WO2007108327A1 - 有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2007108327A1
WO2007108327A1 PCT/JP2007/054540 JP2007054540W WO2007108327A1 WO 2007108327 A1 WO2007108327 A1 WO 2007108327A1 JP 2007054540 W JP2007054540 W JP 2007054540W WO 2007108327 A1 WO2007108327 A1 WO 2007108327A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
general formula
compound
layer
Prior art date
Application number
PCT/JP2007/054540
Other languages
English (en)
French (fr)
Inventor
Noriko Yasukawa
Eisaku Katoh
Shinya Otsu
Yoshiyuki Suzuri
Shuichi Sugita
Hiroshi Kita
Aki Nakata
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008506230A priority Critical patent/JP5556012B2/ja
Publication of WO2007108327A1 publication Critical patent/WO2007108327A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers

Definitions

  • Organic electoluminescence device display device and lighting device
  • the present invention relates to an organic electroluminescent mouth luminescence element, and a display device and an illumination device using the organic electroluminescent mouth luminescence element.
  • ELD electoric luminescence display
  • ELD constituent elements include inorganic electoluminescence elements and organic electroluminescence elements (hereinafter also referred to as organic EL elements).
  • Inorganic electoric luminescence elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic EL element has a structure in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode.
  • excitons This is a device that emits light by utilizing the emission of light (fluorescence and phosphorescence) when this exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts.
  • it is a self-luminous type, it has a wide viewing angle, and since it is a thin-film type complete solid-state device with high visibility, it attracts attention from the viewpoints of space saving and portability.
  • a technique for doping a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative with a trace amount of a phosphor to improve emission luminance and extend the lifetime of a device for example, Patent Document 4 (See, for example, Patent Document 5), and 8-hydroxyquinoline aluminum complex as a host compound, and a 8-phosphoquinoline aluminum complex as a host compound.
  • a compound an element having an organic light emitting layer doped with a quinatalidone dye (for example, see Patent Document 6) is known.
  • Non-Patent Document 4 Since the upper limit of the internal quantum efficiency is 100% when the 0 excited triplet is used, in principle, the luminous efficiency is doubled compared to the excited singlet. It has attracted attention because it has almost the same performance as a cold cathode tube and can be applied to lighting. For example, many compounds have been made synthetic consider mainly heavy metal complexes such as iridium complexes (e.g., Non-Patent Document 5 reference.) 0
  • iridium-based metal complexes such as tris (2-phenylpyridine) iridium (Ir (ppy)), (ppy) Ir (acac), Tris (2— (p—Tolyl) pyridine) Iridium (Ir (ptpy)), Tris
  • Fir (pic) a typical phosphorescent blue dopant, achieves shorter wavelengths by substituting fluorine for the main ligand, pyrrolidine, and using picolinic acid as a secondary ligand.
  • the emission wavelength can be shortened by introducing a birazol ball-based ligand (see, for example, Patent Document 1 and Non-Patent Documents 1 and 2). ;).
  • These dopants have achieved high-efficiency devices by combining force rubazole derivatives and triarylsilanes as host compounds, but the light emission lifetime of the devices is greatly deteriorated, so an improvement in the trade-off is required. It was done.
  • Each of the blue dopants is a low ⁇ type compound having the highest occupied orbital (hereinafter abbreviated as HOMO) level of the dopant material and the lowest unoccupied orbital (hereinafter abbreviated as LUMO) level of the dopant material. is there.
  • HOMO highest occupied orbital
  • LUMO lowest unoccupied orbital
  • the values of the HOMO and LUMO levels are both lower by about leV.
  • compounds with low levels of HOMO and LUMO levels are known to have HOMO, LU
  • blue dopants with high HOMO and LUMO levels have been reported (see, for example, Patent Documents 2 and 3), but they have been used in combination with conventionally known HOMO—host compounds with high LUMO levels.
  • Patent Documents 2 and 3 blue dopants with high HOMO and LUMO levels have been reported (see, for example, Patent Documents 2 and 3), but they have been used in combination with conventionally known HOMO—host compounds with high LUMO levels.
  • the light emission lifetime of these elements is still not satisfactory, and improvement is required.
  • Patent Document 3 Studies using iridium complexes using enylvirazole as a ligand have been conducted (for example, see Patent Document 3).
  • Patent Document 1 Pamphlet of International Publication No. 02Z15645
  • Patent Document 2 US Patent Application Publication No. 2004Z0048101
  • Patent Document 3 International Publication No. 04Z085450 Pamphlet
  • Patent Document 4 Japanese Patent No. 3093796
  • Patent Document 5 Japanese Patent Laid-Open No. 63-264692
  • Patent Document 6 JP-A-3-255190
  • Non-Patent Document 1 C. Adachi et al., Applied Physics Letters, 79th, No. 13, pp. 2082-2084 (2003)
  • Non-Patent Document 2 R. J. Holmes et al., Applied Physics Letters, 83rd, No. 18, pages 3818-3820 (2003)
  • Non-Patent Document 3 M. A. Baldo et al., Nature, 395 ⁇ , 151—154 (1998)
  • Non-Patent Document 4 MA Baldo et al., Nature, 403 ⁇ , No. 17, 750-753 (the year of 2000)
  • Non-Patent Document 5 S. Lamansky et al., J. Am. Chem. Soc., 123 ⁇ , 4304 (2001)
  • Non-Patent Document 6 ME Tompson et al., The 10th International Works Hopon Inorganic and Organic Electroluminescence (EL '00, Hamamatsu)
  • Non-Patent Document 7 Moon— Jae Youn. Og, Tetsuo Tsutsui et al., The 10th International Workshop on Inorganic and Organic Electroluminescen ce (EL, 00, Hamamatsu)
  • a first object of the present invention is to provide a blue phosphorescent organic-electric-luminescence element having a long lifetime, and a display device and an illumination device using the element.
  • a second object of the present invention is to provide a long-life organic-electric-luminescence element, and an illumination device and a display device using the same.
  • the first object of the present invention is achieved by the following configurations 1 to 6 and 13 to 17, and the second object is achieved by the following configurations 7 to 17.
  • An organic electoluminescence having an electrode and at least one organic layer on a substrate, wherein at least one of the organic layers is a light emitting layer containing a host compound and a phosphorescent compound.
  • HOMO of the host compound is ⁇ 5.42 to 1.50 eV
  • LUMO is —1.20 to +0. OOeV
  • HOMO of the phosphorescent compound is ⁇ 5.15 to 1.3. 50eV
  • LUM O is 1.25 to + 1. OOeV
  • HOMO of the phosphorescent compound is ⁇ 4.80 to 1.
  • LUMO is ⁇ 0.80 to
  • R represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • nl represents an integer of 0 to 5.
  • B to B are carbon atom, nitrogen atom, oxygen atom or sulfur
  • ml represents an integer of 1, 2, or 3
  • M2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3.
  • an organic electoluminescence device having an electrode and at least one organic layer on a substrate, at least one of the organic layers contains a phosphorescent compound and a hole transporting host compound.
  • the phosphorescent compound has a HOMO of ⁇ 5.15 to 3.50 eV and a LUMO of 1.25 to +1 OOeV, and the hole transporting host compound Excited triplet energy T1 of 2.7 eV or more is an organic electoluminescence device.
  • R represents a substituent.
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • nl represents an integer of 0 to 5.
  • B to B are carbon atom, nitrogen atom, oxygen atom or sulfur
  • X and X represent a carbon atom, a nitrogen atom or an oxygen atom, and L is
  • X and X represent a group of atoms that form a bidentate ligand.
  • ml is 1, 2, or 3
  • R, R and R each represents a substituent.
  • Z is a non-metallic element necessary to form a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is group 8 to group 10 gold in the periodic table
  • ml represents an integer of 1, 2, or 3
  • m2 is a force representing an integer of 0, 1 or 2 ml + m2 is 2 or 3. ]
  • R represents a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less.
  • R is a substituent
  • n5 represents an integer of 0 to 4.
  • * indicates a bonding position.
  • a display device comprising the organic electoluminescence device according to any one of 1 to 15 above.
  • a display device comprising the lighting device according to 17 and a liquid crystal element as a display means.
  • the present invention it is possible to provide a long-life blue phosphorescent organic electoluminescence element, a display device using the element, and an illumination device.
  • an organic-electric-mouth luminescence element having a long lifetime and an illumination device and a display device using the same can be provided.
  • FIG. 1 is a diagram showing a basic layer structure of the present invention.
  • FIG. 2 is a schematic view showing an example of a display device constituted by an organic EL element cover.
  • FIG. 3 is a schematic diagram of a display unit.
  • FIG. 4 is a schematic diagram of a pixel.
  • FIG. 5 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 6 is a schematic view of a lighting device.
  • FIG. 7 is a cross-sectional view of the lighting device.
  • HOMO—A phosphorescent compound represented by the general formula (1) having a low LUMO level is used as a dopant, and a conventionally known HOMO—LUMO level has a high!
  • a host compound When used as a host compound, holes injected into the light emitting layer are directly injected into the phosphorescent compound without passing through the host compound.
  • electrons are generally injected slowly into the light-emitting layer, dopant cation radicals accumulate in the light-emitting layer, which adversely affects the light-emitting layer and promotes deterioration of the driving life! it is conceivable that.
  • the HOMO level of the host compound is the HOMO of the dopant. Due to the reasonably close to the level, the accumulation of holes in the dopant is suppressed, and the LUMO level of the host compound is also reasonably close to the LUMO level of the host compound, thus preventing the charge from accumulating in the dopant. It is considered that.
  • the values of HOMO and LUMO are calculated by molecular orbital calculation made by Gaussian, USA. Calculated using the Gaussian98 software (Gaussian98, Revision A. 11.4, MJ Frisch, et al., Gaussian, Inc., Pittsburgh PA, 2002.)
  • HOMO and LUMO values are defined as values calculated by structural optimization using B3LYP / 6—31G * as a keyword (eV unit conversion value), and the HOMO of the phosphorescent compound in the present invention is defined as
  • the value of LUMO is defined as the value (eV unit conversion value) calculated by structural optimization using B3LYPZLanL2DZ as a keyword. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • “low HOMO level” means that the absolute value of the HOMO level is small.
  • the HOMO levels of Compound A and Compound B are 5.45 eV and 5.3, respectively.
  • “L UMO level is low” means that the absolute value of LUMO level is small. For example, when the LUMO level of Compound A and Compound B is ⁇ 1.12eV and ⁇ 0.88eV, respectively. Compound B has a lower LUMO level than Compound A!
  • the light emitting layer contains a host compound and a phosphorescent compound.
  • the mixing ratio of the phosphorescent compound to the host compound as the main component in the light emitting layer is preferably adjusted to a range of 0.1 to less than 30% by mass.
  • an organic electoluminescence device (hereinafter also referred to as an organic EL device)
  • at least one of the organic layers is a phosphorescent compound and a hole transporter.
  • a light emitting layer containing a light-transmitting host compound, wherein the phosphorescent compound has a HOMO of ⁇ 5.51 to 3.50 eV and a LUMO of ⁇ 1.25 to + 1. OOeV, and the hole transport By adopting a configuration in which the excited triplet energy T1 of the organic host compound is 2.7 eV or more, a long-life organic EL device could be obtained.
  • a lighting device and a display device could be obtained using the organic EL element.
  • the values of HOMO and LUMO are Gaussian98 (Gaussian98, Revision A. 11.4, Gaussian98, software for molecular orbital calculation manufactured by Gaussian, Inc., USA). MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.)) and calculated by structural optimization using B3LYPZLanL2DZ as a keyword (eV unit conversion value) ).
  • the reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • a hole transporting host compound (hereinafter also referred to as a host compound) has a hole mobility.
  • h is the host compound that becomes e.
  • the hole mobility and electron mobility are as follows according to the time-of-flight (T.O.F) method.
  • TOF-301 manufactured by OPTEL can be used for the measurement, and a sheet-like carrier generated by a pulse wave irradiated from the ITO side to a sample sandwiching a thin film of a host between an ITO translucent electrode and a metal electrode.
  • the hole mobility and electron mobility can be obtained from the transient current characteristics.
  • the excited triplet energy level (T1) value is defined by the following equation.
  • X represents excited triplet energy (eV)
  • Y represents 0-0 band (nm) of phosphorescence.
  • the 0-0 band (nm) of phosphorous light can be obtained as follows.
  • any compound that cannot dissolve in the solvent system and can dissolve the compound may be used (substantially the phosphorescence wavelength of the measurement method is not limited). There is no problem because the solvent effect is negligible).
  • the maximum emission wavelength that appears on the shortest wavelength side in the phosphor spectrum chart obtained by the above-described measurement method is 0-0 band.
  • the intensity of the phosphorescence spectrum is usually low, it may be difficult to distinguish noise and peaks when enlarged.
  • the steady-state light spectrum is expanded and overlapped with the emission spectrum 100 ms after irradiation with excitation light (for convenience, this is called the phosphorescence spectrum). It can be determined by reading.
  • the smoothing process a smoothing method such as Savitzky & Golay can be applied.
  • the phosphorescence quantum yield is 0.001 or more at 25 ° C. Has a phosphorescence quantum yield of 0.01 or more, particularly preferably 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 398 (1992 edition, Maruzen).
  • the phosphorescence quantum yield in a solution can be measured using various solvents, but it is sufficient that the above phosphorescence quantum yield is achieved in any solvent.
  • the phosphorescent compound represented by the general formula (1) has a HOMO of 5.15 to 1.35 eV, a LUM O force S—1.25 to + 1.OOeV.
  • LU MO is 0.80 ⁇ + 1. OOeV.
  • examples of the substituent represented by R include
  • an alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.
  • cyclo Alkyl groups eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl groups eg, butyl group, allyl group, etc.
  • alkynyl groups eg, ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring groups aromatic Also referred to as a group carbocyclic group, aryl group, etc., for example, a phenyl group, a p-chlorophenyl group, a mesityl group, a tolyl group, Xyl group
  • Z represents a nonmetallic atom group necessary for forming a 5- to 7-membered ring.
  • the 5- to 7-membered ring formed by Z include a benzene ring, naphthalene ring, pyridine ring, pyrimidine ring, pyrrole ring, thiophene ring, pyrazole ring, imidazole ring, oxazole ring, and thiazole ring. It is done. Of these, a benzene ring is preferred.
  • B to B represent a carbon atom, a nitrogen atom, an oxygen atom or a sulfur atom, and at least one of them
  • the nitrogen-containing heterocycle formed by these five atoms is preferably a monocycle.
  • Examples thereof include a pyrrole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an oxazole ring, an isoxazole ring, a thiazole ring, an isothiazole ring, an oxadiazole ring, and a thiadiazo ring.
  • These rings may be further substituted with the above substituents.
  • Preferred U substituents are an alkyl group and an aryl group, and more preferably an aryl group.
  • L represents an atomic group that forms a bidentate ligand with X and X.
  • 1 1 2 1 1 2 bidentate ligands include, for example, substituted or unsubstituted phenylpyrrolidine, phenolpyrazole, phenolimidazole, phenoltriazole, phenoltetrazole, virazol, picolinic acid And acetylacetone. These groups may be further substituted with the above substituents.
  • ml represents an integer of 1, 2 or 3
  • m2 represents a force of 0, 1 or 2
  • ml + m2 is 2 or 3.
  • m2 is preferably 0.
  • M a metal represented by M
  • LO group transition metal elements also referred to simply as transition metals
  • iridium and platinum are preferred, and iridium is more preferred.
  • the phosphorescent compound represented by the general formula (1) has a polymerizable group or a reactive group, and may or may not be present.
  • the general formula (1) is more preferably represented by the general formula (la).
  • R, R, and R represent a substituent.
  • Z forms a 5- to 7-membered ring
  • nl represents an integer of 0 to 5.
  • M is 8 in the periodic table
  • X and X represent a carbon atom, a nitrogen atom or an oxygen atom
  • L represents a group of atoms that together with X and X form a bidentate ligand.
  • ml is 1, 2 or
  • m2 represents an integer of 0, 1 or 2 ml + m2 is 2 or 3.
  • an aromatic hydrocarbon ring group (aromatic carbocyclic ring)
  • the group represented by the following general formula (lb) is preferred as the substituted aryl group in which the substituted aryl group is preferred, even though the group is preferred.
  • R represents a substituent having a steric parameter value (Es value) of -0.5 or less.
  • R is the same as R, and n5 represents an integer of 0-4. Note that * represents a binding position.
  • the Es value is a steric parameter derived from chemical reactivity. The smaller this value is, the smaller the steric volume is, and the more sterically bulky it is!
  • the Es value will be described.
  • the Es value is obtained by numerically using the steric hindrance of the substituent.
  • the Es value of the substituent X is represented by the following chemical reaction formula:
  • the reaction rate decreases due to the steric hindrance of the substituent X, resulting in kX and kH, so the Es value is usually negative.
  • the above two reaction rate constants kX and kH are obtained and calculated by the above formula.
  • Es values are described in detail in Unger, S. H., Hansch, C., Prog. Phys. Org. Chem., 12, 91 (1976).
  • specific numerical values are described in “Structure-activity relationship of drugs” (Chemicals Special Issue 122, Nankodo) and “American Chemical Society Professional Reference Book, 'Exploring QSAR' p. 81 Table 3-3”. There is. Some of these are shown in Table 1.
  • the Es value as defined in the present specification is that the hydrogen atom that is not defined as that of the methyl group is 0, and that the methyl group is 0. This is the Es value minus 1.24.
  • R represents a substituent having a steric parameter value (Es value) of ⁇ 0.5 or less.
  • It is preferably 7.0 or more and 0.6 or less, and most preferably 7.0 or more and 1.0 or less.
  • ketoeenol tautomer may exist in R.
  • the keto part is converted to Es value as an isomer of enol. If other tautomerism exists, the Es value is converted using the same conversion method.
  • the host compound used in the invention described in the constitution of claims 1 to 5 and 13 to 18 has a HOMO level of ⁇ 5.42 to 1.50 eV, LUMO.
  • the level is ⁇ 1.20 to +0.00 eV, and among the compounds contained in the light emitting layer, the phosphorescent quantum yield of phosphorescence emission is less than 0.01 at room temperature (25 ° C.).
  • the host compound used in the invention described in the constitution of claims 1 to 5 and 13 to 18 is phosphorescence of a phosphorescent compound used in combination. — A compound having a wavelength shorter than the 0 band is preferable, and when a compound containing a blue light-emitting component whose phosphorescence 0-0 band is 470 nm or less is used as the phosphorescent compound, the host compound is phosphorescent 0— The 0 band force is preferably 60 nm or less.
  • a method for measuring the 0-0 band of phosphorescence in the present invention will be described. First, the method for measuring the phosphorescence spectrum will be described.
  • Ethanol Z methanol 4Zl (vol / vol )
  • a phosphorescence measurement cell Put in a phosphorescence measurement cell, irradiate with excitation light at a liquid nitrogen temperature of 77 ° K, and measure the emission spectrum at 100 ms after irradiation with excitation light. Since phosphorescence has a longer emission lifetime than fluorescence, it can be considered that the light remaining after 100 ms is almost phosphorescent. For compounds with a phosphorescence lifetime shorter than 100 ms, measurement may be performed with a shorter delay time. However, if the delay time is shortened so that it cannot be distinguished from fluorescence, phosphorescence and fluorescence cannot be separated. Since this is a problem, it is necessary to select a delay time that can be separated.
  • any solvent that can dissolve the compound may be used (substantially no problem is caused by the solvent effect of the phosphorescence wavelength in the measurement method described above). ).
  • the phosphorescence spectrum is usually weak in intensity, it may be difficult to distinguish between noise and peak when enlarged.
  • the emission spectrum immediately after the excitation light irradiation (for convenience, this is called the steady light spectrum) is expanded, and the emission spectrum 100 ms after the excitation light irradiation (for convenience, this is called the phosphorescence spectrum).
  • the partial force of the stationary light spectrum derived from the phosphorescence spectrum can be determined by reading the peak wavelength.
  • by smoothing the phosphor spectrum noise and peak can be separated and peak wavelength can be read. As the smoothing process, Savitzky & Golay smoothing method can be applied.
  • the host compound used in the invention described in the constitution of claims 1 to 5 and 13 to 18 has a repeating unit even in a low molecular compound which is not particularly limited in structure. It may be a high molecular compound or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (deposition polymerizable host compound). A compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being extended, and has a high Tg (glass transition temperature) is preferable.
  • the host compounds typically have basic skeletons such as force rubazole derivatives, triarylamine derivatives, aromatic borane derivatives, nitrogen-containing heterocyclic compounds, thiophene derivatives, furan derivatives, and oligorylene compounds. Or a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
  • a compound represented by the following general formula (2) is preferable.
  • Ar and Ar are each an aromatic hydrocarbon group or an aromatic heterocyclic ring.
  • Ar aromatic hydrocarbon group represented by Ar (aromatic carbocyclic group, aryl group)
  • a phenyl group for example, a phenyl group, a p-phenyl group, a mesityl group, a tolyl group
  • Xylyl group naphthyl group, anthryl group, azulenyl group, acenaphthenyl group, fluoro group, phenanthryl group, indur group, pyrenyl group, biphenyl group, etc.
  • Examples of the aromatic heterocyclic group represented by Ar and Ar include a pyridyl group and a pyrimidyl group.
  • Each of these groups may have a substituent.
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tbutyl group), a cycloalkyl group ( For example, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, aryl group, etc.), alkynyl group (eg, ethynyl group, etc.), aromatic hydrocarbon group (aromatic carbocyclic group, aryl) Such as phenyl group, 2, 6 dimethyl phenyl group, etc., aromatic heterocyclic group (also referred to as heteroaryl group, for example, furyl group, phenyl group, pyridyl group, pyridazyl group, pyrimidyl group, birazyl group) , Triazyl group, imidazolyl group,
  • the nitrogen atom substituted with Ar and Ar is further substituted with the nitrogen atom of Ar and Ar.
  • a ring may be formed between the adjacent position of and a nitrogen atom. Specifically, the following structure may be adopted.
  • Ra is a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic hydrocarbon group, an aromatic complex
  • Examples of the alkyl group represented by Ra include a methyl group, an ethyl group, a propyl group, and an iso group.
  • Examples of the kill group include a cyclopentyl group and a cyclohexyl group.
  • aromatic hydrocarbon group and aromatic heterocyclic group represented by 1 examples include Ar and
  • heterocyclic group represented by, for example, pyrrolidyl group, imidazolidyl group, morpholyl group
  • Each of these groups may have a substituent.
  • the substituent is the same as those exemplified as the examples of the above-mentioned Ar and Ar substituents.
  • Ar to Ar represent an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • a ring may be formed between the adjacent position of and a nitrogen atom.
  • Ar represents a divalent arylene group or a heteroarylene group, which may have a substituent.
  • arylene group or heteroarylene group represented by Ar for example, 1, 3-
  • L represents a divalent linking group
  • nl represents an integer of 0 to 6
  • a plurality of L may be different or the same.
  • Ra is a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic hydrocarbon group, an aromatic complex
  • a ring may be formed between the adjacent position and the nitrogen atom.
  • Ra is a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic carbon.
  • R and R each represents a substituent.
  • Nl and n2 represent 0-4.
  • R to R represent substituents
  • nl to n5 represent 0 to 4.
  • L is bivalent
  • R to R represent substituents, nl, n3 and n5 represent 0 to 4, n2
  • n4 represents 0 to 3
  • L represents a divalent linking group
  • nl represents an integer of 0 to 6
  • a plurality of L May be different or different.
  • Ra and Ra are a hydrogen atom, an alkyl group, a cycloalkyl group, an aromatic hydrocarbon group,
  • Ar 1 represents a 6 4 atom, an alkyl group, a cycloalkyl group, an aromatic hydrocarbon group, an aromatic heterocyclic group or a heterocyclic group, and in the general formula (2), Ar and Ar may have a substituent.
  • Ar and Ar may have a substituent.
  • the divalent linking group represented by L may include a hydrocarbon atom such as an alkylene group, an alkylene group, an alkylene group, an arylene group, or a hetero atom.
  • Thiophene-2,5 diyl group may be a divalent linking group derived from a compound having an aromatic heterocycle such as pyrazine 2,3 diyl group (also called heteroaromatic compound), or O It may be a chalcogen atom such as —, —S—, —NR— (R represents a hydrogen atom or a substituent).
  • a group linked through a hetero atom such as an alkylimino group, a dialkylsilane diyl group or a diarylgermanyl group may be used.
  • the light emitting layer according to the invention described in the constitution of claims 6 to 18 is composed of an electrode, an electron transport layer, a hole transport layer, etc.
  • the light emitting portion may be within the light emitting layer or at the interface between the light emitting layer and the adjacent layer.
  • the phosphorescent compound both phosphorescent dopant and phosphorescent compound
  • the phosphorescent compound are included in the light emitting layer of the organic EL element.
  • a host compound a compound.
  • the compound according to the present invention described above is preferably used as the phosphorescent compound.
  • a plurality of known phosphorescent compounds may be used in combination.
  • a plurality of phosphorescent dopants it is possible to mix different light emission, and thus any light emission color can be obtained.
  • White light emission is possible by adjusting the type and amount of phosphorescent dopant, and it can also be applied to lighting and knocklights.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552 JP, 2002-184582, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003-31366 JP, 2002-226495, JP 2002-234894, JP 2002-235076, JP 2002-241751, JP 2001-319779, JP 2001-319780, JP JP 2002-62824, JP 2002-10474, JP 2002-203679, JP 2002-343572, JP 2 002-203678, and the like.
  • the material used for the light emitting layer according to the constitution of claims 6 to 18 includes a light emitting host compound in addition to the above phosphorescent dopant.
  • the host compound is a compound having a phosphorescence quantum yield of phosphorescence emission less than 0.01 among the compounds contained in the light emitting layer at room temperature (25 ° C). Is defined.
  • a hole transporting host compound as the host compound. Thereby, the light emission lifetime of the element at the time of continuous driving can be lengthened.
  • a hole transporting host compound (hereinafter also referred to as a host compound) is a hole mobility of h and an electron mobility of> ⁇ as described above.
  • h is the host compound that becomes e.
  • the light-emitting host compound used in the invention described in the constitution of claims 6 to 18 is not particularly limited in terms of structure, but is typically rubazole. Derivatives, triarylamine derivatives and the like can be mentioned.
  • the compounds described in the following documents are suitable.
  • the intermediate layer according to the constitution of claims 1 to 5 and claims 13 to 18 of the present invention is a layer between the light emitting layer and the hole transport layer.
  • the layer may be referred to as a hole transport layer or an electron blocking layer.
  • the intermediate layer preferably contains the same material as the host compound contained in the light emitting layer.
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the thickness of the blocking layer according to the constitution of claims 1 to 5 and 13 to 18 of the present invention is preferably 3 to 1 OOnm, more preferably 5 to 30nm. is there.
  • the hole blocking layer has the function of an electron transport layer, which is a material force that has the function of transporting electrons while transporting holes and is extremely small, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “The Organic EL Device and the Forefront of Industrialization (November 30, 1998, NTT Corporation)
  • the hole blocking (hole blocking) layer described in page 237 of “Issuance”) is applicable as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the organic EL device according to the structure of claims 1 to 5 and 13 to 18 of the present invention has a hole blocking layer as a component layer, and the hole blocking layer is It is preferable to contain a carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and is a material force that has a function of transporting holes and an extremely small capacity of transporting electrons, and transports holes while transporting holes. The probability of recombination of electrons and holes can be improved by blocking the children.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers. [0196] There are no particular restrictions on the hole transport material. Conventionally, it is used in photoconductive materials as well as those commonly used as hole charge injection transport materials, hole injection layers of organic EL elements, holes. Any of known materials used for the transport layer can be selected and used.
  • the hole transport material has either injection / transport of holes or electron barrier properties! /, And may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazones Derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • Typical examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N'—tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenylmethane; N, N ' —Diphenyl N, N
  • No. 5,061,569 which has two fused aromatic rings in the molecule, for example, 4, 4 ′ bis [N— (1-na (Futil) N-Feramino] Bi-Fowl (NPD), three triphenylamine units described in JP-A-4 308688 are connected in a starburst type 4, 4 ', A "—Tris [? ⁇ — (3-methylphenol) N phenolamine] triphenylamine (MTD ATA) and the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. be able to. Although there is no restriction
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • an impurity doped hole transport layer having high p property can be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, Appi. Phys., 95, 5773 (2004), etc. To be listed.
  • hole transport layer A When there are two or more hole transport layers between the light emitting layer and the anode, the hole transport layer on the side in contact with the light emitting layer is referred to as a hole transport layer A.
  • the material that can be used for the hole transport layer A according to the present invention is not only a hole transport property, but also exciton force generated in the light emitting layer. It is necessary to have high excitation triplet energy.
  • the excitation triplet energy (T1) of the blue phosphorescent material is high, so the hole transport layer A material requires a T1 level of 2.7 eV or higher.
  • Examples of the hole transporting material of the hole transporting layer A according to the configurations of claims 6 to 18 of the present invention include the above-described hole transporting host compound of the present invention. As a result, an organic EL element with a longer life can be obtained.
  • the hole transporting material contained in the hole transport layer A and the hole transporting host compound contained in the light emitting layer may be the same or different.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be a single layer or a plurality of layers.
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected and used from conventionally known compounds. .
  • electron transport materials examples include: -substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and complexed naphthalene perylene. At least one of the carbon atoms of the ring of the tetracyclic carboxylic acid anhydride, carbopositimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or the hydrocarbon ring constituting the carboline ring of the carboline derivative is a nitrogen atom And derivatives having a substituted ring structure.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • Monkey thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-jib mouth) Mo-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Metal complexes replacing Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type Si and n-type SiC Can also be used as an electron transporting material.
  • the electron transport layer may be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. it can. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an impurity-doped electron transport layer having a high n property can also be used.
  • impurity-doped electron transport layer having a high n property examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, Appl. Phys., 95, 5773 (2004), and the like. .
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industrial front line June 30, 1998) 2) Chapter 2 “Electrode materials” (pages 123-166) of “T's”)
  • anode buffer layer hole injection layer
  • JP-A-9-45479 JP-A-9260062
  • JP-A-8-288069 JP-A-8-288069
  • One layer of phthalocyanine buffer represented by Russianin one layer of oxide buffer represented by vanadium oxide, one layer of amorphous carbon buffer, one layer of polymer buffer using a conductive polymer such as polyarine (emeraldine) or polythiophene, etc. Can be mentioned.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum, etc., alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, acid typified by aluminum oxide
  • there is a single buffer there is a single buffer.
  • the thickness of the buffer layer is preferably in the range of 0.1 to LOONm, although it depends on the material desired to be a very thin film.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the injection layer may have a single layer structure that can be one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode substances include conductive transparent materials such as metals such as Au, Cul, indium tin oxide (ITO), SnO, and ZnO. IDIXO (In O
  • -ZnO -ZnO
  • other amorphous material that can produce a transparent conductive film
  • a thin film can be formed by vapor deposition or sputtering of these electrode materials, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (about 100 m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ or less.
  • the film thickness depends on the material, it is usually selected from 10 to: LOOOnm, preferably 10 to 200 nm.
  • the cathode according to the present invention a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • electrode materials include sodium, sodium-powered rhodium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum (Al 2 O 3) mixture, indium, lithium
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium Z silver mixture , Magnesium Z Aluminum Mixture, Magnesium Z Indium Mixture, Aluminum Z Acid-Aluminum (Al O) Mixture
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundreds ⁇ / mouth or less.
  • the film thickness is preferably 10 to: LO OOnm, preferably 50 to 200 nm.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc.
  • Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • the substrate is a resin film capable of giving flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, and polyether.
  • PC cellulose triacetate
  • TAC cellulose acetate propionate
  • an inorganic film or an organic film, or a hybrid film of both of them may be formed, and a water vapor permeability of 0.01 gZm 2 'dayatm or less is used. I prefer to be there.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element Z the number of electrons X 100 flowing through the organic EL element.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film (such as an antiglare film) can be used in combination in order to reduce unevenness in light emission.
  • anode Z hole injection layer Z hole transport layer Z light emitting layer Z A method for fabricating an organic EL device with a hole blocking layer / electron transport layer / cathode buffer layer / cathode force will be described.
  • a desired electrode material for example, a thin film having a material force for an anode is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
  • a method for forming a thin film containing an organic compound there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, and the like. Vacuum vapor deposition or spin coating is particularly preferred because it is difficult to form. Further, a different film forming method may be applied for each layer.
  • Conditions of deposition may vary due to kinds of materials used, generally boat temperature 50 to 450 ° C, vacuum degree of 10 one 6 ⁇ 10- 2 Pa, deposition rate 0. 01 ⁇ 50NmZ sec, a substrate temperature over 50 It is desirable to select appropriately within the range of 300 ° C and film thickness of 0.1 to 5 ⁇ m.
  • a thin film that also has a material force for the cathode is formed on the layer to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • the desired organic EL device can be obtained by forming the cathode more and forming a cathode.
  • the organic EL element is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display devices according to the configurations of claims 1 to 5 and claims 13 to 18 of the claims of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, a multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable. In the case of using the vapor deposition method, patterning using a shadow mask is preferable. It is also possible to reverse the production order to produce a cathode, an electron transport layer, a hole blocking layer, a light emitting layer, a hole transport layer, and an anode in this order.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • Display devices and displays can be displayed in full color by using three types of organic EL elements that emit blue, red, and green light.
  • Display devices and displays include televisions, computers, mono-wheel devices, AV devices, teletext displays, information displays in automobiles, etc. Is mentioned.
  • the drive method when used as a display device for moving image reproduction that may be used as a display device for reproducing still images or moving images may be either a simple matrix (passive matrix) method or an active matrix method. .
  • Light emitting sources include household lighting, interior lighting, clock and liquid crystal backlights, signboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a sensor light source.
  • the lighting device of the present invention has the organic EL element.
  • the organic EL element according to the constitution of claims 1 to 5 and 13 to 18 of the present invention may be used as an organic EL element having a resonator structure.
  • Applications of organic EL devices with a unique resonator structure include, but are not limited to, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. Not. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element according to the constitution of claims 1 to 5 and claims 13 to 18 of the present invention may be used as a kind of lamp for illumination or exposure light source. Alternatively, it may be used as a projection device of a type that projects an image, or a display device (display) of a type that directly recognizes a still image or a moving image.
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
  • a desired electrode material for example, a thin film having a material force for an anode, is 1 ⁇ m or less, preferably ⁇ ! Vapor deposition, sputtering, etc. to have a film thickness of ⁇ 200nm
  • the anode is produced by the method.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer, which is an element material, is formed thereon.
  • a method of forming a thin film containing this organic compound there are a spin coat method, a cast method, an ink jet method, a vapor deposition method, a printing method, and the like. A homogeneous film can be obtained immediately and a pinhole is generated. From the standpoint of difficulty, it is particularly preferable to use a vacuum deposition method, a spin coating method, an ink jet method, or a printing method. Further, different film forming methods may be applied for each layer.
  • the deposition conditions may vary due to kinds of materials used, generally boat temperature 50 ° C ⁇ 450 ° C, vacuum degree of 10- 6 Pa ⁇ 10- 2 Pa, deposition rate 0.01 nm to 50 nm Z seconds, substrate temperature -50. C ⁇ 300. C, film thickness of 0.1 ⁇ to 5; ⁇ ⁇ is preferably selected as appropriate.
  • a thin film having a cathode material force is formed thereon by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL device can be obtained. It is preferable that the organic EL device is manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it does not matter if it is taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the image display device using the organic EL element of the present invention may be monochromatic or multicolored.
  • a shadow mask is provided for each color light emitting unit, and a light emitting layer is formed for each color by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited, but a vapor deposition method, an inkjet method, and a printing method are preferable.
  • a vapor deposition method patterning using a shadow mask is preferred.
  • the light emitting layer is formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method or the like without patterning.
  • the order of preparation may be reversed, and the cathode, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode may be formed in this order.
  • a DC voltage is applied to the image display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • a voltage is applied with the opposite polarity, no current flows and no light emission occurs.
  • an AC voltage when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the same state.
  • the AC waveform to be applied may be arbitrary.
  • a white display device it can be used as a display device, a display, or various light sources.
  • full-color display is possible by using a white organic EL element as the backlight.
  • Examples of the display device and display include a television, a computer, a mopile device, an AV device, a character broadcast display, and an information display in a car. It can be used especially as a display device for playing back still images and moving images.
  • Light emitting light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light sensors Although a light source etc. are mentioned, it is not limited to this.
  • the organic EL element having a resonator structure may be used as an organic EL element having a resonator structure in the organic EL element of the present invention.
  • Examples include, but are not limited to, photocopier light sources, optical communication processor light sources, and optical sensor light sources.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device of a type that projects an image, a still image or a moving image. It may be used as a display device (display) of the type that is directly visually recognized. When used as a display device for video playback, either the simple matrix (passive matrix) method or the active matrix method may be used. Alternatively, a full color display device can be produced by using two or more organic EL elements of the present invention having different emission colors.
  • a full color display can be performed by combining with a filter.
  • the organic EL element according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • FIG. 2 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels, and a control unit B that performs image scanning of the display unit A based on image information.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emits light according to the image data signal, scans the image, and displays the image information on the display unit A.
  • FIG. 3 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on the substrate.
  • the main members of the display unit A will be described below.
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details). Is shown in the figure.
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light in accordance with the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 4 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • Full-color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels and arranging them on the same substrate.
  • the control unit B force also applies the image data signal to the drain of the switching transistor 11 via the data line 6. Then, the control unit B force scan line 5
  • the scanning signal is applied to the gate of the switching transistor 11
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transmitted to the capacitor 13 and the gate of the driving transistor 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power line 7 and a source connected to the electrode of the organic EL element 10, and the power transistor 7 is connected to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal. Therefore, the driving of the driving transistor 12 is kept on, and the next scanning signal is applied. The organic EL device 10 continues to emit light until it appears. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 that are active elements for the organic EL elements 10 of each of the plurality of pixels, and each of the organic EL elements 10 of the plurality of pixels 3.
  • the flash is activated.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials! /, Or a predetermined value by a binary image data signal.
  • the light emission amount may be on or off.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • FIG. 5 is a schematic diagram of a display device using a passive matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of scanning line 5 is applied by sequential scanning, it is connected to the applied scanning line 5
  • the pixel 3 emits light according to the image data signal.
  • the noisy matrix method pixel 3 has no active elements, and manufacturing costs can be reduced.
  • patterning may be performed by a metal mask or an ink jet printing method or the like at the time of film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer may be patterned.
  • the white light-emitting organic EL element according to the configurations of claims 6 to 18 of the present invention is a home lighting as various light-emitting light sources and lighting devices in addition to the display device and display. It is also useful for display devices such as backlights for liquid crystal display devices as interior lighting and a kind of lamp such as an exposure light source.
  • the organic EL materials according to the configurations of claims 1 to 5 and claims 13 to 18 of the present invention can also be applied to organic EL elements that emit substantially white light as illumination devices.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or a complementary color relationship such as blue and yellow, blue green and orange is used. Even those containing two luminescence maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or phosphorescent materials, a light emitting material that emits fluorescence or phosphorescence, and a light emitting material strength. Any combination of a combination with a dye material that emits light as excitation light may be used, but in the white organic EL device according to the present invention, only a combination of a plurality of phosphorescent compounds may be mixed. A mask is provided only at the time of formation of the light emitting layer, hole transport layer, electron transport layer, etc.
  • an electrode film can be formed on one side by vapor deposition, casting, spin coating, inkjet, printing, etc., and productivity is improved.
  • white light-emitting elements in which a plurality of color light-emitting elements are arranged in parallel in an array shape. Unlike the color organic EL device, the element itself is luminescent white.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the light emitting material according to the present invention is adapted to the wavelength range corresponding to the CF (color filter) characteristics. Select any of the metal complexes and known luminescent materials and combine them to make them white!
  • the white light-emitting organic EL device includes various light-emitting light sources in addition to the display device and the display.
  • a lighting device it is useful for household lighting, interior lighting, a kind of lamp such as an exposure light source, and a display device such as a backlight of a liquid crystal display device.
  • Example 1 Examples for claims 1 to 6 and 13 to 18
  • HOMO and LUMO values were calculated for the compounds shown below. Calculated using Gaussian98 (Gaussian98, Revision A. 11.4, MJ Frisch, et al., Gaussian, Inc., Pittsburgh PA, 2002.) Yes, the HOMO and LUMO values of the host compound were calculated using B3LYP / 6-31G * as the keyword, and the HOMO and LUMO values of the phosphorescent compound were calculated using B3LYPZLanL2DZ as the keyword. The results are shown below.
  • Gaussian98 Gaussian98, Revision A. 11.4, MJ Frisch, et al., Gaussian, Inc., Pittsburgh PA, 2002.
  • the transparent support substrate with this ITO transparent electrode was ultrasonicated with iso-propyl alcohol. Washed, dried with dry nitrogen gas, and UV ozone cleaned for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 5 Two tantalum resistance burning boats: a—NPD, CBP, Fir (pic), BC, Alq
  • the heated boat containing CBP and the boat containing Fir (pic) are energized independently of each other, and CBP, which is a host compound, and Fir (pic), which is a phosphorescent compound.
  • the vapor deposition rate was adjusted to 100: 6, vapor deposition was performed to a thickness of 30 nm, and a light emitting layer was provided.
  • the heating boat containing BC was energized and heated, and a hole blocking layer having a thickness of lOnm was provided at a deposition rate of 0.1 to 0.2 nm Z seconds. Furthermore, the heated boat containing Alq is passed through.
  • An electron transport layer having a film thickness of 20 nm was provided at a deposition rate of 0.1 to 0.2 nmZ seconds.
  • the obtained organic EL elements 1 1 to 1 21 were continuously lit at room temperature and under a constant current condition of 2.5 mAZcm 2 , and the time ( ⁇ ) required to achieve half the initial brightness was obtained.
  • the organic EL device in which the host compound having a HOMO and LUMO level relationship defined in the present invention and the phosphorescent compound are combined emits light compared to the organic EL device of the comparative example. It is clear that the lifetime will be longer.
  • Mg magnesium
  • Ag silver
  • the first vacuum chamber was depressurized to 4 X 10 _4 Pa, and then heated by energizing the heating boat containing a-NPD, with a deposition rate ranging from 0. InmZ seconds to 0.2 nmZ seconds. Then, vapor deposition was performed on the transparent support substrate to a thickness of 90 nm, and a hole injection Z transport layer was provided.
  • the heated boat containing H-9 and the boat containing Fir (pic) are energized independently to form a host compound H-9 and a phosphorescent compound.
  • the deposition rate of Fir (pic) was adjusted to 100: 6, vapor deposition was performed to a thickness of 30 nm, and a light emitting layer was provided.
  • the heating boat containing BAlq was energized and heated to provide a hole blocking layer having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nmZ. Furthermore, the heated boat containing Alq
  • the organic EL device 1-22 L-30, except that the materials of the host compound and phosphorescent compound were changed as shown in Table 4. Made
  • the obtained organic £ 1 ⁇ element 1 22 to 1 30 was continuously lit under a constant current condition of 2.5 mAZcm 2 at room temperature, and the time required to reach 70% of the initial luminance was measured. Set. The light emission lifetime is expressed as a relative value where the organic EL element 2-22 is 100. Table 4 shows the results obtained.
  • Example 2 (Claims 1 to 6 and 13 to 18)
  • the organic EL device 17 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as in the organic EL device 1-7 of Example 1, except that the host compound was changed to CBP and the dopant was changed to Ir (ppy), and this was used as a green light emitting device. It was.
  • a red light emitting device was produced in the same manner as in the organic EL device 1-7 of Example 1, except that the host compound was changed to CBP and the dopant was changed to Ir (btpy).
  • FIG. 3 shows only a schematic diagram of the display portion A of the display device thus manufactured.
  • a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring part are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a lattice shape and are connected to the pixel 3 at the orthogonal position ( Details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, respectively.
  • an image data signal is received from the data line 6 and light is emitted according to the received image data.
  • a full-color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • This full-color display device has been divided into being capable of obtaining a clear and full-color moving image display with high luminance and high durability by being driven.
  • the electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm x 20 mm, and then a-NPD was deposited to a thickness of 90 nm as a hole injection Z transport layer in the same manner as in Example 1, and then H
  • the deposition rate of the host compound H-6, phosphorescent compound 1-2, and Ir (btpy) is 100: 5: 0.6. Adjust the film thickness to 30nm
  • the light emitting layer was provided by vapor deposition so as to have a thickness of 1 mm.
  • BC was formed into an lOnm film to provide a hole blocking layer. Furthermore, Alq was deposited at 40nm.
  • An electron transport layer was provided.
  • a square perforated mask having the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer in the same manner as in Example 1, and lithium fluoride 0.5 nm and the cathode were formed as a cathode buffer layer.
  • a planar lamp having a sealing structure having the same method and the same structure as that of Example 1 was fabricated for this device. When this flat lamp was energized, almost white light was obtained and it was possible to use it as a lighting device.
  • Example 4 (Examples for Claims 7 to 18)
  • this ITO transparent electrode was provided.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum evaporation apparatus, while 200 mg of ⁇ -NPD is placed in a molybdenum resistance heating boat, and the exemplified compound H 8-7 is added to another molybdenum resistance heating boat in 201111.
  • the heating boat containing Exemplified Compound HA-7 and Exemplified Phosphorescent Compound 11 1 was energized and heated, and was co-deposited on the hole transport layer at a deposition rate of 0.2 nmZsec and 0. A 40 nm light emitting layer was provided by vapor deposition. Further, the heating boat containing BAlq was energized and heated, and deposited on the light emitting layer at a deposition rate of 0. InmZsec to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • Organic EL device la-1 was the same as Organic EL device la-1, except that the host compound and phosphorescent compound were changed as shown in Table 5 for organic EL device la-1. ⁇ La-13 was produced.
  • the organic EL element la-1 is the same as the organic EL element la-1, except that the host compound and phosphorescent compound are changed as shown in Table 5 for the organic element la-1. : La-16 was produced.
  • Table 5 shows the obtained results.
  • the measurement results of the luminescence lifetime in Table 5 are expressed as relative values when the measured value of the organic EL element 1a-16 is 100.
  • Example 5 (Examples for claims 7 to 18)
  • the ITO transparent electrode was provided after patterning on a substrate made of ITO (indium tin oxide) 150 nm on a glass substrate of 100 mm X 100 mm XI.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while 200 mg of ⁇ -NPD is placed in a molybdenum resistance heating boat, and 200 mg of the exemplified compound HA-34 is placed in another molybdenum resistance heating boat.
  • the exemplified compound HA-34 was vapor-deposited on the hole transport layer at a deposition rate of 0. InmZsec to provide a lOnm hole transport layer A.
  • the hole was transported at a deposition rate of 0.2 nmZsec and 0.0 InmZsec, respectively, by heating through the heating boat containing the exemplified compound HA-7 and the exemplified phosphorescent compound 11 1.
  • a 40 nm light emitting layer was provided on layer A by co-evaporation.
  • the heating boat containing BAlq was energized and heated, and deposited on the light emitting layer at a deposition rate of 0. InmZsec to provide an electron transport layer having a thickness of 30 nm.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • the organic EL element 2-12 is the same as the organic EL element 2-1, except that the material of the hole transport layer A, the host compound, and the phosphorescent compound are changed as shown in Table 6.
  • Table 6 shows the obtained results.
  • the measurement results of the light emission lifetime in Table 6 show that the organic EL element 2
  • Organic EL element la— 1 ⁇ In La-13, NPD is changed to m—MTDATA: F4—TCNQ (Mass ratio 99: 1) Changed to the lamination of co-deposited film lOnm and NPD film lOnm, and changed BAlq to the BAlq film 10 nn ⁇ BPhen: Cs (mass ratio 75:25) co-deposited film 20nm, lithium fluoride Organic EL devices 3-1 to 3-13 were fabricated in the same manner except that the power was not evaporated.
  • the obtained organic EL devices 3-1 to 3-13 were confirmed to be 3V to 6V lower in driving voltage than the organic EL devices la-1 to La-13 respectively. It was done.
  • Example 7 (Examples for claims 7 to 18)
  • the non-light-emitting surface of the organic EL element 41 When the non-light-emitting surface of the organic EL element 41 is covered with a glass case and a color filter is attached to the light-emitting surface and used as an image display device, it exhibits good full-color color display performance and can be used as an excellent image display device. did it.
  • Example 8 (Examples for claims 7 to 18)
  • Organic EL element 5-1 was produced in the same manner as organic EL element la-1, except that was used.
  • the non-light emitting surface of the organic EL element 5-1 was covered with a glass case to obtain a lighting device.
  • the illumination device could be used as a thin illumination device that emits white light with high luminous efficiency.

Abstract

 本発明は、第1には長寿命である青色燐光発光性有機EL素子、また、第2には長寿命な有機EL素子、及びそれを用いた照明装置、表示装置を提供する。この有機EL素子は、基板上に電極と少なくとも1層の有機層を有し、該有機層の少なくとも1層がホスト化合物と燐光性化合物とを含有する発光層であり、第1に対して、該ホスト化合物のHOMOが-5.42~-3.50eV、LUMOが-1.20~+0.00eVであり、該燐光性化合物のHOMOが-5.15~-3.50eV、LUMOが-1.25~+1.00eVであることにより、また、第2に対し該燐光性化合物のHOMOが-5.15~-3.50eVかつLUMOが-1.25~+1.00eVであり、正孔輸送性ホスト化合物の励起三重項エネルギーT1が2.7eV以上であることを特徴とする。

Description

明 細 書
有機エレクト口ルミネッセンス素子、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、及び該有機エレクト口ルミネッセンス 素子を用いた表示装置、照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDと言う)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子とも言う)が挙げられ る。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素 子を駆動させるためには交流の高電圧が必要である。
[0003] 一方、有機 EL素子は発光する化合物を含有する発光層を陰極と陽極で挟んだ構 成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子 (ェキ シトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光.燐光)を利用して 発光する素子であり、数 V〜数十 V程度の電圧で発光が可能であり、更に自己発光 型であるために視野角に富み、視認性が高ぐ薄膜型の完全固体素子であるために 省スペース、携帯性等の観点力 注目されている。
[0004] 今後の実用化に向けた有機 EL素子の開発としては、更に低消費電力で、効率よく 高輝度に発光する有機 EL素子が望まれている。
[0005] 例えば、スチルベン誘導体、ジスチリルァリーレン誘導体またはトリススチリルァリー レン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成 する技術 (例えば、特許文献 4参照。)、 8—ヒドロキシキノリンアルミニウム錯体をホス ト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子 (例えば 、特許文献 5参照。)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、こ れにキナタリドン系色素をドープした有機発光層を有する素子 (例えば、特許文献 6 参照。)等が知られている。
[0006] 上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、 一重項励起子と三重項励起子の生成比が 1: 3であるため発光性励起種の生成確率 が 25%であることと、光の取り出し効率が約 20%であるため、外部取り出し量子効率 ( η ext)の限界は 5%とされている。
[0007] ところが、プリンストン大より、励起三重項からの燐光発光を用いる有機 EL素子の 報告がされて以来 (例えば、非特許文献 3参照。)、室温で燐光を示す材料の研究が 活発になってきている(例えば、非特許文献 4参照。 )0励起三重項を使用すると内部 量子効率の上限が 100%となるため、励起一重項の場合に比べて原理的に発光効 率力 倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも応用可能であり注目 されている。例えば、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検 討がなされている (例えば、非特許文献 5参照。 )0
[0008] 上記の燐光発光を用いた有機 EL素子に使用されるドーパントとしては、イリジウム 系金属錯体を中心に検討がなされており、トリス(2—フエ二ルビリジン)イリジウム (Ir ( ppy) )、 (ppy) Ir(acac)、トリス(2— (p—トリル)ピリジン)イリジウム (Ir (ptpy) )、トリ
3 2 3 ス(ベンゾ [h]キノリン)イリジウム(Ir(bzq) )、Ir (bzq) ClP (Bu)、またフ 二ルピラ
3 2 3
ゾールを配位子に用いたイリジウム錯体等を用いた検討 (例えば、特許文献 1参照。
)が行われている。
[0009] 代表的な燐光青色ドーパントである Fir (pic)は、主配位子のフエ-ルビリジンにフ ッ素置換をすること、及び副配位子としてピコリン酸を用いることにより短波化が実現 なされている。副配位子としてはその他にも、ビラザボール系の配位子を導入するこ とにより、発光波長が短波化することが知られている(例えば、特許文献 1及び非特 許文献 1、 2参照。;)。これらのドーパントは、力ルバゾール誘導体ゃトリアリールシラン 類をホストイ匕合物として組み合わせることによって高効率の素子を達成しているが、 素子の発光寿命は大幅に劣化する為そのトレードオフの改善が求められていた。
[0010] 上記青色ドーパントはいずれも、該ドーパント材料の最高占有軌道(以下、 HOMO と略す)準位及び該ドーパント材料の最低空軌道(以下、 LUMOと略す)準位の低 ヽ タイプの化合物である。代表的な燐光緑色ドーパントである Ir (ppy) に比較すると、
3
HOMO, LUMO準位の値は共に約 leV程度、低くなつている。青色ドーパントとし て、 HOMO、 LUMO準位の低いタイプの化合物は知られている力 HOMO, LU MO準位の高いタイプの化合物は報告例が少ない。最近、 HOMO、 LUMO準位が 高いタイプの青色ドーパントが報告されたが(例えば、特許文献 2、 3参照。)、従来知 られている HOMO— LUMO準位の高いタイプのホスト化合物と組み合わせた例し か報告されて 、な 、。これらの素子の発光寿命はまだまだ満足と 、えるものではなく 、その改善が求められている。
[0011] また、ドーパントとしてトリス(2—フエ-ルビリジン)イリジウムを用いた検討がなされ ている(例えば、非特許文献 4参照。 ) 0その他、ドーパントとして L Ir (acac)、例えば
2
、 (ppy) Ir (acac) (例えば、非特許文献 6参照。)を、またドーパントとして、トリス(2
2
3
(bzq) )、 Ir (bzq) ClP (Bu)を用いた検討 (例えば、非特許文献 7参照。)、また、フ
3 2 3
ェニルビラゾールを配位子に用いたイリジウム錯体等を用いた検討 (例えば、特許文 献 3参照。)が行われている。
[0012] しかし、これらリン光発光ドーパントを用いる有機 EL素子の欠点として、連続駆動時 の発光寿命が短いという点が挙げられる。現在、長寿命化の検討がされているが、未 だ不十分である。
特許文献 1:国際公開第 02Z15645号パンフレット
特許文献 2 :米国特許出願公開第 2004Z0048101号明細書
特許文献 3:国際公開第 04Z085450号パンフレット
特許文献 4:特許第 3093796号公報
特許文献 5:特開昭 63 - 264692号公報
特許文献 6 :特開平 3— 255190号公報
非特許文献 1 : C. Adachi et al. , Applied Physics Letters、第 79卷、 13号、 2082〜2084頁(2003年)
非特許文献 2 : R. J. Holmes et al. , Applied Physics Letters、第 83卷、 18 号、 3818〜3820頁(2003年)
非特許文献 3 : M. A. Baldo et al. , nature, 395卷、 151— 154ページ(1998 年)
非特許文献 4 : M. A. Baldo et al. , nature, 403卷、 17号、 750— 753ページ( 2000年)
非特許文献 5 : S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304ぺー ジ(2001年)
非特許文献 6 : M. E. Tompson et al. , The 10th International Worksho p on Inorganic and Organic Electroluminescence (EL ' 00、浜松) 非特許文献 7 : Moon— Jae Youn. Og, Tetsuo Tsutsui et al. , The 10th I nternational Workshop on Inorganic and Organic Electroluminescen ce (EL, 00、浜松)
発明の開示
発明が解決しょうとする課題
[0013] 本発明の第 1の目的は、長寿命である青色燐光発光性有機エレクト口ルミネッセン ス素子、及び該素子を用いた表示装置、照明装置を提供することである。
[0014] 本発明の第 2の目的は、長寿命な有機エレクト口ルミネッセンス素子、及びそれを用 いた照明装置、表示装置を提供することにある。
課題を解決するための手段
[0015] 本発明の第 1の目的は、下記の 1〜6および 13〜17の構成により、また第 2の目的 は、下記 7〜17の構成により達成された。
[0016] 1.基板上に電極と少なくとも 1層の有機層を有し、該有機層の少なくとも 1層がホス ト化合物と燐光性ィ匕合物とを含有する発光層である有機エレクト口ルミネッセンス素 子において、該ホスト化合物の HOMOが— 5. 42〜一 3. 50eV、 LUMOが— 1. 2 0〜+ 0. OOeVであり、該燐光性化合物の HOMOがー 5. 15〜一 3. 50eV、 LUM Oが一 1. 25〜 + 1. OOeVであることを特徴とする有機エレクト口ルミネッセンス素子
[0017] 2.前記燐光性化合物の HOMOがー 4. 80〜一 3. 50eV、 LUMOがー 0. 80〜
+ 1. OOeVであることを特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子
[0018] 3.前記燐光性化合物が下記一般式(1)で表されることを特徴とする前記 1または 2 に記載の有機エレクト口ルミネッセンス素子。 [0019] [化 1] 一般式 (1)
Figure imgf000007_0001
[0020] (式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 M
1は元素周期表における 8〜10 族の金属を表す。 X
1及び X
2は炭素原子、窒素原子もしくは酸素原子を表し、 L
1は X 1 及び Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。 )
4.前記一般式(1)で表される燐光性ィ匕合物において、 m2が 0であることを特徴と する前記 3に記載の有機エレクト口ルミネッセンス素子。
[0021] 5.前記一般式(1)で表される燐光性ィ匕合物において、 B〜Bで形成される含窒
1 5
素複素環力 ミダゾール環であることを特徴とする前記 3または 4に記載の有機エレク トロノレミネッセンス素子。
[0022] 6.基板上に電極と少なくとも 1層以上の有機層を有する有機エレクト口ルミネッセン ス素子において、該有機層の少なくとも 1層は燐光性ィ匕合物および正孔輸送性ホスト 化合物を含有する発光層であり、該燐光性ィ匕合物の HOMOが— 5. 15〜― 3. 50e Vかつ LUMOがー 1. 25〜+ 1. OOeVであり、該正孔輸送性ホストイ匕合物の励起三 重項エネルギー T1が 2. 7eV以上であることを特徴とする有機エレクト口ルミネッセン ス素子。
[0023] 7.前記燐光性化合物の HOMOがー 4. 80〜一 3. 50eVかつ LUMOがー 0. 80 〜+ 1. OOeVであることを特徴とする前記 6に記載の有機エレクト口ルミネッセンス素 子。
[0024] 8.前記燐光性化合物が下記一般式(1)で表されることを特徴とする前記 6または 7 に記載の有機エレクト口ルミネッセンス素子。
[化 2] 一般式 (1 )
Figure imgf000008_0001
[0026] 〔式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 M
1は元素周期表における 8族〜 1
0族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは
1 2 1
Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整
1 2
数を表し、 m2は 0、 1または 2の整数を表し、 ml +m2は 2または 3である。〕
9.前記一般式(1)で表される燐光性ィ匕合物において、 m2が 0であることを特徴と する前記 8に記載の有機エレクト口ルミネッセンス素子。
[0027] 10.前記一般式(1)で表される燐光性ィ匕合物において、 B〜Bで形成される含窒
1 5
素複素環力 ミダゾール環であることを特徴とする前記 8または 9に記載の有機エレク トロノレミネッセンス素子。
[0028] 11.前記発光層と陽極の間に 2層以上の正孔輸送層があり、発光層と接する正孔 輸送層 Aに含まれる有機化合物の T1が 2. 7eV以上であることを特徴とする前記 6〜 10のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0029] 12.発光が白色であることを特徴とする前記 6〜: L 1のいずれか 1項に記載の有機 エレクトロノレミネッセンス素子。
[0030] 13.前記一般式(1)が、下記一般式(la)で表されることを特徴とする前記 3〜4ま たは 8〜 12のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0031] [化 3] 一般式 (1a)
Figure imgf000009_0001
[0032] 〔式中、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原
1 2 3
子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8族〜 10族の金
1
属を表す。 X
1および X
2は炭素原子、窒素原子もしくは酸素原子を表し、 L
1は X
1およ び Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、
m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。〕
14.前記一般式(la)において、 Rで表される置換基が下記一般式(lb)で表され
2
ることを特徴とする前記 13に記載の有機エレクト口ルミネッセンス素子。
[0033] [化 4] 一般式 (1b)
Figure imgf000009_0002
[0034] 〔式中、 Rは立体パラメータ値 (Es値)がー 0. 5以下の置換基を表す。 Rは置換基を
4 5 表し、 n5は 0〜4の整数を表す。尚、式中 *は結合位置を示す。〕
15.前記一般式(3)が、メシチル基(2, 4, 6—トリメチルフエニル基)であることを特 徴とする前記 14に記載の有機エレクト口ルミネッセンス素子。
[0035] 16.前記 1〜15のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子を有す ることを特徴とする表示装置。
[0036] 17.前記 1〜15のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子を有す ることを特徴とする照明装置。
[0037] 18.前記 17に記載の照明装置と表示手段としての液晶素子を有することを特徴と する表示装置。
発明の効果
[0038] 本発明によって、長寿命である青色燐光発光性有機エレクト口ルミネッセンス素子、 及び該素子を用いた表示装置、照明装置を提供することができた。
[0039] 本発明により、長寿命である有機エレクト口ルミネッセンス素子、及びそれを用いた 照明装置、表示装置を提供することができた。
図面の簡単な説明
[0040] [図 1]本発明の基本的な層構成を示す図である。
[図 2]有機 EL素子カゝら構成される表示装置の一例を示した模式図である。
[図 3]表示部の模式図である。
[図 4]画素の模式図である。
[図 5]パッシブマトリクス方式フルカラー表示装置の模式図である。
[図 6]照明装置の概略図である。
[図 7]照明装置の断面図である。
符号の説明
[0041] 1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機 EL素子
11 スイッチングトランジスタ
12 馬区動トランジスタ
13 コンデンサ
A 表示部
B 制御部 107 透明電極付きガラス基板
106 有機 EL層
105 陰極
102 ガラスカバー
108 窒素ガス
109 捕水剤
発明を実施するための最良の形態
[0042] 本発明者等は、第 1の課題に鑑み鋭意検討の結果、 HOMO、 LUMO準位の低 ヽ 一般式(1)で表される燐光性ィ匕合物をドーパントとした素子において、特定の範囲の HOMO, LUMO準位を有する化合物をホストイ匕合物として用いると、上記第 1の課 題を解決できることがわかり、本発明に到達した。
[0043] HOMO— LUMO準位の低い一般式(1)で表される燐光性化合物をドーパントと して用い、且つ従来知られて 、る HOMO— LUMO準位の高!、ィ匕合物をホストイ匕合 物として用いた場合、発光層に注入された正孔はホストイ匕合物を介さず、燐光性ィ匕 合物に直接注入されることになる。しかし、一般に発光層に電子が注入されるのは遅 いため、ドーパントのカチオンラジカルが発光層に溜まってしまい、このことが発光層 に悪影響を及ぼし、駆動寿命の劣化を促進して!/、ると考えられる。
[0044] 従って、一般式(1)で表される燐光性ィ匕合物をドーパントとして用いた場合、ホスト 化合物の HOMO、 LUMO準位を以下のように最適化することにより、上記問題点を 解決できると考えた。
[0045] 即ち、ホスト化合物として HOMO準位が 5. 42〜一 3. 50eV、 LUMO準位が 1. 20〜+ 0. OOeVのものを用いることで、ホスト化合物の HOMO準位がドーパント の HOMO準位と適度に近いことによりホールがドーパントに溜まるのが抑制され、且 つホスト化合物の LUMO準位もホスト化合物の LUMO準位と適度に近!、ので、電 荷がドーパントに溜まることを防 、で 、ると考えられる。
[0046] 以下、本発明の各構成要件について詳細に説明する。
[0047] まず、本発明に係る HOMO、 LUMOについて説明する。
[0048] 本発明にお 、て、 HOMO、 LUMOの値は、米国 Gaussian社製の分子軌道計算 用ソフトウェアである Gaussian98 (Gaussian98、 Revision A. 11. 4, M. J. Fris ch, et al. , Gaussian, Inc. , Pittsburgh PA, 2002. )を用いて計算した時の 値であり、本発明におけるホスト化合物の HOMO、 LUMOの値は、キーワードとして B3LYP/6— 31G *を用いて構造最適化を行うことにより算出した値 (eV単位換算 値)と定義し、本発明における燐光性ィ匕合物の HOMO、 LUMOの値は、キーワード として B3LYPZLanL2DZを用いて構造最適化を行うことにより算出した値 (eV単位 換算値)と定義する。この計算値が有効な背景には、この手法で求めた計算値と実 験値の相関が高いためである。
[0049] 本発明において、 "HOMO準位が低い"とは、 HOMO準位の絶対値が小さいこと を表し、例えば、化合物 Aと化合物 Bの HOMO準位がそれぞれ 5. 45eV、 一 5. 3 OeVであるとき、化合物 Bの方が化合物 Aよりも HOMO準位が低いと言う。また、 "L UMO準位が低い"とは、 LUMO準位の絶対値が小さいことを表し、例えば、化合物 Aと化合物 Bの LUMO準位がそれぞれ— 1. 12eV、—0. 85eVであるとき、化合物 Bの方が化合物 Aよりも LUMO準位が低!、と言う。
[0050] 本発明の有機 EL素子において、発光層にはホストイ匕合物と燐光性ィ匕合物を含有 する。発光層中の主成分であるホストイ匕合物に対する燐光性ィ匕合物との混合比は、 好ましくは質量で 0. 1〜30質量%未満の範囲に調整することである。
[0051] また、本発明の第 2の課題に鑑みて、有機エレクト口ルミネッセンス素子(以下、有 機 EL素子ともいう)において、有機層の少なくとも 1層は燐光性ィ匕合物および正孔輸 送性ホスト化合物を含有する発光層であり、該燐光性ィ匕合物の HOMOがー 5. 15 〜一 3. 50eVかつ LUMOがー 1. 25〜+ 1. OOeVであり、該正孔輸送性ホスト化合 物の励起三重項エネルギー T1が 2. 7eV以上である構成とすることによって、長寿命 な有機 EL素子を得ることができた。また該有機 EL素子を用いて、照明装置、表示装 置を得ることができた。
[0052] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0053] まず、本発明の HOMO, LUMOについて説明する。
[0054] 本発明にお 、て、 HOMO、 LUMOの値は、前記同様、米国 Gaussian社製の分 子軌道計算用ソフトウェアである Gaussian98 (Gaussian98、 Revision A. 11. 4, M. J. Frisch, et al, Gaussian, Inc. , Pittsburgh PA, 2002.;)を用いて計算 した時の値であり、キーワードとして B3LYPZLanL2DZを用いて構造最適化を行う ことにより算出した値 (eV単位換算値)と定義する。この計算値が有効な背景には、こ の手法で求めた計算値と実験値の相関が高いためである。
[0055] 本発明にお 、て、正孔輸送性ホスト化合物(以下、ホストイ匕合物とも 、う)とは、正孔 移動度を
h、電子移動度を
eとしたとき、 μ > μ
h eとなるホストイ匕合物のことである。 正孔移動度 及び電子移動度 はタイムォブフライト (T. O. F)法により以下のよ
h e
うに測定する。測定には、例えば、ォプテル社製 TOF— 301を用いることができ、ホ ストの薄膜を ITO半透明電極及び金属電極間に挟んだ試料に、 ITO側から照射した パルス波によって生成したシート状キャリアの過渡電流特性より正孔移動度、電子移 動度が求められる。
[0056] 本発明において、励起 3重項エネルギー準位 (T1)値は以下の式により定義する。
[0057] X= 1239. 8/Y
式中、 Xは励起三重項エネルギー(eV)、 Yはリン光の 0— 0バンド(nm)を表す。リ ン光の 0— 0バンド(nm)は、下記のようにして求めることができる。
[0058] 測定するホストイ匕合物を、よく脱酸素されたエタノール Zメタノール =4Zl (vol/v ol)の混合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度 77Kで励起 光を照射し、励起光照射後 100msでの発光スペクトルを測定する。リン光は蛍光に 比べ発光寿命が長いため、 100ms後に残存する光はほぼリン光であると考えること ができる。なお、リン光寿命が 100msより短い化合物に対しては遅延時間を短くして 測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうとリン光 と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択する 必要がある。
[0059] また、上記溶剤系で溶解できな 、ィ匕合物にっ 、ては、その化合物を溶解しうる任意 の溶剤を使用してもよい (実質上、上記測定法ではリン光波長の溶媒効果はごくわず かなので問題ない)。
[0060] 次に 0— 0バンドの求め方である力 本発明においては、上記測定法で得られたリ ン光スペクトルチャートの中で最も短波長側に現れる発光極大波長をもって 0— 0バ ンドと定義する。
[0061] リン光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判 別が難しくなるケースがある。このような場合には定常光スペクトルを拡大し、励起光 照射後 100ms後の発光スペクトル (便宜上これをリン光スペクトルと言う)と重ねあわ せリン光スペクトルに由来する定常光スペクトル部分力 ピーク波長を読み取ることで 決定することができる。また、リン光スペクトルをスムージング処理することでノイズとピ ークを分離しピーク波長を読み取ることもできる。なお、スムージング処理としては、 S avitzky&Golayの平滑化法等を適用することができる。
[0062] 本発明者等は、第 2の目的に対し、鋭意検討の結果、前記一般式(1)で表される燐 光性ィ匕合物を用いた有機 EL素子は、長寿命となることを見出した。
[0063] 次に、前記一般式(1)で表される燐光性ィ匕合物について説明する。
[0064] 本発明に用いられる燐光性ィ匕合物は励起三重項からの発光が観測されるが、更に 燐光量子収率が 25°Cにおいて 0. 001以上であることが好ましぐ更に好ましくは燐 光量子収率が 0. 01以上であり、特に好ましくは 0. 1以上である。
[0065] 燐光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸善)に 記載の方法により測定できる。溶液中での燐光量子収率は種々の溶媒を用いて測 定できるが、任意の溶媒の 、ずれかにお 、て上記燐光量子収率が達成されればよ い。
[0066] 一般式(1)で表される燐光性化合物は、 HOMOがー 5. 15〜一 3. 50eV、 LUM O力 S— 1. 25〜+ 1. OOeVである。好ましく ίま HOMO力 S— 4. 80〜一 3. 50eV、 LU MOが一 0. 80〜+ 1. OOeVである。
[0067] 一般式(1)で表される燐光性ィ匕合物において、 Rで表される置換基としては、例え
1
ば、アルキル基(例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert— ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、トリデシル基、テトラ デシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロ へキシル基等)、アルケニル基 (例えば、ビュル基、ァリル基等)、アルキニル基 (例え ば、ェチニル基、プロパルギル基等)、芳香族炭化水素環基 (芳香族炭素環基、ァリ ール基等ともいい、例えば、フエ-ル基、 p—クロ口フエ二ル基、メシチル基、トリル基、 キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニ ル基、フ ナントリル基、インデュル基、ピレニル基、ビフヱ-リル基等)、芳香族複素 環基 (例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベン ゾイミダゾリル基、ピラゾリル基、ピラジュル基、トリァゾリル基 (例えば、 1, 2, 4ートリア ゾール—1—ィル基、 1, 2, 3—トリァゾール— 1—ィル基等)、ォキサゾリル基、ベン ゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチアゾリル基、フラザ-ル 基、チェ-ル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾ
チェ-ル基、ジベンゾチェ-ル基、インドリル基、カルバゾリル基、カルボリニル基、ジ ァザカルバゾリル基 (前記カルボリニル基のカルボリン環を構成する炭素原子の一つ が窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジ -ル基、トリアジ -ル基、キナゾリ-ル基、フタラジニル基等)、複素環基 (例えば、ピロリジル基、イミダ ゾリジル基、モルホリル基、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、 エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキ シ基、ドデシルォキシ基等)、シクロアルコキシ基 (例えば、シクロペンチルォキシ基、 シクロへキシルォキシ基等)、ァリールォキシ基 (例えば、フエノキシ基、ナフチルォキ シ基等)、アルキルチオ基 (例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、 ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアル キルチオ基 (例えば、シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチ ォ基 (例えば、フエ-ルチオ基、ナフチルチオ基等)、アルコキシカルボ-ル基 (例え ば、メチルォキシカルボニル基、ェチルォキシカルボニル基、ブチルォキシカルボ二 ル基、ォクチルォキシカルボニル基、ドデシルォキシカルボニル基等)、ァリールォキ シカルボ-ル基(例えば、フエ-ルォキシカルボ-ル基、ナフチルォキシカルボ-ル 基等)、スルファモイル基(例えば、アミノスルホ -ル基、メチルアミノスルホ -ル基、ジ メチルアミノスルホ -ル基、ブチルアミノスルホ -ル基、へキシルアミノスルホ -ル基、 シクロへキシルアミノスルホ -ル基、ォクチルアミノスルホ -ル基、ドデシルアミノスル ホ-ル基、フエ-ルアミノスルホ -ル基、ナフチルアミノスルホ -ル基、 2—ピリジルァ ミノスルホ -ル基等)、ァシル基 (例えば、ァセチル基、ェチルカルボ-ル基、プロピ ルカルボニル基、ペンチルカルボ-ル基、シクロへキシルカルボ-ル基、ォクチルカ ルボニル基、 2—ェチルへキシルカルボ-ル基、ドデシルカルポ-ル基、フエ二ルカ ルボニル基、ナフチルカルボ-ル基、ピリジルカルボ-ル基等)、ァシルォキシ基(例 えば、ァセチルォキシ基、ェチルカルボ-ルォキシ基、ブチルカルボ-ルォキシ基、 ォクチルカルボ-ルォキシ基、ドデシルカルボ-ルォキシ基、フエ-ルカルポ-ルォ キシ基等)、アミド基 (例えば、メチルカルボニルァミノ基、ェチルカルボニルァミノ基、 ジメチルカルボ-ルァミノ基、プロピルカルボ-ルァミノ基、ペンチルカルボ-ルァミノ 基、シクロへキシルカルボ-ルァミノ基、 2—ェチルへキシルカルボ-ルァミノ基、オタ チルカルボ-ルァミノ基、ドデシルカルポ-ルァミノ基、フエ-ルカルポ-ルァミノ基、 ナフチルカルボニルァミノ基等)、力ルバモイル基 (例えば、ァミノカルボ-ル基、メチ ルァミノカルボ-ル基、ジメチルァミノカルボ-ル基、プロピルァミノカルボ-ル基、ぺ ンチルァミノカルボ-ル基、シクロへキシルァミノカルボ-ル基、ォクチルァミノカルボ -ル基、 2—ェチルへキシルァミノカルボ-ル基、ドデシルァミノカルボ-ル基、フエ -ルァミノカルボ-ル基、ナフチルァミノカルボ-ル基、 2—ピリジルァミノカルボ-ル 基等)、ウレイド基 (例えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基
、シクロへキシルウレイド基、ォクチルゥレイド基、ドデシルウレイド基、フエ-ルゥレイ ド基、ナフチルウレイド基、 2—ピリジルアミノウレイド基等)、スルフィエル基 (例えば、 メチルスルフィ-ル基、ェチルスルフィ-ル基、ブチルスルフィ-ル基、シクロへキシ ルスルフィ-ル基、 2—ェチルへキシルスルフィエル基、ドデシルスルフィ-ル基、フ ェ-ルスルフィ-ル基、ナフチルスルフィ-ル基、 2—ピリジルスルフィ -ル基等)、ァ ルキルスルホ -ル基(例えば、メチルスルホ -ル基、ェチルスルホ -ル基、ブチルス ルホ -ル基、シクロへキシルスルホ -ル基、 2—ェチルへキシルスルホ -ル基、ドデ シルスルホ -ル基等)、ァリールスルホ -ル基またはへテロアリールスルホ -ル基(例 えば、フエ-ルスルホ-ル基、ナフチルスルホ-ル基、 2—ピリジルスルホ -ル基等) 、アミノ基 (例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、プチルァミノ基、シク 口ペンチルァミノ基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァ-リノ基、ナフ チルァミノ基、 2—ピリジルァミノ基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基 、シリル基 (例えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエ-ルシリル基 、フエ-ルジェチルシリル基等)等が挙げられる。これらの置換基のうち、好ましいもの はアルキル基もしくはァリール基である。
[0068] Zは 5〜7員環を形成するのに必要な非金属原子群を表す。 Zにより形成される 5〜 7員環としては、例えば、ベンゼン環、ナフタレン環、ピリジン環、ピリミジン環、ピロ一 ル環、チオフ ン環、ピラゾール環、イミダゾール環、ォキサゾール環及びチアゾール 環等が挙げられる。これらのうちで好ましいものは、ベンゼン環である。
[0069] B〜Bは炭素原子、窒素原子、酸素原子もしくは硫黄原子を表し、少なくとも一つ
1 5
は窒素原子を表す。これら 5つの原子により形成される含窒素複素環としては単環が 好ましい。例えば、ピロール環、ピラゾール環、イミダゾール環、トリァゾール環、テトラ ゾール環、ォキサゾール環、イソォキサゾール環、チアゾール環、イソチアゾール環、 ォキサジァゾール環及びチアジアゾ一環ル等が挙げられる。これらのうちで好まし!/、 ものはピラゾール環、イミダゾール環であり、更に好ましくはイミダゾール環である。こ れらの環は上記の置換基によって更に置換されて 、てもよ 、。置換基として好ま Uヽ ものはアルキル基及びァリール基であり、更に好ましくはァリール基である。
[0070] Lは X、 Xと共に 2座の配位子を形成する原子群を表す。 X— L—Xで表される 2
1 1 2 1 1 2 座の配位子の具体例としては、例えば、置換または無置換のフエ-ルビリジン、フエ -ルピラゾール、フエ-ルイミダゾール、フエ-ルトリァゾール、フエ-ルテトラゾール、 ビラザボール、ピコリン酸及びァセチルアセトン等が挙げられる。これらの基は上記の 置換基によって更に置換されて 、てもよ 、。
[0071] mlは 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。中でも、 m2は 0である場合が好ましい。 Mで表される金属としては
1
、元素周期表の 8〜: LO族の遷移金属元素(単に遷移金属とも言う)が用いられるが、 中でもイリジウム、白金が好ましぐ更に好ましくはイリジウムである。なお一般式(1) で表される燐光性ィ匕合物は、重合性基または反応性基を有して 、ても ヽなくてもょ ヽ
[0072] また、前記一般式(1)は前記一般式(la)で表されることがより好ましい。
[0073] 一般式(la)において、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに
1 2 3
必要な非金属原子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8
1
族〜 10族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し 、 Lは Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または
1 1 2
3の整数を表し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。
[0074] 一般式(la)において、 R、 R、 Rで表される置換基は前記一般式(1)における R
1 2 3 1 で表される置換基と同義である。また、 Z、 M、 Xおよび X、 L等についても前記
1 1 2 1 一 般式(1)におけるものと同義である。また、 ml、 m2も同義である。
[0075] また、一般式 (la)の Rで表される基として、芳香族炭化水素環基 (芳香族炭素環
2
基)が好ましぐなかでも置換ァリール基が好ましぐ置換ァリールとして下記一般式 ( lb)で表される基が好ま U、。
[0076] [化 5] 一般式 (1b)
Figure imgf000018_0001
[0077] 一般式(lb)において、 Rは、立体パラメータ値 (Es値)がー 0. 5以下の置換基を
4
表す。 Rは Rと同じで、 n5は 0〜4の整数を表す。尚、 *は結合位置を表す。
5 1
[0078] ここで、 Es値とは化学反応性より誘導された立体パラメータであり、この値が小さけ れば小さ!/、ほど立体的に嵩高 、置換基と!/、うことができる。
[0079] 以下、 Es値にっ 、て説明する。一般に、酸性条件下でのエステルの加水分解反応 にお!/、ては、置換基が反応の進行に対して及ぼす影響は立体障害だけと考えてよ いことが知られており、この事を利用して置換基の立体障害を数値ィ匕したものが Es値 である。
[0080] 例えば置換基 Xの Es値は、次の化学反応式
X-CH COOR +H 0→X-CH COOH+R OH
2 X 2 2 X
で表される、酢酸のメチル基の水素原子 1つを置換基 Xで置換した α位モノ置換酢 酸から誘導される α位モノ置換酢酸エステルを酸性条件下で加水分解する際の反 応速度定数 kXと、次の化学反応式
CH COOR +H 0→CH COOH+R OH (Rは Rと同じである)で表される、上記の α位モノ置換酢酸エステルに対応する酢
X Υ
酸エステルを酸性条件下で加水分解する際の反応速度定数 kHカゝら次の式で求めら れる。
Figure imgf000019_0001
置換基 Xの立体障害により反応速度は低下し、その結果 kXく kHとなるので Es値 は通常負となる。実際に Es値を求める場合には、上記の二つの反応速度定数 kXと k Hを求め、上記の式により算出する。
[0082] Es値の具体的な例は、 Unger, S. H. , Hansch, C. , Prog. Phys. Org. Che m. , 12, 91 (1976)に詳しく記載されている。また、『薬物の構造活性相関』 (化学 の領域増刊 122号、南江堂)、「American Chemical Society Professional Reference Book, ' Exploring QSAR' p. 81 Table 3— 3」にも、その具体的 な数値の記載がある。次にその一部を表 1に示す。
[0083] [表 1]
Figure imgf000019_0002
[0084] ここで、注意するのは本明細書で定義するところの Es値は、メチル基のそれを 0とし て定義したのではなぐ水素原子を 0としたものであり、メチル基を 0とした Es値から 1 . 24を差し引いたものである。
[0085] 本発明において Rは、立体パラメータ値 (Es値)がー 0. 5以下の置換基を表す。
4
好ましくは 7. 0以上 0. 6以下であり、最も好ましくは 7. 0以上 1. 0以下であ る。
[0086] また、本発明にお 、ては、 Rに、例えば、ケトーエノール互変異性体が存在し得る
4
合、ケト部分はェノールの異性体として Es値を換算している。他の互変異性が存在 する場合も同様の換算方法において Es値を換算する。
[0087] 以下に本発明の一般式(1)、また一般式(la)で表されるリン光発光性ィヒ合物の具 体的な例を挙げるが、本発明はこれらに限定されるものではない。
[0088] [化 6]
Figure imgf000021_0001
[0089] [化 7]
Figure imgf000022_0001
[6^ ] [1600]
Figure imgf000023_0001
Figure imgf000023_0002
■ 80動 OAV
Figure imgf000024_0001
[0092] [化 10] -41 1 42
Figure imgf000025_0001
Figure imgf000026_0001
[0094] [化 12]
Figure imgf000027_0001
[0095] [化 13]
Figure imgf000028_0001
[0096] [化 14]
Figure imgf000029_0001
[0097] [化 15]
Figure imgf000030_0001
[0098] [化 16]
Figure imgf000031_0001
[0099] [化 17] 星〔0
Figure imgf000032_0001
Figure imgf000033_0001
[0101] [化 19] ϋ/:匿 O/-002τ1£AV
Figure imgf000034_0001
§ΐο
Figure imgf000035_0001
[0103] [化 21]
Figure imgf000036_0001
[0104] [化 22] -110
Figure imgf000037_0001
[0105] これらの金属錯体は、例えば、 Organic Letter誌 vol3 No. 16、 2579〜258 1頁(2001 Inorganic Chemistry 第 30卷 第 8号 1685〜1687頁(1991年
J. Am. Chem. Soc. 123卷 4304頁(2001年)、 I garde Chemistry 第 40卷 第 7号 1704〜1711頁(2001年)、 Inorganic Chemistry 第 41卷 第 12号 3055〜3066頁(2002年)、 New Journal of Chemistry 第 26卷 1 171頁(2002年)、 European Journal of Organic Chemistry 第 4卷 695 〜709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用するこ とにより合成できる。
[0106] 次に、第 1の課題を解決する請求の範囲第 1項〜第 5項及び第 13項〜第 18項の 構成に記載された発明に係るホスト化合物について説明する。
[0107] 請求の範囲第 1項〜第 5項及び第 13項〜第 18項の構成に記載された発明に用い られるホスト化合物は、 HOMO準位が— 5. 42〜一 3. 50eV、 LUMO準位が— 1. 20〜+ 0. 00eVであり、発光層に含有される化合物のうちで室温(25°C)において 燐光発光の燐光量子収率が、 0. 01未満の化合物である。
[0108] 請求の範囲第 1項〜第 5項及び第 13項〜第 18項の構成に記載された発明に用い られるホストイ匕合物としては、併用される燐光性ィ匕合物の燐光 0— 0バンドよりも短波 長なそれをもつ化合物が好ましく、燐光性化合物にその燐光 0― 0バンドが 470nm 以下である青色の発光成分を含む化合物を用いる場合には、ホスト化合物としては 燐光 0— 0バンド力 60nm以下であることが好ましい。
[0109] 本発明における燐光の 0— 0バンドの測定方法について説明する。まず、燐光スぺ タトルの測定方法にっ 、て説明する。
[0110] 測定するホストイ匕合物をよく脱酸素されたエタノール Zメタノール =4Zl (vol/vol )の混合溶媒に溶かし、燐光測定用セルに入れた後、液体窒素温度 77° Kで励起 光を照射し、励起光照射後 100msでの発光スペクトルを測定する。燐光は蛍光に比 ベ発光寿命が長いため、 100ms後に残存する光はほぼ燐光であると考えることがで きる。なお、燐光寿命が 100msより短い化合物に対しては遅延時間を短くして測定し ても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうと、燐光と蛍 光が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要 がある。
[0111] また、上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意 の溶剤を使用してもよい (実質上、上記測定法では燐光波長の溶媒効果はごくわず かなので問題ない)。
[0112] 次に 0— 0バンドの求め方である力 本発明においては、上記測定法で得られた燐 光スペクトルチャートの中で最も短波長側に現れる発光極大波長をもって 0— 0バン ドと定義する。
[0113] 燐光スペクトルは通常強度が弱いことが多いため、拡大するとノイズとピークの判別 が難しくなるケースがある。このような場合には励起光照射直後の発光スペクトル (便 宜上これを定常光スペクトルと言う)を拡大し、励起光照射後 100ms後の発光スぺク トル (便宜上これを燐光スペクトルと言う)と重ね合わせ、燐光スペクトルに由来する定 常光スペクトル部分力もピーク波長を読みとることで決定することができる。また、燐 光スペクトルをスムージング処理することでノイズとピークを分離し、ピーク波長を読み とることもできる。なお、スムージング処理としては、 Savitzky&Golayの平滑化法等 を適用することができる。
[0114] 請求の範囲第 1項〜第 5項及び第 13項〜第 18項の構成に記載された発明に用い られるホスト化合物は構造的には特に制限はなぐ低分子化合物でも繰り返し単位を もつ高分子化合物でもよぐビニル基やエポキシ基のような重合性基を有する低分子 化合物 (蒸着重合性ホスト化合物)でもいい。正孔輸送能、電子輸送能を有しつつ、 且つ発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ま しい。
[0115] 請求の範囲第 1項〜第 5項及び第 13項〜第 18項の構成に記載された発明におけ るホストイ匕合物は、代表的には力ルバゾール誘導体、トリアリールァミン誘導体、芳香 族ボラン誘導体、含窒素複素環化合物、チォフェン誘導体、フラン誘導体、オリゴァ リーレンィ匕合物等の基本骨格を有するもの、またはカルボリン誘導体ゃ該カルボリン 誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが、窒素 原子で置換されている環構造を有する誘導体等が挙げられる。
[0116] ホストイ匕合物として具体的には、下記一般式(2)で表される化合物が好ましい。
[0117] [化 23] 一般式 (2J
Figure imgf000039_0001
[0118] 一般式 (2)において、 Ar及び Arは各々芳香族炭化水素基または芳香族複素環
1 2
基を表す。 Ar及び Arで表される芳香族炭化水素基 (芳香族炭素環基、ァリール基
1 2
等とも言う)としては、例えば、フエニル基、 p クロ口フエ二ル基、メシチル基、トリル基
、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテニル基、フルォレ -ル基、フエナントリル基、インデュル基、ピレニル基、ビフエ-リル基等が挙げられる
。 Ar及び Arで表される芳香族複素環基としては、例えば、ピリジル基、ピリミジ -ル
1 2
基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジ -ル基、トリァゾリル基 (例えば、 1, 2, 4 トリァゾールー 1ーィル基、 1, 2, 3 トリア ゾールー 1 ィル基等)、ォキサゾリル基、ベンゾォキサゾリル基、チアゾリル基、イソ ォキサゾリル基、イソチアゾリル基、フラザ-ル基、チェ-ル基、キノリル基、ベンゾフ リル基、ジベンゾフリル基、ベンゾチェ二ル基、ジベンゾチェニル基、インドリル基、力 ルバゾリル基、カルボリニル基、ジァザカルバゾリル基(前記カルボリ-ル基のカルボ リン環を構成する炭素原子の一つが窒素原子で置き換わったものを示す)、キノキサ リニル基、ピリダジニル基、トリアジ-ル基、キナゾリ-ル基、フタラジニル基等が挙げ られる。
なお、これらの基は各々置換基を有していてもよぐ該置換基としては、アルキル基 (例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 t ブチル基等)、シクロ アルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、アルケニル基 (例え ば、ビニル基、ァリル基等)、アルキニル基 (例えば、ェチニル基等)、芳香族炭化水 素基 (芳香族炭素環基、ァリール基等ともいい、例えば、フエニル基、 2, 6 ジメチル フエニル基等)、芳香族複素環基 (ヘテロァリール基ともいい、例えば、フリル基、チェ ニル基、ピリジル基、ピリダジル基、ピリミジル基、ビラジル基、トリアジル基、イミダゾリ ル基、ピラゾリル基、チアゾリル基、キナゾリル基、フタラジル基等)、複素環基 (ヘテロ 環基ともいい、例えば、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサゾリジル 基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基等)、シクロアルコキシ基 (例え ば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基 (例え ば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェ チルチオ基等)、シクロアルキルチオ基 (例えば、シクロペンチルチオ基、シクロへキ シルチオ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナフチルチオ基等)、ァ ルコキシカルボ-ル基(例えば、メチルォキシカルボ-ル基、ェチルォキシカルボ- ル基等)、ァリールォキシカルボ-ル基(例えば、フエ-ルォキシカルボ-ル基、ナフ チルォキシカルボ-ル基等)、スルファモイル基(例えば、アミノスルホ -ル基、メチル アミノスルホニル基、ジメチルアミノスルホニル基等)、ァシル基 (例えば、ァセチル基 、ェチルカルボ-ル基等)、ァシルォキシ基 (例えば、ァセチルォキシ基、ェチルカル ボニルォキシ基等)、アミド基 (例えば、メチルカルボ-ルァミノ基、ェチルカルボ-ル アミノ基、ジメチルカルボニルァミノ基等)、力ルバモイル基 (例えば、ァミノカルボ-ル 基、メチルァミノカルボニル基、ジメチルァミノカルボニル基等)、ウレイド基 (例えば、 メチルウレイド基、ェチルウレイド基等)、アミノ基 (例えば、アミノ基、ェチルァミノ基、 ジメチルァミノ基、ジフヱ-ルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素 原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリフルォロメチ ル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基 (例えば、トリメチル シリル基等)等が挙げられる。
[0120] また Arと Arで置換された窒素原子は、更に Arと Arの窒素原子が置換した位置
1 2 1 2
の隣接位と窒素原子の間で環を形成してもよぐ具体的には下記のような構造をとつ てもよい。
[0121] [化 24]
Figure imgf000041_0001
[0122] Raは水素原子、アルキル基、シクロアルキル基、芳香族炭化水素基、芳香族複素
1
環基または複素環基を表し、置換基を有していてもよい。
[0123] Raで表されるアルキル基としては、例えば、メチル基、ェチル基、プロピル基、イソ
1
プロピル基、ブチル基、イソブチル基、 S ブチル基、 t ブチル基、ペンチル基、イソ ペンチル基、ネオペンチル基、 t ペンチル基、へキシル基、イソへキシル基、ォクチ ル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、 2—ェチルーへ キシル基、ゥンデシル基、テトラデシル基等が挙げられる。 Raで表されるシクロアル
1
キル基としては、例えば、シクロペンチル基、シクロへキシル基等が挙げられる。 Ra
1 で表される芳香族炭化水素基、及び芳香族複素環基としては、例えば、上述の Arと
1
Arの説明で挙げた芳香族炭化水素基等及び芳香族複素環基等が挙げられる。 Ra
2
で表される複素環基としては、例えば、ピロリジル基、イミダゾリジル基、モルホリル基
1
、ォキサゾリジル基等が挙げられる。なお、これらの基は各々置換基を有していてもよ ぐ該置換基としては上述の Ar及び Arの置換基の例として挙げたものと同様のもの
1 2
が挙げられる。
[0124] 一般式 (2)で表される化合物のうち、一般式 (3)〜一般式 (5)で表される化合物が 更に好ましい。
[0125] [化 25] 一般式 (3)
Ar3
-Ar5— {L)nl— N
Ar2
[0126] 一般式 (3)にお 、て、 Ar〜Arは芳香族炭化水素基または芳香族複素環基を表
1 4
し、置換基を有していてもよい。 Ar Ar
1〜 4で表される基としては、具体的には一般式 (
2)における Ar及び Arと同様のものが挙げられる。また、 Arと Arで置換された窒
1 2 1 2
素原子または Arと Arで置換された窒素原子は、一般式(2)における Ar及び Arと
3 4 1 2 同様に、更に Ar及び Arの窒素原子、または Arと Arの窒素原子が置換した位置
1 2 3 4
の隣接位と窒素原子の間で環を形成してもよい。
[0127] Arは 2価のァリーレン基またはへテロアリーレン基を表し、置換基を有していてもよ
5
い。 Arで表されるァリーレン基またはへテロアリーレン基としては、例えば、 1, 3—フ
5
ェ-レン、 1, 4—フエ-レン、 1, 5—ナフチレン、ピリジン一 2, 5—ジィル等が挙げら れる。 Lは 2価の連結基を表し、 nlは 0〜6の整数を表し、複数の Lは各々異なってい ても同一でもよい。
[0128] [化 26]
一般式 (4)
Figure imgf000043_0001
[0129] 一般式(4)にお!/、て、 R、 Rは置換基を表し、 nl及び n2は 0〜4を表す。 Ar〜Ar
1 2 1 4 は芳香族炭化水素基または芳香族複素環基を表し、置換基を有していてもよい。 Ar 〜Arで表される基としては、具体的には一般式(2)における Ar及び Arと同様のも
1 4 1 2 のが挙げられる。
[0130] Raは水素原子、アルキル基、シクロアルキル基、芳香族炭化水素基、芳香族複素
1
環基または複素環基を表し、更に置換基を有していてもよい。また、 Arと Arで置換
1 2 された窒素原子または Arと Arで置換された窒素原子は、一般式(2)における Ar
3 4 1 及び Arと同様〖こ、更に Ar及び Arの窒素原子、または Arと Arの窒素原子が置換
2 1 2 3 4
した位置の隣接位と窒素原子の間で環を形成してもよい。
[0131] [化 27] 一般式 (5}
Figure imgf000043_0002
[0132] 一般式(5)にお 、て、 Raは水素原子、アルキル基、シクロアルキル基、芳香族炭
1
化水素基、芳香族複素環基または複素環基を表し、更に一般式 (2)において上記 A r及び Arが有してもよい置換基で置換されていてもよい。 R、 Rは各々置換基を表
1 2 1 2
し、 nl、 n2は 0〜4を表す。
[0133] —般式(3) ^ ^—般式(5)で表される化合物のうち、下記一般式 (6)〜一般式 (8)で 表される化合物が更に好ま 、。
[0134] [化 28]
Figure imgf000044_0001
[0135] 一般式(6)にお 、て、 R〜Rは置換基を表し、 nl〜n5は 0〜4を表す。 Lは 2価の
1 5
連結基を表し、 nlは 0〜6の整数を表し、複数の Lは各々異なっていても同一でもよい [0136] [化 29] 一般式 (7)
Figure imgf000044_0002
[0137] 一般式(7)において、 R〜Rは置換基を表し、 nl、 n3及び n5は 0〜4を表し、 n2
1 5
及び n4は 0〜3を表し、 Lは 2価の連結基を表し、 nlは 0〜6の整数を表し、複数の L は各々異なって ヽても同一でもよ 、。
[0138] Ra及び Raは水素原子、アルキル基、シクロアルキル基、芳香族炭化水素基、芳
2 3
香族複素環基または複素環基を表し、更に一般式 (2)において上記 Ar及び Arが
1 2 有してもょ 、置換基で置換されて 、てもよ!、。
[0139] [化 30]
Figure imgf000045_0001
[0140] 一般式(8)にお!/、て、 R〜Rは置換基を表し、 nl〜n6は 0〜4を表す。 Raは水素
1 6 4 原子、アルキル基、シクロアルキル基、芳香族炭化水素基、芳香族複素環基または 複素環基を表し、更に一般式(2)において上記 Ar及び Arが有してもよい置換基で
1 2
置換されていてもよい。
[0141] 一般式(3)〜(8)で表される!/、ずれか 1つの化合物にお!、て、 R〜Rで各々表さ
1 6
れる置換基としては、上記一般式(2)において、上記 Ar及び Arが有してもよい置
1 2
換基と同義である。
[0142] Lが表す 2価の連結基としては、アルキレン基、ァルケ-レン基、アルキ-レン基、ァ リーレン基などの炭化水素基の他へテロ原子を含むものであってもよぐまたチォフエ ンー 2, 5 ジィル基ゃピラジン 2, 3 ジィル基のような芳香族複素環を有する化 合物(ヘテロ芳香族化合物とも言う)に由来する 2価の連結基であってもよいし、 O ―、— S―、—NR—(Rは水素原子または置換基を表す)などのカルコゲン原子であ つてもよい。また、アルキルイミノ基、ジアルキルシランジィル基ゃジァリールゲルマン ジィル基のようなヘテロ原子を介して連結する基でもよい。 [0143] 請求の範囲第 1項〜第 5項及び第 13項〜第 18項の構成に記載された発明におい て、ホストイ匕合物として用いられる化合物の具体例を以下に示す。
[0144] [化 31]
Figure imgf000046_0001
[0145] [化 32]
Figure imgf000047_0001
§〔〕εε醫
Figure imgf000048_0001
[0147] [化 34]
Figure imgf000049_0001
[0148] [化 35]
Figure imgf000050_0001
[0149] [化 36]
Figure imgf000051_0001
]
Figure imgf000052_0001
[0151] [化 38]
Figure imgf000053_0001
Figure imgf000054_0001
[0153] [化 40]
Figure imgf000055_0001
Figure imgf000055_0002
[0154] [化 41]
Figure imgf000056_0001
Figure imgf000056_0002
Figure imgf000056_0003
Figure imgf000057_0001
[0156] [化 43]
Figure imgf000058_0001
[0157] [化 44]
Figure imgf000059_0001
[0158] [化 45]
Figure imgf000060_0001
[0159] [化 46]
[ ] [0910]
Figure imgf000061_0001
Figure imgf000062_0001
[0161] 次に、本発明の請求の範囲第 6項〜第 18項の構成に記載された発明に係わる有 機 EL素子の構成層につ 、て詳細に説明する。
[0162] 請求の範囲第 6項〜第 18項の構成に記載された発明において、有機 EL素子の層 構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極 Z発光層 Z陰極
(ii)陽極 Z正孔輸送層 Z発光層 Z陰極
(iii)陽極 Z正孔輸送層 Z発光層 Z電子輸送層 Z陰極
(iv)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(v)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極 バッファ一層 z陰極
(vi)陽極 Z正孔注入層 Z正孔輸送層 Z正孔輸送層 AZ発光層 Z電子輸送層 Z陰 極バッファ一層 z陰極
《発光層》 請求の範囲第 6項〜第 18項の構成に記載された発明に係る発光層について説明 する。
[0163] 請求の範囲第 6項〜第 18項の構成に記載された発明に係る発光層は、電極また は電子輸送層、正孔輸送層等力 注入されてくる電子及び正孔が再結合して発光 する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面で あってもよい。
[0164] (燐光性ィ匕合物 (リン光性ドーパント、リン光発光性化合物ともいう))
請求の範囲第 6項〜第 18項の構成に記載された発明において、有機 EL素子の発 光層には、燐光性ィ匕合物 (リン光性ドーパント、リン光発光性ィ匕合物ともいう)とホスト 化合物が含有される。本発明においては、燐光性化合物として前述した本発明に係 る化合物を用いることが好まし 、。
[0165] 更に公知の燐光性ィ匕合物を複数種併用してもよい。リン光性ドーパントを複数種用 いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ること ができる。リン光性ドーパントの種類、ドープ量を調整することで白色発光が可能であ り、照明、ノ ックライトへの応用もできる。
[0166] 公知の燐光性ィ匕合物の具体例としては、以下の文献に記載されている化合物が挙 げられる。
[0167] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001
— 181616号公報、特開 2002— 280179号公報、特開 2001— 181617号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02,15645号パンフ レッド、特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003 — 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0168] (発光ホスト化合物)
請求の範囲第 6項〜第 18項の構成に係わる発光層に使用される材料としては、上 記の燐光性ドーパントの他に発光ホストイ匕合物がある。
[0169] ここで、本発明においてホストイ匕合物とは、発光層に含有される化合物のうちで室 温(25°C)においてリン光発光のリン光量子収率が、 0. 01未満の化合物と定義され る。
[0170] 本発明においては、ホストイ匕合物として正孔輸送性ホストイ匕合物を用いることが好ま しい。これにより、よりいつそう連続駆動時の素子の発光寿命を長くすることができる。
[0171] 本発明において、正孔輸送性ホストイ匕合物(以下、ホストイ匕合物ともいう)とは、前述 したように、正孔移動度を h、電子移動度を > μ
eとしたとき、 μ
h eとなるホストイ匕合 物のことである。
[0172] 請求の範囲第 6項〜第 18項の構成に記載された発明において用!ヽられる発光ホ ストィ匕合物としては、構造的には特に制限は無いが、代表的には力ルバゾール誘導 体、トリアリールァミン誘導体等が挙げられる。
[0173] 以下に力ルバゾール誘導体、トリアリールァミン誘導体等の具体例を挙げる力 本 発明はこれらに限定されない。
[0174] [化 48]
Figure imgf000065_0001
[0175] [化 49]
Figure imgf000066_0001
[0176] [化 50]
Figure imgf000067_0001
[0177] [化 51]
Figure imgf000068_0001
[0178] [化 52]
Figure imgf000069_0001
[0179] [化 53]
Figure imgf000070_0001
[0180] [化 54]
Figure imgf000071_0001
]
Figure imgf000072_0001
Figure imgf000072_0002
[0182] 本発明の請求の範囲第 6項〜第 18項の構成に係わる発光ホストイ匕合物としては、 発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ま 、。
[0183] 発光ホストイ匕合物の具体例としては、以下の文献に記載されている化合物が好適 である。例えば、特開 2001— 257076号公報、同 2001— 313179号公報、同 200 2— 319491号公報、同 2001— 357977号公報、同 2002— 334786号公報、同 2 002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号公報、同 20 02— 334788号公報、同 2002— 43056号公報、同 2002— 334789号公報、同 2 002— 75645号公報、同 2002— 105445号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 203683号公報、同 2002— 363227号公報、 同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 27048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、 同 2002— 302516号公報、同 2002— 308837号公報、同 2000— 21572号公報 、同 2004— 288381号公報等。
[0184] 次に、本発明の請求の範囲第 1項〜第 5項及び 13項〜 18項の構成に係わる代表 的な有機 EL素子の構成にっ 、て述べる。
[0185] 《有機 EL素子の構成層》
本発明の請求の範囲第 1項〜第 5項及び 13項〜 18項に係わる有機 EL素子の構 成層について説明する。
[0186] 本発明の請求の範囲第 1項〜第 5項及び 13項〜 18項の構成に係わる有機 EL素 子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
[0187] (i)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(ii)陽極 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(m)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極
(iv)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極
(V)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極バッファ一層 z陰極
(vi)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
(vii)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電
子輸送層 Z陰極バッファ一層 Z陰極
(viii)陽極 Z正孔輸送層 Z中間層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バ ッファー層 Z陰極
この中でも、 (viii)の構成が最も好ま 、。
[0188] 《中間層》
本発明請求の範囲第 1項〜第 5項及び 13項〜 18項の構成に係わる中間層とは発 光層と正孔輸送層との間の層のことである。該層に含まれる材料の性質によっては、 該層を正孔輸送層と呼ぶこともあり、電子阻止層と呼ぶこともある。本発明において は、該中間層中に発光層に含有されるホスト化合物と同じ材料を含有することが好ま しい。 [0189] 《阻止層(電子阻止層、正孔阻止層)》
本発明請求の範囲第 1項〜第 5項及び 13項〜 18項の構成に係る阻止層(例えば 、電子阻止層、正孔阻止層)について説明する。
[0190] 本発明請求の範囲第 1項〜第 5項及び 13項〜 18項の構成に係る阻止層の膜厚と しては好ましくは 3〜 1 OOnmであり、更に好ましくは 5〜 30nmである。
[0191] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0192] 正孔阻止層としては、例えば、特開平 11 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー 'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。
[0193] 本発明の請求の範囲第 1項〜第 5項及び 13項〜 18項の構成に係わる有機 EL素 子は、構成層として正孔阻止層を有し、該正孔阻止層が前記カルボリン誘導体また は該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくと も一つが窒素原子で置換されている環構造を有する誘導体を含有することが好まし い。
[0194] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0195] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。 [0196] 正孔輸送材料としては特に制限はなぐ従来、光導伝材料にお!、て、正孔の電荷 注入輸送材料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送 層に使用される公知のものの中から任意のものを選択して用いることができる。
[0197] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するもの であり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0198] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級アミンィ匕 合物を用いることが好まし 、。
[0199] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061, 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0200] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0201] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として 使用することができる。
[0202] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0203] 又、請求の範囲第 6項〜 18項の構成に係わる有機 EL素子においては、不純物ド ープした p性の高い正孔輸送層を用いることも出来る。その例としては、特開平 4— 2 97076号公報、特開 2000— 196140号公報、特開 2001— 102175号公報、 Ap pi. Phys. , 95, 5773 (2004)などに記載されたもの力 S挙げ、られる。
[0204] 本発明においては、このような p性の高い正孔輸送層を用いることが、より低消費電 力の素子を作製することができるため好ましい。
[0205] 《正孔輸送層 A》
本発明の請求の範囲第 6項〜 18項の構成に係る正孔輸送層 Aについて説明する
[0206] 発光層と陽極の間に 2層以上の正孔輸送層があるとき、発光層と接する側の正孔 輸送層を正孔輸送層 Aと呼ぶ。
[0207] 本発明に係る正孔輸送層 Aに使用できる材料は、正孔輸送性であることに加えて、 発光層で生成した励起子力 エネルギー移動を阻止するために、リン光性ドーパント よりも高い励起 3重項エネルギーを有していることが必要となる。白色光源または青色 、緑色、赤色を利用したフルカラーのディスプレイ材料を作製する場合には、青色成 分が必須となるが、青色のリン光性材料の励起 3重項エネルギー (T1)が高ぐその ため正孔輸送層 Aの材料としては 2. 7eV以上の T1レベルが必要となる。
[0208] 本発明の請求の範囲第 6項〜 18項の構成に係る正孔輸送層 Aの正孔輸送性材料 としては、前述した本発明の正孔輸送性ホストイ匕合物が挙げられる。これにより、より いっそう長寿命な有機 EL素子とすることができる。なお、正孔輸送層 Aに含有される 正孔輸送性材料と発光層に含有される正孔輸送性ホスト化合物は同一でも異なって いても良い。
[0209] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層もしくは複数層を設 けることができる。
[0210] 電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよ ぐその材料としては従来公知の化合物の中から任意のものを選択して用いることが できる。
[0211] この電子輸送層に用いられる材料 (以下、電子輸送材料と言う)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。更に、上記ォキサジァゾール誘導体において、ォキサジァゾール 環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として 知られて!/ヽるキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用い ることがでさる。
[0212] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0213] また 8—キノリノール誘導体の金属錯体、例えば、トリス(8—キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリ 一もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等 で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光 層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いること 力 Sできるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体 も電子輸送材料として用いることができる。
[0214] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0215] 本発明の請求の範囲第 6項〜 18項の構成においては、又、不純物ドープした n性 の高い電子輸送層を用いることも出来る。その例としては、特開平 4— 297076号公 報、特開 2000— 196140号公報、特開 2001— 102175号公報、 Appl. Phys. , 95, 5773 (2004)などに記載されたものが挙げられる。
[0216] 本発明においては、このような η性の高い電子輸送層を用いることがより低消費電 力の素子を作製することができるため好ましい。
[0217] 次に、本発明の有機 EL素子の構成層として用いられる注入層について説明する。
[0218] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。
[0219] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0220] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として銅フタ ロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0221] 陰極バッファ一層(電子注入層)は特開平 6— 325871号公報、同 9 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチ ゥムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるァ ルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属 化合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物バッファ一層等が挙げら れる。
[0222] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるがその 膜厚は 0. 1〜: LOOnmの範囲が好ましい。
[0223] この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5〜5000nm程度である。こ の注入層は上記材料の一種または二種以上力もなる一層構造であってもよい。
[0224] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド (ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O
2 2 3
-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよ!ヽ。陽極はこれらの 電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー 法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要とし ない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の 形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合に は、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω Ζ口以下が好ましい。更に膜厚は材料にもよるが通常 10〜: LOOOnm、好ましくは 10〜200nmの範囲で選ばれる。
[0225] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物 、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )混合物、インジウム、リチウム
2 3 Zアルミニウム混合物、希 土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合 物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )混合
2 3 物、リチウム Zアルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させて作製することができ る。また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 10〜: LO OOnm、好ましくは 50〜200nmの範囲で選ばれる。なお発光を透過させるため、有 機 EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光 輝度が向上し好都合である。
[0226] 《基体 (基板、基材、支持体等とも言う)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好 ま 、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムであ る。
[0227] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテル エーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート
(PC)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP
)等力 なるフィルム等が挙げられる。
[0228] 榭脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01gZm2'dayatm以下の高 ノ リア性フィルムであることが好まし ヽ。
[0229] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1%以上であるこ と力 子ましく、より好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である。
[0230] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0231] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。
[0232] 多色表示装置として用いる場合は、少なくとも 2種類の異なる発光極大波長を有す る有機 EL素子カゝらなるが、有機 EL素子を作製する好適な例を説明する。
[0233] 《有機 EL素子の作製方法》
本発明の請求の範囲第 1項〜第 5項、及び第 13項〜 18項の構成に係わる有機 E L素子の作製方法の一例として、陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z正孔 阻止層/電子輸送層/陰極バッファー層/陰極力もなる有機 EL素子の作製法に ついて説明する。
[0234] まず適当な基体上に所望の電極物質、例えば、陽極用物質力 なる薄膜を 1 μ m 以下、好ましくは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法に より形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸 送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成さ せる。
[0235] この有機化合物を含有する薄膜の薄膜ィ匕の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐ且つピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、そ の蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50 〜450°C、真空度 10一6〜 10— 2Pa、蒸着速度 0. 01〜50nmZ秒、基板温度ー50〜3 00°C、膜厚 0. 1〜5 μ mの範囲で適宜選ぶことが望ましい。
[0236] これらの層の形成後、その上に陰極用物質力もなる薄膜を 1 μ m以下、好ましくは 5 0〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法によ り形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素 子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ま しいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不 活性ガス雰囲気下で行う等の配慮が必要となる。
[0237] 《表示装置》
本発明の請求の範囲第 1項〜第 5項、及び第 13項〜 18項の構成に係わる表示装 置について説明する。本発明の表示装置は上記有機 EL素子を有する。
[0238] 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説 明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸 着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
[0239] 発光層のみパターニングを行う場合その方法に限定はないが、好ましくは蒸着法、 インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを 用いたパター-ングが好ましい。また作製順序を逆にして、陰極、電子輸送層、正孔 阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
[0240] このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を +、 陰極を—の極性として電圧 2〜40V程度を印加すると発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じな!/ヽ。更に交流電圧を印加 する場合には、陽極が +、陰極が—の状態になったときのみ発光する。なお、印加 する交流の波形は任意でょ 、。
[0241] 多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができ る。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を用 いることにより、フルカラーの表示が可能となる。表示デバイス、ディスプレイとしては、 テレビ、ノ ソコン、モノくィル機器、 AV機器、文字放送表示、自動車内の情報表示等 が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよぐ動 画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマ トリタス)方式でもアクティブマトリクス方式でもどちらでもよ ヽ。
[0242] 発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広 告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、 光センサーの光源等が挙げられるがこれに限定するものではない。
[0243] 《照明装置》
本発明の請求の範囲第 1項〜第 5項、及び第 13項〜 18項の構成に係わる照明装 置について説明する。本発明の照明装置は上記有機 EL素子を有する。
[0244] 本発明の請求の範囲第 1項〜第 5項、及び第 13項〜 18項の構成に係わる有機 E L素子に共振器構造を持たせた有機 EL素子として用いてもよぐこのような共振器構 造を有した有機 EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機 の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定 されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
[0245] また、本発明の請求の範囲第 1項〜第 5項、及び第 13項〜 18項の構成に係わる 有機 EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画 像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を直接視認するタ イブの表示装置 (ディスプレイ)として使用してもよい。動画再生用の表示装置として 使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式でもアクティブ マトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有機 EL 素子を 2種以上使用することにより、フルカラー表示装置を作製することが可能である
[0246] 《有機 EL素子の作製方法》
本発明の請求の範囲第 6項〜 18項の構成に係わる有機 EL素子の作製方法の一 例として、図 1に示した陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z電子輸送層 Z 陰極バッファー層/陰極力もなる有機 EL素子の作製法にっ 、て、説明する。
[0247] まず適当な基体上に、所望の電極物質、例えば陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは ΙΟηπ!〜 200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正 孔輸送層、発光層、電子輸送層等の有機化合物を含有する薄膜を形成させる。
[0248] この有機化合物を含有する薄膜の形成方法としては、スピンコート法、キャスト法、 インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐかつピンホ ールが生成しにくい等の点から、真空蒸着法またはスピンコート法、インクジェット法、 印刷法が特に好ましい。さらに層ごとに異なる製膜法を適用してもよい。
[0249] 製膜に蒸着法を採用する場合、その蒸着条件は、使用する化合物の種類等により 異なるが、一般にボート加熱温度 50°C〜450°C、真空度 10— 6Pa〜10— 2Pa、蒸着速 度 0. 01nm〜50nmZ秒、基板温度— 50。C〜300。C、膜厚 0. 1ηπι〜5 ;ζ πιの範 囲で適宜選ぶことが望ま 、。
[0250] これらの層の形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 0nm〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法に より形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても力まわない。その際、作業を 乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[0251] 《表示装置》
本発明請求の範囲第 6項〜 17項の構成に係わる表示装置について説明する。
[0252] 本発明の有機 EL素子を用いた画像表示装置としては単色でも多色でもよい。多色 表示装置の場合は、各色発光ユニット毎に、シャドーマスクを設け、各色毎に蒸着法 、キャスト法、スピンコート法、インクジェット法、印刷法等により発光層を形成する。
[0253] 発光ユニットにパターユングを行う場合、その方法に限定はないが、好ましくは蒸着 法、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスク を用いたパターユングが好まし 、。
[0254] 単色、例えば白色の場合は、パターニングすることなく一面に蒸着法、キャスト法、 スピンコート法、インクジェット法、印刷法等により発光層を形成する。
[0255] また作製順序を逆にして、陰極、電子輸送層、発光層、正孔輸送層、正孔注入層、 陽極の順に作製することも可能である。 [0256] このようにして得られた画像表示装置に、直流電圧を印加する場合には、陽極を + 、陰極を—の極性として電圧 2〜40V程度を印加すると、発光が観測できる。また、 逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電 圧を印加する場合には、陽極が +、陰極が一の状態になったときのみ発光する。な お、印加する交流の波形は任意でよい。
[0257] 白色表示装置の場合は、表示デバイス、ディスプレイ、各種発光光源として用いる ことができる。表示デバイス、ディスプレイにおいて、白色有機 EL素子をバックライト に用いることにより、フルカラーの表示が可能となる。
[0258] 表示デバイス、ディスプレイとしてはテレビ、ノ ソコン、モパイル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもょ ヽ。
[0259] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられるがこれに限定するものではない。
[0260] 《照明装置》
本発明の請求の範囲第 6項〜 18項の構成に係わる照明装置について説明する。
[0261] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されない。
[0262] また、本発明の有機 EL素子は、照明用や露光光源のような一種のランプとして使 用しても良いし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画 像を直接視認するタイプの表示装置 (ディスプレイ)として使用しても良い。動画再生 用の表示装置として使用する場合の駆動方式は単純マトリクス (パッシブマトリクス) 方式でもアクティブマトリクス方式でもどちらでも良い。または、異なる発光色を有する 本発明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製す ることが可能である。
[0263] 本発明の有機 EL素子を白色発光の素子として用いる場合は、 BGRのカラーフィル ターとの組み合わせによりフルカラー表示を行うことが出来る。
[0264] 本発明に係わる有機 EL素子は、また、照明装置として、実質白色の発光を生じる 有機 EL素子に適用できる。
[0265] 以下、本発明の請求の範囲第 1項〜 18項の構成に係わる有機 EL素子を有する表 示装置の一例を図面に基づいて説明する。
[0266] 図 2は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。ディスプレイ 1は複数の画素を有する表示部 A、画像情報に基づいて 表示部 Aの画像走査を行う制御部 B等力もなる。制御部 Bは表示部 Aと電気的に接 続され、複数の画素それぞれに外部からの画像情報に基づ!、て走査信号と画像デ ータ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次 発光して画像走査を行って画像情報を表示部 Aに表示する。
[0267] 図 3は表示部 Aの模式図である。表示部 Aは、基板上に複数の走査線 5及びデー タ線 6を含む配線部と複数の画素 3等とを有する。表示部 Aの主要な部材の説明を 以下に行う。図においては、画素 3の発光した光が、白矢印方向(下方向)へ取り出さ れる場合を示して!/、る。配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材 料からなり、走査線 5とデータ線 6は格子状に直交して、直交する位置で画素 3に接 続して 、る(詳細は図示して 、な 、)。画素 3は走査線 5から走査信号が印加されると 、データ線 6から画像データ信号を受け取り、受け取った画像データに応じて発光す る。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上 に並置することによって、フルカラー表示が可能となる。
[0268] 次に、画素の発光プロセスを説明する。
[0269] 図 4は画素の模式図である。画素は有機 EL素子 10、スイッチングトランジスタ 11、 駆動トランジスタ 12、コンデンサ 13等を備えている。複数の画素に有機 EL素子 10と して、赤色、緑色、青色発光の有機 EL素子を用い、これらを同一基板上に並置する ことでフルカラー表示を行うことができる。
[0270] 図 4において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。画像データ信号の伝達により、コンデンサ 13が画像デ ータ信号の電位に応じて充電されるとともに、駆動トランジスタ 12の駆動がオンする。 駆動トランジスタ 12は、ドレインが電源ライン 7に接続され、ソースが有機 EL素子 10 の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源 ライン 7から有機 EL素子 10に電流が供給される。制御部 Bの順次走査により走査信 号が次の走査線 5に移ると、スイッチングトランジスタ 11の駆動がオフする。しかし、ス イッチングトランジスタ 11の駆動がオフしてもコンデンサ 13は充電された画像データ 信号の電位を保持するので、駆動トランジスタ 12の駆動はオン状態が保たれて、次 の走査信号の印加が行われるまで有機 EL素子 10の発光が継続する。順次走査に より次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電 位に応じて駆動トランジスタ 12が駆動して有機 EL素子 10が発光する。
[0271] 即ち、有機 EL素子 10の発光は複数の画素それぞれの有機 EL素子 10に対して、 アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて、複数 の画素 3それぞれの有機 EL素子 10の発光を行って 、る。このような発光方法をァク ティブマトリクス方式と呼んでいる。ここで、有機 EL素子 10の発光は、複数の階調電 位を持つ多値の画像データ信号による複数の階調の発光でもよ!/、し、 2値の画像デ ータ信号による所定の発光量のオン、オフでもよい。また、コンデンサ 13の電位の保 持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加さ れる直前に放電させてもょ ヽ。
[0272] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0273] 図 5はパッシブマトリクス方式による表示装置の模式図である。図 5において、複数 の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられて いる。
[0274] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して 、る画素 3が画像データ信号に応じて発光する。ノッシブマトリクス方式では画 素 3にアクティブ素子が無く、製造コストの低減が計れる。
[0275] 本発明請求の範囲第 6項〜第 18項の構成に係わる白色有機 EL素子においては、 必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターユング を施してもよい。パターユングする場合は、電極のみをパターユングしてもいいし、電 極と発光層をパターユングしても 、 、し、素子全層をパターユングしても 、 、。
[0276] このように、本発明請求の範囲第 6項〜第 18項の構成に係わる白色発光有機 EL 素子は、前記表示デバイス、ディスプレイに加えて、各種発光光源、照明装置として 、家庭用照明、車内照明、また、露光光源のような一種のランプとして、液晶表示装 置のバックライト等、表示装置にも有用に用いられる。
[0277] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
[0278] 本発明請求の範囲第 1項〜第 5項、及び第 13項〜 18項の構成に係る有機 EL材 料は、また照明装置として実質白色の発光を生じる有機 EL素子に適用できる。複数 の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複 数の発光色の組み合わせとしては、青色、緑色、青色の 3原色の 3つの発光極大波 長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した 2つの発光極大波長を含有したものでもよ 、。
[0279] また、複数の発光色を得るための発光材料の組み合わせは、複数の燐光または蛍 光で発光する材料を、複数組み合わせたもの、蛍光または燐光で発光する発光材料 と、発光材料力 の光を励起光として発光する色素材料との組み合わせたものの ヽ ずれでもよいが、本発明に係る白色有機 EL素子においては、燐光性化合物を複数 組み合わせ混合するだけでよい。発光層もしくは正孔輸送層あるいは電子輸送層等 の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよぐ他 層は共通であるのでマスク等のパターユングは不要であり、一面に蒸着法、キャスト 法、スピンコート法、インクジェット法、印刷法等で、例えば、電極膜を形成でき、生産 性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白 色有機 EL装置と異なり、素子自体が発光白色である。
[0280] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!、。
[0281] このように、本発明請求の範囲第 1項〜第 5項及び第 13項〜 18項の構成に係る白 色発光有機 EL素子は前記表示デバイス、ディスプレイに加えて、各種発光光源、照 明装置として、家庭用照明、車内照明、また露光光源のような一種のランプとして、ま た液晶表示装置のバックライト等、表示装置にも有用に用いられる。
[0282] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0283] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。また、 実施例に用 ヽる化合物を下記に示す。
[0284] 実施例 1 (請求の範囲 1〜6及び 13〜18に対する実施例)
《化合物の HOMO準位及び LUMO準位の計算》
以下に示す化合物について、 HOMO、 LUMOの値を計算した。米国 Gaussian 社製の分子軌道計算用ソフトウェアである Gaussian98 (Gaussian98、 Revision A. 11. 4, M. J. Frisch, et al. , Gaussian, Inc. , Pittsburgh PA, 2002. ) を用いて計算した時の値であり、ホスト化合物の HOMO、 LUMOの値はキーワード として B3LYP/6— 31G *を用い、燐光性化合物の HOMO、 LUMOの値は、キー ワードとして B3LYPZLanL2DZを用いて算出した。結果を以下に示す。
[0285] [表 2] 化合物名 HO O(eV) LUMO(eV) 燐光性化合物 Fir(pic) -5.99 -2.36
EXD- 1 -4.72 -1.00
-5.13 一 0.97
-5.02 一 1.20
1 - 1 -4.37 一 0.57
1 - 2 -4.53 -0.76
1— 5 -4.18 -0.42 1-山山
1—39 -4.75 -0.17 o
-4.70 -0.67
1—75 -4.34 -0.55
1—90 -4.26 一 0.47
1 -99 -4.36 -0.66
FIr6 -5.92 -2.20 ホスト化合物 CBP -5.31 -1.22
EXH- 1 -5.50 -0.95
EXH- 2 -6.52 -0.59 一 NPD -4.86 -1.40
H— 6 -4.87 -1.06
H— 9 -5.14 -1.08
H-16 -4.66 -0.47
H-26 -5.13 -0.80
-5.36 -0.70
-5.31 一 1.17
-4.97 -0.44
H— 54 -5.30 一 0.65
-5.34 -0.74
-5.12 -0.66
-5.09 -0.89
H-83 -5.15 一 1.20
H— 82 -5.34 -0.94 ]
Figure imgf000091_0001
Figure imgf000091_0002
《有機 EL素子 1—1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso—プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、 5 つのタンタル製抵抗力卩熱ボートに、 a—NPD、 CBP、 Fir (pic)、 BC、 Alqをそれぞ
3 れ入れ、真空蒸着装置 (第 1真空槽)に取り付けた。更に、タンタル製抵抗加熱ボート にフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、 真空蒸着装置の第 2真空槽に取り付けた。
[0288] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で透明支持基板に膜 厚 90nmの厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0289] 更に、 CBPの入った前記加熱ボートと Fir (pic)の入ったボートとをそれぞれ独立に 通電して、ホストイ匕合物である CBPと燐光性ィ匕合物である Fir (pic)の蒸着速度が 10 0 : 6になるように調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0290] 次いで、 BCの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2nm Z秒で厚さ lOnmの正孔阻止層を設けた。更に、 Alqの入った前記加熱ボートを通
3
電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 20nmの電子輸送層を設けた。
[0291] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチ ゥム入りのボートに通電して蒸着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極 ノ ッファー層を設け、次いでアルミニウムの入ったボートに通電して蒸着速度 l〜2n mZ秒で膜厚 150nmの陰極をつけ、封止することで有機 EL素子 1— 1を作製した。
[0292] [化 57]
Figure imgf000092_0001
[0293] 《有機 EL素子 1— 2〜1— 21の作製》 有機 EL素子 1—1の作製において、表 3に記載のようにホストイ匕合物、燐光性化合 物の材料を変更した以外は同様にして、有機 EL素子 1— 2〜1— 21を作製した。
[0294] 《有機 EL素子の評価》
得られた有機 EL素子 1 1〜1 21について室温下、 2. 5mAZcm2の定電流条 件下による連続点灯を行い、初期輝度の半分の輝度になるのに要する時間( τ )を
1/2 測定した。発光寿命は、有機 EL素子 1—1を 100とする相対値で表した。得られた結 果を表 3に示す。
[0295] [表 3]
Figure imgf000093_0001
[0296] 表 3から、本発明で規定する HOMO、 LUMO準位の関係を有するホストイ匕合物と 燐光性ィ匕合物を組み合わせた有機 EL素子は、比較例の有機 EL素子に比べ、発光 寿命が長くなることが明らかである。
[0297] 《有機 EL素子 1 22の作製》 陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso—プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、 5 つのタンタル製抵抗力卩熱ボートに、 a— NPD、 H— 9、 Fir (pic)、: BAlq、 Alqをそれ
3 ぞれ入れ、真空蒸着装置 (第 1真空槽)に取り付けた。更に、 2つのタングステン製抵 抗加熱ボートにマグネシウム(以下 Mg)と銀 (以下 Ag)をそれぞれ入れ、真空蒸着装 置の第 2真空槽に取り付けた。
[0298] [化 58] α— NPD ΒΑΙα
Figure imgf000094_0001
[0299] まず、第 1の真空槽を 4 X 10_4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で透明支持基板に膜 厚 90nmの厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0300] 更に、 H— 9の入った前記加熱ボートと Fir (pic)の入ったボートとをそれぞれ独立 に通電して、ホストイ匕合物である H— 9と燐光性ィ匕合物である Fir (pic)の蒸着速度が 100 : 6になるように調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0301] 次いで、 BAlqの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ 10nmの正孔阻止層を設けた。更に、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 20nmの電子輸送層を設けた
[0302] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。第 2真空槽を 2 X 10_4Paまで減圧した後、 Mgの入 つた前記加熱ボートと Agの入ったボートをそれぞれ独立に通電して共蒸着し、膜厚 1 50nmの MgAg (10 : 1)陰極をつけ、封止することで有機 EL素子 1— 22を作製した
《有機 EL素子 1— 23〜 1 30の作製》
有機 EL素子 1— 22の作製において、表 4に記載のようにホストイ匕合物、燐光性ィ匕 合物の材料を変更した以外は同様にして、有機 EL素子 1— 22〜: L— 30を作製した
《有機 EL素子の評価》
得られた有機£1^素子1 22〜1 30にっぃて室温下、 2. 5mAZcm2の定電流 条件下による連続点灯を行い、初期輝度の 70%の輝度になるのに要する時間を測 定した。発光寿命は、有機 EL素子 2— 22を 100とする相対値で表した。得られた結 果を表 4に示す。
[0303] [表 4]
Figure imgf000095_0001
[0304] 実施例 2 (請求の範囲 1〜6及び 13〜18)
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例 1の有機 EL素子 1 7を青色発光素子として用 、た。
[0305] (緑色発光素子の作製)
実施例 1の有機 EL素子 1—7において、ホストイ匕合物を CBP、ドーパントを Ir (ppy) に変更した以外は同様にして緑色発光素子を作製し、これを緑色発光素子として用 いた。
[0306] (赤色発光素子の作製)
実施例 1の有機 EL素子 1—7において、ホストイ匕合物を CBP、ドーパントを Ir (btpy ) に変更した以外は同様にして、赤色発光素子を作製し、これを赤色発光素子として
3
用いた。
[0307] 上記で作製した赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 2に 記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。 図 3には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基 板上に複数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光 の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は格子 状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。
[0308] 前記複数画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子で あるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリ タス方式で駆動されており、走査線 5から走査信号が印加されると、データ線 6から画 像データ信号を受け取り、受け取った画像データに応じて発光する。このように赤、 緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。
[0309] このフルカラー表示装置は、駆動することにより、輝度が高ぐ高耐久性を有し、且 つ鮮明なフルカラー動画表示が得られることが分力つた。
[0310] [化 59] ir(ppyh lr(btpy)3
Figure imgf000096_0001
[0311] 実施例 3 (請求の範囲 1〜6及び 13〜18)
《白色発光素子及び白色照明装置の作製》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入 Z輸送層として a—NPDを 90nmの厚さで成膜し、更に H 6の入った前記加熱ボートと化合物 1 2の入ったボート及び Ir (btpy)の入ったボ
3 ートをそれぞれ独立に通電して、ホストィヒ合物である H— 6、燐光性化合物である化 合物 1— 2及び Ir(btpy)の蒸着速度が 100 : 5 : 0. 6になるように調節し、膜厚 30nm
3
の厚さになるように蒸着し発光層を設けた。
[0312] 次!、で、 BCを lOnm成膜して正孔阻止層を設けた。更に、 Alqを 40nmで成膜し
3
電子輸送層を設けた。
[0313] 次に、実施例 1と同様に電子注入層の上に、ステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。
[0314] この素子を実施例 1と同様な方法、及び同様な構造の封止構造を有する平面ラン プを作製した。この平面ランプに通電したところほぼ白色の光が得られ、照明装置と して使用できることが分力つた。
[0315] 実施例 4 : (請求の範囲 7〜18に対する実施例)
〈有機 EL素子 la— l〜la— 13の作製〉
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を 150nm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボ ートに α— NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 H 八ー7を20011^入れ、別のモリブデン製抵抗加熱ボートに例示リン光性ィ匕合物 1—1 を lOOmg入れ、更に別のモリブデン製抵抗加熱ボートに BAlqを 200mg入れ、真空 蒸着装置に取付けた。
[0316] 次 、で真空槽を 4 X 10一4 Paまで減圧した後、 ひ一NPDの入った前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZsecで透明支持基板に蒸着し 20nmの正孔輸 送層を設けた。
[0317] 更に例示化合物 HA— 7と例示リン光性化合物 1 1の入った前記加熱ボートに通 電して加熱し、それぞれ蒸着速度 0. 2nmZsec、 0. OlnmZsecで前記正孔輸送 層上に共蒸着して 40nmの発光層を設けた。更に BAlqの入つた前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZsecで前記発光層上に蒸着して膜厚 30nmの 電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
[0318] 引き続き、陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更にアルミ-ゥ ム l lOnmを蒸着して陰極を形成し、有機 EL素子 la— 1を作製した。
[0319] 有機 EL素子 la— 1において、ホストイ匕合物およびリン光性ィ匕合物を表 5のように変 えた以外は、有機 EL素子 la— 1と同様にして有機 EL素子 la— 2〜la— 13を作製 した。
[0320] 〈比較有機 EL素子 la— 14〜: La— 16の作製〉
有機素子 la— 1にお 、て、ホストイ匕合物およびリン光性ィ匕合物を表 5のように変え た以外は、有機 EL素子 la— 1と同様にして有機 EL素子 la— 14〜: La— 16を作製し た。
[0321] 《発光寿命》
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。尚、測定には分光放射輝度計 CS— 1000 (コニカミノルタ製) を用いた。
[0322] 得られた結果を表 5に示す。ここで、表 5の発光寿命の測定結果は、有機 EL素子 1 a— 16の測定値を 100とした時の相対値で表した。
[0323] [化 60]
Figure imgf000099_0002
* :正孔移動度
:電子移動度
Figure imgf000099_0001
[0325] 表 5力ら、比較の有機 EL素子 la— 14〜: La— 16に比べて、本発明の有機 EL素子 la— 1〜: La— 13は、発光寿命が長いことがわ力る。
[0326] 実施例 5 (請求の範囲 7〜18に対する実施例)
〈有機 EL素子 2— 1〜2— 11の作製〉
陽極として 100mm X 100mm X I . 1mmのガラス基板上に ITO (インジウムチンォ キシド)を 150nm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱ボ ートに α— NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 H A— 34を 200mg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 HA— 7を 2 OOmg入れ、別のモリブデン製抵抗加熱ボートに例示化合物 1 1を lOOmg入れ、 更に別のモリブデン製抵抗加熱ボートに BAlqを 200mg入れ、真空蒸着装置に取付 けた。
[0327] 次 、で真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZsecで透明支持基板に蒸着し 20nmの正孔輸 送層を設けた。
[0328] 更に例示化合物 HA— 34を蒸着速度 0. InmZsecで前記正孔輸送層上に蒸着 して lOnmの正孔輸送層 Aを設けた。
[0329] 更に例示化合物 HA— 7と例示リン光性ィ匕合物 1 1の入った前記加熱ボートに通 電して加熱し、それぞれ蒸着速度 0. 2nmZsec、 0. 0 InmZsecで前記正孔輸送 層 A上に共蒸着して 40nmの発光層を設けた。更に BAlqの入つた前記加熱ボートに 通電して加熱し、蒸着速度 0. InmZsecで前記発光層上に蒸着して膜厚 30nmの 電子輸送層を設けた。尚、蒸着時の基板温度は室温であった。
[0330] 引き続き、陰極バッファ一層としてフッ化リチウム 0. 5nmを蒸着し、更にアルミ-ゥ ム l lOnmを蒸着して陰極を形成し、有機 EL素子 2—1を作製した。
[0331] 有機 EL素子 2— 1において、正孔輸送層 Aの材料、ホストイ匕合物およびリン光性ィ匕 合物を表 6のように変えた以外は、有機 EL素子 2—1と同様にして有機 EL素子 2— 2 〜2— 11を作製した。
[0332] 〈比較有機 EL素子 2—12〜2— 13の作製〉
有機素子 2—1において、正孔輸送層 Aの材料、ホスト化合物およびリン光性化合 物を表 6のように変えた以外は、有機 EL素子 2— 1と同様にして有機 EL素子 2— 12
〜2— 13を作製した。
[0333] 《発光寿命》
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。尚、測定には分光放射輝度計 CS— 1000 (コニカミノルタ製) を用いた。
[0334] 得られた結果を表 6に示す。ここで、表 6の発光寿命の測定結果は、有機 EL素子 2
- 11の測定値を 100とした時の相対値で表した。
[0335] [表 6]
Figure imgf000101_0001
[0336] 表 6から、比較の有機 EL素子 2— 12〜2— 13に比べて、本発明の有機 EL素子 2 ー1〜2— 11は、発光寿命が長いことがわかる。
[0337] 実施例 6 (請求の範囲 7〜18に対する実施例)
《有機 EL素子 3— 1〜3— 13の作製》
有機 EL素子 la— 1〜: La— 13において、 NPDを m— MTDATA:F4— TCNQ ( 質量比 99: 1)共蒸着膜 lOnmと NPD膜 lOnmの積層に変更し、 BAlqを BAlq膜 10 nn^BPhen: Cs (質量比 75: 25)共蒸着膜 20nmの積層に変更し、フッ化リチウムを 蒸着しな力つた以外は同様にして有機 EL素子 3— 1〜3— 13を作製した。
[0338] 得られた有機 EL素子 3— 1〜3— 13は、各々有機 EL素子 la— 1〜: La— 13と比較 して、どれも駆動電圧が 3V〜6V低電圧化することが確認された。
[0339] [化 61]
Figure imgf000102_0001
[0340] 実施例 7 (請求の範囲 7〜18に対する実施例)
実施例 4で作製した有機 EL素子 la— 1にお 、て、例示リン光性化合物 1— 1に代 ぇて例示リン光性ィ匕合物1 1、11:ー1、11:ー2 (1—1 :11:ー1 :11:ー2 = 2 : 1 : 2)を用ぃ た以外は、有機 EL素子 la— 1と同様にして有機 EL素子 4—1を作製した。
[0341] [化 62]
Figure imgf000103_0001
[0342] 《有機 EL素子 4 1を用いた画像表示装置の作製》
有機 EL素子 4 1の非発光面をガラスケースで覆い、発光面にカラーフィルターを 付け画像表示装置として用いたところ、良好なフルカラーの色表示性能を示し、優れ た画像表示装置として使用することができた。
[0343] 実施例 8 (請求の範囲 7〜18に対する実施例)
実施例 4で作製した有機 EL素子 la— 1にお 、て、例示リン光性化合物 1— 1に代 えて例示リン光性化合物 1 1、 Ir 3 ( 1— 1: Ir 3 = 1: 3)を用いた以外は、有機 E L素子 la— 1と同様にして有機 EL素子 5—1を作製した。
[0344] [化 63]
Figure imgf000103_0002
《有機 EL素子 5— 1を用いた照明装置の作製》
有機 EL素子 5— 1の非発光面をガラスケースで覆い、照明装置とした。照明装置は 、発光効率が高い白色光を発する薄型の照明装置として使用することができた。

Claims

請求の範囲
[1] 基板上に電極と少なくとも 1層の有機層を有し、該有機層の少なくとも 1層がホストイ匕 合物と燐光性ィ匕合物とを含有する発光層である有機エレクト口ルミネッセンス素子に おいて、該ホスト化合物の HOMOが— 5. 42〜一 3. 50eV、 LUMOが— 1. 20〜 + 0. OOeVであり、該燐光性化合物の HOMOがー 5. 15〜一 3. 50eV、 LUMOが - 1. 25〜+ 1. OOeVであることを特徴とする有機エレクト口ルミネッセンス素子。
[2] 前記燐光性化合物の HOMOがー 4. 80〜一 3. 50eV、 LUMOがー 0. 80〜+ 1.
OOeVであることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセン ス素子。
[3] 前記燐光性化合物が下記一般式 (1)で表されることを特徴とする請求の範囲第 1項 または第 2項に記載の有機エレクト口ルミネッセンス素子。
[化 1] 般式 (1》
Figure imgf000104_0001
(式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 M
1は元素周期表における 8〜10 族の金属を表す。 X
1及び X
2は炭素原子、窒素原子もしくは酸素原子を表し、 L
1は X 1 及び Xと共に 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。 )
[4] 前記一般式(1)で表される燐光性ィ匕合物において、 m2が 0であることを特徴とする 請求の範囲第 3項に記載の有機エレクト口ルミネッセンス素子。
[5] 前記一般式(1)で表される燐光性ィ匕合物において、 B〜Bで形成される含窒素複 素環力 ミダゾール環であることを特徴とする請求の範囲第 3項または第 4項に記載 の有機エレクト口ルミネッセンス素子。
[6] 基板上に電極と少なくとも 1層以上の有機層を有する有機エレクト口ルミネッセンス素 子にお 、て、該有機層の少なくとも 1層は燐光性化合物および正孔輸送性ホストイ匕 合物を含有する発光層であり、該燐光性化合物の HOMOがー 5. 15〜一 3. 50eV かつ LUMOがー 1. 25〜+ 1. OOeVであり、該正孔輸送性ホストイ匕合物の励起三 重項エネルギー T1が 2. 7eV以上であることを特徴とする有機エレクト口ルミネッセン ス素子。
[7] 前記燐光性化合物の HOMOがー 4. 80〜一 3. 50eVかつ LUMOがー 0. 80〜+ 1. OOeVであることを特徴とする請求の範囲第 6項に記載の有機エレクト口ルミネッセ ンス素子。
[8] 前記燐光性化合物が下記一般式 (1)で表されることを特徴とする請求の範囲第 6項 または第 7項に記載の有機エレクト口ルミネッセンス素子。
[化 2] 一般式 (1 )
Figure imgf000105_0001
〔式中、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原子群を表
1
す。 nlは 0〜5の整数を表す。 B 〜Bは炭素原子、窒素原子、酸素原子もしくは硫
1 5
黄原子を表し、少なくとも一つは窒素原子を表す。 Mは元素周期表における 8族〜 1
1
0族の金属を表す。 Xおよび Xは炭素原子、窒素原子もしくは酸素原子を表し、 Lは
1 2 1
Xおよび Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整
1 2
数を表し、 m2は 0、 1または 2の整数を表し、 ml +m2は 2または 3である。〕 前記一般式(1)で表される燐光性化合物にお 、て、 m2が 0であることを特徴とする 請求の範囲第 8項に記載の有機エレクト口ルミネッセンス素子。 [10] 前記一般式(1)で表される燐光性ィ匕合物において、 B〜Bで形成される含窒素複
1 5
素環力 ミダゾール環であることを特徴とする請求の範囲第 8項または第 9項に記載 の有機エレクト口ルミネッセンス素子。
[11] 前記発光層と陽極の間に 2層以上の正孔輸送層があり、発光層と接する正孔輸送層 Aに含まれる有機化合物の T1が 2. 7eV以上であることを特徴とする請求の範囲第 6 項〜第 10項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[12] 発光が白色であることを特徴とする請求の範囲第 6項〜第 11項のいずれか 1項に記 載の有機エレクト口ルミネッセンス素子。
[13] 前記一般式(1)が、下記一般式(la)で表されることを特徴とする請求の範囲第 3項 〜第 4項または第 8項〜第 12項のいずれか 1項に記載の有機エレクト口ルミネッセン ス素子。
[化 3] 一般式 (1a)
Figure imgf000106_0001
〔式中、 R、 R、 Rは置換基を表す。 Zは 5〜7員環を形成するのに必要な非金属原
1 2 3
子群を表す。 nlは 0〜5の整数を表す。 Mは元素周期表における 8族〜 10族の金
1
属を表す。 X X L X
1および 2は炭素原子、窒素原子もしくは酸素原子を表し、 1は 1およ び Xとともに 2座の配位子を形成する原子群を表す。 mlは 1、 2または 3の整数を表
2
し、 m2は 0、 1または 2の整数を表す力 ml +m2は 2または 3である。〕
前記一般式(la)において、 Rで表される置換基が下記一般式(lb)で表されること
2
を特徴とする請求の範囲第 13項に記載の有機エレクト口ルミネッセンス素子。
[化 4] 一般式 (1b)
Figure imgf000107_0001
〔式中、 Rは立体パラメータ値 (Es値)が— 0. 5以下の置換基を表す。 Rは置換基を
4 5 表し、 n5は 0〜4の整数を表す。尚、式中 *は結合位置を示す。〕
[15] 前記一般式(3) 1S メシチル基(2, 4, 6—トリメチルフエ-ル基)であることを特徴とす る請求の範囲第 14項に記載の有機エレクト口ルミネッセンス素子。
[16] 請求の範囲第 1項〜第 15項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を有することを特徴とする表示装置。
[17] 請求の範囲第 1項〜第 15項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を有することを特徴とする照明装置。
[18] 請求の範囲第 17項に記載の照明装置と表示手段としての液晶素子を有することを 特徴とする表示装置。
PCT/JP2007/054540 2006-03-17 2007-03-08 有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2007108327A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008506230A JP5556012B2 (ja) 2006-03-17 2007-03-08 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006074176 2006-03-17
JP2006-074176 2006-03-17
JP2006137499 2006-05-17
JP2006-137499 2006-05-17

Publications (1)

Publication Number Publication Date
WO2007108327A1 true WO2007108327A1 (ja) 2007-09-27

Family

ID=38522360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054540 WO2007108327A1 (ja) 2006-03-17 2007-03-08 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (2)

Country Link
JP (4) JP5556012B2 (ja)
WO (1) WO2007108327A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311460A (ja) * 2006-05-17 2007-11-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007335852A (ja) * 2006-05-17 2007-12-27 Mitsubishi Chemicals Corp 電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子
WO2008035664A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
WO2010109937A1 (ja) * 2009-03-26 2010-09-30 コニカミノルタホールディングス株式会社 薄膜の形成方法、当該薄膜の積層薄膜の形成方法、電子デバイスおよび有機エレクトロルミネッセンス素子
WO2011122132A1 (ja) * 2010-03-31 2011-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2012505861A (ja) * 2008-10-16 2012-03-08 ソルヴェイ(ソシエテ アノニム) 発光ダイオード用ホスト材料
JP2012526804A (ja) * 2009-05-15 2012-11-01 チェイル インダストリーズ インコーポレイテッド 有機光電素子用化合物およびこれを含む有機光電素子
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN102869659A (zh) * 2010-04-26 2013-01-09 通用显示公司 用于oled的包含联咔唑的化合物
EP2562229A1 (en) * 2011-08-25 2013-02-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, lighting device and display device
WO2014073791A1 (en) * 2012-11-09 2014-05-15 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
JP5499708B2 (ja) * 2007-10-29 2014-05-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2014519702A (ja) * 2011-05-12 2014-08-14 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機発光材料およびデバイス
CN104072488A (zh) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 一种有机电致蓝光主体材料及其制备方法和有机电致发光器件
CN104903422A (zh) * 2012-11-09 2015-09-09 Sk化学株式会社 用于有机电致发光器件的化合物以及含有该化合物的有机电致发光器件
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
CN105283525A (zh) * 2013-06-13 2016-01-27 Sk化学株式会社 用于有机电致发光器件的化合物以及含有该化合物的有机电致发光器件
WO2018186356A1 (ja) * 2017-04-04 2018-10-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置及び遷移金属錯体
CN109143781A (zh) * 2017-06-27 2019-01-04 东友精细化工有限公司 硬掩模用组合物及图案形成方法
US10224494B2 (en) 2015-08-07 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
JP2022044641A (ja) * 2015-09-30 2022-03-17 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6588688B2 (ja) * 2014-03-27 2019-10-09 旭有機材株式会社 化合物、組成物及び硬化物
CN108496259B (zh) * 2016-01-29 2020-03-03 住友化学株式会社 组合物、磷光发光性化合物和发光元件
KR102501667B1 (ko) * 2017-12-18 2023-02-21 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260448A1 (en) * 2004-05-18 2005-11-24 Chun Lin Novel organometallic compounds for use in electroluminescent devices
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006032599A (ja) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006121811A1 (en) * 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929690B2 (ja) * 1999-12-27 2007-06-13 富士フイルム株式会社 オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP4712232B2 (ja) * 2000-07-17 2011-06-29 富士フイルム株式会社 発光素子及びアゾール化合物
JP4082098B2 (ja) * 2001-06-15 2008-04-30 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及びフルカラー表示装置
JP5135660B2 (ja) * 2001-09-27 2013-02-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP3965063B2 (ja) * 2002-03-08 2007-08-22 Tdk株式会社 有機エレクトロルミネッセンス素子
JP3997937B2 (ja) * 2003-03-19 2007-10-24 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5095206B2 (ja) * 2003-03-24 2012-12-12 ユニバーシティ オブ サザン カリフォルニア イリジウム(Ir)のフェニル及びフルオレニル置換フェニル−ピラゾール錯体
JP2004311404A (ja) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2005093291A (ja) * 2003-09-18 2005-04-07 Fuji Photo Film Co Ltd 有機電界発光素子
JP4061281B2 (ja) * 2004-03-16 2008-03-12 アンリツ株式会社 光パルス試験器
WO2005101912A1 (ja) * 2004-04-14 2005-10-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US7298151B2 (en) * 2004-04-21 2007-11-20 Analog Devices, Inc. Methods and apparatus for reducing thermal noise
JP5080729B2 (ja) * 2004-09-28 2012-11-21 富士フイルム株式会社 有機電界発光素子
JP4773109B2 (ja) * 2005-02-28 2011-09-14 高砂香料工業株式会社 白金錯体及び発光素子
JP2007029426A (ja) * 2005-07-27 2007-02-08 Aruze Corp 多人数参加型ゲーム装置
WO2007029426A1 (ja) * 2005-09-05 2007-03-15 Idemitsu Kosan Co., Ltd. 青色発光有機エレクトロルミネッセンス素子
US7772761B2 (en) * 2005-09-28 2010-08-10 Osram Opto Semiconductors Gmbh Organic electrophosphorescence device having interfacial layers
CN101331626B (zh) * 2005-12-15 2011-08-17 出光兴产株式会社 有机电致发光元件用材料及使用其的有机电致发光元件
JP5333211B2 (ja) * 2007-03-29 2013-11-06 大日本印刷株式会社 有機エレクトロルミネッセンス素子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260448A1 (en) * 2004-05-18 2005-11-24 Chun Lin Novel organometallic compounds for use in electroluminescent devices
JP2006032599A (ja) * 2004-07-15 2006-02-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006121811A1 (en) * 2005-05-06 2006-11-16 Universal Display Corporation Stability oled materials and devices with improved stability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOLMES R.J. ET AL.: "Blue organic electrophosphorescence using exothermic host-guest energy transfer", APPLIED PHYSICS LETTERS, vol. 82, no. 15, April 2003 (2003-04-01), pages 2422 - 2424, XP001157817 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311460A (ja) * 2006-05-17 2007-11-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007335852A (ja) * 2006-05-17 2007-12-27 Mitsubishi Chemicals Corp 電荷輸送材料、有機電界発光素子用組成物、有機電界発光素子用薄膜および有機電界発光素子
JPWO2008035664A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2008035571A1 (ja) * 2006-09-20 2010-01-28 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
JP5644050B2 (ja) * 2006-09-20 2014-12-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料
JP5556014B2 (ja) * 2006-09-20 2014-07-23 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
WO2008035664A1 (fr) * 2006-09-20 2008-03-27 Konica Minolta Holdings, Inc. Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d'affichage et d'éclairage
JP5099013B2 (ja) * 2006-10-13 2012-12-12 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5499708B2 (ja) * 2007-10-29 2014-05-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2012505861A (ja) * 2008-10-16 2012-03-08 ソルヴェイ(ソシエテ アノニム) 発光ダイオード用ホスト材料
WO2010109937A1 (ja) * 2009-03-26 2010-09-30 コニカミノルタホールディングス株式会社 薄膜の形成方法、当該薄膜の積層薄膜の形成方法、電子デバイスおよび有機エレクトロルミネッセンス素子
JP5594286B2 (ja) * 2009-03-26 2014-09-24 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子の製造方法、および有機エレクトロルミネッセンス素子
JP2012526804A (ja) * 2009-05-15 2012-11-01 チェイル インダストリーズ インコーポレイテッド 有機光電素子用化合物およびこれを含む有機光電素子
US8815418B2 (en) 2009-05-15 2014-08-26 Cheil Industries, Inc. Compound including fluorenyl group for organic photoelectric device and organic photoelectric device including the same
US9714237B2 (en) 2010-03-31 2017-07-25 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same
US9199974B2 (en) 2010-03-31 2015-12-01 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device and organic electroluminescent device using same
WO2011122132A1 (ja) * 2010-03-31 2011-10-06 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
CN104478864A (zh) * 2010-04-26 2015-04-01 通用显示公司 用于oled的包含联咔唑的化合物
CN102869659A (zh) * 2010-04-26 2013-01-09 通用显示公司 用于oled的包含联咔唑的化合物
KR101843211B1 (ko) 2010-04-26 2018-03-28 유니버셜 디스플레이 코포레이션 Oled 용 바이카바졸 함유 화합물
JP2014519702A (ja) * 2011-05-12 2014-08-14 ケンブリッジ ディスプレイ テクノロジー リミテッド 有機発光材料およびデバイス
EP2562229A1 (en) * 2011-08-25 2013-02-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, lighting device and display device
US9260658B2 (en) 2011-08-25 2016-02-16 Konica Minolta, Inc. Organic electroluminescence element, lighting device and display device
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
CN104903422A (zh) * 2012-11-09 2015-09-09 Sk化学株式会社 用于有机电致发光器件的化合物以及含有该化合物的有机电致发光器件
US9917256B2 (en) 2012-11-09 2018-03-13 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
WO2014073791A1 (en) * 2012-11-09 2014-05-15 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device including the same
CN104072488A (zh) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 一种有机电致蓝光主体材料及其制备方法和有机电致发光器件
CN105283525A (zh) * 2013-06-13 2016-01-27 Sk化学株式会社 用于有机电致发光器件的化合物以及含有该化合物的有机电致发光器件
US11245081B2 (en) 2015-02-06 2022-02-08 Universal Display Corporation Organic electroluminescent materials and devices
US10644247B2 (en) 2015-02-06 2020-05-05 Universal Display Corporation Organic electroluminescent materials and devices
US10224494B2 (en) 2015-08-07 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11145827B2 (en) 2015-08-07 2021-10-12 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US11770969B2 (en) 2015-08-07 2023-09-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
JP2022044641A (ja) * 2015-09-30 2022-03-17 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP7325556B2 (ja) 2015-09-30 2023-08-14 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
US11925041B2 (en) 2015-09-30 2024-03-05 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2018186356A1 (ja) * 2017-04-04 2018-10-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置、表示装置及び遷移金属錯体
CN109143781A (zh) * 2017-06-27 2019-01-04 东友精细化工有限公司 硬掩模用组合物及图案形成方法
CN109143781B (zh) * 2017-06-27 2022-03-04 东友精细化工有限公司 硬掩模用组合物及图案形成方法

Also Published As

Publication number Publication date
JP5679017B2 (ja) 2015-03-04
JP5725053B2 (ja) 2015-05-27
JPWO2007108327A1 (ja) 2009-08-06
JP5556012B2 (ja) 2014-07-23
JP2013123075A (ja) 2013-06-20
JP2013102220A (ja) 2013-05-23
JP5590166B2 (ja) 2014-09-17
JP2014013910A (ja) 2014-01-23

Similar Documents

Publication Publication Date Title
JP5594384B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5679017B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5683784B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5011908B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5733294B2 (ja) 有機エレクトロルミネッセンス素子
JP5228281B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子を用いた表示装置及び照明装置
JP5115061B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2006082742A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009021336A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007029533A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009059997A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008069268A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5444594B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4830283B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006282965A (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009182088A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4967284B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006080271A (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5672292B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4968392B2 (ja) 有機エレクトロルミネッセンス素子及び表示装置
JP6112166B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008506230

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07738031

Country of ref document: EP

Kind code of ref document: A1