WO2007029533A1 - 有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2007029533A1
WO2007029533A1 PCT/JP2006/316825 JP2006316825W WO2007029533A1 WO 2007029533 A1 WO2007029533 A1 WO 2007029533A1 JP 2006316825 W JP2006316825 W JP 2006316825W WO 2007029533 A1 WO2007029533 A1 WO 2007029533A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
light emitting
emitting layer
light
Prior art date
Application number
PCT/JP2006/316825
Other languages
English (en)
French (fr)
Inventor
Noriko Yasukawa
Tomohiro Oshiyama
Eisaku Katoh
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007534334A priority Critical patent/JP5151481B2/ja
Priority to US12/064,517 priority patent/US8778509B2/en
Priority to PCT/JP2006/316825 priority patent/WO2007029533A1/ja
Publication of WO2007029533A1 publication Critical patent/WO2007029533A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • Organic electoluminescence device display device and lighting device
  • the present invention relates to an organic electoluminescence element, a display device, and a lighting device.
  • ELD electoric luminescence display
  • organic EL elements organic electroluminescence elements
  • Inorganic electoric luminescence elements have been used as planar light sources, but in order to drive the light emitting elements, an alternating high voltage is required.
  • An organic EL device has a structure in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and excitons (excitons) are generated by injecting electrons and holes into the light-emitting layer and recombining them. It is an element that emits light using the emission of light (fluorescence 'phosphorescence) when this exciton is deactivated. It can emit light at a voltage of several to several tens of volts, and is self-luminous. As a result, it is a thin-film, completely solid element with a wide viewing angle and high visibility.
  • a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the element.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped to the host compound for example, JP-A 63-264692
  • an 8-hydroxyquinoline aluminum complex is used as a host compound.
  • an element having an organic light emitting layer doped with a quinacridone dye for example, Japanese Patent Publication No. 3-255190
  • Inorganic and Organic Electroluminescence (EL '00, Hamamatsu), Ikai etc. Uses a hole-transporting compound as a host for phosphorescent compounds.
  • ME Tompson et al Use various electron transporting materials as a host of phosphorescent compounds and dope them with a novel iridium complex.
  • An iridium complex having a specific partial structure in which a 5-membered ring and a 5-membered ring are connected by a carbon-carbon bond is known as a ligand.
  • the specific compounds disclosed here are those in which at least one of the five-membered rings is condensed, and the emission wavelength as an organic EL element is only disclosed as a red element. (For example, see Patent Document 11;).
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-332291
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-332292
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-338588
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-226495
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-234894
  • Patent Document 6 International Publication No. 02Z15645 Pamphlet
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-123982
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2002-117978
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-146996
  • Patent Document 10 Pamphlet of International Publication No. 04Z016711
  • Patent Document 11 Japanese Patent Laid-Open No. 2003-252888
  • Non-Patent Document 1 Inorganic Chemistry, No. 41, No. 12, pp. 3055-3066 (2002)
  • Non-patent literature 2 Aplied Physics Letters, 79, 2082 (2001)
  • Non-patent literature 3 Aplied Physics Letters, 83, 3818 (2003)
  • Non-patent literature 4 New Journal of Chemistry, 26 Tsuji, page 1171 (2002) Disclosure of invention
  • An object of the present invention is to provide an organic EL element, an illuminating device, and a display device that have a light emission wavelength controlled, exhibit high light emission efficiency, and have a long light emission lifetime.
  • the light emitting layer contains a metal complex having a partial structure represented by the following general formula (1).
  • An organic-elect mouth luminescence element characterized by the above.
  • Each of 12 represents a substituent, and may be different or the same.
  • R 1 to R 4 each represent a hydrogen atom or a substituent, and may be different from each other or the same.
  • M Represents a group 8-10 metal in the periodic table.
  • An organic electoluminescence device containing at least a light emitting layer sandwiched between an anode and a cathode, characterized in that the light emitting layer contains a metal complex having a partial structure represented by the following general formula (2).
  • Organic-elect luminescence element Organic-elect luminescence element.
  • R and R each represent a substituent, and may be different or the same.
  • R 1 to R 4 each represent a hydrogen atom or a substituent, and may be different from each other or the same.
  • An organic electoluminescence device containing at least a light emitting layer sandwiched between an anode and a cathode, characterized in that the light emitting layer contains a metal complex having a partial structure represented by the following general formula (3).
  • Organic-elect luminescence element containing at least a light emitting layer sandwiched between an anode and a cathode, characterized in that the light emitting layer contains a metal complex having a partial structure represented by the following general formula (3).
  • Organic-elect luminescence element Organic-elect luminescence element.
  • R 1 to R 4 each represents a substituent, and may be different or the same.
  • R 1 to R 4 each represent a hydrogen atom or a substituent, and may be different from each other or the same. M is original
  • the light emitting layer contains a metal complex having a partial structure represented by the following general formula (4)
  • An organic-elect mouth luminescence element characterized by the above.
  • R 1 to R 4 each represents a hydrogen atom or a substituent
  • 41 47 At least one is — CHR U R 12 , —CH R 13 , a cycloalkyl group, — CF, an alkoxy group.
  • R U to R 13 each represent a substituent.
  • M represents a group 8-10 metal in the periodic table.
  • An organic electoluminescence device containing at least a light emitting layer sandwiched between an anode and a cathode, characterized in that the light emitting layer contains a metal complex having a partial structure represented by the following general formula (5).
  • Organic-elect luminescence element containing at least a light emitting layer sandwiched between an anode and a cathode, characterized in that the light emitting layer contains a metal complex having a partial structure represented by the following general formula (5).
  • R 1 to R 4 each represents a hydrogen atom or a substituent
  • An organic electoluminescence device comprising at least a light emitting layer sandwiched between an anode and a cathode, characterized in that the light emitting layer contains a metal complex having a partial structure represented by the following general formula (6).
  • Organic-elect luminescence element Organic-elect luminescence element.
  • R 1 to R 4 each represents a hydrogen atom or a substituent
  • At least one represents —NR 14 R 15 , and R 14 and R 15 represent a substituent.
  • M represents a group 8-10 metal in the periodic table.
  • An organic electoluminescence device sandwiched between an anode and a cathode and containing at least a light-emitting layer, wherein the light-emitting layer contains a metal complex represented by the following general formula (7) Elect mouth luminescence element.
  • R to R each represents a hydrogen atom or a substituent, and X and X are carbon atoms.
  • 1 7 4 5 represents a child or a nitrogen atom, which may be different or the same.
  • X to X are CR 8 , nitrogen source
  • R 8 and R 9 represents a hydrogen atom or a substituent. Z together with C and X 5
  • M represents a metal of Group 8 to Group 10 in the periodic table.
  • m represents an integer satisfying 3 ⁇ m ⁇ l
  • n represents an integer satisfying 2 ⁇ n ⁇ l
  • m + n represents the valence of metal M.
  • the luminescent layer further contains a carboline derivative or a derivative having a ring structure in which at least one carbon atom of a hydrocarbon ring constituting the carboline ring of the carboline derivative is replaced with a nitrogen atom.
  • the organic electoluminescence device according to any one of (1) to (8) above.
  • a hole blocking layer is provided between the light emitting layer and the cathode as a constituent layer, and the hole blocking layer is a carbon atom of a hydrocarbon ring constituting a carboline derivative or a carboline ring of the carboline derivative.
  • a positive hole transport layer is provided between the anode and the light emitting layer, and an intermediate layer is further provided between the positive hole transport layer and the light emitting layer.
  • the organic electoluminescence device according to any one of 1).
  • a display device comprising the organic electoluminescence device according to any one of (1) to (12).
  • An illuminating device comprising the organic electoluminescence element according to any one of (1) to (12) above.
  • an organic EL element material useful for an organic EL element can be obtained.
  • the emission wavelength is controlled, high emission efficiency is exhibited, and the emission life is long.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements.
  • FIG. 2 is a schematic diagram of a display unit.
  • FIG. 3 is a schematic diagram of a pixel.
  • FIG. 4 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 5 is a schematic view of a lighting device.
  • FIG. 6 is a cross-sectional view of the lighting device.
  • the organic electoluminescence device of the present invention by adopting the configuration defined in any one of claims 1 to 12, the light emission efficiency is high and the light emission life is long. An organic EL device was obtained. In addition, a display device and a lighting device including the organic EL element could be provided. [0045] Details of each component according to the present invention will be sequentially described below.
  • the metal complex will be described.
  • R 1 and R 2 represent a substituent, which may be different or the same.
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, etc.), a cycloalkyl group (for example, a cyclopentyl group, a cyclohexyl group, etc.), an alkenyl group (for example, , Vinyl group, aryl group, etc.), alkynyl group (eg, ethur group, etc.), aryl group (eg, phenol group, 2,6-dimethylphenol group, etc.), heteroaryl group (eg, furyl group, chelate group, etc.) Group, pyridyl group, pyridazyl group, pyrimidyl group, birazyl group, triazyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolyl group, phthalazyl
  • R 1 to R 4 represent a hydrogen atom or a substituent, and may be different or the same.
  • Examples of the group include the substituents mentioned in the description of R 1 and R 2.
  • M is the element circumference
  • R 1 and R 2 represent a substituent, which may be different from each other! / Or the same.
  • R to R each represents a hydrogen atom or a substituent, and may be different or the same.
  • M represents a group 8-10 metal in the periodic table, preferably iridium, platinum, ruthenium, rhodium, etc., more preferably iridium or platinum.
  • R 1 to R 4 all represent a substituent
  • substituents mentioned in the description of R 1 and R 2 in the general formula (1) are also good.
  • substituents mentioned in the description of R 1 and R 2 in the general formula (1) are also good.
  • R to R each represent a hydrogen atom or a substituent, and may be different or the same.
  • M represents a group 8-10 metal in the periodic table, preferably iridium, platinum, ruthenium, rhodium, etc., more preferably iridium or platinum.
  • R 1 to R 5 represent a hydrogen atom or a substituent
  • At least one of R is —CHR U R 12 , —CH R 13 , a cycloalkyl group (for example, cycl A pentyl group, a cyclohexyl group, etc.), a trifluoromethyl group, an alkoxy group (eg, a methoxy group, an ethoxy group, etc.), or an aryloxy group (eg, a phenoxy group, a naphthyloxy group, etc.).
  • R U to R 13 represent a substituent, for example, an alkyl group or an aryl group.
  • M represents a group 8-10 metal in the periodic table, preferably iridium, platinum, ruthenium, rhodium, etc., more preferably iridium or platinum.
  • R 1 to R 4 represent a hydrogen atom or a substituent
  • At least one of R 1 represents a cyano group.
  • M is from group 8 to group 10 in the periodic table
  • R 1 to R 4 represent a hydrogen atom or a substituent
  • At least one of R represents —NR 14 R 15 .
  • R 14 and R 15 represent a substituent, for example
  • M represents a group 8-10 metal in the periodic table, preferably iridium, platinum, ruthenium, rhodium, etc., more preferably iridium or platinum.
  • R to R represent a hydrogen atom or a substituent, and examples of the substituent include
  • 11 12 4 5 represents a nitrogen atom or a nitrogen atom, and may be different or the same.
  • X to X are CR 8
  • R 1 3 represents an element atom or NR 9
  • R 8 and R 9 represent a hydrogen atom or a substituent.
  • substituents include those mentioned in the description of R 1 and R 2 in the general formula (1).
  • Z is C
  • m represents an integer satisfying 3 ⁇ m ⁇ l
  • n represents an integer satisfying 2 ⁇ n ⁇ 1
  • m + n represents a valence of the metal M.
  • M represents a group 8-10 metal in the periodic table, preferably iridium, platinum, ruthenium, rhodium, etc., more preferably iridium or platinum. Represents.
  • the metal complex according to the present invention is, for example, Organic Letter, vol3, No. 16, 2579-2581 (2001), Inorganic Chemistry, No. 30, No. 8, 1685-1687 (199 1), J Am. Chem. Soc., 123, 4304 (2001), Inorganic Chemistry, No. 40, No. 7, 1704-1711 (2001), Inorganic Chemistry, No. 41, No. 12, 3055-3066 (2002), New Journal of Chemistry., Vol. 26, 1171 (2002), European Journal of Organic Chemistry., IV, 6 95-709 (2004), and these references Apply the methods described in the references, etc. And can be synthesized.
  • the layer is preferred and contained in the light emitting layer, it can be used as a light emitting dopant in the light emitting layer to improve the efficiency of external extraction quantum efficiency (higher brightness) of the organic EL device of the present invention and to increase the emission lifetime. Life expectancy can be achieved.
  • the light emitting layer preferably contains a light emitting host and a light emitting dopant.
  • the mixing ratio of the light-emitting host to the light-emitting host which is a host compound described later in the light-emitting layer is preferably adjusted in the range of 0.1% by mass to less than 30% by mass.
  • the phosphorescent dopant according to the present invention will be described.
  • the phosphorescent dopant according to the present invention is a compound in which emission of excited triplet force is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.). A force defined as a compound having a yield of 0.01 or more at 25 ° C. A preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 398 (1992 edition, Maruzen). Phosphorescence quantum yield in solution can be measured using various solvents
  • the phosphorescence dopant according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent.
  • the energy transfer type is to obtain light emission from the phosphorescent dopant by transferring the energy of the phosphorescent dopant to the phosphorescent dopant. It is a carrier trap type in which light emission from the optical dopant can be obtained. In either case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
  • the "fluorescent luminescent dopant" in the present invention is also the above phosphorescent luminescent dopant. Defined like a punt.
  • the luminescent dopant may be a mixture of a plurality of types of compounds.
  • the mixing partner may be other metal complexes having different structures, or phosphorescent dopants or fluorescent dopants having other structures. Good.
  • the dopant phosphorescent dopant, fluorescent dopant, etc.
  • the metal complex used as the light emitting dopant There are two types of luminescent dopants: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • Representative examples of the former include coumarin dyes, pyran dyes, cinine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes such as a dye, a pyrylium dye, a perylene dye, a stilbene dye, a polythiophene dye, or a rare earth complex phosphor.
  • a complex compound containing a metal of Group 8, 9, or 10 in the periodic table of elements is preferable, and an iridium compound or osmium is more preferable. Of these, iridium compounds are the most preferred.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Gazette, JP 2003-7469 gazette, special table 2002- 525 808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP 2002-234894, JP 2002-235076 Publication, JP 2002-241751, JP 2001-319779, 2001-319780, 2002-62824, 2002-10 0474, 2002-203679 JP 2002-343572 A, JP 2 002-203678 A, and the like.
  • a light-emitting host (simply referred to as a host compound) is a compound containing a light-emitting layer having a mass ratio of 20% or more at room temperature (25 ° C.).
  • the phosphorescence quantum yield of phosphorescence is defined as a compound with a value less than 0.1.
  • the phosphorus photon yield is less than 0.01.
  • the mass ratio in the layer is preferably 20% or more.
  • the luminescent host used in the present invention is preferably a compound having a shorter wavelength than the phosphorescent 0-0 band of the luminescent dopant used together.
  • the phosphorescence 0-0 band is preferably 460 nm or less.
  • the 0-0 band (nm) of phosphorescence of the metal complex in the present invention can be determined as follows.
  • any solvent that can dissolve the compound may be used (substantially no problem is caused by the solvent effect of the phosphorescence wavelength in the measurement method described above). ). From the obtained spectrum chart, the maximum emission wavelength on the shortest wavelength side is read.
  • the light-emitting host (host compound) used in the present invention is not particularly limited in terms of structure.
  • Power Typically, rubazole derivative, triarylamine derivative, aromatic borane derivative, nitrogen-containing complex
  • a compound having a basic skeleton such as a ring compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative, or at least one carbon atom of a hydrocarbon ring constituting the ruporin ring is a nitrogen atom. Examples thereof include derivatives having a ring structure which are substituted.
  • power rubazole derivatives carboline derivatives, and derivatives having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom are preferably used.
  • a known host compound may be used alone or in combination of two or more.
  • a plurality of types of host compounds it is possible to adjust the movement of electric charges and to make the organic EL element highly efficient.
  • multiple types of light emitting dopants which will be described later, it is possible to mix different light emission. Can be obtained.
  • the light-emitting host according to the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and may be a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation-polymerized light-emitting host). )But it is good.
  • the light-emitting host a compound that has a hole transporting ability and an electron transporting ability, prevents an increase in the wavelength of light emission, and has a high Tg (glass transition temperature) is preferable.
  • Tg glass transition temperature
  • the intermediate layer according to the present invention is a layer between the light emitting layer and the hole transport layer. Depending on the nature of the material contained in the layer, the layer may be referred to as a hole transport layer or an electron blocking layer. In the present invention, the intermediate layer preferably contains the same material as the host compound contained in the light emitting layer.
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the thickness of the blocking layer according to the present invention is preferably 3 ⁇ ! ⁇ lOOnm, more preferably 5 to 30 nm.
  • the hole blocking layer has the function of an electron transport layer, which is a material force that has the function of transporting electrons while transporting holes and is extremely small, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “The Front Line of Organic EL Devices and Their Industrialization (November 30, 1998, NTT Corporation)
  • the hole blocking (hole blocking) layer described in page 237 of “Issuance”) is applicable as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the organic EL device of the present invention preferably has a hole blocking layer as a constituent layer, and the hole blocking layer is a carbon atom of a hydrocarbon ring constituting the carboline derivative or a carboline ring of the carboline derivative. It is preferable to contain a derivative having a ring structure in which at least one of them is substituted with a nitrogen atom.
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and is a material force that has a function of transporting holes while having a remarkably small ability to transport electrons. The probability of recombination of electrons and holes can be improved by blocking the children. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • hole transport material there are no particular restrictions on the hole transport material. Conventionally, it is used in photoconductive materials as well as those commonly used as hole charge injection and transport materials, hole injection layers of organic EL devices, holes. Any of known materials used for the transport layer can be selected and used.
  • the hole transport material has a hole injection or transport, electron barrier property! /, Or a deviation, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazones Derivatives, stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-diamineamino; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N'—tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-tri-aminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-phenyl) —P tolylaminophenol) phenol methane; N, N ′ —diphenyl
  • No. 5,061,569 for example, 4, 4 ′ bis [N— (1-Naphthyl) N-Feramino] Bi-Feel (NPD), Tri-Fermi described in JP-A-4308688 Units are linked to three starburst 4, 4 ', A "- tris [ ⁇ -? (3 Mechirufue - Le) N Hue - Ruamino] bird whistle - Ruamin (MTD ATA) and the like.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as a hole injection material and a hole transport material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. be able to.
  • the thickness of the hole transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 50 OOnm or so.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be a single layer or a plurality of layers.
  • the electron transport layer only needs to have a function of transferring electrons injected from the cathode to the light-emitting layer, and any material selected from conventionally known compounds can be selected for use. .
  • Examples of materials used for this electron transport layer include -to-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and heterocyclic rings such as naphthalene perylene.
  • At least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the tetracarboxylic acid anhydride, carbopositimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxaziazole derivative, carboline derivative, or the carboline derivative of the carboline derivative is substituted with a nitrogen atom And derivatives having a cyclic structure.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • Monkey thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dive mouth) 8 quinolinol) aluminum, tris (2methyl 8quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Metal complexes replacing Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material for the light-emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, inorganic semiconductors such as n-type Si and n-type SiC Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. it can. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials. Next, an injection layer used as a constituent layer of the organic EL element of the present invention will be described.
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • the injection layer is a layer provided between the electrode and the organic layer in order to reduce the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industrial front line June 30, 1998) Chapter 2 “Electrode materials” (pages 123-166) of “Part 2” of “Tees Co., Ltd.”) describes the details of the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One layer).
  • anode buffer layer hole injection layer
  • JP-A-9-45479 JP-A-9260062, JP-A-8-288069 and the like.
  • One layer of phthalocyanine buffer represented by Russianin one layer of oxide buffer represented by vanadium oxide, one layer of amorphous carbon buffer, one layer of polymer buffer using a conductive polymer such as polyarine (emeraldine) or polythiophene, etc. Can be mentioned.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum, etc., alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, acid typified by aluminum oxide
  • there is a single buffer there is a single buffer.
  • the buffer layer is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 100 nm, although it depends on the desired material.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 nm to 5000 nm.
  • the injection layer may have a single layer structure that can be one or more of the above materials.
  • anode according to the organic EL device of the present invention a metal having a large work function (4 eV or more), An alloy, an electrically conductive compound, and a mixture thereof are preferably used.
  • electrode substances include conductive transparent materials such as metals such as Au, Cul, indium tin oxide (ITO), SnO, and ZnO. IDIXO (In O
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (about 100 m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the transmittance greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / mouth or less.
  • the film thickness depends on the material, it is usually ⁇ ! ⁇ 1000 nm, preferably 10 nm to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • Specific examples of such electrode materials include sodium, sodium-powered rhodium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum (Al O)
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 1000 nm, preferably 50 nm to 200 nm.
  • the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved and it is convenient.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc.
  • Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • the substrate is a resin film capable of giving flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyether etherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate. (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyether etherketone polyphenylene sulfide
  • PC cellulose triacetate
  • CAP cellulose acetate propionate
  • an inorganic film or an organic film or a hybrid film of both of them may be formed, and a high-nore film is preferably formed.
  • oxygen permeability measured by a method based on JIS K 7126-1987 is less than l X 10 _3 mlZ (m 2 ⁇ 24hr ⁇ MPa), measured by a method based on JIS K 7129-1992. has been water vapor permeability (25 ⁇ 0 5 ° C, relative humidity (90 ⁇ 2)% RH. ), IX 10 "3 g / (m 2 - 24h) it is preferable in the following.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film (such as an antiglare film) can be used in combination in order to reduce unevenness in light emission.
  • an organic EL element having at least two different emission maximum wavelengths will be described.
  • a suitable example for producing an organic EL element will be described.
  • anode / hole injection layer / hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z method for producing organic EL device comprising Z cathode Will be described.
  • a desired electrode material for example, a thin film having a material force for an anode is deposited by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably 10 to 200 nm.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
  • a method for forming a thin film containing an organic compound there are a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, and the like. Vacuum vapor deposition or spin coating is particularly preferred because it is difficult to form. Further, a different film forming method may be applied for each layer.
  • the deposition conditions of that varies depending on the kinds of materials used generally boat temperature 50 ° C ⁇ 450 ° C, vacuum degree of 10- 6 Pa ⁇ : LO- 2 Pa
  • the deposition rate is preferably selected in the range of 0. OlnmZ seconds to 50 nmZ seconds, substrate temperature of 50 ° C to 300 ° C, and film thickness of 0.1 ⁇ m to 5 ⁇ m.
  • a thin film that also has a material force for the cathode is formed thereon by a method such as vapor deposition or sputtering so that the film thickness becomes 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL device can be obtained.
  • the organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method and the printing method are preferred. In the case of using the vapor deposition method, patterning using a shadow mask is preferable. It is also possible to reverse the production order to produce a cathode, an electron transport layer, a hole blocking layer, a light emitting layer, a hole transport layer, and an anode in this order.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency of the organic EL device of the present invention is defined as follows.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • Display devices and displays can be displayed in full color by using three types of organic EL elements that emit blue, red, and green light. Examples of display devices and displays include televisions, personal computers, mono-wheel devices, AV devices, teletext displays, and information displays in automobiles.
  • the drive method when used as a display device for moving image reproduction that may be used as a display device for reproducing still images or moving images may be either a simple matrix (passive matrix) method or an active matrix method. .
  • Luminous light sources include home lighting, interior lighting, clock and liquid crystal backlights, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light Examples include, but are not limited to, a sensor light source.
  • the lighting device of the present invention will be described.
  • the lighting device of the present invention has the organic EL element.
  • the organic EL element having a resonator structure as described above may be used as an organic EL element having a resonator structure in the organic EL element of the present invention.
  • Examples include, but are not limited to, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, a still image or a moving image directly visible It may be used as a type of display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels, and a control unit B that performs image scanning of the display unit A based on image information.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emits light according to the image data signal, scans the image, and displays the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details). Is shown in the figure.
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light in accordance with the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. OLED 10 and multiple pixels Then, full-color display can be performed by using organic EL elements emitting red, green, and blue light and arranging them on the same substrate.
  • an image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B force.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B force scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power line 7 and a source connected to the electrode of the organic EL element 10, and the power transistor 7 is connected to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 When the scanning signal moves to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 maintains the potential of the charged image data signal. Therefore, the driving of the driving transistor 12 is kept on, and the next scanning signal is applied. The organic EL device 10 continues to emit light until it appears. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 which are active elements for the organic EL elements 10 of each of the plurality of pixels, and each of the organic EL elements 10 of the plurality of pixels 3.
  • the flash is activated.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials! /, Or a predetermined value by a binary image data signal.
  • the light emission amount may be on or off.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the noisy matrix method pixel 3 has no active elements, and manufacturing costs can be reduced.
  • the organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting materials emit light of a plurality of light emission colors at the same time to obtain white light emission by color mixing.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and a light emitting material strength.
  • a mask is provided only during formation of the light-emitting layer, hole transport layer, electron transport layer, etc.
  • an electrode film can be formed by an evaporation method, a casting method, a spin coating method, an ink jet method, a printing method, etc., and productivity is improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the light emitting material according to the present invention is adapted to the wavelength range corresponding to the CF (color filter) characteristics. Select any of the metal complexes and known luminescent materials and combine them to make them white!
  • the white light-emitting organic EL device is a kind of lamp such as home lighting, interior lighting, or exposure light source as various light-emitting light sources and lighting devices in addition to the display device and display. Also useful for display devices such as knock lights for liquid crystal display devices Used for.
  • backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are required. And a wide range of uses such as general household appliances.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically washed with isopropyl alcohol. Boiled and dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, while a-NPD, CBP, Ir12, E-1, and Alq are placed on each of the five tantalum resistance-fired thermal boats.
  • lithium fluoride was put into a resistance heating boat made of tantalum and aluminum was put into a resistance heating boat made of tungsten, respectively, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • the heating boat containing CBP and the boat containing Ir 12 are independently energized so that the deposition rate of CBP as the light emitting host and Ir 12 as the light emitting dopant is 100: 4.
  • the light emitting layer was provided by vapor deposition so as to have a thickness of 40 nm.
  • the heating boat containing E-1 was energized and heated, and the deposition rate was 0. InmZ seconds.
  • a hole blocking layer having a thickness of 10 nm was provided at ⁇ 0.2 nmZ seconds. Furthermore, the heating button containing Alq
  • An electron transport layer having a thickness of 20 nm was provided at a deposition rate of 0. InmZ seconds to 0.2 nmZ seconds.
  • the organic EL devices 1-2 to 1-19 were produced in the same manner except that the luminescent dopant was changed as shown in Table 1.
  • the non-light-emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as a sealing substrate.
  • the epoxy photo-curing adhesive (Latus Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is overlaid on the cathode and brought into close contact with the transparent support substrate. Irradiate with UV light, cure, seal, and in Figs. 5 and 6. A lighting device as shown was formed and evaluated.
  • FIG. 5 shows a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102. Note that the glass cover was sealed with a glove box in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere (in a high purity nitrogen gas atmosphere with a purity of 99.999% or more).
  • FIG. 6 shows a cross-sectional view of the lighting device. In FIG. 6, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the organic EL device at room temperature (about 23 ° C ⁇ 25 ° C), 2. performs lighting by constant current conditions 5mAZcm 2, by measuring the lighting start immediately after the emission luminance (L) [cdZm 2], the external Extraction The quantum efficiency (7?) was calculated.
  • CS-1000 manufactured by Cocaminol Sensing
  • the external extraction quantum efficiency is expressed as a relative value with the organic EL element 1-1 as 100.
  • the organic EL device was continuously lit at a constant current of 2.5 mAZcm 2 at room temperature, and the time ( ⁇ ) required to achieve half the initial luminance was measured.
  • Luminous lifetime is organic EL
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Boiled and dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, while a-NPD, H-1, Ir 12, E-2, E-3 are attached to five tantalum resistance-fired thermal boats. Each was installed and attached to a vacuum evaporation system (first vacuum chamber).
  • lithium fluoride was put in a resistance heating boat made of tantalum and aluminum was put in a resistance heating boat made of tungsten, respectively, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • deposition rate 0. InmZ sec ⁇ 0. 2nmZ
  • the film was deposited on the transparent support substrate to a thickness of 90 nm, and a hole injection Z transport layer was provided.
  • the heating boat containing H-1 was energized and heated, and vapor deposition was performed at a deposition rate of 0.1 InmZ seconds to 0.2 nmZ seconds to a thickness of lOnm, and an intermediate layer was formed. Provided.
  • the heating boat containing H-1 and the boat containing Ir 12 are independently connected to each other, and the deposition rate of H-1 as a light emitting host and Ir 12 as a light emitting dopant is 100: The thickness of the film was adjusted to 6 and the light-emitting layer was provided by vapor deposition so as to have a thickness of 40 nm.
  • the heating boat containing E-2 was energized and heated, and a hole blocking layer having a thickness of lOnm was provided at a deposition rate of 0. InmZ seconds to 0.2 nmZ seconds. Furthermore, the heating boat containing E-3 was energized and heated to provide an electron transport layer having a film thickness of 20 nm at a deposition rate of 0. InmZ seconds to 0.2 nmZ seconds.
  • this element was transferred to a glove box under nitrogen atmosphere (a glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more) without being exposed to the atmosphere, and the same as the organic EL element 1-1 of Example 1
  • the organic EL element 2-1 was fabricated.
  • Organic EL elements 2-2 to 2-18 were prepared in the same manner as in the preparation of organic EL element 2-1, except that the luminescent dopant was changed as shown in Table 2.
  • the obtained organic EL devices 2-1 to 2-18 were evaluated as follows.
  • a dichloroethane solution in which polybutcarbazole / lr—13Z2— (4 biphenyl) -5— (4 t-butylphenol) —1, 3, 4 oxaziazole 200/2/50 mass ratio was dissolved Coating was performed with a spin coater to obtain a light emitting layer of lOOnm.
  • a patterned mask (a mask with a light emission area of 5 mm x 5 mm) is placed on the organic compound layer, and a cathode buffer layer of lithium fluoride 0.5 nm and aluminum 150 nm as a cathode are deposited in a vapor deposition apparatus.
  • a vapor deposition apparatus was established.
  • the glove box in a nitrogen atmosphere is not contacted with the element. It was transferred to a tas (glove box substituted with high-purity nitrogen gas with a purity of 99.999% or more), and sealed in the same manner as the organic EL element 1-1 of Example 1 to produce an organic EL element 3-1.
  • Organic EL elements 3-2-3-9 were prepared in the same manner as in the preparation of organic EL element 3-1, except that the luminescent dopant was changed as shown in Table 3.
  • a direct current voltage is applied to the organic EL element to emit light, and the light emission luminance (cdZm 2 ) and 2.5 m AZcm 2 current when a direct current voltage of 10 V is applied.
  • Luminous efficiency (lmZW) when passing through was measured. Table 3 shows the results obtained. Luminance and luminous efficiency were relative values with the measured value of the organic EL element 3-1 being 100.
  • the organic EL device produced using the metal complex according to the present invention is an organic
  • An organic EL device 1 11 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as in the organic EL device 1-1 of Example 1 except that Ir-12 was changed to Ir-1. This was used as the green light emitting device.
  • a red light emitting device was produced in the same manner as in the organic EL device 1-1 of Example 2 except that Ir-12 was changed to Ir-9, and this was used as a red light emitting device.
  • Fig. 2 shows only a schematic view of the display portion A of the manufactured display device. That is, a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of juxtaposed pixels 3 (emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring part are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a lattice shape and are connected to the pixel 3 at the orthogonal position ( Details are not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5 Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full color display device was produced by juxtaposing the red, green, and blue pixels appropriately.
  • This full-color display device was driven by being able to obtain a clear full-color moving image display with high brightness and high durability.
  • the electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm ⁇ 20 mm, and ⁇ -NPD was deposited to a thickness of 25 nm as a hole injection / transport layer on the same as in Example 1, and C
  • the heating boat containing BP, the boat containing the compound 3-26 according to the present invention, and the boat containing Ir 9 are energized independently, and CBP as a light emitting host and a light emitting dopant are supplied.
  • the deposition rate of the compounds 3-26 and Ir-9 according to the present invention was adjusted to 100: 5: 0.6 and deposited to a thickness of 30 nm to provide a light emitting layer.
  • BCP was formed into an lOnm film to provide a hole blocking layer. Furthermore, Alq was deposited at 40nm.
  • An electron transport layer was provided.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm as a cathode buffer layer and a cathode as a cathode buffer layer. Aluminum 150nm was deposited.
  • FIG. 5 shows a schematic diagram of a lighting device (planar lamp).
  • FIG. 6 shows a schematic cross-sectional view of a lighting device (planar lamp).

Abstract

 本発明は、発光波長が制御され、高い発光効率を示し、且つ発光寿命の長い有機EL素子、照明装置及び表示装置を提供することである。

Description

明 細 書
有機エレクト口ルミネッセンス素子、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、表示装置及び照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子という)が挙げられる 。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子 を駆動させるためには交流の高電圧が必要である。有機 EL素子は発光する化合物 を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注 入して、再結合させることにより励起子 (エキシトン)を生成させ、このエキシトンが失 活する際の光の放出(蛍光'リン光)を利用して発光する素子であり、数 V〜数十 V程 度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性 が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点力も注目 されている。
[0003] し力しながら、今後の実用化に向けた有機 EL素子においては、更に低消費電力で 効率よく高輝度に発光する有機 EL素子の開発が望まれている。
[0004] 特許第 3093796号公報ではスチルベン誘導体、ジスチリルァリーレン誘導体また はトリススチリルァリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素 子の長寿命化を達成している。また、 8—ヒドロキシキノリンアルミニウム錯体をホスト 化合物として、これに微量の蛍光体をドープした有機発光層を有する素子 (例えば、 特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物 として、これにキナクリドン系色素をドープした有機発光層を有する素子 (例えば、特 開平 3— 255190号公報)等が知られている。
[0005] 以上のように、励起一重項力 の発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し [0006] ところが、プリンストン大より励起三重項力 のリン光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , Nature, 395卷、 151〜154頁(1998年))力されて以 来、室温でリン光を示す材料の研究が活発になってきて 、る。
[0007] 例えば、 M. A. Baldo et al. , Nature, 403卷、 17号、 750〜753頁(2000年
)、また米国特許第 6, 097, 147号明細書等にも開示されている。
[0008] 励起三重項を使用すると内部量子効率の上限が 100%となるため、励起一重項の 場合に比べて原理的に発光効率力 倍となり、冷陰極管とほぼ同等の性能が得られ る可能性があることから照明用途としても注目されている。
[0009] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304頁(2001 年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検 討されている。
[0010] また、前述の M. A. Baldo et al. , Nature, 403卷、 17号、 750〜753頁(200 0年)においては、ドーパントとしてトリス(2—フエ-ルビリジン)イリジウムを用いた検 討がされている。
[0011] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL ' 00、浜松)【こお ヽて、ド ~~ノヽ ントとして L Ir (acac)、例えば、 (ppy) Ir (acac)を、また Moon— Jae Youn. 0g、 T
2 2
etsuo Tsutsui等は、やはり The 10th International Workshop on Inorga nic and Organic Electroluminescence (EL, 00、浜松)【こお ヽて、ドーノ ント としてトリス(2— (P—トリル)ピリジン)イリジウム (Ir (ptpy) ) , トリス (ベンゾ [h]キノリン
3
)イリジウム (Ir (bzq) )等を用いた検討を行って 、る (なおこれらの金属錯体は一般
3
にオルトメタル化イリジウム錯体と呼ばれて 、る。)。
[0012] また、前記、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304頁(2
001年)等にぉ 、ても、各種イリジウム錯体を用いて素子化する試みがされて 、る。
[0013] また、高い発光効率を得るために、 The 10th International Workshop on
Inorganic and Organic Electroluminescence (EL ' 00、浜松)では、 Ikai等 はホール輸送性の化合物をリン光性ィ匕合物のホストとして用いている。また、 M. E. Tompson等は各種電子輸送性材料をリン光性ィ匕合物のホストとして、これらに新規 なイリジウム錯体をドープして用いて 、る。
[0014] 中心金属をイリジウムの代わりに白金としたオルトメタルイ匕錯体も注目されて 、る。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られている(例えば、 特許文献 1〜5及び非特許文献 1参照。 ) 0
[0015] Vヽずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が リン光に由来することから、従来の素子に比べ大幅に改良されるものであるが、素子 の発光寿命にっ ヽては従来の素子よりも低 ヽと 、う問題点があった。このようにりん 光性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しく 実用に耐えうる性能を十分に達成できて 、な 、のが現状である。
[0016] また波長の短波長化に関しては、これまでフエ-ルビリジンにフッ素原子、トリフル ォロメチル基、シァノ基等の電子吸引基を置換基として導入すること、配位子としてピ コリン酸やビラザボール系の配位子を導入することが知られている(例えば、特許文 献 6〜10及び非特許文献 1〜4参照。)が、これらの配位子では発光材料の発光波 長が短波化して青色を達成し、高効率の素子を達成できる一方、素子の発光寿命は 大幅に劣化するため、そのトレードオフの改善が求められていた。
[0017] 配位子として 5員環と 5員環を炭素 炭素結合で結んだ特定の部分構造を有する イリジウム錯体が知られている。し力しながら、ここで開示されている具体的化合物は 、 5員環の少なくとも一方が縮環しているものであり、有機 EL素子としての発光波長 は赤色素子としての開示があるのみであった (例えば、特許文献 11参照。;)。
特許文献 1 :特開 2002— 332291号公報
特許文献 2:特開 2002— 332292号公報
特許文献 3:特開 2002— 338588号公報
特許文献 4:特開 2002 - 226495号公報
特許文献 5:特開 2002— 234894号公報
特許文献 6 :国際公開第 02Z15645号パンフレット
特許文献 7:特開 2003— 123982号公報 特許文献 8:特開 2002— 117978号公報
特許文献 9:特開 2003 - 146996号公報
特許文献 10:国際公開第 04Z016711号パンフレット
特許文献 11:特開 2003 - 252888号公報
非特許文献 1 : Inorganic Chemistry,第 41卷、第 12号、 3055〜3066頁(2002 年)
非特許文献 2 :Aplied Physics Letters,第 79卷、 2082頁(2001年) 非特許文献 3 :Aplied Physics Letters,第 83卷、 3818頁(2003年) 非特許文献 4 : New Journal of Chemistry,第 26卷、 1171頁(2002年) 発明の開示
発明が解決しょうとする課題
[0018] 本発明の目的は、発光波長が制御され、高い発光効率を示し、且つ発光寿命の長 い有機 EL素子、照明装置及び表示装置を提供することである。
課題を解決するための手段
[0019] 本発明の上記目的は、下記構成により達成された。
[0020] 1.陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセ ンス素子において、該発光層が下記一般式(1)で表される部分構造をもつ金属錯体 を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[0021] [化 1] 般式 (1)
Figure imgf000005_0001
(一般式(1)中、 R
11及び R
12は、各々置換基を表し、各々異なっていても同一でもよ い。 R 〜R は水素原子または置換基を表し、各々異なっていても同一でもよい。 M は元素周期表における 8族〜 10族の金属を表す。 )
2.陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセ ンス素子において、該発光層が下記一般式 (2)で表される部分構造をもつ金属錯体 を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 2] 一般式 (2J
Figure imgf000006_0001
[0024] (一般式(2)中、 R及び R は、各々置換基を表し、各々異なっていても同一でもよ
22 23
い。 R 〜R は水素原子または置換基を表し、各々異なっていても同一でもよい。 M
24 27
は元素周期表における 8族〜 10族の金属を表す。 )
3.陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセ ンス素子において、該発光層が下記一般式 (3)で表される部分構造をもつ金属錯体 を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[0025] [化 3] 一般式 <3》
Figure imgf000006_0002
[0026] (一般式(3)中、 R 〜R は、各々置換基を表し、各々異なっていても同一でもよい。
31 33
R 〜R は水素原子または置換基を表し、各々異なっていても同一でもよい。 Mは元
34 37
素周期表における 8族〜 10族の金属を表す。 ) 4.陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセ ンス素子にお 、て、該発光層が下記一般式 (4)で表される部分構造をもつ金属錯体 を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 4]
—般式 <4>
Figure imgf000007_0001
[0028] (一般式 (4)中、 R 〜R は、各々水素原子または置換基を表し、 R 〜R のうち少
41 47 41 47 なくとも一つが— CHRUR12、 -CH R13、シクロアルキル基、— CF、アルコキシ基ま
2 3
たはァリールォキシ基を表し、 RU〜R13は置換基を表す。 Mは元素周期表における 8 族〜 10族の金属を表す。 )
5.陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセ ンス素子において、該発光層が下記一般式 (5)で表される部分構造をもつ金属錯体 を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[0029] [化 5] 一般式 (5J
Figure imgf000007_0002
[0030] (一般式(5)中、 R 〜R は、各々水素原子または置換基を表し、 R 〜R のうち少
51 57 51 54 なくとも一つがシァノ基を表す。 Mは元素周期表における 8族〜 10族の金属を表す。 ) 6.陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセ ンス素子において、該発光層が下記一般式 (6)で表される部分構造をもつ金属錯体 を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 6] 一般式
Figure imgf000008_0001
[0032] (一般式 (6)中、 R 〜R は、各々水素原子または置換基を表し、 R 〜R のうち少
61 67 64 67 なくとも一つが— NR14R15を表し、 R14及び R15は置換基を表す。 Mは元素周期表にお ける 8族〜 10族の金属を表す。 )
7.陽極と陰極により挟まれた、少なくとも発光層を含有する有機エレクト口ルミネッ センス素子において、該発光層が下記一般式 (7)で表される金属錯体を含有するこ とを特徴とする有機エレクト口ルミネッセンス素子。
[0033] [化 7] 一般式 (7)
Figure imgf000008_0002
[0034] (一般式(7)中、 R〜Rは、各々水素原子または置換基を表し、 X及び Xは炭素原
1 7 4 5 子または窒素原子を表し、各々異なっていても同一でもよい。 X〜Xは CR8、窒素原
1 3
子または NR9を表し、 R8及び R9は水素原子または置換基を表す。 Zは C、 Xと共に 5
5 員環または 6員環を形成する。 Mは元素周期表における 8族〜 10族の金属を表す。 mは 3≥m≥lを満たす整数を表し、 nは 2≥n≥lを満たす整数を表し、 m+nは金 属 Mの価数を表す。 )
8.前記 M力イリジウムまたは白金であることを特徴とする前記(1)〜(7)の 、ずれ 力 1項に記載の有機エレクト口ルミネッセンス素子。
[0035] 9.発光層に更にカルボリン誘導体または該カルボリン誘導体のカルボリン環を構 成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置き換えられている環 構造を有する誘導体を含有することを特徴とする前記(1)〜(8)の ヽずれか 1項に記 載の有機エレクト口ルミネッセンス素子。
[0036] 10.構成層として発光層と陰極の間に正孔阻止層を有し、該正孔阻止層がカルボ リンの誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭 素原子の少なくとも一つが窒素原子で置き換えられている環構造を有する誘導体を 含有することを特徴とする前記(1)〜(9)の 、ずれか 1項に記載の有機エレクト口ルミ ネッセンス素子。
[0037] 11.構成層として陽極と発光層の間に正孔輸送層を有し、更に正孔輸送層と発光 層の間に中間層を有することを特徴とする前記(1)〜(10)のいずれ力 1項に記載の 有機エレクト口ルミネッセンス素子。
[0038] 12.前記中間層が発光層に含有される発光ホストを含有することを特徴とする前記
(11)に記載の有機エレクト口ルミネッセンス素子。
[0039] 13.前記(1)〜(12)のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を 含有することを特徴とする表示装置。
[0040] 14.前記(1)〜(12)いずれ力 1項に記載の有機エレクト口ルミネッセンス素子を有 することを特徴とする照明装置。
発明の効果
[0041] 本発明により、有機 EL素子用に有用な有機 EL素子材料が得られ、該有機 EL素 子材料を用いることにより発光波長が制御され、高い発光効率を示し、且つ発光寿 命の長い有機 EL素子、照明装置及び表示装置を提供することができた。
図面の簡単な説明
[0042] [図 1]有機 EL素子から構成される表示装置の一例を示した模式図である。 [図 2]表示部の模式図である。
[図 3]画素の模式図である。
[図 4]パッシブマトリクス方式フルカラー表示装置の模式図である。
[図 5]照明装置の概略図である。
[図 6]照明装置の断面図である。
符号の説明
[0043] 1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10、 101 有機 EL素子
11 スイッチングトランジスタ
12 馬区動トランジスタ
13 コンデンサ
A 表示部
B 制御部
107 透明電極付きガラス基板
106 有機 EL層
105 陰極
102 ガラスカバー
108 窒素ガス
109 捕水剤
発明を実施するための最良の形態
[0044] 本発明の有機エレクト口ルミネッセンス素子においては、請求の範囲第 1項〜第 12 項のいずれか 1項に規定する構成とすることにより、発光効率が高ぐ且つ、発光寿 命の長い有機 EL素子を得ることが出来た。また、該有機 EL素子を具備した、表示装 置及び照明装置を提供することが出来た。 [0045] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0046] 本発明者等は、上記の問題点について鋭意検討を行った結果、前記一般式(1)〜 一般式 (6)で各々表されるような特定の部分構造を有する金属錯体、一般式 (7)で 表される金属錯体を有機 EL素子材料として含む有機 EL素子により、従来の青色用 の金属錯体の問題点であった発光寿命が大幅に改善されることを見出し、発光効率 と発光寿命を両立できるに到った。
[0047] 《金属錯体》
本発明の有機 EL素子に係る有機 EL素子材料である、前記一般式(1)〜一般式( 6)またはその互変異性体を部分構造として有する金属錯体、一般式 (7)で表される 金属錯体について説明する。
[0048] 一般式(1)において、 R 及び R は置換基を表し、各々異なっていても同一でもよ
11 12
い。置換基としては、アルキル基 (例えば、メチル基、ェチル基、プロピル基、イソプロ ピル基、 tert—ブチル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロへ キシル基等)、アルケニル基 (例えば、ビニル基、ァリル基等)、アルキニル基 (例えば 、ェチュル基等)、ァリール基 (例えば、フエ-ル基、 2, 6—ジメチルフエ-ル基等)、 ヘテロァリール基 (例えば、フリル基、チェ-ル基、ピリジル基、ピリダジル基、ピリミジ ル基、ビラジル基、トリアジル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリ ル基、フタラジル基等)、ヘテロ環基 (例えば、ピロリジル基、イミダゾリジル基、モルホ リル基、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基等)、シク 口アルコキシ基 (例えば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリ ールォキシ基 (例えば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基 (例え ば、メチルチオ基、ェチルチオ基等)、シクロアルキルチオ基 (例えば、シクロペンチ ルチオ基、シクロへキシルチオ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナ フチルチオ基等)、アルコキシカルボ-ル基(例えば、メチルォキシカルボ-ル基、ェ チルォキシカルボ-ル基等)、ァリールォキシカルボ-ル基(例えば、フエ-ルォキシ カルボ-ル基、ナフチルォキシカルボ-ル基等)、スルファモイル基(例えば、アミノス ルホニル基、メチルアミノスルホ -ル基、ジメチルアミノスルホ -ル基等)、ァシル基( 例えば、ァセチル基、ェチルカルボ-ル基等)、ァシルォキシ基 (例えば、ァセチル ォキシ基、ェチルカルボニルォキシ基等)、アミド基 (例えば、メチルカルボ-ルァミノ 基、ェチルカルボ-ルァミノ基、ジメチルカルボニルァミノ基等)、力ルバモイル基 (例 えば、ァミノカルボ-ル基、メチルァミノカルボ-ル基、ジメチルァミノカルボ-ル基等 )、ウレイド基 (例えば、メチルウレイド基、ェチルウレイド基等)、アミノ基 (例えば、アミ ノ基、ェチルァミノ基、ジメチルァミノ基、ジフエニルァミノ基等)、ハロゲン原子 (例え ば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチ ル基、トリフルォロメチル基等)、シァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリ ル基 (例えば、トリメチルシリル基等)等が挙げられ、これらの基は更に置換されてい てもよい。
[0049] R 〜R は水素原子または置換基を表し、各々異なっていても同一でもよい。置換
14 17
基としては、例えば、 R 及び R の説明で挙げた置換基が挙げられる。 Mは元素周
11 12
期表における 8族〜 10族の金属を表し、好ましくはイリジウム、白金、ルテニウム、口 ジゥム等を表し、更に好ましくはイリジウムまたは白金を表す。
[0050] 一般式(2)にお 、て、 R 及び R は置換基を表し、各々異なって!/、ても同一でもよ
22 23
い。置換基としては、例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙
11 12
げられる。 R 〜R は水素原子または置換基を表し、各々異なっていても同一でもよ
24 27
い。置換基としては、例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙
11 12
げられる。 Mは元素周期表における 8族〜 10族の金属を表し、好ましくはイリジウム、 白金、ルテニウム、ロジウム等を表し、更に好ましくはイリジウムまたは白金を表す。
[0051] 一般式(3)において、 R 〜R はすべて置換基を表し、各々異なっていても同一で
31 33
もよい。置換基としては、例えば、一般式(1)の R 及び R の説明で挙げた置換基が
11 12
挙げられる。 R 〜R は水素原子または置換基を表し、各々異なっていても同一でも
34 37
よい。置換基としては、例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙
11 12
げられる。 Mは元素周期表における 8族〜 10族の金属を表し、好ましくはイリジウム、 白金、ルテニウム、ロジウム等を表し、更に好ましくはイリジウムまたは白金を表す。
[0052] 一般式 (4)において、 R 〜R は水素原子または置換基を表し、置換基としては、
41 47
例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙げられる。但し、 R 〜
11 12 41
R のうち少なくとも一つが— CHRUR12、—CH R13、シクロアルキル基(例えば、シク 口ペンチル基、シクロへキシル基等)、トリフルォロメチル基、アルコキシ基 (例えば、メ トキシ基、エトキシ基等)、またはァリールォキシ基 (例えば、フエノキシ基、ナフチル ォキシ基等)を表す。 RU〜R13は置換基を表し、例えば、アルキル基、ァリール基等を 表す。 Mは元素周期表における 8族〜 10族の金属を表し、好ましくはイリジウム、白 金、ルテニウム、ロジウム等を表し、更に好ましくはイリジウムまたは白金を表す。
[0053] 一般式(5)において、 R 〜R は水素原子または置換基を表し、置換基としては、
51 57
例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙げられる。但し、 R 〜
11 12 51
R のうち少なくとも一つがシァノ基を表す。 Mは元素周期表における 8族〜 10族の
54
金属を表し、好ましくはイリジウム、白金、ルテニウム、ロジウム等を表し、更に好ましく はイリジウムまたは白金を表す。
[0054] 一般式 (6)において、 R 〜R は水素原子または置換基を表し、置換基としては、
61 67
例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙げられる。但し、 R 〜
11 12 64
R のうち少なくとも一つが— NR14R15を表す。 R14及び R15は置換基を表し、例えば、
67
アルキル基、ァリール基等を表す。 Mは元素周期表における 8族〜 10族の金属を表 し、好ましくはイリジウム、白金、ルテニウム、ロジウム等を表し、更に好ましくはイリジゥ ムまたは白金を表す。
[0055] 一般式(7)にお 、て、 R〜Rは水素原子または置換基を表し、置換基としては、例
1 7
えば、一般式(1)の R 及び R の説明で挙げた置換基が挙げられる。 X及び Xは炭
11 12 4 5 素原子または窒素原子を表し、各々異なっていても同一でもよい。 X〜Xは CR8、窒
1 3 素原子または NR9を表し、 R8及び R9は水素原子または置換基を表す。置換基として は、例えば、一般式(1)の R 及び R の説明で挙げた置換基が挙げられる。 Zは C、
11 12
Xと共に 5員環または 6員環を形成し、 5員環としてはシクロペンタン、フラン、チオフ
5
ェン、ピロール、イミダゾール、ピラゾール、ォキサゾール、チアゾール等が挙げられ、 これらは更に置換されていてもよい。 6員環としてはシクロへキサン、ベンゼン、ピリジ ン等が挙げられ、これらは更に置換されて 、てもよ 、。
[0056] mは 3≥m≥lを満たす整数を表し、 nは 2≥n≥ 1を満たす整数を表し、 m+nは金 属 Mの価数を表す。 Mは元素周期表における 8族〜 10族の金属を表し、好ましくは イリジウム、白金、ルテニウム、ロジウム等を表し、更に好ましくはイリジウムまたは白金 を表す。
[0057] 以下、本発明に係る前記一般式(1)〜一般式 (6)、またはそれら各々の互変異性 体を部分構造として有する金属錯体、及び一般式 (7)で表される金属錯体の具体例 を示すが、本発明はこれらに限定されない。
[0058] [化 8]
Figure imgf000014_0001
Figure imgf000015_0001
[0060] [化 10]
Figure imgf000016_0001
[0061] [化 11]
κ §00
Figure imgf000017_0001
Figure imgf000018_0001
[0063] [化 13]
Figure imgf000019_0001
[0064] [化 14]
Figure imgf000020_0001
[0065] [化 15]
Figure imgf000021_0001
[0066] [化 16] [Ζΐ^ ] [Ζ900]
Figure imgf000022_0001
[8ΐ^ ] [8900]
Figure imgf000023_0001
Figure imgf000024_0001
[0069] [化 19] [OZ^ [OZOO]
Figure imgf000025_0001
z CCS6Z0/.00Z OAV
Figure imgf000026_0001
[0071] [化 21]
Figure imgf000027_0001
[0072] [化 22]
Figure imgf000028_0001
[0073] [化 23]
Figure imgf000029_0001
[0074] [化 24]
Figure imgf000030_0001
[0075] [化 25]
[92^ ] [9 00]
Figure imgf000031_0001
SZ89TC/900Zdf/X3d οε CCS6Z0/.00Z OAV — 16 5-17
Figure imgf000032_0001
7]
[SZ^ [8Z00]
Figure imgf000033_0001
SZ89TC/900Zdf/X3d CCS6Z0/ .00Z OAV [62^ ] [600]
Figure imgf000034_0001
ZV-9 f/X3d εε CCS6Z0/.00Z OAV
Figure imgf000035_0001
[0080] [化 30] [τε^ ] [1800]
Figure imgf000036_0001
3d 9ε CCS6Z0/.00Z OAV
Figure imgf000037_0001
[0082] [化 32]
Figure imgf000038_0001
本発明に係る金属錯体は、例えば、 Organic Letter誌, vol3, No. 16、 2579- 2581頁(2001)、 Inorganic Chemistry,第 30卷、第 8号、 1685〜1687頁(199 1年)、 J. Am. Chem. Soc., 123卷、 4304頁(2001年)、 Inorganic Chemistr y,第 40卷、第 7号、 1704〜1711頁(2001年)、 Inorganic Chemistry,第 41卷 、第 12号、 3055〜3066頁(2002年)、 New Journal of Chemistry. ,第 26卷 、 1171頁(2002年)、 European Journal of Organic Chemistry. ,第 4卷、 6 95-709 (2004年)、更にこれらの文献中に記載の参考文献等の方法を適用するこ とにより合成できる。
[0084] 《金属錯体を含む有機 EL素子材料の有機 EL素子への適用》
本発明に係る一般式 (1)〜一般式 (6)、またはそれら各々の互変異性体を部分構 造として有する金属錯体、一般式 (7)で表される金属錯体の含有層としては発光層 が好ましぐまた発光層に含有する場合は、発光層中の発光ドーパントとして用いるこ とにより、本発明の有機 EL素子の外部取り出し量子効率の効率向上 (高輝度化)や 発光寿命の長寿命化を達成することができる。
[0085] (発光ホストと発光ドーパント)
発光層には発光ホストと発光ドーパントを含有することが好ま 、。発光層中の後述 するホストイ匕合物である発光ホストに対する発光ドーパントとの混合比は好ましくは質 量で 0. 1質量%〜30質量%未満の範囲に調整することである。
[0086] 本発明に係るリン光ドーパントにっ 、て説明する。
[0087] 本発明に係るリン光ドーパントは、励起三重項力 の発光が観測される化合物であ り、具体的には、室温 (25°C)にてリン光発光する化合物であり、リン光量子収率が、 25°Cにおいて 0. 01以上の化合物であると定義される力 好ましいリン光量子収率 は 0. 1以上である。
[0088] 上記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸 善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用 いて測定できる力 本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおい て上記リン光量子収率 (0. 01以上)が達成されればょ 、。
[0089] リン光ドーパントの発光は原理としては 2種挙げられ、一つはキャリアが輸送される ホストイ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、こ のエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得る というエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ド 一パント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキ ャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態の エネルギーはホストイ匕合物の励起状態のエネルギーよりも低いことが条件である。
[0090] また、本発明における「蛍光発光性ドーパント」についても、上記リン光発光性ドー パントと同様に定義される。
[0091] 但し、発光ドーパントは複数種の化合物を混合して用いてもよぐ混合する相手は 構造を異にするその他の金属錯体やその他の構造を有するリン光性ドーパントや蛍 光性ドーパントでもよい。
[0092] ここで、発光ドーパントとして用いられる金属錯体と併用してもよいドーパント(リン光 性ドーパント、蛍光性ドーパント等)について述べる。発光ドーパントは、大きくわけて 蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの 2種類があ る。
[0093] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シ了ニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[0094] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素周期表で 8族、 9族、 1 0族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、ォスミ ゥム化合物であり、中でも最も好ましいのはイリジウム化合物である。
[0095] 具体的には以下の特許公報に記載されている化合物である。
[0096] 国際公開第 OOZ70655号パンフレツ K特開 2002— 280178号公報、特開 2001
— 181616号公報、特開 2002— 280179号公報、特開 2001— 181617号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02,15645号パンフ レッド、特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003 — 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0097] その具体例の一部を下記に示す。
[0098] [化 33] lr-1 !r-2
Figure imgf000041_0001
[0099] [化 34]
Figure imgf000042_0001
[0100] [化 35] Pt- 1 Pt-2
Figure imgf000043_0001
[0101] (発光ホスト)
本発明において発光ホスト(単に、ホストイ匕合物ともいう)とは、発光層に含有される 化合物の内でその層中での質量比が 20%以上であり、且つ室温(25°C)においてリ ン光発光のリン光量子収率が、 0. 1未満の化合物と定義される。好ましくはリン光量 子収率が 0. 01未満である。また、発光層に含有される化合物の中で、その層中での 質量比が 20%以上であることが好ましい。
[0102] 本発明に用いられる発光ホストとしては、併用される発光ドーパントのリン光 0— 0バ ンドよりも短波長なそれをもつ化合物が好ましぐ発光ドーパントにそのリン光 0— 0バ ンドが 470nm以下である青色の発光成分を含む化合物を用いる場合には、発光ホ ストとしてはリン光 0— 0バンドが 460nm以下であることが好ましい。
[0103] 本発明における金属錯体のリン光の 0— 0バンド (nm)は、以下のようにして求める ことができる。
[0104] 測定する化合物をよく脱酸素されたエタノール Zメタノール =4Zl (vol/vol)の混 合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度 77Kで励起光を照 射し、励起光照射後 100msでの発光スペクトルを測定する。リン光は蛍光に比べ発 光寿命が長いため、 100ms後に残存する光はほぼリン光であると考えることができる 。なお、リン光寿命が 100msより短い化合物に対しては遅延時間を短くして測定して も構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうと、リン光と蛍光 が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要が ある。
[0105] また上記溶剤系で溶解できない化合物については、その化合物を溶解しうる任意 の溶剤を使用してもよい (実質上、上記測定法ではリン光波長の溶媒効果はごくわず かなので問題ない)。得られたスペクトルチャートの中から、最も短波長側の発光極大 波長を読み取る。
[0106] 本発明に用いられる発光ホスト(ホストイ匕合物)としては構造的には特に制限はない 力 代表的には力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導 体、含窒素複素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレン化合 物等の基本骨格を有するもの、または、カルボリン誘導体ゃ該カルボリン誘導体の力 ルポリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換さ れて 、る環構造を有する誘導体等が挙げられる。
[0107] 中でも、力ルバゾール誘導体、カルボリン誘導体ゃ該カルボリン誘導体のカルボリ ン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されてい る環構造を有する誘導体が好ましく用いられる。
[0108] また、ホストイ匕合物としては、公知のホストイ匕合物を単独で用いてもよぐまたは複数 種併用して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を調整す ることが可能であり、有機 EL素子を高効率ィ匕することができる。また、後述する発光ド 一パントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意 の発光色を得ることができる。
[0109] 以下に、具体例を挙げるが、本発明はこれらに限定されない。
[0110] [化 36]
Figure imgf000045_0001
[0111] [化 37]
Figure imgf000046_0001
[0112] [化 38]
Figure imgf000047_0001
[0113] [化 39]
Figure imgf000048_0001
[0114] [化 40] 化合物 中心骨格 A
Figure imgf000049_0001
41]
Figure imgf000050_0001
[0116] [化 42] 化合物 中心骨格 A
Figure imgf000051_0001
3]
Figure imgf000052_0001
[0118] [化 44]
Figure imgf000053_0001
[0119] [化 45]
Figure imgf000054_0001
SZ89TC/900Zdf/X3d 89 CCS6Z0//.00Z OAV
Figure imgf000055_0001
Si89ie/900Zdf/X3d CCS6i0/Z,00Z OAV
Figure imgf000056_0001
[0122] [化 48]
Figure imgf000057_0001
[0123] [化 49]
Figure imgf000058_0001
[0124] [化 50]
Figure imgf000059_0001
[0125] [化 51]
Figure imgf000060_0001
[0126] [化 52]
Figure imgf000061_0001
[0127] [化 53]
Figure imgf000062_0001
[0128] [化 54]
Figure imgf000063_0001
Figure imgf000064_0001
[0130] [化 56]
Figure imgf000065_0001
[0131] [化 57]
Figure imgf000066_0001
Figure imgf000067_0001
[0133] [化 59] [09^] [^ειο]
Figure imgf000068_0001
Figure imgf000069_0001
68
9S33
Figure imgf000069_0002
[0135] [化6 〔 62
Figure imgf000070_0001
Figure imgf000071_0001
SZ89TC/900Zdf/X3d 01 CCS6Z0/,00Z OAV 147
Figure imgf000072_0001
64]
Figure imgf000073_0001
[0139] [化 65]
Figure imgf000074_0001
[0140] [化 66]
[ 9^ ] [ΐ^ΐθ]
Figure imgf000075_0001
Figure imgf000075_0002
69 ί 85ί
SZ89TC/900Zdf/X3d CCS6Z0/.00Z OAV
Figure imgf000076_0001
[0143] [化 69]
Figure imgf000077_0001
[0144] [化 70]
Figure imgf000078_0001
[0145] また本発明に係る発光ホストは低分子化合物でも、繰り返し単位をもつ高分子化合 物でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合物 (蒸着重 合性発光ホスト)でもいい。
[0146] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を 防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ましレ、。 [0147] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。 例えば、特開 2001— 257076号公報、特開 2002— 308855号公報、特開 2001— 313179号公報、特開 2002— 319491号公報、特開 2001— 357977号公報、特 開 2002— 334786号公報、特開 2002— 8860号公報、特開 2002— 334787号公 報、特開 2002— 15871号公報、特開 2002— 334788号公報、特開 2002— 4305 6号公報、特開 2002— 33 9号公報、特開 2002— 75645号公報、特開 2002— 338579号公報、特開 2002— 105445号公報、特開 2002— 343568号公報、特 開 2002— 141173号公報、特開 2002— 352957号公報、特開 2002— 203683号 公報、特開 2002— 363227号公報、特開 2002— 231453号公報、特開 2003— 3 165号公報、特開 2002— 234888号公報、特開 2003— 27048号公報、特開 200 2— 255934号公報、特開 2002— 260861号公報、特開 2002— 280183号公報、 特開 2002— 299060号公報、特開 2002— 302516号公報、特開 2002— 305083 号公報、特開 2002— 305084号公報、特開 2002— 308837号公報等。
[0148] 次に、代表的な有機 EL素子の構成について述べる。
[0149] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層につ 、て説明する。
[0150] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれ らに限定されない。
[0151] (i)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(ii)陽極 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(m)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極
(iv)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極
(V)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極バッファ一層 z陰極
(vi)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極 (vii)陽極 z陽極バッファ一層 z正孔輸送層 z電子阻止層 z発光層 z正孔阻止層
Z電子輸送層 Z陰極バッファ一層 Z陰極
(viii)陽極 Z正孔輸送層 Z中間層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バ ッファー層 Z陰極
この中でも、 (viii)の構成が最も好ま 、。
[0152] 《中間層》
本発明に係る中間層とは発光層と正孔輸送層との間の層のことである。該層に含ま れる材料の性質によっては、該層を正孔輸送層と呼ぶこともあり、電子阻止層と呼ぶ こともある。本発明においては、該中間層中に発光層に含有されるホストイ匕合物と同 じ材料を含有することが好まし ヽ。
[0153] 《阻止層(電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。
[0154] 本発明に係る阻止層の膜厚としては好ましくは 3ηπ!〜 lOOnmであり、更に好ましく は 5〜30nmである。
[0155] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0156] 正孔阻止層としては、例えば、特開平 11 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー 'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。
[0157] 本発明の有機 EL素子は、構成層として正孔阻止層を有することが好ましぐ該正 孔阻止層が前記カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成 する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を 有する誘導体を含有することが好まし ヽ。
[0158] 《電子阻止層》 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0159] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。
[0160] 正孔輸送材料としては特に制限はなぐ従来、光導伝材料にお!、て、正孔の電荷 注入輸送材料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送 層に使用される公知のものの中から任意のものを選択して用いることができる。
[0161] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するもの であり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また、導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0162] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級アミンィ匕 合物を用いることが好まし 、。
[0163] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0164] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0165] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として 使用することができる。
[0166] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5ηπ!〜 50 OOnm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層 構造であってもよい。
[0167] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層もしくは複数層を設 けることができる。
[0168] 電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよ ぐその材料としては従来公知の化合物の中から任意のものを選択して用いることが できる。 [0169] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。更に、上記ォキサジァゾール誘導体において、ォキサジァゾール 環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として 知られて!/ヽるキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用い ることがでさる。
[0170] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0171] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリ 一もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等 で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光 層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いること 力 Sできるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体 も電子輸送材料として用いることができる。
[0172] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。 [0173] 次に、本発明の有機 EL素子の構成層として用いられる注入層について説明する。
[0174] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。
[0175] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0176] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として銅フタ ロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0177] 陰極バッファ一層(電子注入層)は特開平 6— 325871号公報、同 9 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチ ゥムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるァ ルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属 化合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物バッファ一層等が挙げら れる。
[0178] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるがその 膜厚は 0. lnm〜100nmの範囲が好ましい。
[0179] この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5nm〜5000nm程度である 。この注入層は上記材料の一種または二種以上力もなる一層構造であってもよい。
[0180] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド (ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O
2 2 3
-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよ!ヽ。陽極はこれらの 電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー 法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要とし ない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の 形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合に は、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω /口以下が好ましい。更に膜厚は材料にもよるが通常 ΙΟηπ!〜 1000nm、好ましく は 10nm〜 200nmの範囲で選ばれる。
《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物 、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )
2 3混合物、インジウム、リチウム Zアルミニウム混合物、希 土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合 物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )混合
2 3 物、リチウム Zアルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させて作製することができ る。また、陰極としてのシート抵抗は数百 ΩΖ口以下が好ましぐ膜厚は通常 10nm 〜1000nm、好ましくは 50nm〜200nmの範囲で選ばれる。なお発光を透過させる ため、有機 EL素子の陽極または陰極のいずれか一方が透明または半透明であれば 、発光輝度が向上し好都合である。 [0182] 《基体 (基板、基材、支持体等とも!ヽぅ)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好 ま 、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムであ る。
[0183] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテル エーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP )等力 なるフィルム等が挙げられる。
[0184] 榭脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐまた、高ノ リア性フィルムが形成されていることが好 ましぐ高バリア性フィルムとしては、 JIS K 7126— 1987に準拠した方法で測定さ れた酸素透過度が l X 10_3mlZ (m2· 24hr· MPa)以下、JIS K 7129— 1992に 準拠した方法で測定された、水蒸気透過度(25 ±0. 5°C、相対湿度(90± 2) %RH )が、 I X 10"3g/ (m2- 24h)以下のものであることが好まし 、。
[0185] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0186] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。
[0187] 多色表示装置として用いる場合は、少なくとも 2種類の異なる発光極大波長を有す る有機 EL素子カゝらなるが、有機 EL素子を作製する好適な例を説明する。
[0188] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極からなる有機 EL 素子の作製法について説明する。
[0189] まず適当な基体上に所望の電極物質、例えば、陽極用物質力 なる薄膜を 1 μ m 以下、好ましくは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法に より形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸 送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成さ せる。
[0190] この有機化合物を含有する薄膜の薄膜ィ匕の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐ且つピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、そ の蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50 °C〜450°C、真空度 10— 6Pa〜: LO— 2Pa、蒸着速度 0. OlnmZ秒〜 50nmZ秒、基板 温度 50°C〜300°C、膜厚 0. 1 μ m〜5 μ mの範囲で適宜選ぶことが望ましい。
[0191] これらの層の形成後、その上に陰極用物質力もなる薄膜を 1 μ m以下、好ましくは 5 0nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法 により形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾 燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[0192] 《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機 EL素子を 有する。
[0193] 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説 明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸 着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
[0194] 発光層のみパターニングを行う場合その方法に限定はないが、好ましくは蒸着法、 インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを 用いたパター-ングが好ましい。また作製順序を逆にして、陰極、電子輸送層、正孔 阻止層、発光層、正孔輸送層、陽極の順に作製することも可能である。
[0195] このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を +、 陰極を—の極性として電圧 2〜40V程度を印加すると発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じな!/ヽ。更に交流電圧を印加 する場合には、陽極が +、陰極が—の状態になったときのみ発光する。なお、印加 する交流の波形は任意でょ 、。
[0196] 《有機 EL素子の外部取り出し量子効率》
本発明の有機 EL素子の発光の室温における外部取り出し効率は、 1%以上である ことが好ましぐより好ましくは 2%以上である。
[0197] 本発明の有機 EL素子の外部取りだし量子効率は下記で定義される。
[0198] 外部取り出し量子効率 (%)
=有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100 として定義される。外部取り出し量子効率の詳細な測定方法は実施例で記載する。
[0199] 多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができ る。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を用 いることにより、フルカラーの表示が可能となる。表示デバイス、ディスプレイとしては、 テレビ、パソコン、モノくィル機器、 AV機器、文字放送表示、自動車内の情報表示等 が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよぐ動 画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマ トリタス)方式でもアクティブマトリクス方式でもどちらでもよ ヽ。
[0200] 発光光源としては、家庭用照明、車内照明、時計や液晶用のバックライト、看板広 告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、 光センサーの光源等が挙げられるがこれに限定するものではない。
[0201] 《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機 EL素子を 有する。
[0202] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されない。また、レーザー発振をさせることにより上記用途に使用し てもよい。 [0203] また、本発明の有機 EL素子は照明用や露光光源のような一種のランプとして使用 してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を 直接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用の 表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式 でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発 明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製すること が可能である。
[0204] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する
[0205] 図 1は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。ディスプレイ 1は複数の画素を有する表示部 A、画像情報に基づいて 表示部 Aの画像走査を行う制御部 B等力もなる。制御部 Bは表示部 Aと電気的に接 続され、複数の画素それぞれに外部からの画像情報に基づ!、て走査信号と画像デ ータ信号を送り、走査信号により走査線ごとの画素が画像データ信号に応じて順次 発光して画像走査を行って画像情報を表示部 Aに表示する。
[0206] 図 2は表示部 Aの模式図である。表示部 Aは基板上に、複数の走査線 5及びデー タ線 6を含む配線部と、複数の画素 3等とを有する。表示部 Aの主要な部材の説明を 以下に行う。図においては、画素 3の発光した光が、白矢印方向(下方向)へ取り出さ れる場合を示して!/、る。配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材 料からなり、走査線 5とデータ線 6は格子状に直交して、直交する位置で画素 3に接 続して 、る(詳細は図示して 、な 、)。画素 3は走査線 5から走査信号が印加されると 、データ線 6から画像データ信号を受け取り、受け取った画像データに応じて発光す る。発光の色が赤領域の画素、緑領域の画素、青領域の画素を、適宜、同一基板上 に並置することによって、フルカラー表示が可能となる。
[0207] 次に、画素の発光プロセスを説明する。
[0208] 図 3は画素の模式図である。画素は有機 EL素子 10、スイッチングトランジスタ 11、 駆動トランジスタ 12、コンデンサ 13等を備えている。複数の画素に有機 EL素子 10と して、赤色、緑色、青色発光の有機 EL素子を用い、これらを同一基板上に並置する ことでフルカラー表示を行うことができる。
[0209] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。画像データ信号の伝達により、コンデンサ 13が画像デ ータ信号の電位に応じて充電されるとともに、駆動トランジスタ 12の駆動がオンする。 駆動トランジスタ 12は、ドレインが電源ライン 7に接続され、ソースが有機 EL素子 10 の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源 ライン 7から有機 EL素子 10に電流が供給される。制御部 Bの順次走査により走査信 号が次の走査線 5に移ると、スイッチングトランジスタ 11の駆動がオフする。しかし、ス イッチングトランジスタ 11の駆動がオフしてもコンデンサ 13は充電された画像データ 信号の電位を保持するので、駆動トランジスタ 12の駆動はオン状態が保たれて、次 の走査信号の印加が行われるまで有機 EL素子 10の発光が継続する。順次走査に より次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電 位に応じて駆動トランジスタ 12が駆動して有機 EL素子 10が発光する。
[0210] 即ち、有機 EL素子 10の発光は複数の画素それぞれの有機 EL素子 10に対して、 アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて、複数 の画素 3それぞれの有機 EL素子 10の発光を行って 、る。このような発光方法をァク ティブマトリクス方式と呼んでいる。ここで、有機 EL素子 10の発光は、複数の階調電 位を持つ多値の画像データ信号による複数の階調の発光でもよ!/、し、 2値の画像デ ータ信号による所定の発光量のオン、オフでもよい。また、コンデンサ 13の電位の保 持は、次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加さ れる直前に放電させてもょ ヽ。
[0211] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。 [0212] 図 4はパッシブマトリクス方式による表示装置の模式図である。図 4において、複数 の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられて いる。
[0213] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して 、る画素 3が画像データ信号に応じて発光する。ノッシブマトリクス方式では画 素 3にアクティブ素子が無く、製造コストの低減が計れる。
[0214] 本発明に係る有機 EL材料は、また照明装置として実質白色の発光を生じる有機 E L素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色 により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3 原色の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等 の補色の関係を利用した 2つの発光極大波長を含有したものでもよい。
[0215] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光で発光する材料を、複数組み合わせたもの、蛍光またはリン光で発光する発光 材料と、発光材料力 の光を励起光として発光する色素材料との組み合わせたもの のいずれでもよいが、本発明に係る白色有機 EL素子においては、発光ドーパントを 複数組み合わせ混合するだけでょ 、。発光層もしくは正孔輸送層あるいは電子輸送 層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよ ぐ他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キ ヤスト法、スピンコート法、インクジェット法、印刷法等で、例えば、電極膜を形成でき、 生産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置し た白色有機 EL装置と異なり、素子自体が発光白色である。
[0216] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!、。
[0217] このように、本発明に係る白色発光有機 EL素子は前記表示デバイス、ディスプレイ に加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源 のような一種のランプとして、また液晶表示装置のノ ックライト等、表示装置にも有用 に用いられる。
[0218] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0219] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
[0220] 実施例 1
《有機 EL素子 1—1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方 5つ のタンタル製抵抗力卩熱ボートに、 a— NPD、 CBP、 Ir 12、 E— 1、 Alqをそれぞれ
3 入れ、真空蒸着装置 (第 1真空槽)に取り付けた。
[0221] 更に、タンタル製抵抗加熱ボートにフッ化リチウムをタングステン製抵抗加熱ボート にアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。
[0222] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で透明支持基板に膜 厚 30nmの厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0223] 更に、 CBPの入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して、発光ホストである CBPと発光ドーパントである Ir 12の蒸着速度が 100: 4に なるように調節し、膜厚 40nmの厚さ〖こなるように蒸着し発光層を設けた。
[0224] 次いで、 E— 1の入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒
〜0. 2nmZ秒で厚さ 10nmの正孔阻止層を設けた。更に Alqの入った前記加熱ボ
3
ートを通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で膜厚 20nmの電子 輸送層を設けた。
[0225] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0226] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. OlnmZ秒〜 0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、 次いでアルミニウムの入ったボートに通電して蒸着速度 1 nmZ秒〜 2nmZ秒で膜厚 150nmの陰極を付け、有機 EL素子 1—1を作製した。
[0227] 《有機 EL素子 1— 2〜1— 19の作製》
有機 EL素子 1 1の作製において、表 1に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 1— 2〜1— 19を作製した。
[0228] [化 71]
Figure imgf000094_0001
《有機 EL素子の評価》
得られた有機 EL素子 1— 1〜1— 19を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤 (東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側力も UV光を照射して、硬化させて、封止して、図 5、図 6に 示すような照明装置を形成して評価した。
[0230] 図 5は、照明装置の概略図を示し、有機 EL素子 101は、ガラスカバー 102で覆わ れている。尚、ガラスカバーでの封止作業は、有機 EL素子 101を大気に接触させる ことなく窒素雰囲気下のグローブボックス(純度 99. 999%以上の高純度窒素ガスの 雰囲気下で行った)。図 6は、照明装置の断面図を示し、図 6において、 105は陰極、 106は有機 EL層、 107は透明電極付きガラス基板を示す。尚、ガラスカバー 102内 には窒素ガス 108が充填され、捕水剤 109が設けられている。
[0231] 《外部取り出し量子効率》
有機 EL素子を室温 (約 23°C〜25°C)、 2. 5mAZcm2の定電流条件下による点灯 を行い、点灯開始直後の発光輝度 (L) [cdZm2]を測定することにより、外部取り出し 量子効率( 7? )を算出した。ここで、発光輝度の測定は CS— 1000 (コ-カミノルタセ ンシング製)を用いた。外部取り出し量子効率は有機 EL素子 1—1を 100とする相対 値で表した。
[0232] 《発光寿命》
有機 EL素子を室温下、 2. 5mAZcm2の定電流条件下による連続点灯を行い、初 期輝度の半分の輝度になるのに要する時間( τ )を測定した。発光寿命は有機 EL
1/2
素子 1— 1を 100とする相対値で表した。
[0233] 得られた結果を表 1に示す。
[0234] [表 1]
有機 EL素子 発光 外部取り出し
備考
No. ドーパント 量子効率 ( τ l/z)
1 - 1 Ir-12 100 100 比較例
1 - 2 比铰 1 5 615 比較例
1 一 3 比較 2 6 692 比較例
1 - 4 比較 3 70 538 比較例
1 5 比較 4 71 769 比較例
1 一 6 比較 5 67 1540 比較例
1 一 7 1 -11 125 8850 本発明
1 - 8 1 一 43 163 8150 本発明
1 9 2 13 150 8230 本発明
1 —10 2 -34 150 8615 本発明
1 -11 3一 1 138 8770 本発明
1 一 12 3 -57 150 8380 本発明
1 13 4—22 125 9230 本発明
1 -14 4一 30 175 7920 本発明
1 -15 5—13 150 8540 本発明
1 -16 6 - 1 175 8080 本発明
1 17 7 -16 188 7770 本発明
1 -18 7 -23 125 9150 本発明
1 -19 7 -49 188 7690 本発明
[0235] 表 1から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、高い発光効率、且つ発光寿命の長寿命化が達成できることが明ら かである。
[0236] 実施例 2
《有機 EL素子 2—1の作製》
陽極としてガラス上に ΙΤΟを 150nm成膜した基板 (ΝΗテクノグラス社製: ΝΑ— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 5つのタンタル製抵抗力卩熱ボートに、 a— NPD、 H— 1、 Ir 12、 E— 2、 E— 3をそ れぞれ入れ、真空蒸着装置 (第 1真空槽)に取り付けた。
[0237] 更に、タンタル製抵抗加熱ボートにフッ化リチウムをタングステン製抵抗加熱ボート にアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。 [0238] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で透明支持基板に膜 厚 90nmの厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0239] 次に、 H— 1の入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で膜厚 lOnmの厚さになるように蒸着し、中間層を設けた。
[0240] 更に、 H— 1の入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して、発光ホストである H— 1と発光ドーパントである Ir 12の蒸着速度が 100: 6 になるように調節し、膜厚 40nmの厚さになるように蒸着し発光層を設けた。
[0241] 次いで、 E— 2の入った前記加熱ボートに通電して加熱し、蒸着速度 0. InmZ秒 〜0. 2nmZ秒で厚さ lOnmの正孔阻止層を設けた。更に、 E— 3の入った前記加熱 ボートを通電して加熱し、蒸着速度 0. InmZ秒〜 0. 2nmZ秒で膜厚 20nmの電子 輸送層を設けた。
[0242] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0243] 第 2真空槽を 2 X 10—4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. OlnmZ秒〜 0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、 次いでアルミニウムの入ったボートに通電して蒸着速度 1 nmZ秒〜 2nmZ秒で膜厚 150nmの陰極を付けた。更にこの素子を大気に接触させることなく窒素雰囲気下の グローブボックス(純度 99. 999%以上の高純度窒素ガスで置換したグローブボック ス)へ移し、実施例 1の有機 EL素子 1—1と同様に封止し、有機 EL素子 2—1を作製 した。
[0244] 《有機 EL素子 2— 2〜2— 18の作製》
有機 EL素子 2— 1の作製において、表 2に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 2— 2〜2— 18を作製した。
[0245] [化 72]
Figure imgf000098_0001
Figure imgf000098_0002
[0246] 《有機 EL素子の評価》
得られた有機 EL素子 2— 1〜2— 18について下記のような評価を行った。
[0247] (外部取り出し量子効率)
実施例 1と同様に評価を行った。有機 EL素子 2— 1を 100とする相対値で表した [0248] (発光寿命)
実施例 1と同様に評価を行った。有機 EL素子 2— 1を 100とする相対値で表した [0249] 得られた結果を表 2に示す。
[0250] [表 2]
有機 EL素子 外部取り出し 発光寿命
備考
No. 量子効率 ( て 1/2)
t CO 2一 1 Ir-12 100 100 比較例
2-2 比較 1 6 167 比較例
00
2-3 比較 2 8 222 比較例
2 -4 - '比較 3 100 83 比較例
2-5 比較 4 80 333 比較例
2-6 比較 5 80 361 比較例
2-7 1 -16 80 2260 本発明
2-8 1 -28 120 1580 本発明
2-9 2-6 80 2070 本発明
2一 10 2一 42 140 1500 本発明
2—11 3 -14 80 2170 本発明
2一 12 3一 38 100 1970 本発明
2 -13 4-14 140 1420 本発明
4—47 100 1850 本発明
2一 15 5 -6 100 1740 本発明
6 -15 80 2000 本発明
2一 17 7一 15 120 1570 本発明
7一 31 100 1780 本発明
[0251] 表 2から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、高い発光効率、且つ発光寿命の長寿命化が達成できることが明ら かである。
[0252] 実施例 3
25mm X 25mm XO.5mmのガラス支持基板上に直流電源を用レ、、スパッタ法に てインジウム錫酸ィ匕物(ITO、インジウム 錫 = 95Ζ5モル比)の陽極を形成した (厚 み 200nm)。この陽極の表面抵抗は 10 Ω ロであった。これにポリビュルカルバゾ ール /lr—13Z2—(4 ビフエ-リル)ー5—(4 t ブチルフエ-ル)ー1, 3, 4 ォキサジァゾール =200/2/50質量比を溶解したジクロロエタン溶液をスピンコー ターで塗布し、 lOOnmの発光層を得た。この有機化合物層の上にパターニングした マスク (発光面積が 5mm X 5mmとなるマスク)を設置し、蒸着装置内で陰極バッファ 一層としてフッ化リチウム 0.5nm、及び陰極としてアルミニウム 150nmを蒸着して陰 極を設けた。更にこの素子を大気に接触させることなく窒素雰囲気下のグローブボッ タス (純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、実 施例 1の有機 EL素子 1—1と同様に封止し、有機 EL素子 3—1を作製した。
[0253] 《有機 EL素子 3— 2〜3— 9の作製》
有機 EL素子 3—1の作製において、表 3に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 3— 2〜3— 9を作製した。
[0254] 《有機 EL素子の評価》
得られた有機 EL素子 3—:!〜 3— 9につ 、て、下記のようにして発光輝度及び発光 効率を測定した。
[0255] (発光輝度、発光効率)
東洋テク二力製ソースメジャーユニット 2400型を用いて、直流電圧を有機 EL素子 に印加して発光させ、 10Vの直流電圧を印加した時の発光輝度(cdZm2)と 2. 5m AZcm2の電流を通じた時の発光効率 (lmZW)を測定した。得られた結果を表 3に 示す。発光輝度、発光効率は、各々有機 EL素子 3—1の測定値を 100とする相対値 した。
[0256] [表 3]
Figure imgf000100_0001
[0257] 表 3から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機
EL素子に比べ、高い発光効率と高い輝度が達成できることが明らかである。
[0258] 実施例 4
《フルカラー表示装置の作製》 (青色発光素子の作製)
実施例 1の有機 EL素子 1 11を青色発光素子として用 1ヽた。
[0259] (緑色発光素子の作製)
実施例 1の有機 EL素子 1— 1において、 Ir— 12を Ir— 1に変更した以外は同様にし て、緑色発光素子を作製し、これを緑色発光素子として用いた。
[0260] (赤色発光素子の作製)
実施例 2の有機 EL素子 1—1において、 Ir— 12を Ir— 9に変更した以外は同様にし て、赤色発光素子を作製し、これを赤色発光素子として用いた。
[0261] 上記で作製した赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 1に 記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。
[0262] 図 2には作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基 板上に複数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光 の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は格子 状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数 画素 3はそれぞれの発光色に対応した有機 EL素子、アクティブ素子であるスィッチ ングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で 駆動されており、走査線 5から走査信号が印加されると、データ線 6から画像データ 信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画 素を適宜、並置することによって、フルカラー表示装置を作製した。
[0263] このフルカラー表示装置は駆動することにより、輝度が高ぐ高耐久性を有し、且つ 鮮明なフルカラー動画表示が得られることが分力つた。
[0264] 実施例 5
《白色発光素子及び白色照明装置の作製》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで成膜し、更に C BPの入った前記加熱ボートと本発明に係る化合物 3— 26の入ったボート及び Ir 9 の入ったボートをそれぞれ独立に通電して、発光ホストである CBPと発光ドーパント である本発明に係る化合物 3— 26及び Ir— 9の蒸着速度が 100 : 5 : 0. 6になるように 調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0265] 次いで、 BCPを lOnm成膜して正孔阻止層を設けた。更に Alqを 40nmで成膜し
3
電子輸送層を設けた。
[0266] 次に、実施例 1と同様に電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。
[0267] この素子を実施例 1と同様な方法及び同様な構造の封止缶を具備させ、図 5、図 6 に示したような照明装置 (平面ランプ)を作製した。図 5は、照明装置 (平面ランプ)の 模式図を示した。図 6は、照明装置 (平面ランプ)の断面模式図を示す。
[0268] この照明装置(平面ランプ)に通電したところほぼ白色の光が得られ、照明装置とし て使用できることが分力つた。
[0269] [化 73]
BCP
Figure imgf000102_0001

Claims

請求の範囲 陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式(1)で表される部分構造をもつ金属錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 1]
—般式 (1)
Figure imgf000103_0001
〔式中、 R及び R は、各々置換基を表し、各々異なっていても同一でもよい。 R 〜
11 12 14
R は水素原子または置換基を表し、各々異なっていても同一でもよい。 Mは元素周
17
期表における 8族〜 10族の金属を表す。〕
陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式 (2)で表される部分構造をもつ金属錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 2] 一般式 (2)
Figure imgf000103_0002
〔式中、 R
22及び R
23は、各々置換基を表し、各々異なっていても同一でもよい。 R 〜
24
R は水素原子または置換基を表し、各々異なっていても同一でもよい。 Mは元素周 期表における 8族〜 10族の金属を表す。〕
陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式 (3)で表される部分構造をもつ金属錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 3]
Figure imgf000104_0001
〔式中、 R 〜R は、各々置換基を表し、各々異なっていても同一でもよい。 R 〜R
31 33 34 3 は水素原子または置換基を表し、各々異なっていても同一でもよい。 Mは元素周期 表における 8族〜 10族の金属を表す。〕
陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式 (4)で表される部分構造をもつ金属錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 4]
Figure imgf000104_0002
〔式中、 R 〜R は、各々水素原子または置換基を表し、 R 〜R のうち少なくとも
41 47 41 47 一 つが CHRUR12、 -CH R13、シクロアルキル基、 CF、アルコキシ基またはァリー
2 3
ルォキシ基を表し、 RU〜R13は置換基を表す。 Mは元素周期表における 8族〜 10族 の金属を表す。〕
陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式 (5)で表される部分構造をもつ金属錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 5]
Figure imgf000105_0001
〔式中、 R 〜R は水素原子または置換基を表し、 R 〜R のうち少なくとも一つがシ
51 57 51 54
ァノ基を表す。 Mは元素周期表における 8族〜 10族の金属を表す。〕
陽極と陰極により挟まれた少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式 (6)で表される部分構造をもつ金属錯体を 含有することを特徴とする有機エレクト口ルミネッセンス素子。
[化 6] 一般式 (6)
Figure imgf000105_0002
〔式中、 R 〜R は、各々水素原子または置換基を表し、 R 〜R のうち少なくとも
61 67 64 67 一 つが— NR14R15を表し、 R14及び R15は置換基を表す。 Mは元素周期表における 8族 〜 10族の金属を表す。〕
陽極と陰極により挟まれた、少なくとも発光層を含有する有機エレクト口ルミネッセンス 素子において、該発光層が下記一般式 (7)で表される金属錯体を含有することを特 徴とする有機エレクト口ルミネッセンス素子。
[化 7] 一般式 (7>
Figure imgf000106_0001
〔式中、 R〜Rは、各々水素原子または置換基を表し、 X及び Xは炭素原子または
1 7 4 5 窒素原子を表し、各々異なっていても同一でもよい。 X〜X CR8
1 3は 、窒素原子または
NR9を表し、 R8及び R9は水素原子または置換基を表す。 Zは C、 Xと共に 5員環また
5
は 6員環を形成する。 Mは元素周期表における 8族〜 10族の金属を表す。 mは 3≥ m≥lを満たす整数を表し、 nは 2≥n≥lを満たす整数を表し、 m+nは金属 Mの価 数を表す。〕
[8] 前記 M力イリジウムまたは白金であることを特徴とする請求の範囲第 1項〜請求の範 囲第 7項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[9] 発光層に更にカルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する 炭化水素環の炭素原子の少なくとも一つが窒素原子で置き換えられている環構造を 有する誘導体を含有することを特徴とする請求の範囲第 1項〜請求の範囲第 8項の いずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[10] 構成層として発光層と陰極の間に正孔阻止層を有し、該正孔阻止層がカルボリンの 誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子 の少なくとも一つが窒素原子で置き換えられている環構造を有する誘導体を含有す ることを特徴とする請求の範囲第 1項〜請求の範囲第 9項のいずれか 1項に記載の 有機エレクト口ルミネッセンス素子。
[11] 構成層として陽極と発光層の間に正孔輸送層を有し、更に正孔輸送層と発光層の間 に中間層を有することを特徴とする請求の範囲第 1項〜請求の範囲第 10項のいず れカ 1項に記載の有機エレクト口ルミネッセンス素子。
[12] 前記中間層が発光層に含有される発光ホストを含有することを特徴とする請求の範 囲第 11項に記載の有機エレクト口ルミネッセンス素子。
[13] 請求の範囲第 1項〜請求の範囲第 12項のいずれか 1項に記載の有機エレクト口ルミ ネッセンス素子を含有することを特徴とする表示装置。
[14] 請求の範囲第 1項〜請求の範囲第 12項のいずれか 1項に記載の有機エレクト口ルミ ネッセンス素子を有することを特徴とする照明装置。
PCT/JP2006/316825 2005-09-01 2006-08-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2007029533A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007534334A JP5151481B2 (ja) 2005-09-01 2006-08-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US12/064,517 US8778509B2 (en) 2005-09-01 2006-08-28 Organic electroluminescence element, display device and lighting device
PCT/JP2006/316825 WO2007029533A1 (ja) 2005-09-01 2006-08-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005-253229 2005-09-01
JP2005253229 2005-09-01
PCT/JP2006/316825 WO2007029533A1 (ja) 2005-09-01 2006-08-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Publications (1)

Publication Number Publication Date
WO2007029533A1 true WO2007029533A1 (ja) 2007-03-15

Family

ID=38420680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316825 WO2007029533A1 (ja) 2005-09-01 2006-08-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (3)

Country Link
US (1) US8778509B2 (ja)
JP (1) JP5151481B2 (ja)
WO (1) WO2007029533A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026986A (ja) * 2007-07-20 2009-02-05 Seiko Epson Corp 有機el装置およびその製造方法ならびに電子機器
WO2009109782A2 (en) 2008-03-04 2009-09-11 Crysoptix K.K. Polycyclic organic compounds, retardation layer and compensation panel on their base
EP2075251A3 (en) * 2007-12-31 2009-10-21 Gracel Display Inc. Novel red electroluminescent compounds and organic electroluminescent device using the same
WO2009109781A3 (en) * 2008-03-04 2009-10-29 Crysoptix K.K. Polycyclic organic compounds, polarizing elements and method of production thereof
JP2012144528A (ja) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd 有機金属錯体およびこれを用いた発光素子、発光装置、並びに電子機器
JP2015199685A (ja) * 2014-04-08 2015-11-12 住友化学株式会社 金属錯体及び該金属錯体を用いた発光素子
KR20180108884A (ko) * 2009-08-31 2018-10-04 유디씨 아일랜드 리미티드 유기 전계발광 소자
US10797248B2 (en) 2013-12-09 2020-10-06 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5095206B2 (ja) * 2003-03-24 2012-12-12 ユニバーシティ オブ サザン カリフォルニア イリジウム(Ir)のフェニル及びフルオレニル置換フェニル−ピラゾール錯体
KR20130102033A (ko) * 2010-09-03 2013-09-16 가부시키가이샤 아데카 색 변환 필터
US9221857B2 (en) 2011-04-14 2015-12-29 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Pyridine-oxyphenyl coordinated iridium (III) complexes and methods of making and using
US9882150B2 (en) 2012-09-24 2018-01-30 Arizona Board Of Regents For And On Behalf Of Arizona State University Metal compounds, methods, and uses thereof
US20150274762A1 (en) 2012-10-26 2015-10-01 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Metal complexes, methods, and uses thereof
JP6804823B2 (ja) 2013-10-14 2020-12-23 アリゾナ・ボード・オブ・リージェンツ・オン・ビハーフ・オブ・アリゾナ・ステイト・ユニバーシティーArizona Board of Regents on behalf of Arizona State University 白金錯体およびデバイス
US10020455B2 (en) 2014-01-07 2018-07-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complex emitters containing phenyl-pyrazole and its analogues
US9941479B2 (en) 2014-06-02 2018-04-10 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate cyclometalated platinum complexes containing 9,10-dihydroacridine and its analogues
US9923155B2 (en) 2014-07-24 2018-03-20 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum (II) complexes cyclometalated with functionalized phenyl carbene ligands and their analogues
US11329244B2 (en) 2014-08-22 2022-05-10 Arizona Board Of Regents On Behalf Of Arizona State University Organic light-emitting diodes with fluorescent and phosphorescent emitters
US10033003B2 (en) 2014-11-10 2018-07-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate metal complexes with carbon group bridging ligands
US9865825B2 (en) 2014-11-10 2018-01-09 Arizona Board Of Regents On Behalf Of Arizona State University Emitters based on octahedral metal complexes
US9879039B2 (en) 2015-06-03 2018-01-30 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate and octahedral metal complexes containing naphthyridinocarbazole and its analogues
WO2016197019A1 (en) 2015-06-04 2016-12-08 Jian Li Transparent electroluminescent devices with controlled one-side emissive displays
US11335865B2 (en) 2016-04-15 2022-05-17 Arizona Board Of Regents On Behalf Of Arizona State University OLED with multi-emissive material layer
CN110291094A (zh) 2016-10-12 2019-09-27 亚利桑那州立大学董事会 窄带红色磷光四配位基铂(ii)络合物
US11183670B2 (en) 2016-12-16 2021-11-23 Arizona Board Of Regents On Behalf Of Arizona State University Organic light emitting diode with split emissive layer
KR20190139835A (ko) 2017-01-27 2019-12-18 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 피리도-피롤로-아크리딘 및 유사체를 사용하는 금속 보조 지연 형광 이미터
US11101435B2 (en) 2017-05-19 2021-08-24 Arizona Board Of Regents On Behalf Of Arizona State University Tetradentate platinum and palladium complexes based on biscarbazole and analogues
US10516117B2 (en) 2017-05-19 2019-12-24 Arizona Board Of Regents On Behalf Of Arizona State University Metal-assisted delayed fluorescent emttters employing benzo-imidazo-phenanthridine and analogues
US11594688B2 (en) 2017-10-17 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Display and lighting devices comprising phosphorescent excimers with preferred molecular orientation as monochromatic emitters
US11647643B2 (en) 2017-10-17 2023-05-09 Arizona Board Of Regents On Behalf Of Arizona State University Hole-blocking materials for organic light emitting diodes
US11878988B2 (en) 2019-01-24 2024-01-23 Arizona Board Of Regents On Behalf Of Arizona State University Blue phosphorescent emitters employing functionalized imidazophenthridine and analogues
US11594691B2 (en) 2019-01-25 2023-02-28 Arizona Board Of Regents On Behalf Of Arizona State University Light outcoupling efficiency of phosphorescent OLEDs by mixing horizontally aligned fluorescent emitters
US11785838B2 (en) 2019-10-02 2023-10-10 Arizona Board Of Regents On Behalf Of Arizona State University Green and red organic light-emitting diodes employing excimer emitters
US11945985B2 (en) 2020-05-19 2024-04-02 Arizona Board Of Regents On Behalf Of Arizona State University Metal assisted delayed fluorescent emitters for organic light-emitting diodes
KR20210152245A (ko) * 2020-06-08 2021-12-15 삼성전자주식회사 유기금속 화합물 및 이를 포함한 유기 발광 소자

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002332292A (ja) * 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
JP2003081988A (ja) * 2000-09-26 2003-03-19 Canon Inc 発光素子、表示装置及び発光素子用金属配位化合物
WO2004085450A2 (en) * 2003-03-24 2004-10-07 The University Of Southern California Phenyl-pyrazole complexes of ir
JP2005053912A (ja) * 2003-08-07 2005-03-03 Samsung Sdi Co Ltd イリジウム化合物及びそれを採用した有機電界発光素子
JP2005272411A (ja) * 2004-03-26 2005-10-06 Sanyo Electric Co Ltd 含窒素五員環構造を含む有機金属化合物及び発光素子
JP2006213686A (ja) * 2005-02-07 2006-08-17 Idemitsu Kosan Co Ltd 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006098209A1 (ja) * 2005-03-17 2006-09-21 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821645B2 (en) * 1999-12-27 2004-11-23 Fuji Photo Film Co., Ltd. Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
US7326475B2 (en) * 2003-04-23 2008-02-05 Konica Minolta Holdings, Inc. Material for organic electroluminescent device, organic electroluminescent device, illuminating device and display
US7101631B2 (en) * 2003-12-05 2006-09-05 Eastman Kodak Company Organic element for electroluminescent devices
US7771845B2 (en) * 2005-03-14 2010-08-10 Fujifilm Corporation Organic electroluminescent device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081988A (ja) * 2000-09-26 2003-03-19 Canon Inc 発光素子、表示装置及び発光素子用金属配位化合物
JP2002332292A (ja) * 2001-03-08 2002-11-22 Canon Inc 金属配位化合物、電界発光素子及び表示装置
WO2004085450A2 (en) * 2003-03-24 2004-10-07 The University Of Southern California Phenyl-pyrazole complexes of ir
JP2005053912A (ja) * 2003-08-07 2005-03-03 Samsung Sdi Co Ltd イリジウム化合物及びそれを採用した有機電界発光素子
JP2005272411A (ja) * 2004-03-26 2005-10-06 Sanyo Electric Co Ltd 含窒素五員環構造を含む有機金属化合物及び発光素子
JP2006213686A (ja) * 2005-02-07 2006-08-17 Idemitsu Kosan Co Ltd 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
WO2006098209A1 (ja) * 2005-03-17 2006-09-21 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAMAYO A.B. ET AL.: "Cationic Bis-cyclometalated Iridium(III) Diimine Complexes and Their Use in Efficient Blue Green, and Red Electroluminescent Devices", INORGANIC CHEMISTRY, vol. 44, no. 24, November 2005 (2005-11-01), pages 8723 - 8732, XP003009548 *
TAMAYO A.B. ET AL.: "Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 125, no. 24, June 2003 (2003-06-01), pages 7377 - 7387, XP002324811 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026986A (ja) * 2007-07-20 2009-02-05 Seiko Epson Corp 有機el装置およびその製造方法ならびに電子機器
EP2075251A3 (en) * 2007-12-31 2009-10-21 Gracel Display Inc. Novel red electroluminescent compounds and organic electroluminescent device using the same
WO2009109782A2 (en) 2008-03-04 2009-09-11 Crysoptix K.K. Polycyclic organic compounds, retardation layer and compensation panel on their base
WO2009109782A3 (en) * 2008-03-04 2009-10-29 Crysoptix K.K. Polycyclic organic compounds, retardation layer and compensation panel based thereon
WO2009109781A3 (en) * 2008-03-04 2009-10-29 Crysoptix K.K. Polycyclic organic compounds, polarizing elements and method of production thereof
US10403832B2 (en) 2009-08-31 2019-09-03 Udc Ireland Limited Organic electroluminescence device
KR20180108884A (ko) * 2009-08-31 2018-10-04 유디씨 아일랜드 리미티드 유기 전계발광 소자
KR102028130B1 (ko) * 2009-08-31 2019-10-04 유디씨 아일랜드 리미티드 유기 전계발광 소자
KR20200094228A (ko) * 2009-08-31 2020-08-06 유디씨 아일랜드 리미티드 유기 전계발광 소자
KR102314519B1 (ko) * 2009-08-31 2021-10-20 유디씨 아일랜드 리미티드 유기 전계발광 소자
US11832508B2 (en) 2009-08-31 2023-11-28 Udc Ireland Limited Organic electroluminescence device
US9508941B2 (en) 2010-12-24 2016-11-29 Semiconductor Energy Laboratory Co., Ltd. Light-emitting elements comprising iridium organometallic complexes comprising aryl-substituted pyrazines
JP2012144528A (ja) * 2010-12-24 2012-08-02 Semiconductor Energy Lab Co Ltd 有機金属錯体およびこれを用いた発光素子、発光装置、並びに電子機器
US10797248B2 (en) 2013-12-09 2020-10-06 Konica Minolta, Inc. Organic electroluminescent element, lighting device, and display device
JP2015199685A (ja) * 2014-04-08 2015-11-12 住友化学株式会社 金属錯体及び該金属錯体を用いた発光素子

Also Published As

Publication number Publication date
JPWO2007029533A1 (ja) 2009-03-19
JP5151481B2 (ja) 2013-02-27
US20090140639A1 (en) 2009-06-04
US8778509B2 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
JP5151481B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5076900B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4894513B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4858169B2 (ja) 有機エレクトロルミネッセンス素子
JP4697142B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5403105B2 (ja) 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
WO2006112265A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007004380A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006103874A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2005097940A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006082742A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007108459A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006008976A1 (ja) 白色発光有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008074939A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006132012A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2007108327A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2012160476A (ja) 白色有機エレクトロルミネッセンス素子、画像表示素子及び照明装置
JP2005314663A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006126389A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007023659A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006013739A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP4935001B2 (ja) 有機エレクトロルミネッセンス素子材料
JP4830283B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2005009088A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP4967284B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007534334

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12064517

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796859

Country of ref document: EP

Kind code of ref document: A1