WO2007111147A1 - Qcmセンサーを用いる熱硬化膜中の昇華物の測定方法 - Google Patents

Qcmセンサーを用いる熱硬化膜中の昇華物の測定方法 Download PDF

Info

Publication number
WO2007111147A1
WO2007111147A1 PCT/JP2007/055240 JP2007055240W WO2007111147A1 WO 2007111147 A1 WO2007111147 A1 WO 2007111147A1 JP 2007055240 W JP2007055240 W JP 2007055240W WO 2007111147 A1 WO2007111147 A1 WO 2007111147A1
Authority
WO
WIPO (PCT)
Prior art keywords
sublimate
film
sensor
nozzle
seconds
Prior art date
Application number
PCT/JP2007/055240
Other languages
English (en)
French (fr)
Inventor
Yoshiomi Hiroi
Original Assignee
Nissan Chemical Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Industries, Ltd. filed Critical Nissan Chemical Industries, Ltd.
Priority to KR1020087026084A priority Critical patent/KR101276028B1/ko
Priority to JP2008507430A priority patent/JP4766284B2/ja
Priority to US12/225,474 priority patent/US7861590B2/en
Publication of WO2007111147A1 publication Critical patent/WO2007111147A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/13Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing having piezoelectric or piezoresistive properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/16Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of frequency of oscillations of the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/022Fluid sensors based on microsensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0254Evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0256Adsorption, desorption, surface mass change, e.g. on biosensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0426Bulk waves, e.g. quartz crystal microbalance, torsional waves

Definitions

  • This invention relates to a method for measuring sublimates in a thermosetting film using the QCM method (Quartz Crystal Microbalance).
  • a quartz resonator generates an inverse piezoelectric phenomenon that vibrates when a voltage is applied. It is known that when a substance adheres to the surface of a crystal unit, the weight of the crystal unit changes and the frequency of the crystal unit decreases.
  • a weight sensor using QCM is a method of measuring the weight of the deposit from this change in frequency.
  • a quartz crystal whose natural frequency changes according to the change in the concentration of the substance to be detected; And an oscillation circuit that oscillates the crystal resonator, oscillates by impregnating the crystal resonator in a mixed solution, and obtains the natural frequency of the crystal resonator at that time to determine the substance to be detected in the mixed solution.
  • a concentration sensor characterized by determining the concentration is disclosed (Patent Document 1).
  • a detection sensor in which a cyclodextrin derivative that binds to a specific substance is fixed to an electrode provided on a crystal resonator, wherein the cyclodextrin derivative is fixed to the electrode by a disulfide compound or a thiol compound.
  • a detection sensor is disclosed (Patent Document 2).
  • Patent Document 1 JP-A-6-18394 (Claims)
  • Patent Document 2 JP 2004-177258 (Claims)
  • Non-Patent Document 1 SPIE Vol. 5753 2005, pages 655 to 662 Disclosure of the invention
  • the present invention is a sensor that attaches a sublimate in a thermosetting film to the surface of a crystal resonator, changes the electrical resonance frequency due to the piezoelectric properties of the resonator, and quantifies the amount of sublimate attached to this frequency change force.
  • an antireflection film-forming composition comprises a resin component, a light-absorbing group component, an additive component, and a solvent component, and these components are cured by heating to form an antireflection film. These components in the composition may scatter sublimates into the air alone or as a reaction product.
  • the sublimate When the sublimate is discharged from the chamber 1 by suction, it adheres to the inside of the chamber, and the deposit eventually falls to the antireflection film formed on the semiconductor substrate over time. There is a case. Such a fallen object becomes a foreign substance, which causes an obstacle or error in the lithography process.
  • a photoresist-forming composition is coated on the surface on which the antireflection film is formed and the photoresist film is heated to form a photoresist film, components and reaction products from the photoresist film are sublimated into the air. As a result, the sublimated matter becomes a deposit and the deposit falls on the photoresist film to become a foreign substance, resulting in a failure or error.
  • the sublimates that cause these drops have a molecular weight distribution such as a resin component, a light-absorbing group component, an additive component, and a reaction product thereof, which is not a low-molecular component such as a solvent component. It is considered to be a high component.
  • thermosetting film especially anti-reflective film forming composition If the presence or absence or amount of sublimation components generated when heat-curing an object or a resist film-forming composition can be measured, sublimation is not generated or the amount of generated sublimation is low. It is considered useful for the development of a film-forming composition or a resist film-forming composition. Furthermore, by detecting the amount generated with the elapse of the heating time, it is possible to coat an antireflection film-forming composition or a resist film-forming composition and heat-treat them by heating. It is thought that it is useful to consider.
  • the present invention provides a method for solving these problems.
  • the sublimate from the thermosetting film being heated is attached to the surface of the crystal unit by a nozzle incorporated in the detection portion, and the amount of sublimate attached to the crystal unit is reduced.
  • thermosetting film is formed on a silicon wafer and the measurement is performed while being heated by a heat source under the silicon wafer
  • the sublimated material flows along with the airflow toward the upper part of the enclosure that covers the thermosetting film, and the airflow directly contacts the quartz crystal resonator by the nozzle incorporated in the detection part installed in the airflow process.
  • the method according to the first aspect or the second aspect set as described above, and the fourth aspect is that the airflow is generated by suction of the pump and the flow rate is 0.01 to 20. OmV s.
  • the nozzle incorporated in the detection portion is displaced from the first aspect to the fourth aspect in which the nozzle diameter is smaller than the sensor diameter and the distance between the nozzle and the sensor is shorter than the sensor diameter.
  • the method according to any one of the first to fifth aspects, wherein the heat source is controlled to a temperature of 100 to 400 ° C by a hot plate,
  • the surface of the crystal unit is coated with the same material as the surface material of the enclosure that covers the thermosetting film or a coating material that forms the thermosetting film. No! /, The method described in one of them,
  • the quartz crystal surface coating contains silicon and aluminum.
  • the resonance frequency of the crystal unit is used in a range of 100 Hz to: LOO MHz,
  • thermosetting film is an antireflection film used in a lower layer of a photoresist used in a lithography process for manufacturing a semiconductor device.
  • thermosetting a thermosetting film particularly an antireflection film-forming composition or a resist film-forming composition on a semiconductor substrate
  • thermosetting a thermosetting film particularly an antireflection film-forming composition or a resist film-forming composition
  • by detecting the amount generated with the elapse of the heating time it is possible to coat an antireflection film-forming composition or a resist film-forming composition, and when the composition is thermally cured by heating, the temperature rise is such that sublimates are not easily generated. The process can be examined.
  • FIG. 1 is a diagram showing an overall configuration of a measuring device for sublimated material from a thermosetting film.
  • FIG. 2 is an enlarged view of a detection portion of the measuring apparatus shown in FIG.
  • FIG. 3 is a schematic diagram of the entire measuring device for sublimated material from a thermosetting film.
  • FIG. 4 is a diagram showing a detection portion of a measurement device for sublimation from a thermosetting film.
  • FIG. 5 is a graph showing the change over time in the amount of sublimate generated in terms of resonant frequency force measured by the method of Example 1.
  • FIG. 6 is a graph showing the change over time in the amount of sublimate generated in terms of resonance frequency force measured by the method of Comparative Example 1.
  • FIG. 7 is a graph showing the change over time in the amount of sublimate generated in terms of resonant frequency force measured by the method of Comparative Example 2.
  • FIG. 8 Resonant frequency force measured by the method of Comparative Example 3 It is a graph which shows a time change.
  • FIG. 9 is a graph showing the change over time in the amount of sublimate generated in terms of resonant frequency force measured by the method of Example 2.
  • FIG. 10 is a graph showing the change over time in the amount of sublimate generated in terms of resonance frequency force measured by the method of Comparative Example 4.
  • FIG. 11 is a graph showing the change over time in the amount of sublimate generated in terms of resonance frequency force measured by the method of Comparative Example 5.
  • FIG. 12 is a graph showing the change over time in the amount of sublimate generated in terms of resonant frequency force measured by the method of Comparative Example 6.
  • (1) in the figure is a pump.
  • (2) is a Go (collecting funnel) covered in a triangular funnel.
  • (3) is a flow attachment (detection part).
  • (4) is the QCM sensor.
  • (5) is a nozzle.
  • (6) is the gas inlet between the envelop and the hot plate.
  • (7) is a personal computer.
  • (8) is a hot plate.
  • (9) is a top plate.
  • (10) is an O-ring.
  • (11) is a crystal resonator.
  • (12) is a guide.
  • (13) is a base substrate.
  • (14) is an electrode.
  • (15) is a flow controller.
  • (16) is a wafer coated with an object to be measured.
  • (17) shows the position of the pump unit in the overall configuration.
  • (18) indicates the position of the flow attachment in the overall configuration.
  • (19) indicates the position of one chamber unit in the overall configuration.
  • (20) indicates the diameter of the crystal unit.
  • (21) indicates the diameter of the electrode.
  • (22) indicates the nozzle diameter.
  • (23) indicates airflow.
  • (24) indicates the distance between the nozzle and the sensor.
  • a sublimate from a thermosetting film being heated is attached to the surface of a crystal resonator, and the amount of sublimate is determined from a change in resonance frequency according to the amount of sublimate attached to the crystal resonator. It is a method of measuring with the lapse of heating time.
  • thermosetting film used in the present invention is obtained by heat-curing a thermosetting film-forming composition containing a thermosetting compound and a solvent. If necessary, it can contain a light-absorbing compound and an additive component.
  • the additive component can contain crosslinkable compounds, acids, acid generators, rheology modifiers, and surfactants.
  • the ratio of the solid content in the thermosetting film forming composition used in the present invention is such that each component is uniformly dissolved in the solvent. As long as it is not particularly limited, for example, it is 1 to 50% by mass, or 1 to 30% by mass, or 1 to 25% by mass.
  • the solid content is obtained by removing the solvent component from all the components of the thermosetting film forming composition.
  • thermosetting compound a thermosetting monomer, a thermosetting resin, or a mixture thereof is used. If the thermosetting compound is a component that is cured by heating, it can be cured by causing a crosslinking reaction by reacting with a hydroxyl group, an epoxy group, a carboxyl group or the like in the molecule.
  • bulufenol and its polymer a compound containing a unit structure having a maleimide derivative having a hydroxyl group and its polymer, tris (2,3 epoxypropyl) -isocyanurate and its polymer, tris (2-hydroxyethyl) Isocyanurate and its polymer, hydroxyl group-containing halogen-bisphenol A-type rosin, polymer containing a unit structure having ratatones and hydroxyalkyl metatalylate (alkyl group has 1 to 4 carbon atoms), hydroxybenzyl metathali And a polymer containing a unit structure having phenol novolac resin, phenol novolac resin, cresol novolac resin, naphthalene novolac resin, norbornene, and a hydroxyalkyl metatalylate (the alkyl group has 1 to 4 carbon atoms).
  • Polymer single unit containing epoxy group Polymer of structure-containing compound and phenolic hydroxyl group, carboxyl group, or compound containing unit structure containing protected carboxyl group, hydroxyl group-containing acrylate polymer, glycidyl methacrylate and acrylic Polymer of acid ester, reaction product of polyamic acid and epoxy group-containing compound, monoallyl isocyanuric acid polymer, reaction product of glycidyl isocyanurate and hydroxyl group-containing benzoic acid, maleic acid or fumaric acid And a reaction product of an epoxy compound and a mixture of a compound having a fluorene structure and a phenol novolak resin.
  • thermosetting monomers and thermosetting resins can be used in the molecular weight range of 100 to 100,000. As a weight average molecular weight, it is 1000-200000, for example, is 3000-100,000, is 4000-30000, or is 5000-25000.
  • the thermosetting monomer and thermosetting resin are, for example, 50 to 99% by mass or 60 to 90% by mass in the solid content.
  • the solvent of the thermosetting film forming composition used in the present invention is a solvent that can dissolve the solid content. If it is, it can be used without any particular limitation.
  • solvents include, for example, ethylenic glycolenomonomethinoleethenole, ethyleneglycolenomonoethylenotenole, methylenocellosolve acetate, ethinorecellosolve acetate, diethyleneglycolenomonoethylenothere, diethyleneglycolenole.
  • a crosslinkable compound having at least two crosslink forming substituents is preferably used.
  • a compound having two or more, for example, two to six groups capable of crosslinking reaction such as isocyanate group, epoxy group, hydroxymethylamino group, and alkoxymethylamino group can be used.
  • crosslinkable compound examples include one to six nitrogen atoms substituted with alkoxymethyl groups such as methylol group or methoxymethyl group, ethoxymethyl group, butoxymethyl group, and hexyloxymethyl group. Or two to four nitrogen-containing compounds.
  • crosslinkable compounds examples include N hydroxymethyl acrylamide, N-methoxymethyl methacrylamide, N ethoxymethyl acrylamide, and N butoxymethyl methacrylamide, which are acrylamide compounds substituted with a hydroxymethyl group or an alkoxymethyl group.
  • a polymer produced using a methacrylamide compound can be used.
  • examples of such polymers include poly (N-butoxymethylacrylamide), N-butoxymethylacrylamide and styrene copolymer, N-hydroxymethylmethacrylamide and methylmethacrylate copolymer, N-ethoxymethylmethacrylamide and benzyl.
  • examples include a copolymer of metatalylate and a copolymer of N-butoxymethylacrylamide, benzyl metatalylate and 2-hydroxypropyl metatalylate.
  • content of a crosslinkable compound it is 1-50 mass% in solid content, for example, or 10-40 mass%.
  • the thermosetting film forming composition used in the present invention can contain an acid compound.
  • the acid compound include p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridi-um-p-toluenesulfonic acid, salicylic acid, camphorsulfonic acid, sulfosalicylic acid, 4-chlorobenzene sulfonic acid, 4-Hydroxybenzenesulfonic acid, benzenedisulfonic acid, 1-naphthalenesulfonic acid and pyridinium 1-naphthalenesulfonic acid and other sulfonic acid compounds, and carboxylic acids such as salicylic acid, sulfosalicylic acid, citrate, benzoic acid and hydroxybenzoic acid A compound can be mentioned.
  • Examples of the acid compound include 2, 4, 4, 6-tetrabromocyclohexagenone, benzoin tosylate, 2—-Trobendiltosylate, bis (phenylsulfo) diazomethane, p 2,4-dinitrobenzyl trifluoromethylbenzenesulfonate, ferro-bis (trichloromethyl) s triazine, and N-hydroxysuccinimide trifluoromethanesulfonate
  • Examples thereof include an acid generator that generates an acid by heat or light.
  • Examples of the acid compound include diphenyl-hexafluorophosphate, diphenyl-trifluoromethanesulfonate, diphenyl-nonafluoro-normal butane sulfonate, diphenyl-dioxide.
  • Perfluoro-normal octane sulfonate, di-phenol-diethyl camphor sulfonate, bis (4-tert-butylphenol) benzoylcamphor sulfonate and bis (4-tert-butylphenol) sulfonate- Iodonium salt-based acid generators such as trifluoromethanesulfonate, triphenylsulfo-hexafluoroantimonate, trisulfosulfo-munonafluoronormal butane sulfonate, trisulfol-mucamphor Sulfonate and trisulfol sulfo-trifluoromethyl Sulfo-um salt acid generators such as ethylene sulfonate, and N (trifluoromethanesulfo-loxy) succinimide, N— (nonafluoronormalbutanesulfo-loxy) succinimide, N— (
  • a sulfonic acid compound, a odo-um salt-based acid generator, a sulfo-um salt-based acid generator or a sulfonimide compound-based acid generator is preferably used.
  • the Only one kind of acid compound may be used, or two or more kinds may be used in combination.
  • only a sulfonic acid compound can be used as the acid compound.
  • a combination of a sulfonic acid compound and a iodine salt acid generator, or a combination of a sulfonic acid compound and a sulfo salt salt acid generator, or a sulfone compound is used as an acid compound.
  • a combination of an acid compound and a sulfonimide compound acid generator can be used.
  • the content of the acid compound or the acid generator is, for example, 0.1 to 10% by mass or 0.1 to 5% by mass in the solid content.
  • a light-absorbing compound when used in an antireflection film, it is not particularly limited as long as it has a high absorptivity for light in the photosensitive characteristic wavelength region of the photosensitive component in the photoresist provided thereon. can do.
  • the light-absorbing compound include benzoph Enone compounds, benzotriazole compounds, azo compounds, naphthalene compounds, anthracene compounds, anthraquinone compounds, triazine compounds, triazine trione compounds, quinoline compounds, and the like can be used. Naphthalene compounds, anthracene compounds, triazine compounds, and triazine trione compounds are used.
  • Specific examples include, for example, 1-naphthalene carboxylic acid, 2-naphthalene carboxylic acid, 1 naphthol, 2-naphthol, naphthyl acetic acid, 1-hydroxy 1-2 naphthalene carboxylic acid, 3 hydroxy 1-2 naphthalene carboxylic acid, 3, 7 Dihydroxy-2 Naphthalene carboxylic acid, 6 Bromo-2 hydroxynaphthalene, 2, 6 Naphthalene dicarboxylic acid, 9 Anthracene carboxylic acid, 10-Bromo-9 Anthracene carboxylic acid, Anthracene 9, 10 Dicarboxylic acid, 1 Anthracene carboxylic acid, 1- Hydroxyanthracene, 1, 2, 3 Anthracentriol, 9-Hydroxymethylanthracene, 2, 7, 9 Anthracentriol, Benzoic acid, 4-Hydroxybenzoic acid, 4 Bromobenzoic acid, 3 Rhodobenzoic acid, 2, 4,
  • Examples of the rheology modifier include phthalate compounds such as dimethyl phthalate, jetyl phthalate, diisobutyl phthalate, dihexyl phthalate, and butyl isodecyl phthalate, di-normal butyl adipate, diisobutyl adipate, diisooctyl.
  • Adipic acid compounds such as adipate and octyldecyl adipate, maleic acid compounds such as dinormal butyl malate, jetyl malate, and di-normalate, oleic acid compounds such as methyl oleate, butyrate and tetrahydrofurfurolate, and normal Examples include stearic acid compounds such as butyl stearate and glyceryl stearate.
  • the amount used thereof is, for example, 0.001 to 10% by mass in the solid content.
  • Examples of the surfactant include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene ether.
  • Polyoxyethylene alkyl ethers such as rail ether, polyoxyethylene alkyl aryl ethers such as polyoxyethylene nonyl phenol ether, polyoxyethylene nonyl phenol ether, polyoxyethylene / polyoxypropylene block copolymers, sorbitan mono Sorbitan fatty acid esters such as laurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan trioleate, sorbitan tristearate, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate , Polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tris
  • Non-ionic surfactants such as polyoxyethylene sorbitan fatty acid esters
  • thermosetting film is used as an antireflection film used in a lithography process for manufacturing a semiconductor device. I will explain.
  • the measurement apparatus in which the measurement method of the present invention is implemented is a chamber unit that can enclose the sublimation generated by beta-reflecting the antireflection film on the wafer (substrate), and efficiently attach the sublimation to the QCM sensor. It is mainly formed from a flow attachment for generating air flow and a pump unit for creating air flow and controlling the flow rate. These three units are connected in an airtight state, and the sublimate generated from one chamber unit is sucked by the pump unit via the flow attachment and the airflow flows in sequence.
  • the flow attachment is the detection part, which is a unit that includes a QCM sensor with an electrode attached to a crystal unit and a nozzle underneath it. The sublimate adheres to the sensor surface, and the airflow passes over the sensor to the pump unit.
  • the chamber unit is mainly formed from two parts: a hot plate and an enclosure that has an airtight upper force. These parts are processed into a shape suitable for generating sublimates from a 4 to 16 inch silicon wafer or a coated substrate.
  • the hot plate in the chamber unit heats the thermosetting film on the wafer to a temperature of 100-400 ° C and measures the generated sublimation. Maintained at arbitrarily set constant temperature between 400 ° C.
  • the enclosure (collection funnel) of this chamber is preferably one that has a small surface area so that the sublimate is efficiently collected and the sublimate does not easily adhere to the surface. As this chamber, for example, a triangular funnel shape can be considered.
  • a slide-type installation method is preferable in order to suppress temperature fluctuation due to thermal change. That is, it is preferable to minimize the opening and closing of the chamber, and it is preferable that the chamber does not open and close.
  • a method may be considered in which a slit is formed in the chamber and the hot plate, and a wafer coated with an antireflection film is introduced.
  • a slit for introducing airflow is installed between the hot plate of the chamber unit and the enclosure. It is necessary to provide it separately from the slide opening.
  • the slit (gas inlet) for inflow of gas that generates airflow is designed to have an opening of about 1 to 5 mm, preferably about 2 mm from the hot plate surface.
  • the gas that flows into the airflow is preferably air, for example, air or an inert gas (nitrogen, argon, helium).
  • the flow attachment part is mainly formed from a QCM sensor, a nozzle for directly attaching a sublimate to the sensor, and an enclosure that incorporates them and considers airtightness.
  • the sublimate is designed as a flow path that blows to the QCM sensor through the nozzle when it flows into the flow attachment from one chamber unit. It does not flow into the attachment.
  • the apparatus of the present invention is characterized in that measurement can be performed with high sensitivity.
  • the difference between the antireflection film (measurement object) to be measured relative to the reference antireflection film (object) can be measured by weight. Therefore, the difference between materials can be confirmed even with a single wafer of the measurement object.
  • the condition that the distance between the nozzle and the sensor whose nozzle diameter is smaller than the sensor diameter is shorter than the sensor diameter is essential. Satisfying these conditions enables highly sensitive sublimation measurement.
  • the sensor diameter is the diameter of the crystal resonator.
  • a sensor of about 100 Hz to 100 MHz is preferred, and a sensor of about 1 ⁇ to 3 OMHz is preferred. This value corresponds to the thickness of the crystal piece, and the thinner the thickness, the higher the resonance frequency. If the frequency change is large, the resolution as a sensor is high.
  • Electrode materials are gold, copper, silver, iron, aluminum, titanium, chromium, aluminum copper mixture, aluminum silicon mixture, stainless steel, zinc, tungsten, lead, stainless steel and other conductive metals, semiconductors, conductive Examples include polymers.
  • the measurement of the sublimate is considered and the conventional method is used.
  • the main purpose is to improve the antireflection film-forming composition and to control the temperature of the thermosetting process by accurately quantifying the amount of sublimate in real time.
  • the same material as the inner wall of the chamber or the spin coat film on the wafer is applied to the surface of this crystal unit.
  • the quantification of the sublimates in question becomes more realistic.
  • the surface of the crystal unit is the same material as the surface material of the enclosure that covers the thermosetting film
  • the coating material for forming the thermosetting film or the coating material is coated with, for example, a compound containing silicon and aluminum.
  • the electrode portion is an electrode as described above, the surface state of the electrode can be modified by spin coating.
  • the same material as the top plate of the actual machine can be used, or the same material as the top board of the actual machine can be coated in advance without changing the electrode. Can do.
  • a transmitter for vibrating the crystal unit may be introduced into the flow attachment (detection portion).
  • This transmitter has a built-in inverter transmission circuit. It is close to the sensor! It is preferable to install at a distance, more preferably at a distance of 3 cm or less. For this reason, it is necessary to introduce the flow attachment into the inside of the flow attachment or near the outside, but the introduction method does not work either way.
  • the pump unit is formed of a pump for creating an air flow and a flow rate controller for controlling the flow rate of the air flow.
  • the air flow generated by the pump flows from the flow attachment while the flow rate is controlled by the flow controller.
  • the flow control port can be integrated with the pump! ,.
  • the air flow from the pump suction is carried out at a flow rate of 0.01 to 50 m 3 / s, which is controlled by the flow controller to 0.01 to 20 Om 3 Zs, more preferably 0.1 to LO: Om 3 Controlled by Zs, the flow rate during one measurement is controlled to be constant.
  • the apparatus used in the present invention requires a display for confirming the frequency change in addition to the three units for generating sublimates and collecting them efficiently.
  • Data processing is performed on a personal computer for real-time measurement on the display. For this reason, a serial cable for a personal computer and dedicated software are required. By attaching these devices, continuous data analysis becomes possible, and errors are reduced even when discontinuous data are compared.
  • Measurement is performed with each unit fixed. At this time, the hot plate, the chamber unit heated by the hot plate, and the flow attachment must also be kept at a constant temperature. Therefore, after the hot plate reaches the specified measurement temperature, it is necessary to operate the pump that controls the flow rate and stabilize until the temperature of each unit reaches a certain level.
  • the wafer coated with the sample to be measured is introduced into the equipment so that the temperature change is small during installation, and the frequency change is confirmed on a personal computer. Keep the temperature and flow rate constant at that time, and maintain the state for the required time.
  • a commercially available antireflective coating composition was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds.
  • the film thickness of the antireflection film at that time is 78 nm.
  • the above anti-reflective film-forming composition (a composition for forming an anti-reflective film used in the lithography process of manufacturing semiconductor devices) is a hydroxyl group-containing acrylate ester polymer (weight average molecular weight is 80000), crosslinkable It consisted of a compound (hexamethoxymethyl melamine), a crosslinking catalyst (P-toluenesulfonic acid), and a solvent (propylene glycol monomethyl ether acetate and lactic acid ethyl), and its solid content was 4.3% by mass.
  • the wafer coated with the above antireflection film was set in a sublimation measuring device integrated with a hot plate adjusted to 205 ° C., and beta and sublimate were collected by a QCM sensor for 120 seconds and quantified.
  • a nozzle with a diameter of 2 mm is attached to the flow attachment (detection part) that connects the QCM sensor and the collection funnel, and the distance between the sensor and the nozzle is kept at 0.5 mm.
  • the QCM sensor uses electrodes made of a compound containing silicon and aluminum, has a crystal resonator diameter (sensor diameter) of 14 mm, a crystal resonator surface electrode diameter of 5 mm, and a resonance frequency of 9 MHz. Was used.
  • the antireflection film-forming composition (a composition for forming an antireflection film used in the lithography process of manufacturing a semiconductor device) is a hydroxyl group-containing triazinetrione polymer (weight average molecular weight is 10,000), a crosslinkable compound (Hexamethoxymethylmelamine), crosslinking catalyst (P-toluenesulfonic acid), solvent (propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate), and the solid content was 1.9% by mass.
  • the wafer coated with the above antireflection film was set in a sublimation measuring device integrated with a hot plate adjusted to 205 ° C., and beta and sublimate were collected by a QCM sensor for 120 seconds and quantified.
  • a nozzle with a diameter of 2 mm is attached to the flow attachment (detection part) that connects the QCM sensor and the collection funnel, and the distance between the sensor and the nozzle is kept at 0.5 mm.
  • the QCM sensor uses electrodes made of a compound containing silicon and aluminum, has a crystal resonator diameter (sensor diameter) of 14 mm, a crystal resonator surface electrode diameter of 5 mm, and a resonance frequency of 9 MHz. Was used.
  • Example 2 The same antireflection film forming composition as that used in Example 1 was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds. Set the wafer coated with anti-reflective coating on a sublimation measuring device with an integrated hot plate adjusted to 205 ° C, and collect beta and sublimated material on the QCM sensor for 120 seconds.
  • a nozzle with a diameter of 2 mm is attached to the flow attachment (detection part) that connects the QCM sensor and the collection funnel, and the distance between the sensor and the nozzle is kept at 0.5 mm.
  • the QCM sensor uses electrodes made of a compound containing silicon and aluminum, has a crystal resonator diameter (sensor diameter) of 14 mm, a crystal resonator surface electrode diameter of 5 mm, and a resonance frequency of 9 MHz. Was used.
  • Example 2 The same antireflection film forming composition as that used in Example 1 was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds.
  • the wafer coated with the antireflection film was set in a sublimation measuring device integrated with a hot plate adjusted to 205 ° C, and beta and sublimated material were collected by the QCM sensor for 120 seconds.
  • the QCM sensor uses electrodes made of a compound containing silicon and aluminum, with a crystal resonator diameter (sensor diameter) of 14 mm, a crystal resonator surface electrode diameter of 5 mm, and a resonance frequency of 9 MHz. It was.
  • Example 2 The same antireflection film-forming composition as that used in Example 1 was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds. Set the wafer coated with anti-reflective coating on a sublimation measuring device integrated with a hot plate adjusted to 205 ° C, and collect beta and sublimated material on the QCM sensor for 120 seconds.
  • the QCM sensor used was an aluminum silicon electrode with a quartz crystal diameter (sensor diameter) of 14 mm, a crystal diameter on the surface of the quartz crystal of 5 mm, and a resonance frequency of 9 MHz.
  • Example 2 The same antireflection film forming composition as that used in Example 2 was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds. Set the wafer coated with anti-reflective coating on a sublimation measuring device with an integrated hot plate adjusted to 205 ° C, and collect beta and sublimated material on the QCM sensor for 120 seconds.
  • a nozzle with a diameter of 2 mm is attached to the flow attachment (detection part) that connects the QCM sensor and the collection funnel, and the distance between the sensor and the nozzle is kept at 0.5 mm.
  • the QCM sensor uses electrodes made of a compound containing silicon and aluminum, has a crystal resonator diameter (sensor diameter) of 14 mm, a crystal resonator surface electrode diameter of 5 mm, and a resonance frequency of 9 MHz. Was used.
  • Example 2 The same antireflection film forming composition as that used in Example 2 was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds.
  • the wafer coated with the antireflection film was set in a sublimation measuring device integrated with a hot plate adjusted to 205 ° C, and beta and sublimated material were collected by the QCM sensor for 120 seconds.
  • the QCM sensor uses electrodes made of a compound containing silicon and aluminum, with a crystal resonator diameter (sensor diameter) of 14 mm, a crystal resonator surface electrode diameter of 5 mm, and a resonance frequency of 9 MHz. It was.
  • Example 2 The same antireflection film-forming composition as used in Example 2 was applied to a silicon wafer substrate having a diameter of 4 inches with a spin coater at 2500 rpm for 60 seconds. Set the wafer coated with anti-reflective coating on a sublimation measuring device with an integrated hot plate adjusted to 205 ° C, and collect beta and sublimated material on the QCM sensor for 120 seconds.
  • the QCM sensor used was an aluminum silicon electrode with a quartz crystal diameter (sensor diameter) of 14 mm, a crystal diameter on the surface of the quartz crystal of 5 mm, and a resonance frequency of 9 MHz.
  • the obtained frequency change was converted into the eigenvalue gram of the quartz crystal used for the measurement, and a graph of the amount of sublimation and the time passage of one wafer coated with the antireflection film was described.
  • Tables 1 and 2 the amount of sublimation (unit: ng: nanogram) indicated by the measuring apparatus from 0 to 180 seconds in Examples 1 and 2 and Comparative Examples 1 to 6 is described. That is, the aging time from the 0 second time point to the 60 second time point (the standing time) and the rise time from the 60 second time point to the 180 second time point The measured value of the flower was shown.
  • 5 to 12 are graphs of the elapsed time and the amount of sublimation for Examples 1 and 2 and Comparative Examples 1 to 6.
  • the measuring device from 0 second to 60 seconds measures the sublimate and measures in the state.
  • the amount of sublimation indicated by the measuring apparatus is described as it is, and the value indicating minus is also read as it is.
  • the initial aging time leaving time
  • the amount of the sublimate adhered thereafter increased with the measuring time.
  • Example 1 and Example 2 When Example 1 and Example 2 are compared, the amount of sublimation can be relatively compared.
  • the magnitude of the amount of sublimation between the objects to be measured can be relatively determined by covering the object to be measured on the wafer and measuring the measuring apparatus according to the present invention under the same conditions. That is, when Example 1 and Example 2 are compared, it can be seen that the antireflection film material composition used in Example 2 has a smaller amount of sublimation.
  • a more accurate comparison can be made by taking into account the solid content of the composition forming the object to be measured and the film thickness of the object to be measured on the wafer.
  • Comparative Examples 1 to 3 are the same as Example 1
  • Comparative Examples 4 to 6 are the same as Example 2, but Comparative Examples 1 and 4, Comparative Examples 2 and 5,
  • the difference in the amount of sublimation between Comparative Examples 3 and 6 is not as clear as the difference in the amount of sublimation between Example 1 and Example 2. It was difficult to judge changes in quantity o
  • thermosetting films such as antireflective film-forming compositions or resist film-forming compositions are thermally cured to detect whether or not sublimates are generated or the amount of sublimates generated This is useful for the development of antireflection film-forming compositions and resist film-forming compositions with a low content.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

QCMセンサーを用いる熱硬化膜中の昇華物の測定方法
技術分野
[0001] QCM法(Quartz Crystal Microbalance :クォーツクリスタル マイクロバランス 法)を用いた、熱硬化膜中の昇華物の測定方法に係わる。
背景技術
[0002] 水晶振動子は電圧をかけると振動する逆圧電現象を生ずる。水晶振動子の表面に 物質が付着すると、水晶振動子部分の重量に変化が起こり、水晶振動子の振動数が 低下することが知られて 、る。この振動数変化から付着物の重量を測定する方法が QCMを用いた重量センサーである。
所定の溶媒に所定の被検知物質が溶解してなる混合溶液中の被検知物質の濃度 を検知するセンサーにおいて、被検知物質の濃度の変化に応じて固有振動数が変 化する水晶振動子と、水晶振動子を発振させる発振回路とを備え、水晶振動子を混 合溶液に含浸させて発振させ、その時の水晶振動子の固有振動数を求めることによ つて混合溶液中の被検知物質の濃度を求めるようにしたことを特徴とする濃度センサ 一が開示されて!ヽる (特許文献 1)。
特定物質と結合するシクロデキストリン誘導体を水晶振動子に設けた電極に固定し てなる検出センサーであって、シクロデキストリン誘導体は、ジスルフイド化合物また はチオールィ匕合物によって電極に固定したことを特徴とする検出センサーが開示さ れている(特許文献 2)。
QCMセンサーを用いて数種類の下層反射防止膜の昇華物を 200°Cの加熱下で 定量し比較したことが記載されて 、る。 4インチウェハーに塗布された反射防止膜の 昇華物の測定にぉ 、て、ウェハーを数十枚ベータし測定することで材料間の差を確 認できたと報告されて!、る (非特許文献 1)。
特許文献 1 :特開平 6— 18394号公報 (特許請求の範囲)
特許文献 2:特開 2004— 177258 (特許請求の範囲)
非特許文献 1 : SPIE Vol. 5753 2005年 第 655頁〜第 662頁 発明の開示
発明が解決しょうとする課題
本願発明は、水晶振動子の表面に熱硬化膜中の昇華物を付着させ、振動子の圧 電気的性質により電気的共振周波数の変化が起こり、この周波数変化力 付着した 昇華物量を定量するセンサーに係わる。
半導体装置の製造におけるリソグラフィー工程では、半導体基板上にフォトレジスト を被覆し、フォトマスクを介して露光して得られたレジストパターンにより半導体基板を 加工する工程がある。
フォトレジストの露光時に半導体基板力もの乱反射を防止するために、フォトレジス トの下層に反射防止膜を成膜する方法が行われて!/、る。それらの方法では半導体基 板に反射防止膜形成組成物をスピンコート法で被覆し、加熱硬化して反射防止膜を 得る。一般に反射防止膜形成組成物は、榭脂成分、吸光基成分、添加剤成分、及 び溶媒成分からなり、それら成分を加熱により硬化させ反射防止膜とするが、加熱過 程で反射防止膜形成組成物中のそれら成分は単独で又は反応生成物として空気中 に昇華物を飛散させることがある。その昇華物がチャンバ一から吸引によって外部に 放出される時にチャンバ一内部に付着し、付着物がやがて時間の経過と共に、半導 体基板上に形成された反射防止膜に落下するという現象を生ずる場合がある。この ような付着物の落下物は異物となり、リソグラフィー工程で障害やエラーとなる。また、 同様に反射防止膜が形成された表面にフォトレジスト形成組成物を被覆し、それを加 熱によりフォトレジスト膜とする場合に、フォトレジスト膜から成分や反応生成物が空気 中に昇華物として飛散し、昇華物が付着物となり、付着物がフォトレジスト膜上に落下 し異物となり、障害やエラーが発生する場合がある。
数十 nmの配線幅を有する半導体を加工する工程では、微量の落下物であっても その落下部分は断線やショートを引き起こすことがあり問題である。
これらの落下の原因となる昇華物は、溶媒成分の様な低分子成分ではなぐ榭脂 成分、吸光性基成分、添加剤成分、及びそれらの反応生成物といった分子量分布を 持ち、比較的分子量の高い成分であると考えられる。
この様な問題を事前に防止するために、熱硬化膜、とりわけ反射防止膜形成組成 物やレジスト膜形成組成物を、熱硬化させる時に発生する昇華成分の有無、又はそ の量を測定することができれば、昇華物が発生しな 、か又は昇華物の発生量の少な い反射防止膜形成組成物やレジスト膜形成組成物の開発に役立つと考えられる。 更には加熱時間の経過と共に発生する量を感知することにより、反射防止膜形成 組成物やレジスト膜形成組成物をコートして、それらを加熱による熱硬化させる時に 昇華物の発生し難い昇温工程を検討する事に役立つと考えられる。
本願発明はこれら課題を解決するための方法を提供するものである。
課題を解決するための手段
本願発明は第 1観点として、加熱中の熱硬化膜からの昇華物を、検出部分に組み 込まれたノズルによって水晶振動子の表面に付着させ、該水晶振動子への昇華物 の付着量に応じた共振周波数の変化から、昇華物量を加熱時間の経過と共にリアル タイムで測定する方法、
第 2観点として、熱硬化膜がシリコンウェハー上に形成され、シリコンウェハー下部 の熱源により加熱された状態で測定を行う第 1観点に記載の方法、
第 3観点として、昇華物が、熱硬化膜を覆う囲いの上部に向力つて気流と共に流れ 、その気流の過程に設置された検出部分に組み込まれたノズルによって水晶振動子 に直接気流が接触するよう設定された第 1観点又は第 2観点に記載の方法、 第 4観点として、気流がポンプの吸引によって生じ、その流量が 0. 01〜20. OmV sである第 1観点乃至第 3観点のいずれか一つに記載の方法、
第 5観点として、検出部分に組み込まれたノズルは、ノズル口径がセンサー直径より も小さぐノズルとセンサーの距離がセンサー直径よりも短い距離に設置されている第 1観点乃至第 4観点の 、ずれか一つに記載の方法、
第 6観点として、熱源がホットプレートにより 100〜400°Cの温度にコントロールされ たものである第 1観点乃至第 5観点のいずれか一つに記載の方法、
第 7観点として、水晶振動子の表面が、熱硬化膜を覆う囲いの表面材と同一の材料 又は該熱硬化膜を形成するコート材料で被覆されているものである第 1観点乃至第 6 観点の!/、ずれか一つに記載の方法、
第 8観点として、水晶振動子の表面の被覆物が、シリコンとアルミニウムを含有する 化合物である第 7観点に記載の方法、
第 9観点として、水晶振動子の共振周波数が 100Hz〜: LOOMHzの範囲で使用さ れる第 1観点乃至第 8観点のいずれか一つに記載の方法、
第 10観点として、熱硬化膜が、半導体装置を製造するリソグラフィー工程で使用さ れるフォトレジストの下層に用いられる反射防止膜である第 1観点乃至第 9観点のい ずれか一つに記載の方法、及び
第 11観点として、第 1観点乃至第 10観点のいずれか一つに記載の方法を利用し た熱硬化膜からの昇華物を測定する装置である。
発明の効果
[0005] 熱硬化膜、とりわけ半導体基板上の反射防止膜形成組成物やレジスト膜形成組成 物を熱硬化させる時に発生する昇華成分の有無、又はその量をより正確に検知する ことができるため、昇華物が発生しないか又は昇華物の発生量の少ない反射防止膜 形成組成物やレジスト膜形成組成物の開発を行うことができる。更には加熱時間の 経過と共に発生する量を感知することにより、反射防止膜形成組成物やレジスト膜形 成組成物をコートして、それらを加熱による熱硬化させる時に昇華物の発生し難い昇 温工程を検討する事が出来る。
図面の簡単な説明
[0006] [図 1]熱硬化膜からの昇華物の測定装置の全体構成を示す図である。
[図 2]図 1に示す測定装置の検出部分を拡大した図である。
[図 3]熱硬化膜からの昇華物の測定装置全体の模式図である。
[図 4]熱硬化膜からの昇華物の測定装置の検出部分を示す図である。
[図 5]実施例 1の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 6]比較例 1の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 7]比較例 2の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 8]比較例 3の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 9]実施例 2の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 10]比較例 4の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 11]比較例 5の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。
[図 12]比較例 6の方法により測定された共振周波数力 換算した昇華物発生量の経 時変化を示すグラフである。 図中の(1)はポンプである。(2)は三角ロート状に覆う 囲 ヽ (捕集ロート)である。 (3)はフローアタッチメント (検出部分)である。(4)は QCM センサーである。(5)はノズルである。(6)は三角ロート状に覆う囲いとホットプレート の間の気体流入口である。(7)はパーソナルコンピューターである。(8)はホットプレ ートである。(9)は天板である。(10)は Oリングである。(11)は水晶振動子である。 ( 12)はガイドである。(13)は下地基板である。(14)は電極である。(15)は流量コント ローラーである。(16)は被測定物が被覆してあるウェハーである。(17)は構成全体 の中でのポンプユニットの位置を示す。 (18)は構成全体の中でフローアタッチメント の位置を示す。(19)は構成全体の中でチャンバ一ユニットの位置を示す。(20)は 水晶振動子の直径を示す。(21)は電極の直径を示す。(22)はノズルの口径を示す 。(23)は気流を示す。 (24)はノズルとセンサーの距離を示す。
発明を実施するための最良の形態
[0007] 本願発明は、加熱中の熱硬化膜からの昇華物を、水晶振動子の表面に付着させ、 該水晶振動子への昇華物の付着量に応じた共振周波数の変化から昇華物量を、加 熱時間の経過と共に測定する方法である。
[0008] 本願発明に用いられる熱硬化膜は、熱硬化性化合物と溶媒を含む熱硬化膜形成 組成物を加熱硬化することによって得られる。そして必要に応じて吸光性化合物や 添加剤成分を含有することができる。添加剤成分は架橋性化合物、酸、酸発生剤、 レオロジー調整剤、及び界面活性剤を含有することができる。本願発明に用いられる 熱硬化膜形成組成物における固形分の割合は、各成分が溶剤に均一に溶解してい る限りは特に限定はないが、例えば 1〜50質量%であり、または、 1〜30質量%であ り、または 1〜25質量%である。ここで固形分とは、熱硬化膜形成組成物の全成分か ら溶媒成分を除ヽたものである。
熱硬化性化合物は熱硬化性モノマー、熱硬化性榭脂、又はそれらの混合物が用 いられる。熱硬化性化合物は加熱により硬化する成分であれば制限はなぐ分子内 のヒドロキシル基、エポキシ基、及びカルボキシル基等の架橋基が反応することにより 架橋反応を生じ硬化することができる。
例えばビュルフエノール及びその重合体、ヒドロキシル基を有するマレイミド誘導体 を有する単位構造を含む化合物及びその重合体、トリスー (2, 3 エポキシプロピル) —イソシァヌレート及びその重合体、トリス (2—ヒドロキシェチル)一イソシァヌレート 及びその重合体、ヒドロキシル基含有ハロゲンィ匕ビスフエノール A型榭脂、ラタトンを 有する単位構造を含む化合物とヒドロキシアルキルメタタリレート(アルキル基は炭素 数 1〜4)の重合体、ヒドロキシベンジルメタタリレート及びその重合体、フエノールノボ ラック榭脂、クレゾ一ルノボラック榭脂、ナフタレンノボラック榭脂、ノルボルネンを有す る単位構造を含む化合物とヒドロキシアルキルメタタリレート(アルキル基は炭素数 1 〜4)の重合体、エポキシ基を含有する単位構造を含む化合物とフエノール性ヒドロキ シル基、カルボキシル基、又は保護されたカルボキシル基を含む単位構造を含む化 合物との重合体、ヒドロキシル基含有アクリル酸エステル重合体、グリシジルメタクリレ ートとアクリル酸エステルの重合体、ポリアミック酸とエポキシ基含有ィ匕合物との反応 物、モノアリルイソシァヌル酸系重合体、グリシジルイソシァヌレートとヒドロキシル基 含有安息香酸の反応物、マレイン酸又はフマル酸とエポキシ化合物との反応物、フ ルオレン構造を有する化合物とフエノールノボラック樹脂との混合物等が挙げられる。 これら熱硬化性モノマー及び熱硬化性榭脂は分子量 100〜1000000までの範囲 で用いることができる。重量平均分子量として、例えば、 1000〜200000であり、また 例えば 3000〜100000であり、または 4000〜30000であり、または 5000〜25000 である。熱硬化性モノマー及び熱硬化性榭脂は固形分中で、例えば 50〜99質量% であり、または 60〜90質量%である。
本願発明に用いられる熱硬化膜形成組成物の溶媒は、固形分を溶解できる溶剤 であれば、特に制限無く使用することができる。そのような溶剤としては、例えば、ェ チレングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、メチ ノレセロソルブアセテート、ェチノレセロソルブアセテート、ジエチレングリコーノレモノメチ ノレエーテノレ、ジエチレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレ、プロ ピレングリコーノレモノメチノレエーテル、プロピレングリコーノレモノメチノレエーテノレァセテ ート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチノレエ チルケトン、シクロペンタノン、シクロへキサノン、 2—ヒドロキシプロピオン酸ェチル、 2 ーヒドロキシ 2—メチルプロピオン酸ェチル、エトキシ酢酸ェチル、ヒドロキシ酢酸ェ チル、 2 ヒドロキシー 3 メチルブタン酸メチル、 3—メトキシプロピオン酸メチル、 3 ーメトキシプロピオン酸ェチル、 3—エトキシプロピオン酸ェチル、 3—エトキシプロピ オン酸メチル、ピルビン酸メチル、ピルビン酸ェチル、酢酸ェチル、酢酸ブチル、乳 酸ェチル、及び乳酸ブチル等を挙げることができる。これらの溶剤は単独で、または 二種以上の組み合わせで使用される。さらに、プロピレングリコールモノブチルエー テル、プロピレングリコールモノブチルエーテルアセテート等の高沸点溶剤を混合し て使用することができる。
本願発明に用いられる熱硬化膜形成組成物に任意に添加できる架橋性化合物は
、特に制限はないが、少なくとも二つの架橋形成置換基を有する架橋性化合物が好 ましく用いられる。例えば、イソシァネート基、エポキシ基、ヒドロキシメチルァミノ基、 及びアルコキシメチルァミノ基等の架橋反応可能な基を二つ以上、例えば二つ乃至 六つ有する化合物を使用することができる。
架橋性ィ匕合物としては、例えば、メチロール基またはメトキシメチル基、エトキシメチ ル基、ブトキシメチル基、及びへキシルォキシメチル基等のアルコキシメチル基で置 換された窒素原子を一つ乃至六つ、または二つ乃至四つ有する含窒素化合物が挙 げられる。具体的には、へキサメトキシメチルメラミン、テトラメトキシメチルベンゾグァ ナミン、 1, 3, 4, 6—テトラキス(メトキシメチル)グリコールゥリル、 1, 3, 4, 6—テトラ キス(ブトキシメチル)グリコールゥリル、 1, 3, 4, 6—テトラキス(ヒドロキシメチル)ダリ コールゥリル、 1, 3 ビス(ヒドロキシメチル)尿素、 1, 1, 3, 3—テトラキス(ブトキシメ チル)尿素、 1, 1, 3, 3—テトラキス (メトキシメチル)尿素、 1, 3 ビス (ヒドロキシメチ ル) 4, 5 ジヒドロキシ一 2—イミダゾリノン、及び 1, 3 ビス(メトキシメチル)一 4, 5 ジメトキシ— 2—イミダゾリノン等の含窒素化合物が挙げられる。また、三井サイテ ック (株)製メトキシメチルタイプメラミンィ匕合物(商品名サイメル 300、サイメル 301、サ ィメル 303、サイメル 350)、ブトキシメチルタイプメラミン化合物(商品名マイコート 50 6、マイコート 508)、グリコールゥリル化合物(商品名サイメル 1170、パウダーリンク 1 174)、メチル化尿素樹脂(商品名 UFR65)、ブチル化尿素樹脂(商品名 UFR300 、 U-VAN10S60, U-VAN10R, U— VAN11HV)、大日本インキ化学工業( 株)製尿素 Zホルムアルデヒド系榭脂(商品名べッカミン J— 300S、べッカミン P— 95 5、ペッカミン N)等の市販されている含窒素化合物を挙げることができる。また、架橋 性化合物としては、 N ヒドロキシメチルアクリルアミド、 N—メトキシメチルメタクリルァ ミド、 N エトキシメチルアクリルアミド及び N ブトキシメチルメタクリルアミド等のヒド 口キシメチル基またはアルコキシメチル基で置換されたアクリルアミドィ匕合物またはメ タクリルアミド化合物を使用して製造されるポリマーを用いることができる。そのような ポリマーとしては、例えば、ポリ(N ブトキシメチルアクリルアミド)、 N ブトキシメチ ルアクリルアミドとスチレンの共重合体、 N ヒドロキシメチルメタクリルアミドとメチルメ タクリレートの共重合体、 N—エトキシメチルメタクリルアミドとべンジルメタタリレートの 共重合体、及び N ブトキシメチルアクリルアミドとべンジルメタタリレートと 2—ヒドロキ シプロピルメタタリレートの共重合体等を挙げることができる。
架橋性化合物の含有量としては固形分中で、例えば 1〜50質量%であり、または 1 0〜40質量%である。
本願発明に用いられる熱硬化膜形成組成物は酸化合物を含むことができる。酸ィ匕 合物としては、例えば、 p トルエンスルホン酸、トリフルォロメタンスルホン酸、ピリジ -ゥム—p—トルエンスルホン酸、サリチル酸、カンファースルホン酸、スルホサリチル 酸、 4—クロ口ベンゼンスルホン酸、 4—ヒドロキシベンゼンスルホン酸、ベンゼンジス ルホン酸、 1 ナフタレンスルホン酸及びピリジ-ゥム 1 ナフタレンスルホン酸等 のスルホン酸化合物、及びサリチル酸、スルホサリチル酸、クェン酸、安息香酸及び ヒドロキシ安息香酸等のカルボン酸ィ匕合物を挙げることができる。また、酸化合物とし ては、例えば、 2, 4, 4, 6—テトラブロモシクロへキサジェノン、ベンゾイントシレート、 2— -トロべンジルトシレート、ビス(フエ-ルスルホ -ル)ジァゾメタン、 p トリフルォ ロメチルベンゼンスルホン酸一 2, 4 ジニトロベンジル、フエ-ルービス(トリクロロメ チル) s トリァジン、及び N ヒドロキシスクシンイミドトリフルォロメタンスルホネート 等の熱または光によって酸を発生する酸発生剤を挙げることができる。酸化合物とし ては、また、ジフエ-ルョードニゥムへキサフルォロホスフェート、ジフエ-ルョードニ ゥムトリフルォロメタンスルホネート、ジフエ-ルョードニゥムノナフルオローノルマルブ タンスルホネート、ジフエ-ルョードニゥムパーフルオローノルマルオクタンスルホネ ート、ジフエ-ルョードニゥムカンファースルホネート、ビス(4— tert—ブチルフエ-ル )ョ一ドニゥムカンファースルホネート及びビス(4— tert—ブチルフエ-ル)ョード-ゥ ムトリフルォロメタンスルホネート等のョードニゥム塩系酸発生剤、トリフエ-ルスルホ -ゥムへキサフルォロアンチモネート、トリフエ-ルスルホ-ゥムノナフルォロノルマル ブタンスルホネート、トリフエ-ルスルホ -ゥムカンファースルホネート及びトリフエ-ル スルホ -ゥムトリフルォロメタンスルホネート等のスルホ -ゥム塩系酸発生剤、及び N (トリフルォロメタンスルホ -ルォキシ)スクシンイミド、 N— (ノナフルォロノルマルブ タンスルホ -ルォキシ)スクシンイミド、 N— (カンファースルホ -ルォキシ)スクシンイミ ド及び N— (トリフルォロメタンスルホ -ルォキシ)ナフタルイミド等のスルホンイミドィ匕 合物系酸発生剤を挙げることができる。酸ィ匕合物としては、スルホン酸ィ匕合物、ョード -ゥム塩系酸発生剤、スルホ -ゥム塩系酸発生剤またはスルホンイミドィ匕合物系酸発 生剤が好ましく使用される。酸ィ匕合物は一種のみを使用してもよぐまた二種以上を 組み合わせて使用することができる。例えば、酸化合物としてスルホン酸化合物のみ を使用できる。また、酸ィ匕合物として、スルホン酸ィ匕合物とョードニゥム塩系酸発生剤 を組み合わせて、またはスルホン酸ィ匕合物とスルホ -ゥム塩系酸発生剤を組み合わ せて、またはスルホン酸ィ匕合物とスルホンイミドィ匕合物系酸発生剤を組み合わせて使 用することができる。酸化合物又は酸発生剤の含有量としては固形分中で、例えば 0 . 1〜10質量%であり、または 0. 1〜5質量%である。
吸光性ィ匕合物としては、反射防止膜に用いる場合、その上に設けられるフォトレジ スト中の感光成分の感光特性波長領域における光に対して高い吸収能を有するで あれば特に制限なく使用することができる。吸光性ィ匕合物としては、例えば、ベンゾフ ェノン化合物、ベンゾトリアゾール化合物、ァゾ化合物、ナフタレン化合物、アントラセ ン化合物、アントラキノンィ匕合物、トリアジンィ匕合物、トリアジントリオンィ匕合物、キノリン 化合物などを使用することができる。ナフタレンィ匕合物、アントラセンィ匕合物、トリアジ ン化合物、トリアジントリオンィ匕合物が用いられる。具体例としては、例えば、 1—ナフ タレンカルボン酸、 2—ナフタレンカルボン酸、 1 ナフトール、 2—ナフトール、ナフ チル酢酸、 1—ヒドロキシ一 2 ナフタレンカルボン酸、 3 ヒドロキシ一 2 ナフタレン カルボン酸、 3, 7 ジヒドロキシー2 ナフタレンカルボン酸、 6 ブロモー 2 ヒドロ キシナフタレン、 2, 6 ナフタレンジカルボン酸、 9 アントラセンカルボン酸、 10— ブロモー 9 アントラセンカルボン酸、アントラセン 9, 10 ジカルボン酸、 1 アン トラセンカルボン酸、 1ーヒドロキシアントラセン、 1, 2, 3 アントラセントリオール、 9 ーヒドロキシメチルアントラセン、 2, 7, 9 アントラセントリオール、安息香酸、 4ーヒド ロキシ安息香酸、 4 ブロモ安息香酸、 3 ョード安息香酸、 2, 4, 6 トリブロモフエ ノーノレ、 2, 4, 6 トリブロモレ:/ノレシノーノレ、 3, 4, 5 トリョード安肩、香酸、 2, 4, 6 —トリョード—3 ァミノ安息香酸、 2, 4, 6 トリョード—3 ヒドロキシ安息香酸、及 び 2, 4, 6 トリブロモ—3 ヒドロキシ安息香酸等を挙げることができる。吸光性化合 物が使用される場合、その使用量としては、固形分中で、例えば 0. 1〜40質量%で ある。
[0013] レオロジー調整剤としては、例えば、ジメチルフタレート、ジェチルフタレート、ジイソ ブチルフタレート、ジへキシルフタレート、ブチルイソデシルフタレート等のフタル酸化 合物、ジノルマルブチルアジペート、ジイソブチルアジペート、ジイソオタチルアジべ ート、ォクチルデシルアジペート等のアジピン酸化合物、ジノルマルブチルマレート、 ジェチルマレート、ジノ -ルマレート等のマレイン酸化合物、メチルォレート、ブチル ォレート、テトラヒドロフルフリルォレート等のォレイン酸化合物、及びノルマルブチル ステアレート、グリセリルステアレート等のステアリン酸ィ匕合物を挙げることができる。レ ォロジ一調整剤が使用される場合、その使用量としては、固形分中で、例えば 0. 00 1〜10質量%である。
[0014] 界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシェチ レンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンォ レイルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンォ クチルフエノールエーテル、ポリオキシエチレンノニルフエノールエーテル等のポリオ キシエチレンアルキルァリルエーテル類、ポリオキシエチレン ·ポリオキシプロピレンブ ロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタン モノステアレート、ソルビタンモノォレエート、ソルビタントリオレエート、ソルビタントリス テアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレ ート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモ ノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソル ビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステル類等のノ-ォ ン系界面活性剤、商品名エフトップ EF301、 EF303、 EF352 ( (株)トーケムプロダク ッ製)、商品名メガファック F171、 F173、 R— 08、 R— 30 (大日本インキ化学工業( 株)製)、フロラード FC430、 FC431 (住友スリーェム (株)製)、商品名アサヒガード A G710,サーフロン S— 382、 SC101、 SC102、 SC103、 SC104、 SC105、 SC10 6 (旭硝子 (株)製)等のフッ素系界面活性剤、及びオルガノシロキサンポリマー KP34 1 (信越ィ匕学工業 (株)製)等を挙げることができる。これらの界面活性剤は単独で使 用してもよいし、また 2種以上の組み合わせで使用することもできる。界面活性剤が使 用される場合、その使用量としては、固形分中で、例えば 0. 0001〜5質量%である 以下、熱硬化膜を半導体装置の製造のリソグラフィー工程に用いる反射防止膜とし て説明する。
本願発明の測定方法が実施される測定装置は、ウェハー (基板)上の反射防止膜 をベータして発生する昇華物を覆い囲うことができるチャンバ一ユニット、その昇華物 を効率よく QCMセンサーに付着させるためのフローアタッチメント、気流の流れを作 りその流量をコントロールするためのポンプユニットから主に形成される。これら 3つの ユニットは気密状態で繋がっており、チャンバ一ユニットより発生した昇華物は、フロ 一アタッチメントを介して、ポンプユニットで吸引されて気流が順に流れる仕組みとな つている。フローアタッチメントは検出部分であり、水晶振動子に電極を付けた QCM センサーとその下部にあるノズルを含むユニットであり、ノズル力 昇華物を含む気流 がセンサーにあたり、昇華物はセンサー表面に付着し、気流はセンサーを越えてポ ンプユニットに流れる。
チャンバ一ユニットは、ホットプレートとその上力も気密性を持たせた囲!、との 2つ部 位から主に形成される。それらの部位は、 4インチ乃至 16インチのシリコンウェハー、 もしくは、塗膜基板から昇華物を発生させるのに適した形状に加工されている。チヤ ンバーユニットにあるホットプレートはウェハー上の熱硬化膜を 100〜400°Cの温度 に加温しそこ力 発生する昇華物の測定が行われ、 1回の測定の間はホットプレート で 100〜400°Cの間の任意に設定された一定温度に保たれる。このチャンバ一の囲 い部分 (捕集ロート)には、効率よく昇華物を捕集し、かつ、その表面に昇華物が付 着しにく 、ように表面積が小さ 、ものが好ま 、。このチャンバ一としては例えば三角 ロート状の形状物が考えられる。
チャンバ一ユニットおいて、測定する前に塗布基板をインストールする方法としては 、熱変化による温度ブレを抑えるために、スライド方式のインストール方法が好ましい 。つまり、チャンバ一の開閉は最小限に抑えることが好ましぐより好ましくは開閉がな いものが良い。例えば、予めインストール用のスライド口として、チャンバ一囲いとホッ トプレートにスリットを開けておき、そこ力も反射防止膜が被覆されたウェハーを導入 する方法が考えられる。
また、上記 3つのユニットは気密性を持たせることが重要である力 気流の流れをつ けるために、チャンバ一ユニットのホットプレートと囲い部分の間には気流を流入する ためのスリットを、インストール用のスライド口とは別に設ける必要がある。気流を発生 させる気体の流入のためのスリット(気体流入口)はホットプレート面から l〜5mm程 度、好ましくは 2mm程度の開口部を設けた設計である。流入して気流となる気体は、 例えば空気や不活性ガス(窒素、アルゴン、ヘリウム)が挙げられる力 空気が好まし い。
フローアタッチメント部分は、 QCMセンサー、昇華物をセンサーに直接的に付着す るためのノズル、それらを内包させて気密性を考慮した囲いから主に形成される。昇 華物は、チャンバ一ユニットからフローアタッチメントに流入してくるとき、ノズルを介し て QCMセンサーに吹き付ける流路に設計されており、ノズル以外の経路力 フロー アタッチメントに流入してくることはない。
[0017] 本願発明の装置は、高感度で測定が可能であることが特徴となる。本願発明の測 定方法による装置では、測定しょうとする反射防止膜 (測定物)が基準とする反射防 止膜 (対象物)に対して相対的な大小の差を重量で計測することが出来るので、測定 物のウェハーが 1枚でも材料間の差を確認することができる。このために必要なファタ ターとして、センサーにダイレクトに付着するためのノズル、もしくは、それに対応した センサーへの気流の絞り部位の存在が必須となってくる。ノズルに対する要求として
、ノズル口径がセンサー直径よりも小さぐノズルとセンサーの距離がセンサー直径よ りも短い距離という条件が必須となる。これらの条件を満たすことで、高感度の昇華物 量測定が可能となる。ここでセンサー直径とは水晶振動子の直径である。
水晶振動子の共振周波数は、大きいものほど分解能が高いが、ノイズが大きくなる ため、一般には 100Hz〜100MHz程度のものが好ましぐより好ましくは 1ΜΗζ〜3 OMHz程度のセンサーが好ましい。なお、この値は水晶片の厚みに対応し、厚みが 薄 、ものほど高 、共振周波数を持つ。その周波数変化が大き 、場合がセンサーとし ての分解能が高い。
[0018] 水晶振動子の電極サイズは、小さいものほど感度がよぐ大きいものほどノイズが少 ない。このため、一般的には 0. lmm〜100mm程度が知られており、本願発明の装 置では lmm〜10mm程度の電極サイズが好まし!/、。
また、電極材質は金、銅、銀、鉄、アルミ、チタン、クロム、アルミ銅の混合物、アルミ シリコンの混合物、ステンレス、亜鉛、タングステン、鉛、ステンレスなどの導電性の金 属、半導体、導電性高分子が挙げられる。本願発明の装置では、反射防止膜中の昇 華物がチャンバ一内に飛散してその落下物による異物発生という問題に昇華物の測 定と 、う方法で対応することを考え、従来法にはな 、リアルタイムでの昇華物量を正 確に定量することで反射防止膜形成組成物の改良や、熱硬化工程の温度管理を主 目的とする。従って、飛散した昇華物が付着する環境を予め形成することが、この測 定の趣旨にかなうため、チャンバ一の内壁又はウェハー上のスピンコート膜と同一材 料を、この水晶振動子の表面にコートすることで、問題となる昇華物の定量がより現 実的となる。また、水晶振動子の表面が、熱硬化膜を覆う囲いの表面材と同一の材 料又は該熱硬化膜を形成するコート材料で、例えばシリコンとアルミニウムを含有す る化合物で被覆されていることが好ましい。本願発明の装置では、電極部分が上記 に記載したような電極であっても、スピンコートによって電極の表面状態を改質するこ とが可能である。例えば、シリコンとアルミニウムを含有する化合物を電極に用いるこ とで、実機の天板と同じ材質にしたり、電極を変えなくても実機の天板と同じ材質を前 もって電極にコートしたりすることができる。
また、フローアタッチメント (検出部分)には、水晶振動子を振動させるための発信 機を導入しても良い。この発信機にはインバーター発信回路が内蔵されており、セン サ一から近!、距離での導入が好ましく、 3cm以下の距離に導入することがより好まし い。このため、設計上、フローアタッチメントの内部、もしくは、外部の近い部分への導 入が必要となるが、導入方法はどちらでも力まわない。
ポンプユニットは、気流を作るためのポンプと、気流の流量を制御するための流量コ ントローラーから形成される。ポンプで発生する気流は流量コントローラーによって流 量を制御した状態で、フローアタッチメントから気流が流入する。この際、流量コント口 一ラーはポンプが一体化して!/、ても良!、。
ポンプの吸引による気流は、その流量で 0. 01〜50m3/sで実施され、それらは流 量コントローラーによって 0. 01〜20. Om3Zs、より好ましくは 0. 1〜: LO. Om3Zsで 制御され、 1回の測定の間における流量は一定に制御される。
本願発明に用いる装置には昇華物が発生して効率良く捕集するための 3つのュ- ット以外に、周波数変化を確認するためのディスプレイが必要となる。ディスプレイに はリアルタイムで測定するために、データ処理をパソコン上で行う。そのため、バソコ ン用シリアルケーブルと専用のソフトが必要となる。これらの装置を付属することで連 続的なデータ解析が可能となり、非連続的なデータを比較しても誤差が少なくなる。 測定は、各ユニットを固定した状態で行う。このときにホットプレートとそれによつて 加熱されるチャンバ一ユニットとフローアタッチメントも一定温度にする必要がある。そ のためにホットプレートが指定の測定温度に達したあとに、流量をコンロトールするポ ンプも稼動して各ユニットの温度が一定ィ匕するまで安定ィ匕する必要があり、その変化 はパソコン上で連続的に見ることができるディスプレイによって確認が可能となる。 安定ィ匕後、測定するサンプルを塗布したウェハーをインストール時に温度変化が少 ないように装置に導入し、周波数変化をパソコン上で確認する。その際の温度、流量 は常に一定にし、所要の時間そのままの状態を維持する。
[0020] この測定装置を用いた実施例を以下に示す。
実施例
[0021] 実施例 1
直径 4インチのシリコンウェハー基板にスピンコーターにて、市販の反射防止膜形 成組成物を 2500rpm、 60秒間で塗布した。なお、その時の反射防止膜の膜厚は 78 nmであつ 7こ。
上記反射防止膜形成組成物 (半導体装置の製造のリソグラフィー工程に使用する 反射防止膜を形成するための組成物)は、ヒドロキシル基含有アクリル酸エステル系 のポリマー(重量平均分子量は 80000)、架橋性化合物(へキサメトキシメチルメラミ ン)、架橋触媒(P—トルエンスルホン酸)、溶媒(プロピレングリコールモノメチルエー テルアセテートと乳酸ェチル)からなり、その固形分は 4. 3質量%であった。
上記反射防止膜が塗膜されたウェハーを 205°Cに調整されたホットプレートが一体 化した昇華物測定装置にセットして、 120秒間ベータおよび昇華物を QCMセンサー に捕集し定量した。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を lm3/sに設定し、最初の 60 秒間はエージングのために放置する。その後直ちに、スライド口から速やかに反射防 止膜が被覆されたウェハーをホットプレートに乗せ (測定物をインストール)、 60秒の 時点から 180秒の時点(120秒間)の昇華物の捕集を行った。
また QCMセンサーと捕集ロート部分の接続となるフローアタッチメント (検出部分) には口径 2mmのノズルをつけ、センサーとノズルの距離は 0. 5mmを保っている。ま た、 QCMセンサーはシリコンとアルミニウムを含有する化合物による材質の電極を用 い、水晶振動子の直径 (センサー直径)が 14mm、水晶振動子表面の電極直径が 5 mm、共振周波数が 9MHzのものを用いた。
[0022] 実施例 2
直径 4インチのシリコンウェハー基板にスピンコーターにて、市販の反射防止膜形 成組成物を 2500rpm、 60秒間で塗布した。なお、その時の反射防止膜の膜厚は 35 nmであつ 7こ。
上記反射防止膜形成組成物 (半導体装置の製造のリソグラフィー工程に使用する 反射防止膜を形成するための組成物)は、ヒドロキシル基含有トリアジントリオン系の ポリマー(重量平均分子量は 10000)、架橋性化合物(へキサメトキシメチルメラミン) 、架橋触媒(P—トルエンスルホン酸)、溶媒(プロピレングリコールモノメチルエーテ ルとプロピレングリコールモノメチルエーテルアセテート)力 なり、その固形分は 1. 9 質量%であった。
上記反射防止膜が塗膜されたウェハーを 205°Cに調整されたホットプレートが一体 化した昇華物測定装置にセットして、 120秒間ベータおよび昇華物を QCMセンサー に捕集し定量した。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を lm3/sに設定し、最初の 60 秒間はエージングのために放置する。その後直ちに、スライド口から速やかに反射防 止膜が被覆されたウェハーをホットプレートに乗せ (測定物をインストール)、 60秒の 時点から 180秒の時点(120秒間)の昇華物の捕集を行った。
また QCMセンサーと捕集ロート部分の接続となるフローアタッチメント (検出部分) には口径 2mmのノズルをつけ、センサーとノズルの距離は 0. 5mmを保っている。ま た、 QCMセンサーはシリコンとアルミニウムを含有する化合物による材質の電極を用 い、水晶振動子の直径 (センサー直径)が 14mm、水晶振動子表面の電極直径が 5 mm、共振周波数が 9MHzのものを用いた。
比較例 1
直径 4インチのシリコンウェハー基板にスピンコーターにて、実施例 1で使用したも のと同じ反射防止膜形成組成物を 2500rpm、 60秒間で塗布した。反射防止膜が塗 膜されたウェハーを 205°Cに調整されたホットプレートが一体ィ匕した昇華物測定装置 にセットして、 120秒間ベータおよび昇華物を QCMセンサーに捕集する。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を Om3Zsに設定し (即ち、気流 の流れがない状態)、最初の 60秒間はエージングのために放置する。その後直ちに 、スライド口力 速やかに反射防止膜が被覆されたウェハーをホットプレートに乗せ( 測定物をインストール)、 60秒の時点から 180秒の時点(120秒間)の昇華物の捕集 を行った。
また、 QCMセンサーと捕集ロート部分の接続となるフローアタッチメント (検出部分) には口径 2mmのノズルをつけ、センサーとノズルの距離は 0. 5mmを保っている。ま た、 QCMセンサーはシリコンとアルミニウムを含有する化合物による材質の電極を用 い、水晶振動子の直径 (センサー直径)が 14mm、水晶振動子表面の電極直径が 5 mm、共振周波数が 9MHzのものを用いた。
[0024] 比較例 2
直径 4インチのシリコンウェハー基板にスピンコーターにて、実施例 1で使用したも のと同じ反射防止膜形成組成物を 2500rpm、 60秒間で塗布した。反射防止膜が塗 膜されたウェハーを 205°Cに調整されたホットプレートが一体ィ匕した昇華物測定装置 にセットして、 120秒間ベータおよび昇華物を QCMセンサーに捕集した。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を lm3/sに設定し、最初の 60 秒間はエージングのために放置する。その後直ちに、スライド口から速やかに反射防 止膜が被覆されたウェハーをホットプレートに乗せ (測定物をインストール)、 60秒の 時点から 180秒の時点(120秒間)の昇華物の捕集を行った。
また、フローアタッチメント(検出部分)には口径 20mmのノズルをつけ、センサーと ノズルの距離は 0. 5mmを保っている。また、 QCMセンサーはシリコンとアルミニウム を含有する化合物による材質の電極を用い、水晶振動子の直径 (センサー直径)が 1 4mm、水晶振動子表面の電極直径が 5mm、共振周波数が 9MHzのものを用いた。
[0025] 比較例 3
直径 4インチのシリコンウェハー基板にスピンコーターにて、実施例 1と使用したもの と同じ反射防止膜形成組成物を 2500rpm、 60秒間で塗布した。反射防止膜が塗膜 されたウェハーを 205°Cに調整されたホットプレートが一体ィ匕した昇華物測定装置に セットして、 120秒間ベータおよび昇華物を QCMセンサーに捕集する。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を lm3/sに設定し、最初の 60 秒間はエージングのために放置する。その後直ちに、スライド口から速やかに反射防 止膜が被覆されたウェハーをホットプレートに乗せ (測定物をインストール)、 60秒の 時点から 180秒の時点(120秒間)の昇華物の捕集を行った。
また、フローアタッチメント(検出部分)にはノズルをつけず、そのため口径が 32mm になり、センサーとの距離が 30mmのチャンバ一ユニットとの流路力 気流が絞られ ることなく流入する。また、 QCMセンサーはアルミシリコン材質の電極を用い、水晶 振動子の直径 (センサー直径)が 14mm、水晶振動子表面の電極直径が 5mm、共 振周波数が 9MHzのものを用いた。
[0026] 比較例 4
直径 4インチのシリコンウェハー基板にスピンコーターにて、実施例 2で使用したも のと同じ反射防止膜形成組成物を 2500rpm、 60秒間で塗布した。反射防止膜が塗 膜されたウェハーを 205°Cに調整されたホットプレートが一体ィ匕した昇華物測定装置 にセットして、 120秒間ベータおよび昇華物を QCMセンサーに捕集する。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を 0m3Zsに設定し (即ち、気流 の流れがない状態)、最初の 60秒間はエージングのために放置する。その後直ちに 、スライド口力 速やかに反射防止膜が被覆されたウェハーをホットプレートに乗せ( 測定物をインストール)、 60秒の時点から 180秒の時点(120秒間)の昇華物の捕集 を行った。
また、 QCMセンサーと捕集ロート部分の接続となるフローアタッチメント (検出部分) には口径 2mmのノズルをつけ、センサーとノズルの距離は 0. 5mmを保っている。ま た、 QCMセンサーはシリコンとアルミニウムを含有する化合物による材質の電極を用 い、水晶振動子の直径 (センサー直径)が 14mm、水晶振動子表面の電極直径が 5 mm、共振周波数が 9MHzのものを用いた。
[0027] 比較例 5
直径 4インチのシリコンウェハー基板にスピンコーターにて、実施例 2で使用したも のと同じ反射防止膜形成組成物を 2500rpm、 60秒間で塗布した。反射防止膜が塗 膜されたウェハーを 205°Cに調整されたホットプレートが一体ィ匕した昇華物測定装置 にセットして、 120秒間ベータおよび昇華物を QCMセンサーに捕集した。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を lm3/sに設定し、最初の 60 秒間はエージングのために放置する。その後直ちに、スライド口から速やかに反射防 止膜が被覆されたウェハーをホットプレートに乗せ (測定物をインストール)、 60秒の 時点から 180秒の時点(120秒間)の昇華物の捕集を行った。
また、フローアタッチメント(検出部分)には口径 20mmのノズルをつけ、センサーと ノズルの距離は 0. 5mmを保っている。また、 QCMセンサーはシリコンとアルミニウム を含有する化合物による材質の電極を用い、水晶振動子の直径 (センサー直径)が 1 4mm、水晶振動子表面の電極直径が 5mm、共振周波数が 9MHzのものを用いた。
[0028] 比較例 6
直径 4インチのシリコンウェハー基板にスピンコーターにて、実施例 2と使用したも のと同じ反射防止膜形成組成物を 2500rpm、 60秒間で塗布した。反射防止膜が塗 膜されたウェハーを 205°Cに調整されたホットプレートが一体ィ匕した昇華物測定装置 にセットして、 120秒間ベータおよび昇華物を QCMセンサーに捕集する。
測定はホットプレートを 205°Cに昇温し、ポンプ流量を lm3/sに設定し、最初の 60 秒間はエージングのために放置する。その後直ちに、スライド口から速やかに反射防 止膜が被覆されたウェハーをホットプレートに乗せ (測定物をインストール)、 60秒の 時点から 180秒の時点(120秒間)の昇華物の捕集を行った。
また、フローアタッチメント(検出部分)にはノズルをつけず、そのため口径が 32mm になり、センサーとの距離が 30mmのチャンバ一ユニットとの流路力 気流が絞られ ることなく流入する。また、 QCMセンサーはアルミシリコン材質の電極を用い、水晶 振動子の直径 (センサー直径)が 14mm、水晶振動子表面の電極直径が 5mm、共 振周波数が 9MHzのものを用いた。
[0029] 実施例 1及び 2、並びに比較例 1ないし 6の各測定において、 QCMセンサーはリア ルタイムで昇華物測定できるように、ノ ソコンにデータを直接取り込めるようにシリア ルケ一ブルからの接続と専用ソフトのインストールを行った。
得られた周波数変化は、測定に使用した水晶振動子の固有値力 グラム換算して 、反射防止膜が塗布されたウェハー 1枚の昇華物量と時間経過のグラフを記載した。 表 1、 2には、実施例 1、 2及び比較例 1〜6における 0秒から 180秒までの測定装置 が示す昇華物量 (単位は ng :ナノグラム)を記載した。即ち、 0秒の時点から 60秒の 時点までのエージング時間(放置時間)と、 60秒の時点から 180秒の時点までの昇 華物測定値を示した。
また、図 5〜図 12は、実施例 1、 2及び比較例 1〜6について上記経過時間と昇華 物量をグラフにした。
[表 1]
表 1 測定装置が示す昇華物量 (n g 経過時間 (秒) 実施例 1 比較例 1 比較例 2 比較例 3
0秒時点 4 5 一 6 1 2 1
3 0秒時点 1 1 5 一 2 一 2
6 0秒時点 1 0 2 1 4 7 6 3 1
9 0秒時点 5 9 4 2 1 1 1 1 1 5
1 2 0秒時点 7 0 8 2 6 1 1 2 2
1 5 0秒時点 7 4 8 3 1 1 4 1 2 8
1 8 0秒時点 8 1 7 3 4 1 4 6 2 4
[表 2] 表 2 測定装置が示す昇華物量 (n g) 経過時間 (秒) 実施例 2 比較例 4 比較例 5 比較例 6
0秒時点 5 6 一 2 3
3 0秒時点 - 1 9 1 3 一 5 - 1 5
6 0秒時点 2 0 9 1 8 4 9 一 3 0
9 0秒時点 4 6 8 2 2 3 6 1
1 2 0秒時点 5 3 4 2 6 4 9 1 4
1 5 0秒時点 5 8 7 2 9 5 2 9
1 8 0秒時点 6 3 0 3 1 6 1 9 表 1、 2及びそれに対応する図面において、 0秒時点〜 60秒時点での測定装置が 昇華物を測定して 、な 、状態での、測定装置の安定状態を示すために測定装置が 示す昇華物量をそのまま記載したものであり、マイナスを示す値もそのまま読み取つ た。 実施例 1、 2の方法では最初のエージング時間(放置時間)は、測定装置の示す値 が安定していて、その後の昇華物の付着量が測定時間と共に増えていく状況が観測 できた。
実施例 1と実施例 2を比較すると、相対的に昇華物量の大小を対比できる。このよう に、被測定物をウェハー上に被覆し、本願発明による測定装置を同一条件で測定す ることにより被測定物間の昇華物量の大小を相対的に判別できる。つまり、上記実施 例 1と実施例 2とを対比すると、実施例 2で用いた反射防止膜材料組成物の方が昇 華物量がより抑えられていることが判る。また、相対比較の際、被測定物を形成する 組成物の固形分と被測定物のウェハー上の膜厚とを考慮に入れると更に正確な対 比が可能となった。
一方、比較例 1〜3は測定物が実施例 1と同じ、比較例 4〜6は測定物が実施例 2と 同じであるにもかかわらず、比較例 1と 4、比較例 2と 5、比較例 3と 6との間での昇華 物量の違いが、実施例 1と実施例 2との間の昇華物量の違いほど明確ではなぐまた 測定時間毎の値の変化が少なぐ経過時間による昇華物量の変化の判断が難しか つた o
産業上の利用可能性
熱硬化膜、例えば反射防止膜形成組成物やレジスト膜形成組成物を、熱硬化させ る時に発生する昇華成分の有無、又はその量を検知し、昇華物が発生しないか又は 昇華物の発生量の少ない反射防止膜形成組成物やレジスト膜形成組成物の開発に 役立つ。
更には加熱時間の経過と共に発生する量を感知することにより、反射防止膜形成 組成物やレジスト膜形成組成物をコートして、それらを加熱による熱硬化させる時に 昇華物の発生し難!ヽ昇温工程を検討する事に役立つ。

Claims

請求の範囲
[I] 加熱中の熱硬化膜からの昇華物を、検出部分に組み込まれたノズルによって水晶振 動子の表面に付着させ、該水晶振動子への昇華物の付着量に応じた共振周波数の 変化から、昇華物量を加熱時間の経過と共にリアルタイムで測定する方法。
[2] 熱硬化膜がシリコンウェハー上に形成され、シリコンウェハー下部の熱源により加熱 された状態で測定を行う請求項 1に記載の方法。
[3] 昇華物が、熱硬化膜を覆う囲いの上部に向かって気流と共に流れ、その気流の過程 に設置された検出部分に組み込まれたノズルによって水晶振動子に直接気流が接 触するよう設定された請求項 1又は請求項 2に記載の方法。
[4] 気流がポンプの吸引によって生じ、その流量が 0. 01-20. Om3Zsである請求項 1 乃至請求項 3の 、ずれか 1項に記載の方法。
[5] 検出部分に組み込まれたノズルは、ノズル口径がセンサー直径よりも小さぐノズルと センサーの距離がセンサー直径よりも短い距離に設置されている請求項 1乃至請求 項 4の 、ずれか 1項に記載の方法。
[6] 熱源がホットプレートにより 100〜400°Cの温度にコントロールされたものである請求 項 1乃至請求項 5のいずれか 1項に記載の方法。
[7] 水晶振動子の表面が、熱硬化膜を覆う囲いの表面材と同一の材料又は該熱硬化膜 を形成するコート材料で被覆されて 、るものである請求項 1乃至請求項 6の 、ずれか
1項に記載の方法。
[8] 水晶振動子の表面の被覆物が、シリコンとアルミニウムを含有する化合物である請求 項 7に記載の方法。
[9] 水晶振動子の共振周波数が 100Hz〜100MHzの範囲で使用される請求項 1乃至 請求項 8の 、ずれか 1項に記載の方法。
[10] 熱硬化膜が、半導体装置を製造するリソグラフィー工程で使用されるフォトレジストの 下層に用いられる反射防止膜である請求項 1乃至請求項 9のいずれか 1項に記載の 方法。
[II] 請求項 1乃至請求項 10のいずれか 1項に記載の方法を利用した熱硬化膜からの昇 華物を測定する装置。
PCT/JP2007/055240 2006-03-27 2007-03-15 Qcmセンサーを用いる熱硬化膜中の昇華物の測定方法 WO2007111147A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087026084A KR101276028B1 (ko) 2006-03-27 2007-03-15 Qcm 센서를 이용한 열경화막중의 승화물의 측정 방법
JP2008507430A JP4766284B2 (ja) 2006-03-27 2007-03-15 Qcmセンサーを用いる熱硬化膜中の昇華物の測定方法
US12/225,474 US7861590B2 (en) 2006-03-27 2007-03-15 Method of determining sublimate in thermoset film with QCM sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006085602 2006-03-27
JP2006-085602 2006-03-27

Publications (1)

Publication Number Publication Date
WO2007111147A1 true WO2007111147A1 (ja) 2007-10-04

Family

ID=38541068

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/055240 WO2007111147A1 (ja) 2006-03-27 2007-03-15 Qcmセンサーを用いる熱硬化膜中の昇華物の測定方法

Country Status (5)

Country Link
US (1) US7861590B2 (ja)
JP (1) JP4766284B2 (ja)
KR (1) KR101276028B1 (ja)
TW (1) TWI429911B (ja)
WO (1) WO2007111147A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175436A (ja) * 2008-01-24 2009-08-06 Nissan Chem Ind Ltd バリア性を示すレジスト下層膜の形成用組成物及びレジスト下層膜のバリア性評価方法
JP2014512005A (ja) * 2011-04-07 2014-05-19 メトリックス・リミテッド 測定装置及び方法
JP2019535018A (ja) * 2016-10-12 2019-12-05 レイセオン カンパニー 圧電性水晶マイクロバランス純度モニタ
WO2020169493A1 (en) 2019-02-19 2020-08-27 Merck Patent Gmbh Polymer, semiconductor composition comprising polymer, and method for manufacturing film using semiconductor composition
US10844167B2 (en) 2016-03-09 2020-11-24 Nissan Chemical Industries, Ltd. Composition for forming resist underlayer film and method for forming resist pattern using same
WO2023048296A1 (ja) 2021-09-27 2023-03-30 日産化学株式会社 Qcmセンサーによる付着物の物理量変化の測定方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102185315B1 (ko) * 2016-12-09 2020-12-01 어플라이드 머티어리얼스, 인코포레이티드 포어라인 고체 형성 정량화를 위한 수정 진동자 마이크로밸런스 활용
IL310263A (en) * 2021-07-19 2024-03-01 Inficon Inc A quartz crystal microbalance (QCM) with fast response recording
WO2023172320A2 (en) * 2021-12-17 2023-09-14 Washington University Quartz crystal microbalance impactor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688795A (ja) * 1992-09-07 1994-03-29 Kawasaki Steel Corp 熱硬化性樹脂含有材料の加熱パターン決定方法
JPH0885721A (ja) * 1994-09-19 1996-04-02 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びこれを用いた電気機器用コイル
JPH1050673A (ja) * 1996-08-02 1998-02-20 Matsushita Electron Corp プラズマエッチングモニター装置及びその方法
JP2002048781A (ja) * 2000-07-31 2002-02-15 Akebono Brake Res & Dev Center Ltd 摩擦材の熱成形中に発生するアンモニアガスの計測方法
JP2005084621A (ja) * 2003-09-11 2005-03-31 Jsr Corp 反射防止膜形成組成物及び反射防止膜の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3146069B2 (ja) 1992-07-01 2001-03-12 忠正 芥川 濃度センサー
US6492601B1 (en) * 1999-11-01 2002-12-10 The Johns Hopkins University Self-monitoring controller for quartz crystal Microbalance sensors
US6500547B1 (en) * 2000-03-06 2002-12-31 General Electric Company Coating materials for sensors and monitoring systems, methods for detecting using sensors and monitoring systems
JP2004177258A (ja) 2002-11-27 2004-06-24 Kanagawa Prefecture 検出センサー
JP2004184256A (ja) * 2002-12-04 2004-07-02 Citizen Watch Co Ltd Qcmセンサー装置および物質の測定方法
JP4213061B2 (ja) * 2003-03-28 2009-01-21 シチズンホールディングス株式会社 Qcmセンサーおよびqcmセンサー装置
EP1649076B1 (en) * 2003-06-27 2010-05-19 Sundew Technologies, LLC Apparatus and method for chemical source vapor pressure control
JP4579514B2 (ja) * 2003-07-28 2010-11-10 古河電池株式会社 鉛蓄電池用格子基板の製造方法
JP4939850B2 (ja) * 2006-06-16 2012-05-30 株式会社東芝 基板処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688795A (ja) * 1992-09-07 1994-03-29 Kawasaki Steel Corp 熱硬化性樹脂含有材料の加熱パターン決定方法
JPH0885721A (ja) * 1994-09-19 1996-04-02 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びこれを用いた電気機器用コイル
JPH1050673A (ja) * 1996-08-02 1998-02-20 Matsushita Electron Corp プラズマエッチングモニター装置及びその方法
JP2002048781A (ja) * 2000-07-31 2002-02-15 Akebono Brake Res & Dev Center Ltd 摩擦材の熱成形中に発生するアンモニアガスの計測方法
JP2005084621A (ja) * 2003-09-11 2005-03-31 Jsr Corp 反射防止膜形成組成物及び反射防止膜の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175436A (ja) * 2008-01-24 2009-08-06 Nissan Chem Ind Ltd バリア性を示すレジスト下層膜の形成用組成物及びレジスト下層膜のバリア性評価方法
JP2014512005A (ja) * 2011-04-07 2014-05-19 メトリックス・リミテッド 測定装置及び方法
US10844167B2 (en) 2016-03-09 2020-11-24 Nissan Chemical Industries, Ltd. Composition for forming resist underlayer film and method for forming resist pattern using same
US11542366B2 (en) 2016-03-09 2023-01-03 Nissan Chemical Industries, Ltd. Composition for forming resist underlayer film and method for forming resist pattern using same
JP2019535018A (ja) * 2016-10-12 2019-12-05 レイセオン カンパニー 圧電性水晶マイクロバランス純度モニタ
WO2020169493A1 (en) 2019-02-19 2020-08-27 Merck Patent Gmbh Polymer, semiconductor composition comprising polymer, and method for manufacturing film using semiconductor composition
KR20210132118A (ko) 2019-02-19 2021-11-03 메르크 파텐트 게엠베하 중합체, 중합체를 포함하는 반도체 조성물 및 반도체 조성물을 사용하는 막의 제조방법
WO2023048296A1 (ja) 2021-09-27 2023-03-30 日産化学株式会社 Qcmセンサーによる付着物の物理量変化の測定方法

Also Published As

Publication number Publication date
US7861590B2 (en) 2011-01-04
JP4766284B2 (ja) 2011-09-07
TW200804813A (en) 2008-01-16
KR101276028B1 (ko) 2013-06-19
TWI429911B (zh) 2014-03-11
KR20090009827A (ko) 2009-01-23
US20090217759A1 (en) 2009-09-03
JPWO2007111147A1 (ja) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2007111147A1 (ja) Qcmセンサーを用いる熱硬化膜中の昇華物の測定方法
EP1703328B1 (en) Composition for forming nitride coating film for hard mask
TWI570515B (zh) 具有縮合系聚合物之euv微影用光阻下層膜形成組成物
JP6191831B2 (ja) レジスト下層膜形成組成物
JP4702559B2 (ja) 縮合系ポリマーを有する半導体用反射防止膜
JP6199811B2 (ja) ポジ型感光性樹脂組成物、光硬化性ドライフィルム並びにその製造方法、積層体、及びパターン形成方法
US10191374B2 (en) Resist underlayer film-forming composition
KR20180070561A (ko) 장쇄 알킬기함유 노볼락을 포함하는 레지스트 하층막 형성 조성물
WO2008075495A1 (ja) 絶縁膜形成用感光性樹脂組成物及びその硬化膜並びにそれを備える電子部品
TW202003626A (zh) 利用碳氧間雙鍵的阻劑底層膜形成組成物
CN108713164B (zh) 抗蚀剂下层膜形成用组合物及使用了该组合物的抗蚀剂图案的形成方法
JP2014137546A (ja) レジスト下層膜形成組成物
Hirayama et al. Depth profile and line-edge roughness of low-molecular-weight amorphous electron beam resists
WO2018012253A1 (ja) ヒダントイン環を有する化合物を含むレジスト下層膜形成組成物
WO2017199768A1 (ja) レジスト下層膜形成組成物
Kojima et al. Negative-tone polyphenol resist using intramolecular-esterification reaction for sub-50 nm lithography
JP7056320B2 (ja) 感光性樹脂組成物、樹脂膜及び電子装置
Hirayama et al. Development of electron beam resists based on amorphous polyphenols with low molecular weight and narrow dispersion
WO2022050405A1 (ja) ウェハー処理方法
JP7434853B2 (ja) 架橋剤、感光性樹脂組成物、硬化膜、および電子装置
KR102661881B1 (ko) 감광성 폴리이미드 조성물 및 이를 포함하는 전자 소자
WO2022215403A1 (ja) 感光性樹脂組成物、感光性樹脂皮膜、感光性ドライフィルム及びパターン形成方法
WO2023068177A1 (ja) 感光性樹脂組成物、感光性樹脂皮膜、感光性ドライフィルム及びパターン形成方法
Vanclooster et al. Enabling Low Temperature Cure Dielectrics for Advanced Wafer‐Level Packaging
CN114326301A (zh) 聚酰亚胺正型光阻组成物及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738690

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008507430

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12225474

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087026084

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 07738690

Country of ref document: EP

Kind code of ref document: A1