WO2007119617A1 - 顎歯模型用の歯牙およびその製造方法 - Google Patents

顎歯模型用の歯牙およびその製造方法 Download PDF

Info

Publication number
WO2007119617A1
WO2007119617A1 PCT/JP2007/057148 JP2007057148W WO2007119617A1 WO 2007119617 A1 WO2007119617 A1 WO 2007119617A1 JP 2007057148 W JP2007057148 W JP 2007057148W WO 2007119617 A1 WO2007119617 A1 WO 2007119617A1
Authority
WO
WIPO (PCT)
Prior art keywords
tooth
dentin
enamel
cutting
jaw
Prior art date
Application number
PCT/JP2007/057148
Other languages
English (en)
French (fr)
Inventor
Yusei Kadobayashi
Hirokazu Sato
Ryuichi Yoshimoto
Original Assignee
Kabushiki Kaisha Shofu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Shofu filed Critical Kabushiki Kaisha Shofu
Priority to EP07740584.3A priority Critical patent/EP2011451B1/en
Priority to JP2008510901A priority patent/JP5276978B2/ja
Priority to CN2007800221801A priority patent/CN101466327B/zh
Priority to US12/226,452 priority patent/US20090305211A1/en
Publication of WO2007119617A1 publication Critical patent/WO2007119617A1/ja
Priority to US14/046,178 priority patent/US8784112B2/en

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B23/00Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes
    • G09B23/28Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine
    • G09B23/283Models for scientific, medical, or mathematical purposes, e.g. full-sized devices for demonstration purposes for medicine for dentistry or oral hygiene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/09Composite teeth, e.g. front and back section; Multilayer teeth

Definitions

  • the present invention relates to a tooth used for a jaw model in which a student aiming at a dentist experiences intraoral work and practice treatment.
  • a tooth for a jaw and tooth model is a tooth used for simulating the practice of treatment in the oral cavity and practicing treatment using a jaw and tooth model at universities and the like.
  • the present invention particularly relates to a tooth used for cutting a tooth and experiencing form formation such as abutment tooth formation and cavity formation, and a manufacturing method thereof.
  • teeth for a jaw and tooth model for intraoral treatment practice are often made of epoxy resin and melamine resin, and are widely used.
  • the tooth for jaw model made of epoxy resin and melamine resin has a natural tooth shape, it has a cutting feeling different from natural teeth, so practice of abutment formation and cavity formation is necessary. However, when working in the oral cavity, it was often confusing due to the different cutting feeling and workability.
  • epoxy resin and melamine resin are soft and tend to cut a lot, and even if you practice treatment with such model teeth, hard natural teeth tend not to cut as expected. there were.
  • Japanese Utility Model 1-90068 includes an enamel layer with phlogopite crystals [NaMg (SiAlO) F] and
  • Lithia-Alumina-Silica-based crystals Li 0 -A1 0 -2SiO, Li 0 ⁇ ⁇ 10 -4SiO
  • the enamel layer is composed of phlogopite crystal lythia'alumina-silica crystal
  • the cutting feeling is too hard compared to natural teeth, so it is not suitable for use.
  • the recognition layer was made of an adhesive resin and the cutting feeling was too soft, so it was not durable.
  • a dentin layer is formed by an adhesive layer. It is shown that an enamel layer portion and a root layer portion are formed and bonded. It is recognized as a dentin layer with a thick adhesive layer.
  • Japanese Patent Application Laid-Open No. 5-224591 shows that a tooth model having cutting ability very similar to natural teeth and suitable for dental educational cutting training is provided.
  • the tooth model has at least the surface of the crown part having a Knoop hardness of 70 or more, and the tooth root. At least the surface of the part has a Knoop hardness of 10 to 40.
  • main constituents inorganic powder and cross-linked resin are contained in a weight ratio of 20% to 80% to 70% to 30%.
  • JP-A-5-216395 introduces the provision of a tooth model having a cutting ability very similar to that of a natural tooth and suitable for dental education cutting practice and a method for manufacturing the same.
  • the main components of the tooth model are hydroxyapatite powder with a porosity of 40-80% and (meth) acrylic ester resin at a weight ratio of 20% to 80% to 50% to 50%. It is contained. However, it was not a tooth model that showed the difference in machinability, especially between the enamel part and the dentin part.
  • JP-A-5-241498, JP-A-5-241499, and JP-A-5-241500 there are descriptions of inorganic fillers and hydroxyapatite fillers, all of which are based on a resin, The cutting feeling has not been solved. However, the tooth model was not capable of showing the difference in machinability between the enamel part and the dentin part.
  • Japanese Patent Application Laid-Open No. 2004-94049 describes an invention that provides a dental tooth for dental training that enables accurate shape measurement using a laser beam.
  • “as the material constituting the surface of the crown portion of the model tooth of the present invention generally known materials can be used.
  • the sense that the organic components contained in the dentinal tubules of the tooth cling to the bar is noticeable in the sense of inhibiting cutting.
  • the treatment method advances to the enamel layer, the dentin layer, and the medulla, and practice of root canal treatment such as extraction is also an important treatment. Even when performing pulpectomy, it was impossible to practice root canal filling because the pulp was removed with a reamer, and the sense of rubbing the dentin wall with the reamer was completely different.
  • Some dental pulp treatments are used for practicing root canal treatment. There is a hole, and root canal treatment practice (root canal cleaning, root canal dilation, etc.) is performed using it. However, due to the fact that it cannot be worn on the chin and the hardness of dentin, etc., it is possible to practice well and it is in the present situation.
  • Patent Document 1 Japanese Utility Model 1 1 90068
  • Patent Document 2 JP-A-5-224591
  • Patent Document 3 JP-A-5-216395
  • Patent Document 4 JP-A-5-241498
  • Patent Document 5 JP-A-5-241499
  • Patent Document 6 JP-A-5-241500
  • Patent Document 7 JP-A-2004-94049
  • An object of the present invention is to provide a tooth for a jaw and tooth model that can experience the same sensation as when treating natural teeth.
  • the present invention provides a tooth for a jaw tooth model in which a difference in cutting feeling between enamel and dentin in a natural tooth is reproduced in a tooth for a jaw tooth model including an enamel portion and a dentin portion. It is in.
  • the present invention provides a tooth for a jaw and tooth model including an enamel portion and a dentin portion, wherein the tooth for the jaw tooth model is formed of a sintered body of an inorganic powder.
  • the dentin portion is formed of an inorganic powder fired body, a resin, a composite, a cement material, or a gypsum depending on the purpose of use.
  • the cutting feeling is close to that of natural teeth, and the composition of the dentin part is changed to give a cutting feeling different from that of the enamel part.
  • a first aspect of the present invention is a tooth for a jaw and tooth model including an enamel portion and a dentin portion, wherein the enamel portion and the dentin portion are formed of a sintered body of an inorganic powder. It is a tooth for a tooth model.
  • the enamel portion and the dentin portion can be integrally formed.
  • the two parts can be molded with the same composition.
  • the two parts are directly joined, and the enamel part and the dentin part are joined via an adhesive layer. Les, even okay.
  • a second aspect of the present invention is a tooth for a jaw and tooth model including an enamel portion and a dentin portion, wherein the enamel portion is formed of a sintered body of an inorganic powder, and the dentin portion is a resin, composite Or tooth for jaw model made of cement material
  • the tooth for a jaw and tooth model of the present invention for example, power capable of using inorganic powder such as alumina, zirconia, titanium oxide, silica and the like. Can be used.
  • inorganic powder such as alumina, zirconia, titanium oxide, silica and the like.
  • thermoplastic or thermosetting resin such as acrylic or urea resin can be used.
  • a composite obtained by mixing the above resin with an inorganic or organic powder can be used.
  • the tooth for a jaw and tooth model of the present invention can be made of a cement material that contains polyacrylic acid and aluminosilicate as main components and starts to harden when mixed with powder.
  • Gypsum can be used for the tooth for jaw model of the present invention.
  • the enamel portion and the dentin portion are formed of a sintered body of an inorganic powder, an organic resin composition, a ceramic adhesive, and the like are used as the adhesive constituting the adhesive layer.
  • glass can be used.
  • an inorganic powder is injection-molded using a ceramic injection mold (CIM) technique to form an enamel portion or a dentin portion.
  • CIM ceramic injection mold
  • This tooth for jaw model is a substitute for the hardest natural tooth in the human body. With ordinary materials, it feels soft and powerful when cutting, but it has the same cutting feeling as natural teeth. be able to. A cutting experience similar to that of cutting and cutting using diamond grinding material (using air turbine bin) rotating at a speed of 400000 revolutions Z in the oral cavity is possible.
  • the compatibility between the teeth and the jaw is important, and the compatibility between the enamel and the dentin is also required. It is preferable to use it.
  • the shape of the crown of the tooth model is also important, and it is important that the abutment formation is the goal of cavity formation, and that the raised portion, cavity, and cusp are accurately represented. Suitable for molding.
  • the enamel part and the dentin part are respectively injection-molded using a CIM technique, and after the steps of degreasing and firing, the dentin Provided is a method for producing a tooth for a jaw and tooth model, comprising obtaining a fired body of a part and an enamel part, and bonding the fired body with an adhesive. Also, when glass is used as the adhesive, the enamel part and the dentine part are each injection molded using CIM technology, and these injection bodies are laminated with glass powder interposed therebetween, followed by degreasing and firing processes. There is also provided a method for producing a tooth for a jaw and tooth model, characterized in that a sintered body having a dentin portion and an enamel portion bonded thereto is obtained.
  • the inorganic powder in order to give the enamel part or dentin part a sticky cutting feeling unique to natural teeth, and to reduce the cutting powder scattered in the folds of the teeth, the inorganic powder is used.
  • the enamel part or dentin part formed from the fired body is impregnated with a polysaccharide or protein aqueous solution, a heat-soluble substance such as wax, or a resin such as acrylic resin, urea resin, or silicone resin.
  • a thermosetting resin or a resin containing a cross-linking agent By impregnating with a thermosetting resin or a resin containing a cross-linking agent, a soft cutting feeling close to that of natural teeth can be obtained as compared with the case of no impregnation.
  • the present invention can be used for both a dentin moiety and an enamel moiety, but is particularly preferably used for a dentin moiety.
  • the force S can be formed in the pulp portion inside the dentin portion.
  • the pulp part is filled with resin, silicone rubber, wax or water-soluble material.
  • a pseudo carious portion can be formed between the enamel portion and the dentin portion or at the edge thereof.
  • the pseudo caries portion is formed of a fired body of resin or inorganic powder.
  • both the dentin part and the enamel part have a cutting feeling similar to that of a natural tooth, and the cutting feeling of transition from the enamel part to the dentin part is similar to that of the natural tooth. Even so, it is easy to practice cutting natural teeth.
  • the dentin part and the enamel part are both formed of a sintered body of inorganic powder, experience cutting of a natural tooth model without experiencing the soft sensation of the adhesive. it can. You can experience smooth cutting from enamel to dentin.
  • the tooth for a jaw and tooth model of the present invention is impregnated with a viscous substance such as a resin in an inorganic powder fired body, it has the effect of reducing dust scattered during tooth cutting. Dirt was able to be suppressed. Of course, I was able to reduce the inhalation of dust by the students who were practicing. It has a sticky cutting feel like a natural tooth, and can reproduce the sense of sticking to a diamond bar that occurs when cutting a living tooth.
  • the tooth of the present invention is formed by forming a dental pulp portion or a pseudo carious portion. You can also experience root canal or caries treatment techniques.
  • FIG. 1 is a cross-sectional view of a tooth for a jaw and tooth model according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a tooth for a jaw and tooth model according to a second embodiment of the present invention.
  • FIG. 3 is an enlarged view of a fired inorganic powder.
  • FIG. 4 is a cross-sectional view of a tooth for a jaw and tooth model according to the first embodiment of the present invention including a dental pulp portion.
  • FIG. 5 is a cross-sectional view of a tooth for a jaw and tooth model of the second aspect of the present invention including a pseudo carious portion.
  • FIG. 6 is a cross-sectional view of a tooth for a jaw and tooth model according to the first embodiment of the present invention including a dental pulp portion and a pseudo carious portion.
  • the tooth for a jaw and tooth model of the present invention includes at least an enamel portion 1 and a dentin portion 2, and the enamel portion 1 is formed of a sintered body of inorganic powder.
  • Dentin portion 2 is formed of a sintered body of inorganic powder, resin, composite, cement, or gypsum depending on the purpose of use.
  • Fig. 1 shows a tooth for a jaw and tooth model in which both enamel part 1 and dentin part 2 are formed of a sintered body of inorganic powder, and enamel part 1 and dentin part 2 are joined via adhesive layer 3.
  • the adhesive layer 3 is composed of an adhesive such as an organic resin composition, a ceramic adhesive, or glass.
  • the enamel part 1 is formed from a sintered body of inorganic powder, and the dentin part 2 is resin and composite
  • the adhesive layer is not required when forming with a grid, cement or gypsum (Fig. 2).
  • the sintered body 10 of the inorganic powder forming the enamel part 1 and the dentin part 2 has voids 12 between the particles 11 of the inorganic powder as shown in FIG. Impregnating 12 with water-soluble materials such as polysaccharides and proteins, heat-soluble substances such as wax, or resins such as acrylic resins, urea resins, and silicone resins to reproduce the same sticky cutting feeling as natural teeth Can do.
  • water-soluble materials such as polysaccharides and proteins, heat-soluble substances such as wax, or resins such as acrylic resins, urea resins, and silicone resins to reproduce the same sticky cutting feeling as natural teeth Can do.
  • the pulp portion 4 can be formed inside the dentin portion 2 (FIG. 4).
  • a mold having a desired pulp shape is formed using a combustible material such as an epoxy resin.
  • This pulp-shaped mold is placed in a mold, and dentin part 2 is formed with inorganic powder. By burning this, the pulp-shaped mold is burned out, and the dentin part having a pulp-shaped space inside Obtain a fired body of 2.
  • the pulp portion 4 is formed by filling the pulp-shaped space inside the obtained dentin portion 2 with resin, silicone rubber, wax or water-soluble material.
  • a pseudo carious portion 5 can be formed between the enamel portion 1 and the dentin portion 2 or at the edge thereof.
  • FIG. 5 shows a schematic view in which a pseudo caries 5 is formed at a transition portion between the enamel portion 1 and the dentin portion 2 of the tooth for a jaw tooth model of the second embodiment.
  • the pseudo carious portion 5 can be formed so as to penetrate from the occlusal surface of the enamel portion to the dentin portion, and in the case of the tooth for the jaw model of the first aspect, the pulp portion A pseudo carious portion 5 can be formed together with 4.
  • the pseudo carious portion 5 is formed of a sintered body of inorganic powder, resin or composite.
  • a coloring agent, a fluorescent material or an X-ray contrast medium is added to the sintered body of the inorganic powder, the resin or the composite, and the extent of the carious portion removal is visually confirmed. Can be confirmed.
  • the tooth for a jaw and tooth model of the present invention can be made white, ivory, milky white, or translucent by using an inorganic pigment in the same manner as natural teeth. Can have a good cutting experience. Preferred are white, ivory and milky white.
  • the jaw field and the mannequin portion should be appropriately selected. Can do. However, it is important to take measures to confirm suitability when selecting. For example, it is important to appropriately match the size of the tooth insertion opening of the jaw model.
  • Examples of the inorganic powder that can be used to form the enamel portion 1 and the dentin portion 2 of the present invention include ceramics or glass such as alumina, zircoure, silica, aluminum nitride, and silicon nitride. .
  • Alumina and zircoyu are preferred.
  • Alumina and zircoure are 60 or 60. /. ⁇ 100%, preferably 80% to 100%, more preferably 95% to 100%.
  • the composition of alumina is 50% to 100%, preferably 70% to 100%, and more preferably 90% to 100%.
  • alumina-based ceramics it is preferable to use as the inorganic powder.
  • both the enamel part and the dentin part are formed from a sintered body of inorganic powder
  • the hardness of the enamel part and the dentin part can be adjusted by increasing the particle size, increasing the voids, or changing the composition.
  • the average particle size of the dentin portion is preferably 10 times or more than the average particle size of the enamel portion.
  • the average particle size of the dentin portion is preferably set to 1.0 to 10.0 ⁇ m.
  • the firing temperature varies depending on the composition.
  • the firing temperature force 3 ⁇ 400 ⁇ : 1200 ° C, in the case of alumina 1200 ⁇ 1600 ° C, preferably 1400 ⁇ : 1550 ° C It becomes the firing temperature.
  • both the enamel portion and the dentin portion are formed of a sintered body of alumina powder.
  • the primary particle diameter of the alumina powder is 0.2 to 5 ⁇ m, and it is preferable to perform firing at a firing temperature of 1300 to 1600 ° C.
  • the enamel part is calcined from 8 1 O powder with a secondary particle size of 0.1-1.0 111
  • the dentin composition is composed of Al O powder with a primary particle size of 1.0-8.0 zm.
  • the preferred firing temperature for the enamel portion is 1400-1600 degrees, and the preferred firing temperature for the dentin portion is 1300-1500 ° C.
  • the firing temperature is closely related to the cutting feeling, and must be adjusted according to the particle size and raw material lot.
  • the mooring time at the firing temperature is closely related to the cutting feeling and must be adjusted according to the particle size and raw material lot.
  • the Vickers hardness of the enamel part and the dentin part is preferably 3 ⁇ 400 to 1000, more preferably 300 to 600.
  • the CIM technology is a technology for molding inorganic powder and includes the following steps.
  • Knead alumina with a binder (which decomposes by heat up to about 1000 ° C) to produce pellets.
  • the binder is degreased (the temperature is raised to decompose the binder components).
  • the degreased body is fired at a predetermined temperature to obtain a desired fired body.
  • binder examples include stearic acid, polyvinyl alcohol, thermoplastic resin, wax, and the like, and it is preferable to use stearic acid or polybutyl alcohol.
  • the shrinkage rate can be adjusted by changing the amount of binder at the time of pellet production, changing the firing temperature, changing the mooring time, etc., and the enamel part and the dentin part were formed with inorganic powders of different particle sizes. Even so, the shrinkage of the two parts can be adapted to achieve sufficient adhesion.
  • the most suitable method is to change the binder amount.
  • enamel part 1 and dentin part 2 are each injection molded, and after degreasing and firing steps, resin or ceramic is bonded to the interface between the fired enamel part and dentin part. It can be bonded using a material.
  • the resin used for the bonding of the present invention may be a thermoplastic resin, a thermosetting resin or a chemically polymerizable resin, and among them, a thermosetting resin and a chemically polymerizable resin are preferred. .
  • thermoplastic resin refers to a resin that can obtain thermoplasticity that can be molded by increasing heat.
  • thermoplastic resin used for the adhesion of the present invention is specifically acrylic, styrene, olefin, vinyl chloride, urethane, polyamide, polybutadiene, polyacetal
  • Unsaturated polyester polycarbonate, polyphenylene ether, and the like.
  • polysulfone, polyimide, polyetherimide, polyetheretherketone and the like can be used as appropriate.
  • an acrylic type is preferable.
  • thermosetting resin refers to a resin that is crosslinked and cured by increasing heat.
  • thermosetting resin used for the adhesion of the present invention is preferably a thermosetting resin rather than a thermoplastic resin because it does not dissolve in a solvent after processing and does not soften even when reheated.
  • Urea resin 'Melamine resin' Phenolic resin, epoxy resin, etc. can be used representatively, melamine resin and epoxy resin are preferred.
  • the chemically polymerizable resin is a resin that is polymerized using a chemical catalyst, even if the resin is originally contained in a thermosetting resin or a thermoplastic resin.
  • a chemical catalyst even if the resin is originally contained in a thermosetting resin or a thermoplastic resin.
  • those containing a crosslinking material and having no thermoplasticity are preferred.
  • the ceramic adhesive used in the bonding of the present invention is an adhesive mainly composed of caustic acid and boric acid and having heat resistance equal to or higher than the firing temperature of the ceramic.
  • the adhesion required for the present invention is that the enamel part and the dentin part are adhered together. Therefore, it is not preferable that there is a part that is not adhered even in a part of the adhesive layer or that there is a large bubble because it affects the cutting feeling.
  • Enamel part 1 and dentin part 2 were each injection molded using CIM technology, and these injection bodies were laminated with glass powder interposed therebetween, followed by degreasing and firing steps. A fired body in which the portion and the enamel portion are bonded can be obtained.
  • the thickness of the adhesive is preferably 1 to 500 zm. More preferably:!-300 zm, and still more preferably:!-200 xm. Further, it is preferably 1 to 100 ⁇ m.
  • the enamel part force easily moves to the dentin part, and the feeling of cutting with natural teeth approximates.
  • Resins that can be used to form the dentin portion of the present invention include thermosetting resins and thermoplastic resins.
  • a thermoplastic resin or a resin containing a crosslinking agent is preferred.
  • an epoxy resin is preferable.
  • thermoplastic resin refers to a resin that can obtain thermoplasticity to the extent that it can be molded by increasing heat.
  • thermoplastic resin that can be used to form the dentin portion of the present invention is specifically acrylic, styrene, olefin, vinyl chloride, urethane, polyamide, polybutadiene, polyacetal, Including saturated polyester, polycarbonate, and polyphenylene ether.
  • acrylic, styrene, urethane, and polyamide resins are preferred.
  • thermosetting resin By mixing a crosslinking agent with these thermoplastic resins, it becomes a preferable embodiment like a thermosetting resin. That is, it is possible to practice tooth cutting without melting by the heat generated during cutting.
  • thermosetting resin refers to a resin that is polymerized and cured by applying heat. After curing, the thermosetting resin is more preferable than the thermoplastic resin because it does not dissolve in the solvent and does not soften even when reheated.
  • Thermosetting resins that can be used to form the dentin portion of the present invention include urea resin 'melamine resin' phenol resin, epoxy resin, etc., and melamine resin and epoxy resin are preferred. Most preferred is an epoxy resin.
  • Inorganic powders are those having an average particle diameter of 1.0 to 100 zm centering on ceramic and glass, and the composition is not particularly limited.
  • a preferred average particle size is 1.0 to 30 ⁇ m.
  • a fine particle filler can be mixed.
  • inorganic powders are quartz, amorphous silica, clay, aluminum oxide, talc, mica, kaolin, glass, barium sulfate, dinoleconium oxide, titanium oxide, silicon nitride, aluminum nitride, titanium nitride, silicon carbide, boron carbide.
  • Inorganic substances such as calcium carbide, hydroxyapatite, calcium phosphate, and specific organic powders are organic substances such as polymers or oligomers such as polymethyl metatalylate, polyethyl metatalylate, polyvinyl chloride, polystyrene, polyester, and nylon;
  • organic-inorganic composites can be preferably used.
  • These powders can be used alone or in combination of two or more. These powders are more preferably surface-treated with titanate coupling agents, aluminate coupling agents or silane-powered coupling agents, which are used as well known.
  • the mixing ratio can be appropriately selected as necessary, and may be selected from a range of 1 to 95%, for example. Preferably it is 60 to 90%.
  • These inorganic powders and organic powders have an average particle size of 0.1 to 30 zm, preferably 1.0 to 10 zm, more preferably 1.0 to 5. Oxm.
  • the cement material forming the dentin portion is one that hardens by mixing with a powder and a liquid, and includes a main component of polyacrylic acid and aluminosilicate.
  • X-ray contrast is SrO, BaO, ZnO, ZrO, La O and other heavy metal elements
  • the cavity shape By providing X-ray contrast to the dentin portion, the cavity shape can be confirmed later by X-ray imaging. It is good for evaluation after cutting. By changing the X-ray contrast power of the enamel part and the dentin part with the compound metal, the cutting situation can be grasped when the enamel and dentin are cut.
  • voids between sintered particles constituting the sintered body of the inorganic powder, and the tooth for dental jaw modeling of the present invention contains a water-soluble material, a heat-soluble material, or an organic material in the voids. Characterized by impregnation.
  • any water-soluble polymer that can be impregnated into the void portion of the present invention can be used without particular attention. It is preferably at least one of polysaccharides and proteins. A protein is preferred. When impregnated with a water-soluble material, it is effective by pre-impregnating with water or water.
  • polysaccharide dextrin, glycogen, cellulose, pectin, konjac mannan, darcomannan and alginic acid are preferable.
  • Preferred are cellulose, pectin, konjac mannan and gnolecomannan. This is because a certain degree of viscosity is necessary.
  • the protein may be a high-molecular compound mainly composed of about 20 kinds of L-a-amino acid polypeptides. From the viewpoint of composition, it is preferable to use a complex protein containing a simple protein consisting only of amino acids and a nuclear acid 'phosphate' lipid 'sugar' metal and the like. Even more preferred are gelatin, agar, collagen and elastin. Still more preferred are gelatin and agar. This is because it needs to keep its shape in the voids of the fired body because it dissolves in water.
  • the heat-soluble material to be impregnated in the space portion of the present invention can use a wax system.
  • a heat-soluble material When a heat-soluble material is impregnated, the effect is obtained by dissolving with frictional heat generated during cutting.
  • a wax system Even if water is not used, it exhibits the same effect as polysaccharides and proteins, and it is easy to practice tooth grinding even without water injection equipment. That power S.
  • both natural wax and synthetic wax can be used. Natural waxes include animal and plant waxes, mineral waxes, petroleum waxes and the like. As the synthetic wax, compounded wax, polyethylene wax, or the like can be used. Paraffin wax is preferred.
  • the wax system also includes fats and oils. Fats and oils are fatty acid glycerin esters. Not soluble in water but soluble in alcohol. It is preferably a solid fat at room temperature (37 ° C, atmospheric pressure). There are plant-like mushrooms, animal beef tallow and pork tallow.
  • lauric acid, myristic acid, palmitic acid, behenic acid, stearic acid, fats and oils extracted from a living body, and the like can be used, and fats and oils extracted from living body are preferable.
  • fats derived from pigs and cows are preferable (representative examples include lard and het).
  • Impregnation can be assisted by mixing a surfactant during the impregnation. That is, the surfactant auxiliary agent plays an important role in impregnating these water-soluble materials or heat-soluble materials into the voids of the sintered body.
  • Surfactants can also be used as water-soluble materials.
  • an anionic, nonionic, cationic, zwitterionic or the like can be used as appropriate.
  • Anionic and nonionic are preferable.
  • Anionic compounds include fatty acid salt (soap) C H COONa, alpha sulfo fatty acid ester
  • Nonionic systems include fatty acid diethanolamide C H -CON (CH CH OH), polio
  • Rukiruphenyl ether (APE) C H-(C H) 0 (CH CH 0) H or the like is used.
  • alkyltrimethylammonium salt CH-N + (CH) ⁇ ⁇ -, dial
  • Chloride CH_ (N + CH) 'C1— and the like are used.
  • alkylcarboxybetaine [betaine system] CH -N + (CH) ⁇ CH COO—Equivalent force S level.
  • the organic material impregnated in the space portion of the present invention is preferably at least one of a thermosetting resin, a thermoplastic resin, and a resin containing a crosslinking agent.
  • the impregnating resin used in the present invention can be a thermosetting resin or a thermoplastic resin.
  • a thermosetting resin or a resin containing a crosslinking agent is preferred.
  • an epoxy resin is preferable.
  • the method for forming the pulp portion 4 inside the dentin portion 2 includes the following steps.
  • a pulp preparation step in which the pulp-shaped space inside the fired body is filled with resin, silicone rubber, wax or a water-soluble material.
  • the "firing pulp preparation process for forming a combustible pulp mold formed into a pulp shape using a combustible material” refers to a material that burns when a tooth is calcined to form a dental pulp shape. This is a step of forming a pulp shape in advance.
  • the “mold setting step for setting a combustible pulp mold at a predetermined position in the tooth mold” is a process for setting the combustible pulp mold on the mold.
  • the pre-molded combustible pulp mold may be placed in the mold, or the combustible pulp mold formed in situ may be reinserted into the tooth-shaped mold.
  • the "injection step of injecting inorganic powder and binder into a tooth mold to obtain a non-fired injection body” refers to an inorganic powder and binder having a tooth composition that is heated and mixed in a tooth mold having a combustible pulp mold. This is an injection process. In this process, the combustible pulp mold is so thin that it must be injected carefully.
  • the tooth is divided into an enamel portion and a dentin portion, only the dentin portion is formed.
  • this step can also be applied to the case where the tooth is integrally molded by applying the present invention.
  • the firing process of firing a non-fired injection body to obtain a fired body having a pulp-shaped space inside is a process of firing the non-fired tooth obtained in the injection process.
  • the firing temperature of 800 to 1200 ° C is preferred, and the firing temperature of 1200 to 1600 ° C is preferred, and the firing temperature of 1400 to 1550 ° C is more preferred.
  • the combustible pulp mold is burnt down and a pulp-shaped space is formed.
  • Pulp preparation process in which resin, silicone rubber, wax or water-soluble material is filled in the pulp-shaped space inside the fired body means that the space part of the fired pulp is filled with resin, silicone rubber, wax This is a step of providing a pseudo pulp with a water-soluble material.
  • a combustible material is a good material as long as it can be made into a pulp shape and does not deform at the injection pressure or temperature when forming the tooth, but can be burned when the tooth is baked to create a pulp-shaped space.
  • it is a resin, and particularly preferably a thermosetting resin.
  • a urea resin, a melamine resin, a phenol resin, an epoxy resin, or an acrylic or styrene resin may be used as a bridge.
  • the resin of the pulp portion in the ceramic fired body of the tooth for a jaw and tooth model of the present invention is at least one of an elastic resin, a foamed resin, a thermosetting resin, a thermoplastic resin, and a resin containing a crosslinking agent. More than one is included. Preferably, it is an elastic resin or a foamed resin.
  • thermosetting resin or a thermoplastic resin can be used as the resin of the dental pulp portion used in the present invention.
  • a thermosetting resin or a resin containing a crosslinking agent is preferred.
  • an epoxy resin is preferable.
  • the dental pulp thermoplastic resin used in the present invention is specifically acrylic, styrene, olefin, vinyl, urethane, polyamide, polybutadiene, polyacetal, saturated polyester, Includes polycarbonate, polyphenylene ether, rubber, bull, polyacetic acid bull and the like.
  • elastic resins such as urethane and rubber, and foamed resins are preferable.
  • thermosetting resin of the dental pulp portion used in the present invention includes urea resin 'melamine resin' phenol resin, epoxy resin, etc., and melamine resin and epoxy resin are preferable. Most preferred is an epoxy resin.
  • It is preferably a chemically polymerizable resin. This is because the resin is impregnated in the space of the particles of the fired body and can be easily cured.
  • the chemically polymerizable resin is a resin that is polymerized using a chemical catalyst, even if the resin is originally contained in a thermosetting resin or a thermoplastic resin.
  • a chemical catalyst even if the resin is originally contained in a thermosetting resin or a thermoplastic resin.
  • those containing a crosslinking material and having no thermoplasticity are preferred.
  • the silicone rubber at the pulp portion in the ceramic fired body of the jaw tooth model tooth of the present invention can be used without any limitation.
  • Other rubber materials that can be used include chlorosulfone / polyethylene rubber: hyperon rubber, fluoro rubber, isobutene isoprene rubber: butyl rubber, natural rubber, acrylonitrile butadiene rubber: squid rubber, urethane rubber, ethylene propylene rubber, styrene butadiene Examples are rubber and chloroprene rubber: neoprene.
  • Rubber height (durometer (JIS K 6253)) is 10 to 70, preferably 20 to 50.
  • the wax in the pulp portion in the sintered ceramic body of the tooth for a jaw and tooth model of the present invention is derived from animal-derived wax (honey bees, whale pods, shellac moths, etc.), plant-derived wax (carnauba cocoons, wood Rice bran, rice bran (rice wax), candelilla wax), petroleum-derived wax (paraffinite), synthetic wax (Fischer-Tropsch wax, polyethylene wax, oil-based synthetic) Wax (ester, ketones, amide), hydrogenated wax) and the like can be used.
  • the wax is derived from petroleum, and paraffin wax is particularly preferable.
  • the water-soluble material of the pulp portion in the ceramic fired body of the jaw model tooth according to the present invention contains at least one of polysaccharides and proteins.
  • the water-soluble material can exert its effect by pre-impregnation with water injection or water. Protein is preferred.
  • a hydrophilic polymer is also preferred as the water-soluble material.
  • natural derivatives of cellulose derivatives such as semi-synthetic carboxymethyl cellulose (CMC), methyl cellulose (MC), poly (alcohol alcohol) (PVA), polyacrylic acid polymers, polyacrylamide (PAM), polyethylene oxide ( Synthetic water-soluble polymers such as PEO) can be used.
  • Preferred polysaccharides are dextrin, glycogen, cellulose, pectin, konjac mannan and darcomannan, and alginic acid.
  • Preferred are cellulose, pectin, konjac mannan and gnolecomannan. This is because a certain degree of viscosity is necessary.
  • the protein system may be a high molecular compound mainly composed of about 20 kinds of L-a-amino acid polypeptides. From the viewpoint of composition, it is preferable to use a complex protein containing a simple protein consisting only of amino acids and a nuclear acid 'phosphate' lipid 'sugar' metal and the like. More preferred are starch, gelatin, agar, collagen and elastin. More preferred are gelatin and agar. This is because it is necessary to keep the shape of the pulp as it dissolves in water.
  • the tooth portion is divided into an enamel portion and a dentin portion.
  • the tooth portion is integrally molded, and only the dental pulp is made of resin, silicone rubber, wax, water-soluble material. Can be produced.
  • caries In natural teeth, caries is likely to occur in areas where a large amount of food residue remains, mainly on the occlusal surface, interdental region and cervical region (the boundary between the crown and root). In addition, caries is more likely to progress with dentin than with enamel.
  • the crown is made of enamel, but the pits and fissures on the occlusal surface are difficult to clean completely, and because the enamel is thin, caries tend to progress to dentin. .
  • a pseudo carious portion is formed on the dentin side between the enamel portion and the dentin portion or on the edge thereof or around the transition portion between the enamel portion and the dentin portion on the tooth surface. Can do.
  • the pseudo caries portion is preferably provided around the boundary between the enamel portion and the dentin portion on the occlusal surface or the tooth neck. In particular, it is preferably provided in the dentin portion rather than the enamel portion.
  • the pseudo carious portion when provided on the occlusal surface, it is preferably formed larger in the dentin portion than in the enamel portion. In this case, it becomes reproduction of a fovea fissure caries.
  • the pseudo caries portion is made of inorganic powder, resin or composite. It is preferable that cutting becomes easier in the order of the enamel part, the dentin part, and the pseudo carious part.
  • the enamel part and the dentin part are an inorganic fired body and the pseudo caries part is a resin or composite
  • the enamel part is an inorganic fired body
  • the dentin part is a composite
  • the pseudo caries part is cut from the resin or the dentin part.
  • Easy composite, enamel part is composite and dentin part is easier to cut than enamel part
  • pseudo caries part is easier to cut than resin or dentin.
  • the inorganic powder, resin, or composite used in the pseudo carious portion can use the same composition as the enamel portion and the dentin portion.
  • a tooth for a jaw and tooth model wherein the pseudo-carious portion includes one or more of a coloring material, a fluorescent material, and an X-ray contrast material.
  • a coloring material to the pseudo-carious portion. It can be a dye or a pigment.
  • the caries can be visually confirmed by coloring and can be easily cut.
  • a dark colorant is particularly preferred, and a black colorant is preferred.
  • Colorants are preferably combined with fluorescent agents or X-ray contrast materials.
  • the fluorescent material is UV excited. It is preferably an electrophoretic fluorescent material, and more preferably a UV-excited fluorescent pigment. During normal cutting, it does not emit fluorescence, but it can be confirmed by emitting fluorescence with black light.
  • fluorescent materials fluorescent materials sold by major manufacturers such as ARBROWN CO., LTD. Can be used.
  • any fluorescent pigments sold by Shinroihi Co., Ltd. can be used without particular limitation as long as they are dispersed in a base resin or the like and emit fluorescence.
  • UV-excited fluorescent material As the type of UV-excited fluorescent material, UV-excited organic fluorescent pigments or inorganic fluorescent pigments can be used.
  • the X-ray contrast properties are X-ray contrast materials such as SrO, BaO, ZnO, ZrO, LaO, and other heavy metal element oxides.
  • the caries removal status can be confirmed by radiography after treatment practice. It is good for evaluation after cutting.
  • the X-ray contrast medium should contain an X-ray contrast medium such as SrO, BaO, ZnO, ZrO, LaO and other heavy metal element oxides.
  • SrO, BaO, ZnO, ZrO, LaO Preferably SrO, BaO, ZnO, ZrO, LaO, and more
  • the average particle size of the colorant, the fluorescent material, and the X-ray contrast material is 0.:! To 30 ⁇ m, preferably 1.0 to 10 / im, more preferably 1.0 to 5.0 ⁇ ⁇ . It is.
  • coloring agents, fluorescent materials, and X-ray contrast media may be dyes.
  • the pseudo caries part is made of a material different from the dentin part or enamel part, and the material is obtained by combining the pseudo caries part with a fluorescent agent or an X-ray contrast medium. It is possible to practice cutting teeth and removing carious parts around different senses. Later, using black light or X-ray photography, it is possible to confirm whether caries have been completely removed.
  • the enamel part 1 or the dentin part 2 is adhered or enameled with a caries part reproduction material prepared by mixing one or more of an inorganic powder, a resin or a composite with a coloring material, a fluorescent material, or an X-ray contrast material. By injecting into the cavity provided in the part 1 or the dentin part 2, the pseudo carious part 5 can be reproduced.
  • the caries portion can be reproduced by applying or impregnating the caramel portion reproduction material containing one or more of a coloring material, a fluorescent material, and an X-ray contrast material to the enamel portion 1 or the dentin portion 2.
  • a coloring agent, a fluorescent material, an X-ray contrast material, and the like can be dispersed in a solvent and impregnated with dentin to form a pseudo carious portion. This method is preferable because a pseudo caries portion can be easily produced.
  • Dentin of Al O (average particle size 0.5 / m) powder fired body molded into enamel partial shape
  • Part of the side is coated with a caries reproduction material of composite (carbon black 5%, zinc oxide 10%, UV-excited inorganic fluorescent pigment 30%, epoxy 55%, small amount of catalyst), cured, and tooth shape Placed in the mold and pushed in the dentin part of the composite (titanium oxide 5%, silica powder (5 / m) 70%, epoxy 25%, small amount of catalyst) to prepare a tooth for jaw model.
  • a caries reproduction material of composite carbon black 5%, zinc oxide 10%, UV-excited inorganic fluorescent pigment 30%, epoxy 55%, small amount of catalyst
  • Composite titanium oxide 5. / 0, silica powder (5 am) 70% epoxy 25./ 0, catalyst minor
  • Composite molding the enamel shape, a part of the dentin side, composite (carbon black 5%, zinc oxide 10%, UV-excited inorganic fluorescent pigment 30%, epoxy 55%, small amount of catalyst) caries reproduction material is applied and cured, placed in a tooth mold, composite (5% titanium oxide, silica powder ( 5 zm) Dentin portion of 70%, epoxy 25%, small amount of catalyst) was pressed into a tooth for jaw model.
  • the molding of the enamel part and the molding of the dentin part are preferably performed by injection molding. [0113] (When enamel part and dentin part are both inorganic powder fired bodies)
  • the composite carbon black 5%, zinc oxide 10%, UV excitation type inorganic fluorescent pigment 30%, epoxy 55%, A small amount of catalyst) caries portion reproduction material was applied and cured, and the dentin portion and enamel portion were adhered with an epoxy resin to prepare a tooth for a shape jaw model.
  • a tooth with a cavity in the pseudo caries part and a hole in the caries part is prepared and the caries part reproduction material is injected. can do.
  • a small hole is made in the thin part from the enamel part to the dentin part, and it is also good as a hole to inject the caries part reproduction material.
  • This thin part is called a fossa in natural teeth, and it is preferable to become a caries manifestation part and to become a tooth with higher reproducibility. Even if this hole exists in an interdental part, it is preferable. This is because, for example, the front teeth are caries between adjacent teeth and the teeth are readily reproducible.
  • Table 1 shows a combination table of the enamel part, dentin part, and pseudocarious part.
  • Dentin portion is impregnated with a coloring material, UV excitation pigment, or X-ray contrast material to form a pseudo-carious portion.
  • the enamel part, dentin part, and pseudo-cariogenic part are all made of a sintered inorganic powder. Further, as shown above, it is preferable that the enamel portion, the dentin portion, and the pseudo carious portion become soft in order (easy to cut).
  • the composition of the enamel part is 0.1 ⁇ m for the primary particles
  • the composition of the tooth dentin part is 2 ⁇ m for the primary particle diameter
  • the composition of the pseudo caries part is 5 ⁇ m for the primary particle size.
  • the sintered body can be easily cut and caries can be detected during the cutting process.
  • the enamel part and the dentin part are made of an inorganic powder fired body.
  • the pseudo caries portion is made of composite. Moreover, as shown above, it is preferable that the soft cover is formed in the order of the enamel portion and the dentin portion.
  • combination 3 the pseudo carious portion of combination 2 is made of a thermosetting resin or a thermoplastic resin containing a crosslinking agent. Combination 2 and combination 3 are both preferred combinations.
  • thermosetting resin thermoplastic resin with cross-linking agent
  • thermoplastic resin thermoplastic resin
  • dentin part impregnation (*) enamel part
  • dentin part pseudo caries
  • the preferred material for the part was chosen.
  • Dentin part impregnation (*) corresponds to the pseudo carious part only, and is manufactured by impregnating the prepared dentin part with coloring material, fluorescent material, and X-ray contrast material. This method cannot make a difference due to the ease of shaving of the dentin portion, but when the tooth composition is an inorganic powder fired body, it can practice cutting closer to natural teeth than a conventional tooth model. .
  • the pseudo caries part is softer than the enamel part and dentin part (easier to cut). It is preferable that the enamel portion, the dentin portion, and the pseudo carious portion become softer in order (easy to cut). This is because it is an exercise to judge caries cutting with the sense of abrasives.
  • the enamel part is preferably an inorganic powder fired body, composite, "thermosetting resin, thermoplastic resin with cross-linking agent". In addition, a composite is preferred, and an inorganic powder fired body is preferred. It is preferable that the enamel is hard and the cutting sensation approximates.
  • Dentin part is inorganic powder fired body, composite, "thermosetting resin, thermoplastic resin with cross-linking agent", thermoplastic resin is more preferred, inorganic powder fired body, composite, “thermosetting resin, heat with cross-linking agent A plastic resin "is preferred, and an inorganic powder fired body, a composite is preferred, and an inorganic powder fired body is more preferred. This is because dentin is similar in feeling. The thermoplastic resin is enough to endure use. There is also a lot of softening during cutting.
  • the pseudo caries part can be subjected to "thermosetting resin, thermoplastic resin with cross-linking agent", thermoplastic resin, "impregnating dentin part”, etc., "thermosetting resin, thermoplastic resin with cross-linking agent", heat A plastic resin is preferred. Since the cutting sensation does not change just by impregnating, it cannot be used for practice with different cutting sensations.
  • a female mold of the enamel part and the dentin part of the tooth form was dug out to produce a mold capable of injection molding the target shape. Since both the enamel part and the dentin part are shrunk due to degreasing and baking after molding, the part was largely calculated in advance to produce a mold. The mold was adjusted for each material.
  • Alumina pellets for CIM as raw material for enamel Al O force 3 ⁇ 46%, SiO force 44%
  • the produced injection body in the shape of the enamel portion was degreased and fired (1300 degrees, mooring time 10 minutes) to obtain a fired body 1 1.
  • Alumina pellets for CIM as raw material for dentine (Al 2 O power 3 ⁇ 46%, SiO power 44
  • the produced injection body in the form of the dentin portion was degreased and fired (1000 degrees, mooring time 10 minutes) to obtain a fired body 12.
  • CIM alumina pellets as raw material for enamel part Al O force 8%, SiO force 3 ⁇ 4%, Using 1 kg of an average particle size of 0.3 / im and stearic acid 30%), an injection body was obtained by injection molding into a dental mold.
  • the produced injection body in the shape of the enamel portion was degreased and fired (1550 degrees, mooring time 10 minutes) to obtain fired body 2-1.
  • Alumina pellets for CIM as raw material for dentin parts (Al O force S68%, Si ⁇ 3 ⁇ 4%
  • the produced injection body in the form of the dentin portion was degreased and fired (1400 degrees, mooring time 15 minutes) to obtain fired body 2-2.
  • the ceramic adhesive was applied and bonded to the interface between the enamel part and the dentin part. 7 After standing for 2 hours, the diamond bar was checked for cutting feeling.
  • a powder liquid kneading type cement material that hardens by reacting an ionic polymer with glass was used. It was applied to the interface between the enamel part and the dentin part. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • the adhesive is sold under the registered trademark Aaron Alpha 1 and applied to the interface between the enamel part and the dentin part. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • fired body 2 was closer to the cutting feeling of natural teeth in both the dentin portion and the enamel portion.
  • the target shape was made by excavating a female mold of the enamel part and dentin part of the tooth form.
  • Comparative Example 1 an injection mold having a two-layer structure was produced so that a molded body in which a dentin portion and an enamel portion were molded could be obtained.
  • Alumina pellets for CIM as raw material of enamel part (Al O force 26%, SiO force 3 ⁇ 44%
  • the average particle size 0.25 ⁇ , stearic acid 30%) 1 kg was used for injection molding into a dental mold.
  • Alumina pellets for CIM as raw material for dentin Al 2 O force 26%, SiO force 3 ⁇ 44
  • the produced injection body in the form of a tooth was degreased and fired (1 100 degrees, mooring time 10 minutes) to obtain fired body 3. 30 fired bodies were prepared and tested.
  • an injection body was obtained by injection molding into a dental mold following the enamel portion.
  • the produced tooth-shaped injection body was degreased and fired (1500 degrees, mooring time 15 minutes) to obtain fired body 4. 30 fired bodies were prepared and tested.
  • fired bodies 5 and 6 were produced in the same manner as in Comparative Example 1 except that the amount of stearic acid was 18%.
  • the enamel part and the dentin part were sufficiently adhered, and both the dentin part and the enamel part were close to the cutting feeling of natural teeth.
  • Fracture chipping during cutting which occurs due to the difference in thermal expansion and shrinkage during firing of the dentin part and enamel part, can be eliminated by controlling the amount of binder during pellet production. I understood that I could do it.
  • Example 1 Although adhesiveness left problems in chipping, etc., there was a great effect on the feeling of cutting.
  • the fired bodies 1-1, 1-2, 2-1, 2-2 obtained in the same manner as in Example 1 were replaced with epoxy resin, ceramic adhesive, cement material, ⁇ -adhesive part and dentin part.
  • the feeling of cutting was confirmed by joining with the.
  • to control the film thickness 700%, 400 ⁇ m, 350 ⁇ m, 250 ⁇ m, 150 / im, 50 ⁇ m, 20 ⁇ m alumina powder is mixed with 3% of each adhesive to enamel. Partial and dentin partial film thickness was limited.
  • the injected molded body was degreased at 600 ° C for 3 hours and fired at 1500 ° C.
  • the mooring time at the firing temperature was 15 minutes. As a result of natural cooling, the enamel part was completed.
  • Example 5 Following Example 5, Examples 6 to 10 and Comparative Examples 2 to 6 were performed. The differences from Example 5 are shown in Table 5, and the test results are shown in Table 6.
  • Example 5 3.0 700 Stearin g 300 600 1400
  • Example 6 2.0 700 Stearin 300 300 1500 1500
  • Example 7 3.0 700 Stir g 300 600 1600
  • Example 8 5.0 700 Polyvinyl alcohol 300 600 1500
  • Example 9 2.0 650 Stearine coffee 350 600 1400
  • Example 1 0 2.0 650 Polyvinyl alcohol 350 600 1500 Comparative example 2 3.0 700 Stearine coffee g 300 600 1100 Comparative example 3 3.0 700 Stearine coffee 300 600 1800 Comparative example 4 0.5 700 Polyvinyl alcohol 300 600 1500 Comparative Example 5 20.0 650 Stearin g 350 600 1400 Comparative Example 6 20.0 650 "" vinyl alcohol 350 350 1800
  • Dentin enamel transferability means the feeling of cutting when the abrasive moves at the interface between the dentin part and the enamel part, and the dentin enamel transferability is similar to natural teeth. I confirmed.
  • Comparative Example 3 since the firing temperature was high, excessive firing was performed, and a hard cutting feeling was obtained as a whole. Small chipping (cracking) was observed during cutting.
  • dentin enamel transferability which is not seen because it is a single-piece molding, was well tolerated as a practice for oral treatment.
  • Comparative Example 8 since the firing temperature was high, excessive firing was performed, and a hard cutting feeling was obtained as a whole. Small chipping (cracking) was observed during cutting.
  • Comparative Example 9 was soft. It was far from the cutting feeling of natural teeth.
  • Comparative Example 10 was softer than Comparative Example 9. It was far from the cutting feeling of natural teeth. Comparative Example 11 was harder than Comparative Example 10. It was far from the cutting feeling of natural teeth.
  • a female mold for the enamel part and dentin part of the tooth form was excavated to produce a mold that could be injection molded to the desired shape. Since both the enamel part and the dentin part are shrunk due to degreasing and baking after molding, the part was largely calculated in advance to produce a mold. The mold was adjusted for each material. Enamel contraction was about 10%, and dentin contraction was about 5%.
  • Alumina pellets for CIM as raw material for enamel Al O force 3 ⁇ 46%, SiO force 44% Using an average particle size of 0 ⁇ 25 ⁇ , stearic acid 30%) 1 kg, injection molding was carried out on a tooth-shaped metal mold to obtain an injection body 7-1.
  • Alumina pellets for CIM as raw material for dentin Al 2 O force 26%, Si 0 force 3 ⁇ 44
  • the enamel portion was placed on the produced dentin portion with the following glass powder interposed therebetween, and decalcified and fired (1200 degrees, mooring time 10 minutes) to obtain a fired body 9.
  • Alumina pellets for CIM as raw material of enamel part (Al O force 100%, average particle size 0
  • Alumina pellets for CIM as raw material for dentin parts (Al O force S68%, Si ⁇ 3 ⁇ 4%
  • injection molding was performed on a tooth-shaped mold to obtain an injection body 2-2.
  • a calcined product 10 was obtained by degreasing and firing (1400 degrees, mooring time 15 minutes) by placing the enamel portion on the produced dentin portion with the following glass powder interposed.
  • fused silica having an average particle size of 0.5 / im maximum particle size of 2.0 ⁇ was used.
  • the sintered bodies 9 to 12 were sliced with a diamond disk at intervals of about 5 mm to confirm the adhesion state. It was confirmed that all of the fired bodies 9 to 12 were in a good adhesion state.
  • Example 17 Heat knead 700 g of powder with a primary particle size of 0 ⁇ 3 111 and 300 g of stearic acid (30%)
  • the injected molded body was degreased at 600 ° C for 3 hours and fired at 1500 ° C.
  • the mooring time at the firing temperature was 15 minutes. As a result of natural cooling, the enamel part was completed.
  • the completed enamel part was placed in a tooth-shaped mold, and epoxy resin was injected into the remaining dentin part to complete.
  • Table 10 shows the test results. A dental diamond bar was used for the test.
  • Example 17 Examples 18 to 22 and Comparative Examples 12 to 16 were performed. The differences from Example 17 are shown in Table 9, and the test results are shown in Table 10.
  • A is an evaluation when it is similar to a natural tooth
  • C is an evaluation when it is far from a natural tooth and is too hard or too soft. It was.
  • B was the middle evaluation.
  • Dentin enamel transferability was confirmed by confirming whether the cutting feel approximated that of natural teeth when the abrasive transferred at the interface between the dentin layer and the enamel layer.
  • Comparative Example 14 the enamel layer became soft. It was far from the cutting feeling of natural teeth. In Comparative Example 15, the enamel layer was soft. It was far from the cutting feeling of natural teeth. In Comparative Example 16, the enamel layer was harder than Comparative Example 15. It was far from the cutting feeling of natural teeth.
  • dentin enamel transferability which is not seen because it is a single-piece molding, was well tolerated as a practice for oral treatment. Dentin's machinability was improved compared to Examples 17-22.
  • Comparative Example 19 the enamel portion became soft. It was far from the cutting feeling of natural teeth. In Comparative Example 20, the enamel portion was soft. In Comparative Example 21, which was far from the cutting feeling of natural teeth, the enamel portion was harder than in Comparative Example 20. Natural tooth cutting feeling and great power.
  • the dentine part became an alumina composite, the machinability of dentin was improved and the transferability from the enamel part to the dentin part was also improved.
  • the enamel part was carried out with the same composition as in Example 17, and an example using a composite for the dentin part was prepared.
  • the composite was prepared by mixing 55% alumina powder, 20% zinc oxide, and 25% epoxy resin.
  • the method for forming the enamel portion was performed according to Example 1.
  • the mold was a tooth mold. As a test, a cavity was formed, and when a dental model was photographed with a dental X-ray, the dentin shape could be photographed easily.
  • the enamel part was carried out with the same composition as in Example 17, and an example was made using cement in the dentin part.
  • the cement was prepared by kneading 2.6 g of a powder composed of 93.5% aluminosilicate glass and 6.5% tartaric acid and 1. Og of a liquid composed of 45% polyacrylic acid and 55% tricarboxylic acid.
  • the method for forming the enamel portion was performed according to Example 1.
  • the mold used was a tooth mold. As a test, a cavity was formed, and a dental model was photographed with a dental X-ray. As a result, the dentin shape could be photographed easily.
  • the transition part to dentin is the transitional feeling of enamel and dentin, which is not present in the conventional tooth model, and we were able to practice treatment without using natural teeth.
  • a mold capable of injection molding the shape of the tooth form was produced.
  • CIM as a raw material for teeth
  • Noremina pellets Al O power 26%, SiO power 3 ⁇ 44%, average particle size 3 ⁇ 0 / im, stearic acid 30%
  • the produced injection body in the shape of a tooth part was degreased and fired (1300 ° C., mooring time 10 minutes) to obtain a fired body 13.
  • a mold capable of injection molding the shape of the enamel part and dentin part of the tooth form was produced.
  • the mold was prepared by calculating the part largely in advance. The mold was adjusted for each material.
  • Alumina pellets for CIM as raw material for enamel part (Al 2 O force 1 ⁇ 28%, SiO 3%,
  • the produced injection body in the form of the enamel portion was degreased and fired (1550 ° C., mooring time 10 minutes) to obtain a fired body 141.
  • Alumina pellets for CIM as raw material for dentin (Al O force 8%, SiO force)
  • an injection molded body was obtained by injection molding into a dental mold.
  • the produced injection body in the form of the dentin portion was degreased and fired (1400 ° C., mooring time 15 minutes) to obtain a fired body 142.
  • fired bodies 13, 14-1, 14-2 were encased in the following impregnated materials, placed in a vacuum vessel, and evacuated to sufficiently impregnate the voids of the fired body.
  • the fired bodies 1 4-1, 14-2 were joined and bonded with an epoxy resin adhesive.
  • the cutting feeling of the produced tooth was confirmed. 30 fired bodies were produced and tested.
  • Paraffin wax (Nippon Seisaku Co., Ltd., paraffin wax standard product): It was confirmed that the product was sufficiently heated and liquefied before embedding the fired body.
  • Beeswax (Mezarashi dense wax wax): It must be heated and fully liquefied before packing the fired body. confirmed.
  • the coagulant was added before entering the desiccator.
  • Agar Ina Food Industry: It was melted with hot water and heated to an appropriate hardness.
  • Gelatin (Nitta Gelatin): Dissolved in hot water and heated to an appropriate hardness.
  • Epoxy resin (low viscosity epoxy resin Z-2 / H-07): An epoxy resin to which a catalyst was added was used. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • Acrylic resin manufactured by Kuraray, MMA monomer: An acrylic resin to which a chemical polymerization catalyst was added was used. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • Silicone resin (RTV silicone resin M8017: Asahi Kasei): A silicone resin to which a catalyst was added was used. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • Comparative Example 23 AADD A The result was as good as natural teeth.
  • A (Biological wet feeling): Like natural teeth, there is a wet feeling in the living body, and there is a wet feeling S that feels the flesh. It was a good result.
  • the power S which has a wet feeling like a natural tooth, is slightly inferior to A although there is a flesh texture.
  • tooth cutting practice can be easily performed in an actual clinical use environment under water injection. Moreover, the living body had a wet feeling like natural teeth, and the result was good.
  • Tooth was prepared by encapsulating the calcined bodies 13 and 14 using a wet (beef tallow) as an impregnation material. Before embedding the fired body, it was sufficiently heated and confirmed to be liquefied. As a result of cutting after cooling for 24 hours, the cutting feeling was good, the cutting feeling was smooth, and the wet feeling of living body was good. In particular, the wet feeling was superior to other materials. The feeling of slipping during cutting and the odor when cutting too hard were still close.
  • Example 44 and 45 stickiness was felt as compared with Comparative Example 24, and a cutting feeling similar to that of natural teeth was obtained.
  • the cut dust was less scattered than Comparative Example 24. It was close to the sensation of cutting a living tooth with almost no crushing feeling unique to ceramics during cutting.
  • Example 46 tenacity was felt as compared with Comparative Example 24, and a cutting feeling similar to that of natural teeth was obtained.
  • the cut dust was less scattered than Comparative Example 24.
  • Examples 44 and 45 the amount of scattering was greater.
  • the cutting feeling is similar to natural teeth. Examples 44 and 45 In comparison, it seems that natural teeth have a slightly inferior resistance to cutting. Although inferior to Examples 44 and 45, the state of natural teeth could be reproduced.
  • Example 49 tenacity was felt as compared with Comparative Example 25, and a cutting feeling similar to that of natural teeth was obtained.
  • the cut dust was less scattered than Comparative Example 25.
  • the amount of scattering was greater.
  • the cutting feeling is similar to natural teeth.
  • the wax made into the dental pulp shape of the target tooth was cast with silicone rubber, and epoxy resin was poured into the silicone rubber to obtain a combustible pulp type.
  • a mold capable of injection-molding the target shape of the tooth form was produced.
  • a stop was provided to allow the combustible pulp mold to be placed in this mold.
  • CIM kg of an alumina pellets for a tooth (A1 O power S26 0/0, SiO Ca 44 0/0, the average particle diameter of 0. 3 zm, stearic acid 30 o / o) of 1kg Te use Rere, fuel
  • An injection body was obtained by injection molding into a dental mold having a sinterable pulp mold.
  • the produced injection body in the form of a tooth portion was degreased and fired (1300 ° C., mooring time 10 minutes) to obtain a fired body 15.
  • the produced injection body in the shape of the enamel portion was degreased and fired (1550 ° C., mooring time 10 minutes) to obtain a fired body 16-1.
  • Alumina pellets for CIM as raw material for dentin (A10 force 1 ⁇ 28%, SiO 3 ⁇ 4%,
  • the produced injection body in the form of the dentin portion was degreased and fired (1400 ° C., mooring time 15 minutes) to obtain a fired body 16-2.
  • the fired bodies 16-1 and 16-2 were joined and bonded with a resinous adhesive to obtain a fired body 16.
  • the following materials were injected into the spaces of the pulps of the obtained fired bodies 15 and 16 with a syringe. The cutting feeling of the produced tooth was confirmed. 30 fired bodies were produced and tested.
  • Polyvinyl alcohol Polybulal alcohol was filled and dried. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • Urethane rubber hardness 30 Urethane rubber added with a chemical polymerization catalyst was used. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • Silicone rubber (RTV silicone rubber resin M8017: Asahi Kasei): A silicone rubber resin containing a catalyst was used. After leaving for 72 hours, the cutting feeling was confirmed with a diamond bar.
  • an enamel dentin portion made of epoxy (Comparative Examples 26 to 28) and a melamine resin (Comparative Examples 29 to 31) were used, and the pulp was the same as in the example. Infused with fat.
  • the enamel layer and the dentin layer were cut from the occlusal surface for the treatment of the dental pulp, and the cutting sensation when reaching the portion of the medulla was evaluated.
  • Root canal cleaning refers to putting a thin cutting tool called a reamer into the root canal and scraping and cleaning the marrow inside the root canal. Show the evaluation result of cleanability.
  • Root canal enlargement refers to expanding the cleaned root canal so that it can be easily filled with a root canal filling material. The evaluation result of extensibility is shown.
  • Examples 51, 52, 54, and 55 had a better exposure experience compared to Examples 50 and 53, and were able to fully feel the experience of root canal treatment such as root canal cleaning and root canal enlargement. .
  • the sensation at the interface between the marrow and dentin was similar.
  • the feeling of removing the medulla at the time of root canal cleaning was also similar.
  • Comparative Examples 26 and 28 the interface state of the epoxy or melamine resin dentin and polybulualcohol, urethane rubber, silicone rubber, etc. was different, and it was not possible to reproduce the cutting feeling similar to natural teeth.
  • the sensation when exposed was greatly different.
  • Root canal cleaning was different from natural teeth because it slid with epoxy and melamine resin.
  • the root canal enlargement was greatly different in the sense of sharpening dentin.
  • the enamel part was placed in a tooth-shaped mold, and the remaining dentin part was injected with an ivory colored epoxy resin to complete.
  • a dental diamond bar was used for the test.
  • Example 15 shows the differences from Example 56.
  • the black part was deleted, and it was confirmed that the caries part was accurately removed with the black light.
  • the enamel part is made of the alumina powder fired body of Examples 56 to 61, and the dentin part is made of a composite of 75% alumina powder and 25% epoxy resin, and the enamel-shaped part of the dentin is in contact with the pseudo carious part.
  • a pseudo-carious portion was made by adding a small amount of epoxy resin mixed with 10% of UV-excited inorganic fluorescent pigment.
  • the pseudo caries and dentin were colored ivory.
  • the molding method was carried out according to Example 56.
  • As the mold a tooth mold was used.
  • the enamel portion and dentin portion were carried out with the same composition as in Example 62, and the pseudo caries portion Tooth was prepared using a composite containing 20% zinc oxide and 80% epoxy resin.
  • the molding method was carried out according to Example 56.
  • As the mold a tooth mold was used. As a test, when the caries were removed and the tooth model was photographed with a dental X-ray, the caries removal situation could be easily photographed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Computational Mathematics (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Theoretical Computer Science (AREA)
  • Instructional Devices (AREA)

Abstract

 本発明は、歯科医師を目指す学生が、口腔内作業を体験し、治療の練習をする顎歯模型用に用いる歯牙である。具体的には支台歯形成、窩洞形成等の形体付与を体験する為に用いる歯牙組成に関する。従来の顎歯模型は、天然歯と切削感が異なることから支台歯形成や窩洞形成の練習をしても実際の口腔内での作業をした場合では異なる切削感、作業性から当惑する事が多かった。滑る感覚や容易に削れる感覚などが異なり、天然歯とは大きく違う切削感である。本発明は、天然歯を構成するエナメル質およびデンチン質を模倣する顎歯模型用の歯牙であって、少なくともエナメル部分をアルミナのごとき無機粉末の焼成体で形成することによって、天然歯を構成するエナメル質とデンチン質との切削感の違いも再現する。

Description

明 細 書
顎歯模型用の歯牙およびその製造方法
技術分野
[0001] 本発明は、歯科医師を目指す学生が、口腔内作業を体験し、治療の練習をする顎 歯模型用に用いる歯牙に関する。顎歯模型用歯牙とは、大学などで顎歯模型を用い て口腔内の治療行為をシミュレーションや治療の練習をするために用いられる歯牙 である。本発明は、特に歯牙を切削して支台歯形成、窩洞形成等の形態付与を体験 する為に用いる歯牙およびその製造方法に関する。
背景技術
[0002] 従来、歯科治療の練習において、天然歯の切削感を体験するために、人体や動物 力 の抜去歯を用いていた。し力 ながら、抜去歯には衛生上の問題があり、衛生管 理を十分に行なわないと感染の可能性があり、 自由に練習を行うことができなかった 。また、天然生体であるため腐敗の問題があり、保存にも十分な注意が必要であった そのため、天然歯牙を用いずに歯牙の切削感を体験する方法が求められていた。
[0003] 現在では、 口腔内治療練習用の顎歯模型用の歯牙は、エポキシ樹脂、メラミン樹 脂で製造されることが多ぐ一般に普及している。
しかし、エポキシ樹脂、メラミン樹脂で作製された顎歯模型用歯牙は、天然歯形態 をしてレ、るものの、天然歯とは切削感が異なることから支台歯形成ゃ窩洞形成の練 習をしても、実際の口腔内での作業をした場合では異なる切削感、作業性から当惑 する事が多かった。
具体的には、エポキシ樹脂やメラミン樹脂は軟らカ 、ため、多く切削する傾向にあり 、このような模型歯牙で治療練習をしても、硬い天然歯は思った様に切削できない傾 向にあった。
[0004] さらに、天然歯はエナメル質および象牙質(デンチン質)からなり、エナメル質ゃデ ンチン質は樹脂よりも硬ぐデンチン質の歯冠部を覆うエナメル質とデンチン質とは硬 さが異なっている。その結果、エナメル質からデンチンへと切削を移行させたとき、デ ンチン質を強ぐ削ってしまい、上手く形体を作れないことも発生する可能性がある。 すなわち、顎歯模型用の歯牙のエナメル部分からデンチン部分への移行部におい て、天然歯と同様に切削感が変ることが求められており、当然にして、エナメル部分 はエナメル質の切削感、デンチン部分はデンチン質の切削感を再現することが重要 である。
[0005] もう少し、硬い材料を求められた結果、コンポジットタイプのものが市販されている。
コンポジットタイプの歯牙であっても、デンチン部分とエナメル部分が同一の切削感 であるから、天然歯とは切削感が異なり、支台歯形成ゃ窩洞形成の練習をしても実 際の口腔内での作業をした場合では異なる切削感、作業性から当惑する事が多かつ た。分力 やすい表現では滑る感覚があり、天然歯とは大きく違う切削感である。
[0006] 実開平 1— 90068には、エナメル質層に金雲母結晶 [NaMg (Si Al〇 )F ]およ
3 3 10 2 びリチア ·アルミナ ·シリカ系結晶(Li 0 -A1〇 - 2SiO、Li〇·Α1〇 -4SiO )が同
2 2 3 2 2 2 3 2 時に析出したビッカース硬さ 350〜450に制御されたガラス'セラミックスから構成さ れ、歯根層には、ポリオール(主剤)に白色 ·赤色および黄色の着色剤をカ卩え、さらに イソシァネートプレボリマー(硬化剤)を混入してシリコーンゴム母型に真空下で注入 して、常温で硬化させ事前に準備をし、エナメル質層と歯根層との間に介在し、両者 を合着してレ、る象牙質認識層はオペーク色を呈した接着性レジンで形成されてレ、る ことが示されている。
[0007] し力 ながら、エナメル質層が金雲母結晶ゃリチア'アルミナ ·シリカ系結晶にて構 成されたものでは天然歯に比べ、切削感が硬すぎるため使用に耐える物ではなぐ 更に象牙質認識層は接着性レジンで形成され、切削感が柔らかすぎる為、使用に耐 える物ではなかった。
また更に、接着層にて象牙質層を形成するとの記載がある。エナメル層部分と歯根 層部分を形成して、接着することが示されている。厚みのある接着材層にて象牙質層 として認識するものである。
[0008] 特開平 5— 224591には、天然歯と極めて類似した切削性を有し、歯科教育切削 実習用として好適な歯牙模型を提供することが示されている。
構成として歯牙模型は、歯冠部の少なくとも表面がヌープ硬度 70以上を有し、歯根 部の少なくとも表面がヌープ硬度 10〜40を有するものである。主要構成成分として、 無機物粉体と架橋型樹脂とを、重量比で 20%対 80%乃至 70%対 30%の割合で含 有している。
本文中に「歯牙模型の作製法及び経済的な観点から如何なる硬度の素材、例えば 金属、セラミタス、樹脂で形成されていてもよぐ更には空洞であってもよい。」との記 載があるが、エナメル部分とデンチン部分の切削性の違レ、を示せる歯牙模型ではな かった。
[0009] 特開平 5— 216395には、天然歯と極めて類似した切削性を有し、歯科教育切削 実習用として好適な歯牙模型及びその製造方法を提供することが紹介されている。 歯牙模型の主要構成成分として、気孔率が 40〜80%のヒドロキシアパタイト粉末と、 (メタ)アクリル酸エステル系樹脂とを、重量比で 20%対 80%乃至 50%対 50%の割 合で含有しているものである。し力、しながら、特にエナメル部分とデンチン部分の切 削性の違いを示せる歯牙模型ではなかった。
[0010] 特開平 5— 241498、特開平 5— 241499、特開平 5— 241500には、無機充填材 の記載やハイドロキシアパタイト充填材の記載があるがいずれも樹脂を母材とするも のであり、切削感の解決には至っていない。し力しながら、特にエナメル部分とデン チン部分の切削性の違いを示せる歯牙模型ではなかった。
[0011] 特開 2004— 94049には、レーザー光線を利用した正確な形状計測を可能とする 歯科実習用模型歯を提供する発明が記載されている。
明細書中には、「本発明の模型歯の歯冠部表面を構成する材料としては、一般的 に公知のものを用いることが可能であり、例えば、セラミックス等の磁器あるいはアタリ ノレ、ポリスチレン、ポリカーボネート、アクリロニトリルスチレンブタジエン共重合体(AB S)、ポリプロピレン、ポリエチレン、ポリエステル等の熱可塑性樹脂材料や、メラミン、 ユリア、不飽和ポリエステル、フエノーノレ、エポキシ等の熱硬化性樹脂材料、さらには 、これらの主原料にガラス繊維、カーボン繊維、パルプ、合成樹脂繊維等の有機、無 機の各種強化繊維、タルク、シリカ、マイ力、炭酸カルシウム、硫酸バリウム、アルミナ 等の各種充填材、顔料や染料等の着色剤、あるいは耐候剤や帯電防止剤等の各種 添加剤を添カ卩したものを用いることが出来る。」との記載があるが、好ましい材質の記 載がなぐ切削感を解決するものでは無かった。
[0012] 研究の結果、天然歯牙の切削感を出す為には無機系の焼成体を用いることが必要 であるが無機系の材料の硬さを制御することは難しいためにこれらを制御しながら、 エナメル部分およびデンチン部分を製造することは難しかった。
[0013] 焼成体の切削感を調整する為には、焼成体の密度、粒形、焼成温度を合わす事が 必要であるが、焼成時のエナメル部分とデンチン部分の収縮率や熱膨張係数などが 異なり、割れ、剥がれ、ヒビ割れなどが生じ、更に、デンチン部分とエナメル部分の間 に隙間ができることから、切削時にチッピングを起こすことがあり、隙間が天然歯牙の 切削感と異なる感覚を伝え、使用に耐えるものではな力 た。
[0014] また、通常天然歯牙を切削すると生体を切削する時の独特の切削感が得られる。
特に、デンチン質では歯牙の象牙細管中に含まれる有機成分がバーに纏わり付く感 覚ゃ切削を阻害する感覚が顕著に現れる。
このような天然歯独特の粘り気のある切削感を表現する為には、数々の方法が試さ れてきたが、樹脂やコンポジット等々では十分な切削感を得ることができず、従来の 顎歯模型用歯牙では注水しながらで有ってもこのような感覚を得られることは無かつ た。エナメル質であっても同様な現象から無機材料の切削感よりも粘性を感じる切削 感覚が求められている。
[0015] すなわち、現在、天然歯のエナメル質およびデンチン質の切削感を実現する歯牙 模型の具体的な組成も、それらの製造方法についても研究報告されていない。
[0016] 今までの開発では天然歯独特の歯髄を再現する方法は開発されておらず、露髄体 験等を歯科学生は体験することができなかった。露髄 (髄の部分まで削ること)は、歯 科治療において最も重要な技術であり、また、誤って露髄してしまった場合には、そ の後の処置方法などを同時に学ぶ必要がある。
[0017] 天然歯牙の齲蝕が進むにつれて、治療方法もエナメル層、デンチン層、髄へと進 み、抜髄等の根管治療の実習も重要な治療である。抜髄などを実施する場合におい ても、歯髄をリーマで取り除き、デンチン質壁面とリーマが擦れ合う感覚が全く異なる 為に、根管充填などの練習ができなかった。
歯髄の治療として、根管治療練習用のものもあるが、ボックス状のアクリルに小さな 穴があいており、それを用いて根管治療の練習(根管清掃、根管拡張など)を行なつ ている。しかし、顎への装着ができないことや、デンチンの硬さの違い等があり、十分 な練習ができてレヽなレ、現状にある。
これらの体験を容易に行える顎歯模型用歯牙が望まれている。特に根管清掃時に 、根尖孔まで完全に髄が取り除かれている力、、手の感覚で覚えるものであり、初級者 には難しい。したがって、天然歯における歯髄が再現された顎歯模型用歯牙を用い て練習することが必要である。
[0018] また、歯科治療で齲蝕除去は重要な処置であるが、齲蝕部分は通常のデンチン部 分よりも更に軟力べなっていることから、齲蝕部分の切削は難しい。したがって、天然 歯における齲蝕が再現された顎歯模型用歯牙を用いて練習することが必要である。 また、齲蝕部分を正確に除去したことを確認する方法が求められていた。
[0019] 特許文献 1 :実開平 1一 90068
特許文献 2:特開平 5— 224591
特許文献 3 :特開平 5— 216395
特許文献 4:特開平 5— 241498
特許文献 5:特開平 5— 241499
特許文献 6:特開平 5— 241500
特許文献 7:特開 2004— 94049
発明の開示
発明が解決しょうとする課題
[0020] 本発明の目的は、天然歯の治療時と同様の感覚を体験することができる顎歯模型 用の歯牙を提供することにある。特に、本発明は、エナメル部分およびデンチン部分 を含む顎歯模型用の歯牙において、天然歯におけるエナメル質とデンチン質との切 削感の違いが再現された顎歯模型用の歯牙を提供することにある。
課題を解決するための手段
[0021] 本発明は、エナメル部分およびデンチン部分を含む顎歯模型用の歯牙であって、 前記エナメル部分が無機粉末の焼成体により形成された顎歯模型用の歯牙を提供 する。 前記デンチン部分は、使用目的に応じて、無機粉末の焼成体、樹脂、コンポジット 、セメント材またはセッコゥにより形成される。
エナメル部分を無機粉末の焼成体により形成することによって、切削感が天然歯に 近似し、デンチン部分の組成等を変化させて、エナメル部分と異なる切削感を付与 すること力 Sできる。
[0022] 本発明の第 1の態様は、エナメル部分およびデンチン部分を含む顎歯模型用の歯 牙であって、前記エナメル部分と前記デンチン部分とが無機粉末の焼成体により形 成された顎歯模型用の歯牙である。
[0023] 本発明の第 1の態様の顎歯模型用歯牙において、前記エナメル部分と前記デンチ ン部分とを一体的に成形することができる。前記エナメル部分と前記デンチン部分と を一体的に成形する場合、 2つの部分を同一組成で成形することができる。
前記エナメル部分と前記デンチン部分とを異なる組成で成形する場合、 2つの部分 は直接接合されてレ、てもよレ、し、前記エナメル部分と前記デンチン部分とが接着層を 介して接合されてレ、てもよレ、。
[0024] 本発明の第 2の態様は、エナメル部分およびデンチン部分を含む顎歯模型用の歯 牙であって、前記エナメル部分が無機粉末の焼成体により形成され、前記デンチン 部分が樹脂、コンポジットまたはセメント材により形成された顎歯模型用の歯牙である
[0025] 本発明の顎歯模型用歯牙には、例えば、アルミナ、ジルコニァ、酸化チタン、シリカ 等の無機粉末を用いることができる力 これらに限定されるものではなぐ各種の無機 物粉体およびそれらの混合物を用いることができる。
本発明の顎歯模型用歯牙には、例えば、アクリル系や尿素樹脂などの熱可塑性ま たは熱硬化性樹脂を用いることができる。
本発明の顎歯模型用歯牙には、上記の樹脂に無機または有機粉末を混合したコ ンポジットを用いることができる。
本発明の顎歯模型用歯牙には、ポリアクリル酸とアルミノシリケートを主成分とし、粉 液混合により硬化が開始するセメント材を用いることができる。
本発明の顎歯模型用歯牙には、セッコゥを用いることができる。 [0026] 本発明の顎歯模型用歯牙において、エナメル部分とデンチン部分の双方を無機粉 末の焼成体で形成する場合、接着層を構成する接着材として、有機性樹脂組成物、 セラミック接着材またはガラスを用いることができる。
[0027] 本発明において、セラミック インジェクション モールド(CIM)技術を用いて無機 粉末を射出成形して、エナメル部分またはデンチン部分を形成する。
[0028] 本顎歯模型用歯牙は人体の中で最も硬い天然歯牙の代用物質で、通常の材料で は切削時に軟ら力べ感じてしまうのに対し、天然歯牙と同様な切削感を得ることができ る。 口腔内での 400000回転 Z分とレ、う高速回転するダイヤモンド研削材(エアータ 一ビン使用)を用レ、た切削と同じような切削体験ができる。
[0029] 高速回転する切削体と接触する為、歯牙と顎との適合性が重要であり、更に、ェナ メルとデンチンの適合性も求められることから、成形において精密に成形できる CIM 技術を用いることが好ましい。
[0030] 更に、歯牙模型の歯冠の形状も重要であり、支台歯形成ゃ窩洞形成の目標となり 隆起部分ゃ窩、咬頭などが正確に表現されていることが重要であり、 CIM技術での 成形が適している。
[0031] 本発明は、エナメル部分とデンチン部分の双方を無機粉末の焼成体で形成する場 合、 CIM技術を用いてエナメル部分とデンチン部分をそれぞれ射出成形し、脱脂、 焼成の工程を経てデンチン部分およびエナメル部分の焼成体を得、これらの焼成体 を接着材により接着することを特徴とする顎歯模型用歯牙の製造方法を提供する。 また、接着材としてガラスを用いる場合、 CIM技術を用いてエナメル部分とデンチ ン部分をそれぞれ射出成形し、これらの射出体をガラスの粉末を介在させて積層し た後、脱脂、焼成の工程を経てデンチン部分およびエナメル部分が接着された焼成 体を得ることを特徴とする顎歯模型用歯牙の製造方法も提供する。
[0032] また、本発明において、エナメル部分またはデンチン部分に天然歯独特の粘り気 のある切削感を付与するため、および、歯牙を切削した折に飛散する切削粉を軽減 するために、無機粉末の焼成体で形成したエナメル部分またはデンチン部分に、多 糖類やタンパク質の水溶液、ワックスなどの熱溶解性物質またはアクリル系樹脂、尿 素樹脂、シリコーン樹脂等の樹脂を含浸させる。 [0033] 熱硬化性樹脂または架橋剤を含んだ樹脂を含浸させることで、含浸させない場合と 比べ、天然歯牙に近い軟かい切削感となる。熱可塑性樹脂を含浸させることで含浸 させない場合と比べ、天然歯牙に近い纏わり付く様な切削感となる。これらの樹脂は 水を同時に用いる場合であっても溶け出すことなぐ纏わり付く感じが再現できる。 本発明はデンチン部分、エナメル部分両方に用いることができるが、特にデンチン 部分に用いることが好ましい。
[0034] 本発明の顎歯模型用歯牙において、デンチン部分の内部に歯髄部分を形成する こと力 Sできる。歯髄部分は、樹脂、シリコーンゴム、ワックスまたは水溶性材料で満たさ れている。
[0035] 本発明顎歯模型用歯牙において、エナメル部分とデンチン部分の間またはその辺 縁に疑似齲蝕部分を形成することができる。疑似齲蝕部分は、樹脂または無機粉末 の焼成体で形成される。
発明の効果
[0036] 本発明によれば、デンチン部分、エナメル部分双方とも天然歯と同じ様な切削感を 得られ、エナメル部分からデンチン部分へ移行する切削感が天然歯に近レ、こと力ら、 模型であっても天然歯牙を削る練習が容易に行なえる。
[0037] 本発明によれば、デンチン部分、エナメル部分双方とも無機粉末の焼成体で形成 されている場合であっても、接着材の軟質な感覚を味わうことなく天然歯牙模型の切 削を体験できる。スムーズなエナメル部分からデンチン部分への切削を体感できる。
[0038] 本発明の顎歯模型用歯牙を用いて支台歯形成、窩洞形成をすることによって、一 早く天然歯牙と同様な切削感を体験でき、形成体験が容易に行える。また、これらの 形成技術を早く取得することができる。
[0039] 本発明の顎歯模型用歯牙は、無機粉末の焼成体に樹脂などの粘性物質が含浸さ れているため、歯牙切削時に飛散する粉塵を軽減する効果があり、模型などの粉塵 による汚れを抑えることができた。勿論、練習している学生の粉塵の吸い込みも軽減 すること力 Sできた。天然歯牙の様に粘り気のある切削感があり、生体歯牙を切削時に 発生するダイヤモンドバーへの纏わり付きの感覚を再現できた。
[0040] さらに、本発明の歯牙には、歯髄部分または疑似齲蝕部分を形成することによって 、根管治療または齲蝕治療の技術を体験することもできる。
図面の簡単な説明
[図 1]本発明の第 1の態様の顎歯模型用歯牙の断面図。
[図 2]本発明の第 2の態様の顎歯模型用歯牙の断面図。
[図 3]無機粉末焼成体の拡大図。
[図 4]歯髄部分を含む本発明の第 1の態様の顎歯模型用歯牙の断面図。
[図 5]疑似齲蝕部分を含む本発明の第 2の態様の顎歯模型用歯牙の断面図。
[図 6]歯髄部分および疑似齲蝕部分を含む本発明の第 1の態様の顎歯模型用歯牙 の断面図。
符号の説明
1·· •エナメル部分
2·· 'デンチン部分
3·· •接着層
4·· •歯髄部分
5·· •疑似齲蝕部分
10·· '無機粉末の焼成体
11·· •無機粉末
12·· •空隙
発明を実施するための最良の形態
本発明の顎歯模型用の歯牙は、少なくともエナメル部分 1およびデンチン部分 2を 含み、エナメル部分 1が無機粉末の焼成体により形成される。デンチン部分 2は、使 用目的に応じて、無機粉末の焼成体、樹脂、コンポジット、セメントまたはセッコゥによ り形成される。
図 1に、エナメル部分 1およびデンチン部分 2の双方が無機粉末の焼成体により形 成され、エナメル部分 1とデンチン部分 2とが接着層 3を介して接合された顎歯模型 用歯牙を示す。接着層 3は、有機性樹脂組成物、セラミック接着材またはガラスなど の接着材で構成される。
エナメル部分 1を無機粉末の焼成体により形成し、デンチン部分 2を樹脂、コンポジ ット、セメントまたはセッコゥにより形成する場合には、接着層は不要である(図 2)。
[0044] 本発明において、エナメル部分 1およびデンチン部分 2を形成する無機粉末の焼 成体 10には、図 3に示すように、無機粉末の粒子 11間に空隙 12が存在するため、こ の空隙 12に多糖類やタンパク質の水溶性材料、ワックスなどの熱溶解性物質または アクリル系樹脂、尿素樹脂、シリコーン樹脂等の樹脂を含浸させて、天然歯と同様の 粘り気のある切削感を再現することができる。
[0045] 本発明の顎歯模型用歯牙において、デンチン部分 2の内部に歯髄部分 4を形成す ることができる(図 4)。
デンチン部分 2の内部に歯髄部分 4を形成するためには、エポキシ樹脂等の燃焼 性材料を用いて所望する歯髄形状の型を成形する。この歯髄形状の型を金型に設 置して、無機粉末でデンチン部分 2を形成し、これを焼成することによって、歯髄形状 の型を焼失させて、歯髄形状の空間を内部に有するデンチン部分 2の焼成体を得る 。得られたデンチン部分 2内部の歯髄形状の空間に、樹脂、シリコーンゴム、ワックス または水溶性材料を満たすことによって、歯髄部分 4を形成する。
[0046] 本発明の顎歯模型用の歯牙において、エナメル部分 1とデンチン部分 2の間または その辺縁に疑似齲蝕部分 5を形成することができる。図 5に、第 2の態様の顎歯模型 用歯牙のエナメル部分 1とデンチン部分 2との移行部分に疑似齲蝕 5を形成した概略 図を示す。また、図 6のように、疑似齲蝕部分 5をエナメル部分の咬合面からデンチン 部分に貫通するように形成することができ、第 1の態様の顎歯模型用歯牙の場合で あれば、歯髄部分 4とともに疑似齲蝕部分 5を形成することもできる。
疑似齲蝕部分 5は、無機粉末の焼成体、樹脂またはコンポジットで形成される。疑 似齲蝕部分 5を樹脂またはコンポジットで形成した場合、無機粉末の焼成体、樹脂ま たはコンポジットに着色剤、蛍光材または X線造影材を添加して、齲蝕部分除去の程 度を視覚により確認できるようにすることができる。
[0047] 本発明の顎歯模型用の歯牙は、天然歯と同じように無機系顔料を用いることによつ て、白色、アイボリ一色、乳白色、半透明色とすることができるため、よりリアルな切削 体験をすることができる。好ましくは白色、アイボリ一色、乳白色である。
[0048] 本発明の顎歯模型用の歯牙において、顎分野やマネキン部分は適宜選択すること ができる。但し、選択にあたって適合性を確認する為の処置を施すことは重要である 。例えば、顎歯模型の歯牙挿入口の大きさに適宜合わせることは重要である。
[0049] 本発明のエナメル部分 1およびデンチン部分 2を形成するために用いることができ る無機粉末として、アルミナ系、ジルコユア系、シリカ系、窒化アルミ、窒化ケィ素など のセラミックスまたはガラスが挙げられる。アルミナ系、ジルコユア系が好ましい。 アルミナ系、ジルコユア系とはアルミナまたはジルコユアが焼成体組成の 60。/。〜10 0%、好ましくは 80%〜100%、更に好ましくは 95%〜100%であることである。特に アルミナの組成が 50%〜100%、好ましくは 70%〜100%、更に好ましくは 90%〜 100%であることである。
無機粉末として、アルミナ系のセラミックスを用いることが好ましい。
[0050] エナメル部分およびデンチン部分共に、無機粉末の焼成体で形成する場合、ェナ メル部分とデンチン部分の硬さの調整には、粒度を粗くする、空隙を多くする、組成 を変えるなどの方法、焼成温度を変える、係留時間を変える等々の方法があるが、最 も適した方法は、同一組成で粒度を変えることである。エナメル部分に比べ、デンチ ン部分の粒度を粗くすることで実現できる。
[0051] エナメル部分の平均粒子径に対して、デンチン部分の平均粒子径を 10倍以上に することが好ましい。エナメル部分の平均粒子径が 0.1〜0.5 μ ΐηである場合は、デン チン部分の平均粒子径は 1.0〜10.0 μ mに設定することが好ましい。
焼成温度に関しては組成によって異なる力 シリカ等のガラス成分が多い場合は焼 成温度力 ¾00〜: 1200°C、アルミナの場合は 1200〜1600°Cの焼成温度、好ましく は 1400〜: 1550°Cの焼成温度となる。
[0052] エナメル部分およびデンチン部分共に、アルミナ粉末の焼成体で形成することが好 ましレ、。この場合、アルミナ粉末の一次粒子径は 0.2〜5 x mであることが好ましぐ 13 00〜1600°Cの焼成温度で焼成することが好ましい。
ェナメル部分をー次粒子径0.1〜1.0 111の八1 O粉末から焼成することが好ましく
2 3
、一次粒子径 0.2〜0.5 x mの Al O粉末から焼成することがより好ましい。
2 3
デンチン部分の組成が一次粒子径 1.0〜8.0 z mの Al O粉末からすることが好まし
2 3
く、一次粒子径 2.0〜5.0 x mの Al O粉末から焼成することがより好ましぐ一次粒子 径 2.0〜3.0 μ ΐηの Al O粉末力 焼成することがさらに好ましい。
2 3
エナメル部分の好ましい焼成温度は 1400〜 1600度であり、デンチン部分の好まし い焼成温度は 1300〜1500°Cである。焼成温度は切削感と密接な関係があり、粒度や 原材料ロットによって、調整しなければならなレ、。同様に焼成温度での係留時間も切 削感と密接な関係があり、粒度や原材料ロットによって、調整しなければならない。 エナメル部分およびデンチン部分のビッカース硬度力 ¾00〜1000であることが好ま しぐ 300〜600であることがより好ましい。
なお、歯牙組成にアルミナ焼成体の切削感を損なわない程度にシリカを代表とする 金属酸化物を添加することは妨げなレ、。
[0053] エナメル部分 1とデンチン部分 2の成形は、セラミックスの成形方法としてよく用いら れる CIM技術を用いることが好ましい。
CIM技術とは、無機粉末を成型する技術であり、次の工程を含む。
(1)アルミナをバインダ(1000°Cぐらいまでに熱で分解するもの)で練和し、ペレット を作製する。
(2)—定の形状の射出成形用の金型を作製し、(1)で作製したペレットを射出成型 する。
(3)成型後、バインダを脱脂(温度を上げて、バインダ成分を分解すること)する。
(4)次に、その脱脂体を所定温度で焼成し、所望の焼成体を得る。
[0054] 本発明に用いることができるバインダとして、ステアリン酸、ポリビエルアルコール、 熱可塑性樹脂、ワックスなどが挙げられ、ステアリン酸またはポリビュルアルコールを 用いることが好ましい。
[0055] エナメル部分およびデンチン部分の切削感の違いを再現するために、無機粉末の 粒度を変えた場合、無機粉末をバインダで練和して作製されたペレットを脱脂し、焼 成する過程の収縮率に差異が生じる。エナメル部分とデンチン部分を積層構造とす る射出体を成形し、焼成すると、収縮率の違いからエナメル部分とデンチン部分の境 に亀裂が入り、十分に接着されないことがある。
したがって、エナメル部分とデンチン部分を積層構造とする焼成体を形成する場合 、十分な接着を達成するためには、収縮率を考慮して金型を作製することが必要とな るが、簡便ではない。
一方、ペレット作製時のバインダ量を変える、焼成温度を変える、係留時間を変える 等々の方法により、収縮率を調節することができ、エナメル部分とデンチン部分とを異 なる粒度の無機粉末で形成した場合でも、 2つの部分の収縮率を適合させて、十分 な接着を達成することができる。最も適した方法は、バインダ量を変えることである。
[0056] CIM技術を用いて、エナメル部分 1とデンチン部分 2とをそれぞれ射出成形し、脱 脂、焼成の工程を経て、焼成されたエナメル部分とデンチン部分との界面に樹脂ま たはセラミック接着材を用いて接着することができる。
[0057] 本発明の接着に用いられる樹脂は、熱可塑性樹脂、熱硬化性樹脂または化学重 合性樹脂を用いることができ、その中で、熱硬化性樹脂および化学重合性樹脂が好 ましい。
[0058] 熱可塑性樹脂とは、熱をカ卩えることにより成形できる程度の熱可塑性を得ることの出 来る樹脂のことを指す。
本発明の接着に用いられる熱可塑性樹脂は、具体的にはアクリル系、スチレン系、 ォレフィン系、塩ビ系、ウレタン系、ポリアミド系、ポリブタジエン系、ポリアセタール系
、不飽和ポリエステル系、ポリカーボネート、ポリフエ二レンエーテルなどを含む。 また、ポリスルホン系、ポリイミド、ポリエーテルイミド、ポリエーテルエーテルケトンな ども適宜使用できる。特に、アクリル系、が好ましい。
[0059] 熱硬化性樹脂とは、熱をカ卩えることにより架橋が進み硬化する樹脂を指す。
本発明の接着に用レ、られる熱硬化性樹脂は、加工後は溶媒に溶けず再加熱しても 軟化しないため、熱可塑性樹脂よりも熱硬化性樹脂の方が好ましい。
尿素樹脂 'メラミン樹脂'フエノール樹脂、エポキシ樹脂などが代表的に使用でき、メ ラミン樹脂及びエポキシ樹脂が好ましレ、。
[0060] 化学重合性樹脂とは、本来熱硬化性樹脂や熱可塑性樹脂に含まれる樹脂であつ ても、化学触媒を用いて、重合する樹脂のことである。特に架橋材を含み熱可塑性が ないものが好ましい。
[0061] 本発明の接着に用いられるセラミック接着材は、ケィ酸およびホウ酸を主成分とし、 セラミックスの焼成温度以上の耐熱性を有する接着材である。 [0062] 本発明に求められる接着は、エナメル部分とデンチン部分との全体が接着している ことである。したがって、接着層の一部でも接着していない部分があったり、大きな気 泡があったりすることは、切削感に影響を与えるため、好ましくない。
[0063] CIM技術を用いて、エナメル部分 1とデンチン部分 2とをそれぞれ射出成形し、これ らの射出体をガラスの粉末を介在させて積層した後、脱脂、焼成の工程を経て、デン チン部分およびエナメル部分が接着された焼成体を得ることができる。
[0064] エナメル部分とデンチン部分を接着する接着層が厚いと、エナメル部分力 デンチ ン部分に移行する際、異なる切削感を感じる。その結果、天然歯牙と大きく掛け離れ た歯牙模型となる。
本発明の顎歯模型用歯牙において、接着材の厚みが l〜500 z mであることが好 ましレヽ。より好ましくは:!〜 300 z mであり、更に好ましくは、:!〜 200 x mである。また 更に、 1〜: 100 x mであることが好ましい。
接着厚みを薄くすることで、エナメル部分力 デンチン部分に容易に切削が移り、 天然歯牙との切削感が近似する。
[0065] 本発明のデンチン部分を形成するために用いることができる樹脂は、熱硬化性榭 脂や熱可塑性樹脂を含む。熱可塑性樹脂または、架橋剤を含んだ樹脂が好ましい。 更に、エポキシ樹脂が好ましい。
[0066] 熱可塑性樹脂とは、熱をカ卩えることにより成形できる程度の熱可塑性を得ることので きる樹脂のことを指す。
本発明のデンチン部分を形成するために用いることができる熱可塑性樹脂は、具 体的にはアクリル系、スチレン系、ォレフィン系、塩ビ系、ウレタン系、ポリアミド系、ポ リブタジエン系、ポリアセタール系、飽和ポリエステル系、ポリカーボネート、ポリフエ二 レンエーテルなどを含む。特に、アクリル系、スチレン系、ウレタン系、ポリアミド系樹 脂が好ましい。
これらの熱可塑性樹脂に架橋剤を混合することにより、熱硬化性樹脂の様に好まし い態様となる。即ち、切削時に発生する熱により溶解しないで、歯牙切削の練習をす ること力 Sできる。
[0067] 熱硬化性樹脂とは、熱を加えることにより重合が進み硬化する樹脂を指す。 硬化後は溶媒に溶けず再加熱しても軟ィ匕しないため、熱可塑性樹脂よりも熱硬化 性樹脂の方が好ましい。
本発明のデンチン部分を形成するために用いることができる熱硬化性樹脂は、尿 素樹脂'メラミン樹脂'フヱノール樹脂、エポキシ樹脂などを含み、メラミン樹脂及びェ ポキシ樹脂が好ましい。最も好ましいのはエポキシ樹脂である。
[0068] また、これらの樹脂に切削感向上のために、無機または有機粉末を混合したコンポ ジットを利用することができる。
無機粉末とは、セラミック、ガラスを中心とした平均粒子径 1. 0〜: 100 z mのもので あり、特に組成は限定されなレ、。好ましい平均粒径は 1. 0〜30 x mである。また、微 粒子フィラーを混合することができる。
具体的な無機粉末は石英、無定形シリカ、クレー、酸化アルミニウム、タルク、雲母 、カオリン、ガラス、硫酸バリウム、酸化ジノレコニゥム、酸化チタン、窒化ケィ素、窒化 アルミニウム、窒化チタン、炭化ケィ素、炭化ホウ素、炭化カルシウム、ヒドロキシァパ タイト、リン酸カルシウム等の無機物、具体的な有機粉末はポリメチルメタタリレート、 ポリェチルメタタリレート、ポリ塩化ビエル、ポリスチレン、ポリエステル、ナイロン等の 高分子またはオリゴマー等の有機物;および有機 無機の複合物等が好適に使用 できる。
これらの粉末は単独または 2種以上を使用しても何等問題はなレ、。またこれらの粉 末は、公知として用いられているチタネートカップリング剤、アルミネートカップリング 剤ゃシラン力ップリング剤で表面処理したものを使用するのがより好ましレ、。混合割合 は、必要に応じて適宜選択でき、例えば 1〜95%の割合となる範囲から選べばよい。 好ましくは 60〜90%である。
これら無機粉末、有機粉末の平均粒子径は、 0. l~30 z m,好ましくは 1. 0〜10 z m、更に好ましくは 1. 0〜5. O x mである。
[0069] デンチン部分を形成するセメント材は、粉液混合により硬化が進行するもので、ポリ アクリル酸とアルミノシリケ一トとを主成分とするものがある。
[0070] 天然歯は X線造影性を有するが、無機焼成体などで形成された歯牙模型には X線 造影性を有しなレ、ため、エナメル部分やデンチン部分に X線造影性を付与すること は好ましい。 X線造影性は SrO、 BaO、 Zn〇、 ZrO、 La Oおよび他の重金属元素
2 2 3
酸化物を含有させることにより達成することができる。
デンチン部分に X線造影性を持たせることにより、 X線撮影で窩洞形状の状態を後 で確認することができる。切削後の評価に良いものである。エナメル部分とデンチン 部分の X線造影力を配合金属により変えることにより、エナメル及びデンチンを切削 した折に切削状況を掴むことができる。
[0071] 無機粉末の焼成体を構成する焼結粒子間に空隙部分が存在し、本発明の顎歯模 型用歯牙は、この空隙部分に水溶性材料、熱溶解性材料または有機系材料を含浸 させることに特徴がある。
[0072] 本発明の空隙部分に含浸させる水溶性材料として、空隙部分に含浸させることが できる水溶性の高分子であれば特にこだわり無く使用することができる。多糖類、タン パク質の内少なくとも一つ以上であることが好ましい。好ましくはタンパク質である。 水溶性材料を含浸させた場合、注水や水を予め含浸させることにより効果を発揮す る。
[0073] 多糖類としてはデキストリン、グリコーゲン、セルロース、ぺクチン、コンニヤクマンナ ンとダルコマンナン、アルギン酸が好ましい。好ましくはセルロース、ぺクチン、コンニ ャクマンナンとグノレコマンナンである。ある程度の粘性が必要であるからである。
[0074] タンパク質としては約 20種類の L- a -アミノ酸からなるポリペプチドを主体とする高 分子化合物であればよい。組成の上から、アミノ酸だけからなる単純タンパク質と、核 酸 'リン酸'脂質 '糖'金属などを含む複合タンパク質を用いることが好ましい。更に好 ましいのはゼラチン、寒天系、コラーゲンとエラスチンである。また更に好ましくはゼラ チン、寒天系である。水にどんどん溶けるのでなぐ焼成体の空隙部分で形状を保つ 必要があるからである。
[0075] 本発明の空間部分に含浸させる熱溶解性材料して、ワックス系を用いる事ができる 熱溶解性材料を含浸透させた場合、切削時に発生する摩擦熱で溶解することによ り効果を発揮する。ワックス系としては水を利用しなくとも、多糖類やたんぱく質と同じ 様な効果を示すものであり、注水設備が無いところでも簡単に歯牙研削練習を行なう こと力 Sできる。
[0076] ワックス系の組成としては、天然ワックス、合成ワックス両方用いることができる。天然 ワックスとは、動植物ワックス、鉱物ワックス、石油ワックス等が代表される。合成ヮック スとは、配合ワックスやポリエチレンワックス等を用いることができる。好ましくはパラフ インワックスである。ワックス系には油脂も含まれる。油脂とは脂肪酸のグリセリンエス テルである。水に溶けず、アルコールなどに溶ける。常温 (37°C、大気圧)で固体の脂 肪であることが好ましい。植物性の木蠟 (もくろう)、動物性の牛脂 ·豚脂などがある。具 体的にはラウリン酸、ミリスチル酸、パルミチン酸、ベへニン酸、ステアリン酸、生体か ら抽出した油脂などを利用することができ、生体力 抽出した油脂が好ましい。特に、 豚由来、牛由来の脂肪が好ましい (代表として、ラード、へットなどがある)。
[0077] 含浸時に界面活性剤を混合することで、含浸を手助けすることができる。即ち、焼 成体の空隙部分にこれらの水溶性材料または熱溶解性材料を含浸させるためには 界面活性剤の助剤は重要な役目をする。
界面活性剤は水溶性材料として用いることもできる。
[0078] 界面活性剤は陰イオン系、非イオン系、陽イオン系、両性イオン系など適宜用いる こと力 Sできる。好ましくは陰イオン系、非イオン系である。
陰イオン系としては、脂肪酸塩(セッケン) C H COONa、アルファスルホ脂肪酸ェ
11 23
ステノレ塩(α -SFE) C H -CH(SO Na)C〇〇CH、アルキルベンゼンスルホン酸塩(
10 21 33 3
ABS) C H _(C H )SO Na、アルキル硫酸塩 (AS) [高級アルコール系] C H -OSO
12 25 6 4 3 12 25 3
Na、アルキルエーテル硫酸エステル塩 (AES) C H _0(CH CH〇) SO Na、アルキ
12 25 2 2 3 3
ル硫酸トリエタノールァミン C H -〇S〇 _'+NH(CH CH OH)等;^用いられる。
12 25 3 2 2 3
非イオン系としては、脂肪酸ジエタノールアミド C H -CON(CH CH OH)、ポリオ
11 23 2 2 2 キシエチレンアルキルエーテル(AE) C H -〇(CH CH〇) H、ポリオキシエチレンァ
12 25 2 2 8
ルキルフエニルエーテル(APE) C H - (C H )0(CH CH〇) H等が用いられる。
9 19 6 4 2 2 8
陽イオン系としてはアルキルトリメチルアンモニゥム塩 C H - N+(CH ) · α—、ジアル
12 25 3 3
キルジメチルアンモニゥムクロリド C Η - N+(C H )(CH ) · α_、アルキルピリジニゥム
12 25 8 17 3 2
クロリド C H _(N+C H )' C1—等が用いられる。
12 25 5 5
両性イオン系としては、アルキルカルボキシベタイン [ベタイン系] C H -N+(CH ) · CH COO—等力 S用レヽられる。
[0079] 水溶性材料または熱溶解性材料を含浸する方法を以下に示す。
含浸させる水溶性材料または熱溶解性材料をビーカーに入れ、適当な温度になる ように加温して、粘度を下げる。適度の界面活性剤を入れる。粘度が下がった所で、 セラミック焼成体を投入し、真空デシケータ中に設置する。真空デシケータ中の空気 を抜いていき、セラミック焼成体中の空気を外へ出していぐ減圧が進むにつれて、 焼成体表面に空気に泡が出てきて内部の空気が抜けた事が分かる。様子を見て、空 気が出たところでデシケータに空気を静かに戻すことで含浸する。
[0080] 本発明の空間部分に含浸させる有機系材料は、熱硬化性樹脂や熱可塑性樹脂、 架橋剤を含んだ樹脂の内少なくとも一つ以上である事が好ましい。
[0081] 本発明に用レ、られる含浸させる樹脂は熱硬化性樹脂や熱可塑性樹脂を用レ、ること ができる。熱硬化性樹脂または架橋剤を含んだ樹脂が好ましい。更に、エポキシ樹 脂が好ましい。
[0082] 本発明の顎歯模型用の歯牙において、デンチン部分 2の内部に歯髄部分 4を形成 する方法は、次の工程を含む。
(1)燃焼性材料を用いて歯髄形状の型を成形する燃焼性歯髄型作製工程、
(2)歯牙金型中の所定の位置に燃焼性歯髄型を設置する金型設置工程、
(3)無機粉末とバインダを歯牙金型中に射出し無焼成射出体を得る射出工程、
(4)無焼成射出体を焼成して、内部に歯髄形状の空間を有する焼成体を得る焼成 工程、および
(5)焼成体内部の歯髄形状の空間に、樹脂、シリコーンゴム、ワックスまたは水溶性 材料を充填する歯髄作製工程。
[0083] 「燃焼性材料を用いて歯髄形状に成形した燃焼性歯髄型を成形する焼成性歯髄 作製工程」とは、歯牙の歯髄形状を形成する為に歯牙の焼成時に、燃焼する材料に て事前に歯髄形状を形成する工程である。
無機材料で作製される歯牙は焼成工程を経る為、焼成時に燃焼材料で空間を設 け、後に歯髄に適した材料で坦めることで歯牙を完成させる。その為の歯髄形状作 製工程である。 [0084] 「歯牙金型中の所定の位置に燃焼性歯髄型を設置する金型設置工程」とは、燃焼 性歯髄型を金型に設置する工程である。事前に成形しておいた燃焼性歯髄型を金 型中に設置しても良いし、連続的にその場で成形した燃焼性歯髄型を歯牙形状の 金型に入れなおしてもどちらでも良い。
[0085] 「無機粉末とバインダを歯牙金型中に射出し無焼成射出体を得る射出工程」とは、 燃焼性歯髄型を設置した歯牙金型に加熱混合した歯牙組成の無機粉末とバインダ を射出する工程である。本工程では燃焼性歯髄型が細い為に、注意して射出しなけ ればならない。
本発明において、歯牙は、エナメル部分とデンチン部分とに別れているので、デン チン部分のみを形成するが、本発明を応用して、歯牙を一体成型する場合にもこの 工程を適用できる。
[0086] 「無焼成射出体を焼成して、内部に歯髄形状の空間を有する焼成体を得る焼成ェ 程」とは、射出工程で得られた無焼成歯牙を焼成する工程である。ガラス分が多い場 合、 800〜1200°Cの焼成温度が好ましぐアルミナの場合、 1200〜1600°Cの焼成温 度が好ましぐ 1400〜1550°Cの焼成温度がより好ましい。この時に、燃焼性歯髄型は 焼失して、歯髄形状の空間が形成される。
[0087] 「焼成体内部の歯髄形状の空間に、樹脂、シリコーンゴム、ワックスまたは水溶性材 料を充填する歯髄作製工程」とは、この焼成された歯髄の空間部分に樹脂、シリコー ンゴム、ワックス、水溶性材料にて擬似歯髄を設ける工程である。作製方法は、注射 器のようなもので充填する方法や、擬似歯髄材料中に包坦し、真空容器に入れ、真 空にすることで焼成体の歯髄部分に満たす方法もある。
[0088] 燃焼性材料とは、歯髄形状に作れ、歯牙を形成するときの射出圧や温度にて変形 せずに、歯牙の焼成時に燃焼して歯髄形状の空間を作り出せるものであれば良レ、。 具体的には樹脂であり、特に好ましくは熱硬化性樹脂である。具体的には尿素樹脂' メラミン樹脂 'フエノール樹脂、エポキシ樹脂などや、アクリル系、スチレン系樹脂を架 橋して用いても良い。
[0089] 本発明の顎歯模型用歯牙のセラミックス焼成体中の歯髄部分の樹脂は、弾性樹脂 、発泡樹脂、熱硬化性樹脂や熱可塑性樹脂、架橋剤を含んだ樹脂の内少なくとも一 つ以上が含まれる。好ましくは弾性樹脂、発泡樹脂である。
[0090] 本発明に用いられる歯髄部分の樹脂は熱硬化性樹脂や熱可塑性樹脂を用いるこ とができる。熱硬化性樹脂または架橋剤を含んだ樹脂が好ましい。更に、エポキシ樹 脂が好ましい。
[0091] 本発明に用いられる歯髄部分の熱可塑性樹脂は、具体的にはアクリル系、スチレ ン系、ォレフィン系、塩ビ系、ウレタン系、ポリアミド系、ポリブタジエン系、ポリアセター ル系、飽和ポリエステル系、ポリカーボネート、ポリフエ二レンエーテル、ゴム、ビュル 系、ポリ酢酸ビュルなどを含む。特に、ウレタンやゴムなどの弾性樹脂、発泡樹脂が 好ましい。
[0092] 本発明に用いられる歯髄部分の熱硬化性樹脂は、尿素樹脂'メラミン樹脂'フエノー ル樹脂、エポキシ樹脂などを含み、メラミン樹脂及びエポキシ樹脂が好ましい。最も 好ましいのはエポキシ樹脂である。
[0093] 化学重合性樹脂であることが好ましい。焼成体の粒子の空間部分に樹脂が含浸し 容易に硬化できるためである。
化学重合性樹脂とは、本来熱硬化性樹脂や熱可塑性樹脂に含まれる樹脂であつ ても、化学触媒を用いて、重合する樹脂のことである。特に架橋材を含み熱可塑性が ないものが好ましい。
[0094] 本発明の顎歯模型用歯牙のセラミックス焼成体中の歯髄部分のシリコーンゴムは、 何ら制限無く使用できる。その他の使用できるゴム材料として、クロロスルホンィ匕ポリ エチレンゴム:ハイパロンゴム、フッ素ゴム、イソブテンイソプレンゴム:ブチルゴム、天 然ゴム、アクリロニトリルブタジエンゴム:ノヽイカ一、ウレタンゴム、エチレンプロピレンゴ ム、スチレンブタジエンゴム、クロロプレンゴム:ネオプレン等が例示される。ゴム高度( デュロメータ(JIS K 6253) ) 10〜70、好ましくは 20〜50である。
[0095] 本発明の顎歯模型用歯牙のセラミックス焼成体中の歯髄部分のワックスは、動物由 来のワックス (蜜蠟、鯨蠟、セラック蠟、その他)、植物由来のワックス(カルナバ蠟、 木蠟、米糠蠟 (ライスワックス)、キャンデリラワックス)、 石油由来のワックス (パラフィン イト)、合成ワックス(フィッシャートロプシュワックス、ポリエチレンワックス、油脂系合成 ワックス (エステル、ケトン類、アミド)、水素化ワックス)などを用いることができる。好ま しくは、石油由来のワックスであり、特にパラフィンワックスが好ましい。
[0096] 本発明の顎歯模型用歯牙のセラミックス焼成体中の歯髄部分の水溶性材料は、多 糖類、タンパク系の内少なくとも一つ以上を含むものである。水溶性材料は注水や水 を予め含浸させることにより効果を発揮する事ができる。好ましくはたんぱく質である。 水溶性材料として親水性ポリマーも好ましい。例えば、天然由来の半合成のカルボキ シメチルセルロース(CMC)、メチルセルロース(MC)等のセルロース誘導体から、ポ リビュルアルコール(PVA)、ポリアクリル酸系ポリマー、ポリアクリルアミド(PAM)、ポ リエチレンォキシド(PEO)等の合成系の水溶性高分子を利用することができる。
[0097] 多糖類としてはデキストリン、グリコーゲン、セルロース、ぺクチン、コンニヤクマンナ ンとダルコマンナン、アルギン酸が好ましレ、。好ましくはセルロース、ぺクチン、コンニ ャクマンナンとグノレコマンナンである。ある程度の粘性が必要であるからである。 タンパク系としては約 20種類の L- a -アミノ酸からなるポリペプチドを主体とする高 分子化合物であればよい。組成の上から、アミノ酸だけからなる単純タンパク質と、核 酸 'リン酸'脂質 '糖'金属などを含む複合タンパク質を用いることが好ましい。更に好 ましいのはデンプン、ゼラチン、寒天系、コラーゲンとエラスチンである。また更に好ま しくはゼラチン、寒天系である。水にどんどん溶けるのでなぐ歯髄形状を保つ必要 があるからである。
[0098] 本発明では、歯牙部分がエナメル部分とデンチン部分とに別れているが、本発明を 応用して、歯牙部分を一体成形し、歯髄のみを樹脂、シリコーンゴム、ワックス、水溶 性材料で作製することができる。
[0099] 天然歯において、齲蝕は食物残渣が多く残る箇所に発生し易ぐ主に、咬合面、歯 間部および歯頸部(歯冠と歯根の境界部分)に発生する。また、齲蝕は、エナメル質 よりもデンチン質で進行し易い。
歯冠は、エナメル質で形成されているが、咬合面の小窩裂溝は完全に清掃すること が困難であり、また、エナメル質が薄い箇所があるので、デンチン質へ齲蝕が進行し 易い。
歯頸部において、デンチン質はエナメル質から露出しているため、齲蝕が進行し易 レ、。
[0100] 本発明の顎歯模型用の歯牙において、エナメル部分とデンチン部分の間もしくは その辺縁または歯牙表面のエナメル部分とデンチン部分の移行部分周辺のデンチ ン側に擬似齲蝕部分を形成することができる。
[0101] 擬似齲蝕部分は、咬合面または歯頸部におけるエナメル部分とデンチン部分の境 界周辺に設けることが好ましい。特に、エナメル部分よりもデンチン部分に設けること が好ましい。
例えば、疑似齲蝕部分を咬合面に設ける場合、エナメル部分よりもデンチン部分に 大きく形成することが好ましい。この場合、小窩裂溝齲蝕の再現となる。
また、擬似齲蝕部分を歯頸部に設ける場合、歯牙表面のエナメル部分とデンチン 部分の移行部分周辺のデンチン部分側に設けることが好ましい。この場合は歯根部 の根面齲蝕の再現となる。
[0102] 擬似齲蝕部分は無機粉末、樹脂またはコンポジットから作製される。エナメル部分、 デンチン部分、擬似齲蝕部分の順番に切削しやすくなることが好ましい。
具体的な組合せとしては、エナメル部分及びデンチン部分が無機焼成体で擬似齲 蝕部分が樹脂またはコンポジット、エナメル部分が無機焼成体でデンチン部分がコン ポジットで擬似齲蝕部分が樹脂またはデンチン部分より切削しやすいコンポジット、 エナメル部分がコンポジットでデンチン部分がエナメル部分より切削しやすいコンポ ジットで擬似齲蝕部分が樹脂またはデンチンより切削しやすいコンポジットである。
[0103] 擬似齲蝕部分に用いられる無機粉末、樹脂またはコンポジットはエナメル部分、デ ンチン部分と同一の組成を利用することができる。
[0104] 擬似齲蝕部分に着色材料、蛍光材料、 X線造影材料の何れか一つ以上を含むこと を特徴とする顎歯模型用歯牙である。
[0105] 擬似齲蝕部分に着色材料を添加することが好ましい。染料でも、顔料でもよレ、。着 色により齲蝕部位を目で確認でき、容易に切削することができる。好ましくは、濃い色 力はく特に黒色の着色材が好ましい。
着色材は、蛍光剤または X線造影材を組み合わせることも好ましレ、。
[0106] 擬似齲蝕部分に蛍光材を添加することが好ましい。更に好ましくは蛍光材が UV励 起型蛍光材であり、また更に UV励起型蛍光顔料であることは好ましい。通常の切削 時において、蛍光を発せず、ブラックライトで蛍光を発して確認することができる。 蛍光材としては大手メーカの ARBROWN CO., LTD.社などが販売している蛍光材 が使用できる。
また、シンロイヒ株式会社が販売している蛍光顔料など、母材の樹脂などに分散し 蛍光を発するものであれば特に限定することなく利用できる。
UV励起型蛍光材の種類としては、 UV励起タイプの有機系蛍光顔料または無機 系蛍光顔料を利用することができる。
[0107] 擬似齲蝕部分に X線造影性を付与することは好ましい、 X線造影性は Sr〇、 Ba〇、 Zn〇、 ZrO、 La Oおよび他の重金属元素酸化物等の X線造影材を含有させること
2 2 3
により達成すること力 sできる。
擬似齲蝕部分に X線造影性を持たせることにより、齲蝕除去状態を治療練習後に X 線撮影にて確認することができる。切削後の評価に良レ、ものである。
擬似齲蝕部分に X線造影材を付与することは好ましい、 X線造影材は Sr〇、 Ba〇、 Zn〇、 ZrO、 La Oおよび他の重金属元素酸化物等の X線造影材を含有させること
2 2 3
により達成することができる。好ましくは Sr〇、 Ba〇、 ZnO、 ZrO、 La〇、更に好ま
2 2 3 しくは ZnO、 ZrOである。
2
[0108] 着色剤や蛍光材、 X線造影材の平均粒子径は、 0.:!〜 30 μ m、好ましくは 1. 0〜 10 /i m、更に好ましくは 1. 0〜5. 0 μ ΐηである。また、着色剤や蛍光材、 X線造影材 は染料でもよい。
[0109] 擬似齲蝕部分をエナメル部分およびデンチン部分と同一の組成を用いる場合であ つても、着色剤や蛍光材などを用いて判別できる状況であれば問題は無レ、。色調に て齲蝕部分を判断する練習となる。
擬似齲蝕部分をエナメル部分およびデンチン部分と異なる組成を用いる場合であ つても、切削感で見分ける練習の為に、デンチン色ゃエナメル色とほぼ同じ色として 、蛍光剤または X線造影材を用いることも好ましレ、。
擬似齲蝕部分がデンチン部分やエナメル部分と異なる材質で作製されている場合 であって、擬似齲蝕部分に蛍光剤または X線造影材を組み合わせることにより材質 の異なる感覚を中心に歯牙を切削し、齲蝕部分を取り除く練習が可能である。後に ブラックライトや X線撮影を利用して、齲蝕が完全に除去できているかどうかを確認す ること力 Sできる。
[0110] エナメル部分 1またはデンチン部分 2に、無機粉末、樹脂またはコンポジットに着色 材料、蛍光材料、 X線造影材料の何れか一つ以上を混合して作製した齲蝕部再現 材を付着または、エナメル部分 1またはデンチン部分 2に設けた空洞に注入すること により、擬似齲蝕部分 5を再現することができる。
エナメル部分 1またはデンチン部分 2に、着色材料、蛍光材料、 X線造影材料の何 れか一つ以上を含む齲蝕部再現材を塗布もしくは含浸させる事により、齲蝕部分を 再現することができる。例えば、着色剤や蛍光材、 X線造影材などを溶媒に分散させ 、デンチンに含浸させ、擬似齲蝕部分とすることができる。この方法は容易に擬似齲 蝕部分を作製することができて好ましい。
[0111] 次に本発明の顎歯模型用歯牙作製方法について以下で説明する。
(エナメル部分が無機粉末焼成体、デンチン部分がコンポジットの場合)
エナメル部分形状に成型した Al O (平均粒子径 0. 5 / m)粉末焼成体のデンチン
2 3
側の一部に、コンポジット(カーボンブラック 5%、酸化亜鉛 10%、 UV励起タイプの無 機系蛍光顔料 30%、エポキシ 55%、触媒少量)の齲蝕部再現材を塗りつけ硬化さ せ、歯牙形態金型に設置し、コンポジット(酸化チタン 5%、シリカ粉末(5 / m) 70% 、エポキシ 25%、触媒少量)のデンチン部分を押し込み顎歯模型用歯牙を作製した
[0112] (エナメル部分とデンチン部分が共にコンポジットの場合)
コンポジット(酸化チタン 5。/0、シリカ粉末(5 a m) 70%、エポキシ 25。/0、触媒少量) をエナメル形状に成型し、デンチン側の一部に、コンポジット(カーボンブラック 5%、 酸化亜鉛 10%、 UV励起タイプの無機系蛍光顔料 30%、エポキシ 55%、触媒少量) の齲蝕部再現材を塗りつけ硬化させ、歯牙形態金型に設置し、コンポジット(酸化チ タン 5%、シリカ粉末(5 z m) 70%、エポキシ 25%、触媒少量)のデンチン部分を押 し込み、顎歯模型用歯牙を作製した。
エナメル部分の成型やデンチン部分の成型は射出成形で行うことが好ましい。 [0113] (エナメル部分とデンチン部分が共に無機粉末焼成体の場合)
デンチン部分形状及びエナメル部分形状に成型した Al O (平均粒子径 5 / m)粉
2 3
末焼成体を作製し、デンチン部分のエナメル歯冠の中に入る一部に、コンポジット( カーボンブラック 5%、酸化亜鉛 10%、 UV励起タイプの無機系蛍光顔料 30%、ェポ キシ 55%、触媒少量)の齲蝕部再現材を塗りつけ硬化させ、デンチン部分及びェナ メル部分をエポキシ樹脂で接着させて、形状顎歯模型用歯牙を作製した。
エナメル部分とデンチン部分を一体成型もしくは一体となした後に、擬似齲蝕部分 を設けるときは、擬似齲蝕部分に空洞を設け齲蝕部分まで孔を開けた歯牙を作製し 齲蝕部再現材を注入して作製することができる。エナメル部分からデンチン部分まで の厚みが薄い部分に小さな穴を開け、齲蝕部再現材を注入する孔としても良レ、。こ の薄い部分は天然歯では窩と呼ばれ、齲蝕の発現部分となりやすぐより再現性の 取れた歯牙となり好ましい。この孔は歯間部分で有っても好ましい。前歯などでは隣 接歯との間で齲蝕が発生しやすぐ再現性の取れた歯牙となり好ましいからである。
[0114] これらの方法以外に多くの組合せを実施することができる。簡単な組合せを以下に 示す。
エナメル部分、デンチン部分、擬似齲蝕部分の組合せ表として、表 1に示す。
[0115] [表 1]
Figure imgf000027_0001
*:デンチン部分に着色材ゃ UV励起顔料、 X線造影材を含浸させて擬似齲蝕部分とする。
Figure imgf000027_0002
[0116] この組合せ表の説明をする。上の表に示されている各数字は、下の表で示されて レ、る数字である。下の表に示している通り、エナメル部分を「1」と表示し、デンチン部 分を「2」と表示し、擬似齲蝕部分を「3」と表示している。
組合せ 1ではエナメル部分、デンチン部分、擬似齲蝕部分のすべてが無機粉末焼 成体で作製されている。また、上で示した様にエナメル部分、デンチン部分、擬似齲 蝕部分という順に軟カ、くなる(切削しやすい)ことが好ましい。例えばアルミナ粉末で 作製する場合はエナメル部分の組成が一次粒子 0.1 μ m、歯牙デンチン部分の組成 がー次粒子径 2 μ m、擬似齲蝕部分の組成が一次粒子径 5 μ mと粗くすることで焼 成体は切削しやすく構成でき、切削過程で齲蝕を検知することができる。
[0117] 組合せ 2ではエナメル部分、デンチン部分が無機粉末焼成体で作製されている。
擬似齲蝕部分がコンポジットで作製されている。また、上で示した様にエナメル部分、 デンチン部分の順に軟カベなることが好ましい。
組合せ 3は、組合せ 2の擬似齲蝕部分が熱硬化性樹脂または架橋剤入り熱可塑性 樹脂で作製されている。組合せ 2、組合せ 3共に好ましい組合せである。
他の組合せも同様に、無機粉末焼成体、コンポジット、 "熱硬化性樹脂、架橋剤入り 熱可塑性樹脂"、熱可塑性樹脂、デンチン部分に含浸 (*)から、エナメル部分、デン チン部分、擬似齲蝕部分の好ましい材質を選んだ。
[0118] "デンチン部分に含浸 (*)"は擬似齲蝕部分のみの対応で、作製したデンチン部分 に着色材料、蛍光材料、 X線造影材料を含浸して作製する。この方法はデンチン部 分ど削りやすさなどで差を付けることができないが、歯牙組成が無機粉末焼成体であ る場合などは従来の歯牙模型に比べて、天然歯に近い切削の練習ができる。
擬似齲蝕部分がエナメル部分、デンチン部分より軟カベなる (切削しやすい)ことが 好ましレ、。エナメル部分、デンチン部分、擬似齲蝕部分という順に軟カ、くなる (切削し やすい)ことが好ましい。齲蝕切削を研削材の感覚で判断する練習になるからである また、エナメル部分は無機粉末焼成体、コンポジット、 "熱硬化性樹脂、架橋剤入り 熱可塑性樹脂"が好ましぐ更に無機粉末焼成体、コンポジットが好ましぐまた更に 無機粉末焼成体が好ましい。エナメル質と切削感覚が近似している硬質であることが 好ましい。 デンチン部分は無機粉末焼成体、コンポジット、 "熱硬化性樹脂、架橋剤入り熱可 塑性樹脂"、熱可塑性樹脂が好ましぐ更に無機粉末焼成体、コンポジット、 "熱硬化 性樹脂、架橋剤入り熱可塑性樹脂"が好ましぐ更に無機粉末焼成体、コンポジット が好ましぐまた更に無機粉末焼成体が好ましい。デンチン質と感覚が似ているから である。熱可塑性樹脂は一応使用に耐える程度である。切削時に軟ィ匕することも少 なくない。
擬似齲蝕部分は"熱硬化性樹脂、架橋剤入り熱可塑性樹脂"、熱可塑性樹脂、 "デン チン部分に含浸"等が実施でき、 "熱硬化性樹脂、架橋剤入り熱可塑性樹脂"、熱可 塑性樹脂、が好ましい。含浸させただけでは、切削感覚が変わらないので、切削感 覚を異にする練習に用レ、る事ができなレ、。
実施例
[0119] 歯牙形体のエナメル部分とデンチン部分のメス型の金型を掘り出し、 目的形状を射 出成形できる金型を作製した。エナメル部分もデンチン部分も成形後、脱脂、焼成に より収縮が発生する為、その部分を事前に大きく計算して金型を作製した。材料ごと に金型を調整して実施した。
[0120] [第 1の態様の顎歯模型用歯牙の作製]
(実施例 1)
エナメル部分の原料としての CIM用アルミナペレット(Al O力 ¾6%、 SiO力 44%
2 3 2
、平均粒径 0. 25 a m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出 成形し射出体を得た。
作製されたエナメル部分の形をした射出体を、脱脂、焼成(1300度、係留時間 10 分)として焼成体 1一 1を得た。
デンチン部分の原料としての CIM用アルミナペレット(Al O力 ¾6%、 SiO力 44
2 3 2
%、平均粒径 3. 0 x m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出 成形し射出体を得た。
作製されたデンチン部分の形をした射出体を、脱脂、焼成(1000度、係留時間 10分 )として焼成体 1 2を得た。
[0121] エナメル部分の原料としての CIM用アルミナペレット(Al O力 8%、 SiO力 ¾%、 平均粒径 0. 3 /i m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成形 し射出体を得た。
作製されたエナメル部分の形をした射出体を、脱脂、焼成(1550度、係留時間 10 分)として焼成体 2 - 1を得た。
デンチン部分の原料としての CIM用アルミナペレット(Al O力 S68%、 Si〇カ¾%
2 3 2
、平均粒径 5. 0 x m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成 形し射出体を得た。
作製されたデンチン部分の形をした射出体を、脱脂、焼成(1400度、係留時間 15 分)として焼成体 2— 2を得た。
[0122] 得られた焼成体 1 _ 1、 1 - 2, 2 - 1 , 2 _ 2のエナメル部分とデンチン部分を各種 の接着材で接合した焼成体 1、 2の切削感を確認した。焼成体はそれぞれ 30個作製 し試験を行なった。
[0123] (エポキシ樹脂)
触媒を添加したエポキシ樹脂を作製したエナメル部分とデンチン部分の界面に塗り 接着した。 72時間放置後、ダイヤモンドバーで切削感を確認した。
[0124] (セラミック接着材)
セラミック接着材を作製したエナメル部分とデンチン部分の界面に塗り接着した。 7 2時間放置後、ダイヤモンドバーで切削感を確認した。
[0125] (セメント材料)
粉液混練タイプのセメントで、イオン性ポリマーとガラスを反応させて硬化するタイプ のセメント材料を用いた。エナメル部分とデンチン部分の界面に塗り接着した。 72時 間放置後、ダイヤモンドバーで切削感を確認した。
[0126] ( a -シァノアクリレートモノマー系接着材)(略称:ひ接着材)
登録商標ァロンアルファ一として売られてレ、る接着材で、エナメル部分とデンチン 部分の界面に塗り接着した。 72時間放置後、ダイヤモンドバーで切削感を確認した
[0127] [表 2] 焼成体 1 接着性 切削感 チッビング
エポキシ樹脂 A A A
セラミックス接着剤 A A A
セメント材料 A A B
α接着剤 A A B
焼成体 2 接着性 切削感 チッビング
エポキシ樹脂 A A A
セラミックス接着斉 IJ A A A
セメント材料 A A B
α接着剤 A A B
A :天然歯同様に良好な結果であった。
B :十分に接着していることは確認できた力 S、一部チッビングが発生した。
[0128] 焼成体 1に比べて焼成体 2の方がデンチン部分及びエナメル部分双方とも天然歯 牙の切削感と近かった。
切削に関しては両者良好な状況であった。セメント材料やひ接着剤はチッビングが 見られたものの、天然歯牙と同様な切削感を得られた。
[0129] (比較例 1 )
歯牙形体のエナメル部分とデンチン部分のメス型の金型を掘出し、 目的形状を作 製した。
比較例 1では二層構造にできる射出成形金型を作製し、デンチン部分とエナメル部 分を成形した成形体を得られる様にした。
エナメル部分の原料としての CIM用アルミナペレット(Al O力 26 %、 SiO力 ¾4%
2 3 2
、平均粒径 0. 25 μ ΐη,ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出 成形した。
デンチン部分の原料としての CIM用アルミナペレット(Al O力 26 %、 SiO力 ¾4
2 3 2
%、平均粒径 3· Ο μ τη,ステアリン酸 30%) 1kgを用いて、エナメル部分に続いて歯 牙形体の金型に、射出成形し射出体を得た。
作製された歯牙の形をした射出体を、脱脂、焼成(1 100度、係留時間 10分)として 焼成体 3を得た。焼成体は 30個作製し試験を行なった。
[0130] エナメル部分の原料としての CIM用アルミナペレット(Al O力 S68%、 SiOカ¾%、
2 3 2 平均粒径 0. 3 z m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成型 した。 デンチン部分の原料としての CIM用アルミナペレット(Al O力 8%、 Si〇力
2 3 2
、平均粒径 5· Ο μ τη,ステアリン酸 30%) 1kgを用いて、エナメル部分に続いて歯牙 形体の金型に、射出成形し射出体を得た。
作製された歯牙の形をした射出体を、脱脂、焼成(1500度、係留時間 15分)として 焼成体 4を得た。焼成体は 30個作製し試験を行なった。
[0131] 焼成体 3および 4は、収縮率の違レ、から、エナメル部分とデンチン部分との境に亀 裂が見られ、多くの物は接着されていなかった。切削途中に破折ゃチッビングが見ら れた。
[0132] (実施例 2)
ペレット作製時のバインダ量が焼成体の収縮率に与える影響を見るために、ステア リン酸の量を 18%とする以外は、比較例 1と同様にして、焼成体 5および 6を作製した 焼成体 5および 6は、エナメル部分とデンチン部分とが十分に接着されていて、デン チン部分及びエナメル部分双方とも天然歯牙の切削感と近かった。
[0133] デンチン部分とエナメル部分の熱膨張や焼成時の収縮が異なることから発生する 切削途中の破折ゃチッビングは、ペレット作製時のバインダ量を制御することによつ て、解消することができることが分かった。
[0134] (実施例 3)
実施例 1と同じ様に作製して得られた焼成体 1— 1、 1— 2、 2— 1、 2— 2のェナメノレ 部分とデンチン部分とを低融点ガラス粉末を用いて焼成して接合して切削感を確認 した。
ガラス粉末にヘラウス社製の IP9021 (低融点ガラス、 575°C焼成)を用いた場合を焼 成体 7、 IP9049 (低融点ガラス、 610°C焼成)を用いた場合を焼成体 8とした。
[0135] [表 3]
Figure imgf000032_0001
A:天然歯同様に良好な結果であった。
B:十分に接着していることは確認できた力 一部チッビングが発生した。 c:従来の歯牙より優れてレ、る。
[0136] 接着性にっレ、て、デンチンとエナメルは接着して一体となった。天然歯に近レ、切削 感は得られたが、接着界面での割れが発生した。十分に接着していることは確認でき た力 一部チッビングが発生した。接着材のガラスが界面全体に行届かなかったこと から、接着していない面ができ、その部分がチッピング等を起こしたと思われる。 焼成体 7、 8は焼成により、ガラス質が溶け、デンチン部分とエナメル部分が接着さ れたが、切削時に界面のガラス部分に亀裂が入り、ガラス質の接着層から剥離ゃチ ッビングが発生した。
実施例 1の様に接着性ゃチッビングなどに課題を残すものの、切削感については 多大な効果があった。
[0137] (実施例 4)
実施例 1と同じ様に作製して得られた焼成体 1— 1、 1— 2、 2— 1、 2— 2のェナメノレ 部分とデンチン部分をエポキシ樹脂、セラミック接着材、セメント材料、 α接着材を用 いて接合して切削感を確認した。但し、膜厚を制御する為に 700 μ m、 400 μ m、 350 μ m、 250 μ m、 150 /i m、 50 μ m、 20 μ mのアルミナ粉末を各接着材 3%混合してェ ナメル部分とデンチン部分膜厚を制限した。
接着層の厚みを規定した歯牙を作製した後、切断して接着層を顕微鏡で測定した 。各接着層の厚みの規定の為の用いたアルミナ粉末よりも数十ミクロン厚く作製され ていることを確認した。
[0138] [表 4]
焼成体 1 接着'生 切削感 チッビング
700jt mのアルミナ粉末 B C B
400 jUmのアルミナ粉末 B B B
350jt mのアルミナ粉末 B B B エポキシ樹脂 250 jUmのアルミナ粉末 B B A
150jUmのアルミナ粉末 A B A
50 jt/mのアルミナ粉末 A A A
20 /mのアルミナ粉末 A EX A
700 jUmのアルミナ粉末 B C B
400jt/mのアルミナ粉末 B B B
350 / mのアルミナ粉末 B B B セラミックス接着剤 250 jUmのアルミナ粉末 B B A
150jUmのアルミナ粉末 A B A
50 jt/mのアルミナ粉末 A A A
20 jUmのアルミナ粉末 A EX A
700 jUmのアルミナ粉末 C C C
400jt/mのアルミナ粉末 C B C
350 / mのアルミナ粉末 C B B セメント材料 250 jUmのアルミナ粉末 B B B
150jt/mのアルミナ粉末 B B B
50/ mのアルミナ粉末 A A B
20 jUmのアルミナ粉末 A A B
700 mのアルミナ粉末 C C C
400jt/mのアルミナ粉末 C B C
350jt mのアルミナ粉末 C B B α接着剤 250 mのアルミナ粉末 B B B
150 mのアルミナ粉末 B B B
50 mのアルミナ粉末 A A B
20 mのアルミナ粉末 A A B 焼成体 2 接着性 切削感 チッビング
700 jUmのアルミナ粉末 B C B
400jt/mのアルミナ粉末 B B B
350jt/mのアルミナ粉末 B B B エポキシ樹脂 250 jUmのアルミナ粉末 B B A
150jt/mのアルミナ粉末 A A A
50 jUmのアルミナ粉末 A EX A
20 jUmのアルミナ粉末 A EX A
700 jUmのアルミナ粉末 B C B
400jt/mのアルミナ粉末 B B B
350 jUmのアルミナ粉末 B B B セラミックス接着剤 250 mのアルミナ粉末 B B A
150jt/mのアルミナ粉末 A A A
50 mのアルミナ粉末 A EX A
20 jUmのアルミナ粉末 A EX A
700jt mのアルミナ粉末 C C C
400 jUmのアルミナ粉末 C B C
350jt mのアルミナ粉末 C B B セメント材料 250jt/mのアルミナ粉末 B B B
150jUmのアルミナ粉末 B A B
50 jt/mのアルミナ粉末 A A B
20 / mのアルミナ粉末 A A B
700 jUmのアルミナ粉末 C C C
400 jUmのアルミナ粉末 C B C
350jt/mのアルミナ粉末 C B B α接着剤 250 mのアルミナ粉末 B B B
150jUmのアルミナ粉末 B A B
50 jt/mのアルミナ粉末 A A B
20 / mのアルミナ粉末 A A B EX :極めて、天然歯同様に良好な結果であった。
A :天然歯同様に良好な結果であった。
B:十分に接着していることは確認できた力 一部チッビングが発生した。 C:従来の歯牙より優れてレ、る。
[0139] 接着材の種類にもよる力 混合するアルミナ粉末の粒径が 700 μ mを超えると、切削 時に接着層の切削感を感じる傾向が強かった。 500 μ以下程度であれば、切削練習 に使用できると思われる。更に接着層が薄くなるにつれて、接着材の切削感を感じな くなつた。また、接着材の種類にも関連するが、 500 z m以下から大きく接着材の切削 感を感じなくなった。更に、 300 z m以下からチッピングも少なくなり、接着も強固にな つていると感じられた。更に、 200 x m以下では接着も十分に行なわれ、マージン部 分も違和感無く切削できた。また、 100 x m以下から接着をしているという感覚が薄れ 、違和感無くエナメル層からデンチン層へ移行した。
[0140] (実施例 5)
一次粒子径 3.0 μ ΐηの Al O粉末 700gとステアリン酸 300g (30%)を加温混練し、デ
2 3
ンチン形状の金型に射出した。射出した成形体を 600°C3時間にて脱脂し、 1400°Cで 焼成した。焼成温度での係留時間は 15分とした。 自然放冷した結果、デンチン部分 が完成した。
一次粒子径 0.3 μ ΐηの A1〇粉末 700gとステアリン酸 300g (30%)を加温混練し、
2 3
エナメル形状の金型に射出した。射出した成形体を 600°C3時間にて脱脂し、 1500°C で焼成した。焼成温度での係留時間は 15分とした。 自然放冷した結果、エナメル部 分が完成した。
完成したエナメル部分とデンチン部分とをエポキシ樹脂で接着して完成とした。試 験結果を表 6に示す。試験には歯科用ダイヤモンドバーを用いた。
[0141] (実施例 6〜: 10、比較例 2〜6)
実施例 5に倣い、実施例 6〜: 10、比較例 2〜6を行なった。実施例 5と異なる点を表 5に示し、試験結果を表 6に示す。
[0142] [表 5]
Figure imgf000036_0001
アルミナ アルミナ バインダ
脱脂温度 成形温度 デンチン 平均粒子怪 配合量 パインダ 配合量
(°c) (°c)
( jU m) ) )
実施例 5 3.0 700ステアリン酉 g 300 600 1400 実施例 6 2.0 700ステアリン酉 300 600 1500 実施例 7 3.0 700ステアリン酉 g 300 600 1600 実施例 8 5.0 700ホ 'リビニルアルコール 300 600 1500 実施例 9 2.0 650ステアリン酉 350 600 1400 実施例 1 0 2.0 650ホリビニルアルコ―ル 350 600 1500 比較例 2 3.0 700ステアリン酉 g 300 600 1100 比較例 3 3.0 700ステアリン酉 300 600 1800 比較例 4 0.5 700ホリビニルアルコ―ル 300 600 1500 比較例 5 20.0 650ステアリン酉 g 350 600 1400 比較例 6 20.0 650ホ"リビニルアルコ―ル 350 600 1800
[表 6]
Figure imgf000036_0002
(切削性、支台歯成形性、窩洞成形性の評価は、天然歯との近似性で行っている。
A:良好、 B :普通、 C :不良)
デンチンエナメル移行性とは、デンチン部分とエナメル部分の界面を研削材が移 行する折の切削感を意味し、デンチンエナメル移行性が天然歯に近似してレ、るかど うかを確認した。
[0145] 実施例 5〜: 10は、成形性、切削性、支台歯形成性、窩洞形成性、デンチンェナメ ル移行性、共に良好に作製できた。
比較例 2は、焼成温度が低い為に十分な焼成が行なわれず、全体として柔らかな 切削感となった。
比較例 3は、焼成温度が高い為に過剰な焼成が行なわれ、全体として硬い切削感 となった。切削時に小さなチッビング (割れ)が見られた。
比較例 4は、エナメル部分が軟かぐデンチン部分が硬くなつた。天然歯の切削感と 大きくかけ離れた。
比較例 5は、エナメル部分デンチン部分共に柔らかくなった。天然歯の切削感と大 きくかけ離れた。
比較例 6は、エナメル部分デンチン部分共に比較例 5よりは硬くなつた。天然歯の 切削感と大きくかけ離れた。
[0146] (実施例 11〜: 15、比較例 7〜: 11)
デンチン部分およびエナメル部分を同一組成で実施した実施例および比較例を以 下で示す。成形方法は実施例 5に従い表 7の条件で実施した。金型は歯牙の金型を 用いた。試験結果を表 8に示す。
[表 7]
Figure imgf000037_0001
[0147] [表 8] 支台歯 窩洞
成形性 切削性
形成性 形成性
実施例 1 1 A A A A
実施例 1 2 A A A A
実施例 1 3 A A A A
実施例 1 4 A A A A
実施例 1 5 A A A A
A C C C
比較例 8 A C C C
比較例 9 A C C C
比較例 1 0 A C C C
比較例 1 1 A C C C
(切削性、支台歯成形性、窩洞成形性の評価は、天然歯との近似性で行っている。
A:良好、 B :普通、 C :不良)
実施例 11〜: 15は、成形性、切削性、支台歯形成性、窩洞形成性、共に良好に作 製できた。
デンチンエナメル移行性については一体成形であるため見られなレ、が、口腔内の 治療の練習として十分に耐え得るものであった。
比較例 7は、焼成温度が低い為に十分な焼成が行なわれず、全体として柔らかな 切削感となった。
比較例 8は、焼成温度が高い為に過剰な焼成が行なわれ、全体として硬い切削感 となった。切削時に小さなチッビング (割れ)が見られた。
比較例 9は、軟かくなつた。天然歯の切削感とかけ離れた。
比較例 10は、比較例 9よりも柔ら力べなった。天然歯の切削感と大きくかけ離れた。 比較例 11は、比較例 10よりは硬くなつた。天然歯の切削感と大きくかけ離れた。
[0148] (実施例 16)
歯牙形体のエナメル部分とデンチン部分のメス型の金型を掘出し、 目的形状を射 出成形できる金型を作製した。エナメル部分もデンチン部分も成形後、脱脂、焼成に より収縮が発生する為、その部分を事前に大きく計算して金型を作製した。材料ごと に金型を調整して実施した。エナメルの収縮は約 10%であり、デンチンの収縮は約 5 %程度であった。
[0149] (焼成体 9)
エナメル部分の原料としての CIM用アルミナペレット(Al O力 ¾6%、 SiO力 44% 、平均粒径 0· 25 μ ΐη,ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出 成形し射出体 7—1を得た。
デンチン部分の原料としての CIM用アルミナペレット(Al O力 26 %、 Si〇力 ¾4
2 3 2
%、平均粒径 3. 0 x m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出 成形し射出体 7— 2を得た。
作製されたデンチン部分の上にエナメル部分を下記のガラス粉末を介在させて、脱 脂、焼成(1200度、係留時間 10分)として焼成体 9を得た。
[0150] (焼成体 10)
エナメル部分の原料としての CIM用アルミナペレット(Al O力 100%、平均粒径 0
2 3
. 3 z m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成形し射出体 8 _ 1を得た。
デンチン部分の原料としての CIM用アルミナペレット(Al O力 S68%、 Si〇カ¾%
2 3 2
、平均粒径 5· Ο μ τη,ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成 形し射出体 8— 2を得た。
作製されたデンチン部分の上にエナメル部分を下記のガラス粉末を介在させて、脱 脂、焼成(1400度、係留時間 15分)として焼成体 10を得た。
ガラス粉末には、平均粒子系 0.5 /i m最大粒系 2.0 μ ΐηの溶融シリカを用いた。
[0151] (焼成体 1 1、 12)
上記と同じ様に作製して得られた焼成体 9— 1、 9— 2、 10— 1、 10— 2のェナメノレ 部分とデンチン部分を石英ガラス粉末を介在させて焼成して焼成体 1 1、 12を得た。
[0152] 焼成体 9〜: 12の評価として、切削試験、及び接着状態試験を行った。
切削試験では、焼成体 9〜: 12全てにおいて、良好な切削感であることが確認でき た。
接着状態試験は焼成体 9〜: 12を約 5ミリ間隔でダイヤモンドディスクを用いてスライ スして、接着状態を確認した。焼成体 9〜: 12全てにおいて、良好な接着状態であるこ とが確認できた。
[0153] [第 2の態様の顎歯模型用歯牙の作製]
(実施例 17) 一次粒子径 0· 3 111の八1 Ο粉末 700gとステアリン酸 300g (30%)を加温混練し、
2 3
エナメル形状の金型に射出した。射出した成形体を 600°C3時間にて脱脂し、 1500°C で焼成した。焼成温度での係留時間は 15分とした。 自然放冷した結果、エナメル部 分が完成した。
完成したエナメル部分を歯牙形状の金型に納め、残りのデンチン部分にエポキシ 樹脂を射出して完成とした。試験結果を表 10に示す。試験には歯科用ダイヤモンド バーを用いた。
[0154] (実施例 18〜22、比較例 12〜: 16)
実施例 17に倣い、実施例 18〜22、比較例 12〜: 16を行なった。実施例 17と異なる 点を表 9に示し、試験結果を表 10に示す。
[0155] [表 9]
Figure imgf000040_0001
[0156] [表 10]
Figure imgf000040_0002
(切削性、支台歯成形性、窩洞成形性の評価は、天然歯との近似性で行っている。 A:良好、 B :普通、 C :不良)
[0157] 各評価は歯牙模型の切削において、支台歯成形ゃ窩洞成形が天然歯のような切 削感があるかどうかで確認した。天然歯牙の様にエナメル質と象牙質との間で、の切 削感覚が変わることや造形時の切削感が天然歯牙と近似しているかどうかで評価し た。
Aは天然歯牙と近似している場合の評価であり、 Cは、天然歯牙と掛け離れており、 硬すぎる力、または軟らかすぎる場合に評価し、市販の樹脂歯牙程度の使用感である 場合の評価とした。 Bはその中間あたりの評価とした。
デンチンエナメル移行性とは、デンチン層とエナメル層の界面を研削材は移行する 折に切削感が天然歯に近似しているかどうかを確認した。
[0158] 実施例 17〜22は、成形性、切削性、支台歯形成性、窩洞形成性、デンチンェナメ ル移行性、共に良好に作製できた。
比較例 12は、エナメルの焼成温度が低い為に十分な焼成が行なわれず、全体とし て柔らかな切削感となった。
比較例 13は、エナメルの焼成温度が高い為に過剰な焼成が行なわれ、全体として 硬い切削感となった。切削時に小さなチッビング (割れ)が見られた。
比較例 14は、エナメル層が軟かくなつた。天然歯の切削感と大きくかけ離れた。 比較例 15は、エナメル層が柔ら力べなった。天然歯の切削感と大きくかけ離れた。 比較例 16は、エナメル層が比較例 15よりは硬くなつた。天然歯の切削感と大きくか け離れた。
[0159] (実施例 23〜27、比較例 17〜21)
エナメル部分を実施例 18〜22、比較例 12〜: 16と同一組成で実施し、デンチン部 分にアルミナ粉末 75%、エポキシ樹脂 25%を混合したコンポジットを用いた実施例 および比較例を以下で示す。成形方法は実施例 17に従い実施した。金型は歯牙の 金型を用いた。試験結果を表 11に示す。
[0160] [表 11] 支台歯 窩洞
成形性 切削性
形成性 形成性
実施例 23 A A A A
実施例 24 A A A A
実施例 25 A A A A
実施例 26 A A A A
実施例 27 A A A A
比較例 1 7 A C C C
比較例 1 8 A C C C
比較例 1 9 A C C C
比較例 20 A C C C
比較例 21 A C C C
(切削性、支台歯成形性、窩洞成形性の評価は、天然歯との近似性で行っている。
A:良好、 B :普通、 C :不良)
[0161] 実施例 23〜27は、成形性、切削性、支台歯形成性、窩洞形成性、共に良好に作 製できた。
デンチンエナメル移行性については一体成形であるため見られなレ、が、口腔内の 治療の練習として十分に耐え得るものであった。デンチンの切削性が実施例 17〜2 2に比べて良くなつた。
比較例 17は、焼成温度が低い為に十分な焼成が行なわれず、全体として柔らかな 切削感となった。
比較例 18は、焼成温度が高い為にエナメル部分の過剰焼成が行なわれ、全体とし て硬い切削感となった。切削時に小さなチッビング (割れ)が見られた。
比較例 19は、エナメル部分が軟力べなった。天然歯の切削感と大きくかけ離れた。 比較例 20は、エナメル部分が柔ら力べなった。天然歯の切削感と大きくかけ離れた 比較例 21は、比較例 20よりもエナメル部分が硬くなつた。天然歯の切削感と大きく 力、け離れた。
デンチン部分がアルミナのコンポジットとなったことから、デンチンの切削性は向上 したと共に、エナメル部分からデンチン部分への移行性も向上した。
[0162] (実施例 28)
エナメル部分を実施例 17と同一組成で実施し、デンチン部分にコンポジットを用い た実施例を作製した。 コンポジットは、アルミナ粉末 55%、酸化亜鉛 20%、エポキシ樹脂 25%を混合して 作製した。エナメル部分の成形方法は実施例 1に従い実施した。金型は歯牙の金型 を用いた。試験として、窩洞形成し、歯牙模型を歯科用レントゲンで撮影したところ、 デンチン形状が容易に撮影することができた。
[0163] (実施例 29)
エナメル部分を実施例 17と同一組成で実施し、デンチン部分にセメントを用いた実 施例を作製した。
セメントは、アルミノシリケートガラス 93. 5%および酒石酸 6. 5%からなる粉剤 2. 6 gと、ポリアクリル酸 45%およびトリカルボン酸 55%からなる液剤 1. Ogを混練して作 製した。エナメル部分の成形方法は実施例 1に従い実施した。金型は歯牙の金型を 用いた。試験として、窩洞形成し、歯牙模型を歯科用レントゲンで撮影したところ、デ ンチン形状が容易に撮影することができた。
[0164] (実施例 30)
一次粒子径 3.0 μ ΐηのジルコニァ(ZrO )粉末 500g、シリカ(SiO )粉末 200gとステア
2 2
リン酸 300g (30%)を加温混練し、エナメル形状の金型に射出した。射出した成形体 を 600°C3時間にて脱脂し、 1300°Cで焼成した。焼成温度での係留時間は 2時間とし た。 自然放冷した結果、エナメル部分が完成した。他は実施例 17と同様に歯牙を作 製した。
アルミナを主成分とする歯牙に比べると、切削感が劣る部分もある。しかし、樹脂や コンポジットのエナメル歯牙に比べると、容易に削れ過ぎることも無ぐ軟かくなぐ天 然歯牙に近い切削感であった。また、ガラス質に比べると、チッビングを起こすことも 無ぐ天然歯牙に近い切削感であった。デンチンへの移行部分も今までの歯牙模型 には無い、エナメル質と象牙質の移行感覚であり、天然歯牙を利用しなくても治療の 練習をすることができた。
[0165] [無機粉末焼成体への粘り気の付与]
(実施例 31〜49、比較例 22〜25)
(歯牙の焼成体作製)
歯牙形体の形状を射出成形できる金型を作製した。歯牙の原料としての CIM用ァ ノレミナペレット(Al O力 26 %、 SiO力 ¾4%、平均粒径 3 · 0 /i m、ステアリン酸 30%
2 3 2
) 1kgを用いて、歯牙形体の金型に、射出成形し射出体を得た。
作製された歯牙部分の形をした射出体を、脱脂、焼成(1300°C、係留時間 10分) として焼成体 13を得た。
[0166] (エナメル部分とデンチン部分の焼成体作製)
歯牙形体のエナメル部分とデンチン部分の形状を射出成形できる金型を作製した
。エナメル部分もデンチン部分も成型後、脱脂、焼成により収縮が発生する為、その 部分を事前に大きく計算して金型を作製した。材料ごとに金型を調整して実施した。
[0167] エナメル部分の原料としての CIM用アルミナペレット(Al O力 ½8%、 SiOカ¾%、
2 3 2 平均粒径 0. 3 z m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成形 し射出体を得た。
作製されたエナメル部分の形をした射出体を、脱脂、焼成(1550°C、係留時間 10 分)として焼成体 14 1を得た。
デンチン部分の原料としての CIM用アルミナペレット(Al O力 8%、 SiO力
2 3 2
、平均粒径 5· Ο μ τη,ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成 形し射出体を得た。
作製されたデンチン部分の形をした射出体を、脱脂、焼成(1400°C、係留時間 15 分)として焼成体 14 2を得た。
[0168] (含浸)
得られた焼成体 13、 14—1、 14— 2を以下の各含浸材料中に包坦し、真空容器に 入れ、真空にすることで焼成体の空隙部分に十分に含浸したことを確認し、焼成体 1 4—1、 14— 2は接合し、エポキシ樹脂の接着材で接着させた。
作製された歯牙の切削感を確認した。焼成体はそれぞれ 30個作製し試験を行なつ た。
[0169] (試験を行なった含浸材料)
パラフィンワックス(日本精株式会社、パラフィンワックス標準品):焼成体の包埋前に 十分に加熱し、液化してレ、ることを確認した。
蜜蠟(みざらし密ロウワックス):焼成体の包坦前に十分に加熱し、液化していることを 確認した。
セルロース (信越化学工業株式会社、 SM-8000):触媒を添加したシリコーン樹脂を 用いた。 72時間放置後、ダイヤモンドバーで切削感を確認した。
コンニヤクマンナン (伊那食品工業):適当な硬さになるようにお湯で溶かし、加熱した
。デシケータに入れる前に凝固剤を投入した。
寒天 (伊那食品工業):適当な硬さになるようにお湯で溶かし、加熱した。
ゼラチン (新田ゼラチン):適当な硬さになるようにお湯で溶かし、加熱した。
エポキシ樹脂(低粘度エポキシレジン Z-2/H-07):触媒を添加したエポキシ樹脂 を用いた。 72時間放置後、ダイヤモンドバーで切削感を確認した。
アクリル樹脂(クラレ製、 MMAモノマー):ィ匕学重合触媒を添加したアクリル樹脂を用 いた。 72時間放置後、ダイヤモンドバーで切削感を確認した。
シリコーン樹脂 (RTVシリコーン樹脂 M8017 :旭化成):触媒を添加したシリコーン樹 脂を用いた。 72時間放置後、ダイヤモンドバーで切削感を確認した。
比較例 22〜25は含浸させていない焼成体を用いた。
[0170] 試験方法は、 400000回転/分という高速回転するダイヤモンド研削材(エアーター ビン使用)を用いて切削を行なった。実施例 31、 32、 37、 38は、注水を行なわずに 試験を行なった。その他の実施例および比較例は注水しながら試験を行なった。
[0171] [表 12]
切削 生体的
焼成体 1 3 含; ¾材料 切削感 チッビング
ネバさ ゥエツ卜感 実施例 31 パラフィンワックス B A A B
実施例 32 蜜蠟 B A A B
実施例 33 セルロース B A C C
実施例 34 コンニヤクマンナン B A B A
実施例 35 寒天 B A B A
実施例 36 ゼラチン B A B A
比較例 22 B A D D 切削 生体的
焼成体 1 4 含浸材料 切削感 チッビング
ネバさ ゥエツ卜感 実施例 37 パラフィンワックス A A A B
実施例 38 蜜蠟 A A A B
実施例 39 セルロース A A C C
実施例 40 コンニヤクマンナン A A B A
実施例 41 寒天 A A B A
実施例 42 ゼラチン A A B A
比較例 23 A A D D A:天然歯同様に良好な結果であった。
B (切削感):デンチンとエナメルとが十分に表現できていなかった。エナメル部分が 柔らかかったが、天然歯と同様な粘り気を感じた。
B (切削ネバさ):粘り気というより、若干の弾性感があった。
C (切削ネバさ):天然歯に比べ、粘り気が軟力べ感じた。
A (生体的ウエット感):天然歯同様に生体のウエット感があり、肉質を感じるウエット感 力 Sある。良好な結果であった。
B (生体的ウエット感):天然歯同様に生体のウエット感があった力 S、肉質感はあるもの の Aに比べてやや劣る。
C (生体的ウエット感):天然歯に比べ、生体のウエット感が異なる様に感じた。
D :切削時の粘りが感じられず、粉塵が大きく飛散した。
[0172] 実施例 31、 32、 37、 38は比較例 22、 23と比べて粘りが感じられ天然歯牙と同様 な切削感が得られた。象牙細管からの体液の感じも近似していた。切削された粉塵も 比較例 22と比べて少なぐ飛散も少なかった。注水の必要も無ぐ容易に切削が行な えた。注水せずに容易に歯牙切削練習をできることを確認した。また、天然歯同様に 生体のウエット感があったが、ワックスのとける感じが生体と少し異なっていた。
実施例 33、 39は比較例 22、 23と比べて粘りが感じられ天然歯牙に近い切削感が 得られた。
注水によりセルロースの溶出が見られた力 問題なく試験を終えた。切削された粉 塵も比較例 22と比べて少なぐ飛散も少なかった。しかし、生体のウエット感が異なる 様に感じた。
実施例 34、 35、 36、 40、 41、 42は実施例 33、 39と比べて粘りが感じられ天然歯 牙と同様な切削感が得られた。象牙細管からの体液の感じも近似していた。切削され た粉塵も比較例 22と比べて少なぐ飛散も少なかった。注水下でも、容易に切削体 験が行なえた。
注水下という実際の臨床使用環境にて容易に歯牙切削練習をできることを確認し た。また、天然歯同様に生体のウエット感があり、良好な結果であった。
[0173] (実施例 43) 含浸材料として、へット (牛脂)を用いて焼成体 13、 14を包坦して歯牙を作製した。 焼成体の包埋前に十分に加熱し、液化していることを確認した。 24時間冷却後、切 削した結果、切削感ゃ切削ネバさ、生体っぽいウエット感も良かった。特に生体っぽ いウエット感については他の材料に比べて優れていた。切削時の滑る感じや強く切 削し過ぎた場合の臭いまでも近かった。
[表 13]
Figure imgf000047_0001
A:天然歯同様に良好な結果であった。
B (切削感):デンチンとエナメルとが十分に表現できてレ、なかった。
B (切削ネバさ):粘り気というより、若干の弾性感があった。
D :切削時の粘りが感じられず、粉塵が大きく飛散した。
A (切削粉砕感):切削時における粉砕感がほとんど無ぐ生体歯牙を削る感覚であ つに。
B (切削粉碎感):切削時における粉碎感が感じられ、若干異なるものの生体歯牙を 削る感覚であった。
D :切削時の粘りが感じられず、粉塵が大きく飛散した。
実施例 44、 45は比較例 24と比べて粘り気が感じられ天然歯牙と同様な切削感が 得られた。切削された粉塵も比較例 24と比べて少なぐ飛散も少なかった。切削時に おけるセラミックス独特の粉砕感がほとんど無ぐ生体歯牙を削る感覚に近かった。 実施例 46は比較例 24と比べて粘り気が感じられ天然歯牙と同様な切削感が得ら れた。切削された粉塵も比較例 24と比べて少なぐ飛散も少なかった。実施例 44、 4 5に比べると飛散量が多かった。切削感も天然歯に近似している。実施例 44、 45に 比べると天然歯が持つ切削時の抵抗の感じが若干劣るように思われる。実施例 44、 45よりは劣るものの、天然歯牙の状態が再現できていた。
実施例 47、 48は比較例 25と比べて粘り気が感じられ天然歯牙と同様な切削感が 得られた。切削された粉塵も比較例 25と比べて少なぐ飛散も少なかった。エナメル 部分からデンチン部分へ移層時においても、粘り気を感じる天然歯同様の切削感で あった。切削時におけるセラミックス独特の粉砕感がほとんど無ぐ生体歯牙を削る感 覚に近かった。
実施例 49は比較例 25と比べて粘り気が感じられ天然歯牙と同様な切削感が得ら れた。切削された粉塵も比較例 25と比べて少なぐ飛散も少なかった。実施例 47、 4 8に比べると飛散量が多かった。切削感も天然歯に近似している。
エナメル部分からデンチン部分へ移層時においても、粘り気を感じる天然歯同様の 切削感であったが、実施例 47、 48に比べると天然歯と異なる抵抗の感じが若干劣る ように思われる。実施例 47、 48よりは劣るものの、天然歯牙の状態が再現できていた
[0176] [歯髄部分の形成]
(実施例 50〜55)
(燃焼性歯髄型の作製)
目的の歯の歯髄形状にしたワックスをシリコーンゴムにて型を取り、シリコーンゴムの 中にエポキシ樹脂を流し込み燃焼性歯髄型を得た。
[0177] (歯牙の焼成体作製)
歯牙形体の目的形状を射出成形できる金型を作製した。この金型に燃焼性歯髄型 を設置できるように止め部を設けた。歯牙の原料としての CIM用アルミナペレット (A1 O力 S260/0、 SiOカ 440/0、平均粒径 0. 3 z m、ステアリン酸 30ο/ο) 1kgを用レヽて、燃
2 3 2
焼性歯髄型を設置した歯牙形体の金型に、射出成形し射出体を得た。
作製された歯牙部分の形をした射出体を、脱脂、焼成(1300°C、係留時間 10分) として焼成体 15を得た。
[0178] (エナメル部分とデンチン部分の焼成体作製)
歯牙形体のエナメル部分とデンチン部分の目的形状を射出成形できる金型を作製 した。この金型に燃焼性歯髄型を設置できるように止め部を設けた。エナメル部分も デンチン部分も成型後、脱脂、焼成により収縮が発生する為、その部分を事前に大 きく計算して金型を作製した。材料ごとに金型を調整して実施した。
[0179] エナメル部分の原料としての CIM用アルミナペレット(Al O力 ½8%、 SiOカ¾%、
2 3 2 平均粒径 0. 3 z m、ステアリン酸 30%) 1kgを用いて、歯牙形体の金型に、射出成形 し射出体を得た。
作製されたエナメル部分の形をした射出体を、脱脂、焼成(1550°C、係留時間 10 分)として焼成体 16 - 1を得た。
デンチン部分の原料としての CIM用アルミナペレット(A1〇力 ½8%、 SiOカ¾%、
2 3 2 平均粒径 5. 0 μ m、ステアリン酸 30%) 1kgを用いて、燃焼性歯髄型を設置した歯牙 形体の金型に、射出成形し射出体を得た。
作製されたデンチン部分の形をした射出体を、脱脂、焼成(1400°C、係留時間 15 分)として焼成体 16— 2を得た。焼成体 16— 1、 16— 2は接合し、樹脂性接着材で接 着し、焼成体 16とした。
[0180] (歯髄材料の注入)
得られた焼成体 15、 16の歯髄の空間中に以下の各材料を注射器で注入した。 作製された歯牙の切削感を確認した。焼成体はそれぞれ 30個作製し試験を行なつ た。
[0181] (試験を行なった樹脂)
ポリビニルアルコール:ポリビュルアルコールを充填し乾燥した。 72時間放置後、ダイ ャモンドバーで切削感を確認した。
ウレタンゴム硬度 30 :化学重合触媒を添加したウレタンゴムを用いた。 72時間放置後 、ダイヤモンドバーで切削感を確認した。
シリコーンゴム(RTVシリコーンゴム樹脂 M8017 :旭化成):触媒を添カ卩したシリコーン ゴム樹脂を用いた。 72時間放置後、ダイヤモンドバーで切削感を確認した。
[0182] (比較例 26〜31)
比較例としてエナメルデンチン部分をエポキシで作製したもの(比較例 26〜28)と 、メラミン樹脂で作製したもの(比較例 29〜31)を用レ、、歯髄部分に実施例と同じ樹 脂を注入した。
[0183] (試験方法)
実施例 50〜55及び比較例 26〜31のサンプルを 10人の歯科医に以下の試験項 目の評価を依頼した。各サンプルは 3本ずつ、切削してもらった。以下の表 14には最 も多かった評価結果を示してレ、る。
露髄感覚とは、歯髄治療の為に咬合面からエナメル層、デンチン層と削っていき、 髄の部分に達した時の切削感覚を評価して貰った。
根管清掃とは、根管にリーマという細い切削工具を入れ、根管内の髄をかき出し清 掃することをレ、う。清掃性の評価結果を示してレ、る。
根管拡大とは、根管充填材を充填し易いように、清掃された根管内を拡張すること をいう。拡張性の評価結果を示している。
[0184] [表 14]
Figure imgf000050_0001
Figure imgf000050_0002
Figure imgf000050_0003
A:天然歯同様に良好な結果であった。
B :デンチンと髄の切削感が異なり十分に表現できていなかったが、練習には十分に iえられるものであった。
C :デンチンと髄との界面の切削感覚が異なり、天然歯と異なるものであった。
D :歯牙の切削感が全く異なり、露髄時の粘り気が感じられず、根管清掃、根管拡大 時も感覚が異なった。
[0185] 実施例 50、 53は、良好な露髄体験ができ、根管清掃は若干の硬さを感じるものの 、根管治療の体験を十分に感じることができた。髄の粘り気が感じられ、実施例 51、 5 2、 54、 55よりも評価できる部分もある。
実施例 51、 52、 54、 55は実施例 50、 53に比べても、良好な露髄体験ができ、根 管清掃や根管拡大などの根管治療の体験を十分に感じることができた。髄とデンチ ンとの界面の感覚が似てレ、た。根管清掃時の髄の取り出す感覚も近似してレ、た。 比較例 26、 28はエポキシやメラミン樹脂のデンチンとポリビュルアルコール、ウレタ ンゴム、シリコーンゴム等の界面状態が異なり、天然歯と近似の切削感を再現するこ とができなかった。露髄感覚は、露髄する時の感覚が大きく異なっていた。根管清掃 ではエポキシやメラミン樹脂と摺れる為、天然歯牙とは異なるものであった。根管拡大 は、デンチンを削り拡大する感覚が、大きく異なった。
[0186] [疑似齲蝕部分の形成]
(実施例 56)
一次粒子径 0.3 μ ΐηの Al O粉末 700gとステアリン酸 300g (30%)を加温し混練し、
2 3
エナメル形状の金型に射出した。射出した成形体を 600°C3時間にて脱脂し、 1500°C で焼成した。焼成温度での係留時間は 15分とした。 自然放冷した結果、エナメル部 分が完成した。エナメル形状のデンチンが接する部分に UV励起タイプの無機系蛍 光顔料を 10%とカーボンブラック 0. 2%を混合したエポキシ樹脂を少量付け、擬似 齲蝕部分とした。
次に、エナメル部分を歯牙形状の金型に納め、残りのデンチン部分にアイボリ一色 にしたエポキシ樹脂を射出して完成とした。試験には歯科用ダイヤモンドバ一を用い た。
[0187] (実施例 57〜61)
実施例 56に倣レ、、実施例 57〜61を行なった。実施例 56と異なる点を表 15に示す
[0188] [表 15]
Figure imgf000052_0001
[0189] 切削性、支台歯成形性、窩洞成形性の評価は、天然歯との近似性で行ったが、ど れも良好な結果であった。特にデンチンエナメル移行性とは、デンチン層とエナメル 層の界面を研削材は移行する折に切削感が天然歯に近似しているかどうかを確認し 、良好であった。
齲蝕部分では黒い部分を削除し、ブラックライトで齲蝕部分を正確に取り除けてい ることを確言忍できた。
[0190] (実施例 62〜67)
エナメル部分を実施例 56〜61のアルミナ粉末焼成体とし、デンチン部分にアルミ ナ粉末 75 %とエポキシ樹脂 25 %を混合したコンポジットを用レ、、擬似齲蝕部分にェ ナメル形状部分のデンチンが接する部分に UV励起タイプの無機系蛍光顔料を 10% を混合したエポキシ樹脂を少量付け擬似齲蝕部分とした。擬似齲蝕部分、デンチン 部分共にアイボリ一色を着色した。
成形方法は実施例 56に従い実施した。金型は歯牙の金型を用いた。
切削性、支台歯成形性、窩洞成形性の評価は、天然歯との近似性で行ったが、ど れも良好な結果であった。特にデンチンエナメル移行性とは、デンチン層とエナメル 層の界面を研削材は移行する折に切削感が天然歯に近似しているかどうかを確認し 、良好であった。
齲蝕部分の切削感が異なり、ブラックライトで齲蝕部分を正確に取り除けていること を確認できた。熟練者は容易に齲蝕部分の感覚を探ることができた力 初級者では 練習を重ねるにつれて、齲蝕部分を切削することができる様になった。
このことから齲蝕部分の切削を体験することが容易なことが確認された。
[0191] (実施例 68)
エナメル部分及びデンチン部分を実施例 62と同一組成で実施し、擬似齲蝕部分 に酸化亜鉛 20%、エポキシ樹脂 80%を混合したコンポジットを用いた歯牙を作製し た。成形方法は実施例 56に従い実施した。金型は歯牙の金型を用いた。試験として 、齲蝕除去し、歯牙模型を歯科用レントゲンで撮影したところ、齲蝕除去状況が容易 に撮影することができた。

Claims

請求の範囲
[1] エナメル部分およびデンチン部分を含む治療練習用の顎歯模型用の歯牙であつ て、前記エナメル部分が無機粉末の焼成体で形成され、前記デンチン部分が、樹脂 、コンポジットまたはセメント材で形成されていることを特徴とする顎歯模型用歯牙。
[2] 前記無機粉末が、アルミナ系、ジルコユア系、シリカ系、酸化チタン、窒化アルミま たは窒化ケィ素のセラミック粉末力 選択される請求項 1に記載の顎歯模型用歯牙。
[3] 前記エナメル部分が、アルミナ系セラミックス粉末の焼成体で形成されている請求 項 1に記載の顎歯模型用歯牙。
[4] 前記エナメル部分が、一次粒子径 0. 1〜: 1. 0 111の八1 O粉末の焼成体で形成さ
2 3
れている請求項 3に記載の顎歯模型用歯牙。
[5] 前記無機粉末の焼成体を構成する焼結粒子間に空隙部分が存在し、前記空隙部 分に、水溶性材料、熱溶解性材料または有機系材料が含浸されている請求項 1に記 載の顎歯模型用歯牙。
[6] 前記エナメル部分と前記デンチン部分の間もしくはその辺縁または前記エナメル部 分と前記デンチン部分の移行部分周辺のデンチン側に疑似齲蝕部分を有する請求 項 1に記載の顎歯模型用歯牙。
[7] 前記エナメル部分が、 SrO、 BaO、 Zn〇、 ZrOおよび La Oよりなる群力 選択さ
2 2 3
れる重金属元素酸化物を含有し、 X線造影性を有する請求項:!〜 6いずれかに記載 の顎歯模型用歯牙。
[8] 前記デンチン部分が、 Sr〇、 Ba〇、 Zn〇、 ZrOおよび La Oよりなる群から選択さ
2 2 3
れる重金属元素酸化物を含有し、 X線造影性を有する請求項:!〜 6いずれかに記載 の顎歯模型用歯牙。
[9] 前記疑似齲蝕部分が、 SrO、 BaO、 ZnO、 ZrOおよび La Oよりなる群から選択さ
2 2 3
れる重金属元素酸化物を含有し、 X線造影性を有する請求項 6に記載の顎歯模型 用 1¾牙。
PCT/JP2007/057148 2006-04-17 2007-03-30 顎歯模型用の歯牙およびその製造方法 WO2007119617A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP07740584.3A EP2011451B1 (en) 2006-04-17 2007-03-30 Tooth for dental arch model
JP2008510901A JP5276978B2 (ja) 2006-04-17 2007-03-30 顎歯模型用の歯牙およびその製造方法
CN2007800221801A CN101466327B (zh) 2006-04-17 2007-03-30 齿弓模型用牙齿及其制造方法
US12/226,452 US20090305211A1 (en) 2006-04-17 2007-03-30 Tooth for Dental Arch Model and Method for Producing the Same
US14/046,178 US8784112B2 (en) 2006-04-17 2013-10-04 Tooth for dental arch model and method for producing the same

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2006-113082 2006-04-17
JP2006113082 2006-04-17
JP2006-115048 2006-04-18
JP2006115048 2006-04-18
JP2006128172 2006-05-02
JP2006-128170 2006-05-02
JP2006-128172 2006-05-02
JP2006-128171 2006-05-02
JP2006128171 2006-05-02
JP2006128170 2006-05-02
JP2006130907 2006-05-10
JP2006-130907 2006-05-10
JP2006142878 2006-05-23
JP2006-142878 2006-05-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/226,452 A-371-Of-International US20090305211A1 (en) 2006-04-17 2007-03-30 Tooth for Dental Arch Model and Method for Producing the Same
US14/046,178 Continuation US8784112B2 (en) 2006-04-17 2013-10-04 Tooth for dental arch model and method for producing the same

Publications (1)

Publication Number Publication Date
WO2007119617A1 true WO2007119617A1 (ja) 2007-10-25

Family

ID=38609384

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2007/057148 WO2007119617A1 (ja) 2006-04-17 2007-03-30 顎歯模型用の歯牙およびその製造方法
PCT/JP2007/057146 WO2007119616A1 (ja) 2006-04-17 2007-03-30 顎歯模型用の歯牙およびその製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/057146 WO2007119616A1 (ja) 2006-04-17 2007-03-30 顎歯模型用の歯牙およびその製造方法

Country Status (4)

Country Link
US (3) US20090305211A1 (ja)
EP (2) EP2011451B1 (ja)
JP (2) JP5276978B2 (ja)
WO (2) WO2007119617A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200454623Y1 (ko) 2009-10-07 2011-07-15 이태경 발치실습용 장치
EP2544165B1 (de) * 2011-07-07 2015-06-10 Franz Sachs GmbH & Co. KG Lehrmodell zum Erlernen der Kariesbehandlung
RU2486601C1 (ru) * 2011-12-29 2013-06-27 Ирина Владимировна Пяткова Способ визуализации корневого канала удаленного зуба
EP2796110B1 (en) 2013-04-23 2017-06-07 Credentis AG Artificial tooth suitable as a caries model
US9659507B2 (en) * 2014-06-20 2017-05-23 Craig Barrington Process for clearing a tooth and illustrating the internal structure
JP2016095452A (ja) * 2014-11-17 2016-05-26 株式会社ニッシン 歯科実習用模型歯及びその製造方法
JP5859157B1 (ja) * 2015-04-01 2016-02-10 株式会社松風 圧縮成型歯牙
FR3036836B1 (fr) 2015-05-27 2017-06-09 Inserm (Institut Nat De La Sante Et De La Rech Medicale) Simulateur canalaire endodontique artificiel a base d'hydroxyapatite
WO2017010190A1 (ja) 2015-07-10 2017-01-19 株式会社寿技研 模擬動物器官の製造方法、模擬動物器官
GB201515722D0 (en) 2015-09-04 2015-10-21 Mars Inc Animal dentistry apparatus
AU367824S (en) * 2015-09-04 2016-03-22 Mars Inc Tooth sectioning model
CN109887391A (zh) * 2019-03-11 2019-06-14 四川大学 颜色分区式牙体预备训练模型
ES2786849B2 (es) * 2019-04-12 2021-06-01 Fundacion Univ San Antonio Modelo para docencia en disciplinas odontologicas
JP2021165222A (ja) * 2020-04-01 2021-10-14 株式会社松風 沈殿剤を用いた歯科切削加工用ジルコニア被切削体の製造方法
CN111449780B (zh) * 2020-05-18 2022-03-29 东莞市爱嘉义齿有限公司 一种拼接式金属义齿及制作方法
BE1027555B1 (fr) * 2020-07-03 2021-04-06 Univ Sichuan Modèle de formation à la préparation de dents de type à partition de couleur
EP3977959A1 (de) * 2020-09-30 2022-04-06 Ivoclar Vivadent AG Verfahren zur herstellung eines dentalen formkörpers
KR102286271B1 (ko) * 2020-10-27 2021-08-05 주식회사 하스 치아 보철수복을 위한 기성 크라운 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090650A (ja) * 1973-12-10 1975-07-19
JPH05216395A (ja) 1992-02-06 1993-08-27 Kanebo Ltd 歯牙模型及びその製造方法
JPH05241499A (ja) 1992-02-26 1993-09-21 Kanebo Ltd 歯牙模型
JPH05241498A (ja) 1992-02-26 1993-09-21 Kanebo Ltd 歯牙模型
JPH05241500A (ja) 1992-02-27 1993-09-21 Kanebo Ltd 歯牙模型
JPH1043209A (ja) * 1996-04-27 1998-02-17 G C Dentaru Prod:Kk 歯科用材料
JP2003010209A (ja) * 2001-07-04 2003-01-14 Toshiba Ceramics Co Ltd 人工歯牙
JP2003515429A (ja) * 1999-12-07 2003-05-07 イノツェルミック ゲセルシャフト フュール イノヴァティーヴェ ケラミック エムベーハー セラミック製の入れ歯の製造法並びにこの方法に従って製造された非常に丈夫なセラミック製の入れ歯
JP2004094049A (ja) 2002-09-02 2004-03-25 Nisshin:Kk 歯科実習用模型歯
JP2005234250A (ja) * 2004-02-20 2005-09-02 Nisshin:Kk 歯科実習用多層模型歯

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2750670A (en) * 1952-10-13 1956-06-19 Vigg John Dental model
US3367027A (en) * 1964-04-24 1968-02-06 Kato Kazuo Porcelain teeth having a new holding structure and method for manufacturing same
JPS6289983A (ja) 1985-10-16 1987-04-24 日本電気硝子株式会社 歯牙模型
JPH0650423B2 (ja) * 1985-11-13 1994-06-29 株式会社ニッシン 歯髄腔を有する歯牙模型の製造法
JPS62103081U (ja) * 1985-12-16 1987-07-01
EP0240643A1 (fr) * 1986-04-11 1987-10-14 Tyszblat Sadoun, Michèle Procédé de fabrication de prothèses dentaires
EP0252603A3 (en) 1986-06-06 1989-04-12 Mitsui Sekiyu Kagaku Kogyo Kabushiki Kaisha Adhesives for ceramics and processes for the bonding of ceramics using same
JPH0675593B2 (ja) 1986-06-06 1994-09-28 三井石油化学工業株式会社 セラミツクス用接着剤およびこの接着剤を用いたセラミツクスの接着方法
JPS6490068A (en) 1987-08-14 1989-04-05 Montedison Spa Metal base plate coated with liquid crystal polymer and method for manufacture thereof
JPH064371Y2 (ja) * 1987-12-09 1994-02-02 オリンパス光学工業株式会社 歯牙模型
US4902232A (en) * 1988-09-19 1990-02-20 Irving Neustadter Dental training model with artificial teeth set
US5284695A (en) * 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
US5120229A (en) * 1990-09-10 1992-06-09 The Curators Of The University Of Missouri Dental teaching model
JPH05105502A (ja) 1991-10-18 1993-04-27 Chichibu Cement Co Ltd 射出成形材料
JPH05216394A (ja) 1992-02-06 1993-08-27 Kanebo Ltd 歯牙模型
JPH07110804B2 (ja) * 1992-03-16 1995-11-29 山八歯材工業株式会社 コンポジットレジン歯及びその製造法
US6159417A (en) * 1994-09-19 2000-12-12 Trustees Of Boston University Method for fabricating ceramic network material
JP3217642B2 (ja) 1995-06-06 2001-10-09 日本碍子株式会社 棒状セラミック体の製造方法
EP0803241B1 (en) 1996-04-27 2006-06-14 GC Dental Products Corporation Dental material
US7655586B1 (en) * 2003-05-29 2010-02-02 Pentron Ceramics, Inc. Dental restorations using nanocrystalline materials and methods of manufacture
DE19853949C2 (de) * 1998-11-23 2003-01-09 Ivoclar Vivadent Ag Keramische Zahnrestauration
DE60032858T2 (de) * 1999-11-17 2007-09-06 Kabushiki Kaisha Shofu Dentales Füllungsmaterial
US6524105B2 (en) * 2000-05-16 2003-02-25 Ivoclar Vivadent Ag Dental model
US6641776B1 (en) 2000-11-15 2003-11-04 Scimed Life Systems, Inc. Method for preparing radiopaque surgical implement
US6988894B2 (en) * 2001-05-03 2006-01-24 Lee Charles Q Dental training device
SE0200007D0 (sv) * 2002-01-03 2002-01-03 Sandvik Ab Method for making ceramic artificial dental bridges
JP2004300066A (ja) * 2003-03-31 2004-10-28 Mitsui Chemicals Inc 歯科用材料および歯科用組成物
US20060024651A1 (en) * 2004-08-02 2006-02-02 Davis Antonio M Sneeks
US20100015588A1 (en) * 2005-07-20 2010-01-21 Satoru Funakoshi Multilayered model tooth for dental training
KR101244911B1 (ko) 2005-10-11 2013-03-18 삼성전자주식회사 카메라 파라미터를 이용한 다시점 동영상 부호화 및 복호화장치 및 방법과 이를 수행하기 위한 프로그램이 기록된기록매체
US7537455B2 (en) * 2006-01-19 2009-05-26 Under Dog Media, L.P. Apparatus for teaching, demonstration, or simulation, of orthodontic temporary anchorage device placement and the use thereof
JP5090650B2 (ja) 2006-02-28 2012-12-05 三菱電機ビルテクノサービス株式会社 エレベータの戸開閉異常監視装置
JP2007323052A (ja) 2006-05-02 2007-12-13 Shiyoufuu:Kk 顎歯模型用複合歯牙及びその製造方法とその応用
JP5154126B2 (ja) * 2007-03-30 2013-02-27 株式会社ジーシー 支台歯築造用コンポジットレジン
JP5216394B2 (ja) 2008-04-11 2013-06-19 株式会社アマダ 帯鋸盤における切粉除去装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090650A (ja) * 1973-12-10 1975-07-19
JPH05216395A (ja) 1992-02-06 1993-08-27 Kanebo Ltd 歯牙模型及びその製造方法
JPH05241499A (ja) 1992-02-26 1993-09-21 Kanebo Ltd 歯牙模型
JPH05241498A (ja) 1992-02-26 1993-09-21 Kanebo Ltd 歯牙模型
JPH05241500A (ja) 1992-02-27 1993-09-21 Kanebo Ltd 歯牙模型
JPH1043209A (ja) * 1996-04-27 1998-02-17 G C Dentaru Prod:Kk 歯科用材料
JP2003515429A (ja) * 1999-12-07 2003-05-07 イノツェルミック ゲセルシャフト フュール イノヴァティーヴェ ケラミック エムベーハー セラミック製の入れ歯の製造法並びにこの方法に従って製造された非常に丈夫なセラミック製の入れ歯
JP2003010209A (ja) * 2001-07-04 2003-01-14 Toshiba Ceramics Co Ltd 人工歯牙
JP2004094049A (ja) 2002-09-02 2004-03-25 Nisshin:Kk 歯科実習用模型歯
JP2005234250A (ja) * 2004-02-20 2005-09-02 Nisshin:Kk 歯科実習用多層模型歯

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2011451A4 *

Also Published As

Publication number Publication date
EP2011450A4 (en) 2010-12-01
US20090317780A1 (en) 2009-12-24
US8784112B2 (en) 2014-07-22
WO2007119616A1 (ja) 2007-10-25
JPWO2007119617A1 (ja) 2009-08-27
US20090305211A1 (en) 2009-12-10
EP2011450A1 (en) 2009-01-07
EP2011451A4 (en) 2010-11-24
US8267695B2 (en) 2012-09-18
US20140030685A1 (en) 2014-01-30
EP2011451A1 (en) 2009-01-07
EP2011450B1 (en) 2012-09-12
JP5216578B2 (ja) 2013-06-19
JP5276978B2 (ja) 2013-08-28
JPWO2007119616A1 (ja) 2009-08-27
EP2011451B1 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5216578B2 (ja) 顎歯模型用の歯牙およびその製造方法
CN101466326B (zh) 齿弓模型用牙齿及其制造方法
JP5230262B2 (ja) 樹脂または低融点ガラス含浸エナメル部分を有する歯牙模型用の歯牙の製造方法
JP5308154B2 (ja) 顎歯模型用歯牙およびその製造方法
US8221128B2 (en) Tooth for tooth model, comprising enamel portion impregnated with resin or low melting point glass, and method for producing the same
JP5173240B2 (ja) 顎歯模型用軟質再現歯牙
JP5173241B2 (ja) 顎歯模型用歯髄付き歯牙の製造方法
JPS63139542A (ja) 口外歯科修復方法
JP2007323052A (ja) 顎歯模型用複合歯牙及びその製造方法とその応用
JP5191140B2 (ja) デンチン層とエナメル層の間の空隙に樹脂を充填した歯牙
JP2007328325A (ja) 顎歯模型用齲蝕付き歯牙及びその製造方法とその応用
JP5236202B2 (ja) 顎歯模型用の歯牙
JP4514231B2 (ja) ガラス組成で接着されたデンチンセラミックスとアルミナセラミックスの歯牙
JP5236204B2 (ja) 顎歯模型用の歯牙及びその製造方法
Bagnall Adhesion in dentistry Part 1 Critical overview
JP2007312840A (ja) 象牙質層を先に成型する顎歯模型用の歯牙およびその製造方法
JP5173243B2 (ja) X線造影性を有する顎歯模型用歯牙
JP2007310373A (ja) 顎歯模型用のアルミナ歯牙とその応用
US20180144661A1 (en) Artificial root canal simulator based on hydroxyapatite
Bagnall Adhesion in dentistry Part 2 Critical review of adhesion to teeth
Tawde Cyclic testing of porcelain laminiate veneers on superficial enamel and dentin: Pressed vs. conventional layered porcelain
Elkawash Fracture Load and Mode of Failure of Ceramic Laminate Veneers with Different Cementation Methods

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780022180.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07740584

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007740584

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008510901

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12226452

Country of ref document: US