WO2007116708A1 - 熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性重合体組成物から得られる成形体および電線 - Google Patents

熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性重合体組成物から得られる成形体および電線 Download PDF

Info

Publication number
WO2007116708A1
WO2007116708A1 PCT/JP2007/056301 JP2007056301W WO2007116708A1 WO 2007116708 A1 WO2007116708 A1 WO 2007116708A1 JP 2007056301 W JP2007056301 W JP 2007056301W WO 2007116708 A1 WO2007116708 A1 WO 2007116708A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
polymer composition
polymer
graft
mass
Prior art date
Application number
PCT/JP2007/056301
Other languages
English (en)
French (fr)
Inventor
Hiroshi Uehara
Mariko Harigaya
Masayoshi Yamaguchi
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to JP2008509758A priority Critical patent/JP5291457B2/ja
Priority to EP07739739A priority patent/EP2006327B1/en
Priority to ES07739739T priority patent/ES2402374T3/es
Priority to CN2007800108438A priority patent/CN101426847B/zh
Publication of WO2007116708A1 publication Critical patent/WO2007116708A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • thermoplastic polymer composition method for producing thermoplastic polymer composition, molded article obtained from thermoplastic polymer composition, and electric wire
  • the present invention relates to a thermoplastic polymer composition and a molded product obtained from the composition cover.
  • the present invention includes a high proportion of inorganic filler, and has excellent flexibility, mechanical strength, elongation at break, heat resistance, scratch resistance, whitening resistance and flame resistance.
  • the present invention relates to a polymer composition, and further relates to a molded body using this thermoplastic polymer composition.
  • Patent Document 1 Polyvinyl chloride or cross-linkable polyethylene has been widely used as the sheath material for electric wires and some insulating materials, and its flexibility, flame retardancy, and insulation have been evaluated. Disposal and recycling were difficult due to the generation of gas and lack of thermoplasticity. For this reason, non-crosslinked and recyclable polyethylene crystalline homopolymers with mechanical and electrical properties suitable for normal use conditions, or molded bodies with crystalline copolymer strength are known ( Patent Document 1). However, the molded body used in Patent Document 1 is excellent in flexibility, impact resistance, and low-temperature properties, but has insufficient scratch resistance and tensile strength.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-111061
  • An object of the present invention is a heat containing an inorganic filler in a high proportion and excellent in flexibility, mechanical strength, elongation at break, heat resistance, scratch resistance, whitening resistance and flame retardancy. It is to provide a plastic polymer composition. Another object of the present invention is to maintain the flexibility and heat resistance without significantly lowering the low-temperature embrittlement temperature, and to improve the scratch resistance by increasing the hardness. That is, a thermoplastic polymer composition having excellent flexibility, mechanical strength, elongation at break, heat resistance, whitening resistance, flame resistance, and particularly excellent scratch resistance It is providing the manufacturing method which can obtain a thing. Another object of the present invention is to provide a molded body made of the composition, and an electric wire having an insulator and a Z or sheath using the yarn and the composition.
  • the first thermoplastic polymer composition according to the present invention comprises the following (A), (B), (C), and (D):
  • the total amount of (A), (B), (C), and (D) is 100% by mass.
  • the inorganic filler (D) is preferably at least one selected from the group consisting of talc, metal hydroxide, metal carbonate and metal oxide strength.
  • the first thermoplastic polymer composition of the present invention comprises a propylene polymer (A), a propylene polymer (B), a graft-modified propylene polymer (C), and an inorganic filler (D ) In an amount of 0.1 to 20 parts by mass of oil (F).
  • the thermoplastic polymer composition of the present invention comprises a total of propylene polymer (A), propylene polymer (B), graft-modified propylene polymer (C), and inorganic filler (D). It is preferable to contain 0.1 to 20 parts by mass of the ethylene polymer (E) with respect to 100 parts by mass.
  • the method for producing a thermoplastic polymer composition of the present invention comprises a graft-modified propylene polymer (C) and a thermoplastic polymer composition containing the ethylene polymer (E).
  • Propylene polymer composition (G) is produced by melt-kneading ethylene polymer (E).
  • the first molded body is preferably an electric wire insulator or electric wire sheath.
  • the first electric wire of the present invention is an electric wire having an insulator using the thermoplastic polymer composition and a sheath using Z or the thermoplastic polymer composition.
  • the electric wire is preferably an automobile electric wire or an equipment electric wire.
  • thermoplastic resin composition (Second thermoplastic resin composition)
  • thermoplastic polymer composition according to the present invention comprises the following (A), (BB), and (D):
  • BB A part or all of the polymer is graft-modified with at least one compound selected from the group consisting of a vinyl compound containing a polar group and a silane compound, and has a melting point of 120 measured by differential scanning calorimetry (DSC). ° C or less than the melting point was observed
  • DSC differential scanning calorimetry
  • the total amount of (A), (BB), and (D) is 100% by mass.
  • the inorganic filler (D) is preferably at least one selected from the group consisting of talc, metal hydroxide, metal carbonate and metal oxide strength.
  • the second thermoplastic polymer composition of the present invention is based on a total of 100 parts by mass of the propylene polymer (A), the graft-modified propylene polymer (BB), and the inorganic filler (D).
  • the ethylene polymer (E) is preferably contained in an amount of 0.1 to 20 parts by mass.
  • the second thermoplastic polymer composition of the present invention is a total of 100 parts by mass of the propylene polymer (A), the graft-modified propylene polymer (BB), and the inorganic filler (D). It is preferable to contain 0.1 to 20 parts by mass of oil (F).
  • the second method for producing a thermoplastic resin composition of the present invention comprises the ethylene polymer.
  • the thermoplastic resin composition containing (E) the graft-modified propylene polymer (BB) and the ethylene polymer (E) are melt-kneaded and the propylene polymer composition (GG).
  • the second molded article of the present invention is characterized by comprising the second thermoplastic resin composition.
  • the second molded body is preferably an electric wire insulator or electric wire sheath.
  • a second electric wire of the present invention has an insulator using the second thermoplastic polymer composition, and a sheath using Z or the second thermoplastic polymer composition. It is a wire.
  • the second electric wire is preferably an automobile electric wire or an equipment electric wire.
  • the first and second thermoplastic polymer compositions of the present invention contain a high proportion of an inorganic filler and have excellent flexibility, mechanical strength, elongation at break, whitening resistance, And it has scratch resistance.
  • first and second thermoplastic polymer compositions of the present invention contain an oil, they are particularly excellent in scratch resistance and low temperature brittleness resistance. Further, when the thermoplastic polymer composition of the present invention contains an ethylene polymer, it is particularly excellent in scratch resistance.
  • the thermoplastic weight is excellent in flexibility, mechanical strength, elongation at break, flame retardancy, and particularly excellent in scratch resistance. A coalescence composition can be obtained.
  • first and second thermoplastic polymer compositions of the present invention contain a high proportion of inorganic filler, they can be suitably used for molded articles having excellent flame retardancy, particularly electric wires.
  • thermoplastic resin composition (First thermoplastic resin composition)
  • the propylene-based polymer (A) used in the present invention is selected from propylene homopolymer, propylene, ethylene and a-olefin having a carbon atom power of ⁇ 20. And a copolymer with at least one olefin.
  • ethylene and ⁇ -olefin having 4 to 20 carbon atoms include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl 1-pentene, 1-octene, 1- Examples include decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1 eicosene.
  • Ethylene or ⁇ -olefin having 4 to 10 carbon atoms is preferable. These a-olefins may form a block copolymer or a random copolymer with propylene.
  • Configuration Unit derived from ⁇ - Orefuin of ethylene and carbon atoms force 20 is in all the structural units of the propylene polymer (Alpha) 35 mole 0/0 or less, preferably 30 mol% Included in the following proportions! /!
  • the melt flow rate (temperature 230.C, load 2.16 kg) measured in accordance with ASTM D1238 is usually from 0.01 to: LOOOgZlO, Preferably, it is in the range of 0.05 to: LOOgZlO, more preferably in the range of 0.1 to 50 gZlO, and even more preferably in the range of 0.1 to LOgZlO.
  • the propylene polymer (A) used in the present invention has a melting point measured by a differential scanning calorimeter (DSC) of 120 ° C or higher, preferably 120 to 170 ° C, more preferably 125 to 165. ° C.
  • the melting point is measured as follows. That is, the sample is packed in an aluminum pan, heated to 200 ° C at 100 ° CZ for 5 minutes, held at 200 ° C for 5 minutes, then cooled to 150 ° C at 10 ° CZ for 10 minutes. It is the peak temperature force melting point (Tm) of the endothermic curve observed when the temperature is raised to 200 ° C.
  • DSC differential scanning calorimeter
  • the propylene polymer (A) has either a isotactic structure or a syndiotactic structure! /, But preferably has an isotactic structure in terms of heat resistance. Yes.
  • a plurality of propylene polymers (A) can be used together.
  • two or more kinds of components having different melting points and rigidity can be used.
  • propylene polymer (A) homopolypropylene having excellent heat resistance (usually having a copolymerization component excluding propylene of 3 mol% or less), a balance between heat resistance and impact resistance.
  • block polypropylene normally decane elution rubber component usually 3 to 30 weight 0/0 excellent
  • a random polypropylene with a good balance between flexibility and transparency usually a melting peak measured by a differential scanning calorimeter (DSC) of 120 ° C or higher, preferably 125 ° C to 150 ° C
  • DSC differential scanning calorimeter
  • Such a propylene-based copolymer (A) includes, for example, a solid catalyst component containing magnesium, titanium, halogen and an electron donor as essential components, an organoaluminum compound, and a Ziegler catalyst system having an electron donor power, Alternatively, it can be produced by polymerizing propylene or copolymerizing propylene with ethylene and other a-olefins using a meta-mouth catalyst system using a meta-mouth compound as a catalyst component. .
  • the propylene-based polymer (B) used as necessary in the present invention is a copolymer of propylene and at least one type of olefin selected from ethylene and ⁇ -olefin having a carbon atom number power of -20.
  • a constitutional unit derived from normal propylene 40 to 99 mole 0/0, preferably 40-92 Monore% comprises more preferably 50 to 90 Monore%, used as comonomers, ethylene and 4 to 20 carbon atoms in the ex- Orefuin a constitutional unit derived from, usually 1 to 60 mol 0/0, preferably at 8 to 60 mole 0/0, more preferably 10 to 50 mole 0/0 (where, propylene, ethylene and 4 carbon atoms The total with ⁇ 20 ⁇ -olefins is 100 mol%).
  • the propylene polymer ( ⁇ ) used in the present invention is preferably a copolymer of propylene and at least one olefin selected from ethylene and ⁇ -olefin having 4 to 20 carbon atoms.
  • ethylene and ⁇ -olefin having 4 to 20 carbon atoms include ethylene, 1-butene, 1 pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4 -Methyl-1 pentene, 4 Methyl-1 monohexene, 4, 4 Dimethyl 1 pentene, 4-Ethyl 1 hexene, 1-Otaten, 3 ethyl 1 hexene, 1-Otaten, 1-decene, etc.
  • the melt flow rate (temperature 230 ° C, load 2.16 kg) is usually 0.1 to 50 (gZlO min).
  • the propylene-based polymer (B) has a melting point measured by differential scanning calorimetry (DSC) of less than 120 ° C or no melting point is observed, and preferably has a melting point of 100 ° C or lower. No force or melting point is observed.
  • the fact that the melting point is not observed means that in the range of 150 to 200 ° C, no crystal melting peak with a crystal melting heat quantity of UZg or more is observed.
  • the measurement conditions are as described in the examples.
  • the production method of the propylene polymer (B) is not particularly limited!
  • 4Z87775 can be produced by the method described in the pamphlet.
  • propylene-based polymer (B) having the above-described characteristics include propylene ' ⁇ -olefin random copolymer ( ⁇ ⁇ -1) having 4 to 20 carbon atoms as follows. ) And propylene / ethylene 'at olefin random copolymers ( ⁇ -2) having 4 to 20 carbon atoms.
  • Propylene Propylene-based propylene based on mechanical strength, elongation at break, scratch resistance, and whitening resistance by using an at-olefin random copolymer ( ⁇ -1) having 4 to 20 carbon atoms A resin composition is obtained.
  • thermoplasticity is improved due to flexibility, scratch resistance, and whitening resistance.
  • a polymer composition is obtained.
  • A-olefin random copolymer (B-1) having 4 to 20 carbon atoms and propylene 'ethylene' carbon atom having 4 to 20 carbon atoms are suitably used in the present invention.
  • the copolymer (B-2) will be described in detail.
  • Propylene '(X-olefin random copolymer (B-1) having 4 to 20 carbon atoms) preferably used in the present invention -1) is a random copolymer containing a propylene-derived constituent unit, an ethylene-derived constituent unit, and an a-olefin-containing constituent unit having 4 to 20 carbon atoms, and the following (a) and (b) Meet.
  • Tm Melting point (° C), comonomer constituent content M (mol%) and force determined by 13 C-NMR spectrum measurement.
  • Tm 120 ° It is less than C, preferably less than 100 ° C.
  • M is not particularly limited, but for example, a value of 5 to 45 can be mentioned.
  • Tm The melting point (Tm) of the ex-refin random copolymer (B-1) having 4 to 20 carbon atoms is measured by DSC as follows. The sample was packed in an aluminum pan, (i) heated to 200 ° C at 100 ° CZ for 5 minutes and held at 200 ° C for 5 minutes, then (ii) lowered to 150 ° C at 10 ° CZ for Then, (iii) The temperature is raised to 200 ° C at 10 ° C / min. The endothermic peak temperature observed in (iii) is the melting point (Tm).
  • This melting point (Tm) is usually less than 120 ° C, preferably not more than 100 ° C, more preferably in the range of 40 to 95 ° C, still more preferably in the range of 50 to 90 ° C.
  • Tm melting point
  • the molded body using the composition of the present invention has an advantage in construction.
  • At-olefin random copolymer (B-1) having 4 to 20 carbon atoms
  • the degree of crystallinity measured by X-ray diffraction is preferably 40% or less, more preferably 35% or less.
  • the content of the structural unit derived from exoolefin having 4 to 20 carbon atoms is preferably 5 to 5 0 mole 0/0, more preferably 10 to 35 mole 0/0.
  • 1-butene is preferably used as the ⁇ -olefin having 4 to 20 carbon atoms.
  • Such propylene 'at-olefin-in-copolymer having 4 to 20 carbon atoms ( ⁇ -1) can be obtained by, for example, a method described in International Publication No. 2004-87775.
  • the a-olefin random copolymer (B-2) having 4 to 20 carbon atoms preferably used in the present invention is a propylene-derived structural unit, an ethylene-derived structural unit, and a carbon atom number of 4 to 20
  • the total of the structural units derived from and the structural units derived from olefins having 4 to 20 carbon atoms is preferably 60 to 15 mol%.
  • the degree of crystallinity measured by X-ray diffraction is 20% or less, preferably 10% or less.
  • the melting point (Tm) measured by DSC of propylene “ethylene” at-olefin-in random copolymer (B-2) having 4 to 20 carbon atoms is preferably a force of 50 ° C. or less. It is desirable that no melting point is observed.
  • the melting point can be measured by the same method as for the copolymer (B-1).
  • the propylene component and other comonomer component amount more particularly, a constitutional unit derived from propylene Ren, preferably 60 to 82 Monore 0/0, more preferably 61 to 75 Monore 0/0, configuration of the ethylene-derived units, preferably 8.0 to 15 mol%, more preferably 10 to 14 molar 0/0, a constitutional unit derived from ⁇ - Orefuin having 4 to 20 carbon atoms, preferably 10 to 25 mole 0/0, More preferably, it is desirable to include an amount of 15 to 25 mol%.
  • 1-butene is preferably used as a-olefin having 4 to 20 carbon atoms.
  • Such propylene 'ethylene' a-olefin random copolymer having 4 to 20 carbon atoms The body (B-2) is obtained, for example, by the method described in WO 2004Z87775 pamphlet.
  • the use of the propylene “ethylene” at-olefinic random copolymer (B-2) having 4 to 20 carbon atoms improves the flexibility and the low-temperature embrittlement.
  • a molded body is obtained.
  • this molded body is, for example, an electric wire, it has an advantage that the electric wire coating is not easily broken even when exposed to low temperatures.
  • Polymers used as raw materials for the graft-modified propylene polymer (C) include propylene polymers (C) whose melting point measured by differential scanning calorimetry (DSC) is less than 120 ° C or whose melting point is not observed. —1) is preferred in terms of elongation at break and improvement in wear resistance.
  • the propylene polymer (C1) is a copolymer of propylene and at least one olefin selected from ethylene and ⁇ -olefin having 4 to 20 carbon atoms, and is usually derived from propylene.
  • the propylene-based polymer (C-1) used in the present invention is a copolymer of propylene and at least one olefin selected from ethylene and ⁇ -olefin having 4 to 20 carbon atoms. preferable.
  • ethylene and ⁇ -olefin having 4 to 20 carbon atoms specifically, ethylene and ⁇ -olefin which are described in the propylene-based polymer ( ⁇ ⁇ ) can be used. Two or more kinds may be used in combination. Of these, it is particularly preferred to use at least one of ethylene, 1-butene, 1-hexene and 1-octene.
  • the melt flow rate (temperature 230 ° C, load 2.16 kg) is usually 0.1 to 50 (g / 10 min).
  • the propylene polymer (C 1) has a melting point of less than 120 ° C as measured by differential scanning calorimetry (DSC). No melting force or melting point is observed, preferably the melting point is below 100 ° C or no melting point is observed.
  • the fact that the melting point is not observed means that in the range of 150 to 200 ° C, a crystal melting peak with a crystal melting heat quantity of UZg or more is not observed.
  • the measurement conditions are as described in the examples.
  • the method for producing the propylene-based polymer (C 1) is not particularly limited, but can be produced, for example, by the method described in International Publication No. 2 004Z087775 pamphlet.
  • propylene-based polymer (C 1) having the above-described characteristics include propylene. ⁇ -olefin-random copolymer (C-la) having 4 to 20 carbon atoms as follows. And propylene 'ethylene' at-olefin random copolymer (C — lb) having 4 to 20 carbon atoms.
  • Propylene '4 to 20 carbon atom (X-olefin random copolymer (C — La) is a random copolymer containing a structural unit derived from propylene and a structural unit derived from ⁇ -year-old lefin having 4 to 20 carbon atoms, and satisfies the following (al) and (bl).
  • Mw / Mn The molecular weight distribution (Mw / Mn) measured by gel permeation chromatography (GPC) is in the range of 1-3.
  • Tm Melting point (° C), comonomer constituent unit content M (mol%) and force determined by 13 C-NMR spectrum measurement
  • Tm is 120 ° Less than C, preferably less than 100 ° C.
  • the melting point (Tm) of ex-olefin random copolymer (C-la) having 4 to 20 carbon atoms is usually less than 120 ° C, preferably 100 ° C or less, more preferably 40 to 95 °.
  • the range of C is more preferably in the range of 50 to 90 ° C.
  • Tm melting point
  • the molded body using the composition of the present invention has an advantage in construction.
  • the melting point (Tm) of propylene '4 to 20 carbon atoms ⁇ -olefin finned random copolymer (C-la) is measured using propylene' 4 to 20 carbon atoms ⁇ -olefin random copolymer.
  • the same method as the method for measuring the melting point (Tm) in the combined (B-1) can be mentioned.
  • Propylene 'At-olefin-in random copolymer (C-la) having 4 to 20 carbon atoms preferably further satisfies the following (cl);
  • the crystallinity measured by X-ray diffraction is preferably 40% or less, more preferably 35% or less.
  • 1-butene is preferably used as the ⁇ -olefin having 4 to 20 carbon atoms.
  • Such propylene 'at-olefin random copolymer (C-1a) having 4 to 20 carbon atoms can be obtained by, for example, a method described in International Publication No. 2004Z87775 .
  • Propylene By using modified at-olefin random copolymer (C-la) having 4 to 20 carbon atoms, it is superior in mechanical strength, elongation at break, scratch resistance, and whitening resistance. Thus, a propylene-based resin composition excellent in low temperature brittleness can be obtained. Further, when the molded body obtained from these thermoplastic resin compositions is, for example, an electric wire, there is an advantage that the electric wire coating is not easily cracked even when exposed to a low temperature.
  • C-la modified at-olefin random copolymer having 4 to 20 carbon atoms
  • the a-olefin random copolymer (C-lb) having 4 to 20 carbon atoms preferably used in the present invention is a propylene-derived structural unit, an ethylene-derived structural unit, and a carbon atom number of 4 to 20
  • the molecular weight distribution (Mw / Mn) measured by gel permeation chromatography (GPC) is in the range of 1-3.
  • At-olefin random copolymer (C-1b) having 4 to 20 carbon atoms of propylene 'ethylene' preferably at least one of the following (ol) and (pi): More preferably, it is desirable to satisfy both.
  • ( ⁇ 1) Shore 8 hardness is 30-80, preferably 35-60.
  • the degree of crystallinity measured by X-ray diffraction is 20% or less, preferably 10% or less.
  • the melting point (Tm) measured by DSC of C-lb) is preferably no force or melting point below 50 ° C.
  • the melting point can be measured by the same method as for the copolymer (B-1) and the like.
  • a constitutional unit derived from propylene Ren preferably 60 to 82 Monore 0/0, more preferably 61 to 75 Monore 0/0, configuration of the ethylene-derived units, preferably 8.0 to 15 mol%, more preferably 10 to 14 molar 0/0, a constitutional unit derived from ⁇ - Orefuin having 4 to 20 carbon atoms, preferably 10 to 25 molar%, More preferably, it is desirable to include an amount of 15 to 25 mol%.
  • 1-butene is preferably used as the ⁇ -olefin having 4 to 20 carbon atoms.
  • Such propylene 'ethylene' ⁇ -olefin random copolymer (C lb) having 4 to 20 carbon atoms can be obtained, for example, by a method described in International Publication No. 2004Z87775 pamphlet. .
  • thermoplastic polymer composition having excellent low-temperature embrittleability can be obtained.
  • the molded body obtained from these thermoplastic resin compositions is, for example, an electric wire, there is an advantage that the electric wire coating is not easily cracked even if it is exposed to a low temperature.
  • the propylene polymer (B) is essential, the propylene polymer (B) and the propylene polymer (C 1) as a raw material before modification may be the same or different.
  • the graft-modified propylene polymer (C) used in the present invention has a melting point of less than 120 ° C or no melting point measured by differential scanning calorimetry (DSC) (C-1) ) Is graft-modified with at least one compound selected from the group consisting of a vinyl compound containing a polar group and a silane compound.
  • vinyl compound examples include vinyl compounds having oxygen-containing groups such as acids, acid anhydrides, esters, alcohols, epoxies, and ethers, vinyl compounds having nitrogen-containing groups such as isocyanates and amides, and silane compounds.
  • oxygen-containing groups such as acids, acid anhydrides, esters, alcohols, epoxies, and ethers
  • vinyl compounds having nitrogen-containing groups such as isocyanates and amides
  • silane compounds examples thereof include silanic compounds such as bursilane, aminosilane, and y-methacryloxypropyl trimethoxysilane.
  • vinyl compounds having an oxygen-containing group are preferred, and unsaturated epoxy monomers, unsaturated carboxylic acids and derivatives thereof are preferred.
  • Examples of the unsaturated epoxy monomer include unsaturated glycidyl ether and unsaturated glycidyl ester (for example, glycidyl metatalylate).
  • Examples of the unsaturated carboxylic acid include acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, nadic acid TM (endocis bicyclo [2.2.1] Heptoe 2,5 dicarboxylic acid).
  • examples of the derivative of the unsaturated carboxylic acid include an acid halide compound, an amido compound, an imido compound, an acid anhydride, and an ester compound of the unsaturated carboxylic acid.
  • Specific examples include maleic chloride, maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, glycidyl maleate, and the like.
  • unsaturated dicarboxylic acids and acid anhydrides thereof are more preferred, and maleic acid, nadic acid 1 ⁇ and acid anhydrides thereof are particularly preferably used.
  • the graft position of the unsaturated carboxylic acid or derivative thereof grafted to the unmodified propylene copolymer is not particularly limited, and the unsaturated carboxylic acid may be bonded to any carbon atom of the ethylene polymer. If an acid or its derivative is bound,
  • the graft-modified propylene polymer (C) as described above can be prepared by various conventionally known methods, for example, the following methods.
  • any method it is preferable to perform the graft reaction in the presence of a radical initiator in order to efficiently graft copolymerize the above-mentioned unsaturated monomer such as unsaturated carboxylic acid.
  • a radical initiator include organic peroxides and azo compounds.
  • Examples of the organic peroxide include benzoyl peroxide, dichlorobenzoyl peroxide, and dicumyl peroxide.
  • Examples of the azo compound include azobis-sobutyl-tolyl and dimethyl azo. Examples include isobutyrate.
  • radical initiators include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di (tert-butylperoxy) 3-hexyne, 2 , 5 Dimethyl-2,5 di (tert-butylperoxy) hexane, 1,4-bis (tert-butylperoxyisopropyl) benzene and other dialkyl peroxides are preferably used.
  • radical initiators are usually 0.001 to 1 part by mass, preferably 0.003 to 0.5 parts by mass, more preferably 0.05 to 100 parts by mass of the unmodified polymer. 0. Used in an amount of 3 parts by weight.
  • the reaction temperature in the grafting reaction carried out without using a radical initiator is usually 60 to 350 ° C, preferably 150 to 300. It is set in the range of ° C.
  • the graft amount of the vinyl compound having a polar group in the graft-modified propylene polymer (C) thus obtained is not particularly limited, but the mass of the graft-modified polymer is 100 masses. %, It is usually 0.01 to 10% by mass, preferably 0.05 to 5% by mass.
  • the graft-modified polymer (C) as described above, it is possible to obtain a molded article having particularly excellent resistance to tensile strength and scratch resistance.
  • the inorganic filler (D) used in the present invention is not particularly limited, for example, a metal compound
  • a metal compound A wide variety of inorganic compounds such as glass, ceramic, talc, and my strength are used. Of these, talc, metal hydroxide, metal carbonate (carbonate), and metal oxide are preferably used.
  • the inorganic filler (D) may be used alone or in combination of two or more.
  • the metal hydroxide used in the present invention include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, manganese hydroxide, zinc hydroxide, zinc, id mouth talcite, etc. These mixtures are mentioned, and a mixture containing magnesium hydroxide alone and magnesium hydroxide is particularly preferable.
  • the average particle diameter of the inorganic filler (D) is not particularly limited, but is usually from 0.1 to 20 m, preferably from 0.5 to 15 / ⁇ ⁇ .
  • the average particle diameter is a value obtained by a laser method.
  • the inorganic filler (D) used in the present invention may be one that has been surface-treated with a fatty acid such as stearic acid or oleic acid, an organic silane, or the like. Even if the fine particles having an agglomerate form.
  • the ethylene polymer is, for example, an ethylene elastomer having 61 mol% or more of structural units derived from ethylene based on the total structural units.
  • ethylene homopolymers composed of ethylene homopolymers, ethylene-derived structural units and ⁇ -olefin-derived structural units are preferred.
  • ethylene'a-olefin copolymers a copolymer (E-1) of ethylene and ⁇ -olefin having 3 to 10 carbon atoms is preferable.
  • ⁇ -olefin having 3 to 10 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl 1-butene, 3-methyl 1-pentene and 3 ethyl 1 Pentene, 4-methyl-1 pentene, 4-methyl- 1 hexene, 4, 4 dimethyl-1 pentene, 4-ethyl 1-hexene, 1-octene, 3-ethyl 1-hexene, 1-octene, 1-decene, etc. Is mentioned. These may be used alone or in combination of two or more. Among these, it is particularly preferable to use at least one of propylene, 1-butene, 1-hexene and 1-octene.
  • the content of the constituent units of the ethylene-based copolymer is the 75 to 95 mole 0/0, selected from ⁇ - Orefuin having 3 to 10 carbon atoms It is preferred that the content of structural units derived from at least one compound force is 5 to 25 mol%.
  • the ethylene 'a-olefin copolymer is
  • the molecular weight distribution index (MwZMn) evaluated by GPC method is in the range of 1.5 to 3.5, preferably 1.5 to 3.0, more preferably 1.8 to 2.5.
  • the ethylene-a-olefin copolymer may be a graft-modified ethylene polymer (E-1) grafted with a vinyl compound having a polar group! / ⁇ .
  • examples of the beryl compound having a polar group include compounds similar to those used in the above (C).
  • the graft amount of the vinyl compound having a polar group in the graft-modified ethylene polymer (E-1) is not particularly limited, but it is usually when the mass of the graft-modified polymer is 100% by mass. 0.01 to 10% by mass, preferably 0.05 to 5% by mass.
  • oils (F) used in the present invention include various oils such as norafine oil, naphthenic oil, aromatic oil, and silicone oil. Of these, paraffin oil and naphthenic oil are preferably used.
  • the oil is not particularly limited, but the kinematic viscosity at 40 ° C is usually 20 to 800 cst (centistose), preferably 40 to 600 cst. Further, the fluidity of oil (F) is usually 0 to 1-40 ° C, preferably 0 to 1-30 ° C, and the flash point (COC method) is usually 200 to 400 ° C, preferably 250 to 350 ° C is desirable.
  • the thermoplastic polymer composition of the present invention can exhibit particularly low temperature characteristics such as low temperature embrittlement and scratch resistance.
  • the naphthenic process oil suitably used in the present invention is a petroleum-based softener generally incorporated in rubber processing to obtain a softening effect, a compounding agent dispersing effect, a lubricating effect, an improvement in low temperature characteristics, and the like. And 30 to 45% by mass of naphthenic hydrocarbon.
  • This When blended with such process oils, the melt flowability of the resin composition, the flexibility of the molded product, and the low temperature properties can be further improved, and the surface of the molded product can be prevented from sticking due to bleeding. Is obtained.
  • those having an aromatic hydrocarbon content of 10% by mass or less are preferably used. The reason is not clear, but when such an oil is used, bleeding on the surface of the molded product is difficult to occur.
  • the thermoplastic polymer composition of the present invention has a propylene polymer (A) of 5.0-64.9% by mass, a propylene polymer (B) of 0-59.9% by mass, a graft-modified propylene-based polymer.
  • the coalescence (C) is 0.1 to 30% by mass, and the inorganic filler (D) is 35 to 75% by mass (where (A), (B), (C) and (D) total of components The amount is 100% by weight.)
  • ethylene-based polymer (E) a copolymer of ethylene and a-olefin having 3 to 10 carbon atoms (E-1), or a graft-modified ethylene-based polymer
  • the blending amount of (E-2) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of components (A), (B), (C) and (D).
  • the blending amount of the ethylene polymer (E-1) is within this range, the effect of improving the low temperature characteristics is remarkable, which is preferable.
  • the blending amount of the oil (F) used in the present invention is 0.1-20 with respect to 100 parts by mass of the total amount of the components (A), (B), (C) and (D). Part by mass. If the blending amount of the oil (F) is within this range, the effect of improving the low-temperature characteristics is remarkable, and the possibility that the oil will ooze out on the surface of the molded product is small.
  • thermoplastic polymer composition of the present invention does not detract from the object of the present invention!
  • other synthetic resins, other rubbers, antioxidants, heat stabilizers, as necessary, Weathering stabilizers, slipping agents, antiblocking agents, crystal nucleating agents, pigments, hydrochloric acid absorbents, copper damage prevention agents, etc. Things may be included.
  • the amount of added calories of such other synthetic resins, other rubbers, additives and the like is not particularly limited as long as the object of the present invention is not impaired.
  • a mode in which the total of components A), (B), (C), and (D) is included to be 60 to 100% by mass is preferred.
  • the balance is the above other synthetic resin, other rubber, additives, ethylene polymer (E), oil (F) and the like.
  • thermoplastic resin composition (Second thermoplastic resin composition)
  • the second thermoplastic resin composition of the present invention is characterized by comprising the following (A), (BB), (D);
  • BB A part or all of the polymer is graft-modified with at least one compound selected from the group consisting of a vinyl compound containing a polar group and a silane compound, and has a melting point of 120 measured by differential scanning calorimetry (DSC). ° C or less than a melting point such observed ,, modified pro propylene-based polymer from 0.1 to 60.0 mass 0/0,
  • the total amount of (A), (BB), and (D) is 100% by mass.
  • (A) can be used as described in the section of the first thermoplastic resin composition, and its preferred embodiment is also the same.
  • the graft-modified propylene polymer (BB) used in the present invention is a part or all of a copolymer of propylene and at least one olefin selected from ethylene and ⁇ -olefin having 4 to 20 carbon atoms. Is preferred to be graft-modified.
  • the at least one olefin selected from ethylene and ⁇ -olefin having 4 to 20 carbon atoms specifically, ethylene and ⁇ -olefin which are described in the propylene polymer ( ⁇ ) should be used. These may be used alone or in combination of two or more. Of these, it is particularly preferred to use at least one of ethylene, 1-butene, 1-hexene and 1-octene.
  • the propylene, ethylene and a-olefin having 4 to 20 carbon atoms Polymer 40 to 99 mol a constitutional unit derived from normal propylene 0/0, preferably from 40 to 92 molar 0/0, and more preferably comprises 50 to 90 mole 0/0, ethylene is used as comonomer and a constitutional unit derived from ex Orefuin having 4 to 20 carbon atoms, usually 1 to 60 mol 0/0, favored properly 8 to 60 mole 0/0, more preferably 10 to 50 mole 0/0 (here, propylene, total of Echire down and having 4 to 20 carbon atoms ⁇ - Orefin is 100 mole 0/0.).
  • Graft-modified propylene polymer ( ⁇ ) has a melting point of less than 120 ° C as measured by differential scanning calorimetry (DSC), or no melting point is observed, and preferably has a melting point of 100 ° C. Or the melting point is not observed.
  • the fact that the melting point is not observed means that in the range of 150 to 200 ° C, no crystal melting peak with a heat of crystal melting of UZg or more is observed.
  • the measurement conditions are as described in the examples.
  • the graft-modified propylene polymer (BB) has a melt flow rate measured under a load of 190 ° C and 2.16 kg, usually from 0.01 to: LOOgZlO, preferably from 0.1 to 50 g / 10 minutes, more preferably 1 to 40 gZlO minutes, and particularly preferably 5 to 30 gZlO minutes.
  • Such a graft-modified propylene polymer (BB) is, for example, a propylene polymer (C1) described in the section of the first thermoplastic resin composition and a vinyl compound containing a polar group. And at least one compound selected from the group consisting of Silane compounds.
  • the graft modified propylene polymer (C-1) is blended with the propylene polymer (B) described in the section of the first thermoplastic resin composition to obtain a graft-modified propylene polymer.
  • Coalescence (BB) may be produced.
  • the propylene polymer (B) which may be used preferably has a triad tacticity (mm fraction) measured by 13 C-NMR of 85% or more, more preferably 85 to 97.5%, still more preferably 8 7 to 97%, particularly preferably 90 to 97%.
  • the range of triad tacticity (mm fraction) force is preferable because it is particularly excellent in the balance between flexibility and mechanical strength.
  • the mm fraction can be measured by the method described in International Publication 2005-087775 pamphlet, page 21, line 7 to page 26, line 6.
  • It is preferable constituent unit content derived from Refuin is 5 to 50 mol 0/0
  • Propylene 'having 4 to 20 carbon atoms graft modified product of X over O reflex in random copolymer (BB- la) ( here the total of the structural units and the construction unit of from a non Orefuin having 4 to 20 carbon atoms derived from propylene and 100 mol%.) 0
  • the crystallinity measured by X-ray diffraction is preferably 40% or less, more preferably 35% or less.
  • the content of the constituent unit derived from exo-olefin having 4 to 20 carbon atoms in the propylene 'at-olefin-random copolymer having 4 to 20 carbon atoms is preferably 5 to 50 mol 0 / 0, more preferably 10 to 35 mole 0/0 (total of constituent units derived from propylene-derived constituent unit and having 4 to 20 carbon atoms in the ⁇ - Orefin is 100 mole 0/0.)
  • 1-butene is preferably used as the X-olefin (having 4 to 20 carbon atoms.
  • Such a graft-modified propylene / ⁇ -olefin random copolymer ( ⁇ -la) having 4 to 20 carbon atoms is, for example, propylene as described in the section of the first thermoplastic resin composition.
  • An a-olefin random copolymer (C-la) having 4 to 20 carbon atoms, at least one compound selected from the group consisting of beryl-louis compounds and silani compounds containing polar groups It can be produced by graft modification with Further, the graft modified product of the above-mentioned propylene′- ⁇ -olefin random copolymer (C-la) having 4 to 20 carbon atoms is the same as the propylene resin described in the section of the first thermoplastic resin composition.
  • '(BB-la) may be produced by blending with (X-refin random copolymer (B-1) having 4 to 20 carbon atoms.
  • thermoplastic resin compositions excellent in mechanical strength, elongation at break, scratch resistance, and whitening resistance and excellent in low-temperature brittleness can be obtained.
  • the molded body obtained from these thermoplastic resin compositions is, for example, an electric wire, it has an advantage that the electric wire coating is not easily broken even when exposed to a low temperature.
  • the second thermoplastic resin composition of the present invention has the above-mentioned graft-modified propylene-based polymer (BB) force of propylene 'ethylene' ⁇ having 4 to 20 carbon atoms satisfying the following: — O Les fins random copolymer graft-modified product of (BB- lb) it is preferably a ⁇ ; 40 to 85 mole a constitutional unit derived from propylene 0/0, 5 to 30 structural units derived from ethylene molar 0 / 0, and where having 4 to 20 carbon atoms ⁇ - Orefuin comprising 5-30 mole 0/0 a constitutional unit derived from (propylene-derived constituent units, constituent units derived from butene, and having 4 to 20 carbon atoms the total of the constitutional units derived from an ⁇ - Orefin is 100 mole 0/0.).
  • BB propylene-based polymer
  • graft-modified propylene 'ethylene' at 4-olefin random copolymer ( ⁇ -lb) having 4 to 20 carbon atoms preferably at least one of the following (ol) and (pi) More preferably, it is desirable to satisfy both.
  • ( ⁇ 1) Shore 8 hardness is 30-80, preferably 35-60.
  • the degree of crystallinity measured by X-ray diffraction is 20% or less, preferably 10% or less.
  • the melting point (Tm) of graft-modified propylene.ethylene.at-reflandin copolymer having 4 to 20 carbon atoms (BB—lb) measured by DSC is preferably 50 ° C. or less. It is desirable that no force or melting point is observed.
  • the melting point can be measured by the same method as that for the first modified propylene polymer (BB).
  • a constitutional unit derived from propylene preferably 60 to 82 mole 0/0, more rather preferably is 61 to 75 mole 0/0, constituent units derived from ethylene and preferably from 8.0 to 15 mole 0/0, more preferably 10 to 14 mole 0/0, a constitutional unit derived from ⁇ - Orefin having 4 to 20 carbon atoms, preferably 10 to 25 mole 0/0 , more preferably (the total of propylene and ethylene and constituent units derived from a Orefuin having 4 to 20 carbon atoms is 100 mol% here.) it is desirable to include an amount of 15 to 25
  • Such graft-modified propylene 'ethylene' copolymer having 4 to 20 carbon atoms is, for example, propylene described in the section of the first thermoplastic resin composition.
  • Ethylene an at-olefin random copolymer (C—lb) having 4 to 20 carbon atoms, selected from the group consisting of vinyl compounds and silani compounds containing polar groups Both can be produced by graft modification with one compound.
  • the above-mentioned graphene modified propylene random copolymer (C—lb) having 4 to 20 carbon atoms is also used in the same propylene resin composition as described in the section of the first thermoplastic resin composition.
  • '(BB-lb) may be produced by blending with an ⁇ -olefin random copolymer (B-2) having 4 to 20 carbon atoms.
  • thermoplastic polymer composition having excellent low-temperature embrittleability can be obtained. Further, when the molded body obtained from these thermoplastic resin compositions is, for example, an electric wire, there is an advantage that the electric wire coating is not easily cracked even if it is exposed to a low temperature.
  • the present invention is graft-modified with at least one compound selected from the group consisting of vinyl compounds and silane compounds containing a part or all of the polar groups, and differential scanning calorimetry (DSC).
  • the melting point measured by (1) is less than 120 ° C or the melting point is not observed, and it is used in the manufacture of the draft modified propylene polymer (BB). Examples thereof include the same compounds as those described in the section of production of the graft-modified propylene polymer (C) used in the first thermoplastic resin composition of the present invention.
  • the graft modified propylene polymer (C) used in the first thermoplastic resin composition of the present invention depending on the graft modification (graft copolymerization) method, the radical initiator used, etc. The same methods and the same initiators as those described in the production section can be mentioned.
  • a part or the whole used in the present invention is graft-modified with at least one compound selected from the group consisting of a vinyl compound containing a polar group and a silane compound compound force, and differential scanning calorimetry ( In graft-modified propylene polymers (BB) whose melting point measured by DSC is less than 120 ° C or where no melting point is observed, grafts of beryl and silane compounds containing polar groups
  • the amount is not particularly limited, but is usually 0.01 to 10% by mass, preferably 0.05 to 5% by mass, based on 100 parts by mass of the modified propylene polymer (BB).
  • the graft-modified polymer (BB) as described above, it is possible to obtain a molded article particularly excellent in the balance between tensile strength and scratch resistance.
  • the inorganic filler (D) used in the present invention, the ethylene polymer (E), the oil (F), etc. used as necessary are the same as those described in the first thermoplastic resin composition. It can be used.
  • the second thermoplastic polymer composition of the present invention comprises a propylene-based polymer (A) in an amount of 5.0 to 64.9% by mass, preferably 5.0 to 49.9% by mass.
  • the polymer (BB) is 0.1 to 60% by mass, preferably 10.1 to 40% by mass, and contains 35 to 75% by mass, preferably 40 to 60% by mass of the inorganic filler (D) (here The total amount of components (A), (BB) and (D) is 100% by mass.)
  • ethylene polymer (E) a copolymer of ethylene and a-olefin having 3 to 10 carbon atoms (E-1), or a graft-modified ethylene polymer
  • the blending amount of (E-2) is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of components (A), (BB) and (D).
  • the blending amount of the ethylene polymer (E-1) is within this range, the effect of improving the low temperature characteristics is remarkable, which is preferable.
  • the amount of oil (F) used in the present invention is 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of components (A), (BB) and (D). .
  • the blending amount of the oil (F) is within this range, the effect of improving the low-temperature characteristics is remarkable, and the possibility that the oil oozes out on the surface of the molded product is preferable.
  • thermoplastic polymer composition of the present invention other synthetic resins, other rubbers, antioxidants, heat stabilizers, and the like, as long as they do not impair the object of the present invention, It may contain additives such as weathering stabilizers, slip agents, antiblocking agents, crystal nucleating agents, pigments, hydrochloric acid absorbents, copper damage inhibitors.
  • the addition amount of such other synthetic resins, other rubbers, additives and the like is not particularly limited as long as it does not impair the purpose of the present invention.
  • An embodiment in which the total of components (A), (BB) and (D) is included so as to be 60 to 100% by mass is preferable.
  • the balance is the above other synthetic resin, other rubber, additives, ethylene polymer (E), oil (F) and the like.
  • thermoplastic polymer composition ⁇ Method for producing thermoplastic polymer composition>
  • the first and second thermoplastic polymer compositions of the present invention are produced using a conventionally known method. can do. For example, it can be produced by melt-kneading the above components.
  • the graft-modified propylene polymer (C) and the ethylene polymer (E) are melt-kneaded and the propylene polymer composition (G And a component containing the propylene polymer composition (G), the inorganic filler (D), the propylene polymer (A), and the propylene polymer (B) used as necessary. Melting and kneading is preferable because scratch resistance can be further improved while maintaining other physical properties.
  • a part of (C) or (E) is supplied separately from (G) the propylene polymer composition (melt kneaded product) as in the case of component (A) without being melt kneaded in advance. However, it is most effective that all of (C) and (E) are supplied after passing through the process of becoming a propylene polymer composition (melt kneaded product) (G) in advance. .
  • the graft-modified propylene polymer (BB) and the ethylene polymer (E) are melt-kneaded to produce a propylene polymer assembly.
  • a part of (BB) or (E) is supplied separately from the (GG) propylene polymer composition (melt kneaded product) as in the case of component (A) without being melt kneaded in advance.
  • the first and second molded bodies of the present invention are composed of the thermoplastic polymer composition as described above.
  • thermoplastic polymer composition molded articles having various shapes can be obtained by a conventionally known melt molding method.
  • melt molding methods include extrusion molding, rotational molding, calendar molding, injection molding, compression molding, transfer molding, powder molding, professional molding, and vacuum molding.
  • the molded body may be a composite with a molded body made of another material, for example, a laminated body.
  • the first and second molded bodies can be suitably used for the purpose of covering an electric wire such as an electric wire insulator and an electric wire sheath. Further, the coating layers such as the electric wire insulator and the electric wire sheath are formed around the electric wire by a conventionally known method such as extrusion molding.
  • the first and second electric wires of the present invention include an insulator using the thermoplastic polymer composition as described above, and a sheet using Z or a propylene-based resin composition as described above.
  • the electric wires are preferably automobile wires and device wires.
  • thermoplastic polymer composition as described above is also suitably used for building materials and the like.
  • the toluene solution was added to the polymerization vessel and polymerized for 30 minutes while maintaining an internal temperature of 65 ° C. and a propylene pressure of 0.7 MPa, and 20 ml of methanol was added to terminate the polymerization. After depressurization, the polymer solution also precipitated in 2 liters of methanol and deposited under vacuum at 130 ° C, 12:00 It was dried for a while. The obtained polymer was 12.5 g.
  • the resulting polymer has a butene content of 2.9 mol%, a melting point of 74.4 ° C, a melt flow rate (230 ° C, 2.16 kg) of 7 g / 10 min, and MwZMn of 2. 10, mm value was 90%.
  • the copolymer (B-1) obtained by scaling up was used according to the above method.
  • Table 1 shows the properties of the propylene / 1-butene copolymer (B-1) (PBR) used.
  • a 2000ml polymerization apparatus purged with nitrogen was charged with 917ml of dry hexane, 85g of 1-butene and triisobutylaluminum (1.Ommol) at room temperature, and the temperature in the polymerization apparatus was raised to 65 ° C. Then, the pressure in the system was increased to 0.77 Mpa with propylene. After that, the system pressure was adjusted to 0.78 MPa with ethylene.
  • the copolymer (B-2) obtained by scaling up according to the above method was pelletized and used.
  • Table 2 shows the properties of the propylene / ethylene / 1-butene random copolymer (B-2) (PBER) used. The mm value was 92%.
  • CX Maleic anhydride graft-modified propylene '1 butene copolymer (modified C 1 a) Propylene 1-butene copolymer (B-1) having the properties shown in Table 1 is used as the raw material for modification. Used as union (C-la). 6 kg of this propylene 1-butene polymer was blended with a solution of 30 g of maleic anhydride and 5.4 g of 2,5 dimethyl-2,5 di (t-butylperoxy) -3 hexyne in 50 g of acetone.
  • the Tm measured by this (C X) DSC was 70 ° C, and the melt flow rate (temperature 190 ° C, load 2.16 kg load) was 15 g, 10 minutes.
  • a propylene / ethylene / 1 butene copolymer (B-2) having the properties shown in Table 2 was used as a propylene-based polymer (C-lb) as a modifying raw material.
  • the comonomer (ethylene, 1-butene) content and mmmm (stereoregularity, pentad isotacticity) were determined by analysis of 13 C-NMR ⁇ vector.
  • the exothermic / endothermic curve of DSC was obtained, and the temperature at the apex of the melting peak where ⁇ H during temperature rise was ljZg or more was defined as Tm.
  • the sample is packed in an aluminum pan, heated to 200 ° C at 100 ° CZ for 5 minutes, held at 200 ° C for 5 minutes, then cooled to 150 ° C at 10 ° CZ, then 10 ° CZ for It was obtained from the exothermic / endothermic curve when the temperature was raised to 200 ° C.
  • the molecular weight distribution (Mw / Mn) was measured using a gel permeation chromatograph Alliance GPC 2000 model manufactured by Waters as follows.
  • the separation column consists of two TSKgel GNH6-HT and two TSKgel GNH6-HTL. Both column sizes are 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C, and the mobile phase is O Using dichlorobenzene (Wako Pure Chemical Industries) and BHT (Takeda) 0.025% by mass as an anti-oxidant agent, 1.
  • sample concentration is 15mgZl0ml
  • sample injection volume is A 500-microliter liter was used, and a differential refractometer was used as a detector.
  • molecular weight Mw 1000, and for Mw> 4 X 10 6 use Tosoh Corporation, 1000 ⁇ Mw ⁇ 4 X 10 6 ! .
  • RINT2500 manufactured by Rigaku Corporation was used as the measuring device, and it was obtained by analysis of a wide-angle X-ray profile measured using CuKa as the X-ray source. (7) Shore A hardness
  • the measurement was performed under the following conditions in accordance with JIS K6301. Create a sheet with a press molding machine, and use this A-type measuring instrument to read the scale immediately after contact with the press needle.
  • the polymer sample was dissolved in decalin, the viscosity of the solution was measured at a temperature of 135 ° C, and the measured value force was also determined as the intrinsic viscosity.
  • T S the strength at break
  • EL elongation at break
  • the measurement was performed on a 3 mm sheet produced by an injection molding machine in accordance with ASTM D746.
  • the tip of the wear indenter made of SUS was 700 g.
  • a 3 mm-thick test piece was worn with a piano wire attached to the tip of the wear indenter under the conditions of 1 000 reciprocations, reciprocation speed 60 cpm, and stroke 10 mm.
  • the mass of the test sample before and after abrasion was measured to determine the amount of loss wear. The smaller this value, the better the scratch resistance.
  • Each raw material component was dry blended using a Henschel mixer at the blending amounts shown in Table 4, and melt kneaded at a temperature of 210 ° C. with a 30 mm ⁇ twin screw extruder to obtain a composition.
  • a test piece was prepared from the obtained pellet using an injection molding machine, and a tensile test, a low temperature embrittlement temperature, a scrape wear and a D hardness test were conducted. The results are shown in Table 4.
  • Example 6 The maleic anhydride graft-modified propylene '1-butene copolymer (C 1 X) as the graft-modified propylene polymer (C) and the ethylene' 1-butene copolymer (E) as the ethylene polymer (E). — 1) was kneaded at 190 ° C. using a lab plast mill (manufactured by Toyo Seiki Co., Ltd.) to produce the following propylene polymer composition (G).
  • Example 4 the evaluation was performed in the same manner as in Example 1 except that the composition was changed to the composition having the blending power shown in Table 4. The results are shown in Table 4.
  • the propylene-based resin composition of the present invention breaks when an inorganic filler (for example, magnesium hydroxide) is blended as compared with the ethylene-based resin composition used in the comparative example. Excellent point strength, elongation at break and scratch resistance.
  • an inorganic filler for example, magnesium hydroxide
  • the propylene-based resin composition of the present invention contains an inorganic filler in a high proportion, and has excellent mechanical strength, elongation at break, and scratch resistance as well as good flexibility. Furthermore, since the propylene-based resin composition of the present invention contains an inorganic filler in a high ratio, it can be widely used for molded products having flame retardancy, such as electric wires and building materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Abstract

 無機系充填剤を高い割合で含み、かつ、柔軟性、機械強度、破断点伸び、耐熱性、耐傷付き性、耐白化性および難燃性に優れたプロピレン系樹脂組成物、および、その組成物からなる成形体を提供する。  本発明の第1のプロピレン系樹脂組成物は、示差走査熱量計(DSC)で測定される融点が120~170°Cであるプロピレン系重合体(A)を5~64.9質量%、示差走査熱量分析(DSC)で測定される融点が120°C未満または融点が観測されない、プロピレン系重合体(B)を0~59.9質量%、示差走査熱量分析(DSC)で測定される融点が120°C未満または融点が観測されないプロピレン系重合体を変性して得られるグラフト変性プロピレン系重合体(C)を0.1~30質量%、および、無機系充填剤(D)を35~75質量%含む(ここで、(A)~(D)の合計量は、100質量%である。)ことを特徴とする。

Description

明 細 書
熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性 重合体組成物から得られる成形体および電線
技術分野
[0001] 本発明は、熱可塑性重合体組成物、および該組成物カゝら得られる成形体に関する
。より詳しくは、本発明は、無機系充填剤を高い割合で含み、かつ、柔軟性、機械強 度、破断点伸び、耐熱性、耐傷付き性、耐白化性および難燃性に優れた熱可塑性 重合体組成物に関し、さらに、この熱可塑性重合体組成物を用いた成形体に関する
背景技術
[0002] 電線のシース材、および一部絶縁材料は、ポリ塩化ビニル、または架橋性ポリェチ レンが多用され、その柔軟性、難燃性、絶縁性が評価されてきたが、加熱などにより 塩素系ガスを発生すること、また熱可塑性に欠けることから廃棄やリサイクルが困難 であった。このため、非架橋であり、リサイクル可能である、通常の使用条件に適した 機械的および電気的特性を備えたポリエチレンの結晶性ホモポリマー、または結晶 性コポリマー力もなる成形体が知られている(特許文献 1)。し力しながら、特許文献 1 に用いられる成形体は、柔軟性、耐衝撃性、低温特性に優れているが、耐傷付き性 、および引張り強度が不充分であった。
特許文献 1:特開平 11— 111061号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明の目的は、無機系充填剤を高い割合で含み、かつ、柔軟性、機械強度、破 断点伸び、耐熱性、耐傷付き性、耐白化性および難燃性に優れた熱可塑性重合体 組成物を提供することにある。また本発明の目的は、低温脆化温度を著しく低下させ ることなく柔軟性、および耐熱性を保持し、さらに硬度を向上させることにより耐傷付 き性を改善させること〖こある。すなわち、柔軟性、機械強度、破断点伸び、耐熱性、 耐白化性、難燃性に優れるとともに、特に耐傷付き性に優れた熱可塑性重合体組成 物を得ることができる製造方法を提供することにある。また、本発明の目的は、その組 成物からなる成形体、ならびに、該糸且成物を用いてなる絶縁体および Zまたはシース を有する電線を提供することにある。
課題を解決するための手段
[0004] 〔第 1の熱可塑性榭脂組成物〕
本発明に係る第 1の熱可塑性重合体組成物は、以下の (A)、(B)、(C)、および (D )を含むことを特徴とする;
(A)示差走査熱量分析 (DSC)で測定される融点が 120°Cから 170°Cの範囲にある プロピレン系重合体 5〜64. 9質量0 /0
(B)示差走査熱量分析 (DSC)で測定される融点力 S120°C未満または融点が観測さ れない、プロピレン系重合体を 0〜59. 9質量0 /0
(C)示差走査熱量分析 (DSC)で測定される融点が 120°C未満または融点が観測さ れない、プロピレン系重合体 (C 1)を、極性基を含有するビニル化合物およびシラ ン化合物力 なる群より選ばれる、少なくとも一つの化合物でグラフト変性してなるグ ラフト変性プロピレン系重合体 0. 1〜30質量0 /0
(D)無機系充填剤 35〜75質量%、
ここで、 (A)、(B)、(C)、および (D)の合計量は、 100質量%である。
[0005] 上記無機系充填剤 (D)は、タルク、金属水酸化物、金属炭酸塩および金属酸化物 力もなる群より選ばれる 1種以上であることが好ましい。
[0006] 本発明の第 1の熱可塑性重合体組成物は、プロピレン系重合体 (A)、プロピレン系 重合体 (B)、グラフト変性プロピレン系重合体 (C)、および無機系充填材 (D)の合計 100質量部に対して、オイル (F)を 0. 1〜20質量部含むことが好ましい。また、本発 明の熱可塑性重合体組成物は、プロピレン系重合体 (A)、プロピレン系重合体 (B) 、グラフト変性プロピレン系重合体 (C)、および無機系充填材 (D)の合計 100質量部 に対して、エチレン系重合体 (E)を 0. 1〜20質量部含むことが好ましい。
[0007] 本発明の熱可塑性重合体組成物の製造方法は、上記エチレン系重合体 (E)を含 む熱可塑性重合体組成物を製造するにあたり、グラフト変性プロピレン系重合体 (C) と、エチレン系重合体 (E)とを溶融混練してプロピレン系重合体組成物(G)を製造し 、該プロピレン系重合体組成物 (G)、無機系充填剤 (D)、および (A)と、必要に応じ て用いられるプロピレン系重合体 (B)とを含む成分を溶融混練することを特徴とする 上記第 1の成形体は、電線の絶縁体または電線シースであることが好ま U、。
[0008] 本発明の第 1の電線は、上記熱可塑性重合体組成物を用いてなる絶縁体、および Zまたは、上記の熱可塑性重合体組成物を用いてなるシースを有する電線であるこ とを特徴とする。上記電線は、自動車用電線または機器用電線であることが好ましい
〔第 2の熱可塑性榭脂組成物〕
本発明に係る第 2の熱可塑性重合体組成物は、以下の (A)、 (BB)、および (D)を 含むことを特徴とする;
(A)示差走査熱量分析 (DSC)で測定される融点が 120°Cから 170°Cの範囲にある プロピレン系重合体 5〜64. 9質量0 /0
(BB)一部または全部が、極性基を含有するビニル化合物およびシラン化合物から なる群より選ばれる少なくとも一つの化合物でグラフト変性されており、示差走査熱量 分析 (DSC)で測定される融点が 120°C未満または融点が観測されな 、変性プロピ レン系重合体 0. 1〜60. 0質量0 /0
(D)無機系充填剤 35〜75質量%、
ここで、 (A)、 (BB)、および(D)の合計量は、 100質量%である。
[0009] 上記無機系充填剤 (D)は、タルク、金属水酸化物、金属炭酸塩および金属酸化物 力もなる群より選ばれる 1種以上であることが好ましい。
[0010] 本発明の第 2の熱可塑性重合体組成物は、プロピレン系重合体 (A)、グラフト変性 プロピレン系重合体 (BB)、および無機系充填材 (D)の合計 100質量部に対して、 エチレン系重合体 (E)を 0. 1〜20質量部含むことが好ましい。また本発明の第 2の 熱可塑性重合体組成物は、プロピレン系重合体 (A)、グラフト変性プロピレン系重合 体 (BB)、および無機系充填材 (D)の合計 100質量部に対して、オイル (F)を 0. 1〜 20質量部含むことが好まし 、。
[0011] また、本発明の第 2の熱可塑性榭脂組成物の製造方法は、前記エチレン系重合体 (E)を含む熱可塑性榭脂組成物を製造するにあたり、グラフト変性プロピレン系重合 体 (BB)と、エチレン系重合体 (E)とを溶融混練してプロピレン系重合体組成物(GG
)を製造し、該プロピレン系重合体組成物 (GG)、無機系充填剤 (D)、プロピレン系 重合体 (A)とを含む成分を溶融混練することを特徴とする。
[0012] 本発明の第 2の成形体は、前記第 2の熱可塑性榭脂組成物からなることを特徴とす る。上記第 2の成形体は、電線の絶縁体または電線シースであることが好ましい。
[0013] 本発明の第 2の電線は、上記第 2の熱可塑性重合体組成物を用いてなる絶縁体、 および Zまたは、上記第 2の熱可塑性重合体組成物を用いてなるシースを有する電 線であることを特徴とする。
[0014] 上記第 2の電線は、自動車用電線または機器用電線であることが好ましい。
発明の効果
[0015] 本発明の第 1および第 2の熱可塑性重合体組成物は、無機系充填剤を高い割合 で含み、且つ良好な柔軟性とともに、優れた機械強度、破断点伸び、耐白化性、およ び耐傷付き性を有する。
[0016] 本発明の第 1および第 2の熱可塑性重合体組成物中に、オイルが含まれている場 合には、特に耐傷付性、耐低温脆ィ匕性に優れる。また本発明の熱可塑性重合体組 成物中に、エチレン系重合体が含まれている場合には、特に耐傷つき性に優れる。 また本発明の第 1および第 2の熱可塑性重合体組成物の製造方法によれば、柔軟 性、機械強度、破断点伸び、難燃性に優れるとともに、特に耐傷付き性に優れた熱 可塑性重合体組成物を得ることができる。
[0017] 本発明の第 1および第 2の熱可塑性重合体組成物は、無機系充填剤を高い割合 で含むことから、難燃性に優れた成形体、特に電線などに好適に利用できる。
発明を実施するための最良の形態
[0018] 以下、本発明について具体的に説明する。
〔第 1の熱可塑性榭脂組成物〕
<プロピレン系重合体 (A) >
本発明で用いられるプロピレン系重合体 (A)としては、プロピレン単独重合体、また は、プロピレンと、エチレンおよび炭素原子数力 〜20の aーォレフインから選ばれ る少なくとも 1種のォレフィンとの共重合体を挙げることができる。ここで、エチレンおよ び炭素原子数が 4〜20の α—ォレフインとしては、エチレン、 1—ブテン、 1—ペンテ ン、 1—へキセン、 4—メチル 1—ペンテン、 1—オタテン、 1—デセン、 1—ドデセン 、 1ーテトラデセン、 1一へキサデセン、 1ーォクタデセン、 1 エイコセンなどが挙げら れるが、エチレンまたは炭素原子数が 4〜10の α—ォレフィンが好ましい。これらの aーォレフインは、プロピレンとランダム共重合体を形成してもよぐブロック共重合体 を形成してもよい。
[0019] これらのエチレンおよび炭素原子数力 〜20の α—ォレフインから導かれる構成単 位は、プロピレン系重合体 (Α)の全構成単位中に 35モル0 /0以下、好ましくは 30モル %以下の割合で含まれて!/、てもよ!/、。
[0020] プロピレン系重合体 (Α)において、 ASTM D1238に準拠して、測定されるメルト フローレ一卜(温度 230。C、荷重 2. 16kg)は、通常 0. 01〜: LOOOgZlO分であり、好 ましくは 0. 05〜: LOOgZlO分であり、より好ましくは 0. l〜50gZlO分、さらに好まし くは 0. 1〜: LOgZlO分の範囲にある。
[0021] 本発明に用いられるプロピレン系重合体 (A)について、示差走査熱量計 (DSC)で 測定される融点は、 120°C以上、好ましくは 120〜170°C、より好ましくは 125〜165 °Cである。融点の測定は以下のように行う。すなわち、試料をアルミパンに詰め、 100 °CZ分で 200°Cまで昇温して 200°Cで 5分間保持したのち、 10°CZ分で 150°Cま で降温し、次いで 10°CZ分で 200°Cまで昇温する際に観察される吸熱曲線のピーク 温度力 融点 (Tm)である。
[0022] プロピレン系重合体 (A)は、ァイソタクチック構造、シンジオタクチック構造のどちら を有して!/、てもよ 、が、耐熱性などの点でアイソタクチック構造を有することが好まし い。
[0023] また、必要に応じて複数のプロピレン系重合体 (A)を併用することができ、例えば、 融点および剛性の異なる 2種類以上の成分を用いることもできる。
[0024] また、プロピレン系重合体 (A)としては、耐熱性に優れるホモポリプロピレン (通常プ ロピレンを除く共重合成分が 3モル%以下であるもの)、耐熱性と耐衝撃性とのバラン スに優れるブロックポリプロピレン(通常 3〜30質量0 /0のノルマルデカン溶出ゴム成分 を有するもの)、または柔軟性と透明性とのバランスに優れるランダムポリプロピレン( 通常示差走査熱量計 (DSC)により測定される融解ピークが 120°C以上、好ましくは 125°C〜150°Cの範囲にあるもの)を、 目的の物性を得るために選択して用いてもよ ぐまた、これらを併用して用いることが可能である。
[0025] このようなプロピレン系共重合体 (A)は、例えば、マグネシウム、チタン、ハロゲンお よび電子供与体を必須成分として含有する固体触媒成分、有機アルミニウム化合物 および電子供与体力 なるチーグラー触媒系、またはメタ口センィ匕合物を触媒の一 成分として用いたメタ口セン触媒系を用いて、プロピレンを重合して、あるいは、プロピ レンと、エチレンおよび他の aーォレフインとを共重合して製造できる。
<プロピレン系重合体(B) >
本発明で必要に応じて用いられるプロピレン系重合体 (B)としては、プロピレンと、 エチレンおよび炭素原子数力 〜20の α—ォレフインから選ばれる少なくとも 1種の ォレフインとの共重合体であり、通常プロピレン由来の構成単位を 40〜99モル0 /0、 好ましくは 40〜92モノレ%、より好ましくは 50〜90モノレ%含み、コモノマーとして用い られる、エチレンおよび炭素原子数 4〜20の ex—ォレフイン由来の構成単位を、通 常 1〜60モル0 /0、好ましくは 8〜60モル0 /0、より好ましくは 10〜50モル0 /0含む(ここ で、プロピレンと、エチレンおよび炭素原子数 4〜20の α—ォレフインとの合計は 10 0モル%である)。
[0026] 本発明で用いられるプロピレン系重合体(Β)は、プロピレンと、エチレンおよび炭素 原子数 4〜20の α—ォレフインから選ばれる少なくとも 1種のォレフィンとの共重合体 が好ましい。このエチレンおよび炭素原子数 4〜20の α—ォレフインとしては、具体 的に、エチレン、 1ーブテン、 1 ペンテン、 1一へキセン、 3—メチルー 1ーブテン、 3 ーメチルー 1 ペンテン、 3 ェチルー 1 ペンテン、 4ーメチルー 1 ペンテン、 4 メチルー 1一へキセン、 4, 4 ジメチルー 1 ペンテン、 4ーェチルー 1一へキセン、 1—オタテン、 3 ェチルー 1一へキセン、 1—オタテン、 1ーデセンなどが挙げられる 。これらは単独で用いても、 2種以上を組み合わせて用いてもよい。これらのうちで、 エチレン、 1ーブテン、 1一へキセンおよび 1—オタテンの少なくとも 1種を用いること が特に好ましい。 [0027] 本発明に用いられるプロピレン系重合体(B)においては、メルトフローレート(温度 2 30°C、荷重 2. 16kg)が通常 0. l〜50 (gZ lO分)である。また、プロピレン系重合体 (B)は、示差走査熱量分析 (DSC)で測定される融点が 120°C未満であるか、または 融点が観測されず、好ましくは、融点が 100°C以下である力または融点が観測されな い。ここで、融点が観測されないとは、 150〜200°Cの範囲において、結晶融解熱 量が UZg以上の結晶融解ピークが観測されないことをいう。測定条件は、実施例記 載のとおりである。
[0028] プロピレン系重合体 (B)の製造方法は特に制限されな!、が、例えば国際公開 200
4Z87775号パンフレット記載の方法で製造することができる。
[0029] 上記のような特徴を有するプロピレン系重合体 (B)の具体例としては、以下のように 、プロピレン '炭素原子数 4〜20の α—ォレフインランダム共重合体(Β— 1)およびプ ロピレン ·エチレン '炭素原子数 4〜20の at ォレフィンランダム共重合体(Β— 2)を 挙げることができる。
[0030] プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(Β— 1)を用いる ことで、機械強度、破断点伸び、耐傷付き性、耐白化性により優れたプロピレン系榭 脂組成物が得られる。
[0031] また、プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共重合体( Β— 2)を用いることで、柔軟性、耐傷付き性、耐白化性により優れた熱可塑性重合体 組成物が得られる。
[0032] 以下に、本発明に好適に用いられるプロピレン.炭素原子数 4〜20の aーォレフィ ンランダム共重合体(B— 1 )およびプロピレン'エチレン'炭素原子数 4〜20の at ォレフィンランダム共重合体 (B— 2)につ 、て詳しく説明する。
[プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(B— 1) ] 本発明に好ましく用いられるプロピレン '炭素原子数 4〜20の (X—ォレフインランダ ム共重合体 (B—1)は、プロピレン由来の構成単位、エチレン由来の構成単位、およ び炭素原子数 4〜20の aーォレフイン由来の構成単位を含むランダム共重合体で あり、下記 (a)および (b)を満たす。
(a)ゲルパーミエーシヨンクロマトグラフィー(GPC)によって測定された分子量分布 ( Mw/Mn)が 1〜3の範囲にある。
(b)融点 (Tm) (°C)と、 13C— NMRスペクトル測定にて求められるコモノマー構成単 位の含量 M (モル%)と力 以下の関係式(1)を満たし、 Tmは 120°C未満、好ましく は 100°C未満であり、 Mの値は特に制限はないが、たとえば、 5〜45の値を挙げるこ とがでさる。
[0033] 146exp ( - 0. 022M)≥Tm≥125exp ( - 0. 032M) ( 1)
プロピレン '炭素原子数 4〜20の exーォレフインランダム共重合体(B— 1)の融点( Tm)は、 DSCにより以下のように測定される。測定は、試料をアルミパンに詰め、(i) 100°CZ分で 200°Cまで昇温して 200°Cで 5分間保持したのち、(ii) 10°CZ分で 150°Cまで降温し、次いで (iii) 10°C/分で 200°Cまで昇温して行う。この(iii)で観 察される吸熱ピークの温度が、融点 (Tm)である。この融点 (Tm)は、通常 120°C未 満、好ましくは 100°C以下、より好ましくは 40〜95°Cの範囲、さらに好ましくは 50〜9 0°Cの範囲である。融点 (Tm)がこの範囲にあれば、特に柔軟性と強度とのバランス に優れた成形体が得られる。また、成形品表面のベたつきが抑えられるため、本発明 の組成物を用いてなる成形体は施工がしゃす!/、利点を有する。
[0034] プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(B— 1)において は、さらに、
(c) X線回折で測定した結晶化度が好ましくは 40%以下、より好ましくは 35%以下で あることが望ましい。
[0035] プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(B— 1)において 、炭素原子数 4〜20の exーォレフイン由来の構成単位の含有量は、好ましくは 5〜5 0モル0 /0、より好ましくは 10〜35モル0 /0である。特に、炭素原子数 4〜20の α—ォレ フィンとしては、 1—ブテンが好ましく用いられる。
[0036] このようなプロピレン '炭素原子数 4〜20の atーォレフインランダム共重合体(Β— 1 )は、例えば、国際公開第 2004Ζ87775号パンフレットに記載されている方法など によって得られる。
[プロピレン'エチレン'炭素原子数 4〜20の at—ォレフインランダム共重合体(Β— 2 ) ] 本発明に好ましく用いられるプロピレン'エチレン'炭素原子数 4〜20の aーォレフ インランダム共重合体 (B— 2)は、プロピレン由来の構成単位、エチレン由来の構成 単位、および炭素原子数 4〜20の aーォレフイン由来の構成単位を含むランダム共 重合体であり、下記 (m)および (n)を満たす。
(m)ゲルパーミエーシヨンクロマトグラフィー(GPC)によって測定された分子量分布 ( Mw/Mn)が 1〜3の範囲にある。
(n)プロピレン由来の構成単位を 40〜85モル0 /0、エチレン由来の構成単位を 5〜3 0モル0 /0、炭素原子数 4〜20の α—ォレフイン由来の構成単位を 5〜30モル0 /0含む (ここで、プロピレン由来の構成単位、エチレン由来の構成単位、および炭素原子数 4〜20の α—ォレフィン由来の構成単位の合計は 100モル0 /0である。また、エチレン 由来の構成単位、および炭素原子数 4〜20のひ—ォレフィン由来の構成単位の合 計は 60〜 15モル%であることが好ましい。 ) ο
[0037] プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共重合体(Β— 2 )においては、さらに、好ましくは下記 (ο)および (ρ)の少なくとも 1つ以上、より好まし くは両方を満たすことが望ま 、。
(ο)ショァ一 Α硬度力 0〜80、好ましくは 35〜60である。
(p) X線回折で測定した結晶化度が 20%以下、好ましくは 10%以下である。
[0038] また、プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共重合体( B— 2)の DSCで測定した融点 (Tm)は、好ましくは 50°C以下である力、または融点 が観測されないことが望ましい。融点の測定は、上記共重合体 (B—1)と同じ方法で 測定できる。
[0039] プロピレン成分およびその他のコモノマー成分量について、さらに詳しくは、プロピ レン由来の構成単位を、好ましくは 60〜82モノレ0 /0、より好ましくは 61〜75モノレ0 /0、 エチレン由来の構成単位を、好ましくは 8. 0〜15モル%、より好ましくは 10〜 14モ ル0 /0、炭素数 4〜20の α—ォレフイン由来の構成単位を、好ましくは 10〜25モル0 /0 、より好ましくは 15〜25モル%の量含むことが望ましい。特に、炭素原子数 4〜20の aーォレフインとしては、 1ーブテンが好ましく用いられる。
[0040] このようなプロピレン'エチレン'炭素原子数 4〜20の aーォレフインランダム共重合 体 (B— 2)は、例えば、国際公開第 2004Z87775号パンフレットに記載されている 方法などによって得られる。
[0041] 本発明においては、プロピレン'エチレン'炭素原子数 4〜20の atーォレフインラン ダム共重合体 (B— 2)を用いることで、柔軟性がより向上し、低温脆化性にも優れた 成形体が得られる。この成形体が、例えば電線である場合には、低温にさらされても 、電線被覆が割れにくい利点を有する。
<グラフト変性プロピレン系重合体 (C) >
グラフト変性プロピレン系重合体 (C)の原料に用いられる重合体としては、示差走 查熱量分析 (DSC)で測定される融点が 120°C未満または融点が観測されない、プ ロピレン系重合体 (C—1)が引張り破断点伸び、および耐磨耗性向上の点で好まし い。
[0042] プロピレン系重合体(C 1)としては、プロピレンと、エチレンおよび炭素原子数が 4 〜20の α—ォレフインから選ばれる少なくとも 1種のォレフィンとの共重合体であり、 通常プロピレン由来の構成単位を 40〜99モル0 /0、好ましくは 40〜92モル0 /0、より好 ましくは 50〜90モル0 /0含み、コモノマーとして用いられるエチレンおよび炭素原子数 4〜20の aーォレフイン由来の構成単位を、通常 1〜60モル0 /0、好ましくは 8〜60モ ル0 /0、より好ましくは 10〜50モル0 /0含む(ここで、プロピレンと、エチレンおよび炭素 原子数 4〜20の α—ォレフインとの合計は 100モル0 /0である。)。
[0043] 本発明で用いられるプロピレン系重合体(C— 1)は、プロピレンと、エチレンおよび 炭素原子数 4〜20の α—ォレフインから選ばれる少なくとの 1種のォレフィンとの共 重合体が好ましい。このエチレンおよび炭素原子数 4〜20の α—ォレフインとしては 、具体的には前記プロピレン系重合体 (Β)で記載したエチレンおよび α—ォレフィン を用いることができ、これらは単独で用いても、 2種以上を組み合わせて用いてもよい 。これらのうちで、エチレン、 1ーブテン、 1一へキセンおよび 1—オタテンの少なくとも 1種を用いることが特に好まし 、。
[0044] 本発明に用いられるプロピレン系重合体(C—1 )においては、メルトフローレート( 温度 230°C、荷重 2. 16kg)が通常 0. l〜50 (g/ 10分)である。また、プロピレン系 重合体 (C 1)は、示差走査熱量分析 (DSC)で測定される融点が 120°C未満であ る力、または融点が観測されず、好ましくは、融点が 100°C以下であるか、または融 点が観測されない。ここで、融点が観測されないとは、 150〜200°Cの範囲におい て、結晶融解熱量が UZg以上の結晶融解ピークが観測されないことをいう。測定条 件は、実施例記載のとおりである。
[0045] プロピレン系重合体 (C 1)の製造方法は特に制限されないが、例えば国際公開 2 004Z087775号パンフレット記載の方法で製造することができる。
[0046] 上記のような特徴を有するプロピレン系重合体 (C 1)の具体例としては、以下のよ うに、プロピレン.炭素原子数 4〜20の α ォレフィンランダム共重合体(C— la)お よびプロピレン'エチレン'炭素原子数 4〜20の at—ォレフインランダム共重合体(C — lb)を挙げることができる。
[プロピレン ·炭素原子数 4〜20の at—ォレフインランダム共重合体(C— la) ] 本発明に好ましく用いられるプロピレン '炭素原子数 4〜20の (X—ォレフインランダ ム共重合体 (C— la)は、プロピレン由来の構成単位、および炭素原子数 4〜20の α 一才レフイン由来の構成単位を含むランダム共重合体であり、下記 (al)および (b l) を満たす。
(a l)ゲルパーミエーシヨンクロマトグラフィー(GPC)によって測定された分子量分布 (Mw/Mn)が 1〜3の範囲にある。
(b l)融点 (Tm) (°C)と、 13C— NMRスペクトル測定にて求められるコモノマー構成単 位の含量 M (モル%)と力 以下の関係式(1)を満たし、 Tmは 120°C未満、好ましく は 100°C未満である。
[0047] 146exp ( - 0. 022M)≥Tm≥125exp ( - 0. 032M) ( 1)
プロピレン '炭素原子数 4〜20の ex—ォレフインランダム共重合体(C— la)の融点 (Tm)は、通常 120°C未満、好ましくは 100°C以下、より好ましくは 40〜95°Cの範囲 、さらに好ましくは 50〜90°Cの範囲である。融点(Tm)がこの範囲にあれば、特に柔 軟性と強度とのバランスに優れた成形体が得られる。また、成形品表面のベたつきが 抑えられるため、本発明の組成物を用いてなる成形体は施工がしゃす!/、利点を有す る。プロピレン '炭素原子数 4〜20の α ォレフィンランダム共重合体(C— la)の融 点 (Tm)の測定法は、プロピレン '炭素原子数 4〜20の α—ォレフィンランダム共重 合体 (B— 1)における融点 (Tm)の測定法と同じ方法を挙げることができる。
[0048] プロピレン '炭素原子数 4〜20の at—ォレフインランダム共重合体(C— la)〖こおい ては、さらに、下記 (cl)を満たすことが望ましい;
(c l) X線回折で測定した結晶化度が好ましくは 40%以下、より好ましくは 35%以下 である。
[0049] プロピレン '炭素原子数 4〜20の at—ォレフインランダム共重合体(C— la)〖こおい て、炭素原子数 4〜20の exーォレフイン由来の構成単位の含有量は、好ましくは 5〜 50モル0 /0、より好ましくは 10〜35モル%である。特に、炭素原子数 4〜20の α—ォ レフインとしては、 1—ブテンが好ましく用いられる。
[0050] このようなプロピレン '炭素原子数 4〜20の at—ォレフインランダム共重合体(C—1 a)は、例えば、国際公開第 2004Z87775号パンフレットに記載されている方法など によって得られる。
[0051] プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(C— la)を変性 して用いることで、機械強度、破断点伸び、耐傷付き性、耐白化性により優れ、低温 脆ィ匕性にも優れたプロピレン系榭脂組成物が得られる。また、これらの熱可塑性榭脂 組成物から得られる成型体が例えば、電線である場合には、低温にさらされても、電 線被覆が割れにく ヽ利点を有する。
[プロピレン'エチレン'炭素原子数 4〜20の at—ォレフインランダム共重合体(C—1 b) ]
本発明に好ましく用いられるプロピレン'エチレン'炭素原子数 4〜20の aーォレフ インランダム共重合体 (C— lb)は、プロピレン由来の構成単位、エチレン由来の構成 単位、および炭素原子数 4〜20の aーォレフイン由来の構成単位を含むランダム共 重合体であり、下記 (ml)および (nl)を満たす。
(ml)ゲルパーミエーシヨンクロマトグラフィー(GPC)によって測定された分子量分布 (Mw/Mn)が 1〜3の範囲にある。
(nl)プロピレン由来の構成単位を 40〜85モル0 /0、エチレン由来の構成単位を 5〜 30モル0 /0、炭素原子数 4〜20の α—ォレフイン由来の構成単位を 5〜30モル0 /0含 む (ここで、プロピレン由来の構成単位、エチレン由来の構成単位、および炭素原子 数 4〜20の α ォレフィン由来の構成単位合計は 100モル0 /0である。また、エチレン 由来の構成単位、および炭素原子数 4〜20のひ ォレフィン由来の構成単位の合 計は 60〜 15モル%であることが好ましい。 ) ο
[0052] プロピレン'エチレン'炭素原子数 4〜20の at—ォレフインランダム共重合体(C—1 b)においては、さらに、好ましくは下記 (o l)および (p i)の少なくとも 1つ以上、より好 ましくは両方を満たすことが望ましい。
(〇1)ショァー八硬度が30〜80、好ましくは35〜60でぁる。
(p l) X線回折で測定した結晶化度が 20%以下、好ましくは 10%以下である。
[0053] また、プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共重合体(
C - lb)の DSCで測定した融点 (Tm)は、好ましくは 50°C以下である力、または融点 が観測されないことが望ましい。融点の測定は、前記共重合体 (B—1)等と同じ方法 で測定できる。
[0054] プロピレン成分およびその他のコモノマー成分量について、さらに詳しくは、プロピ レン由来の構成単位を、好ましくは 60〜82モノレ0 /0、より好ましくは 61〜75モノレ0 /0、 エチレン由来の構成単位を、好ましくは 8. 0〜15モル%、より好ましくは 10〜 14モ ル0 /0、炭素原子数 4〜20の α—ォレフイン由来の構成単位を、好ましくは 10〜25モ ル%、より好ましくは 15〜25モル%の量含むことが望ましい。特に、炭素原子数 4〜 20の α ォレフィンとしては、 1—ブテンが好ましく用いられる。
[0055] このようなプロピレン'エチレン'炭素原子数 4〜20の α—ォレフインランダム共重合 体 (C lb)は、例えば、国際公開第 2004Z87775号パンフレットに記載されている 方法などによって得られる。
[0056] また、プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共重合体( C— lb)を変性して用いることで、柔軟性、耐傷付性、耐白化性により優れ、低温脆 化性にも優れた熱可塑性重合体組成物が得られる。また、これらの熱可塑性榭脂組 成物から得られる成形体が、例えば、電線である場合には、低温にさらされても、電 線被覆が割れにく ヽ利点を有する。
[0057] 尚、プロピレン系重合体 (B)を必須とする場合は、プロピレン系重合体 (B)と、変性 前の原料であるプロピレン系重合体 (C 1)は同一でも異なってもよい。 [0058] 本発明で用いられるグラフト変性プロピレン系重合体 (C)は、示差走査熱量分析( DSC)で測定される融点が 120°C未満または融点が観測されない、プロピレン系重 合体 (C— 1)を、極性基を含有するビニルイ匕合物およびシランィ匕合物力 なる群より 選ばれる、少なくとも一つの化合物でグラフト変性して得られる。上記、ビニル化合物 としては、酸、酸無水物、エステル、アルコール、エポキシ、エーテル等の酸素含有 基を有するビニル化合物、イソシァネート、アミド等の窒素含有基を有するビニル化 合物、シランィ匕合物としては、ビュルシラン、アミノシラン、 y -メタクリロキシプロビルト リメトキシシラン等のシランィ匕合物などがそれぞれ挙げられる。この中でも、酸素含有 基を有するビニル化合物が好ましぐ具体的には、不飽和エポキシ単量体、不飽和 カルボン酸およびその誘導体などが好ま 、。
[0059] 上記不飽和エポキシ単量体としては、不飽和グリシジルエーテル、不飽和グリシジ ルエステル (例えば、グリシジルメタタリレート)などが挙げられる。
[0060] 上記不飽和カルボン酸としては、アクリル酸、マレイン酸、フマール酸、テトラヒドロフ タル酸、ィタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸™ (エンドシス ービシクロ [2. 2. 1]ヘプトー 5 ェン 2, 3 ジカルボン酸)などが挙げられる。
[0061] また、上記不飽和カルボン酸の誘導体としては、上記不飽和カルボン酸の酸ハライ ド化合物、アミドィ匕合物、イミドィ匕合物、酸無水物、およびエステル化合物などを挙げ ることができる。具体的には、塩化マレ-ル、マレイミド、無水マレイン酸、無水シトラコ ン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエートなどが挙げら れる。
[0062] これらの中では、不飽和ジカルボン酸およびその酸無水物がより好ましぐ特にマレ イン酸、ナジック酸1^およびこれらの酸無水物が特に好ましく用いられる。
[0063] なお、上記未変性のプロピレン系共重合体にグラフトされる不飽和カルボン酸また はその誘導体のグラフト位置は特に制限されず、このエチレン系重合体の任意の炭 素原子に不飽和カルボン酸またはその誘導体が結合して 、ればよ 、。
[0064] 上記のようなグラフト変性プロピレン系重合体 (C)は、従来公知の種々の方法、例 えば、次のような方法を用いて調製できる。
(1)上記未変性重合体を押出機などで溶融させて、不飽和カルボン酸などを添加し てグラフト共重合させる方法。
(2)上記未変性重合体を溶媒に溶解させて、不飽和カルボン酸などを添加してダラ フト共重合させる方法。
[0065] いずれの方法も、上記不飽和カルボン酸などのグラフトモノマーを効率よくグラフト 共重合させるために、ラジカル開始剤の存在下でグラフト反応を行うことが好ま U、。 上記ラジカル開始剤として、例えば、有機ペルォキシド、ァゾィ匕合物などが使用され る。
[0066] 上記有機ペルォキシドとしては、ベンゾィルペルォキシド、ジクロルベンゾィルペル ォキシド、ジクミルペルォキシドなどが挙げられ、上記ァゾィ匕合物としては、ァゾビスィ ソブチル-トリル、ジメチルァゾイソブチレートなどが挙げられる。
[0067] このようなラジカル開始剤としては、具体的には、ジクミルペルォキシド、ジ一 tert— ブチルペルォキシド、 2, 5 ジメチルー 2, 5 ジ(tert ブチルペルォキシ) 3— へキシン、 2, 5 ジメチルー 2, 5 ジ(tert ブチルペルォキシ)へキサン、 1, 4 ビス(tert ブチルペルォキシイソプロピル)ベンゼンなどのジアルキルペルォキシド が好ましく用いられる。
[0068] これらのラジカル開始剤は、未変性重合体 100質量部に対して、通常は 0. 001〜 1質量部、好ましくは 0. 003-0. 5質量部、さらに好ましくは 0. 05-0. 3質量部の 量で用いられる。
[0069] 上記のようなラジカル開始剤を用いたグラフト反応、ある!/、は、ラジカル開始剤を使 用しないで行うグラフト反応における反応温度は、通常 60〜350°C、好ましくは 150 〜300°Cの範囲に設定される。
[0070] このようにして得られるグラフト変性プロピレン系重合体 (C)中の極性基を有するビ 二ルイ匕合物のグラフト量は特に制限はないが、グラフト変性重合体の質量を 100質 量%とした場合に、通常 0. 01〜10質量%、好ましくは 0. 05〜5質量%である。本 発明においては、上記のようなグラフト変性重合体 (C)を用いることで、特に、引張強 度と耐傷付き性とのノ ランスに優れた成形体が得られる。
<無機系充填剤 (D) >
本発明に用いる無機系充填剤 (D)としては、特に制限はなぐ例えば、金属化合物 ;ガラス、セラミック、タルク、マイ力等の無機化合物などが幅広く用いられる。これらの うちで、タルク、金属水酸化物、金属炭酸塩 (炭酸化物)、金属酸化物が好ましく用い られる。本発明において、無機系充填剤 (D)は、単独で用いても、 2種以上を組み合 わせて用いてもよい。本発明で用いられる金属水酸ィ匕物としては、水酸化アルミニゥ ム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化マンガン、水酸 化亜鉛、ノ、イド口タルサイト等の単独もしくはこれらの混合物が挙げられ、水酸化マグ ネシゥム単独及び水酸ィ匕マグネシウムを含む混合物が特に好ましい。
[0071] 無機系充填剤(D)の平均粒径としては、特に制限はないが通常 0. 1〜20 m、好 ましくは 0. 5〜15 /ζ πιである。ここで、平均粒子径はレーザー法により求めた値であ る。
[0072] また、本発明で使用される無機系充填剤 (D)は、ステアリン酸、ォレイン酸等の脂 肪酸、有機シランなどにより表面処理されたものであってもよぐ上記平均粒子径を有 する微粒子が凝集体を形成したものであってもよ 、。
<エチレン系重合体(Ε) >
上記エチレン系重合体としては、たとえばエチレン由来の構成単位を全構成単位 に対して 61モル%以上有するエチレン系エラストマ一である。特に、エチレン単独重 合体、エチレン由来の構成単位および α—ォレフィン由来の構成単位からなるェチ レン' aーォレフイン共重合体が好ましい。上記エチレン' aーォレフイン共重合体の 中でも、エチレンと炭素原子数 3〜10の α—ォレフィンとの共重合体(E— 1)が好ま しい。この炭素原子数 3〜10の α—ォレフインとしては、具体的に、プロピレン、 1 ブテン、 1—ペンテン、 1—へキセン、 3—メチル 1—ブテン、 3—メチル 1—ペン テン、 3 ェチルー 1 ペンテン、 4ーメチルー 1 ペンテン、 4ーメチルー 1一へキセ ン、 4, 4 ジメチルー 1 ペンテン、 4ーェチルー 1一へキセン、 1—オタテン、 3 ェ チル一 1—へキセン、 1—オタテン、 1—デセンなどが挙げられる。これらは単独で用 いても、 2種以上を組み合わせて用いてもよい。これらのうちで、プロピレン、 1ーブテ ン、 1—へキセンおよび 1—オタテンの少なくとも 1種を用いることが特に好ましい。
[0073] 上記エチレン系共重合体中の各構成単位の含量は、エチレンから誘導される構成 単位の含量が 75〜95モル0 /0であり、炭素原子数 3〜10の α—ォレフインから選ば れる少なくとも 1種の化合物力 誘導される構成単位の含量が 5〜25モル%であるこ とが好ましい。
[0074] 上記エチレン' aーォレフイン共重合体は、
(i)密度力 sO. 855〜0. 910gZcm3、好ましくは 0. 857〜0. 890gZcm3であり、
(ii)メル卜フローレ一卜(温度 190。C、荷重 2. 16kg)力^). 1〜: LOOgZlO分、好ましく は、 0. l〜20gZl〇分の範囲にあり、
(iii) GPC法により評価される分子量分布の指数 (MwZMn)が 1. 5〜3. 5、好まし くは 1. 5〜3. 0、より好ましくは 1. 8〜2. 5の範囲にあり、また、上記エチレン- a - ォレフィン共重合体は、極性基を有するビニルイ匕合物でグラフトしたグラフト変性ェチ レン系重合体 (E— 1)であってもよ!/ヽ。
[0075] その場合,極性基を有するビ-ルイ匕合物としては前述した (C)に用いると同様の化 合物を例示することができる。また、グラフト変性エチレン系重合体 (E—1)中の極性 基を有するビニルイ匕合物のグラフト量は、特に制限はないがグラフト変性重合体の質 量を 100質量%とした場合に、通常 0. 01〜10質量%、好ましくは 0. 05〜5質量% である。
<オイル(F) >
本発明で用いられるオイル (F)としては、ノラフィンオイル、ナフテン系オイル、芳香 族系オイル、シリコンオイルなどの種々のオイルが挙げられる。これらのうちで、パラフ インオイル、ナフテン系オイルが好適に用いられる。
[0076] オイル )としては、特に制限はないが、 40°Cでの動粘度は、通常 20〜800cst ( センチスト一タス)であり、好ましくは 40〜600cstであることが望ましい。さらに、オイ ル (F)の流動度は、通常 0〜一 40°C、好ましくは 0〜一 30°Cであり、引火点(COC法 )は、通常 200〜400°C、好ましくは 250〜350°Cであることが望ましい。オイル (F)を 用いることで、本発明の熱可塑性重合体組成物は、特に優れた低温脆化性などの低 温特性、耐傷つき性を発現できる。
[0077] 本発明に好適に用いられるナフテン系プロセスオイルは、一般にゴム加工において 、軟化効果、配合剤分散効果、潤滑効果、低温特性の改善などを得るために混入さ れる石油系軟化剤であって、ナフテン系炭化水素を 30〜45質量%含有する。このよ うなプロセスオイルを配合すると、榭脂組成物の成形時の溶融流動性、成形品の柔 軟性、低温特性を一層改善することができ、さらに、成形品の表面にブリードによるべ たつきを抑える効果が得られる。本発明においては、ナフテン系プロセスオイルの中 でも、芳香族系炭化水素の含有量が 10質量%以下であるものが好適に用いられる。 理由は明らかでないが、このようなオイルを用いると、成形品の表面にブリードが生じ にくい。
<熱可塑性重合体組成物および成形体 >
本発明の熱可塑性重合体組成物は、プロピレン系重合体 (A)を 5. 0-64. 9質量 %、プロピレン系重合体(B)を 0〜59. 9質量%、グラフト変性プロピレン系重合体(C )を 0. 1〜30質量%、および無機系充填剤(D) 35〜75質量%を含む (ここで、 (A) 、(B)、(C)および (D)成分の合計量は 100質量%である。)。
[0078] プロピレン系重合体 (B)を用いる場合には、上記熱可塑性重合体組成物は、プロ ピレン系重合体 (A)を 5. 0〜64. 9質量0 /0、プロピレン系重合体(B)を 1. 0〜59. 9 質量%、グラフト変性プロピレン系重合体 (C)を 0. 1〜29質量%、および、無機系充 填剤 (D)を 34〜75質量%、含むことが望ましい (ここで、(A)、(B)、(C)および (D) 成分の合計量は 100質量%である。 )0
[0079] さらに、エチレン系重合体 (E)を用いる場合であって、エチレンと炭素原子数 3〜1 0の aーォレフインとの共重合体 (E— 1)、または、グラフト変性エチレン系重合体 (E —2)の配合量は、(A)、(B)、(C)および (D)成分の合計量 100質量部に対して、 0 . 1〜20質量部である。エチレン系重合体 (E—1)の配合量がこの範囲にあると、低 温特性改善効果が顕著であるため好ま 、。
[0080] また、本発明に用いられるオイル (F)の配合量は、(A)、 (B)、 (C)および (D)成分 の合計量 100質量部に対して、 0. 1〜20質量部である。オイル (F)の配合量がこの 範囲にあると、低温特性改善効果が顕著であり、成形品の表面にオイルが滲み出る 可能性も少な 、ため好ま 、。
[0081] 本発明の熱可塑性重合体組成物には、本発明の目的を損なわな!/ヽ範囲で、必要 に応じて、他の合成樹脂、他のゴム、酸化防止剤、耐熱安定剤、耐候安定剤、スリツ プ剤、アンチブロッキング剤、結晶核剤、顔料、塩酸吸収剤、銅害防止剤等の添カロ 物などを含んでいてもよい。このような他の合成樹脂、他のゴム、添加物などの添カロ 量は、本発明の目的を損なわない範囲であれば特に限定されないが、例えば、熱可 塑性重合体組成物全体において、(A)、(B)、(C)および (D)成分の合計が 60〜1 00質量%となるように含まれている態様が好ましい。残部は、上記の他の合成樹脂、 他のゴム、添加物、エチレン系重合体 (E)、オイル (F)などである。
〔第 2の熱可塑性榭脂組成物〕
本発明の第 2の熱可塑性榭脂組成物は次の (A)、(BB)、(D)を含むことを特徴と する;
(A)示差走査熱量分析 (DSC)で測定される融点が 120°Cから 170°Cの範囲にある プロピレン系重合体 5〜64. 9質量0 /0
(BB)一部または全部が、極性基を含有するビニル化合物およびシラン化合物から なる群より選ばれる少なくとも一つの化合物でグラフト変性されており、示差走査熱量 分析 (DSC)で測定される融点が 120°C未満または融点が観測されな 、、変性プロ ピレン系重合体 0. 1〜60. 0質量0 /0
(D)無機系充填剤 35〜75質量%、
ここで、(A)、(BB)、および(D)の合計量は、 100質量%である。
[0082] ここで (A)は第 1の熱可塑性榭脂組成物の項にぉ 、て記載されて 、るものを用いる ことができ、その好ましい態様も同じである。
<グラフト変性プロピレン系重合体 (BB) >
本発明で用いられるグラフト変性プロピレン系重合体 (BB)は、プロピレンと、ェチレ ンおよび炭素原子数 4〜20の α—ォレフインから選ばれる少なくとも 1種のォレフィン との共重合体の一部または全部がグラフト変性されたものが好まし 、。このエチレン および炭素原子数 4〜20の α—ォレフインから選ばれる少なくとも 1種のォレフィンと しては、具体的には前記プロピレン系重合体 (Β)で記載したエチレンおよび α—ォ レフインを用いることができ、これらは単独で用いても、 2種以上を組み合わせて用い てもよい。これらのうちで、エチレン、 1ーブテン、 1一へキセンおよび 1—オタテンの 少なくとも 1種を用いることが特に好ま 、。
[0083] また前記プロピレンと、エチレンおよび炭素原子数 4〜20の aーォレフインとの共 重合体は、通常プロピレン由来の構成単位を 40〜99モル0 /0、好ましくは 40〜92モ ル0 /0、より好ましくは 50〜90モル0 /0含み、コモノマーとして用いられるエチレンおよ び炭素原子数 4〜20の exーォレフイン由来の構成単位を、通常 1〜60モル0 /0、好ま しくは 8〜60モル0 /0、より好ましくは 10〜50モル0 /0含む(ここで、プロピレンと、ェチレ ンおよび炭素原子数 4〜20の α—ォレフィンとの合計は 100モル0 /0である。 )。
[0084] グラフト変性プロピレン系重合体 (ΒΒ)は、示差走査熱量分析 (DSC)で測定される 融点が 120°C未満である力、または融点が観測されず、好ましくは、融点が 100°C以 下であるか、または融点が観測されない。ここで、融点が観測されないとは、 150 〜200°Cの範囲において、結晶融解熱量が UZg以上の結晶融解ピークが観測さ れないことをいう。測定条件は、実施例記載のとおりである。
[0085] グラフト変性プロピレン系重合体(BB)は、 190°C、 2. 16kg荷重下で測定したメル トフローレートが通常 0. 01〜: LOOgZlO分であり、好ましくは 0. l〜50g/10分であ り、より好ましくは、 l〜40gZlO分、特に好ましくは 5〜30gZlO分である。
[0086] このようなグラフト変性プロピレン系重合体 (BB)は、例えば第 1の熱可塑性榭脂組 成物の項で述べたプロピレン系重合体 (C 1)を、極性基を含有するビニル化合物 およびシランィ匕合物からなる群より選ばれる少なくとも一つの化合物でグラフト変性す ることにより製造することができる。また前記したプロピレン系重合体 (C— 1)のグラフ ト変性体を、同じく第 1の熱可塑性榭脂組成物の項で述べたプロピレン系重合体 (B) とブレンドしてグラフト変性プロピレン系重合体 (BB)を製造しても良い。なお、グラフ ト変性プロピレン系重合体 (BB)の製造にあたり、グラフト変性に用いられる第 1の熱 可塑性榭脂組成物の項で述べたプロピレン系重合体 (C 1)、および任意にプレン ドしても良いプロピレン系重合体 (B)は、 13C— NMRで測定されるトリアドタクティシテ ィ(mm分率)が好ましくは 85%以上、より好ましくは 85〜97. 5%、さらに好ましくは 8 7〜97%、特に好ましくは 90〜97%の範囲にある。トリアドタクティシティ(mm分率) 力 の範囲にあると、特に柔軟性と機械強度のバランスに優れるため好適である。 m m分率は、国際公開 2005— 087775号パンフレットの 21頁 7行目〜26頁 6行目ま でに記載された方法を用いて測定できる。
[0087] または、前記、グラフト変性プロピレン系重合体 (BB) 1S 炭素原子数 4〜20の αォ レフイン由来の構成単位含量が 5〜50モル0 /0であるプロピレン '炭素原子数 4〜20 の (Xーォレフインランダム共重合体のグラフト変性体 (BB— l a)であることが好ましい (ここでプロピレン由来の構成単位と炭素原子数 4〜20のひォレフイン由来の構成単 位との合計を 100モル%とする。 ) 0
[0088] グラフト変性プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(BB
- la)においては、さらに、 X線回折で測定した結晶化度が好ましくは 40%以下、よ り好ましくは 35%以下であることが望ましい。
[0089] グラフト変性プロピレン.炭素原子数 4〜20の atーォレフインランダム共重合体(BB
- la)において、プロピレン '炭素原子数 4〜20の atーォレフインランダム共重合体 中の炭素原子数 4〜20の exーォレフイン由来の構成単位の含有量は、好ましくは 5 〜50モル0 /0、より好ましくは 10〜35モル0 /0である(プロピレン由来の構成単位と炭素 原子数 4〜20の α—ォレフィン由来の構成単位の合計は 100モル0 /0である。 ) ο特 に、炭素原子数 4〜20の (Xーォレフインとしては、 1ーブテンが好ましく用いられる。
[0090] このようなグラフト変性プロピレン ·炭素原子数 4〜20の α—ォレフインランダム共重 合体 (ΒΒ— la)は、例えば第 1の熱可塑性榭脂組成物の項で述べたプロピレン '炭 素原子数 4〜20の a—ォレフインランダム共重合体 (C— la)を、極性基を含有する ビ-ルイ匕合物およびシランィ匕合物からなる群より選ばれる少なくとも一つの化合物で グラフト変性することにより製造することができる。またさらに前記したプロピレン '炭素 原子数 4〜20の α—ォレフインランダム共重合体(C— la)のグラフト変性体を、同じ く第 1の熱可塑性榭脂組成物の項で述べたプロピレン '炭素原子数 4〜20の (Xーォ レフインランダム共重合体 (B— 1)とブレンドして、(BB— la)を製造しても良い。
[0091] 上記グラフト変性プロピレン '炭素原子数 4〜20の (Xーォレフインランダム共重合体
(BB— la)を用いることで、機械強度、破断点伸び、耐傷付き性、耐白化性により優 れ、低温脆ィ匕性にも優れたプロピレン系榭脂組成物が得られる。また、これらの熱可 塑性榭脂組成物から得られる成型体が例えば、電線である場合には、低温にさらさ れても、電線被覆が割れにくい利点を有する。
[0092] また本発明の第 2の熱可塑性榭脂組成物にぉ 、ては、前記、グラフト変性プロピレ ン系重合体 (BB)力 下記を満たすプロピレン'エチレン'炭素原子数 4〜20の α— ォレフィンランダム共重合体のグラフト変性体 (BB— lb)であることが好まし ヽ; プロピレン由来の構成単位を 40〜85モル0 /0、エチレン由来の構成単位を 5〜30モ ル0 /0、および炭素原子数 4〜20の α—ォレフイン由来の構成単位を 5〜30モル0 /0 含む (ここで、プロピレン由来の構成単位、ブテン由来の構成単位、および炭素原子 数 4〜20である α—ォレフィン由来の構成単位の合計は 100モル0 /0である。 )。
[0093] グラフト変性プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共 重合体 (ΒΒ— lb)においては、さらに、好ましくは下記 (o l)および (p i)の少なくとも 1つ以上、より好ましくは両方を満たすことが望ましい。
(〇1)ショァー八硬度が30〜80、好ましくは35〜60でぁる。
(p l) X線回折で測定した結晶化度が 20%以下、好ましくは 10%以下である。
[0094] また、グラフト変性プロピレン.エチレン.炭素原子数 4〜20の atーォレフインランダ ム共重合体 (BB— lb)の DSCで測定した融点 (Tm)は、好ましくは 50°C以下である 力 または融点が観測されないことが望ましい。融点の測定は、前記第 1の変性プロ ピレン系重合体 (BB)等と同じ方法で測定できる。
[0095] グラフト変性プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共 重合体(BB—lb)におけるプロピレン'エチレン'炭素原子数 4〜20の atーォレフィ ンランダム共重合体中のプロピレン成分およびその他のコモノマー成分量について、 さらに詳しくは、プロピレン由来の構成単位を、好ましくは 60〜82モル0 /0、より好まし くは 61〜75モル0 /0、エチレン由来の構成単位を、好ましくは 8. 0〜15モル0 /0、より 好ましくは 10〜14モル0 /0、炭素原子数 4〜20の α—ォレフィン由来の構成単位を、 好ましくは 10〜25モル0 /0、より好ましくは 15〜25モル0 /0の量含むことが望ましい(こ こでプロピレンとエチレンと炭素原子数 4〜20の aーォレフイン由来の構成単位との 合計を 100モル%とする。 ) 0特に、炭素原子数 4〜20の α—ォレフィンとしては、 1 ーブテンが好ましく用いられる。
[0096] このようなグラフト変性プロピレン'エチレン'炭素原子数 4〜20の atーォレフインラ ンダム共重合体 (BB—lb)は、例えば第 1の熱可塑性榭脂組成物の項で述べたプロ ピレン.エチレン.炭素原子数 4〜20の at—ォレフインランダム共重合体(C— lb)を 、極性基を含有するビニルイ匕合物およびシランィ匕合物力 なる群より選ばれる少なく とも一つの化合物でグラフト変性することにより製造することができる。またさらに前記 したプロピレン '炭素原子数 4〜20の at—ォレフインランダム共重合体(C— lb)のグ ラフト変性体を、同じく第 1の熱可塑性榭脂組成物の項で述べたプロピレン '炭素原 子数 4〜20の α—ォレフインランダム共重合体(B— 2)とブレンドして、 (BB—lb)を 製造しても良い。
[0097] また、プロピレン'エチレン'炭素原子数 4〜20の atーォレフインランダム共重合体( C— lb)を変性して用いることで、柔軟性、耐傷付性、耐白化性により優れ、低温脆 化性にも優れた熱可塑性重合体組成物が得られる。また、これらの熱可塑性榭脂組 成物から得られる成形体が、例えば、電線である場合には、低温にさらされても、電 線被覆が割れにく ヽ利点を有する。
[0098] 本発明の、一部または全部力 極性基を含有するビニルイ匕合物およびシランィ匕合 物からなる群より選ばれる少なくとも一つの化合物でグラフト変性されており、示差走 查熱量分析 (DSC)で測定される融点が 120°C未満または融点が観測されないダラ フト変性プロピレン系重合体 (BB)の製造にあたって用いられる、極性基を含有する ビ-ルイ匕合物、シランィ匕合物としては本発明の第 1の熱可塑性榭脂組成物において 用いられるグラフト変性プロピレン系重合体 (C)の製造の項で記載したものと同じィ匕 合物を挙げることができる。グラフト変性 (グラフト共重合)方法、使用するラジカル開 始剤等にっ 、ても、本発明の第 1の熱可塑性榭脂組成物にお ヽて用いられるグラフ ト変性プロピレン系重合体 (C)の製造の項で記載したのと同じ方法、同じ開始剤等を あげることができる。
[0099] 本発明で用いられる、一部または全部が、極性基を含有するビニル化合物および シランィ匕合物力もなる群より選ばれる少なくとも一つの化合物でグラフト変性されてお り、示差走査熱量分析 (DSC)で測定される融点が 120°C未満または融点が観測さ れない、グラフト変性プロピレン系重合体 (BB)においては、極性基を含有するビ- ルイ匕合物およびシランィ匕合物のグラフト量は特に制限はな 、が、変性プロピレン系重 合体 (BB)を 100質量部とした場合に、通常 0. 01〜10質量%、好ましくは 0. 05〜5 質量%である。本発明においては、上記のようなグラフト変性重合体 (BB)を用いるこ とで特に引っ張り強度と耐傷つき性のバランスに優れた成形体が得られる。 [0100] 本発明で用いられる無機充填剤 (D)、必要に応じて用いられるエチレン系重合体( E)、オイル (F)などは、第 1の熱可塑性榭脂組成物において記載したものを用いるこ とがでさる。
<第 2の熱可塑性榭脂組成物および第 2の成形体 >
本発明の第 2の熱可塑性重合体組成物は、プロピレン系重合体 (A)を 5. 0〜64. 9質量%、好ましくは 5. 0-49. 9質量%であり、グラフト変性プロピレン系重合体 (B B)を 0. 1〜60質量%、好ましくは 10. 1〜40質量%であり、無機系充填剤(D) 35 〜75質量%、好ましくは 40〜60質量%を含む(ここで、 (A)、 (BB)および(D)成分 の合計量は 100質量%である。 ) o
[0101] さらに、エチレン系重合体 (E)を用いる場合であって、エチレンと炭素原子数 3〜1 0の aーォレフインとの共重合体 (E— 1)、または、グラフト変性エチレン系重合体 (E —2)の配合量は、(A)、(BB)および (D)成分の合計量 100質量部に対して、 0. 1 〜20質量部である。エチレン系重合体 (E—1)の配合量がこの範囲にあると、低温 特性改善効果が顕著であるため好まし 、。
[0102] また、本発明に用いられるオイル (F)の配合量は、(A)、(BB)および (D)成分の合 計量 100質量部に対して、 0. 1〜20質量部である。オイル (F)の配合量がこの範囲 にあると、低温特性改善効果が顕著であり、成形品の表面にオイルが滲み出る可能 性も少ないため好ましい。
[0103] 本発明の第 2の熱可塑性重合体組成物には、本発明の目的を損なわない範囲で、 必要に応じて、他の合成樹脂、他のゴム、酸化防止剤、耐熱安定剤、耐候安定剤、 スリップ剤、アンチブロッキング剤、結晶核剤、顔料、塩酸吸収剤、銅害防止剤等の 添加物などを含んでいてもよい。このような他の合成樹脂、他のゴム、添加物などの 添加量は、本発明の目的を損なわない範囲であれば特に限定されないが、例えば、 熱可塑性重合体組成物全体にお 、て、(A)、 (BB)および (D)成分の合計が 60〜1 00質量%となるように含まれている態様が好ましい。残部は、上記の他の合成樹脂、 他のゴム、添加物、エチレン系重合体 (E)、オイル (F)などである。
<熱可塑性重合体組成物の製造方法 >
本発明第 1および第 2の熱可塑性重合体組成物は従来公知の方法を用いて、製造 することができる。例えば上記したような各成分を溶融混練することで製造することが できる。
[0104] 前記第 1の熱可塑性重合体組成物を製造するにあたり、グラフト変性プロピレン系 重合体 (C)と、エチレン系重合体 (E)とを溶融混練してプロピレン系重合体組成物( G)を製造し、該プロピレン系重合体組成物 (G)、無機系充填剤 (D)、プロピレン系 重合体 (A)、および必要に応じて用いられるプロピレン系重合体 (B)を含む成分を 溶融混練することが、他の物性を維持しつつ、さらに耐傷付性を向上させることがで きるため好ましい。
[0105] なお(C)または (E)の一部は、予め溶融混練されることなぐ(A)成分等と同様に( G)プロピレン系重合体組成物 (溶融混練物)とは別に供給されても良 、が、 (C)およ び (E)のすべてが、予めプロピレン系重合体組成物 (溶融混練物)(G)となる工程を 経た後、供給されることが最も効果が高い。
[0106] また、前記第 2の熱可塑性重合体組成物を製造するにあたり、グラフト変性プロピレ ン系重合体 (BB)と、エチレン系重合体 (E)とを溶融混練してプロピレン系重合体組 成物 (GG)を製造し、該プロピレン系重合体組成物 (GG)、無機系充填剤 (D)、およ びプロピレン系重合体 (A)を含む成分を溶融混練することが、他の物性を維持しつ つ、さらに耐傷付性を向上させることができるため好ましい。
[0107] なお(BB)または (E)の一部は、予め溶融混練されることなぐ(A)成分などと同様 に(GG)プロピレン系重合体組成物 (溶融混練物)とは別に供給されても良 、が、 (B B)および (E)のすべてが、予めプロピレン系重合体組成物 (溶融混練物) (GG)とな る工程を経た後、供給されることが最も効果が高い。
<成形体 >
本発明の第 1および第 2の成形体は、上記のような熱可塑性重合体組成物からなる 。上記熱可塑性重合体組成物を用いて、従来公知の溶融成形法によって、種々の 形状の成形体が得られる。従来公知の溶融成形法としては、例えば、押出成形、回 転成形、カレンダー成形、射出成形、圧縮成形、トランスファー成形、粉末成形、プロ 一成形、真空成形などが挙げられる。上記成形体は、他の材料からなる成形体との 複合体、例えば、積層体などであってもよい。 [0108] 上記第 1および第 2の成形体は、例えば、電線の絶縁体、電線シースなどの電線被 覆の用途に好適に使用できる。また、この電線の絶縁体、電線シースなどの被覆層 は、従来公知の方法、例えば、押出成形などの方法により電線の周囲に形成される
[0109] 本発明の第 1および第 2の電線は、上記のような熱可塑性重合体組成物を用いて なる絶縁体、および Zまたは上記のようなプロピレン系榭脂組成物を用いてなるシー スを有する。特に、上記電線は、自動車用電線および機器用電線であることが好まし い。
上記のような熱可塑性重合体組成物は、建材などにも好適に用いられる。
[0110] 以下、実施例に基づいて本発明をさらに具体的に説明する力 本発明はこれらの 実施例に限定されるものではな 、。
[実施例]
[成分 (A)〜(F) ]
(A)プロピレン系重合体
ァイソタクティックランダムポリプロピレン (r—PP)として、プロピレン 'エチレン · 1— ブテンランダム共重合体 (Tm; 140°C、メルトフローレート(温度 230°C、荷重 2. 16k g) ; 7g/10分、 mmmm (立体規則性、ペンタツドアイソタクティシティ);0. 96、 Mw /Mn;4. 8)を使用した。
(B)プロピレン系重合体
(B- 1)プロピレン' 1 -ブテン共重合体(PBR)
充分に窒素置換した 2000mlの重合装置に、 866mlの乾燥へキサン、 1ーブテン 9 Ogとトリイソブチルアルミニウム(1. Ommol)を常温で仕込んだ後、重合装置内温を 6 5°Cに昇温し、プロピレンで 0. 7MPa〖こカロ圧した。次いで、ジメチルメチレン(3— ter tーブチルー 5—メチルシクロペンタジェ -ル)フルォレ -ルジルコニウムジクロライド 0 . 002mmolとアルミニウム換算で 0. 6mmolのメチルアルミノキサン(東ソ一 ·ファイン ケム社製)を接触させたトルエン溶液を重合器内に添加し、内温 65°C、プロピレン圧 0. 7MPaを保ちながら 30分間重合し、 20mlのメタノールを添カ卩し重合を停止した。 脱圧後、 2Lのメタノール中で重合溶液力もポリマーを析出し、真空下 130°C、 12時 間乾燥した。得られたポリマーは、 12. 5gであった。また、得られたポリマーのブテン 含量が 2. 9mol%であり、融点が 74. 4°Cであり、メルトフローレート(230°C、 2. 16k g)が 7g/10分であり、 MwZMnが 2. 10、 mm値が 90%であった。
[0111] 本発明では、上記の方法に準じ、スケールアップして得た共重合体 (B— 1)をペレ ット化して使用した。使用したプロピレン · 1ーブテン共重合体 (B— 1) (PBR)の性状 を表 1に示す。
[0112] [表 1]
【表 1】
Figure imgf000028_0001
[0113] (B— 2)プロピレン'エチレン' 1 -ブテン共重合体(PBER)
充分に窒素置換した、 2000mlの重合装置に、 917mlの乾燥へキサン、 1—ブテン 85gとトリイソブチルアルミニウム(1. Ommol)を常温で仕込んだ後、重合装置内温 度を 65°Cに昇温し、プロピレンで系内の圧力を 0. 77Mpaになるようにカロ圧した。そ の後、エチレンで系内圧力を 0. 78MPaに調整した。
[0114] 次いで、ジメチルメチレン(3— tert—ブチルー 5—メチルシクロペンタジェ -ル)フ ルォレ-ルジルコニウムジクロライド 0. 002mmolとアルミニウム換算で 0. 6mmolの メチルアルミノキサン (東ソ一 'ファインケム社製)を接触させたトルエン溶液を重合機 内に添加し、内温度 65°C、系内圧力を 0. 78Mpaにエチレンで保ちながら、 20分間 重合し、 20mlのメタノールを添カ卩し重合を停止した。脱圧後、 2Lのメタノール中で重 合溶液からポリマーを析出し、真空下 130°C、 12時間乾燥した。得られたポリマーは 60. 4gであった。
[0115] 本発明では、上記の方法に準じてスケールアップして得た共重合体 (B— 2)をペレ ット化して使用した。使用したプロピレン 'エチレン · 1ーブテンランダム共重合体 (B— 2) (PBER)の性状を表 2に示す。なお mm値は 92%であった。
[0116] [表 2] 【表 2】
Figure imgf000029_0001
[0117] (C)グラフト変性プロピレン系重合体
(C-X)無水マレイン酸グラフト変性プロピレン' 1 ブテン共重合体 (変性 C 1 a) 表 1に記載の性状を有するプロピレン · 1ーブテン共重合体 (B— 1)を変性の原料 であるプロピレン系重合体 (C— la)として用 、た。このプロピレン · 1―ブテン重合体 6kgと、無水マレイン酸 30gおよび 2, 5 ジメチルー 2, 5 ジ(t ブチルペルォキシ )—3 へキシン 5. 4gをアセトン 50gに溶解した溶液をブレンドした。
[0118] 次いで、得られたブレンド物を、スクリュー径 40mm、 LZD= 26の 1軸押出機のホ ッパーより投入し、樹脂温度 250°C、押出量 6kg/時間でストランド状に押し出した。 次いで、水冷した後、ペレタイズして、無水マレイン酸グラフト変性プロピレン · 1ーブ テン共重合体(C X)を得た。この(C X)の DSCで測定した Tmは 70°Cであり、メ ルトフローレート(温度 190°C、荷重 2. 16kg荷重)は 15g,10分であった。
[0119] 得られた無水マレイン酸グラフト変性プロピレン · 1ーブテン共重合体 (C—X)から、 未反応の無水マレイン酸をアセトンで抽出後、この共重合体中における無水マレイン 酸グラフト量を測定した結果、グラフト量は 0. 17質量%であった。
(C-Y)無水マレイン酸グラフト変性プロピレン'エチレン · 1 ブテン共重合体 (変性 C lb)
表 2に記載の性状を有するプロピレン ·エチレン · 1 ブテン共重合体 (B— 2)を変 性の原料であるプロピレン系重合体(C— lb)として用いた。このプロピレン 'エチレン •1—ブテン共重合体 6kgと、無水マレイン酸 30gおよび 2, 5 ジメチル— 2, 5 ジ( t ブチルペルォキシ) 3 へキシン 5. 4gをアセトン 50gに溶解した溶液をブレン ドした。次いで、得られたブレンド物を、スクリュー径 40mm、 70 = 26の1軸押出 機のホッパーより投入し、榭脂温度 250°C、押出量 6kgZ時間でストランド状に押し 出し 7こ。 [0120] 次いで、水冷し後、ペレタイズして、無水マレイン酸グラフト変性プロピレン'ェチレ ン · 1ーブテン共重合体共重合体 (C一 Y)を得た。この(C一 Y)の DSC測定では融 点は観測されな力つた。またメルトフローレート(温度 190°C、荷重 2. 16kg荷重)は 2 3gZlO分であった。得られた無水マレイン酸グラフト変性プロピレン 'エチレン · 1— ブテン共重合体 (C一 Y)から、未反応の無水マレイン酸をアセトンで抽出後、この共 重合体中における無水マレイン酸グラフト量を測定した結果、グラフト量は 0. 17質量 %であった。
(C一 Z)変性ポリプロピレン
Tm; 157°C、極限粘度 [ η ] ;0. 4dlZgのホモポリプロピレンを無水マレイン酸変性 して得られた変性 PPを用いた。無水マレイン酸のグラフト量は 3. 0質量%であった。
(D)無機系充填剤
水酸ィ匕マグネシウム (Mg (OH) 品名、キスマ 5P、協和化学 (株)製)を使用した。
2
(E)エチレン系重合体
表 3記載の性状と同様のエチレン' 1一ブテン共重合体 (E— 1)を用 、て無水マレイ ン酸 50gおよびジ一 tert -ブチノレペルォキシド 3gをアセトン 50gに溶解した溶液を ブレンドした。次いで、得られたブレンド物を、スクリュー径 40mm、し/0 = 26の1軸 押出機のホッパーより投入し、榭脂温度 250°C、押出量 6kgZ時間でストランド状に 押し出した。
[0121] 次いで、水冷した後、ペレタイズして、無水マレイン酸グラフト変性エチレン · 1ーブ テン共重合体 (E— 2)を得た。
[0122] [表 3]
【表 3】
Figure imgf000030_0001
得られた無水マレイン酸グラフト変性エチレン' 1一ブテン共重合体 (E— 2)から、未 反応の無水マレイン酸をアセトンで抽出後、この共重合体中における無水マレイン酸 グラフト量を測定した結果、グラフト量は 0. 43質量%であった。
<各成分の物性値の測定方法 >
上記各成分の物性値は下記のように測定した。
(1)コモノマー(エチレン、 1ーブテン)含量および mmmm (立体規則性、ペンタッド ァイソタクティシティ)は、 13C—NMR ^ベクトルの解析により求めた。
(2)メルトフローレート(MFR)
ASTM D— 1238に準拠し、温度 190°Cまたは 230°C、荷重 2. 16kgで測定した
(3)融点 (Tm)
DSCの発熱 ·吸熱曲線を求め、昇温時の Δ Hが ljZg以上の融解ピーク頂点の位 置の温度を Tmとした。測定は、試料をアルミパンに詰め、 100°CZ分で 200°Cまで 昇温して 200°Cで 5分間保持したのち、 10°CZ分で 150°Cまで降温し、次いで 10 °CZ分で 200°Cまで昇温する際の発熱 ·吸熱曲線より求めた。
(4)分子量分布 (Mw/Mn)
分子量分布 (Mw/Mn)は、 Waters社製ゲル浸透クロマトグラフ Alliance GPC 2000型を用い、以下のようにして測定した。分離カラムは、 TSKgel GNH6— H Tを 2本、および TSKgel GNH6— HTLを 2本であり、カラムサイズはいずれも直径 7. 5mm、長さ 300mmであり、カラム温度は 140°Cとし、移動相には o ジクロロベン ゼン (和光純薬工業)および酸ィ匕防止剤として BHT (武田薬品) 0. 025質量%を用 いて、 1. OmlZ分で移動させ、試料濃度は 15mgZl0mlとし、試料注入量は 500マ イク口リットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量が Mwく 1000、および Mw>4 X 106については東ソ一社製を用いて、 1000≤Mw≤ 4 X 106につ!/ヽてはプレッシャーケミカル社製を用いた。
(5)密度
ASTM D1505に記載の方法に従って測定した。
(6)結晶化度
測定装置として RINT2500 (リガク社製)を用い、 X線源として CuK aを用いて測定 した広角 X線プロファイルの解析により求めた。 (7)ショァ A硬度
JIS K6301に準拠して、以下の条件で測定した。プレス成形機によりシートを作成 し、このシートについて、 A型測定器を用いて、押針接触後ただちに目盛りを読み取 つ 7こ。
(8)極限粘度 [ 7? ]
ウベローデ型粘度計を用いて、重合体試料をデカリンに溶解させ、その溶液の粘 度測定を温度 135°Cで行い、その測定値力も極限粘度を求めた。
<実施例 1, 2、参考例 1、比較例 1, 2の評価項目 >
(1)破断点強度 (TS)、破断点伸び (EL)
JIS K7113— 2に準拠し、射出成形機により作製した試験片にて、破断点強度 (T S)、破断点伸び (EL)を測定した。
(2)低温脆化温度 (Btp)
ASTM D746に準拠し、射出成形機により作製した 3mmシートにて、測定した。
(3) D硬度 (HD— D)
ASTM D2240に準じて射出成形機により作製したシートにて、 D型測定器を用 いて、押針接触後直ちに目盛りを読み取った。
(4)耐傷付き性
スクレープ摩耗試験機 (安田精機製作所製)を用いて、先端の SUS製の摩耗圧子 を 700gとした。室温にて、この摩耗圧子の先端に装着したピアノ線にて、往復回数 1 000回、往復速度 60cpm、ストローク 10mmの条件下で厚さ 3mmの試験片を摩耗さ せた。摩耗前後の試験サンプルの質量を測定し、損失磨耗量を求めた。この値が小 さ 、ほど耐傷付き性に優れる。
[実施例 1〜5]
表 4に記載の配合量で各原料成分を、ヘンシェルミキサーを用いてドライブレンドし 、 30mm φ二軸押し出し機にて、温度 210°Cで溶融混練を行って組成物を得た。得 られたペレットを、射出成形機を用いて試験片を作成し、引張り試験、低温脆化温度 、スクレープ磨耗および D 硬度試験を行った。結果を表 4に示す。
[実施例 6] グラフト変性プロピレン系重合体(C)として上記無水マレイン酸グラフト変性プロピ レン' 1ーブテン共重合体 (C一 X)と、エチレン系重合体 (E)として上記エチレン' 1一 ブテン共重合体 (E— 1)とをラボプラストミル (東洋精機 (株)製)を用いて 190°Cで混 練して、以下のプロピレン系重合体組成物 (G)を製造した。
(G)プロピレン系重合体組成物
無水マレイン酸グラフト変性プロピレン · 1一ブテン共重合体(C一 X) Zエチレン' 1 ーブテン共重合体 (E— 1) =80Z20 (質量0 /0)
次いで、表 4に記載の配合量力 なる組成物に変更したほかは、実施例 1と同様に して評価を行った。結果を表 4に示す。
[0124] [表 4]
【表 4】
Figure imgf000033_0001
[0125] [比較例 1〜4]
表 5に記載の配合量からなる組成物に変更したほかは、実施例 1と同様にして評価 を行った。結果を表 5に示す。
[0126] [表 5] 【表 5】
Figure imgf000034_0001
[0127] 本発明のプロピレン系榭脂組成物は、比較例に用いたエチレン系榭脂組成物と比 較して、無機系充填剤 (例えば水酸ィ匕マグネシウム)を配合した際に、破断点強度お よび破断点伸びおよび耐傷付き性に優れる。
産業上の利用可能性
[0128] 本発明のプロピレン系榭脂組成物は、無機系充填剤を高 ヽ割合で含み、かつ、良 好な柔軟性とともに、優れた機械強度、破断点伸びおよび耐傷付き性を有する。さら に、本発明のプロピレン系榭脂組成物は、無機系充填剤を高い割合で含むことから 、難燃性を有した成形体、例えば、電線、建材などに幅広く利用できる。

Claims

請求の範囲
[1] 次の (A)〜 (D)を含むことを特徴とする熱可塑性重合体組成物;
(A)示差走査熱量分析 (DSC)で測定される融点が 120°Cから 170°Cの範囲にある プロピレン系重合体 5〜64. 9質量0 /0
(B)示差走査熱量分析 (DSC)で測定される融点力 S120°C未満または融点が観測さ れない、プロピレン系重合体を 0〜59. 9質量0 /0
(C)示差走査熱量分析 (DSC)で測定される融点が 120°C未満または融点が観測さ れな 、プロピレン系重合体 (C 1)を、極性基を含有するビュル化合物およびシラン 化合物からなる群より選ばれる、少なくとも一つの化合物でグラフト変性してなるダラ フト変性プロピレン系重合体 0. 1〜30質量0 /0
(D)無機系充填剤 35〜75質量%、
ここで、 (A)、(B)、(C)、および (D)の合計量は 100質量%である。
[2] 前記、プロピレン系重合体 (C— 1) 1S 以下の(i)および (ii)を満たすプロピレン '炭 素原子数 4〜20の α—ォレフイン共重合体 (C la)であることを特徴とする請求項 1 に記載の熱可塑性重合体組成物;
(i)ゲルパーミレーシヨンクロマトグラフィー(GPC)によって測定された分子量分布 ( Mw/Mn)が 1〜3の範囲であり、
(ii)融点 (Tm) (°C)と13 C—NMRスペクトル測定にて求められるコモノマー構成単位 の含量 M (モル%)と力 以下の関係式(1)を満たし、 Tmは 120°C未満である。
146exp (-0. 022M)≥Tm≥125exp (-0. 032M) (1)
[3] 前記、プロピレン系重合体 (C— 1)力 以下の(m)および (n)を満たすプロピレン' エチレン '炭素原子数 4〜20の at ォレフィンランダム共重合体(C lb)であること を特徴とする請求項 1に記載の熱可塑性重合体組成物;
(m)ゲルパーミエーシヨンクロマトグラフィー(GPC)によって測定された分子量分布 ( Mw/Mn)が 1〜3の範囲であり、
(n)プロピレン由来の構成単位を 40〜85モル0 /0、エチレン由来の構成単位を 5〜3 0モル0 /0、および炭素原子数 4〜20の α—ォレフイン由来の構成単位を 5〜30モル %含み、かつ、プロピレン由来の構成単位、エチレン由来の構成単位、および炭素 原子数 4〜20である oc—ォレフイン由来の構成単位の合計は 100モル0 /0である。
[4] 前記無機系充填剤 (D)が、タルク、金属水酸化物、金属炭酸塩および金属酸化物 力 なる群より選ばれる 1種以上の充填剤であることを特徴とする請求項 1〜3のいず れかに記載の熱可塑性重合体組成物。
[5] プロピレン系重合体 (A)、プロピレン系重合体 (B)、グラフト変性プロピレン系重合 体 (C)、および無機系充填剤 (D)の合計 100質量部に対して、エチレン系重合体 (E
)を 0. 1〜20質量部含むことを特徴とする請求項 1〜4のいずれかに記載の熱可塑 性重合体組成物。
[6] プロピレン系重合体 (A)、プロピレン系重合体 (B)、グラフト変性プロピレン系重合 体 (C)、無機系充填剤 (D)の合計 100質量部に対して、オイル (F)を 0. 1〜20質量 部含むことを特徴とする請求項 1〜4のいずれかに記載の熱可塑性重合体組成物。
[7] グラフト変性プロピレン系重合体 (C)と、エチレン系重合体 (E)とを溶融混練してプ ロピレン系重合体組成物 (G)を製造し、該プロピレン系重合体組成物 (G)と、無機系 充填剤 (D)と、プロピレン系重合体 (A)とを含む成分を溶融混練することを特徴とす る請求項 5に記載の熱可塑性重合体組成物を製造する方法。
[8] グラフト変性プロピレン系重合体 (C)と、エチレン系重合体 (E)とを溶融混練してプ ロピレン系重合体組成物 (G)を製造し、該プロピレン系重合体組成物 (G)と、無機系 充填剤 (D)と、プロピレン系重合体 (A)と、プロピレン系重合体 (B)とを含む成分を 溶融混練することを特徴とする請求項 5に記載の熱可塑性重合体組成物を製造する 方法。
[9] 請求項 7または 8に記載の製造方法で得られることを特徴とする熱可塑性重合体組 成物。
[10] 請求項 1〜6および 9のいずれかに記載の熱可塑性重合体組成物力 なることを特 徴とする成形体。
[11] 前記成形体が、電線の絶縁体または電線シースであることを特徴とする請求項 10 に記載の成形体。
[12] 請求項 1〜6、および 9のいずれかに記載の熱可塑性重合体組成物を用いてなる 絶縁体、および Ζまたは請求項 1〜6、および 9のいずれかに記載の熱可塑性重合 体組成物を用いてなるシースを有する電線。
[13] 前記電線が、車両用電線、自動車用電線または機器用電線であることを特徴とす る請求項 12に記載の電線。
[14] 次の (A)、 (BB)、 (D)を含むことを特徴とする熱可塑性重合体組成物;
(A)示差走査熱量分析 (DSC)で測定される融点が 120°Cから 170°Cの範囲にある プロピレン系重合体 5〜64. 9質量0 /0
(BB)一部または全部が、極性基を含有するビニル化合物およびシラン化合物から なる群より選ばれる少なくとも一つの化合物でグラフト変性されており、示差走査熱量 分析 (DSC)で測定される融点が 120°C未満または融点が観測されないグラフト変性 プロピレン系重合体 0. 1〜60. 0質量0 /0
(D)無機系充填剤 35〜75質量%、
ここで、(A)、 (BB)および(D)の合計量は、 100質量%である。
[15] 前記グラフト変性プロピレン系重合体 (BB)の、温度 190°C、荷重 2. 16kgで測定し たメルトフローレートが 0. 01〜: L00g/10分の範囲にあることを特徴とする請求項 14 に記載の熱可塑性重合体組成物。
[16] 前記グラフト変性プロピレン系重合体 (BB)力 炭素原子数 4〜20の aーォレフィ ン由来の構成単位を 5〜50モル0 /0含むプロピレン '炭素原子数 4〜20の atーォレフ インランダム共重合体のグラフト変性体 (BB— la)であり、ここで、該プロピレン由来 の構成単位と、炭素原子数 4〜20の a—ォレフイン由来の構成単位との合計が 100 モル%であることを特徴とする請求項 14または 15に記載の熱可塑性重合体組成物
[17] 前記グラフト変性プロピレン系重合体 (BB)力 プロピレン由来の構成単位を 40〜 85モル0 /0、エチレン由来の構成単位を 5〜30モル0 /0、および炭素原子数 4〜20の a ォレフィン由来の構成単位を 5〜30モル0 /0含むプロピレン'エチレン '炭素原子 数 4〜20の α—ォレフインランダム共重合体のグラフト変性体(BB— lb)であり、ここ で、該プロピレン由来の構成単位、エチレン由来の構成単位、および炭素原子数 4 〜20の α—ォレフイン由来の構成単位の合計が 100モル0 /0であることを特徴とする 請求項 14または 15に記載の熱可塑性重合体組成物。
[18] 前記無機系充填剤 (D)が、タルク、金属水酸化物、金属炭酸塩および金属酸化物 力もなる群より選ばれる 1種以上の充填剤であることを特徴とする請求項 14〜 17の Vヽずれかに記載の熱可塑性重合体組成物。
[19] プロピレン系重合体 (A)、グラフト変性プロピレン系重合体 (BB)、および無機系充 填剤(D)の合計 100質量部に対して、エチレン系重合体 (E)を 0. 1〜20質量部含 むことを特徴とする請求項 14〜18のいずれかに記載の熱可塑性重合体組成物。
[20] プロピレン系重合体 (A)、グラフト変性プロピレン系重合体 (BB)、無機系充填剤 ( D)の合計 100質量部に対して、オイル (F)を 0. 1〜20質量部含むことを特徴とする 請求項 14〜 19のいずれかに記載の熱可塑性重合体組成物。
[21] グラフト変性プロピレン系重合体 (BB)と、エチレン系重合体 (E)、を溶融混練して プロピレン系重合体組成物(GG)を製造し、該プロピレン系重合体組成物(GG)、無 機系充填剤 (D)、プロピレン系重合体 (A)とを含む成分を溶融混練することを特徴と する請求項 19に記載の熱可塑性重合体組成物を製造する方法。
[22] 請求項 21に記載の製造方法で得られることを特徴とする熱可塑性重合体組成物。
[23] 請求項 14〜20、および 22のいずれかに記載の熱可塑性重合体組成物力もなるこ とを特徴とする成形体。
[24] 前記成形体が、電線の絶縁体または電線シースであることを特徴とする請求項 23 に記載の成形体。
[25] 請求項 14〜20、および 22のいずれかに記載の熱可塑性重合体組成物を用いて なる絶縁体、および/または請求項 14〜20、および 22のいずれかに記載の熱可塑 性重合体組成物を用いてなるシースを有する電線。
[26] 前記電線が、車両用電線、自動車用電線または機器用電線であることを特徴とす る請求項 25に記載の電線。
PCT/JP2007/056301 2006-03-31 2007-03-27 熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性重合体組成物から得られる成形体および電線 WO2007116708A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008509758A JP5291457B2 (ja) 2006-03-31 2007-03-27 熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性重合体組成物から得られる成形体および電線
EP07739739A EP2006327B1 (en) 2006-03-31 2007-03-27 Thermoplastic polymer composition, method for producing thermoplastic it, molded body obtained from it and electric wire
ES07739739T ES2402374T3 (es) 2006-03-31 2007-03-27 Composición polimérica termoplástica, método de producción de la misma y artículo conformado y cable eléctrico obtenidos a partir de la misma
CN2007800108438A CN101426847B (zh) 2006-03-31 2007-03-27 热塑性聚合物组合物、热塑性聚合物组合物的制造方法、由热塑性聚合物组合物得到的成型体和电线

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006096475 2006-03-31
JP2006-096475 2006-03-31
JP2006-309766 2006-11-16
JP2006309766 2006-11-16

Publications (1)

Publication Number Publication Date
WO2007116708A1 true WO2007116708A1 (ja) 2007-10-18

Family

ID=38581007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056301 WO2007116708A1 (ja) 2006-03-31 2007-03-27 熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性重合体組成物から得られる成形体および電線

Country Status (8)

Country Link
US (1) US9403975B2 (ja)
EP (1) EP2006327B1 (ja)
JP (1) JP5291457B2 (ja)
KR (1) KR101004251B1 (ja)
CN (1) CN101426847B (ja)
ES (1) ES2402374T3 (ja)
TW (1) TWI356074B (ja)
WO (1) WO2007116708A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073274A1 (en) * 2007-12-04 2009-06-11 Advanced Elastomer Systems, L.P. Moisture curable propylene-alpha-olefin copolymers
EP2080784A1 (en) * 2006-11-17 2009-07-22 Mitsui Chemicals, Inc. Propylene resin composition, method for producing propylene resin composition, propylene polymer composition, molded body made of the propylene resin composition, and electric wire
JP2010121076A (ja) * 2008-11-20 2010-06-03 Japan Polypropylene Corp 耐白化性に優れた難燃性ポリプロピレン系樹脂組成物及びその組成物による成形体
JP2011126984A (ja) * 2009-12-17 2011-06-30 Japan Polypropylene Corp ポリプロピレン樹脂組成物および該組成物を成形してなる成形体。
JP2011184504A (ja) * 2010-03-05 2011-09-22 Mitsui Chemicals Inc プロピレン系変性樹脂組成物
JP2016531970A (ja) * 2013-08-12 2016-10-13 エービービー テクノロジー エルティーディー. ケーブルの絶縁体のための熱可塑性ブレンド組成物
JP2021024942A (ja) * 2019-08-05 2021-02-22 三井化学株式会社 樹脂組成物、timおよび電子機器
WO2022137750A1 (ja) * 2020-12-21 2022-06-30 住友電気工業株式会社 樹脂組成物、樹脂組成物成形体、電力ケーブル、および電力ケーブルの製造方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2407851T3 (es) * 2008-03-27 2013-06-14 Mitsui Chemicals, Inc. Composición de resina y uso de la misma
US8378042B2 (en) * 2009-04-28 2013-02-19 Exxonmobil Chemical Patents Inc. Finishing process for amorphous polymers
US20120328754A1 (en) 2011-06-21 2012-12-27 Cryovac, Inc. Impact-Modified Polypropylene Composite
EP2602287B1 (en) * 2011-12-09 2014-03-26 Borealis AG Insulation layer for cables
US10040888B1 (en) * 2013-06-14 2018-08-07 Cooper-Standard Automotive Inc. Composition including silane-grafted polyolefin
US10100139B2 (en) 2013-08-01 2018-10-16 Cooper-Standard Automotive Inc. Hose, composition including silane-grafted polyolefin, and process of making a hose
US10371292B2 (en) 2014-07-02 2019-08-06 Cooper-Standard Automotive Inc. Hose, abrasion resistant composition, and process of making a hose
TWI612067B (zh) * 2015-08-24 2018-01-21 Asahi Chemical Ind 氫化嵌段共聚物與使用其之聚丙烯系樹脂組合物及其成型體
CN105551573A (zh) * 2016-01-27 2016-05-04 安徽猎塔电缆集团有限公司 一种电力电缆的绝缘层配方
JP7066965B2 (ja) * 2016-06-02 2022-05-16 凸版印刷株式会社 蓄電装置用外装材
JP6901503B2 (ja) 2016-12-10 2021-07-14 クーパー−スタンダード・オートモーティブ・インコーポレーテッド 固定用シール、組成物、およびこれらを作製する方法
CN109563329A (zh) 2016-12-10 2019-04-02 库珀标准汽车公司 聚烯烃弹性体组合物及其制备方法
US10683399B2 (en) 2018-06-26 2020-06-16 Intrinsic Advanced Materials, LLC Biodegradable textiles, masterbatches, and method of making biodegradable fibers
EP4144795A1 (en) * 2020-04-29 2023-03-08 China Petroleum & Chemical Corporation Grafting-modified polypropylene material and preparation method therefor
DE202020106104U1 (de) 2020-10-26 2022-01-27 REHAU Industries SE & Co. KG Polymerzusammensetzung für ein 3D-Druckverfahren

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239281A (ja) * 1991-12-10 1993-09-17 Nippon Petrochem Co Ltd 耐摩耗性難燃組成物
JPH11236421A (ja) * 1998-02-24 1999-08-31 Hitachi Cable Ltd 変性ポリオレフィン樹脂および電線・ケーブル
JP2002309048A (ja) * 2001-04-10 2002-10-23 Yazaki Corp 絶縁電線
JP2002364783A (ja) * 2001-06-05 2002-12-18 Yazaki Corp 電線保護チューブ
JP2003313377A (ja) * 2002-04-26 2003-11-06 Yazaki Corp 難燃性ポリプロピレン系樹脂組成物及び自動車用絶縁電線
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
WO2005087775A1 (ja) 2004-03-15 2005-09-22 Ono Pharmaceutical Co., Ltd. 三環式複素環化合物およびその化合物を有効成分として含有する医薬組成物
WO2006057361A1 (ja) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS487992Y1 (ja) * 1967-06-06 1973-03-01
JPS5847002A (ja) * 1981-09-17 1983-03-18 Dainippon Ink & Chem Inc ポリプロピレン変性体
US4675210A (en) * 1984-10-10 1987-06-23 Hercules Incorporated Maleic modified butene copolymers for adhering polypropylene
CN85102222B (zh) * 1985-04-01 1988-08-10 中国科学院长春应用化学研究所 乙丙橡胶/聚丙烯热塑弹性体及制备方法
JP3235349B2 (ja) * 1994-06-24 2001-12-04 ソニー株式会社 シールドケース
EP0783539A1 (en) * 1994-08-26 1997-07-16 Borealis A/S Free radical grafting of monomers onto polypropylene resins
US5883144A (en) * 1994-09-19 1999-03-16 Sentinel Products Corp. Silane-grafted materials for solid and foam applications
WO1999046321A1 (en) * 1998-03-10 1999-09-16 Ferro Corporation Polymer compositions comprising polyolefins and reaction products of a polyolefin and an unsaturated carboxylic reagent and articles made therefrom
JP4795528B2 (ja) * 2000-11-30 2011-10-19 住友電装株式会社 オレフィン系樹脂組成物および被覆電線
JP4808840B2 (ja) 2000-12-01 2011-11-02 住友電装株式会社 オレフィン系樹脂組成物および被覆電線
EP1221462B1 (en) * 2001-01-09 2007-09-26 Sumitomo Wiring Systems, Ltd. Olefin-based resin composition, method of making it and electrical wire covered with it
DE502004008150D1 (de) 2004-06-04 2008-11-13 Studer Ag Draht & Kabelwerk Polymermischung insbesondere für ein strangförmiges Produkt
ES2490990T3 (es) * 2005-07-11 2014-09-04 Dow Global Technologies Llc Composiciones que comprenden polímeros de olefina injertados con silano

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239281A (ja) * 1991-12-10 1993-09-17 Nippon Petrochem Co Ltd 耐摩耗性難燃組成物
JPH11236421A (ja) * 1998-02-24 1999-08-31 Hitachi Cable Ltd 変性ポリオレフィン樹脂および電線・ケーブル
JP2002309048A (ja) * 2001-04-10 2002-10-23 Yazaki Corp 絶縁電線
JP2002364783A (ja) * 2001-06-05 2002-12-18 Yazaki Corp 電線保護チューブ
JP2003313377A (ja) * 2002-04-26 2003-11-06 Yazaki Corp 難燃性ポリプロピレン系樹脂組成物及び自動車用絶縁電線
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
WO2005087775A1 (ja) 2004-03-15 2005-09-22 Ono Pharmaceutical Co., Ltd. 三環式複素環化合物およびその化合物を有効成分として含有する医薬組成物
WO2006057361A1 (ja) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2006327A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2080784A1 (en) * 2006-11-17 2009-07-22 Mitsui Chemicals, Inc. Propylene resin composition, method for producing propylene resin composition, propylene polymer composition, molded body made of the propylene resin composition, and electric wire
EP2080784A4 (en) * 2006-11-17 2009-10-28 Mitsui Chemicals Inc PROPYLENE RESIN COMPOSITION, PROCESS FOR PREPARING THE PROPYLENE RESIN COMPOSITION, PROPYLENE POLYMERIC COMPOSITION, FORM BODY MANUFACTURED FROM THE PROPYLENE RESIN COMPOSITION AND ELECTRICAL WIRE
US7863368B2 (en) 2006-11-17 2011-01-04 Mitsui Chemicals, Inc. Propylene resin composition, process for producing propylene resin composition, propylene polymer composition, shaped article produced of the propylene resin composition, and electric wire
US8785553B2 (en) 2007-12-04 2014-07-22 Exxonmobil Chemical Patents Inc. Moisture curable propylene-α-olefin copolymers
WO2009073274A1 (en) * 2007-12-04 2009-06-11 Advanced Elastomer Systems, L.P. Moisture curable propylene-alpha-olefin copolymers
JP2010121076A (ja) * 2008-11-20 2010-06-03 Japan Polypropylene Corp 耐白化性に優れた難燃性ポリプロピレン系樹脂組成物及びその組成物による成形体
JP2011126984A (ja) * 2009-12-17 2011-06-30 Japan Polypropylene Corp ポリプロピレン樹脂組成物および該組成物を成形してなる成形体。
JP2011184504A (ja) * 2010-03-05 2011-09-22 Mitsui Chemicals Inc プロピレン系変性樹脂組成物
JP2016531970A (ja) * 2013-08-12 2016-10-13 エービービー テクノロジー エルティーディー. ケーブルの絶縁体のための熱可塑性ブレンド組成物
JP2021024942A (ja) * 2019-08-05 2021-02-22 三井化学株式会社 樹脂組成物、timおよび電子機器
JP7362340B2 (ja) 2019-08-05 2023-10-17 三井化学株式会社 樹脂組成物、timおよび電子機器
WO2022137750A1 (ja) * 2020-12-21 2022-06-30 住友電気工業株式会社 樹脂組成物、樹脂組成物成形体、電力ケーブル、および電力ケーブルの製造方法
JP7435829B2 (ja) 2020-12-21 2024-02-21 住友電気工業株式会社 樹脂組成物成形体、電力ケーブル、および電力ケーブルの製造方法

Also Published As

Publication number Publication date
EP2006327A1 (en) 2008-12-24
JP5291457B2 (ja) 2013-09-18
CN101426847B (zh) 2012-01-11
US9403975B2 (en) 2016-08-02
US20080023215A1 (en) 2008-01-31
TW200740909A (en) 2007-11-01
KR101004251B1 (ko) 2010-12-24
KR20090005119A (ko) 2009-01-12
CN101426847A (zh) 2009-05-06
ES2402374T3 (es) 2013-05-03
TWI356074B (en) 2012-01-11
EP2006327A4 (en) 2011-04-06
JPWO2007116708A1 (ja) 2009-08-20
EP2006327B1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
WO2007116708A1 (ja) 熱可塑性重合体組成物、熱可塑性重合体組成物の製造方法、熱可塑性重合体組成物から得られる成形体および電線
EP2248848B1 (en) Propylene resin composition and use thereof
KR101911573B1 (ko) 고충전 연성 폴리올레핀 조성물
WO2006098452A1 (ja) プロピレン系重合体組成物、その用途、および熱可塑性重合体組成物の製造方法
US20100331466A1 (en) Thermoplastic Elastomer Compositions
EP3058028A1 (en) Highly filled soft polyolefin composition for roofing membrane
WO2012152802A1 (en) Soft polyolefin compositions and highly filled compounds thereof
KR101688286B1 (ko) 난연성 수지 조성물 및 그의 제조방법, 및 그의 성형체 및 전선
KR20130020678A (ko) 열가소성 중합체 조성물, 그것으로 이루어지는 성형체 및 전선
JPWO2019176403A1 (ja) 樹脂組成物ならびに単層および多層フィルム
JP4855945B2 (ja) プロピレン系樹脂組成物、並びに該組成物からなる成形体および電線
JP5406021B2 (ja) プロピレン系樹脂組成物の架橋体および該架橋体の製造方法、ならびに該架橋体からなる架橋成形体
EP1963426B1 (en) Thermoplastic vulcanizate adhesive compositions
JP6916713B2 (ja) ポリプロピレン系樹脂組成物及び成形品
EP2061843B1 (en) Thermoplastic vulcanizates with advantageous adhesion to polar substrates
JP2006249136A (ja) エチレン系樹脂組成物およびその用途
JP2016204621A (ja) 耐熱部材用樹脂組成物
JP5361192B2 (ja) 変性ポリプロピレン系重合体およびその組成物
JP5455713B2 (ja) プロピレン系変性樹脂組成物
JP2008169256A (ja) プロピレン系樹脂組成物、該組成物からなる成形体および電線
JP6744762B2 (ja) 電線もしくはケーブル用被覆材料の製造方法および電線またはケーブルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739739

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509758

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 7789/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 200780010843.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007739739

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087026654

Country of ref document: KR