compartment. It can be a refractory partition.
  • the box-shaped shelter inner shell made of metal plate has a chamfered chamfered surface
  • the inner shell surface side of the shelter outer shell that is provided to cover the outer surface of the shelter inner shell has a haunch.
  • a stable concrete shape can be obtained, and it is possible to incorporate a haunch bar into the reinforcing bar of the haunch part, so that the outer strength of the shelter shell can be increased.
  • the inner shell of the shelter functions as a mold when filling, it can reduce the cost of the formwork and shorten the period. Furthermore, it can also serve as a base metal fixture to prevent internal interior members from being peeled off due to earthquake motion, impact or vibration.
  • the electromagnetic wave shielding performance can be further improved.
  • the shelter body By covering the outer surface side or inner shell surface side of the outer shell with a member containing a neutron absorbing material, the shelter body consists of an inner shell, outer shell, and neutron beam shielding shell. Shielding performance can be given.
  • a neutron beam shielding shell composed of a plate-shaped member having a neutron beam shielding capability, this is applied to the concrete cast on the wall of the shelter shell. It can also be used as a formwork at the time of installation, enabling construction costs to be reduced.
  • the neutron beam shielding performance of the outer shell can be dramatically improved.
  • a high-resistance partition wall with electromagnetic shielding performance can be formed.
  • the metal plate can function as a formwork when pouring the ready-mixed concrete on the partition wall, can be formed integrally with high-strength reinforced concrete, and has excellent durability with good workability. It can be a partition wall. This anti-partitioning wall with electromagnetic shielding performance is especially required for the simple underground shelter described in [0 0 5 6].
  • the side of the shelter shell floor slab provided in the ground is integrated with earth retaining components such as earth retaining sheet piles, retaining piles, retaining pillar column walls, and soil retaining continuous underground walls provided in the ground.
  • earth retaining components such as earth retaining sheet piles, retaining piles, retaining pillar column walls, and soil retaining continuous underground walls provided in the ground.
  • the shelter outer shell floor slab side and shelter shell wall provided in the ground are integrated with earth retaining sheet piles, earth retaining piles, earth column walls, and earth retaining components such as earth retaining continuous underground walls.
  • earth retaining integrated shelter outer shell By forming the earth retaining integrated shelter outer shell, the vertical pulling resistance force of the retaining member and the vertical upward buoyancy generated during the liquefaction phenomenon can be offset. Seismic resistance can be further enhanced by more reliable integration with the members.
  • this configuration eliminates the need for a work path for rebar and formwork assembly between the retaining member and the outer shell of the shelter, thus reducing the scope of excavation work and constructing this part of backfill soil. There is no need to do this, and a significant improvement in seismic performance can be realized more economically.
  • FIG. 1 is a partially cutaway structural conceptual diagram showing an embodiment of the present invention.
  • FIG. 2 is an external view of a standardized inner shell showing an embodiment of the present invention.
  • FIG. 3 is a standard sectional view of a basement showing an embodiment of the present invention.
  • FIG. 4 is a basement plan view showing an embodiment of the present invention.
  • FIG. 5 Underground shelter showing an embodiment of the present invention a-a sectional view (standard specification)
  • FIG. 6 Underground shelter showing an embodiment of the present invention bb sectional view
  • FIG. 7 Underground shelter showing an embodiment of the present invention c 1 c sectional view (standard specification)
  • FIG. 8 Underground shelter showing an embodiment of the present invention aa sectional view (simplified specification)
  • FIG. 9 Cross-sectional view of an underground shelter cc showing an embodiment of the present invention (simplified specification)
  • FIG. 10 Cross-sectional view of a partition wall prior to concrete filling showing an embodiment of the present invention
  • FIG. 11 Implementation of the present invention Concrete filling showing the shape of the wall
  • FIG. 1 2 Configuration diagram of grounding earth member BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a conceptual diagram of a partially cutaway structure showing an underground shelter according to the present invention. This shows the basic concept of only the basement that is constructed at a position lower than the ground surface.
  • a leveling concrete 22 2 is mainly placed to improve workability such as surveying.
  • a shelter outer shell floor slab 3 made of high-strength reinforced concrete which is the lowest position in the shelter body, is provided on this, and gold Install a shelter inner shell 1 made of a metal plate.
  • a partition wall 6 made of high-strength reinforced concrete is formed inside the shelter inner shell 1, and then the shelter outer shell so as to cover the outer surface except the shelter outer shell floor slab 3 side of the shelter inner shell 1.
  • a neutron shielding shell 4 on the outer surface of the wall and ceiling of the shelter outer shell 2 or on the inner surface of the inner surface of the shelter, and then backfill with soil.
  • the neutron shielding shell 4 is shown covering the surface of the shelter shell 2, but this is also considered to be the same effect when sandwiched between the shelter shell 1 and the shelter shell 2. be able to.
  • the anti-partitioning wall 6 made of high-strength reinforced concrete formed inside the shelter inner shell 1 is pre-arranged in an arbitrary position on the inner side of the shelter inner shell 1 as shown in Fig. 10 and Fig. 11.
  • the formwork guide 16 to form a wall-resistant wall with a wall thickness of 1
  • the rebar 1 7 and the formwork 1 8 can be assembled quickly and accurately after the shelter inner shell 1 is installed.
  • the ready-made concrete is made tightly to the upper end part that forms the anti-partitioning wall 6. It can be cast, and can be a rugged and extremely airtight wall-resistant partition wall. After filling the concrete, the opening 19 is closed with a metal lid 20, so that the partition wall 6 and the shelter shell 2 are separated from each other, so that the waterproof property is not impaired.
  • Figure 2 is an external view of the shelter inner shell 1 with several standardized units or components. It is composed of Nell.
  • the units A and B are the entrance / exit chamber (la)
  • the unit C is the entrance / exit chamber (1a) and the machine room (1d).
  • Unit D is the main room (1 b)
  • Unit E is the main room (1 b) and sub-chamber (1 c)
  • Unit F is the sub-chamber (1 c)
  • Unit G is the emergency escape tunnel (1 e) can do.
  • the box-shaped corners after assembly are all right-angled joint surfaces.
  • an underground shield it is necessary to provide a shield outer shell 2 made of high-strength reinforcing steel concrete to resist a large external force, making this shelter outer shell 2 a more ideal concrete shape and reinforcement. Therefore, a chamfered portion for a haunch for providing a haunch inside the outer shell 2 of the shelter 2 was provided at the corner on the outer surface side of the inner shell 1 made of a metal plate. As a result, it is possible to incorporate haunch bars into the rebar, and to make the reinforced concrete finished shape more ideal.
  • the inner shell 1 of the shelter also serves as the inner formwork when placing concrete, which can reduce the work cost for formwork and at the same time shorten the process period.
  • Fig. 3 shows the standard section of the basement buried in Fig. 1, and some of the earth retaining members provided during excavation work for underground shelter construction work are shown. It is the figure which showed the concept integrated with an underground shelter main body, without removing.
  • FIG. 3 shows a high-strength reinforced concrete in the ground that is connected to a shelter outer shell slab 3 made of conductive high-strength reinforced concrete and a retaining member 7 in a steel bar
  • Fig. 3-B shows the shelter shell slab 3, the wall surface of the shelter shell 2, and the earth retaining member 7, which are integrated with steel bars and concrete.
  • this configuration can reduce the range of excavation work because there is no need to provide a work path for rebar and formwork assembly of about 1.0 to 0.7 m provided between the earth retaining member and the shelter shell.
  • Pile 8 shows a part of its upper part integrated with the shelter shell slab 3. As a result, even if it is constructed in a place where the groundwater level is high and the ground is soft, higher earthquake resistance can be provided.
  • the cover 5 is also important for underground shelters, and the cover 5 on the ceiling surface of the shelter shell 2 significantly improves the shielding performance against heat caused by fire and gamma radiation due to radiation damage. At the same time, it is possible to make it difficult to find the body of the underground shelter from the ground, and to improve crime prevention.
  • a grounding earth member 9 is an earthing earth by electrically joining the shelter inner shell 1 and the ground covering the outer surface of the Sieno Letter body.
  • Fig. 1 2 shows that, before placing the leveled concrete 2 2, the metal rod 1 1 is driven into the ground, and then a shelter outer shell slab 3 made of leveled concrete 2 2 and high-strength reinforced concrete is provided. On top, after installing the inner shell 1 of the shelter, the upper end of the metal rod 1 1 and the connecting hardware provided on the inner shell 1 of the shelter 1 were connected with a metal cord 10 0, and then these were covered with the outer shell 2 of the shelter. It is shown that.
  • FIG. 4 is a basement plan view showing a preferred embodiment of the underground shelter according to the present invention.
  • la is the entrance / exit chamber
  • lb is the main chamber
  • lc is the sub chamber
  • I d is the machine chamber
  • 1 e is the emergency escape tunnel.
  • the shelter body has a double or triple structure consisting of a shelter inner shell 1 and a shelter outer shell 2, or a shelter inner shell 1, a shelter outer shell 2, and a neutron beam shielding shell 4.
  • the underground shelter according to the present invention has two types of standard specifications (Fig. 5 'Fig. 7) and simplified specifications (Fig. 8' Fig. 9) depending on the shape of the ground protruding portion at the entrance and exit. This is selected based on the location requirements including the possibility of inundation disaster due to flooding in the planned shelter construction site and customer requests including construction costs.
  • Bomb debris 'dust' gas ⁇ Fire and heat
  • Electromagnetic waves ⁇ Shelter inner shell with an ability to protect the interior against floods 1 2 I can say that.
  • This problem can be solved by using the anti-wall partition wall 6 that separates (la) and the adjacent compartment from the anti-wall partition wall 6 having electromagnetic wave shielding properties made of high-strength reinforcing steel concrete and a metal plate.
  • the entrance / exit room (la) is equipped with an elevating facility consisting of a spiral staircase and a straight staircase, which can effectively cope with the depth of underground shelters. .
  • the anti-partition wall 6 that separates the entrance / exit chamber (la) from the main chamber (lb), the entrance / exit chamber (1 a) from the sub chamber 2 (1 d), and the main chamber (1 b) from the sub chamber 1 (1 c)
  • the entrance / exit chamber is used as a decontamination chamber that excludes aerodynamic chambers and radioactive materials.
  • the space required to function as a shelter can be secured, such as the storage room and the sub chamber 2 (Id) as the machine room.
  • the emergency escape tunnel (1e) When used as an emergency shelter underground shelter, the emergency escape tunnel (1e) must be installed in a compartment other than the entrance / exit room (la). This is because the inside of the shelter is dangerous, for example, if the shelter inner shell integrated armor door 1 1 ⁇ the anti-partition wall integrated armor door 1 3 does not open or if a fire breaks out in the doorway (la). This is a dedicated passage to support safe and reliable escape to the ground when it is determined that it is necessary to escape.
  • This emergency escape tunnel (le) is the shelter inner shell 1 itself, and can be installed at any position by making it a unit panel. Also, small armor on the indoor side and the exit side of the emergency escape tunnel (le) It is desirable to install doors 1 and 4 and armor hatches 15 in the middle.
  • the neutron beam shielding shell 4 that constitutes the shelter body is the upper part of the ground surface from the outer surface side of the shell outer shell 2, as a consideration for flames and heat caused by fire. Is located on the inner shell side of the shelter shell 2. When a neutron with kinetic energy stops, it emits gamma radiation due to its nature, but the concrete in the shelter shell 2 and the metal plate in the shelter shell 1 serve to attenuate it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Paleontology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

地盤面からおよそ5~6mの深さの穴を掘り、そこにシェルター外殻床スラブ3を設け、その上にシェルター内殻1を設置する。次にシェルター内殼1の内部に耐力間仕切壁6を設け、その後シェルター外殻2を設け一体化する。必要であれば、シェルター外殻の壁部及び天井部の外表面側またはシェルター内殼面側に中性子線遮蔽殻4を設け、その後土で覆い埋め戻すことにより構成する。

Description

地下シェルター
技術分野 明
本発明は、 耐震性 ·防水性に加え、 遮蔽性 ·耐久性 ·機能性を追究した、 より 安全性の高い地下シェルターに関するものである。
背景技術 これまでに、 地下シェルターや地下室について様々なものが考えられている。 いずれも地下に空間を設けることについては同じであるが、 両者の構造については その目的から異なる考え方が必要になる。 一般的に地下室は、 オーディオルーム ' 音楽レッスン室 ·居間 ·寝室など、 趣味 ·娯楽性を中心とした居室としての利用が 多く、 住宅用地下室としての法的条件を満たす構造の範囲内で、 より短いェ期でよ り安価に構築できることが望まれ、 開発課題としてもこの点が優先される傾向があ るといえる。 一方、 地下シェルターでは、 想定する外部からの様々な危険要素に対 し内部の人や物品を安全に保護することが第一目的であり、 前者に対しより質実剛 健な構造と危険要素に対する専門的な防護構造を必要とする。 特開 2 0 0 5— 2 4 0 4 5 2号 (特許文献 1 ) に記載される地下シェルターの 本体構造は、 地中に打ち込んだ複数の杭に支持された耐圧盤上に、 高強度コンクリ 一トからなるボックス状のシェルター內殻を設け、 このシェルター内殻の底面を除 く壁および天井面である外表面を鉄板からなるシェルター外殻で覆い、 さらに鉄板 の外表面おょぴシェルター内殻の底面と耐圧盤との間を防水塗膜で覆つた構造と している。
特開平 9一 7 8 6 0 9号 (特許文献 2 ) に記載される地下室の本体構造は、 形 鋼などの芯材の外表面側に金属板が固定され、 内部側には非金属系内板が固定され た床パネル ·壁パネル ·天井パネルにより、 短辺方向は門形ラーメン構造、 長辺方 向を耐震壁構造としたボックス状のュニットを複数設置接合して躯体とし、 またそ の外表面全域を有機溶剤塗膜と合成樹脂塗膜および合成樹脂モルタルで覆つた構 造としている。
特開平 1 1一 2 1 9 1 6号 (特許文献 3 ) に記載される地下室の本体構造は、 床部を鉄筋コンクリートからなる基礎スラブ、 壁部を鋼製壁パネル、 天井部を鋼製 屋根パネルからなる構造とし、 特に鋼製壁パネルの下端部を基礎スラブのコンクリ 一ト中に埋設して形成されることを特徴としている。
特開平 1 1一 2 1 9 1 7号 (特許文献 4 ) に記載される地下室の本体構造は、 床部を鋼製床パネルまたは鉄筋コンクリート、 壁部を鋼製壁パネル、 天井部を鉄骨 ばりと木質板、 またはコンクリートや鉄筋コンクリートで構成する構造とし、 壁パ ネルの防蝕 ·防鲭と埋め戻しを兼ねて鋼製壁パネルの外表面側にコンクリート壁を 設けるとしている。
【特許文献 1】 特開 2 0 0 5— 2 4 0 4 5 2号公報 【特許文献 2】 特開平 9— 7 8 6 0 9号公報
【特許文献 3】 特開平 1 1— 2 1 9 1 6号公報
【特許文献 4】 特開平 1 1— 2 1 9 1 7号公報 発明の開示
発明が解決しょうとする課題
し力 し、 これら 4つの文献に記載の地下シェルターおよび地下室の構造につい て、 いくつかの課題があるといえる。
特開 2 0 0 5— 2 4 0 4 5 2 (特許文献 1 ) に記載される地下シェルターは、 耐圧盤上に高強度コンクリートからなるシェルター内殻を設け、 耐圧盤との接合面 であるシェルター内殻底面部を除く形でシェルター内殻の外表面を鉄板からなる シェルター外殻で覆っている。 したがって、 この床部からシヱルター本体内部への 水の侵入が発生することが考えられ、 シェルター外殻のさらに外側にゴムァスファ ルトからなる防水塗膜を形成し、 底面と耐圧盤との間にも同様の防水塗膜を形成す ることで、 底面部からの水の侵入を防止するとしている。 このシェルター本体底面 部と耐圧盤との構造について、 目的を満足するためにはまだ課題が残っていると考 えられる。 例えば、 軟弱な地盤で地下水位の高い地中において、 シェルター本体が 杭に支持される耐圧盤ときわめて高い付着力を持つ形で接合されていれば問題な いといえるが、 底面と耐圧盤との間に形成された防水塗膜の上にシェルタ一本体が 設置される形となるため、 大地震発生時には、 周囲の地盤の液状化による大きな浮 力と摇れによる剪断力が加わり、 シェルター内殻底面部が防水塗膜から剥離し、 ま たは耐圧盤から防水塗膜とともに浮上するという現象が発生すると考えられ、 また、 わずかでも防水塗膜に傷などの欠陥が発生すると、 ここから水がシェルター内部へ と侵入していくことも考えられ、 耐震性 ·防水性について課題といえる。 また、 設 置深さが浅く覆土の厚さが薄い場合には、 鉄板が外表面に配置されているため、 耐 火性 ·耐熱性についても課題といえる。
地下シェルターは、 爆風や爆風による衝撃波 ·振動 ·放射線 ·爆弾の破片 ·ダ スト ·ガス ·火災および熱 ·電磁波などに対して、 建設コストゃ地盤条件等に適合 する形で、 これらによる内部への影響を最小限とすることが求められ、 そのため設 置深度を大きくし、 その天井表面部を覆土することが望ましい。 しかし、 目的とす る構造物を鋼製地下室とする特開平 9一 7 8 6 0 9号 (特許文献 2 ) については、 形鋼 ·金属外板 ·内面側非金属系内板からなるボックス状ュニット、 特開平 1 1一 2 1 9 1 6号 (特許文献 3 ) ·特開平 1 1— 2 1 9 1 7号 (特許文献 4 ) について は鋼製パネルまたは鉄筋コンクリートスラブが主要構造体となっており、 シェルタ 一本体をこれらの構造部材で構成した場合、 大きな外力に対して十分な強度的安全 性 ·耐震性を確保するには限界がある構造といえ、 また、 遮蔽性を高めるために設 置深度を大きくすることも土圧が大きくなることから困難といえ課題といえる。 特 開平 1 1一 2 1 9 1 7号 (特許文献 4 ) については、 鋼製地下室の周囲には、 鋼製 壁パネルの防蝕 .防鲭のためのコンクリ一ト壁が地下室外周壁回りの埋め戻しを兼 ねて構築されるが、 この場合、 外力に抵抗するための構造計算上導かれたコンクリ ート壁とはいえず、 地下シェルターに備わるべき強度を確保できる基本構造 '考え 方とはいえない。
また、 特開平 1 1一 2 1 9 1 6号 (特許文献 3 ) については、 前項の強度的安 全性の課題に加え、 コンクリートからなる *スラブと壁パネルの接合部において、 壁パネル下端部を包み込むコンクリートにクラックと呼ばれるひび割れが発生し やすいと考えられ、 これが原因で漏水する可能性もあり、 防水性についても課題と いえる。
さらに、 特開平 1 1一 2 1 9 1 7号 (特許文献 4 ) は、 前々項の強度的安全性 •耐震性 ·遮蔽性の課題に加え、 特に天井部が鉄骨ばりと木質板からなるものとす るときは、 洪水時の浸水を防止するには非常に不利な構造といえ、 放射線 ·火災や 熱に対する遮蔽性 ·断熱性と気密性にも課題が残る。
以上、 4つの特許文献に記載されている構成は、 耐震性や防水性についてその 性能を有しているといえるが、 いずれも有事の際に使用される破壊兵器や自然災害 による強大な破壌エネルギー、 また放射線 ·電磁波などの特殊な性質と効果を持つ 要素に対し、 確実に内部を防護できるものとはいえない。 課題を解決するための手段
本発明は、 耐震性 ·防水性に加え、 遮蔽性 ·耐久性 ·機能性をさらに追究し、 上記のような問題点を解決した、 より安全性の高い地下シェルターに関するもので ある。 - 上記目的を達成するため、 本発明に係わる地下シェルターは、 高強度鉄筋コン クリートからなるシヱルター外殻と、 該シェルター外殻の内部に形成された金属板 からなるボックス状のシェルター内殻と、 該シェルター内殻の内部に設けられたシ エルター内部を 2つ以上に多区画室化する耐カ間仕切壁からなり、 該シェルター内 殻は該シェルター内殻の内部に形成する耐カ間仕切壁の天井部の位置に開口部を 有し、 該耐カ間仕切壁はシェルター内殻の天井部に設けられた開口部から生コンク リートを流し込み、 その後、 金属製蓋で開口部をふさぐことにより形成した。
高強度鉄筋コンクリートからなるシヱルター外殻と、 該シェルター外殻の内部 に形成された金属板からなるボックス状のシェルター内殻と、 該シェルター内殻の 内部に設けられたシェルター内部を 2つ以上に多区画室化する耐カ間仕切壁から なり、 該シヱルター内殻は該シヱルター内殻の内部に形成する耐カ間仕切壁の天井 部の位置に開口部を有し、 該耐カ間仕切壁はシェルター内殻の天井部に設けられた 開口部から生コンクリートを流し込み、 その後、 金属製蓋で開口部をふさぐことに より形成し、 地中に覆土して埋設するものとしたので、 ボックス状シェルター本体 の上下前後左右の 6面全てをシェルター内殻と外殻それぞれで構成することにな り、 全面にわたって同質の装甲壁を構築することになる。 特に、 金属板をシェルタ 一外殻の外表面側ではなく内面側に配置することで、 耐火 ·耐熱性能を備えつつ全 方位に於いて水や湿気を確実に遮蔽することができ、 耐火性 ·耐熱性 ·防水性に関 する課題を解決することができる。
また、 本発明に係わる地下シェルターは、 金属板からなるボックス状のシェル ター内殻の内部に高強度鉄筋コンクリートからなる耐カ間仕切壁をシェルター外 殻から分離させて設け、 シェルター内殻の内部を 2つ以上に多区画室化して形成し た。
また、 本発明に係わる地下シェルターの耐カ間仕切壁は、 シェルター内殻の天 井部に設けられた開口部から生コンクリートを流し込み、 その後、 金属板からなる 蓋で開口部をふさぐことにより形成した。
また、 本発明に係わる地下シェルターの耐カ間仕切壁は、 高強度鉄筋コンクリ 一トと金属板から形成した。
また、 シェルター本体へ作用する地震動、 爆発にともなう衝撃波 ·爆風圧など の破壊的外力に对して十分に抵抗する強度を確保するため、 シェルター外殻につい ては構造計算に基づいてその品質と形状寸法を設定する。 このように、 理論的に導 かれた数値に基づいて高強度鉄筋コンクリートからなるシェルタ一外殻を形成し 外力に抵抗する構造とする。 したがって、 シェルター内殻については、 この外力を 負担しない構造とすることができ、 施工上必要とされる耐変形強度と防水性 ·電磁 波遮蔽性等を満足するものとすることができる。
また、 ガンマ放射線の遮蔽は、 ガンマ放射線の遮蔽に効果のある重い元素を多 く含む金属板からなるシェルター内殻と、 同じく重い元素を多く含むシェルター外 殻の天井スラブのコンクリート、 さらに設置深度を大きくして重!/、元素を多く含む 土を覆土することで、 ガンマ放射線を非常に効果的に遮蔽することができる。
また、 中性子線の遮蔽は、 原子核に吸収 '捕獲されやすいように中性子線の速 度を十分に減速して低速度の中性子線にすることが重要で、 水素は中性子とほぼ同 じ質量であるため中性子を減速させる効果が極めて高く、 中性子線遮蔽材には、 水 素あるいは水を多く含んだ物質(水'コンクリート ·パラフィンなど)が使われる。 コンクリートは、 水を 7〜2 0 %と多く含んでいる上にセメントゃ砂の主要成分で あるカルシゥムゃシリコンは低速度の中性子線に対して水素と同程度の吸収能力 があることから中性子線に対する優れた遮蔽材といえ、 また、 鉄筋の主成分である 鉄は、 高速度の中性子線については減速しにくいが低速度の中性子線に対しては水 素の約 1 0倍もの吸収能力があり、 高強度鉄筋コンクリートからなるシェルター外 殻と、 シェルター内殻の金属板を鉄板とした場合の 2重構造は、 中性子線遮蔽にも 大変効果的である。
また、 本発明に係わる地下シェルターは、 金属板からなるボックス状のシェル ター内殻がハンチ用面取り面を持つ構造とした。
また、 本発明に係わる地下シェルターは、 金属板からなるボックス状のシェル ター内殻が複数の標準化されたュエツトゃパネルからなる構造とした。
また、 本発明に係わる地下シェルターは、 金属板からなるボックス状のシェル ター内殻とシェルター本体全体を覆う地盤とを接地アース部材でつなぎ、 電気的に 接地アースした。 接地アース部材としては、 金属製コードや金属製棒'金属製板、 あるいはこれらの組み合わせが考えられる。
また、 本発明に係わる地下シェルターは、 シェルター外殻を構成する高強度鉄 筋コンクリートに導電性繊維または導電性粉末を混入し、 シェルター外殻に導電性 を持たせた。 ここでいう導電性繊維または導電性粉末とは、 炭素繊維 ·炭素粉末 · 金属粉末などである。
また、 本発明に係わる地下シェルターは、 シェルター外殻の外表面側または内 殻面側を中性子線遮蔽物質が含まれている部材で覆い、 シ ルター本体を内殻 ·外 殻 ·中性子線遮蔽殻から形成した。 ここでいう中性子線遮蔽物質が含まれている部 材とは、 高密度ポリエチレン樹脂およびこのポリエチレン樹脂に酸化ホウ素を添カロ したものを、 平板状 ·ブロック状に成型した部材などである。 なお、 この中性子線 遮蔽殻がポリエチレン板などで熱や火災に弱レ、場合、 シェルター出入口部など影響 を受けやすいと考えられる部位については、 シェルター外殻の内殻面側に設けるこ とで対応することができる。
また、 本発明に係わる地下シヱルターは、 シェルター外殻を構成する高強度鉄 筋コンクリートに粉末または粒状の中性子線遮蔽物質を含む材料を混入して形成 した。 ここでいう中性子線遮蔽物質は、 炭化ホウ素 ·濃縮ホウ素などである。 この 濃縮ホウ素は、 天然のホウ素であるホウ素一 1 0 ( 1 0 B ) とホウ素一 1 1 ( 1 1 B ) の 2種類の同位体 (陽子の数が同じで中性子数が異なる) のうち、 中性子線の 吸収能力が優れている 1 0 Bの自然界での存在比約 2 0 %の濃度を、 ほとんど吸収 能力のない 1 1 Bの濃度に対し、 全体として 9 5 %程度まで高め、 天然のホウ素に 比べ約 5倍の中性子線吸収能力を持つものである。
また、 本発明に係わる地下シェルターは、 地中に設けたシェルター外殻床スラ プの側面と、 地中に設けた撤去しない土留矢板 ·土留杭 ·土留柱列壁 ·土留連続地 中壁とを一体化させた土留一体型シェルター外殻床スラブを持つものとした。
地中に設けられる地下シェルターは、 その地盤条件によっては、 地震動などの 大きな揺れや振動によって起こる地盤の液状化現象に影響を受けやすい。 このよう な状況下では、 地下シェルター本体底部に鉛直上向きの大きな浮力が働き、 地下シ エルターといえども、 それ自体が浮上する危険性がある。 完全に浮上することはな いとしても、 地下シェルター上部に地上構造物を構築している場合、 この浮上が原 因で、 地上構造物に傾きや致命的な悪影響を与えてしまう可能性がある。 また、 こ のような地盤条件下で地下シェルターを建設する場合は掘削工事に先立ち土留ェ 事を必要とする。 土留工事は、 地盤の掘削に伴い周辺地盤の崩壊を防ぐための工事 であるが、 これには親杭矢板工法 ·鋼矢板工法 ·柱列工法 ·連続壁工法などの方法 がある。 それぞれに適した地盤条件下で、 強固な土留効果を発揮するが、 この土留 めに用いている土留部材を撤去せずに、 土留部材に組み付けた鉄筋 ·形鋼を、 シェ ルター外殻床スラブを構成する鉄筋とコンクリートと一体化することで、 地震動な どによる液状化現象の影響をきわめて受けにく!/、構造とすることができる。
また、 本発明に係わる地下シェルターは、 地中に設けたシェルター外殻床スラ ブの側面およびシェルター外殻壁面と、 地中に設けた撤去しない土留矢板 ·土留杭 •土留柱列壁 ·土留連続地中壁とを一体化させた土留一体型シェルター外殻を持つ ものとした。 通常、 シェルター外殻壁面は、 シェルター外殻床スラブの形成後、 シ ルター内殻を設置し、 その後、 シェルター內殻を覆うように、 作業員が鉄筋およ び型枠を組み立てて生コンクリートを流し込み形成されるが、 この土留一体型シェ ルター外殻壁面は、 シェルター外殻床スラブを形成した後、 シェルター内殻設置前 に、 シェルター内殻設置予定場所側から作業員がシェルター外殻壁面部の鉄筋を先 に組み立て、 その後シェルター内殻を設置してシェルター壁面部の生コンクリート を流し込む手順でシェルター外殻壁面を形成する。
また、 本発明に係わる地下シェルターは、 地中に設けたシェルター外殻床スラ ブの底面と地中に打ち込んだ杭とを接続固定して一体ィヒさせた杭一体型シェルタ 一外殻床スラブを持つものとした。 この杭は、 軟弱な地盤にシェルターを設置する 場合に設け、 地盤を掘削後、 その掘削底面部を整地し、 この杭を安定した地盤まで 地中に打ち込む。 その後、 シェルター外殻床スラブ内に収まるよう所定の高さで杭 を切断し、 掘削底面部に均しコンクリートを形成後、 シヱルター外殻床スラブを形 成する。 発明の効果
本発明による地下シェルターは、 地震による震動、 爆発に伴う衝撃波 ·爆風圧 •振動 '熱 '火災 'ガンマ線 ·中性子線 ·爆弾の破片 ·ダスト 'ガス '電磁波 ·地 下水および洪水の要素から効果的に内部を防護することができる。 また、 覆土され ることで、 地下シェルター本体も発見されにくくなり防犯性を向上させることがで きる。
シェルター内殻を構成する金属板を鉄板とする場合、 シェルター内殻はシェル ター外殻の強アルカリ性を持つコンクリートで包まれるため、 シェルター内穀を構 成する鉄板の外表面に酸化皮膜が形成され、 特別な防蝕 ·防鲭塗膜を別途形成する ことなく高い耐久性を持たせることができる。 特に、 熱膨張係数がほぼ等しい鉄と コンクリート、 そして両者の高い付着力により効果的に一体形成することが可能で、 地中に設けた強力な装甲壁とすることができる。
特に本願発明は、 金属板からなるボックス状のシェルター内殻の内部に、 耐カ 間仕切壁をシェルター外殻から分離させて設けることで、 シェルター外殻から耐カ 間仕切壁に水や水分が及ぶことを防げるので防水性を損なうことない。 また、 シェ ルター内殻の内部を 2つ以上に多区画室化することになり、 耐震性 ·耐爆性を飛躍 的に向上させることができるとともに、 各区画室は、 それぞれの目的に応じて利用 することができ、地下シェルター内部の機能性をより高めることができる。例えば、 地下シェルター内部を出入口室 ·主室 ·副室 ·機械室などと区分けすることができ る。出入口室は、外部の汚染空気の主室への侵入防止のためのエアロック室として、 機械設備類を一つにまとめた機械室は、 騒音 ·振動 ·排ガス ·熱などを隔離するこ とができ、 副室は物置室としてなど、 各室に機能性を持たせることができる。
また、 シェルター內殻の天井部に設けられた開口部から生コンクリートを流し 込み、 その後、 金属製蓋で開口部をふさぎ、 耐カ間仕切壁を高強度鉄筋コンクリー トからなるものとしたので、 シェルター本体に確実な防水性を持たせながら、 シヱ ルター本体の強度を大幅に高めることができる。 この生コンクリートの流し込み用 の開口部は、 シェルター内殻の外表面側と内部側とを上下方向に貫通する形で設け、 予め設けた鉄筋 ·型枠の上端部の充填しにくい部分まできっちりと生コンクリート を充填することを可能とし、 任意の位置に任意の壁厚で想定する強度を持つ耐カ間 仕切壁とすることができ、 また、 万一の区画室内の火災に対しても十分に耐えうる 耐火隔壁とすることができる。
金属板からなるボックス状シェルター内殻がハンチ用面取り面を持つ構造と したので、 シェルター内殻の外表面を覆う形で設けられるシェルター外殻の内殻面 側を、 ハンチを持つ、 力学的により安定なコンクリート形状とすることができ、 ま た、 ハンチ部の鉄筋にハンチ筋を組み入れることが可能となり、 シェルター外殻に 大きな強度的安全性を持たせることができる。
一般的な鋼製地下室と同様、 工場にて標準化されたュニットゃパネルを現場に て組み立てる方式を採用することができ、 短期間での組立設置が可能となり、 しか も、 シェルター外殻の生コンクリート充填時にはシェルター内殻が型枠の機能を果 たすため、 型枠工事費を低減化できるとともにェ期短縮につなげることができる。 さらに、 地震動や衝撃 ·振動によって内部の内装部材を剥離させないための下地材 固定金物としての機能も兼ねることができる。
金属板からなるボックス状のシェルター内殻とシェルター本体全体を覆う地 盤とを接地アース部材でつなぎ電気的に接地アースしたので、 電磁波遮蔽性能をよ り高めることができる。
'高強度鉄筋コンクリートからなるシェルター外殻について、 非導電性であるコ ンクリートに炭素繊維や炭素粉末を混入させ導電性コンクリートとすることで、 電 気的に金属板からなるシェルター内殻と一体となり、 相乗効果的に電磁波遮蔽性を 高めることができる。
シェルター外殻の外表面側または内殻面側を、 中性子線吸収物質を含む部材で 覆い、 シェルター本体が内殻 ·外殻 ·中性子線遮蔽殻からなるものとすることで、 より強力な中性子線遮蔽性能を持たせることができる。 また、 中性子線遮蔽能力を 持つ板状に形成した部材で構成される中性子線遮蔽殻でシェルター外殻の外表面 の壁部と天井部を覆う場合、 これをシェルター外殻の壁部のコンクリート打設時の 型枠として利用することもでき、 建設コストの削減を可能とすることができる。
シェルタ一外殻を構成する高強度鉄筋コンクリートに粉末または粒状の中性 子線吸収物質を含む材料を混入させることで、 シェルター外殻の中性子線遮蔽性能 を飛躍的に高めることができる。
高強度鉄筋コンクリートと金属板からなる耐カ間仕切壁とすることで、 電磁波 遮蔽性能を持つ耐カ間仕切壁を形成することができる。 また、 金属板は耐カ間仕切 壁の生コンクリートの流し込み時の型枠として機能させることができ、 高強度鉄筋 コンクリートと一体化して形成することができ、 施工性の良い優れた耐久性を持つ 耐カ間仕切壁とすることができる。 この電磁波遮蔽性能を持つ耐カ間仕切壁は 〔0 0 5 6〕 項で述べる、 簡易仕様の地下シェルターにおいて特に必要とされる。
地中に設けたシェルター外殻床スラブの側面と、 地中に設けた撤去しない土留 矢板 ·土留杭 ·土留柱列壁 ·土留連続地中壁などの土留め構成部材とを一体化させ た、 土留一体型シェルター外殻床スラブを形成することで、 土留部材が持つ鉛直下 向きの引き抜き抵抗力と液状化現象時に発生する鉛直上向きの浮力とを相殺する ことができ、 大幅に耐震性を向上させることができ、 軟弱な地盤にも地下シェルタ 一を設置することができる。 これにより、 耐震性および強度的安全性に関する課題 は解決することができる。
地中に設けたシェルター外殻床スラブの側面およびシェルター外殻壁面と地 中に設けた撤去しない土留矢板 ·土留杭 ·土留柱列壁 ·土留連続地中壁などの土留 め構成部材とを一体化させた、 土留一体型シェルター外殻を形成することで、 土留 め部材が持つ鉛直下向きの引き抜き抵抗力と液状化現象時に発生する鉛直上向き の浮力とを相殺することができ、 シェルター本体と土留部材とのより確実な一体化 により、 さらに耐震性を高めることができる。 また、 この構成は、 土留部材とシェ ルター外殻の間に鉄筋 ·型枠組み立て用作業通路を設ける必要がないので掘削工事 の範囲を小さくすることができるとともに、 この部分の埋戻土を施工する必要もな くなり、 より経済的に大幅な耐震性向上を実現することができる。
地中に設けたシェルター外殻床スラブの底面と地中に打ち込んだ杭とを一体 化させた、 杭一体型シェルター外殻床スラブを形成することで、 大きな床面積を持 つ地下シェルターでも、 地震動による土圧変動や浮力などの外力に対する抵抗性を 大きくすることができ、 より耐震性を高めることができる。 図面の簡単な説明
【図 1】 本発明の実施の形態を示す一部切欠した構造概念図。
【図 2】 本発明の実施の形態を示す標準化された内殻の外観図。 【図 3】 本発明の実施の形態を示す地階標準断面図。
【図 4】 本発明の実施の形態を示す地階平面図。
【図 5】 本発明の実施の形態を示す地下シェルター a— a断面図 (標準仕様) 【図 6】 本発明の実施の形態を示す地下シェルター b— b断面図
【図 7】 本発明の実施の形態を示す地下シェルター c一 c断面図 (標準仕様) 【図 8】 本発明の実施の形態を示す地下シェルター a— a断面図 (簡易仕様) 【図 9】 本発明の実施の形態を示す地下シェルター c— c断面図 (簡易仕様) 【図 1 0】 本発明の実施の形態を示すコンクリート充填前耐カ間仕切壁断面図 【図 1 1】 本発明の実施の形態を示すコンクリート充填 ·型枠解体後耐カ間仕切壁 断面図
【図 1 2】接地アース部材の構成図 発明を実施するための最良の形態
以下に、 図面を参照しつつ本発明の好ましい形態を示す。
図 1は、 本発明の地下シェルターを示す一部切欠した構造概念図である。 これ は、 地盤面よりも低い位置に建設される地階部のみの基本的な概念を示している。
地盤面からおよそ 5〜 6 mの深さの穴を掘り、 底面部の整地を行った後、 主に 測量などの作業性を向上させるための均しコンクリート 2 2を打設してシェルタ 一設置の準備を行う。 その後、 この上にシェルター本体のうち最も低い位置にあた る高強度鉄筋コンクリートからなるシェルター外殻床スラブ 3を設け、 その上に金 属板からなるシェルター内殻 1を設置する。 次にシェルター内殻 1の内部に高強度 鉄筋コンクリートからなる耐カ間仕切壁 6を形成し、 その後、 シェルター内殻 1の シェルター外殻床スラブ 3側を除く外表面の周囲を覆うようにシェルター外殻 2 を形成する。
必要であれば、 シェルター外殻 2の壁部及び天井部の外表面側またはシェルタ 一内殻 1面側に中性子線遮蔽殻 4を設け、 その後土で埋め戻す。 図 1では、 中性子 線遮蔽殻 4は、 シェルター外殻 2の表面を覆う形で示されているが、 これは、 シェ ルター内殻 1およびシェルター外殻 2の間に挟み込む場合も同じ効果と見なすこ とができる。
また、 シェルター内殻 1の内部に形成される高強度鉄筋コンクリートからなる 耐カ間仕切壁 6は、 図 1 0 ·図 1 1のように、 予めシェルター内殻 1の内部側に、 任意の位置に任意の壁厚の耐カ壁を形成するための型枠ガイド 1 6を設けておく ことで、 シェルター内殻 1の設置後、 精度良く速やかに鉄筋 1 7 ·型枠 1 8を組み 立てることができ、 そして、 耐カ間仕切壁 6を形成するシェルター内殻 1の天井部 に設けられた開口部 1 9から生コンクリートを流し込むことで、 耐カ間仕切壁 6を 形成する上端部まできっちりと生コンクリートを打設することができ、 頑丈で極め て高い気密性を持つ耐カ壁 '隔壁とすることができる。なお、コンクリート充填後、 金属製蓋 2 0で開口部 1 9をふさぐため、 耐カ間仕切壁 6とシェルター外殻 2とを 分離させることになり、 防水性を損なうことはなレ、。
図 2は、 シェルター内殻 1の外観図で、 複数の標準化されたユニットまたはパ ネルから構成されている。 例えば、 図 4 (実施の形態を示す地階平面図) と対比す ると、 ュニット Aおよび Bは出入口室 (l a ) 、 ュ-ット Cは出入口室 (1 a ) と 機械室 (1 d ) 、 ュニット Dは主室 (1 b ) 、 ュニット Eは主室 (1 b ) と副室 ( 1 c ) 、 ュニット Fは副室 (1 c ) 、 ュニット Gは、 非常脱出トンネル (1 e ) と することができる。
また、 同様の方式を採るこれまでのボックス型地下室などのュニットまたはパ ネノレの場合、 組立後のボックス状の隅部の出来形が全て直角の接合面となっている。 しかし、 地下シヱルターの場合、 大きな外力に抵抗するための高強度鉄筋コンクリ ートからなるシヱルター外殻 2を設ける必要があり、 このシェルター外殻 2をより 理想的なコンクリート出来形および配筋とするため、 金属板からなるシェルター内 殻 1の外表面側の隅部に、 シェルター外殻 2の内側にハンチを設けるためのハンチ 用面取り部を設けた。これにより、鉄筋にハンチ筋を組み入れることが可能となり、 鉄筋コンクリートの出来形をより理想的な形とすることができる。 また、 このシェ ルター内殻 1は、 コンクリート打設時の内側の型枠を兼ねており、 型枠工事費を低 減化できると同時に、 ェ期の短縮化を達成することができる。
図 3 (図 3— A、 図 3— B ) は、 図 1を地中に埋設した地階標準断面を示して おり、 地下シェルター建設工事の掘削工事の際に設けられる土留工事部材の一部を 撤去することなく地下シェルター本体と一体化する概念を示した図である。
図 3— Aは、 地中に設けられた高強度鉄筋コンクリ一トゃ導電性高強度鉄筋コ ンクリートからなるシェルタ一外殻床スラブ 3と土留部材 7を鉄筋'鋼材 ' コンク リートで一体化したもので、 図 3— Bは、 シェルター外殻床スラブ 3とシェルター 外殻 2の壁面と土留部材 7とを、 鉄筋 ·鋼材 ' コンクリートで一体化したものを示 している。 また、 この構成は、 土留部材とシェルター外殻の間に設ける約 1 . 0〜 0 . 7 mの鉄筋 ·型枠組み立て用作業通路を設ける必要がないので掘削工事の範囲 を小さくすることができる。 杭 8は、 その上部の一部をシェルター外殻床スラブ 3 と一体化したものを示している。 これらにより、 地下水位が高く軟弱な地盤である 場所に建設する場合でも、 より高い耐震性を持たせることができる。
また、 図 3において、 覆土 5も地下シェルターにとっては重要な意味を持って おり、 シェルター外殻 2の天井表面部上の覆土 5により、 火災による熱や放射線災 害によるガンマ放射線の遮蔽性能も大幅に向上させることができると同時に、 地上 部から地下シェルター本体を発見しにくくすることもでき、 防犯性も向上させるこ とができる。
また、 図 3において接地アース部材 9は、 シェルター内殻 1とシエノレター本体 の外表面を覆う地盤とを、 電気的に接合し接地アースしたものである。 図 1 2は、 均しコンクリート 2 2を'打設する前に金属棒 1 1を地盤に打ち込み、 その後、 均し コンクリート 2 2および高強度鉄筋コンクリートからなるシェルター外殻床スラ ブ 3を設け、 その上に、 シェルター内殻 1を設置後、 金属棒 1 1の上端とシェルタ 一内殻 1に設けられた接続金物とを金属製コード 1 0でつなぎ、 その後、 これらを シェルター外殻 2で覆ったことを示している。 これにより、 電磁波遮蔽性能をより 高めることができ、 シェルタ一外殻 2やシェルタ一外殻床スラブ 3に導電性高強度 鉄筋コンクリートを採用する場合、 さらに相乗効果を発揮することができる。 図 4は、 本発明である地下シェルターの好ましい形態を示す地階平面図である。 図 4において、 l aは出入口室であり、 l bは主室、 l cは副室、 I dは機械室、 1 eは非常脱出トンネルである。 これら区画室は耐カ間仕切壁 6で隔てられている。 また、 シェルター本体は、 シェルター内殻 1とシェルター外殻 2、 あるいは、 シェ ルター内殻 1とシェルター外殻 2と中性子線遮蔽殻 4からなる、 2重または 3重構 造となっている。
図 5〜9は、 図 4に示される各縦断面図である。
本発明による地下シェルターは、 その出入口部の地上突出部の形状により、 標 準仕様 (図 5 '図 7 ) と簡易仕様 (図 8 '図 9 ) の 2通りがある。 これは、 シェル ター建設予定地の洪水による浸水災害の可能性を含めた立地条件や、 建設費用など を含めた顧客の要望により選択される。 図 5 '図 7の標準仕様では、 シェルター内 殻 1とシヱルター外殻 2、 中性子線遮蔽殻 4からなる地上突出部があり、 また出入 口部には爆発に伴う衝撃波 ·爆風圧 ·振動 ·放射線 ·爆弾の破片 ' ダスト 'ガス · 火災および熱 ·電磁波 ·洪水に対し、 内部を防護する性能を有するシェルター内殻 一体型装甲ドア一 1 2が設けられており、 あらゆる災害に対し万全の構造といえる。
し力 し、 洪水による浸水災害が発生することが明らかに考えにくい地域におい て、 図 8 ·図 9のように、 地上部階段踊り場より上部に位置するシェルター内殻 1 およびシェルター外殻 2からなる突出部および地上部出入口部のシェルター内殻 一体型装甲ドア一 1 2を敢えて形成しない簡易仕様とすることもできる。 ただし、 簡易仕様の場合、 このままでは電磁波遮蔽性が失われるので、 この場合、 出入口室
(l a) と隣接する区画室を隔てる耐カ間仕切壁 6について、 高強度鉄筋コンクリ 一トと金属板からなる電磁波遮蔽性を持つ耐カ間仕切壁 6とすることで解決する ことができる。
また、 標準仕様と簡易仕様それぞれにおいて、 出入口室 (l a) には、 螺旋階 段および直階段からなる昇降施設が設けられており、 地下シェルターの埋設深さに 対し効果的に対応することができる。 出入口室 (l a) と主室 (l b) 、 出入口室 (1 a) と副室 2 (1 d) 、 主室 (1 b) と副室 1 (1 c) とを隔てる耐カ間仕切 壁 6には、 耐カ間仕切壁一体型装甲ドア一 1 3が設けられており、 例えば、 標準仕 様の場合、 出入口室をエアロヅク室および放射性物質などを排除する除染室として、 副室 1 (l c) を物置、 副室 2 (I d) を機械室としてなど、 シェルターとして機 能させるに必要な空間を確保することができる。
緊急避難用地下シェルターとして利用する場合、非常脱出トンネル( 1 e )は、 必ず出入口室 (l a) 以外の区画室に設ける必要がある。 これは、 シェルター内殻 一体型装甲ドア一 1 2 ·耐カ間仕切壁一体型装甲ドア一 1 3が開かない場合や出入 口室 (l a) 内で火災が発生した場合など、 シェルター内が危険な状態で脱出しな ければならないと判断した場合に、 安全かつ確実に地上へ脱出することを支援する ための専用通路である。 なお、 この非常脱出トンネル (l e) は、 シェルター内殻 1そのものであり、 ユニット 'パネル化することで、 任意の位置に設けることがで きる。 また、 非常脱出トンネル (l e) の室内部側とトンネル出口部側に小型装甲 ドア一 1 4を、 途中に装甲ハッチ 1 5を設けることが望ましい。
また、 図 5〜 9の各図において、 シェルター本体を構成する中性子線遮蔽殻 4 は、 火災による炎や熱に対する配慮として、 地中部についてはシヱルター外殻 2の 外表面側、 地上部付近から上部についてはシェルター外殻 2の内殻面側に配置され ている。 運動エネルギーを持つ中性子が停止すると、 その性質上ガンマ放射線を放 出するが、 シェルター外殻 2のコンクリートやシェルター内殻 1の金属板がこれを 減衰させる役目を果たす。
以上、 説明は個人用地下シェルター ·公共用地下シェルターから原子力発電施 設 '研究施設用地下シェルターを含めて述べたが、 その他にも、 コンピュータ一機 器防護地下シェルター ·地下金庫 ·地下倉庫など、 必要性に応じて構造物の特性を 調節し、 様々な用途に適用することができる。

Claims

請 求 の 範 囲 高強度鉄筋コンクリートからなるシェルター外殻と、 該シェルター外殻の内部に 形成された金属板からなるボックス状のシェルター内殻と、 該シェルター内殻の 内部に設けられたシヱルター内部を 2つ以上に多区画室化する耐カ間仕切壁から なり、 該シェルター内殻は該シェルター内殻の内部に形成する耐カ間仕切壁の天 井部の位置に開口部を有し、 該耐カ間仕切壁はシェルター內殻の天井部に設けら れた開口部から生コンクリートを流し込み、 その後、 金属製蓋で開口部をふさぐ ことにより形成したことを特徴とする地下シェルター。
金属板からなるボックス状のシェルター内殻がハンチ用面取り面を持つ構造とし たことを特徴とする請求項 1に記載の地下シェルター。
金属板からなるボックス状のシェルター内殻は、 複数の標準ィヒされたユニットま たはパネルからなる構造としたことを特徴とする請求項 1に記載の地下シェルタ 金属板からなるボックス状のシヱルター内殻とシェルター本体全体を覆う地盤と を、 接地アース部材でつないだことを特徴とする請求項 1に記載の地下シェルタ シェルター外殻を構成する高強度鉄筋コンクリートに、 導電性繊維や導電性粉末 を混入させたことを特徴とする請求項 1に記載の地下シェルター。
シェルター外殻の外表面側または内殻面側を、 中性子線遮蔽物質を含む部材で覆 レ、、 シェルター本体が、 内殼'外殻'中性子線遮蔽殻から形成されることを特徴 とする請求項 1に記載の地下シェルター。
シェルター外殻を構成する高強度鉄筋コンクリートに、 粉末または粒状の中性子 線遮蔽物質を含む材料を混入させたことを特徴とする請求項 1に記載の地下シェ ノレター。
耐カ間仕切壁は、 鉄筋コンクリートと金属板からなることを特徴とする に記載の地下シェルター。
地中に設けたシェルター外殻床スラブの側面と、 地中に設けた撒去しない土留矢 板 ·土留杭 ·土留柱列壁 ·土留連続地中壁とを一体化させた、 土留一体型シェル タ一外殻床スラブを持つことを特徴とする請求項 1に記載の地下シェルタ一。. 地中に設けたシェルター外殻床スラブの側面およびシェルター外殻壁面と、 地 中に設けた撤去しない土留矢板 ·土留杭 ·土留柱列壁 ·土留連続地中壁とを一体 化させた、 土留一体型シェルター外殻を持つことを特徴とする請求項 1に記載の 地下シェルター。
. 地中に設けたシェルター外殻床スラブの底面と、 地中に打ち込んだ杭とを一体 化させた、 杭一体型シェルター外殻床スラブを持つことを特徴とする請求項 1に 記載の地下シェルタ一。
PCT/JP2007/059797 2006-05-01 2007-05-01 地下シェルター WO2007126161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/226,926 US7918056B2 (en) 2006-05-01 2007-05-01 Underground shelter
KR1020087026462A KR101277967B1 (ko) 2006-05-01 2007-05-01 지하 쉘터

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006154007A JP4072734B2 (ja) 2006-05-01 2006-05-01 地下シェルターおよび地下シェルター耐力間仕切壁形成方法
JP2006-154007 2006-05-01

Publications (1)

Publication Number Publication Date
WO2007126161A1 true WO2007126161A1 (ja) 2007-11-08

Family

ID=38655667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059797 WO2007126161A1 (ja) 2006-05-01 2007-05-01 地下シェルター

Country Status (4)

Country Link
US (1) US7918056B2 (ja)
JP (1) JP4072734B2 (ja)
KR (1) KR101277967B1 (ja)
WO (1) WO2007126161A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221991A (ja) * 2013-05-14 2014-11-27 Jfeスチール株式会社 鋼製矢板締切構造およびその施工方法
JP2016135987A (ja) * 2016-03-18 2016-07-28 Jfeスチール株式会社 鋼製矢板締切構造およびその施工方法
TWI745903B (zh) * 2019-03-29 2021-11-11 日商住友重機械工業股份有限公司 放射性同位素製造裝置用自屏蔽件

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPI20070108A1 (it) * 2007-09-17 2009-03-18 Enrico Dini Metodo perfezionato per la realizzazione automatica di strutture di conglomerato
DE202008007269U1 (de) * 2008-03-31 2008-08-07 Becker Marine Systems Gmbh & Co. Kg Palettenlageranlage zur Lagerhaltung von Lagergütern, insbesondere für den Einsatz in Schiffen
US20100058693A1 (en) * 2008-09-11 2010-03-11 Roger Dale Plumley Structure to protect occupants from storm debris
EP2199469B1 (en) * 2008-12-16 2012-06-06 Vestas Wind Systems A/S Foundation for enabling anchoring of a wind turbine tower thereto by means of replaceable through-bolts
US8484929B1 (en) * 2009-08-20 2013-07-16 Hamza Begdouri Construction of modular underground storage facilities
JP5556652B2 (ja) * 2010-12-28 2014-07-23 忠政 山口 シェルター内殻ユニットの溶接接合方法と溶接接合構造
JP5714440B2 (ja) * 2011-07-27 2015-05-07 寧 植松 シェルター付建物
US8800215B2 (en) * 2011-08-22 2014-08-12 Performance Contracting, Inc. Self-contained portable container habitat for use in radiological environments
JP5997891B2 (ja) * 2011-10-07 2016-09-28 株式会社Ihi建材工業 筒状構造物の施工方法
JP5782656B2 (ja) * 2012-01-31 2015-09-24 有限会社フジカ 津波避難装置
JP6127327B2 (ja) * 2012-07-23 2017-05-17 有限会社フジカ 地下シェルターの構造
JP5252407B1 (ja) * 2012-10-17 2013-07-31 忠政 山口 シェルターおよびシェルター構築方法
US8505253B1 (en) 2012-10-20 2013-08-13 Holland Medford Shelter that is capable of withstanding strong winds
JP6065204B2 (ja) * 2012-12-04 2017-01-25 清水建設株式会社 躯体施工用のユニット架台
JP5327401B1 (ja) * 2013-02-28 2013-10-30 山口 忠政 シェルター換気システム、シェルター換気システムで使用する壁ユニット、シェルター換気システムを使用したシェルター、シェルター換気システムの構築方法
JP5632511B1 (ja) * 2013-06-20 2014-11-26 一剛 小島 津波危険地域のシェルターユニット
JP2015004235A (ja) * 2013-06-21 2015-01-08 小林 正幸 水害避難用構造体およびこれを備える建物
JP6016869B2 (ja) * 2013-10-31 2016-10-26 株式会社大昇 シェルター
CN104264709B (zh) * 2014-09-24 2016-01-20 中国水利水电第十四工程局有限公司 一种水利水电工程地下洞室高薄岩墙开挖方法
US20170058509A1 (en) * 2015-09-02 2017-03-02 Caterpillar Inc. Structure constructed using additive manufacturing process
JP2017057590A (ja) * 2015-09-15 2017-03-23 Tjs株式会社 緊急避難用シェルター
JP2017110484A (ja) * 2015-12-18 2017-06-22 計二 馬場 全災害対応型地下シェルター
US20170238528A1 (en) * 2016-02-22 2017-08-24 Joshua Wilson Contiguous uni-body insulated hunting blind or outdoor shelter
WO2018047696A1 (ja) * 2016-09-06 2018-03-15 株式会社シェルタージャパン シェルター及びその築造工法
CN107829751B (zh) * 2017-10-24 2019-03-19 中铁十六局集团北京轨道交通工程建设有限公司 一种处理盾构施工临时险情的盾构机配套台车装置
JP2019078150A (ja) * 2017-10-25 2019-05-23 伸和 森脇 コンテナハウスを改造し、ユニット・プレハブ化することによって大幅なコストダウンと迅速な設置が図れる防災、並びに核対応シェルター
JP7114999B2 (ja) * 2018-04-04 2022-08-09 横浜ゴム株式会社 地中埋設型核シェルター
GB2566607B (en) * 2018-08-13 2019-10-02 Dutypoint Ltd Prefabricated former for constructing underground chamber
SE543720C2 (en) * 2019-01-04 2021-06-29 Cesium Ab Construction element comprising a sheet component for a container, door for a container and a container
CN111714786A (zh) * 2019-03-18 2020-09-29 中硼(厦门)医疗器械有限公司 中子捕获治疗系统
JP6964919B2 (ja) * 2019-04-05 2021-11-10 株式会社シェルタージャパン 耐火シェルター
JP6862523B2 (ja) * 2019-10-21 2021-04-21 三菱重工業株式会社 衝撃低減構造及び発電プラント
JP7115762B2 (ja) * 2020-03-06 2022-08-09 有限会社起産 建物
CN113338334B (zh) * 2021-06-15 2023-02-03 陕西北辰人防设备设施检测有限公司 一种地下综合管廊
US11939792B2 (en) * 2021-08-12 2024-03-26 Atlas Survival Shelters LLC Underground shelter with air-intake system
JP7348697B1 (ja) 2023-05-02 2023-09-21 ツナガルデザイン株式会社 核シェルター構造

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113973A (ja) * 1984-11-07 1986-05-31 三浦 克司 シエルタ−等の地下室の構築法
JPS61178463A (ja) * 1985-02-05 1986-08-11 電気化学工業株式会社 破壊防止板
JPS6438771U (ja) * 1987-01-08 1989-03-08
JPH03202510A (ja) * 1989-12-28 1991-09-04 Nippon Concrete Ind Co Ltd 地下構造物の構築工法
JPH04136322A (ja) * 1990-09-26 1992-05-11 Misawa Homes Co Ltd 地下室の構築方法
JPH08134996A (ja) * 1994-11-09 1996-05-28 Asahi Concrete Works Co Ltd コンクリート二次製品
JPH0942716A (ja) * 1995-07-24 1997-02-14 Tsutsunaka Sheet Bosui Kk 蓄熱槽におけるコンクリート躯体壁の施工方法及び構造
JPH09228393A (ja) * 1996-02-23 1997-09-02 Kazuo Hamaya 地下室の構築方法
JP2001305278A (ja) * 2000-04-26 2001-10-31 Ishikawajima Harima Heavy Ind Co Ltd 低放射化遮蔽容器
JP2002162493A (ja) * 2000-11-27 2002-06-07 Okamoto Ind Inc 含水シート及びボード
JP2004323304A (ja) * 2003-04-24 2004-11-18 Taiheiyo Cement Corp 地下シェルター

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3049835A (en) * 1961-11-02 1962-08-21 Swan Mira Pools Inc Fallout shelter
JPS55135789A (en) * 1979-04-10 1980-10-22 Shimizu Construction Co Ltd Usual wall or shielding wall composed of concrete layer and liner layer
US4631872A (en) * 1983-01-12 1986-12-30 Daroga Nader D Nuclear blast and fall-out shelter
JPS6438771A (en) 1987-08-04 1989-02-09 Fuji Photo Film Co Ltd Wet developing device
US5022202A (en) * 1988-06-24 1991-06-11 Johnson Jr Alfred E High strength post framed enclosure
US5115613A (en) * 1989-02-06 1992-05-26 Theta Technologies, Inc. Theta blast cell
JP3202510B2 (ja) 1994-11-21 2001-08-27 オルガノ株式会社 窒素及びフッ素含有排水の処理装置
JPH0978609A (ja) 1995-09-14 1997-03-25 Daishin Kogyo Kk 鋼製地下室
JP3140397B2 (ja) 1997-07-02 2001-03-05 隆二 高瀬 鋼製地下室
JPH1121916A (ja) 1997-07-02 1999-01-26 Ryuji Takase 鋼製地下室およびその構築工法
US6085475A (en) * 1997-09-15 2000-07-11 Parks; James B. Portable severe weather storm shelter
US6196761B1 (en) * 1998-08-11 2001-03-06 Guardian Containment Corp. Underground storage vault
US6061976A (en) * 1998-10-05 2000-05-16 Storm Chaser Shelters, Inc. Protective shelter
US6438907B1 (en) * 1999-06-11 2002-08-27 Mccarthy Walton W. Entranceway and disaster shelter utilizing the same
US20020124490A1 (en) * 1999-09-30 2002-09-12 Mccarthy Walton W. Gravity ring
US6308471B1 (en) * 2000-05-17 2001-10-30 Earlston Raynor Underground below building bunker
US6385920B1 (en) * 2000-06-30 2002-05-14 Roy T. Chandler Modular storm shelter with emergency breakaway access chute
JP4136322B2 (ja) 2001-03-08 2008-08-20 トヨタ自動車株式会社 金属製容器部材の製造方法
US6938381B1 (en) * 2002-02-27 2005-09-06 Jorge Enrique Villa Catastrophic event survival structure and method of manufacture
US20030167708A1 (en) * 2002-03-11 2003-09-11 Shaw Michael D. Underground storm shelter
JP3836111B2 (ja) 2004-02-27 2006-10-18 株式会社大垣共立銀行 コンピュータのバックアップ施設用地下シェルター
US7428800B1 (en) * 2004-06-17 2008-09-30 Cliffton Vaughn In-ground shelter

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113973A (ja) * 1984-11-07 1986-05-31 三浦 克司 シエルタ−等の地下室の構築法
JPS61178463A (ja) * 1985-02-05 1986-08-11 電気化学工業株式会社 破壊防止板
JPS6438771U (ja) * 1987-01-08 1989-03-08
JPH03202510A (ja) * 1989-12-28 1991-09-04 Nippon Concrete Ind Co Ltd 地下構造物の構築工法
JPH04136322A (ja) * 1990-09-26 1992-05-11 Misawa Homes Co Ltd 地下室の構築方法
JPH08134996A (ja) * 1994-11-09 1996-05-28 Asahi Concrete Works Co Ltd コンクリート二次製品
JPH0942716A (ja) * 1995-07-24 1997-02-14 Tsutsunaka Sheet Bosui Kk 蓄熱槽におけるコンクリート躯体壁の施工方法及び構造
JPH09228393A (ja) * 1996-02-23 1997-09-02 Kazuo Hamaya 地下室の構築方法
JP2001305278A (ja) * 2000-04-26 2001-10-31 Ishikawajima Harima Heavy Ind Co Ltd 低放射化遮蔽容器
JP2002162493A (ja) * 2000-11-27 2002-06-07 Okamoto Ind Inc 含水シート及びボード
JP2004323304A (ja) * 2003-04-24 2004-11-18 Taiheiyo Cement Corp 地下シェルター

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014221991A (ja) * 2013-05-14 2014-11-27 Jfeスチール株式会社 鋼製矢板締切構造およびその施工方法
JP2016135987A (ja) * 2016-03-18 2016-07-28 Jfeスチール株式会社 鋼製矢板締切構造およびその施工方法
TWI745903B (zh) * 2019-03-29 2021-11-11 日商住友重機械工業股份有限公司 放射性同位素製造裝置用自屏蔽件

Also Published As

Publication number Publication date
KR101277967B1 (ko) 2013-06-27
US20090064604A1 (en) 2009-03-12
KR20090005101A (ko) 2009-01-12
US7918056B2 (en) 2011-04-05
JP4072734B2 (ja) 2008-04-09
JP2007297898A (ja) 2007-11-15

Similar Documents

Publication Publication Date Title
KR101277967B1 (ko) 지하 쉘터
US8042314B2 (en) Construction for buildings protected against radiation
US8468760B1 (en) Blast-resistant foundations
US10765045B1 (en) Electromagnetic pulse (EMP) protective composite enclosure panel system and EMP protective building structures and systems
KR101441255B1 (ko) 방폭패널, 방폭패널 어셈블리 및 이를 포함하는 방폭 조립식 구조체
US4250671A (en) Anti-seismic constructions, in particular constructions with basements forming anti-atomic shelters
TW201400680A (zh) 就地架設多邊形強化封閉體之方法
JP2013040442A (ja) 避難用多層建物
US20110083379A1 (en) Prefabricated sealed room assembly
JP7107564B2 (ja) 地下シェルター及びその設置方法
JP6418620B1 (ja) 地下シェルター
JP7023160B2 (ja) 防災シェルター
JP6583936B2 (ja) 地下シェルター
RU2254554C2 (ru) Сборно-монолитное локализующее сооружение
JP6312939B2 (ja) 地下式避難用シェルター
Baryłka et al. Material and construction solutions in the construction of civil defence shelters
CN1109168C (zh) 空心建筑用砖及其构成的防护墙
JP3238041U (ja) 防災地下シェルター
JP6295021B2 (ja) 放射性汚染物質保管施設とその構築方法
US10180010B2 (en) Half-underground evacuation shelter
JPH0145306Y2 (ja)
JP6403155B2 (ja) 避難シェルター付住宅
Wani Design and performance of the foundation of the tsunami protection wall at the Hamaoka Nuclear Power Station
JP2504363B2 (ja) 建築物の振動絶縁構造およびその施工方法
FITZSIMONS BRIT Protection Shelters

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07743232

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087026462

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12226926

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2513/MUMNP/2008

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07743232

Country of ref document: EP

Kind code of ref document: A1