WO2006126389A1 - 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2006126389A1
WO2006126389A1 PCT/JP2006/309364 JP2006309364W WO2006126389A1 WO 2006126389 A1 WO2006126389 A1 WO 2006126389A1 JP 2006309364 W JP2006309364 W JP 2006309364W WO 2006126389 A1 WO2006126389 A1 WO 2006126389A1
Authority
WO
WIPO (PCT)
Prior art keywords
bond
group
organic
atom
ring
Prior art date
Application number
PCT/JP2006/309364
Other languages
English (en)
French (fr)
Inventor
Tomohiro Oshiyama
Shinya Otsu
Noriko Yasukawa
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007517761A priority Critical patent/JP5076888B2/ja
Publication of WO2006126389A1 publication Critical patent/WO2006126389A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/361Polynuclear complexes, i.e. complexes comprising two or more metal centers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • Organic-elect mouth luminescence element material organic-elect luminescence element
  • the present invention relates to an organic electoluminescence device material, an organic electroluminescence device, a display device, and a lighting device.
  • ELD electoric luminescence display
  • examples of ELD constituent elements include inorganic electoluminescence elements and organic electroluminescence elements (hereinafter referred to as organic EL elements).
  • Inorganic electoric luminescence elements have been used as planar light sources, but in order to drive the light emitting elements, an alternating high voltage is required.
  • An organic EL device has a structure in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and excitons (excitons) are generated by injecting electrons and holes into the light-emitting layer and recombining them.
  • the device emits light using the emission of light (fluorescence 'phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several to several tens of volts. For this reason, it is a thin-film, completely solid element that has a wide viewing angle and high visibility, and is attracting attention from the viewpoints of space saving and portability.
  • organic EL elements for practical use in the future, it is desired to develop organic EL elements that emit light efficiently and with high luminance with lower power consumption.
  • a stilbene derivative, a bisstyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the device. ! / Speak.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped therein for example, JP-A 63-264692
  • 8-hydroxy A device having an organic light-emitting layer in which a quinoline aluminum complex is used as a host compound and doped with a quinacridone dye (for example, JP-A-3-255190), etc. It has been known.
  • the upper limit of the internal quantum efficiency is 100%. Therefore, in principle, the luminous efficiency is doubled compared to the case of the excited singlet, and almost the same performance as a cold cathode tube is obtained. It is also attracting attention as a lighting application.
  • Tetsuo Tsutsui etc., also used tris (2- (p-tolyl) pyridine) iridium (Ir ( ptpy)),
  • Metal complexes are commonly referred to as orthometalated iridium complexes).
  • the light emission luminance and light emission efficiency of the light emitting device are greatly improved compared to the conventional device because the emitted light is derived from phosphorescence. There is a problem that the optical lifetime is lower than that of the conventional device.
  • an electron-withdrawing group such as a fluorine atom, a trifluoromethyl group, or a cyan group has been introduced as a substituent into ferroviridine or ferrovirazole.
  • picolinic acid or virazabol ligands as ligands (see, for example, Patent Documents 6 to 14 and Non-Patent Documents 1 to 4), but these ligands emit light.
  • the emission wavelength of the material has been shortened to achieve blue, and a high-efficiency device can be achieved.
  • the light-emitting lifetime of the device has greatly deteriorated, so an improvement in the trade-off has been sought.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-332291
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-332292
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-338588
  • Patent Document 4 JP 2002-226495 A
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-234894
  • Patent Document 6 Pamphlet of International Publication No. 02Z15645
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2003-123982
  • Patent Document 10 Pamphlet of International Publication No. 04Z016711
  • Patent Document 11 Pamphlet of International Publication No. 04Z085450
  • Patent Document 12 International Publication No. 05Z003095 Pamphlet
  • Patent Document 13 Pamphlet of International Publication No. 05Z007767
  • Patent Document 14 International Publication No.04Z101707 Pamphlet
  • Non-Patent Document 1 Inorganic Chemistry, No. 41, No. 12, pp. 3055-3066 (2002)
  • Non-Patent Document 2 Aplied Physics Letters, 79, 2082 (2001)
  • Non-patent Document 3 Aplied Physics Letters, 83, 3818 (2003)
  • Non-Patent Document 4 New Journal of Chemistry, 26 ⁇ , page 1171 (2002) Disclosure of invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element material having a controlled emission wavelength, exhibiting high emission efficiency, and having a long emission lifetime, and using the same An organic EL element, a lighting device and a display device are provided.
  • An organic electoluminescence device material which is a metal complex having the following general formula (1) or a tautomer thereof as a partial structure.
  • R 1, R 2, R 3, R 4 and R 5 each represent a hydrogen atom or a substituent
  • X and X each represent a carbon atom or a nitrogen atom
  • M represents an element periodic table
  • the bond between 01 04 04 03 03 and the bond between X and X each represents an end bond or a double bond, and u2 is 0-3
  • At least one of 14 is an electron-withdrawing group, and R R
  • At least two of 11 are groups represented by — (Ar)-(X)-(R).
  • 0 represents a substituent
  • uO and aO both represent 0 or 1
  • ul represents 1 or 2.
  • uO and aO are both 0.
  • R represents a hydrogen atom or a substituent.
  • X represents a carbon atom or a nitrogen atom.
  • X 1, X 2 and X 3 represent CR, a nitrogen atom or NR.
  • R and R are hydrogen atoms or substituents
  • M is a group 8-10 metal in the periodic table
  • Each of the 11 bonds represents a single bond or a double bond.
  • organic electroluminescent element material according to (1) above which is a metal complex having the following general formula (2) or a tautomer thereof as a partial structure.
  • R, R, R 1, R 2 represent a hydrogen atom or a substituent.
  • X represents a carbon atom or nitrogen e f 21 22 21
  • X, X and X represent CR, a nitrogen atom or NR.
  • R and R are hydrogen atoms
  • nb and nc represent 1 or 2.
  • nl and n2 represent 0 or 1.
  • b e represents an oxygen atom, a sulfur atom or a nitrogen atom.
  • M represents a group 8-10 metal in the periodic table.
  • bonds between 24 24 23 23 22 2 and X each represent a single bond or a double bond.
  • R 1, R 2, R 3, R 4 represent a hydrogen atom or a substituent, and at least one of them represents an electron
  • R and R are hydrogen atoms
  • At least one represents an aromatic carbocyclic group or an aromatic heterocyclic group.
  • M represents a group 8-10 metal in the periodic table.
  • the bond between X, the bond between X and X, the bond between X and X, and the bond between X and X are each a single bond
  • R 1, R 2, R 3, R 4 represent at least one of forces R 1, R 2 representing a hydrogen atom or substituent
  • CR a nitrogen atom or a force representing NR, at least one of which is CR.
  • R and R are
  • At least one represents an aromatic carbocyclic group or an aromatic heterocyclic group.
  • M represents a metal of Group 8 to L0 in the periodic table. Between X and N
  • the organic electroluminescence device material according to (1) which is 01 force iridium or platinum.
  • An organic electoluminescence device having a luminescent layer as a constituent layer, wherein the luminescent layer comprises the organic electroluminescence device material described in (1) above. Mouth luminescence element.
  • the electron blocking layer contains the organic electoluminescence device material described in (1) above.
  • An organic electoluminescence device having a light-emitting layer as a constituent layer, wherein at least one of the carbon atoms of the carboline derivative or the hydrocarbon ring constituting the carboline ring of the carboline derivative is nitrogen
  • An organic electoluminescence device having a hole blocking layer as a constituent layer, wherein the hole blocking layer is a carboline derivative or a carbon atom of a hydrocarbon ring constituting a carboline ring of the carboline derivative.
  • a display device comprising the organic electoluminescence device according to (7).
  • an organic EL element material useful for an organic EL element is obtained.
  • the emission wavelength is controlled, high emission efficiency is exhibited, and light emission is achieved.
  • FIG. 1 is a schematic view showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of display unit A.
  • FIG. 3 is an equivalent circuit diagram of a drive circuit constituting a pixel.
  • FIG. 4 is a schematic diagram of a passive matrix display device.
  • FIG. 5 is a schematic diagram of a sealing structure of an organic EL element.
  • FIG. 6 is a schematic diagram of a lighting device including an organic EL element.
  • the emission wavelength is shortened, and the emission wavelength is controlled to the short wavelength side only by a conventional blue metal complex, particularly an electron-withdrawing group.
  • a conventional blue metal complex particularly an electron-withdrawing group.
  • n an integer of 2 or 3.
  • X represents a carbon atom or a nitrogen atom.
  • X 1, X 2, X represents CR, nitrogen atom or NR.
  • R and R represent a hydrogen atom or a substituent.
  • M represents a group 8-10 metal in the dd 11 periodic table. Bond between X and N, bond between N and X, X
  • Gaussian 98 (Revision A. 11.4, MJ Frisch, GW Trucks, HB Schlegel, GE Scuseria, MA Robb, JR Cheesema n, VG Zakrzewski, JA Montgomery, Jr., RE Stratmann, JC Bura nt, S. Dapprich, JM Millam, AD Daniels, KN Kudin, MC Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, J. Pomelli, C. Adamo, S. Clifford, J. Ochterski, GA Petersson, PY Ay ala, Q. Cui, K. Morokuma, N. Rega, P.
  • the calculation method was TD-DFT calculation by the B3LYP method.
  • the present inventors proceeded with studies based on the above guidelines as a means for shortening the emission wavelength to blue, synthesized it, and studied it. It was found that the wavelength can be controlled.
  • Preferred substituents on the ring serving as the mother nucleus of the ligand in which the benzene ring and the 5-membered heterocycle of the present invention are linked and bonded include an aromatic carbocycle, an aromatic heterocycle, an alkoxy group, Examples thereof include an alkylthio group and an alkylamino group.
  • a light emitting layer and Z or an electron blocking layer are preferable.
  • the element is contained in the light emitting layer, it is used as a light emitting dopant in the light emitting layer. As a result, it was possible to achieve a longer emission life of the organic EL device, which is an effect of the present invention.
  • the metal complex-containing layer having the general formula (1), (1A), (2) to (4) or a tautomer thereof as a partial structure according to the present invention includes a light emitting layer and Z or A hole blocking layer is preferred, and when it is contained in the light emitting layer, it can be used as a light emitting dopant in the light emitting layer to increase the efficiency of external extraction quantum efficiency (higher brightness) of the organic EL device of the present invention. Longer light emission life can be achieved.
  • the metal complex having the general formula (1) or a tautomer thereof according to the present invention as a partial structure (hereinafter also referred to as a metal complex represented by the general formula (1)) will be described.
  • R 1 to R 4 represent a hydrogen atom or a substituent. Expressed by R to R
  • substituents include an alkyl group (for example, a methyl group, an ethyl group, an isopropyl group, a hydroxyl group, a methoxymethyl group, a trifluoromethyl group, a t-butyl group, etc.), a cycloalkyl group (for example, , Cyclopentyl group, cyclohexyl group, etc.), aralkyl group (eg, benzyl group, 2-phenethyl group, etc.), aromatic hydrocarbon group (eg, phenyl group, p-chlorophenol group, mesityl group, A tolyl group, a xylyl group, a biphenyl-tolyl group, a naphthyl group, an anthryl group, a phenanthryl group, etc.), an aromatic heterocyclic group (for example, a furyl group, a chael group, a pyridyl
  • X 1, X 2, X 3, and X represent a carbon atom or a nitrogen atom, respectively, and M is an element period
  • M is preferably iridium or platinum
  • 01 04 04 03 03 02 02 and X each represents an end bond or a double bond
  • u2 represents an integer of 0 to 3. ⁇
  • X represents an oxygen atom, sulfur atom or nitrogen atom
  • R represents a substituent, uO and aO
  • the aromatic group 11 14 0 represents an aromatic carbocyclic group or an aromatic heterocyclic group.
  • Aromatic carbocyclic groups include benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, talycene ring, naphthacene ring, triphenylene ring, o-thenophenol ring, m-terfel ring, p-terfel ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, pyranthrene ring, Anthraanthrene rings and the like can be mentioned.
  • the aromatic heterocyclic group includes a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a benzimidazole ring, an oxadiazole ring, a triazole ring, an imidazole ring, a pyrazole ring, Thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole ring, quinoxaline ring, quinazoline ring, phthalazine ring, force rubazole ring, carboline ring, diaza force rubazole ring (cal A ring in which one of the carbon atoms of the hydrocarbon ring constituting the borin ring is further substituted with a nitrogen atom).
  • the substituent represented by R has the same meaning as the substituents represented by R1 to R7.
  • Hammett's value of ⁇ ⁇ is the substituent constant determined by Hammett et al.
  • the ⁇ ⁇ of the electron withdrawing group is preferably 0.10 or more.
  • electron-attracting groups with ⁇ ⁇ force .10 or more include - ⁇ ( ⁇ ) (0.12), bromine atom (0.23), chlorine
  • Metal complex having the general formula (1) or a tautomer thereof as a partial structure according to the present invention
  • R represents a hydrogen atom or a substituent.
  • a substituent represented by R and b b is a substituent represented by R and b b
  • An alkyl group for example, a methyl group, an ethyl group, an isopropyl group, a hydroxyethyl group, a methoxymethyl group, a trifluoromethyl group, a t-butyl group, etc.
  • a cycloalkyl group for example, a cyclopentyl group, Cyclohexyl group
  • aralkyl group for example, benzyl group, 2-phenethyl group, etc.
  • aromatic hydrocarbon groups eg, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, biphenyl group, naphthyl group, anthryl group, phenanthryl group
  • aromatic heterocyclic group for example, furyl group, enyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, virazinyl group, tri
  • X represents a carbon atom or a nitrogen atom.
  • X 1, X 2 and X 3 represent CR, a nitrogen atom or NR.
  • R and R are hydrogen atoms or substituents
  • Ar represents an aromatic carbocyclic group or an aromatic heterocyclic group.
  • aromatic carbocyclic group As an aromatic carbocyclic group,
  • Benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, taricene ring, naphthacene ring, triphenylene ring, o-terfel ring, m-terfel ring, p- Examples include a terfel ring, a acenaphthene ring, a coronene ring, a fluorene ring, a fluoranthrene ring, a naphthacene ring, a pentacene ring, a perylene ring, a pentaphen ring, a picene ring, a pyrene ring, a pyranthrene ring, and an anthraanthrene ring.
  • the aromatic heterocyclic group represented by Ar includes a furan ring, a thiophene ring, a pyridine ring, a pyri ring.
  • M represents a group 8 to 10 metal in the periodic table.
  • M is iridium or platinum
  • the bond between X and N, the bond between N and X, the bond between X and X, the bond between X and X, and the bond between X and X each represent a single bond or a double bond.
  • Ar is preferably represented by the following general formula (11).
  • Ar represents an aromatic carbocyclic group or an aromatic heterocyclic group.
  • the aromatic carbocyclic group or aromatic heterocyclic group represented by Ar is the aromatic group represented by Ar.
  • X represents an oxygen atom, a sulfur atom or a nitrogen atom.
  • R represents a hydrogen atom or a substituent.
  • the substituent represented by R has the same meaning as the substituent a a b represented by R.
  • na 1 or 2
  • a 0 or 1.
  • the metal complex having the general formula (2) or a tautomer thereof as a partial structure according to the present invention (hereinafter also referred to as a metal complex represented by the general formula (2)) will be described.
  • R, R, R 1 and R 2 represent a hydrogen atom or a substituent.
  • the substituent represented by 22 is synonymous with the substituent represented by R in the general formula (1).
  • R and R represent a hydrogen atom or a substituent. Examples of the substituent represented by R and R include g h g h
  • nb and nc represent 1 or 2.
  • nl and n2 represent 0 or 1.
  • Ar and Ar represent an aromatic carbocyclic group or an aromatic heterocyclic group.
  • Ar, Yoshi represented by Ar
  • aromatic carbocyclic group or aromatic heterocyclic group is represented by Ar in the general formula (1).
  • X and X each represents an oxygen atom, a sulfur atom or a nitrogen atom.
  • M is b e 21 in the periodic table
  • M is preferably iridium or platinum.
  • the metal complex having the general formula (3) or a tautomer thereof according to the present invention as a partial structure (hereinafter also referred to as a metal complex represented by the general formula (3)) will be described.
  • R 1, R 2, R 3, and R 4 represent a hydrogen atom or a substituent.
  • the electron-withdrawing group represented by R 1, R 2, R 3, and R 4 is Hammett's substituent constant ⁇ ⁇ exceeds 0.
  • X represents a carbon atom or a nitrogen atom.
  • X, ⁇ , ⁇ are CR, nitrogen atom or NR representing at least one of them is CR
  • 35 36 represents a hydrogen atom or a substituent.
  • the aromatic carbocyclic group or aromatic heterocyclic group represented by 35 is Ar in general formula (1).
  • aromatic carbocyclic group or aromatic heterocyclic group represented by 00.
  • M represents a group 8-10 metal in the periodic table.
  • M is iridium or platinum
  • bonds of 35 38 38 37 37 36 36 35 each represent a single bond or a double bond.
  • the metal complex having the general formula (4) or a tautomer thereof according to the present invention as a partial structure (hereinafter also referred to as a metal complex represented by the general formula (4)) will be described.
  • R 1, R 2, R 3, and R 4 represent a hydrogen atom or a force representing a substituent R 1, R 2
  • At least one represents an electron-withdrawing group.
  • the substituent represented by 41 42 43 44 has the same meaning as the substituent represented by R in formula (1).
  • the electron-withdrawing group represented by R 1, R 2, R 3, and R 4 is represented by R 1, R 2, R 3, and R 4 in the general formula (3).
  • X represents a carbon atom or a nitrogen atom.
  • X, X, and X are CR, a nitrogen atom, or a force representing NR, at least one of which is CR.
  • R 1 and R 2 represent a hydrogen atom or a substituent. At least one of R is aromatic carbon
  • R 1 and R 2 Represents a cyclic group or an aromatic heterocyclic group.
  • R 1 and R 2 include the general formula (1)
  • Aromatic carbocyclic group represented by R or aromatic b 45 It is synonymous with the substituent represented by R in. Aromatic carbocyclic group represented by R or aromatic b 45
  • aromatic heterocyclic group an aromatic carbocyclic group represented by Ar in the general formula (1) or
  • M represents a group 8-10 metal in the periodic table.
  • M is iridium or platinum
  • Bond between X and N bond between N and X, bond between X and X, X and X
  • the bonds between 46 and 45 each represent a single bond or a double bond.
  • the organic EL device of the present invention is formed on the light emitting layer or the electron blocking layer in the constituent layers (details will be described later) of the organic EL device. It is preferable to use a material. In the light emitting layer, as described above, it is preferably used as a light emitting dopant.
  • the mixing ratio of the light-emitting dopant to the light-emitting host that is the host compound as the main component in the light-emitting layer is preferably adjusted to a range of 0.1% by mass to less than 30% by mass.
  • the luminescent dopant may be a mixture of a plurality of types of compounds.
  • the mixed partner may have a different structure, and other metal complexes or phosphorescent dopants or fluorescent dopants having other structures may be used.
  • dopants phosphorescent dopant, fluorescent dopant, etc.
  • metal complex used as the luminescent dopant
  • the light-emitting dopants are roughly classified into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • Typical examples of the former include coumarin dyes, pyran dyes, cinine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes such as a dye, a pyrylium dye, a perylene dye, a stilbene dye, a polythiophene dye, or a rare earth complex phosphor.
  • a complex compound containing a metal of Group 8, Group 9, or Group 10 in the periodic table of elements is preferable, and an iridium compound, Sumium compounds, and most preferred are iridium compounds.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Publication, JP 2003-7469, JP 2002-525 808, JP 2003-7471, JP 2002-525833, JP 2003
  • the light-emitting host (simply referred to as “host”! Means the compound with the highest mixing ratio (mass) in the light-emitting layer composed of two or more types of compounds.
  • One pant compound also simply referred to as dopant) ".
  • compound A is a dopant compound
  • compound B is a host compound. It is.
  • Compound A and Compound B are dopant compounds.
  • Compound C is a host compound.
  • the luminescent host used in the present invention phosphorescence of the luminescent dopant used in combination is used.
  • a compound containing a blue light-emitting component whose phosphorescence 0-0 band is 480 nm or less is used as the preferred light-emitting dopant for a compound having a wavelength shorter than that of the host, phosphorescence is used as the light-emitting host.
  • the 0-0 band is preferably 450 nm or less.
  • the luminescent host used in the present invention is not particularly limited in terms of structure, but is typically a force rubazole derivative, triarylamine derivative, aromatic borane derivative, nitrogen-containing bicyclic compound, thiophene.
  • Derivatives, furan derivatives, oligoarylene compounds, etc. having a basic skeleton, or a carboline derivative at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom And derivatives having the above-mentioned ring structure.
  • rubazole derivatives, carboline derivatives, and derivatives having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom are preferably used.
  • the light emitting host of the present invention may be a low molecular compound or a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light emitting host). Good.
  • a compound having a hole transporting ability and an electron transporting ability, preventing the emission of light from being increased in wavelength, and having a high Tg (glass transition temperature) is preferable.
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the organic EL element material of the present invention for a hole blocking layer, an electron blocking layer or the like, and it is particularly preferable to use the material for an electron blocking layer.
  • a metal complex may be contained in a state of 100% by mass as a layer constituent component such as a hole blocking layer or an electron blocking layer, May be mixed with other organic compounds.
  • the thickness of the blocking layer according to the present invention is preferably 3 to LOOnm, and more preferably 5 to 30 nm.
  • the hole blocking layer has the function of an electron transport layer, which is a material force that has the function of transporting electrons while transporting holes and is extremely small, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • Examples of the hole blocking layer include those disclosed in JP-A-11-204258, JP-A-11-204359, and “OLED device and its forefront of industrialization (November 30, 1998, NTT Corporation).
  • the hole blocking (hole blocking) layer described in page 237 of “Issuance”) is applicable as the hole blocking layer according to the present invention.
  • the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the organic EL device of the present invention has a hole blocking layer as a constituent layer, and the hole blocking layer is a carboline derivative or a carbon ring of a hydrocarbon ring constituting a carboline ring of the carboline derivative. It is preferable to contain a derivative having a ring structure in which at least one is substituted with a nitrogen atom.
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and is a material force that has a function of transporting holes and an extremely small capacity of transporting electrons, and transports holes while transporting holes. The probability of recombination of electrons and holes can be improved by blocking the children.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the organic EL device material of the present invention described above for the adjacent layer adjacent to the light emitting layer, that is, the hole blocking layer and the electron blocking layer. It is preferable to use it for the layer.
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • a hole transport material there is no particular limitation. Conventionally, in a photoconductive material, it is commonly used as a hole charge injection / transport material and used for a hole injection layer or a hole transport layer of an EL element. Any one of known ones used can be selected and used.
  • the hole transport material has either hole injection or transport, electron barrier properties, or deviation, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives , Stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-described forces that can be used are preferably porphyrin compounds, aromatic tertiary amine compounds, and styrylamine compounds, particularly aromatic tertiary amine compounds. ,.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N'—tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenol; N, N ' —Diphenyl N, N '—Di (4
  • No. 5,061,569 having two condensed aromatic rings in the molecule for example, 4, 4 ′ bis [N— (1 ⁇ Naphthyl) N-phenylamino] biphenyl (NPD), described in JP-A-4-308688, three triphenylamine units connected in a starburst type 4, 4 ', "- Tris [? ⁇ -(3-methylphenol) -N-phenolamino] triphenylamine (MT DATA).
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • Inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
  • This hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. be able to.
  • the thickness of the hole transport layer is not particularly limited, but is usually 5 ⁇ ! ⁇ 50 OOnm or so.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be a single layer or a plurality of layers.
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and any material can be selected from conventionally known compounds. It is possible to be.
  • electron transport materials examples include: -substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and heterocyclic rings such as naphthalene perylene. Tetracarboxylic acid anhydride, carbopositimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxaziazole derivative, carboline derivative, or hydrocarbon constituting the carboline ring of the carboline derivative Examples thereof include derivatives having a ring structure in which at least one carbon atom of the elemental ring is substituted with a nitrogen atom.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron-withdrawing group should also be used as electron transport materials. It is out.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dive mouth) 8 quinolinol) aluminum, tris (2methyl 8quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Metal complexes replacing Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type—Si, n-type—SiC, etc. These inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coat method, a cast method, an ink jet method, or an LB method. it can. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • the injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer. As described above, the injection layer exists between the anode and the light emitting layer or hole transport layer, and between the cathode and the light emitting layer or electron transport layer. May be present.
  • the injection layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission.
  • the organic EL element and its industry front line June 30, 1998) Chapter 2 “Electrode materials” (pages 123-166) of “Part 2” of “Tees Co., Ltd.”) describes the details of the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One layer).
  • anode buffer layer hole injection layer
  • a phthalocyanine buffer layer typified by phthalocyanine
  • an oxide buffer layer typified by vanadium oxide
  • an amorphous carbon buffer layer a polymer buffer layer using a conductive polymer such as polyarene (emeraldine) or polythiophene Etc.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, A metal buffer layer typified by aluminum or aluminum, an alkali metal compound buffer layer typified by lithium fluoride, an alkaline earth metal compound buffer layer typified by magnesium fluoride, or an aluminum oxide layer A single acid buffer.
  • the buffer layer (injection layer) preferably has a very thin film thickness, but its film thickness is preferably in the range of 0.1 to LOOnm.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the injection layer may have a single layer structure that can be one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • ITO indium tin oxide
  • SnO indium tin oxide
  • ZnO ZnO.
  • IDIXO In O- An amorphous material such as Zn0
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern with a desired shape can be formed by a single photolithography method.
  • a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the sheet resistance as the anode is preferably several hundred ⁇ or less.
  • the film thickness is a force depending on the material. Usually 10 to L000 nm, preferably 10 to 200 nm is selected.
  • the cathode according to the present invention a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • Lithium Z aluminum mixture, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less, and the preferred film thickness is usually 10 to: L000 nm, preferably 50 to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • the substrate of the organic EL device of the present invention is not particularly limited in the type of glass, plastic and the like, and is not particularly limited as long as it is transparent. Examples thereof include glass, quartz, and a light transmissive resin film. Particularly preferred V, the substrate is a resin film that can give flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheretherketone polyphenylenesulfide
  • PC polycarbonate
  • TAC Cellulose triacetate
  • CAP cellulose acetate propionate
  • an inorganic film or an organic film, or a hybrid film of both of them may be formed, and the water vapor transmission rate is 0.01 gZm 2 'dayatm or less. I prefer to be there.
  • the external extraction efficiency at room temperature of light emission of the organic E1 device of the present invention is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element Z the number of electrons X 100 flowing through the organic EL element.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film (such as an antiglare film) can be used in combination in order to reduce unevenness in light emission.
  • an organic EL element having at least two different emission maximum wavelengths will be described.
  • a suitable example for producing an organic EL element will be described.
  • anode / hole injection layer / hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z method for producing organic EL device comprising Z cathode Will be described.
  • a desired electrode material for example, a thin film having a material force for an anode is deposited by a method such as vapor deposition or sputtering so that the film thickness is 1 ⁇ m or less, preferably 10 to 200 nm. Then, an anode is produced. Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
  • an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material
  • a method for forming a thin film containing an organic compound spin coating, casting, Method, ink jet method, vapor deposition method, printing method, etc.
  • vacuum vapor deposition method or spin coating method is particularly preferred from the standpoint that a homogeneous film can be obtained and pinholes are not easily generated.
  • different film forming methods may be applied for each layer.
  • the vapor deposition conditions vary depending on the type of compound used, but generally the boat heating temperature.
  • a thin film having a cathode material force is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • a desired organic EL element can be obtained. It is preferable to fabricate the organic EL element from the hole injection layer to the cathode in a single evacuation, but it does not matter if it is taken out halfway and subjected to different film formation methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only when forming a light emitting layer, and a film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • the vapor deposition method patterning using a shadow mask is preferred.
  • the production order may be reversed, and the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode may be produced in this order.
  • the multicolor display device can be used as a display device, a display, and various light sources. Display devices and displays can be displayed in full color by using three types of organic EL elements that emit blue, red, and green light.
  • Examples of display devices and displays include televisions, computers, mopile devices, AV devices, character broadcast displays, and information displays in automobiles.
  • the driving method when used as a display device for reproducing moving images which may be used as a display device for reproducing still images or moving images, may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light emitting sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light sensors Although a light source etc. are mentioned, it is not limited to this.
  • the lighting device of the present invention will be described.
  • the lighting device of the present invention has the organic EL element.
  • the organic EL device having a resonator structure may be used as an organic EL device having a resonator structure in the organic EL device of the present invention.
  • Examples include, but are not limited to, photocopier light sources, optical communication processor light sources, and optical sensor light sources. Further, it may be used for the above-mentioned applications by causing laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, or may be a projection device that projects an image, a still image or a moving image. It may be used as a type of display device (display) that is directly visible.
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3, and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the light power emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions ( Details are not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • Full-color display can be performed by using organic EL elements of red, green, and blue light emission as organic EL elements 10 in a plurality of pixels and arranging them on the same substrate.
  • an image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B force.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B force scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the organic EL element is connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Current is supplied to element 10.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the organic EL device 10 continues to emit light until it is seen.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 as active elements for each of the plurality of pixels. Element 10 is emitting light. Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. On, even a talent! /.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • FIG. 4 is a schematic diagram of a display device based on a noisy matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the organic EL material of the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials to obtain white light emission by color mixing.
  • the combination of multiple emission colors may include three emission maximum wavelengths of blue, green, and blue, or the complementary colors such as blue and yellow, blue-green and orange 2 may be used. It may be one containing two emission maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of emission colors is a combination of a plurality of phosphorescent or fluorescent materials, a light emitting material that emits fluorescence or phosphorescence, and a light emitting material power.
  • the white organic E1 element according to the present invention it is only necessary to mix and combine a plurality of light emitting dopants.
  • a mask is provided only during formation of the light-emitting layer, hole transport layer, electron transport layer, etc.
  • an electrode film can be formed by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, etc., and productivity is also improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the metal complex according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. If you select any of the known luminescent materials and combine them to make them white.
  • the white light-emitting organic EL device of the present invention has the above-mentioned display device and display device. It is useful for various display light sources and lighting devices, such as household lighting, interior lighting, and a kind of lamp such as an exposure light source, and also for a display device such as a backlight of a liquid crystal display device.
  • backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are required. And a wide range of uses such as general household appliances.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically washed with isopropyl alcohol. Boiled and dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, while a-NPD, CBP, Ir-12, BCP, Alq are attached to five tantalum resistance-fired thermal boats.
  • lithium fluoride was put in a tantalum resistance heating boat, and aluminum was put in a tungsten resistance heating boat, respectively, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • the heating boat containing CBP and the boat containing Ir 12 are independently energized, so that the deposition rate of CBP as the luminescent host and Ir-12 as the luminescent dopant becomes 100: 3.
  • the light-emitting layer was provided by vapor-depositing to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated to provide a 10 nm thick hole blocking layer at a deposition rate of 0.1 to 0.2 nmZ. Furthermore, the heated boat containing Alq
  • Barium oxide 105 a water-absorbing agent, is made of high-purity barium oxide powder produced by Aldrich with a fluororesin-based semipermeable membrane (Microtex S-NTF8031Q made by Nitto Denko) with adhesive. What was affixed on the sealing can 104 was prepared in advance and used. An ultraviolet curable adhesive 107 was used for bonding the sealing can and the organic EL element, and both were bonded by irradiating an ultraviolet lamp to produce a sealing element.
  • 101 is a glass substrate provided with a transparent electrode
  • 102 is an organic EL layer such as the hole injection / transport layer, light emitting layer, hole blocking layer, and electron transport layer
  • 103 is a cathode. Show.
  • the organic EL device 1-1 In the production of the organic EL device 1-1, except that the light emitting host and the light emitting dopant were changed as shown in Table 1, the organic EL devices 1-2 to 1-24 were produced.
  • the obtained organic EL devices 11 to 124 were evaluated as follows.
  • the organic EL device is turned on at room temperature (approximately 23 to 25 ° C) at a constant current of 2.5 mAZcm 2 and the emission luminance (L) [cdZm 2 ] immediately after the start of lighting is measured. Efficiency (r?) was calculated.
  • CS-1000 manufactured by Minolta was used for measurement of light emission luminance.
  • the external extraction quantum efficiency was expressed as a relative value with the organic EL element 1-1 being 100.
  • the organic EL element was continuously lit at a constant current of 2.5 mAZcm 2 at room temperature, and the time required to reach half the initial luminance was measured.
  • Luminous lifetime is organic
  • EL element 1 is expressed as a relative value where 1 is set to 100.
  • the carboline derivative or the carboline derivative has a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring is further substituted with a nitrogen atom. Further improvement of the effect of the present invention was observed by using the derivative in combination with the light emitting layer.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically washed with isopropyl alcohol. After rinsing, drying with dry nitrogen gas, and UV ozone cleaning for 5 minutes o
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while a-NPD, CBP, Ir13, BCP, and Alq are respectively attached to five tantalum resistance-heated thermal boats.
  • lithium fluoride was put in a resistance heating boat made of tantalum, and aluminum was put in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • the heating boat containing CBP and the boat containing Ir 13 are independently energized, so that the deposition rate of CBP as the luminescent host and Ir-13 as the luminescent dopant becomes 100: 6.
  • the light-emitting layer was provided by vapor-depositing to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated to provide a 10 nm thick hole blocking layer at a deposition rate of 0.1 to 0.2 nmZ. Furthermore, the heated boat containing Alq
  • Barium oxide 105 a water-absorbing agent, is a glass encapsulated high-purity barium oxide powder manufactured by Aldrich with a fluorocoagulant-based semipermeable membrane (Microtex S-NTF8031Q manufactured by Nitto Denko) with an adhesive. What was affixed to the can 104 was prepared and used beforehand. An ultraviolet curable adhesive 107 was used for bonding the sealing can and the organic EL element, and both were bonded by irradiating an ultraviolet lamp to produce a sealing element.
  • 101 is a glass substrate provided with a transparent electrode
  • 102 is an organic EL layer comprising the hole injection Z transport layer, light emitting layer, hole blocking layer, electron transport layer, etc.
  • 103 is a cathode.
  • Organic EL elements 2-2 to 2-16 were prepared in the same manner as in the preparation of organic EL element 2-1, except that the light emitting host and the light emitting dopant were changed as shown in Table 2.
  • the external extraction quantum efficiency was evaluated in the same manner as in Example 1.
  • the external extraction quantum efficiency was expressed as a relative value where the organic EL element 2-1 was 100.
  • the light emission lifetime was measured by the following method.
  • the organic EL elements 2-1 to 2-16 were continuously lit under a constant current condition of 2.5 mAZcm 2 at room temperature, and the time required to reach 90% of the initial luminance ( ⁇ ⁇ ) was measured.
  • the emission lifetime is expressed as a relative value with the organic EL element 2-1 as 100.
  • the organic EL device produced using the metal complex represented by the general formula (1A), (3), or general formula (4) according to the present invention is an organic EL device of a comparative example. It is clear that higher luminous efficiency and longer lifetime can be achieved.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with iso-propyl alcohol Then dry with dry nitrogen gas and perform UV ozone cleaning for 5 minutes o
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while m-MTDATXA, Hl, Ir-12, BCP, and Alq are each attached to five tantalum resistance-fired thermal boats.
  • the heating boat containing HI and the boat containing Ir 12 are independently energized, so that the deposition rate of HI as the luminescent host and Ir-12 as the luminescent dopant becomes 100: 6.
  • the light-emitting layer was provided by vapor-depositing to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated to provide a hole blocking layer having a thickness of lOnm at a deposition rate of 0.1 to 0.2 nmZ. Furthermore, the heated boat containing Alq
  • An organic EL element 3-1 was produced in a sealed structure.
  • Barium oxide 105 a water-absorbing agent, is a glass encapsulated high-purity barium oxide powder manufactured by Aldrich with a fluorocoagulant-based semipermeable membrane (Microtex S-NTF8031Q manufactured by Nitto Denko) with an adhesive. What was affixed to the can 104 was prepared and used beforehand.
  • An ultraviolet curable adhesive 107 was used for bonding the sealing can and the organic EL element, and both were bonded by irradiating an ultraviolet lamp to produce a sealing element.
  • 101 is a glass substrate provided with a transparent electrode
  • 102 is an organic EL layer comprising the hole injection Z transport layer, light emitting layer, hole blocking layer, electron transport layer, etc.
  • 103 is a cathode.
  • Organic EL devices 3-2-3-19 were prepared in the same manner as in the preparation of organic EL device 3-1, except that the light-emitting host and light-emitting host were changed as shown in Table 3.
  • the obtained organic EL devices 3-1 to 3-19 were evaluated for external extraction quantum efficiency and luminescence lifetime in the same manner as in Example 1.
  • the external extraction quantum efficiency and the light emission lifetime are expressed as relative values with the organic EL element 3-1 as 100. Further, the chromaticity difference was measured by the following method.
  • was determined according to the following equation, and CIE chromaticity was measured using CS-1000 (manufactured by Minolta).
  • a carboline derivative or a derivative having a ring structure in which at least one carbon atom of a hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used in combination with the hole blocking layer.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol Then, it was dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, while the resistance heating boat made of tantalum has —NPD, comparison 2, CBP, Ir—1, BCP, and Alq. Each was put in a vacuum deposition apparatus (first vacuum chamber).
  • lithium fluoride was placed in a tantalum resistance heating boat, and aluminum was placed in a tungsten resistance heating boat, and each was attached to the second vacuum chamber of the vacuum evaporation apparatus.
  • the heating boat containing CBP and the boat containing Ir 1 are independently energized so that the deposition rate of CBP as the luminescent host and Ir 1 as the luminescent dopant becomes 100: 7.
  • the light emitting layer was provided by evaporating to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated to provide a hole blocking layer having a thickness of 15 nm at a deposition rate of 0.1 to 0.2 nmZ. Furthermore, the heated boat containing Alq
  • Barium oxide 105 a water-absorbing agent, is made of high-purity barium oxide powder manufactured by Aldrich with a fluororesin-based semipermeable membrane (Microtex S-NTF8031Q made by Nitto Denko) with adhesive. What was affixed on the sealing can 104 was prepared in advance and used. With sealing can The organic EL element was bonded using an ultraviolet curable adhesive 107 and irradiated with an ultraviolet lamp to bond them together to produce a sealing element.
  • 101 is a glass substrate provided with a transparent electrode, and 102 is the hole injection / transport layer.
  • An organic EL layer composed of an electron block layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like, and 103 represents a cathode.
  • Organic EL elements 4-2 to 4-9 were prepared in the same manner as in the preparation of organic EL element 1-1 except that the electron blocking material was changed as shown in Table 4.
  • the obtained organic EL devices 41 to 49 were extracted from the outside in the same manner as in Example 1 and evaluated for quantum efficiency and emission lifetime.
  • the external extraction quantum efficiency and emission lifetime are expressed as relative values with the organic EL element 4-1 being 100.
  • ITO indium stannate
  • the surface resistance of this anode was 10 ⁇ .
  • a patterned mask (a mask with a light emitting area of 5 mm x 5 mm) is placed on the organic compound layer, and 0.5 nm of lithium fluoride is deposited as a cathode buffer layer and 150 nm of aluminum is deposited as a cathode in a deposition apparatus.
  • a cathode was installed.
  • a light emitting element was manufactured by extending aluminum lead wires from the anode and the cathode, respectively.
  • the device is placed in a glove box substituted with nitrogen gas, and sealed with an ultraviolet ray curable adhesive (XNR5493, manufactured by Chiba Nagase) in a glass sealing container. Was made.
  • Organic EL elements 5-2 to 5-5 were prepared in the same manner as in the preparation of organic EL element 5-1, except that the luminescent dopant was changed as shown in Table 5.
  • the obtained organic EL devices 5-1 to 5-5 were measured for light emission luminance and light emission efficiency as follows.
  • a DC voltage is applied to the organic EL element to emit light, and the emission luminance (Cd / m 2 ) and 2.5 m AZcm 2 when a DC voltage of 10 V is applied.
  • Luminous efficiency (lmZW) was measured when the current was passed through.
  • the organic EL device prepared using the metal complex according to the present invention is the organic E of the comparative example.
  • the organic EL device 15 of Example 1 was used as a blue light emitting device.
  • the organic EL device 47 of Example 4 was used as a green light emitting device.
  • a red light emitting device was produced in the same manner as in the organic EL device 2-1 of Example 2, except that Ir-13 was changed to Ir-9, and this was used as a red light emitting device.
  • FIG. 2 shows only a schematic view of the display portion A of the display device thus manufactured.
  • a wiring portion including a plurality of scanning lines 5 and data lines 6 and a plurality of juxtaposed pixels 3 (emission color is a red region pixel, a green region pixel, a blue region pixel, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions. (Details not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data.
  • a full color display device was manufactured by appropriately juxtaposing the pixels of red, green, and blue.
  • This full-color display device has a high luminance, high durability, and vivid full-color moving image display when driven.
  • Example 1 Pattern the electrode of the transparent electrode substrate of Example 1 to 20 mm x 20 mm, and then place it on it.
  • ⁇ -NPD was deposited to a thickness of 25 nm as a hole injection / transport layer.
  • the heated boat containing CBP and the boat containing Compound 1-11 according to the present invention were added.
  • Ir 9 are energized independently, and the deposition rate of CBP as the light emitting host and the compound 111 and Ir 9 according to the present invention as the light emitting dopant is 100: 5: 0.6.
  • the light emitting layer was provided by vapor deposition so as to have a thickness of 30 nm.
  • BCP was formed into an lOnm film to provide a hole blocking layer. Furthermore, Alq is deposited at 40nm
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm and the cathode were used as a cathode buffer layer. As a film, 150 nm of aluminum was deposited.
  • FIG. 6 shows a schematic diagram of a flat lamp.
  • Fig. 6 (a) shows a schematic plan view
  • Fig. 6 (b) shows a schematic cross-sectional view.

Description

明 細 書
有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素子
、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素 子、表示装置及び照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子という)が挙げられる 。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子 を駆動させるためには交流の高電圧が必要である。有機 EL素子は、発光する化合 物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を 注入して、再結合させることにより励起子 (エキシトン)を生成させ、このエキシトンが 失活する際の光の放出 (蛍光'燐光)を利用して発光する素子であり、数 V〜数十 V 程度の電圧で発光が可能であり、さらに、 自己発光型であるために視野角に富み、 視認性が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点か ら注目されている。
[0003] し力しながら、今後の実用化に向けた有機 EL素子においては、さらに低消費電力 で効率よく高輝度に発光する有機 EL素子の開発が望まれている。
[0004] 特許第 3093796号公報では、スチルベン誘導体、ビススチリルァリーレン誘導体ま たはトリススチリルァリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、 素子の長寿命化を達成して!/ヽる。
[0005] また、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これに微量の蛍 光体をドープした有機発光層を有する素子 (例えば、特開昭 63— 264692号公報) 、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これにキナクリドン系 色素をドープした有機発光層を有する素子 (例えば、特開平 3— 255190号公報)等 が知られている。
[0006] 以上のように、励起一重項力 の発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( r? ext)の限界は 5%とされている
[0007] ところが、プリンストン大より励起三重項力もの燐光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , nature, 395卷、 151— 154ページ(1998年))力され て以来、室温で燐光を示す材料の研究が活発になってきて 、る。
[0008] 例えば M. A. Baldo et al. , nature, 403卷、 17号、 750— 753ページ(2000 年)、また米国特許第 6, 097, 147号明細書等にも開示されている。
[0009] 励起三重項を使用すると、内部量子効率の上限が 100%となるため、励起一重項 の場合に比べて原理的に発光効率力 倍となり、冷陰極管とほぼ同等の性能が得ら れる可能性があることから照明用途としても注目されている。
[0010] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷, 4304ページ(2
001年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合 成検討されている。
[0011] また、前述の M. A. Baldo et al. , nature, 403卷, 17号, 750— 753ページ( 2000年)においては、ドーパントとして、トリス(2—フエ-ルビリジン)イリジウムを用い た検討がされている。
[0012] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL ' 00、浜松)【こお ヽて、ド ~~ノヽ ン卜として L Ir (acac) ,例えば、 (ppy) Ir(acac)を、また、 Moon-Jae
2 2
Youn. Og, Tetsuo Tsutsui等は、やはり、 The 10th International Works hop on Inorganic and Organic Electroluminescence (EL' 00、浜松)にお いて、ドーパントとして、トリス(2— (p—トリル)ピリジン)イリジウム (Ir (ptpy) ) ,トリス(
3 ベンゾ [h]キノリン)イリジウム (Ir (bzq) )等を用 、た検討を行って 、る(なおこれらの
3
金属錯体は一般にオルトメタル化イリジウム錯体と呼ばれて 、る)。
[0013] また、前記、 S. Lamanskv et al. , J. Am. Chem. Soc. , 123卷, 4304ぺー ジ(2001年)等にぉ 、ても、各種イリジウム錯体を用いて素子化する試みがされて!/ヽ る。
[0014] また、高い発光効率を得るために、 The 10th International Workshop on Inorganic and Organic Electroluminescence (EL ' 00、浜松)では、 Ikai等 はホール輸送性の化合物を燐光性ィ匕合物のホストとして用いている。また、 M. E. T ompson等は、各種電子輸送性材料を燐光性ィ匕合物のホストとして、これらに新規な イリジウム錯体をドープして用いて!/、る。
[0015] 中心金属をイリジウムの代わりに白金としたオルトメタルイ匕錯体も注目されて 、る。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られている(例えば、 特許文献 1〜5及び非特許文献 1参照)。
[0016] 何れの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が燐 光に由来することから、従来の素子に比べ大幅に改良されるものである力 素子の発 光寿命にっ 、ては従来の素子よりも低 、と 、う問題点がある。
[0017] 一方、青色の発光波長を実現するには、これまでフエ-ルビリジンやフエ-ルビラゾ ールにフッ素原子、トリフルォロメチル基、シァノ基等の電子吸引性基を置換基として 導入すること、配位子としてピコリン酸やビラザボール系の配位子を導入することが知 られている(例えば、特許文献 6〜14及び非特許文献 1〜4参照)が、これらの配位 子では発光材料の発光波長が短波化して青色を達成し、高効率の素子を達成でき る一方、素子の発光寿命は大幅に劣化するため、そのトレードオフの改善が求めら れていた。
特許文献 1 特開 2002— 332291号公報
特許文献 2 特開 2002— 332292号公報
特許文献 3 特開 2002— 338588号公報
特許文献 4特開 2002— 226495号公報
特許文献 5 特開 2002— 234894号公報
特許文献 6 国際公開第 02Z15645号パンフレット
特許文献 7 特開 2003— 123982号公報
特許文献 8 特開 2002— 117978号公報 特許文献 9:特開 2003 - 146996号公報
特許文献 10:国際公開第 04Z016711号パンフレット
特許文献 11:国際公開第 04Z085450号パンフレット
特許文献 12:国際公開第 05Z003095号パンフレット
特許文献 13:国際公開第 05Z007767号パンフレット
特許文献 14 :国際公開第 04Z101707号パンフレット
非特許文献 1 : Inorganic Chemistry,第 41卷,第 12号, 3055〜3066ページ(2 002年)
非特許文献 2 :Aplied Physics Letters,第 79卷, 2082ページ(2001年) 非特許文献 3 :Aplied Physics Letters,第 83卷, 3818ページ(2003年) 非特許文献 4 : New Journal of Chemistry,第 26卷, 1171ページ(2002年) 発明の開示
発明が解決しょうとする課題
[0018] 本発明は係る課題に鑑みてなされたものであり、本発明の目的は、発光波長が制 御され、高い発光効率を示し、かつ、発光寿命の長い有機 EL素子材料、それを用い た有機 EL素子、照明装置及び表示装置を提供することである。
課題を解決するための手段
[0019] 本発明の上記課題は、下記の構成 1〜13により達成された。
[0020] (1) 下記一般式 (1)またはその互変異性体を部分構造として有する金属錯体で あることを特徴とする有機エレクト口ルミネッセンス素子材料。
[0021] [化 1]
Figure imgf000007_0001
[0022] (式中、 R 、R 、R 、R 、R はそれぞれ水素原子または置換基を表し、 X 、X
11 12 13 14 15 01 02
、X 、X はそれぞれ炭素原子または窒素原子を表し、 M は元素周期表における
03 04 01
8〜10族の金属を表し、 X と Nとの結合、 Nと X の結合、 X と X との結合、 X と X
01 04 04 03 03 との結合、 X と X との結合は、各々端結合または二重結合を表し、 u2は 0〜3の
02 02 01
整数を表す。但し、 R 〜R
11 14のうち少なくとも二つが芳香族基である力、 R 〜R
11 14の うち少なくとも一つが、電子吸引性基であり、かつ、 R R
15が芳香族基である力、 R 〜
11 の少なくとも二つが、—(Ar ) - (X) - (R ) で表される基である。ここで、 Ar
14 0 uO aO 0 ul 0 は芳香族基を表し、 Xは酸素原子、硫黄原子または窒素原子を表し、 R
0は置換基を 表し、 uO及び aOは共に 0または 1を表し、 ulは 1または 2を表す。但し、 uO及び aOが 共に 0であることはない。 )
(2) 下記一般式 (1A)またはその互変異性体を部分構造として有する金属錯体で あることを特徴とする前記(1)に記載の有機エレクト口ルミネッセンス素子材料。
[0023] [化 2] 一般式 (1A)
Figure imgf000007_0002
[0024] (式中、 Rは水素原子または置換基を表す。 X は炭素原子または窒素原子を表す。
b 11
X 、X 、X は CR、窒素原子または NRを表す。 R、 Rは水素原子または置換基を
12 13 14 c d c d
表す。 ma、 mbは 2≤ma≤4、 ma + mb = 4を満たす整数を表す。 Ar は芳香族炭
00
素環基または芳香族複素環基を表す。 M は元素周期表における 8〜10族の金属
11
を表す。 X と Nとの結合、 Nと X との結合、 X と X との結合、 X と X との結合、 X
11 14 14 13 13 12 12 と X との
11 結合は、各々単結合または二重結合を表す。)
(3) 下記一般式 (2)またはその互変異性体を部分構造として有する金属錯体で あることを特徴とする前記(1)に記載の有機エレクト口ルミネッセンス素子材料。
[0025] [化 3] 一般式 (2)
Figure imgf000008_0001
[0026] (式中、 R、R、R 、R は水素原子または置換基を表す。 X は炭素原子または窒素 e f 21 22 21
原子を表す。 X 、 X 、 X は CR、窒素原子または NRを表す。 R、 Rは水素原子ま
22 23 24 g h g h
たは置換基を表す。 nb、 ncは 1または 2を表す。 nl、 n2は 0または 1を表す。 Ar、 Ar
1
2は芳香族炭素環基または芳香族複素環基を表す。 X、 X
b eは酸素原子、硫黄原子ま たは窒素原子を表す。 M は元素周期表における 8〜10族の金属を表す。 X と Nと
21 21 の間の結合、 Nと X との間の結合、 X と X との間の結合、 X と X との間の結合、 X
24 24 23 23 22 2 と X との間の結合は、各々単結合または二重結合を表す。 )
2 21
(4) 下記一般式 (3)またはその互変異性体を部分構造として有する金属錯体で あることを特徴とする前記(1)に記載の有機エレクト口ルミネッセンス素子材料。
[0027] [化 4] 一般式 (3>
Figure imgf000009_0001
[0028] (式中、 R 、R 、R 、R は水素原子または置換基を表す力 少なくとも一つは電子
31 32 33 34
吸引性基を表す。 X
5は炭素原子または窒素原子を表す。 X 、X 、X
3 36 37 38は CR
35、窒 素原子または NR を表す力 その少なくとも一つは CR である。 R 、R は水素原子
36 35 35 36 または置換基を表す。 R の
35 少なくとも一つは芳香族炭素環基または芳香族複素環 基を表す。 M は元素周期表における 8〜10族の金属を表す。 X と Nとの結合、 Nと
31 35
X との結合、 X と X との結合、 X と X との結合、 X と X との結合は、各々単結合
38 38 37 37 36 36 35
または二重結合を表す。 )
(5) 下記一般式 (4)またはその互変異性体を部分構造として有する金属錯体で あることを特徴とする前記(1)に記載の有機エレクト口ルミネッセンス素子材料。
[0029] [化 5]
Figure imgf000009_0002
[0030] (式中、 R 、R 、R 、R は水素原子または置換基を表す力 R 、R の少なくとも
41 42 43 44 41 42 一 つは電子吸引性基を表す。 X
45は炭素原子または窒素原子を表す。 X 、x 、x
46 47 48は
CR 、窒素原子または NR を表す力 その少なくとも一つは CR である。 R 、R は
45 46 45 45 46 水素原子または置換基を表す。 R の つ
45 少なくとも一 は芳香族炭素環基または芳香 族複素環基を表す。 M は元素周期表における 8〜: L0族の金属を表す。 X と Nとの
41 45 結合、 Nと X との結合、 X と X との結合、 X と X との結合、 X と X との結合は、各 々単結合または二重結合を表す。 )
(6) M
01力イリジウムまたは白金であることを特徴とする前記(1)に記載の有機ェ レクト口ルミネッセンス素子材料。
[0031] (7) 前記(1)に記載の有機エレクト口ルミネッセンス素子材料を含有することを特 徴とする有機エレクト口ルミネッセンス素子。
[0032] (8) 構成層として発光層を有する有機エレクト口ルミネッセンス素子であって、該 発光層が前記(1)に記載の有機エレクト口ルミネッセンス素子材料を、有することを特 徴とする有機エレクト口ルミネッセンス素子。
[0033] (9) 構成層として電子阻止層を有する有機エレクト口ルミネッセンス素子であって
、該電子阻止層が前記(1)に記載の有機エレクト口ルミネッセンス素子材料を含有す ることを特徴とする有機エレクト口ルミネッセンス素子。
[0034] (10) 構成層として発光層を有する有機エレクト口ルミネッセンス素子であって、該 発光層力 カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭 化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する 誘導体を含有することを特徴とする前記(7)に記載の有機エレクト口ルミネッセンス素 子。
[0035] (11) 構成層として正孔阻止層を有する有機エレクト口ルミネッセンス素子であって 、該正孔阻止層が、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構 成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構 造を有する誘導体を含有することを特徴とする前記(7)に記載の有機エレクト口ルミ ネッセンス素子。
[0036] (12) 前記(7)に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る表示装置。
[0037] (13) 前記(7)に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る照明装置。
発明の効果
[0038] 本発明により、有機 EL素子用に有用な有機 EL素子材料が得られ、該有機 EL素 子材料を用いることにより、発光波長が制御され、高い発光効率を示し、かつ、発光 寿命の長い有機 EL素子、照明装置及び表示装置を提供することができた。 図面の簡単な説明
[0039] [図 1]有機 EL素子力 構成される表示装置の一例を示した模式図である。
[図 2]表示部 Aの模式図である。
[図 3]画素を構成する駆動回路の等価回路図である。
[図 4]パッシブマトリクス方式による表示装置の模式図である。
[図 5]有機 EL素子の封止構造の概略模式図である。
[図 6]有機 EL素子を具備してなる照明装置の模式図である。
符号の説明
[0040] 1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機 EL素子
11 スイッチングトランジスタ
12 馬区動トランジスタ
13 コンデンサ
A 表示部
B 制御部
101 透明電極付きガラス基板
102 有機 EL層
103 陰極
104 ガラス製封止缶
105 酸化バリウム (捕水剤)
106 窒素ガス
107 紫外線硬化型接着剤
発明を実施するための最良の形態 [0041] 本発明者等は、上記問題点について鋭意検討を行った結果、金属錯体の配位子 として使用されるフエ-ルビラゾール、フエ-ルイミダゾールに代表されるベンゼン環 と五員複素環が連結して結合した配位子の母核となる環の特定の箇所に、以下のよ うな置換基を導入した金属錯体により、従来の問題点であった発光寿命が大幅に改 善されることを見出した。(1)ベンゼン環上には、置換基を有してもよい芳香族炭素 環、または置換基を有してもよ!ヽ芳香族複素環が置換基として 2個以上導入された 金属錯体。(2)ベンゼン環上の置換基が一般式 (2)で表されるような形式で、置換基 として導入されている金属錯体。(3)ベンゼン環上に電子吸引性基が置換されてい る場合、五員複素環上に、少なくとも一つの置換基を有してもよい芳香族炭素環、ま たは、置換基を有してもよい芳香族複素環が置換基として 1個以上導入された金属 錯体。
[0042] このような有機 EL素子材料を含む有機 EL素子を用いることにより、発光波長を短 波化して、従来の青色用の金属錯体、特に電子吸引性基によってのみ発光波長を 短波側に制御してきた有機 EL素子材料を用いて作製されたものとは別の観点から のりん光性青色用発光ドーパントの分子設計が可能なことを見出し、さらに、有機 EL 素子の問題点であった短い発光寿命が大幅に改善されることを見出した。
[0043] また、このような有機 EL素子材料を用いることにより、高い発光効率を示し、かつ、 発光寿命の長い有機 EL素子、照明装置及び表示装置を提供することができた。
[0044] この検討にあたっては、下記の構造を例にして分子軌道計算による発光波長のシミ ユレーシヨンにより、ベンゼン環と五員複素環が連結して結合した配位子への置換基 効果と発光波長の変動を詳細に検討した。
[0045] [化 6]
Figure imgf000012_0001
[0046] (式中、 nは 2、 3の整数を表す。 X は炭素原子または窒素原子を表す。 X 、 X 、 X は CR、窒素原子または NRを表す。 R、 Rは水素原子または置換基を表す。 M は d d 11 元素周期表における 8〜10族の金属を表す。 X と Nとの結合、 Nと X との結合、 X
11 14 14 と X との結合、 X と X との結合、 X と X との結合は、各々単結合または二重結合
13 13 12 12 11
を表す。)
発光波長の計算には、 Gaussian 98 (Revision A. 11. 4, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheesema n, V. G. Zakrzewski, J. A. Montgomery, Jr. , R. E. Stratmann, J. C. Bura nt, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain , O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, じ . Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ay ala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J. J. Dannenberg, D. K . Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Pisko rz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al— Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gil 1, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Hea d— ordon, E. S. Replogle, andj. A. Pople, Gaussian, Inc. , Pittsburgh PA, 2002. )を用いた。
[0047] 計算方法は、 B3LYP法による TD— DFT計算により行った。
[0048] その結果、波長の短波化に関しては、置換基が電子供与性基の場合、 4p位、 6p 位への置換基導入が有効である一方、置換基が電子吸引性基の場合、 3p位、 5p位 への置換基導入が有効であることが分力つた。
[0049] この結果を受けて、本発明者等は発光波長を青色まで短波化するための手段とし て、上記指針に基づき検討を進め、合成し検討したところ、シミュレーション結果をほ ぼ満足する発光波長の制御ができることを見出した。
[0050] し力しながら、電子吸引性基を 3p位、 5p位へ導入した場合、青色の色純度改良に 有効である一方、素子の寿命が著しく劣化することが分かったが、この場合、五員複 素環の部分に置換基を有してもよい芳香族炭素環、または、置換基を有してもよい 芳香族複素環が置換基として導入された場合に、改善されることが分かった。
[0051] 本発明のベンゼン環と五員複素環が連結して結合した配位子の母核となる環上へ の好ましい置換基としては、芳香族炭素環、芳香族複素環、アルコキシ基、アルキル チォ基、アルキルアミノ基が挙げられる。
[0052] このような知見に基づき本発明の請求の範囲第 1項〜 6項で表される分子構造にた どり着き、本発明に至った。
[0053] また、前記金属錯体の素子中の含有層としては、発光層及び Zまたは電子阻止層 が好ましぐまた、発光層に含有する場合は、前記発光層中の発光ドーパントとして 用いることにより、本発明の効果である、有機 EL素子の発光寿命の長寿命化を達成 することができた。
[0054] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0055] 本発明の有機 EL素子材料である金属錯体について説明する。
[0056] 本発明に係る前記一般式 (1)、(1A)、(2)〜 (4)またはその互変異性体を部分構 造として有する金属錯体の含有層としては、発光層及び Zまたは正孔阻止層が好ま しぐまた、発光層に含有する場合は、発光層中の発光ドーパントとして用いることに より、本発明の有機 EL素子の外部取り出し量子効率の効率アップ (高輝度化)や発 光寿命の長寿命化を達成することができる。
[0057] 《一般式 (1)またはその互変異性体を部分構造として有する金属錯体》
本発明に係る一般式 (1)またはその互変異性体を部分構造として有する金属錯体 (以下、一般式(1)で表される金属錯体ともいう)について説明する。
[0058] 一般式(1)において、 R 〜R は水素原子または置換基を表す。 R 〜R で表さ
11 15 11 15 れる置換基としては、アルキル基 (例えば、メチル基、ェチル基、イソプロピル基、ヒド ロキシェチル基、メトキシメチル基、トリフルォロメチル基、 t—ブチル基等)、シクロア ルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、ァラルキル基 (例えば、 ベンジル基、 2—フ ネチル基等)、芳香族炭化水素基 (例えば、フ ニル基、 p—ク ロロフヱ-ル基、メシチル基、トリル基、キシリル基、ビフヱ-リル基、ナフチル基、アン トリル基、フエナントリル基等)、芳香族複素環基 (例えば、フリル基、チェ-ル基、ピリ ジル基、ピリダジ -ル基、ピリミジ -ル基、ピラジュル基、トリアジニル基、イミダゾリル 基、ピラゾリル基、チアゾリル基、キナゾリ-ル基、カルバゾリル基、フタラジニル基等) 、アルコキシル基 (例えば、エトキシ基、イソプロポキシ基、ブトキシ基等)、ァリールォ キシ基 (例えば、フエノキシ基、ナフチルォキシ基等)、シァノ基、水酸基、アルケニル 基 (例えば、ビニル基等)、スチリル基、ハロゲン原子 (例えば、塩素原子、臭素原子、 沃素原子、フッ素原子等)等が挙げられる。これらの基は、さらに置換されていてもよ い。
[0059] X 、X 、X 、X はそれぞれ炭素原子または窒素原子を表し、 M は元素周期
01 02 03 04 01 表における 8〜10族の金属を表し、 M はイリジウムまたは白金であることが好ましい
01
。また、 X と Nとの結合、 Nと X の結合、 X と X との結合、 X と X との結合、 X
01 04 04 03 03 02 02 と X との結合は、各々端結合または二重結合を表し、 u2は 0〜3の整数を表す。伹
01
し、 R 〜R のうち少なくとも二つが芳香族基である力、 R 〜R のうち少なくとも
11 14 11 14 一 つ力 電子吸引性基であり、かつ、 R が芳香族基である力、 R 〜R の少なくとも二
15 11 14
つ力 —(Ar ) - (X) - (R ) で表される基である。ここで、 Arは芳香族基を表
0 uO aO 0 ul 0
し、 Xは酸素原子、硫黄原子または窒素原子を表し、 Rは置換基を表し、 uO及び aO
0
は共に 0または 1を表し、 uは 1または 2を表す。但し、 uO及び aOが共に 0であることは
1
ない。
[0060] R 〜R のうち少なくとも二つが芳香族基である場合の芳香族基、また、 Arで表さ
11 14 0 れる芳香族基とは、芳香族炭素環基または芳香族複素環基を表す。芳香族炭素環 基としては、ベンゼン環、ビフエ-ル環、ナフタレン環、ァズレン環、アントラセン環、フ ェナントレン環、ピレン環、タリセン環、ナフタセン環、トリフエ-レン環、 o—テノレフエ- ル環、 m—テルフエ-ル環、 p—テルフエ-ル環、ァセナフテン環、コロネン環、フル オレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン 環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
[0061] また、芳香族複素環基としては、フラン環、チォフェン環、ピリジン環、ピリダジン環、 ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、 トリァゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、ベンゾ イミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、キナ ゾリン環、フタラジン環、力ルバゾール環、カルボリン環、ジァザ力ルバゾール環(カル ボリン環を構成する炭化水素環の炭素原子の一つがさらに窒素原子で置換されてい る環を示す)等が挙げられる。
[0062] また、 Rで表される置換基としては、前記 R 〜R で表される置換基と同義である
0 11 15
[0063] R 〜R のうち少なくとも一つが、電子吸引性基である場合の電子吸引性基として
11 14
は、ハメットの置換基定数 σ ρが 0を超える基をいう。ハメットの σ ρの値は、 Hammett 等によって安息香酸ェチルの加水分解に及ぼす置換基の電子的効果力 求められ た置換基定数であり、『薬物の構造活性相関』 (南江堂: 1979年)、『Substituent Constants for Correlation Analysis m chemistry and biology』(C. Ha nsch and A. Leo, John Wiley& Sons, New York, 1979年)等に記載の基 を引用することができる。
[0064] 本発明においては、電子吸引性基の σ ρは 0. 10以上が好ましい。 σ ρ力 . 10以 上の電子吸引性基としては、例えば、 -Β (ΟΗ) (0. 12)、臭素原子 (0. 23)、塩素
2
原子(0· 23)、沃素原子(0· 18)、 -CBr (— 0· 29)、— CC1 (0. 33)、— CCF (0
3 3 3
. 54)、 -CN (0. 66)、 -CHO (0. 42)、—COOH (0. 45)、CONH (0. 36)、一
2
CH SO CF (0. 31)、— COCH (0. 45)、 3—バレニル基(0. 19)、— CF (CF ) (
2 2 3 3 3 2
0. 53)、 一 CO C H (0. 45)、 一 CF CF CF CF (0. 52)、 一 C F (0. 41)、 2—
2 2 5 2 2 2 3 6 5
ベンゾォキサゾリル基(0. 33)、 2—べンゾチアサゾリル基(0. 29)、 -C = 0 (C H )
6 5
(0. 43)、 -OCF (0. 35)、一 OSO CH (0. 36)、一 SO (NH ) (0. 57)、一 SO
3 2 3 2 2 2
CH (0. 72)、 -COCH CH (0. 48)、一 COCH (CH ) (0. 47)、一 COC (CH )
3 2 3 3 2 3 3
(0. 32)等が挙げられる力 本発明はこれらに限定されない。
[0065] 《一般式 (1A)またはその互変異性体を部分構造として有する金属錯体》
本発明に係る一般式 (1)またはその互変異性体を部分構造として有する金属錯体
(以下、一般式(1A)で表される金属錯体ともいう)について説明する。
[0066] 一般式( 1 A)にお 、て、 Rは水素原子または置換基を表す。 Rで表される置換基と b b
しては、アルキル基(例えば、メチル基、ェチル基、イソプロピル基、ヒドロキシェチル 基、メトキシメチル基、トリフルォロメチル基、 t—ブチル基等)、シクロアルキル基 (例 えば、シクロペンチル基、シクロへキシル基等)、ァラルキル基 (例えば、ベンジル基、 2—フエネチル基等)、芳香族炭化水素基 (例えば、フエ-ル基、 p—クロ口フエニル 基、メシチル基、トリル基、キシリル基、ビフヱ-リル基、ナフチル基、アントリル基、フ ェナントリル基等)、芳香族複素環基 (例えば、フリル基、チェニル基、ピリジル基、ピ リダジニル基、ピリミジニル基、ビラジニル基、トリアジ-ル基、イミダゾリル基、ビラゾリ ル基、チアゾリル基、キナゾリ-ル基、カルバゾリル基、フタラジニル基等)、アルコキ シル基 (例えば、エトキシ基、イソプロポキシ基、ブトキシ基等)、ァリールォキシ基 (例 えば、フエノキシ基、ナフチルォキシ基等)、シァノ基、水酸基、ァルケ-ル基 (例えば 、ビニル基等)、スチリル基、ハロゲン原子 (例えば、塩素原子、臭素原子、沃素原子 、フッ素原子等)等が挙げられる。これらの基は、さらに置換されていてもよい。
[0067] X は炭素原子または窒素原子を表す。
11
[0068] X 、 X 、 X は CR、窒素原子または NRを表す。 R、 Rは水素原子または置換基
12 13 14 c d c d
を表す。 R、 Rで表される置換基としては、 Rで表される置換基と同義である。
c d b
[0069] ma、 mbは 2≤ma≤4、 ma +mb= 4を満たす整数を表す。
[0070] Ar は芳香族炭素環基または芳香族複素環基を表す。芳香族炭素環基としては、
00
ベンゼン環、ビフエ二ノレ環、ナフタレン環、ァズレン環、アントラセン環、フエナントレン 環、ピレン環、タリセン環、ナフタセン環、トリフエ-レン環、 o—テルフエ-ル環、 m— テルフエ-ル環、 p—テルフエ-ル環、ァセナフテン環、コロネン環、フルオレン環、フ ルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン 環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。
[0071] Ar で表される芳香族複素環基としては、フラン環、チォフェン環、ピリジン環、ピリ
00
ダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァ ゾール環、トリァゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール 環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリ ン環、キナゾリン環、フタラジン環、力ルバゾール環、カルボリン環、ジァザカルバゾー ル環 (カルボリン環を構成する炭化水素環の炭素原子の一つがさらに窒素原子で置 換されて!/ヽる環を示す)等が挙げられる。
[0072] M は元素周期表における 8〜10族の金属を表す。 M はイリジウムまたは白金で
11 11
あることが好ましい。 [0073] X と Nとの結合、 Nと X との結合、 X と X との結合、 X と X との結合、 X と X と の結合は、各々単結合または二重結合を表す。
[0074] また、前記一般式(1A)において、 Ar は下記一般式(1 1)で表されることが好ま
00
しい。
[0075] 一般式 (1 1) -Ar - (X) (R )
Ol a a na
一般式 (1— 1)において、 Ar は芳香族炭素環基または芳香族複素環基を表す。
01
Ar で表される芳香族炭素環基または芳香族複素環基としては、 Ar で表される芳
01 00
香族炭素環基または芳香族複素環基と同義である。
[0076] Xは酸素原子、硫黄原子または窒素原子をす。
[0077] Rは水素原子または置換基を表す。 Rで表される置換基としては、 Rで表される置 a a b 換基と同義である。
[0078] naは 1または 2を表し、 aは 0または 1を表す。
[0079] 《一般式 (2)またはその互変異性体を部分構造として有する金属錯体》
本発明に係る一般式 (2)またはその互変異性体を部分構造として有する金属錯体 (以下、一般式 (2)で表される金属錯体ともいう)について説明する。
[0080] 一般式(2)にお 、て、 R、 R、 R 、 R は水素原子または置換基を表す。 R、 R、 R e f 21 22 e f 21
、 R
22で表される置換基としては、一般式(1)における Rで表される置換基と同義であ
5 c
[0081] X
21は炭素原子または窒素原子を表す。 X 、 X 、 X
22 23 24は CR
g、窒素原子または NR h を表す。 R、 Rは水素原子または置換基を表す。 R、 Rで表される置換基としては、 g h g h
一般式(1)における Rで表される置換基と同義である。
b
[0082] nb、 ncは 1または 2を表す。 nl、 n2は 0または 1を表す。
[0083] Ar、 Arは芳香族炭素環基または芳香族複素環基を表す。 Ar、 Arで表される芳
1 2 1 2 香族炭素環基または芳香族複素環基としては、一般式(1)における Ar で表される
00
芳香族炭素環基または芳香族複素環基と同義である。
[0084] X、 Xは酸素原子、硫黄原子または窒素原子を表す。 M は元素周期表における b e 21
8〜10族の金属を表す。 M はイリジウムまたは白金であることが好ましい。
21
[0085] X と Nとの間の結合、 Nと X との間の結合、 X と X との間の結合、 X と X との間 の結合、 X と X との間の結合は、各々単結合または二重結合を表す。
22 21
[0086] 《一般式 (3)またはその互変異性体を部分構造として有する金属錯体》
本発明に係る一般式 (3)またはその互変異性体を部分構造として有する金属錯体 (以下、一般式 (3)で表される金属錯体ともいう)について説明する。
[0087] 一般式(3)において、 R 、R 、R 、R は水素原子または置換基を表す力 少なく
31 32 33 34
とも一つは電子吸引性基を表す。 R 、R 、R 、R で表される置換基としては、一般
31 32 33 34
式(1)における Rで表される置換基と同義である。
b
[0088] R 、 R 、 R 、 R で表される電子吸引性基とは、ハメットの置換基定数 σ ρが 0を超
31 32 33 34
える基をいい、前記一般式(1)において挙げられた電子吸引性基と同義である。本 発明にお 、てはこれら挙げられたものに限定されな 、。
[0089] X は炭素原子または窒素原子を表す。
35
[0090] X 、Χ 、Χ は CR 、窒素原子または NR を表す力 その少なくとも一つは CR で
36 37 38 35 36 35 ある。 R 、R 一つ
35 36は水素原子または置換基を表す。 R の
35 少なくとも は芳香族炭素 環基または芳香族複素環基を表す。 R 、R
35 36で表される置換基としては、一般式(1) における R
bで表される置換基と同義である。 R
35で表される芳香族炭素環基または芳 香族複素環基としては、一般式(1)における Ar
00で表される芳香族炭素環基または 芳香族複素環基と同義である。
[0091] M は元素周期表における 8〜10族の金属を表す。 M はイリジウムまたは白金で
31 31
あることが好ましい。
[0092] X と Nとの結合、 Nと X との結合、 X と X との結合、 X と X との結合、 X と X と
35 38 38 37 37 36 36 35 の結合は、各々単結合または二重結合を表す。
[0093] 《一般式 (4)またはその互変異性体を部分構造として有する金属錯体》
本発明に係る一般式 (4)またはその互変異性体を部分構造として有する金属錯体 (以下、一般式 (4)で表される金属錯体ともいう)について説明する。
[0094] 一般式 (4)において、 R 、R 、R 、R は水素原子または置換基を表す力 R 、R
41 42 43 44 41 の
42 少なくとも一つは電子吸引性基を表す。 R 、R 、R 、R
41 42 43 44で表される置換基とし ては、一般式(1)における Rで表される置換基と同義である。 R 、 R 、 R 、 R で表 b 41 42 43 44 される電子吸引性基としては、一般式(3)における R 、R 、R 、R で表される電子
31 32 33 34 吸引性基と同義である。
[0095] X は炭素原子または窒素原子を表す。
45
[0096] X 、X 、X は CR 、窒素原子または NR を表す力 その少なくとも一つは CR で
46 47 48 45 46 45 ある。 R 、R は水素原子または置換基を表す。 R の少なくとも一つは芳香族炭素
45 46 45
環基または芳香族複素環基を表す。 R 、R で表される置換基としては、一般式(1)
45 46
における Rで表される置換基と同義である。 R で表される芳香族炭素環基または芳 b 45
香族複素環基としては、一般式(1)における Ar で表される芳香族炭素環基または
00
芳香族複素環基と同義である。
[0097] M は元素周期表における 8〜10族の金属を表す。 M はイリジウムまたは白金で
41 41
あることが好ましい。 X と Nとの結合、 Nと X との結合、 X と X との結合、 X と X と
45 48 48 47 47 46 の結合、 X X
46と 45との結合は、各々単結合または二重結合を表す。
[0098] 以下、本発明に係る、前記一般式(1)、(1A)、(2)〜 (4)またはその互変異性体を 部分構造として有する金属錯体の具体例を示すが、本発明はこれらに限定されない
[0099] [化 7]
[ ] [ΟΟΐΟ]
Figure imgf000021_0001
l79C60C/900Zdf/X3d 61· 68C9Zl/900Z OAV
Figure imgf000022_0001
[0101] [ィ匕 9] [Οΐ^ ] [画]
Figure imgf000023_0001
l79C60C/900Zdf/X3d 68C9Zl/900Z OAV
Figure imgf000024_0001
[0103] [化 11]
Figure imgf000025_0001
[0104] [化 12]
[ετ^] [soio]
Figure imgf000026_0001
l79€60f/900Zdf/X3d z 68C9JT/900Z OAV ίη^] [9010]
Figure imgf000027_0001
Figure imgf000028_0001
[9ΐ^ ] [8010]
Figure imgf000029_0001
l79C60C/900Zdf/X3d LZ 68C9Zl/900Z OAV
[ ΐ^ ] [6010]
Figure imgf000030_0001
Figure imgf000031_0001
[0110] [化 18] [6ΐ^ ] [ΐΐΐθ]
Figure imgf000032_0001
l79C60C/900Zdf/X3d οε 68C9Zl/900Z OAV
Figure imgf000033_0001
Figure imgf000034_0001
これらの金属錯体は、例えば Organic Letter誌, vol3, No. 16, p2579〜258 1 (2001)、 Inorganic Chemistry,第 30卷,第 8号, 1685〜1687ページ(1991 年)、 J. Am. Chem. Soc. , 123卷, 4304ページ(2001年)、 Inorganic Chemis try,第 40卷,第 7号, 1704〜1711ページ(2001年)、 Inorganic
Chemistry,第 41卷,第 12号, 3055〜3066ページ(2002年)、 New Journal of Chemistry. ,第 26卷, 1171ページ(2002年)、 Angewandte Chemie In ternational Edition,第 38卷, 1698〜1712ページ(1999年)、 Bulletin of the Chemical Society of Japan,第 71卷, 467〜473ページ(1998年) 、J. Am. Chem. Soc. ,第 125卷, 18号, 5274〜5275 (2003年)、 J. Am. Che m. Soc. ,第 125卷, 35号, 10580〜10585 (2003年)、さらに、これらの文献中 に記載の参考文献等の方法を適用することにより合成できる。
[0114] 《金属錯体を含む有機 EL素子材料の有機 EL素子への適用》
本発明の有機 EL素子材料を用いて本発明の有機 EL素子を作製する場合、有機 EL素子の構成層(詳細は後述する)の中で、発光層または電子阻止層に本発明の 有機 EL素子材料を用いることが好ましい。また、発光層中では上記のように、発光ド 一パントとして好ましく用いられる。
[0115] (発光ホストと発光ドーパント)
発光層中の主成分であるホストイ匕合物である発光ホストに対する発光ドーパントとの 混合比は好ましくは質量で 0. 1質量%〜30質量%未満の範囲に調整することであ る。
[0116] ただし、発光ドーパントは複数種の化合物を混合して用いても良ぐ混合する相手 は構造を異にする、その他の金属錯体やその他の構造を有するリン光性ドーパント や蛍光性ドーパントでもよ 、。
[0117] ここで、発光ドーパントとして用いられる金属錯体と併用してもよいドーパント(リン光 性ドーパント、蛍光性ドーパント等)について述べる。
[0118] 発光ドーパントは、大きくわけて、蛍光を発光する蛍光性ドーパントとリン光を発光 するリン光性ドーパントの 2種類がある。
[0119] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シ了ニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[0120] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素の周期表で 8属、 9属、 10属の金属を含有する錯体系化合物であり、さらに好ましくは、イリジウム化合物、ォ スミゥム化合物であり、中でも最も好ましいのはイリジウム化合物である。
[0121] 具体的には以下の特許公報に記載されている化合物である。 [0122] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001
— 181616号公報、特開 2002— 280179号公報、特開 2001— 181617号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02,15645号パンフ レッド、特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003
— 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0123] その具体例の一部を下記に示す。
[0124] [化 21]
lr-1 lr一 2
Figure imgf000037_0001
2]
Figure imgf000038_0001
[0126] [化 23] Pt-1 Pt-
Figure imgf000039_0001
[0127] (発光ホスト)
発光ホスト(単にホストとも!、う)とは、 2種以上の化合物で構成される発光層中にて 混合比 (質量)の最も多い化合物のことを意味し、それ以外の化合物については「ド 一パント化合物(単に、ドーパントともいう)」という。例えば、発光層をィ匕合物 A、化合 物 Bという 2種で構成し、その混合比が A:B= 10 :90であれば化合物 Aがドーパント 化合物であり、化合物 Bがホストイ匕合物である。さらに、発光層をィ匕合物 A、化合物 B 、化合物 Cの 3種力 構成し、その混合比が八^:じ=5:10:85でぁれば、化合物 A 、化合物 Bがドーパント化合物であり、化合物 Cがホストイ匕合物である。
[0128] 本発明に用いられる発光ホストとしては、併用される発光ドーパントのリン光 0— 0バ ンドよりも短波長なそれをもつ化合物が好ましぐ発光ドーパントにそのリン光 0— 0バ ンドが 480nm以下である青色の発光成分を含む化合物を用いる場合には、発光ホ ストとしてはリン光 0— 0バンドが 450nm以下であることが好ましい。
[0129] 本発明に用いられる発光ホストとしては、構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複 素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレンィ匕合物等の基本骨 格を有するもの、または、カルボリン誘導体ゃ該カルボリン誘導体のカルボリン環を構 成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構 造を有する誘導体等が挙げられる。
[0130] 中でも力ルバゾール誘導体、カルボリン誘導体ゃ該カルボリン誘導体のカルボリン 環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている 環構造を有する誘導体が好ましく用いられる。
[0131] 以下に、具体例を挙げるが、本発明はこれらに限定されない。
[0132] [化 24]
Figure imgf000041_0001
[0133] [化 25]
Figure imgf000042_0001
[0134] [化 26]
Figure imgf000043_0001
[0135] [化 27]
Figure imgf000044_0001
[0136] また、本発明の発光ホストは低分子化合物でも、繰り返し単位をもつ高分子化合物 でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合物 (蒸着重合 性発光ホスト)でもいい。
[0137] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化 を防ぎ、なおかつ高 Tg (ガラス転移温度)である化合物が好ま U、。
[0138] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。
例えば、特開 2001— 257076号公報、特開 2002— 308855号公報、特開 2001— 313179号公報、特開 2002— 319491号公報、特開 2001— 357977号公報、特 開 2002— 334786号公報、特開 2002— 8860号公報、特開 2002— 334787号公 報、特開 2002— 15871号公報、特開 2002— 334788号公報、特開 2002— 4305 6号公報、特開 2002— 33 9号公報、特開 2002— 75645号公報、特開 2002— 338579号公報、特開 2002— 105445号公報、特開 2002— 343568号公報、特 開 2002— 141173号公報、特開 2002— 352957号公報、特開 2002— 203683号 公報、特開 2002— 363227号公報、特開 2002— 231453号公報、特開 2003— 3 165号公報、特開 2002— 234888号公報、特開 2003— 27048号公報、特開 200 2— 255934号公報、特開 2002— 260861号公報、特開 2002— 280183号公報、 特開 2002— 299060号公報、特開 2002— 302516号公報、特開 2002— 305083 号公報、特開 2002— 305084号公報、特開 2002— 308837号公報等。
[0139] 次に、代表的な有機 EL素子の構成について述べる。
[0140] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層につ 、て説明する。
[0141] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれ らに限定されない。
(i)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(ii)陽極 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(iii)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(iv)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極 (V)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極 バッファ一層 z陰極
(vi)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
(vii)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
《阻止層 (電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。
[0142] 本発明においては、正孔阻止層、電子阻止層等に、本発明の有機 EL素子材料を 用いることが好ましぐ特に好ましくは電子阻止層に用いることである。
[0143] 本発明の有機 EL素子材料を正孔阻止層、電子阻止層に含有させる場合、請求の 範囲第 1項〜 6項の 、ずれか 1項に記載されて!、る本発明に係る金属錯体を正孔阻 止層や電子阻止層等の層構成成分として 100質量%の状態で含有させてもよいし、 他の有機化合物等と混合してもよ 、。
[0144] 本発明に係る阻止層の膜厚としては好ましくは 3〜: LOOnmであり、さらに好ましくは 5〜30nmである。
[0145] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0146] 正孔阻止層としては、例えば特開平 11— 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー 'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。
[0147] 本発明の有機 EL素子は、構成層として正孔阻止層を有し、該正孔阻止層が、前記 、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環 の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を 含有することが好ましい。
[0148] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0149] また、本発明においては、発光層に隣接する隣接層、即ち、正孔阻止層、電子阻 止層に、上記の本発明の有機 EL素子材料を用いることが好ましぐ特に電子阻止層 に用いることが好ましい。
[0150] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。 [0151] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において、正孔の電荷 注入輸送材料として慣用されて 、るものや EL素子の正孔注入層、正孔輸送層に使 用される公知のものの中から任意のものを選択して用いることができる。
[0152] 正孔輸送材料は、正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するも のであり、有機物、無機物のいずれであってもよい。例えばトリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また、導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0153] 正孔輸送材料としては、上記のものを使用することができる力 ポルフィリン化合物 、芳香族第三級ァミン化合物及びスチリルァミン化合物、特に芳香族第三級ァミン化 合物を用いることが好まし 、。
[0154] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、さらには、米国特許第 5, 061, 569号明細書に記載され ている 2個の縮合芳香族環を分子内に有するもの、例えば 4, 4' ビス〔N— (1 - ナフチル) N—フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4— 308688号公報に 記載されて 、るトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , " —トリス〔?^— (3—メチルフエ-ル)一 N フエ-ルァミノ〕トリフエ-ルァミン(MT DATA)等が挙げられる。
[0155] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。
[0156] また、 p型 Si、 p型 SiC等の無機化合物も正孔注入材料、正孔輸送材料として 使用することができる。
[0157] この正孔輸送層は、上記正孔輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5ηπ!〜 50 OOnm程度である。この正孔輸送層は、上記材料の一種または二種以上からなる一 層構造であってもよい。
[0158] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は、単層もしくは複数層を設 けることができる。
[0159] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られて 、る。
[0160] さらに、電子輸送層は、陰極より注入された電子を発光層に伝達する機能を有して いればよぐその材料としては従来公知の化合物の中から任意のものを選択して用 いることがでさる。
[0161] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または、該カルボリン誘導体のカルボリン環を構成する炭化水 素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導 体等が挙げられる。さらに、上記ォキサジァゾール誘導体において、ォキサジァゾ一 ル環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として 知られて!/ヽるキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用い ることがでさる。
[0162] さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。
[0163] また、 8 キノリノール誘導体の金属錯体、例えばトリス(8 キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリ 一若しくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基 等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発 光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いる ことができるし、正孔注入層、正孔輸送層と同様に、 n型— Si、 n型— SiC等の無機半 導体も電子輸送材料として用いることができる。
[0164] この電子輸送層は、上記電子輸送材料を、例えば真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は、上記材料の一種または二種以上からなる一層 構造であってもよい。
[0165] 次に、本発明の有機 EL素子の構成層として用いられる、注入層について説明する
[0166] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存 在させてもよい。
[0167] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0168] 陽極バッファ一層(正孔注入層)は、特開平 9—45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0169] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9— 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的には、スト口 ンチウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表され るアルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。
[0170] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるが、そ の膜厚は 0. 1〜: LOOnmの範囲が好ましい。
[0171] この注入層は、上記材料を、例えば真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5〜5000nm程度である。こ の注入層は、上記材料の一種または二種以上力もなる一層構造であってもよい。
[0172] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキ シド (ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O - Zn0)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの 電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ 一法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要 としない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所 望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場 合には、透過率を 10%より大きくすることが望ましぐまた、陽極としてのシート抵抗は 数百 ΩΖ口以下が好ましい。さらに膜厚は材料にもよる力 通常 10〜: L000nm、好 ましくは 10〜200nmの範囲で選ばれる。
[0173] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物 、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )
2 3混合物、インジウム、リチウム Zアルミニウム混合物、希 土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えばマグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物 、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al O )
2 3混合物
、リチウム Zアルミニウム混合物、アルミニウム等が好適である。陰極は、これらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより、作製す ることができる。また、陰極としてのシート抵抗は数百 ΩΖ口以下が好ましぐ膜厚は 通常 10〜: L000nm、好ましくは 50〜200nmの範囲で選ばれる。なお、発光を透過 させるため、有機 EL素子の陽極または陰極のいずれか一方が、透明または半透明 であれば発光輝度が向上し好都合である。
[0174] 《基体 (基板、基材、支持体等とも!ヽぅ)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた、透明のものであれば特に制限はないが、好ましく用いられる基板と しては例えばガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好まし V、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムである。
[0175] 榭脂フィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフ タレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエ ーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート(P C)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP) 等力 なるフィルム等が挙げられる。
[0176] 榭脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01gZm2'dayatm以下の高 ノ リア性フィルムであることが好まし ヽ。
[0177] 本発明の有機 E1素子の発光の室温における外部取り出し効率は 1%以上であるこ と力 子ましく、より好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である。
[0178] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0179] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。
[0180] 多色表示装置として用いる場合は少なくとも 2種類の異なる発光極大波長を有する 有機 EL素子カゝらなるが、有機 EL素子を作製する好適な例を説明する。
[0181] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極からなる有機 EL 素子の作製法について説明する。
[0182] まず適当な基体上に、所望の電極物質、例えば陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは 10〜200nmの膜厚になるように、蒸着やスパッタリング等の方法に より形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔輸 送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成さ せる。
[0183] この有機化合物を含有する薄膜の薄膜ィ匕の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐかつピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、 その蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度
50〜450°C、真空度 10一6〜 10— 2Pa、蒸着速度 0. 01〜50nmZ秒、基板温度— 50 〜300°C、膜厚 0. 1〜5 μ mの範囲で適宜選ぶことが望ましい。
[0184] これらの層の形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 0〜200nmの範囲の膜厚になるように、例えば蒸着やスパッタリング等の方法により 形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 EL素 子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ま しいが、途中で取り出して異なる製膜法を施しても力まわない。その際、作業を乾燥 不活性ガス雰囲気下で行う等の配慮が必要となる。
[0185] 《表示装置》
本発明の表示装置について説明する。本発明の表示装置は上記有機 EL素子を 有する。
[0186] 本発明の表示装置は単色でも多色でもよいが、ここでは、多色表示装置について 説明する。多色表示装置の場合は、発光層形成時のみシャドーマスクを設け、一面 に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる
[0187] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを 用いたパターユングが好まし 、。
[0188] また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、 陽極の順に作製することも可能である。
[0189] このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を + 、陰極を—の極性として電圧 2〜40V程度を印加すると、発光が観測できる。また、 逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電 圧を印加する場合には、陽極が +、陰極が一の状態になったときのみ発光する。な お、印加する交流の波形は任意でよい。
[0190] 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることがで きる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を 用いることにより、フルカラーの表示が可能となる。
[0191] 表示デバイス、ディスプレイとしてはテレビ、ノ ソコン、モパイル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリックス (パッシブマトリックス)方式でもアクティブマトリックス方式で もどちらでもよい。
[0192] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられるがこれに限定するものではない。
[0193] 《照明装置》
本発明の照明装置について説明する。本発明の照明装置装置は上記有機 EL素 子を有する。
[0194] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用 してちよい。
[0195] また、本発明の有機 EL素子は、照明用や露光光源のような一種のランプとして使 用してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像 を直接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用 の表示装置として使用する場合の駆動方式は単純マトリクス (パッシブマトリクス)方 式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本 発明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製する ことが可能である。
[0196] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する [0197] 図 1は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。
[0198] ディスプレイ 1は、複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの 画像走査を行う制御部 B等力もなる。
[0199] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。
[0200] 図 2は、表示部 Aの模式図である。
[0201] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と、複数の画 素 3等とを有する。表示部 Aの主要な部材の説明を以下に行う。
[0202] 図においては、画素 3の発光した光力 白矢印方向(下方向)へ取り出される場合 を示している。
[0203] 配線部の走査線 5及び複数のデータ線 6は、それぞれ導電材料からなり、走査線 5 とデータ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図 示していない)。
[0204] 画素 3は、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラ 一表示が可能となる。
[0205] 次に、画素の発光プロセスを説明する。
[0206] 図 3は、画素の模式図である。
[0207] 画素は、有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデ ンサ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発 光の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行 うことができる。 [0208] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0209] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。
[0210] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0211] すなわち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対 して、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて 、複数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法 をアクティブマトリクス方式と呼んで 、る。
[0212] ここで、有機 EL素子 10の発光は、複数の階調電位を持つ多値の画像データ信号 による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量の オン、才フでもよ!/、。
[0213] また、コンデンサ 13の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。
[0214] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0215] 図 4は、ノッシブマトリクス方式による表示装置の模式図である。図 4において、複 数の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられ ている。
[0216] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して ヽる画素 3が画像データ信号に応じて発光する。
[0217] ノ¾ /シブマトリクス方式では画素 3にアクティブ素子が無ぐ製造コストの低減が計れ る。
[0218] また、本発明の有機 EL材料は、また、照明装置として、実質白色の発光を生じる有 機 EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて 混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色 の 3原色の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙 色等の補色の関係を利用した 2つの発光極大波長を含有したものでもよい。
[0219] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光で発光する材料を、複数組み合わせたもの、蛍光またはリン光で発光する発光 材料と、発光材料力 の光を励起光として発光する色素材料との組み合わせたもの のいずれでもよいが、本発明に係わる白色有機 E1素子においては、発光ドーパント を複数組み合わせ混合するだけでょ 、。発光層もしくは正孔輸送層或いは電子輸送 層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよ ぐ他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キ ヤスト法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生 産性も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した 白色有機 EL装置と異なり、素子自体が発光白色である。
[0220] 発光層に用いる発光材料としては特に制限はなぐ例えば液晶表示素子における ノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合するよ うに、本発明に係わる金属錯体、また公知の発光材料の中から任意のものを選択し て組み合わせて白色化すればょ 、。
[0221] このように、本発明の白色発光有機 EL素子は、前記表示デバイス、ディスプレイ〖こ カロえて、各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源の ような一種のランプとして、また液晶表示装置のバックライト等、表示装置にも有用に 用いられる。
[0222] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、さらには表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0223] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。また、 実施例に用 ヽる化合物を下記に示す。
[0224] 実施例 1
《有機 EL素子 1—1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 5つのタンタル製抵抗力卩熱ボートに、 a— NPD、 CBP、 Ir— 12、 BCP、 Alqをそれ
3 ぞれ入れ、真空蒸着装置 (第 1真空槽)にとりつけた。
[0225] さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボ ートにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽にとりつけた。
[0226] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 30nm の厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0227] さらに、 CBPの入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して発光ホストである CBPと発光ドーパントである Ir— 12の蒸着速度が 100 : 3にな るように調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0228] ついで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ 10nmの正孔阻止層を設けた。さらに、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 40nmの電子輸送層を設けた [0229] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0230] 第 2真空槽を 2 X 10—4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入つたボートに通電して蒸着速度 1〜 2nmZ秒で膜厚 150nmの陰極を つけた。さらにこの素子を大気に接触させることなく窒素雰囲気下のグローブボックス (純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図 5に 示したような内部を窒素で置換した封止構造にして、有機 EL素子 1— 1を作製した。
[0231] なお、捕水剤である酸化バリウム 105は、アルドリッチ社製の高純度酸化バリウム粉 末を、粘着剤付きのフッ素榭脂系半透過膜 (ミクロテックス S-NTF8031Q 日東 電工製)でガラス製封止缶 104に貼り付けたものを予め準備して使用した。封止缶と 有機 EL素子の接着には紫外線硬化型接着剤 107を用い、紫外線ランプを照射する ことで両者を接着し封止素子を作製した。
[0232] 図 5において 101は透明電極を設けたガラス基板、 102が前記正孔注入/輸送層 、発光層、正孔阻止層、電子輸送層等カゝらなる有機 EL層、 103は陰極を示す。
[0233] 《有機 EL素子 1 2〜1 24の作製》
有機 EL素子 1—1の作製において、表 1に記載のように発光ホスト及び発光ドーパ ントを変更した以外は同様にして、有機 EL素子 1— 2〜1— 24を作製した。
[0234] [化 28]
Figure imgf000060_0001
ACZ1
Figure imgf000060_0002
[0236] 《有機 EL素子の評価》
得られた有機 EL素子 1 1〜1 24につ 、て下記のような評価を行った。
[0237] (外部取り出し量子効率)
有機 EL素子を室温 (約 23〜25°C)、 2. 5mAZcm2の定電流条件下による点灯を 行い、点灯開始直後の発光輝度 (L) [cdZm2]を測定することにより、外部取り出し 量子効率( r? )を算出した。ここで、発光輝度の測定は、 CS— 1000 (ミノルタ製)を用 いた。外部取り出し量子効率は、有機 EL素子 1—1を 100とする相対値で表した。 [0238] (発光寿命)
有機 EL素子を室温下、 2. 5mAZcm2の定電流条件下による連続点灯を行い、初 期輝度の半分の輝度になるのに要する時間(て )を測定した。発光寿命は、有機
EL素子 1一 1を 100と設定する相対値で表した。
[0239] 得られた結果を表 1に示す。
[0240] [表 1]
Figure imgf000061_0001
[0241] 表 1から、本発明に係る一般式(1)、(1A)または、一般式(2)で表される金属錯体 を用いて作製した有機 EL素子は比較例の有機 EL素子に比べ、高い発光効率と発 光寿命の長寿命化が達成できることが明らかである。
[0242] さらに、カルボリン誘導体またはカルボリン誘導体のカルボリン環を構成する炭化水 素環の炭素原子の少なくとも一つがさらに窒素原子で置換されている環構造を有す る誘導体を発光層に併用することにより、さらに本発明の効果の向上が見られた。
[0243] 実施例 2
《有機 EL素子 2—1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた o
[0244] この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 5つ のタンタル製抵抗力卩熱ボートに、 a— NPD、 CBP、 Ir 13、 BCP、 Alqをそれぞれ
3 入れ、真空蒸着装置 (第 1真空槽)にとりつけた。
[0245] さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボ ートにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽にとりつけた。
[0246] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 30nm の厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0247] さらに、 CBPの入った前記加熱ボートと Ir 13の入ったボートをそれぞれ独立に通 電して発光ホストである CBPと発光ドーパントである Ir— 13の蒸着速度が 100 : 6にな るように調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0248] ついで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ 10nmの正孔阻止層を設けた。さらに、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 40nmの電子輸送層を設けた
[0249] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0250] 第 2真空槽を 2 X 10—4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入つたボートに通電して蒸着速度 1〜 2nmZ秒で膜厚 150nmの陰極を つけた。さらにこの素子を大気に接触させることなく窒素雰囲気下のグローブボックス
(純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図 5に 示したような内部を窒素で置換した封止構造にして、有機 EL素子 2— 1を作製した。 なお、捕水剤である酸化バリウム 105は、アルドリッチ社製の高純度酸化バリウム粉 末を、粘着剤付きのフッ素榭脂系半透過膜 (ミクロテックス S-NTF8031Q 日東 電工製)でガラス製封止缶 104に貼り付けたものを予め準備して使用した。封止缶と 有機 EL素子の接着には紫外線硬化型接着剤 107を用い、紫外線ランプを照射する ことで両者を接着し封止素子を作製した。図 5において 101は透明電極を設けたガラ ス基板、 102が前記正孔注入 Z輸送層、発光層、正孔阻止層、電子輸送層等からな る有機 EL層、 103は陰極を示す。
[0251] 《有機 EL素子 2— 2〜2— 16の作製》
有機 EL素子 2—1の作製において、表 2に記載のように発光ホスト及び発光ドーパ ントを変更した以外は同様にして、有機 EL素子 2— 2〜2— 16を作製した。
[0252] [化 30] 比較 4
Figure imgf000063_0001
[0253] 《有機 EL素子の評価》
得られた有機 EL素子 2— 1〜2— 16について、外部取り出し量子効率を実施例 1と 同様の方法で評価を行った。外部取り出し量子効率は、有機 EL素子 2—1を 100と する相対値で表した。また、下記方法で発光寿命を測定した。
[0254] (発光寿命)
有機 EL素子 2— 1〜2— 16を室温下、 2. 5mAZcm2の定電流条件下による連続 点灯を行い、初期輝度の 90%の輝度になるのに要する時間( τ Ζ )を測定した。な
1 9
お、発光寿命は、有機 EL素子 2—1を 100とする相対値で表した。
[0255] 得られた結果を表 2に示す。 [0256] [表 2]
Figure imgf000064_0001
[0257] 表 2から、本発明に係る一般式(1A)、 (3)、または、一般式 (4)で表される金属錯 体を用いて作製した有機 EL素子は比較例の有機 EL素子に比べ、高い発光効率と 発光寿命の長寿命化が達成できることが明らかである。
[0258] さらに、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化 水素環の炭素原子の少なくとも一つがさらに窒素原子で置換されている環構造を有 する誘導体を発光層に併用することにより、さらに本発明の効果の向上が見られた。
[0259] 実施例 3
《有機 EL素子 3—1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターニングを行った後、この ITO透明電極を設けた透明支持基板を iso—プロ ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた o
[0260] この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 5つ のタンタル製抵抗力卩熱ボートに、 m-MTDATXA, Hl、 Ir一 12、 BCP、 Alqを各
3 々入れ、真空蒸着装置 (第 1真空槽)にとりつけた。 [0261] さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボ ートにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽にとりつけた。
[0262] まず、第 1の真空槽を 4 X 10— 4Paまで減圧した後、 m— MTDATXAの入った前記 加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 40nmの厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0263] さらに、 HIの入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通 電して発光ホストである HIと発光ドーパントである Ir— 12の蒸着速度が 100 : 6にな るように調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0264] ついで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ lOnmの正孔阻止層を設けた。さらに、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 20nmの電子輸送層を設けた
[0265] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0266] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入つたボートに通電して蒸着速度 1〜 2nmZ秒で膜厚 150nmの陰極を つけた。さらにこの素子を大気に接触させることなく窒素雰囲気下のグローブボックス (純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図 5に 示したような内部を窒素で置換した封止構造にして、有機 EL素子 3— 1を作製した。 なお、捕水剤である酸化バリウム 105は、アルドリッチ社製の高純度酸化バリウム粉 末を、粘着剤付きのフッ素榭脂系半透過膜 (ミクロテックス S-NTF8031Q 日東 電工製)でガラス製封止缶 104に貼り付けたものを予め準備して使用した。封止缶と 有機 EL素子の接着には紫外線硬化型接着剤 107を用い、紫外線ランプを照射する ことで両者を接着し封止素子を作製した。図 5において 101は透明電極を設けたガラ ス基板、 102が前記正孔注入 Z輸送層、発光層、正孔阻止層、電子輸送層等からな る有機 EL層、 103は陰極を示す。 [0267] 《有機 EL素子 3— 2〜3— 19の作製》
有機 EL素子 3—1の作製において、表 3に記載のように発光ホスト及び発光ドー ントを変更した以外は同様にして、有機 EL素子 3— 2〜3— 19を作製した。
[0268] [化 31]
Figure imgf000066_0001
[0269] [化 32]
Figure imgf000067_0001
Figure imgf000067_0002
[0270] 《有機 EL素子の評価》
得られた有機 EL素子 3— 1〜3— 19について、実施例 1と同様の方法で外部取り 出し量子効率及び発光寿命の評価を行った。なお、外部取り出し量子効率及び発 光寿命は、有機 EL素子 3—1を 100とする相対値で表した。また、下記方法で色度 差を測定した。
[0271] (色度差)
有機 EL素子を室温 (約 23°C〜25°C)、 2. 5mAZcm2の定電流条件下による点灯 を行い、点灯開始直後の素子発光色の CIE色度((X, y) = (a, b) )を測定し、 NTS C (modern)の青((x, y) = (0. 155, 0. 07) )との差を Δとして算出した。
[0272] ここで、 Δは以下の式に従って求め、また CIE色度の測定は CS— 1000 (ミノルタ 製)を用いた。
[0273] Δ = ( I 0. 155— a | 2+ | 0. 07— b | V/2
得られた結果を表 3に示す。
[0274] [表 3] 有機 EL素子 発光 正孔阻止外部取り出し発光寿命
発光ホスト 色度差備 考
No. ドーパン ト 材料 量子効率 ( τ \η)
m
3 ω一 1 H 1 lr-12 B C P !00 100 0.29 比較例
3- 2 H 1 比較 1 B C P 91 92 0.31 比較例
ο
3- 3 H 1 比較 2 B C P 73 95 0.24 比較例
H 1 1 -15 B C P 124 224 0.21 本発明
3 - 5 H 1 2— 6 BC P 122 188 0.20 本発明
3 - 6 H 4 2 -30 B C P 130 187 0.22 本発明
H 4 3一 1 B C P 128 176 0.25 本発明
3 -8 H 1 3 -15 B C P 130 188 0.25 本発明
3- 9 H 2 2 -20 B C P 129 155 0.19 本発明
H 2 3 -21 B C P 129 164 0.23 本発明
3 -11 H 2 3 -24 B C P 122 162 0.20 本発明
H 2 1 -12 A C Z 2 131 231 0.22 本発明
3—13 H 3 1 -15 A C Z 3 134 236 0.20 -φ>発明
3 -14 H 3 2 - 6 A C Z 2 130 212 0.19 本発明
3-15 H 3 2—30 A C Z 3 130 228 0.19 本発明
3-16 H 1 3― 1 A C Z 1 129 229 0.23 本発明
3-17 H 1 3 -15 A C Z 2 132 210 0.23 本発明
H 4 2 -19 A C Z 3 129 205 0.18 本発明
H 4 2 -20 A C Z 2 130 220 0.19 本発明
[0275] 表 3から、本発明に係る金属錯体を用いて作製した有機 EL素子は比較例の有機 Ε L素子に比べ、高い発光効率と発光寿命の長寿命化が達成できることが明らかであ る。
[0276] さらに、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化 水素環の炭素原子の少なくとも一つがさらに窒素原子で置換されている環構造を有 する誘導体を正孔阻止層に併用することにより、さらに本発明の効果の向上が見られ た。
[0277] 実施例 4
《有機 EL素子 4 1の作製》
陽極としてガラス上に ΙΤΟを 150nm成膜した基板 (ΝΗテクノグラス社製: ΝΑ— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を、市販の真空蒸着装置の基板ホルダーに固定し、一方、 タンタル製抵抗加熱ボートに、 —NPD、比較 2、 CBP、 Ir—1、 BCP、 Alqをそれ ぞれ入れ、真空蒸着装置 (第 1真空槽)にとりつけた。
[0278] さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボ ートにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽にとりつけた。
[0279] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 40nm の厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0280] 次に、第 1の真空槽を 4 X 10—4Paまで減圧した後、比較 2の入った前記加熱ボート に通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 20nmの厚 さになるように蒸着し、電子阻止 (ブロック)層を設けた。
[0281] さらに、 CBPの入った前記加熱ボートと Ir 1の入ったボートをそれぞれ独立に通 電して発光ホストである CBPと発光ドーパントである Ir 1の蒸着速度が 100 : 7にな るように調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0282] ついで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ 15nmの正孔阻止層を設けた。さらに、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 20nmの電子輸送層を設けた
[0283] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0284] 第 2真空槽を 2 X 10—4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入つたボートに通電して蒸着速度 1〜 2nmZ秒で膜厚 150nmの陰極を つけた。さらにこの素子を大気に接触させることなく窒素雰囲気下のグローブボックス (純度 99. 999%以上の高純度窒素ガスで置換したグローブボックス)へ移し、図 5に 示したような内部を窒素で置換した封止構造にして、有機 EL素子 4— 1を作製した。
[0285] なお、捕水剤である酸化バリウム 105は、アルドリッチ社製の高純度酸化バリウム粉 末を、粘着剤付きのフッ素榭脂系半透過膜 (ミクロテックス S -NTF8031Q 日東 電工製)でガラス製封止缶 104に貼り付けたものを予め準備して使用した。封止缶と 有機 EL素子の接着には紫外線硬化型接着剤 107を用い、紫外線ランプを照射する ことで両者を接着し封止素子を作製した。
[0286] 図 5において 101は透明電極を設けたガラス基板、 102が前記正孔注入/輸送層
、電子ブロック層、発光層、正孔阻止層、電子輸送層等からなる有機 EL層、 103は 陰極を示す。
[0287] 《有機 EL素子 4 2〜4 9の作製》
有機 EL素子 1—1の作製において、表 4に記載のように電子阻止材料を変更した 以外は同様にして、有機 EL素子 4— 2〜4— 9を作製した。
[0288] 《有機 EL素子の評価》
得られた有機 EL素子 4 1〜4 9について、実施例 1と同様の方法で外部取り出 し量子効率及び発光寿命の評価を行った。なお、外部取り出し量子効率及び発光 寿命は、有機 EL素子 4— 1を 100とする相対値で表した。
[0289] 得られた結果を表 4に示す。
[0290] [表 4]
Figure imgf000070_0001
[0291] 表 4から、本発明に係る金属錯体を用いて作製した有機 EL素子は比較例の有機 Ε L素子に比べ、高い発光効率と発光寿命の長寿命化が達成できることが明らかであ る。
[0292] 実施例 5
25mm X 25mm Χ 0. 5mmのガラス支持基板上に直流電源を用い、スパッタ法に てインジウム錫酸ィ匕物(ITO、インジウム Ζ錫 = 95Ζ5モル比)の陽極を形成した (厚 み 200nm)。この陽極の表面抵抗は 10 Ω ロであった。これにポリビュルカルバゾ —ル (正孔輸送性バインダーポリマー) /Ir— 13 (青発光性オルトメタルィ匕錯体) /2 ー(4ービフェ-リル)ー5—(4 1;ーブチルフェ-ル)ー1, 3, 4 ォキサジァゾ一ル( 電子輸送材) = 200/2/50質量比を溶解したジクロロエタン溶液をスピンコーター で塗布し、 lOOnmの発光層を得た。この有機化合物層の上にパターユングしたマス ク (発光面積が 5mm X 5mmとなるマスク)を設置し、蒸着装置内で陰極バッファ一層 としてフッ化リチウム 0. 5nm及び陰極としてアルミニウム 150nmを蒸着して陰極を設 けた。陽極、陰極よりそれぞれアルミニウムのリード線を出して発光素子を作製した。 該素子を窒素ガスで置換したグローブボックス内に入れ、ガラス製の封止容器で紫 外線硬化型接着剤 (長瀬チバ製、 XNR5493)を用いて封止して青色発光の有機 E L素子 5—1を作製した。
[0293] 《有機 EL素子 5— 2〜5— 5の作製》
有機 EL素子 5— 1の作製において、表 5に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 5— 2〜5— 5を作製した。
[0294] 《有機 EL素子の評価》
得られた有機 EL素子 5— 1〜5— 5につ 、て、下記のようにして発光輝度及び発光 効率を測定した。
[0295] (発光輝度、発光効率)
東洋テク-力製ソースメジャーユニット 2400型を用いて、直流電圧を有機 EL素子 に印加して発光させ、 10Vの直流電圧を印加した時の発光輝度(Cd/m2)と 2. 5m AZcm2の電流を通じた時の発光効率 (lmZW)を測定した。
[0296] 得られた結果を表 5に示す。
[0297] [表 5] 発光輝度 発光効率
有機 EL素子 No . 発光ドーパント 備 考
( Cd/m2) ( I m/W)
5 - 1 I r— 13 100 100 比較例
5 - 2 1 - 3 122 130 本発明
5 - 3 1 —39 1 18 126 本発明
5 - 4 2—31 1 15 127 本発明
5— 5 3 - 20 1 1 5 122 本発明 [0298] 表 5から、本発明に係る金属錯体を用いて作製した有機 EL素子は比較例の有機 E
L素子に比べ、高 、発光効率と高!、輝度が達成できることが明らかである。
[0299] 実施例 6
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例 1の有機 EL素子 1 5を青色発光素子として用 、た。
[0300] (緑色発光素子の作製)
実施例 4の有機 EL素子 4 7を緑色発光素子として用いた。
[0301] (赤色発光素子の作製)
実施例 2の有機 EL素子 2— 1にお 、て、 Ir— 13を Ir— 9に変更した以外は同様にし て、赤色発光素子を作製し、これを赤色発光素子として用いた。
[0302] 上記で作製した、赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 1 に記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した 。図 2には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一 基板上に、複数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 ( 発光の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走 查線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は 格子状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。前記 複数画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるス イッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方 式で駆動されており、走査線 5から走査信号が印加されると、データ線 6から画像デ ータ信号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青 の画素を適宜、並置することによって、フルカラー表示装置を作製した。
[0303] このフルカラー表示装置は、駆動することにより、輝度が高ぐ高耐久性を有し、 つ、鮮明なフルカラー動画表示が得られることが分力つた。
[0304] 実施例 7
《白色発光素子及び白色照明装置の作製》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで成膜して、さら に、 CBPの入った前記加熱ボートと本発明に係る化合物 1— 11の入ったボート及び I r 9の入ったボートをそれぞれ独立に通電して、発光ホストである CBPと発光ドーパ ントである本発明に係る化合物 1 11及び Ir 9の蒸着速度が 100 : 5 : 0. 6になるよ うに調節し膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0305] 次!、で、 BCPを lOnm成膜して正孔阻止層を設けた。さらに、 Alqを 40nmで成膜
3
して電子輸送層を設けた。
[0306] 次に、実施例 1と同様に、電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。
[0307] この素子を実施例 1と同様な方法及び同様な構造の封止缶を具備させ平面ランプ を作製した。図 6に平面ランプの模式図を示した。図 6 (a)に平面模式を、図 6 (b)に 断面模式図を示す。
[0308] この平面ランプに通電したところほぼ白色の光が得られ、照明装置として使用でき ることが分かった。

Claims

請求の範囲
下記一般式(1)またはその互変異性体を部分構造として有する金属錯体であること を特徴とする有機エレクト口ルミネッセンス素子材料。
[化 1] 般式 (1 )
Figure imgf000074_0001
(式中、 R 、R 、R 、R 、R はそれぞれ水素原子または置換基を表し、 X 、X
11 12 13 14 15 01 02
、X 、X はそれぞれ炭素原子または窒素原子を表し、 M は元素周期表における
03 04 01
8〜10族の金属を表し、 X と Nとの結合、 Nと X の結合、 X と X との結合、 X と X
01 04 04 03 03 との結合、 X と X との結合は、各々端結合または二重結合を表し、 u2は 0〜3の
02 02 01
整数を表す。但し、 R 〜R
11 14のうち少なくとも二つが芳香族基である力、 R 〜R
11 14の うち少なくとも一つが、電子吸引性基であり、かつ、 R
15が芳香族基である力、 R 〜R
11 の少なくとも二つが、—(Ar ) - (X) - (R ) で表される基である。ここで、 Ar
14 0 uO aO 0 ul 0 は芳香族基を表し、 Xは酸素原子、硫黄原子または窒素原子を表し、 R
0は置換基を 表し、 uO及び aOは共に 0または 1を表し、 ulは 1または 2を表す。但し、 uO及び aO力 S 共に 0であることはない。 )
下記一般式(1A)またはその互変異性体を部分構造として有する金属錯体である ことを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料。
[化 2] 一般式 (1A)
Figure imgf000075_0001
(式中、 R
bは水素原子または置換基を表す。 X
11は炭素原子または窒素原子を表す。
X 、X 、X は CR、窒素原子または NRを表す。 R、 Rは水素原子または置換基を
12 13 14 c d c d
表す。 ma、 mbは 2≤ma≤4、 ma + mb = 4を満たす整数を表す。 Ar は芳香族炭
00
素環基または芳香族複素環基を表す。 M は元素周期表における 8〜10族の金属
11
を表す。 X と Nとの結合、 Nと X との結合、 X と X との結合、 X と X との結合、 X
11 14 14 13 13 12 12 と X との
11 結合は、各々単結合または二重結合を表す。)
下記一般式 (2)またはその互変異性体を部分構造として有する金属錯体であること を特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料。
[化 3]
—般式 <2)
Figure imgf000075_0002
(式中、 R、R、R 、R
e f 21 22は水素原子または置換基を表す。 X
21は炭素原子または窒素 原子を表す。 X 、 X 、 X は CR、窒素原子または NRを表す。 R、 Rは水素原子ま
22 23 24 g h g h たは置換基を表す。 nb、 ncは 1または 2を表す。 nl、 n2は 0または 1を表す。 Ar、 Ar
1
2は芳香族炭素環基または芳香族複素環基を表す。 X、 X
b eは酸素原子、硫黄原子ま たは窒素原子を表す。 M は元素周期表における 8〜10族の金属を表す。 X と Nと
21 21 の間の結合、 Nと X との間の結合、 X と X との間の結合、 X と X との間の結合、 X
24 24 23 23 22
と X との間の結合は、各々単結合または二重結合を表す。 )
2 21
下記一般式 (3)またはその互変異性体を部分構造として有する金属錯体であること を特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料。
[化 4]
—般式 (3)
Figure imgf000076_0001
(式中、 R 、R 、R 、R
31 32 33 34は水素原子または置換基を表す力 少なくとも一つは電子 吸引性基を表す。 X
35は炭素原子または窒素原子を表す。 X 、X 、X
36 37 38は CR
35、窒 素原子または NR を表す力 その少なくとも一つは CR である。 R 、R は水素原子
36 35 35 36 または置換基を表す。 R
35の少なくとも一つは芳香族炭素環基または芳香族複素環 基を表す。 M は元素周期表における 8〜10族の金属を表す。 X と Nとの結合、 Nと
31 35
X との結合、 X と X との結合、 X と X との結合、 X と X との結合は、各々単結合
38 38 37 37 36 36 35
または二重結合を表す。 )
下記一般式 (4)またはその互変異性体を部分構造として有する金属錯体であること を特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料。
[化 5]
Figure imgf000076_0002
(式中、 R 、R 、R 、R は水素原子または置換基を表す力 R 、R の少なくとも
41 42 43 44 41 42
一つは電子吸引性基を表す。 X は炭素原子または窒素原子を表す。 X 、x 、x
45 46 47 48 は CR 、窒素原子または NR を表す力 その少なくとも一つは CR である。 R 、R
45 46 45 45 4
6は水素原子または置換基を表す。 R の
45 少なくとも一つは芳香族炭素環基または芳 香族複素環基を表す。 M は元素周期表における 8〜: L0族の金属を表す。 X と Nと
41 45 の結合、 Nと X との結合、 X と X との結合、 X と X との結合、 X と X との結合
48 48 47 47 46 46 45 は、各々単結合または二重結合を表す。 )
[6] M がイリジウムまたは白金であることを特徴とする請求の範囲第 1項に記載の有機
01
エレクトロノレミネッセンス素子材料。
[7] 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含有することを 特徴とする有機エレクト口ルミネッセンス素子。
[8] 構成層として発光層を有する有機エレクト口ルミネッセンス素子であって、該発光層 が請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含有すること を特徴とする有機エレクト口ルミネッセンス素子。
[9] 構成層として電子阻止層を有する有機エレクト口ルミネッセンス素子であって、該電 子阻止層が請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子材料を含 有することを特徴とする有機エレクト口ルミネッセンス素子。
[10] 構成層として発光層を有する有機エレクト口ルミネッセンス素子であって、該発光層 力 カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 を含有することを特徴とする請求の範囲第 7項に記載の有機エレクト口ルミネッセンス 素子。
[11] 構成層として正孔阻止層を有する有機エレクト口ルミネッセンス素子であって、該正 孔阻止層力 カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する 炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有 する誘導体を含有することを特徴とする請求の範囲第 7項に記載の有機エレクトロル ミネッセンス素子。
[12] 請求の範囲第 7項に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る表示装置。
請求の範囲第 7項に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る照明装置。
PCT/JP2006/309364 2005-05-25 2006-05-10 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2006126389A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517761A JP5076888B2 (ja) 2005-05-25 2006-05-10 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005152282 2005-05-25
JP2005-152282 2005-05-25

Publications (1)

Publication Number Publication Date
WO2006126389A1 true WO2006126389A1 (ja) 2006-11-30

Family

ID=37451815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309364 WO2006126389A1 (ja) 2005-05-25 2006-05-10 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (2)

Country Link
JP (1) JP5076888B2 (ja)
WO (1) WO2006126389A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007052431A1 (ja) * 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008147400A (ja) * 2006-12-08 2008-06-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
WO2008075517A1 (ja) * 2006-12-18 2008-06-26 Konica Minolta Holdings, Inc. 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP2008303205A (ja) * 2007-05-10 2008-12-18 National Institute Of Advanced Industrial & Technology 金属配位化合物ならびにこれを用いた発光材料
WO2009008263A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008367A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009019121A (ja) * 2007-07-12 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009060742A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011190242A (ja) * 2010-02-16 2011-09-29 Semiconductor Energy Lab Co Ltd 有機金属錯体及びそれを用いた発光素子、発光装置及び電子機器
JP2012006878A (ja) * 2010-06-25 2012-01-12 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2012167028A (ja) * 2011-02-10 2012-09-06 Chemiprokasei Kaisha Ltd 置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機el素子
US8691988B2 (en) 2006-02-10 2014-04-08 Universal Display Corporation Metal complexes of cyclometallated imidazo (1,2-f) phenanthridine (1,2-a:1′, 2′-c),quinazoline ligands and isoelectronic and benzannulated analogs thereof
JP2014122212A (ja) * 2012-11-21 2014-07-03 Chemiprokasei Kaisha Ltd 置換芳香族化合物、青色発光材料、有機el素子
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
US20170098790A1 (en) * 2015-10-06 2017-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US11825735B2 (en) * 2017-11-28 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247859A (ja) * 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2002117978A (ja) * 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
WO2004053019A1 (ja) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2004349224A (ja) * 2003-03-24 2004-12-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2005129478A (ja) * 2003-09-30 2005-05-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置、表示装置
JP2006060198A (ja) * 2004-07-23 2006-03-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006096934A (ja) * 2004-09-30 2006-04-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2006120905A (ja) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006120762A (ja) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4401211B2 (ja) * 2004-03-26 2010-01-20 三洋電機株式会社 含窒素五員環構造を含む有機金属化合物及び発光素子
JP5104981B2 (ja) * 2004-07-23 2012-12-19 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9051344B2 (en) * 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247859A (ja) * 1999-12-27 2001-09-14 Fuji Photo Film Co Ltd オルトメタル化イリジウム錯体からなる発光素子材料、発光素子および新規イリジウム錯体
JP2002117978A (ja) * 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
WO2004053019A1 (ja) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2004349224A (ja) * 2003-03-24 2004-12-09 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP2005129478A (ja) * 2003-09-30 2005-05-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置、表示装置
JP2006060198A (ja) * 2004-07-23 2006-03-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006096934A (ja) * 2004-09-30 2006-04-13 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2006120762A (ja) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006120905A (ja) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893627B2 (ja) * 2005-10-31 2012-03-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007052431A1 (ja) * 2005-10-31 2007-05-10 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8758903B2 (en) 2005-10-31 2014-06-24 Konica Minolta Holdings, Inc. Organic electroluminescent element, display device and lighting device
US8889864B2 (en) 2006-02-10 2014-11-18 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US9548462B2 (en) 2006-02-10 2017-01-17 Universal Display Corporation Organic electroluminescent materials and devices
US8691988B2 (en) 2006-02-10 2014-04-08 Universal Display Corporation Metal complexes of cyclometallated imidazo (1,2-f) phenanthridine (1,2-a:1′, 2′-c),quinazoline ligands and isoelectronic and benzannulated analogs thereof
US9065063B2 (en) 2006-02-10 2015-06-23 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-f]phenanthridine and diimidazo[1,2-a:1′,2′-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US8766529B2 (en) 2006-02-10 2014-07-01 Universal Display Corporation Metal complexes of cyclometallated imidazo[1,2-ƒ]phenanthridine and diimidazo[1,2-a:1',2'-c]quinazoline ligands and isoelectronic and benzannulated analogs thereof
US9281483B2 (en) 2006-02-10 2016-03-08 Universal Display Corporation Organic electroluminescent materials and devices
EP1981898B2 (en) 2006-02-10 2019-04-10 Universal Display Corporation Metal complexes of imidazo[1,2-f]phenanthridine ligands for use in OLED devices
JP2008147400A (ja) * 2006-12-08 2008-06-26 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JPWO2008075517A1 (ja) * 2006-12-18 2010-04-08 コニカミノルタホールディングス株式会社 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP5532605B2 (ja) * 2006-12-18 2014-06-25 コニカミノルタ株式会社 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
US8299787B2 (en) 2006-12-18 2012-10-30 Konica Minolta Holdings, Inc. Multicolor phosphorescent organic electroluminescent element and lighting system
WO2008075517A1 (ja) * 2006-12-18 2008-06-26 Konica Minolta Holdings, Inc. 多色燐光発光有機エレクトロルミネッセンス素子及び照明装置
JP2008303205A (ja) * 2007-05-10 2008-12-18 National Institute Of Advanced Industrial & Technology 金属配位化合物ならびにこれを用いた発光材料
JPWO2009008367A1 (ja) * 2007-07-12 2010-09-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5577701B2 (ja) * 2007-07-12 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2009019121A (ja) * 2007-07-12 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008367A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008263A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5577700B2 (ja) * 2007-07-12 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009060742A1 (ja) * 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5458890B2 (ja) * 2007-11-08 2014-04-02 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP2011190242A (ja) * 2010-02-16 2011-09-29 Semiconductor Energy Lab Co Ltd 有機金属錯体及びそれを用いた発光素子、発光装置及び電子機器
JP2012006878A (ja) * 2010-06-25 2012-01-12 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、有機電界発光素子材料、有機金属錯体含有組成物、有機電界発光素子、有機elディスプレイおよび有機el照明
JP2012167028A (ja) * 2011-02-10 2012-09-06 Chemiprokasei Kaisha Ltd 置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機el素子
JP2014122212A (ja) * 2012-11-21 2014-07-03 Chemiprokasei Kaisha Ltd 置換芳香族化合物、青色発光材料、有機el素子
US20170098790A1 (en) * 2015-10-06 2017-04-06 Universal Display Corporation Organic electroluminescent materials and devices
US10991895B2 (en) * 2015-10-06 2021-04-27 Universal Display Corporation Organic electroluminescent materials and devices
US11825735B2 (en) * 2017-11-28 2023-11-21 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
JPWO2006126389A1 (ja) 2008-12-25
JP5076888B2 (ja) 2012-11-21

Similar Documents

Publication Publication Date Title
JP4894513B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4962613B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5076900B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5045100B2 (ja) 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP5151481B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5040077B2 (ja) 有機エレクトロルミネッセンス素子
JP5076888B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4961664B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006103874A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006082742A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2005097940A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006098120A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子
WO2007004380A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007097149A1 (ja) 有機エレクトロルミネッセンス素子、白色発光素子、表示装置、及び照明装置
WO2006114966A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007023659A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2005314663A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2005097942A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006013739A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP4830283B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4935001B2 (ja) 有機エレクトロルミネッセンス素子材料
JP4967284B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4904727B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2005097941A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006100925A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007517761

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746181

Country of ref document: EP

Kind code of ref document: A1