WO2006013739A1 - 有機エレクトロルミネッセンス素子、照明装置及び表示装置 - Google Patents

有機エレクトロルミネッセンス素子、照明装置及び表示装置 Download PDF

Info

Publication number
WO2006013739A1
WO2006013739A1 PCT/JP2005/013485 JP2005013485W WO2006013739A1 WO 2006013739 A1 WO2006013739 A1 WO 2006013739A1 JP 2005013485 W JP2005013485 W JP 2005013485W WO 2006013739 A1 WO2006013739 A1 WO 2006013739A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
represented
organic
group
formula
Prior art date
Application number
PCT/JP2005/013485
Other languages
English (en)
French (fr)
Inventor
Shuichi Sugita
Yoshiyuki Suzuri
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2006531384A priority Critical patent/JP4626613B2/ja
Publication of WO2006013739A1 publication Critical patent/WO2006013739A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/186Metal complexes of the light metals other than alkali metals and alkaline earth metals, i.e. Be, Al or Mg
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons

Definitions

  • the present invention relates to an organic electoluminescence element, a lighting device, and a display device.
  • ELD electoric luminescence display
  • inorganic electoluminescence devices and organic electroluminescence devices (hereinafter also referred to as organic EL devices).
  • organic EL devices Inorganic eletroluminescence elements have been used as planar light sources, but in order to drive the light emitting elements, an alternating high voltage is required.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode.
  • excitons Is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton is deactivated, and can emit light at a voltage of several volts to several tens of volts. Since it is a self-emitting type, it has a wide viewing angle, and since it is a thin-film type completely solid element with high visibility, it is attracting attention from the viewpoints of space saving and portability.
  • organic EL elements that emit light with high power consumption and high luminance efficiently are desired.
  • stilbene derivatives, Technology that improves light emission brightness and extends device life by doping a styrylarylene derivative or tristyrylarylene derivative with a small amount of phosphor see, for example, Patent Document 1
  • 8-hydroxyquinoline aluminum A device having an organic light emitting layer doped with a small amount of a phosphor as a host compound (see, for example, Patent Document 2), and an 8-hydroxyquinoline aluminum complex as a host compound, and a quinacridone series
  • An element having an organic light emitting layer doped with a dye see, for example, Patent Document 3 is known.
  • Non-Patent Document 1 Since Princeton University reported on organic EL devices that use phosphorescence from excited triplets (for example, see Non-Patent Document 1), research on materials that exhibit phosphorescence at room temperature has become active. (For example, see Non-Patent Document 2 and Patent Document 4.) When using 0 excited triplet, the upper limit of internal quantum efficiency is 100%. It has been attracting attention because it can be applied to lighting applications. For example, there have been synthesized and studied about the many compounds force S heavy metal complexes such as iridium complexes (e.g., see non-patent document 3.) 0
  • a thermally stable hole transport material that includes a partial structure of a nitrogen-containing aromatic ring compound and has a chemical structure extending in three or four directions with a nitrogen atom or aryl as a center.
  • Patent Document 5 discloses an organic EL device of the phosphorescence is made at all! / ⁇ a.
  • a metal that functions as a donor (electron donating) dopant at the interface with the cathode is doped with dopant.
  • An organic EL element characterized by having a bent organic compound layer see, for example, Patent Document 7), and the organic layer in contact with the cathode contains at least one of alkali metal ions, alkaline earth metal ions, and rare earth metal ions.
  • An organic EL device using a metal that contains an organometallic complex compound and an electron-transporting organic substance, and that can reduce metal ions contained in the organometallic complex compound in the organic layer to a metal in a vacuum as a cathode material (for example, , see Patent Document 8.), between the anode and the cathode, provided the organic light-emitting layer and the electron transport layer as an electron-transporting layer is disposed on the side of the cathode, the electron mobility in the electron transport layer is 10- 5 cm 2.
  • An organic EL device characterized by containing an organic compound of 2 ZVs or more and cesium is known (for example, see Patent Document 9).
  • Patent Document 1 Japanese Patent No. 3093796
  • Patent Document 2 Japanese Patent Laid-Open No. 63-264692
  • Patent Document 3 JP-A-3-255190
  • Patent Document 4 U.S. Patent No. 6,097,147
  • Patent Document 5 Japanese Patent Publication No. 7-110940
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2001-160488
  • Patent Document 7 JP-A-10-270171
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2000-182774
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-347060
  • Non-Patent Document 1 MA Baldo et al., Nature, 395 ⁇ , 151–154 (1998)
  • Non-Patent Document 2 MA Baldo et al., Nature, 403 ⁇ , No. 17, 750-753 pages (2000)
  • Non-Patent Document 3 S. Lamansky et al., J. Am. Chem. Soc., 123 ⁇ , 4304 (2001)
  • Non-Patent Document 4 ME Tompson et al., The 10th International Works Hopon Inorganic and Organic Electroluminescence (EL '00, Hamamatsu)
  • Non-Patent Document 5 Moon— Jae Youn. Og, Tetsuo Tsutsui et al., The 10th International Workshop on Inorganic and Organic Electroluminescen ce (EL, 00, Hamamatsu)
  • Non-Patent Document 6 Ikai et al., The 10th International Workshop on Inorganic and Organic Electroluminescence (EL '00, Hamamatsu)
  • An object of the present invention is to provide an organic-electric-mouth luminescence element, an illuminating device, and a display device that have high emission luminance, high external extraction quantum efficiency, and long lifetime.
  • One of the aspects for achieving the above object of the present invention is an organic electoluminescence device having at least a light emitting layer between a cathode and an anode, and between the light emitting layer and the cathode.
  • Organic electrets characterized in that at least one organic compound layer contains at least one compound represented by the following general formula (1) and at least one alkali metal, alkaline earth metal or salt thereof. Located in the mouth luminescence element.
  • FIG. 1 is a schematic diagram showing an example of a display device that also has organic EL element force.
  • FIG. 2 is a schematic diagram of a display unit.
  • FIG. 3 is a schematic diagram of a pixel.
  • FIG. 4 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 5 is a schematic view of a lighting device.
  • FIG. 6 is a cross-sectional view of the lighting device.
  • An organic electoluminescence device having at least a light emitting layer between a cathode and an anode, wherein at least one of the organic layers between the light emitting layer and the cathode is a compound represented by the following general formula (1) And at least one of an alkali metal, an alkaline earth metal, or a salt thereof.
  • Z represents an aromatic heterocyclic ring
  • Z represents an aromatic heterocyclic ring or an aromatic hydrocarbon ring
  • Z represents a divalent linking group or a simple bond.
  • R represents a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represent a hydrogen atom or a substituent.
  • R represents a hydrogen atom or a substituent, and a plurality of R may be the same or different.
  • R represents a hydrogen atom or a substituent, and a plurality of R may be the same or different.
  • the compound represented by the general formula (1) has at least one group represented by any one of the following general formulas (2-1) to (2-10): The organic electoluminescence device according to any one of 1) to (5).
  • R to R, R to R, and R to R each independently represent a hydrogen atom or a substituent.
  • R to R each independently represents a small amount of force R to R representing a hydrogen atom or a substituent.
  • At least one represents at least one group selected from the basic forces represented by the general formulas (2-1) to (2-10). )
  • 611 620 each independently represents a force representing a hydrogen atom or a substituent R to R
  • At least one of 611 620 represents at least one group selected from the basic forces represented by the general formulas (2-1) to (2-10). )
  • At least one represents at least one group selected from the basic forces represented by the general formulas (2-1) to (2-10). )
  • R to R each independently represents a small amount of force R to R representing a hydrogen atom or a substituent.
  • At least one represents at least one group selected from the basic forces represented by the general formulas (2-1) to (2-10). )
  • R to R each independently represents a small amount of force R to R representing a hydrogen atom or a substituent.
  • At least one of the basic forces represented by the general formulas (2-1) to (2-10) is selected. Represents one group. na represents an integer from 0 to 5, nb represents an integer from 1 to 6, but the sum of na and nb is 6. )
  • R to R each independently represents a small amount of force R to R representing a hydrogen atom or a substituent.
  • At least one represents at least one group selected from the basic forces represented by the general formulas (2-1) to (2-10). )
  • At least one of the basic forces represented by the general formulas (2-1) to (2-10) is selected. Represents one group. )
  • R to R each independently represents a hydrogen atom or a substituent
  • L represents a divalent linking group
  • R and R each independently represent a hydrogen atom or a substituent.
  • N and m are each an integer of 1 to 2.
  • R and R each independently represent a hydrogen atom or a substituent.
  • N and m are each an integer of 1 to 2.
  • R and R each independently represent a hydrogen atom or a substituent.
  • N and m are each an integer of 1 to 2.
  • R and R each independently represent a hydrogen atom or a substituent.
  • N and m are each an integer of 1 to 2.
  • Z, Z and Z each represents a 6-membered aromatic heterocyclic ring containing at least one nitrogen atom.
  • o and p each represent an integer of 1 to 3
  • Ar and Ar each represent an arylene group or a divalent aromatic group.
  • Z and Z are each a 6-membered aromatic compound containing at least one nitrogen atom.
  • o and p each represent an integer of 1 to 3
  • Ar and Ar each represent an arylene group or a divalent aromatic group.
  • Z, Z, Z, and Z are each a 6-membered good containing at least one nitrogen atom.
  • a display device comprising the organic electoluminescence device according to (34).
  • An illuminating device comprising the organic electoluminescence device according to (34).
  • a display device comprising the illumination device according to (36) and a liquid crystal element as display means.
  • the organic electroluminescent device of the present invention at least one of the compounds represented by the general formula (1), an alkali metal, an alkaline earth, and at least one organic layer between the light emitting layer and the cathode.
  • an organic electoluminescence device having a high emission brightness, a high external extraction quantum efficiency and a long lifetime could be obtained. It is more preferable that the organic material layer between the light emitting layer and the cathode is adjacent to the light emitting layer.
  • Z represents an aromatic heterocyclic ring which may have a substituent, and Z represents a substituent.
  • R 3 represents a divalent linking group or a simple bond.
  • 101 represents a hydrogen atom or a substituent.
  • Aromatic heterocycles represented by Z and Z include furan ring, thiophene ring, pyridine ring,
  • Examples of the aromatic hydrocarbon ring represented by Z include a benzene ring, a biphenyl ring, and a naphthalene ring.
  • the aromatic hydrocarbon ring is represented by R described later.
  • Examples of the substituent represented by R include an alkyl group (for example, methyl group, ethyl group, propyl group).
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • Alkenyl group for example, buyl group, allyl group, etc.
  • alkynyl group for example, ethynyl group, propargyl group, etc.
  • aryl group for example,
  • aromatic heterocyclic group e.g. furyl group, chael group, pyridyl group, pyridazyl group, pyrimidyl group, pyrazyl group, triazinyl group, imidazolyl group, Pyrazolyl group, thiazolyl group, quinazolyl group, phthalazinyl group, etc.
  • heterocyclic group eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.
  • alkoxyl group eg, methoxy group, ethoxy group, propyloxy group
  • cycloalkoxyl group eg, cyclopentyloxy group, cyclohexyloxy group, etc.
  • Fluoromethyl group trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group, etc.), cyano group, nitro group, hydroxyl group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropyl silyl group) Group, triphenylsilyl group, phenyljetylsilyl group, etc.).
  • substituents may be further substituted with the above substituents!
  • a plurality of these substituents may be bonded to each other to form a ring.
  • the substituent is an alkyl group, a cycloalkyl group, a fluorinated hydrocarbon group, an aryl group, or an aromatic heterocyclic group.
  • Examples of the divalent linking group include hydrocarbon groups such as alkylene, alkene, alkylene, and arylene, and those that contain a heteroatom or thiophene 2, 5 diyl group. It may be a divalent linking group derived from a compound having an aromatic heterocycle such as a pyrazine 2,3 diyl group (also referred to as a heteroaromatic compound), or it may be a force lucogen atom such as oxygen or sulfur. There may be. Further, it may be a group that joins heteroatoms such as an alkylimino group, a dialkylsilane diyl group, or a diarylgermandyl group.
  • hydrocarbon groups such as alkylene, alkene, alkylene, and arylene, and those that contain a heteroatom or thiophene 2, 5 diyl group. It may be a divalent linking group derived from a compound having an aromatic heterocycle such as a pyrazine 2,3 diyl group (also referred to as a
  • a simple bond is a bond that directly bonds the substituents to be linked.
  • the Z-membered ring represented by the general formula (1) is preferable. This is because the Z-membered ring represented by the general formula (1) is preferable. This is because the Z-membered ring represented by the general formula (1) is preferable.
  • the luminous efficiency can be further increased. Further, the life can be extended.
  • a z-membered ring is preferable. This increases the luminous efficiency
  • both Z and Z are 6-membered rings
  • the luminous efficiency can be further increased. It is preferable because it can further extend the service life.
  • Preferred among the compounds represented by the general formula (1) are compounds represented by the general formulas (11) to (110).
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 each independently represents a hydrogen atom or a substituent.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R represents a hydrogen atom or a substituent.
  • a plurality of R may be the same or different.
  • R represents a hydrogen atom or a substituent.
  • the plurality of R may be the same or different.
  • an organic EL device with higher luminous efficiency can be obtained. Long life organic It can be an EL element.
  • the compound represented by the general formula (1) is preferably a compound having at least one group represented by any one of the general formulas (2-1) to (2-10). It is. In particular, it is more preferable that the molecule has 2 to 4 groups represented by deviations of the general formulas (2-1) to (2-10). At this time, in the structure represented by the general formula (1), R was excluded.
  • the compounds represented by the general formulas (3) to (17) are particularly preferable for obtaining the effects of the present invention.
  • R 1 to R 4 represent a hydrogen atom or a substituent
  • At least one of 601 606 601 represents a group represented by any one of the general formulas (2-1) to (2-10).
  • an organic EL device having higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 represent a hydrogen atom or a force R 1 to R 4 representing a substituent.
  • 611 620 At least one of 611 represents a group represented by any one of the general formulas (2-1) to (2-10).
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 5 represent a hydrogen atom or a substituent, and R 1 to R 5
  • 621 623 621 represents at least one group represented by any one of the general formulas (2-1) to (2-10).
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 4 represent a hydrogen atom or a substituent
  • R 1 to R 5 represent a hydrogen atom or a substituent
  • 631 645 631 represents a group represented by any one of the general formulas (2-1) to (2-10).
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 4 represent a hydrogen atom or a substituent
  • At least one of 651 represents a group represented by any one of the general formulas (2-1) to (2-10).
  • na represents an integer from 0 to 5
  • nb represents an integer from 1 to 6, but the sum of na and nb is 6.
  • R 1 to R 4 represent a hydrogen atom or a substituent, but R 1 to R 5
  • At least one of 661 represents a group represented by any one of the general formulas (2-1) to (2-10).
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R 1 to R 4 represent a hydrogen atom or a substituent
  • 681 688 681 represents at least one group represented by any one of the general formulas (2-1) to (2-10).
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • R to R represent a hydrogen atom or a substituent.
  • At least one of R 1 represents a group represented by any one of the general formulas (2-1) to (2-10).
  • Examples of the divalent linking group represented by L include an alkylene group (for example, ethylene group, trimethylene).
  • At least one of carbon atoms constituting the divalent linking group is a chalcogen atom (oxygen, sulfur, etc.) N (R) —may be substituted with a group or the like.
  • divalent linking group represented by L for example, a group having a divalent heterocyclic group is used.
  • oxazole diyl group pyrimidine diyl group, pyridazine diyl group, Randyl group, pyrrolindyl group, imidazoline group, imidazolidine group, pyrazolidine group, pyrazoline group, piperidine group, piperazine group, morpholine group, quinuclidine group, etc.
  • It may be a divalent linking group derived from a compound having an aromatic heterocycle (also called a heteroaromatic compound) such as a 5 diyl group or a pyrazine 2,3 diyl group.
  • the alkylimino group, the dialkylsilane diyl group, and the diarylgermandyl group may be a group that connects and connects hetero atoms.
  • an organic EL device with higher luminous efficiency can be obtained.
  • the organic EL device can have a longer lifetime.
  • the substituent represented by 1 2 has the same meaning as the substituent represented by R in the general formula (1).
  • each of the nitrogen atoms represented by Z, Z, Z, and Z is reduced.
  • 6-membered aromatic heterocyclic ring including both include a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • 6-membered aromatic heterocyclic ring examples include a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • the arylene groups represented by Ar and Ar respectively include o-phenylene group and m-phenylene group.
  • P phenylene group naphthalene diyl group, anthracenedyl group, naphthacene diyl group, pyrene diyl group, naphthyl naphthalene diyl group, biphenyl group (for example, 3, 3'-biphenyl group, 3, 6-biphenyl group) Etc.), terfelsyl group, quaterfel group, kink feldsyl group, sexiphenyl group, septiphenyl group, octaphenyl group, nobiphenyl group, decyl group and the like.
  • the arylene group may further have a substituent described later.
  • the divalent aromatic heterocyclic groups represented by Ar and Ar are furan ring, thiophene ring,
  • Examples of the divalent linking group represented by L include the divalent group represented by L in the general formula (10).
  • Power that is synonymous with the linking group is preferably an alkylene group or a divalent group containing a chalcogen atom such as o s-, most preferably an alkylene group.
  • the aromatic heterocyclic group represented by 1 2 1 2 is a divalent group represented by Ar or Ar in the general formula (16).
  • heterocyclic ring examples include a pyridine ring, a pyridazine ring, a pyrimidine ring, and a pyrazine ring.
  • Examples of the divalent linking group represented by L include the divalent group represented by L in the general formula (10).
  • Power that is synonymous with the linking group is preferably an alkylene group or a divalent group containing a chalcogen atom such as o s-, most preferably an alkylene group.
  • Exemplified Compound 74 was confirmed by 1 H-NMR ⁇ vector and mass spectrometry spectrum. The physical property data and spectrum data of Exemplified Compound 74 are shown below.
  • Exemplified Compound 60 was confirmed by NMR ⁇ vector and mass spectrometry spectrum.
  • the physical property data and spectrum data of Exemplified Compound 60 are shown below.
  • Exemplified Compound 143 was synthesized.
  • the compound according to the present invention preferably has a molecular weight of 00 or more, more preferably 450 or more, still more preferably 600 or more, and particularly preferably a molecular weight of 800 or more. As a result, the glass transition temperature is raised, the thermal stability is improved, and the life can be further extended.
  • alkali metals and alkaline earth metals include those of the periodic table, and examples of salts thereof include carboxylates (acetates, etc.) and sulfonates (methanesulfonate, tosylate). Etc.), halides (fluorides, chlorides, bromides and iodides), hydroxides, carbonates, nitrates and sulfates. Of these, cesium or their salt strength is preferred.
  • the compound represented by the general formula (1) according to the present invention is a compound for an organic EL element (backlight, flat panel display, illumination light source, display element, electrophotographic light source, recording light source, exposure light source, Used for applications such as reading light sources, signs, signboards, interiors, optical communication devices, etc., but other uses include materials for organic semiconductor lasers (recording light sources, exposure light sources, reading light source optical communication devices, for electrophotography) Light source, etc.), electrophotographic photosensitive material, organic TFT element material (organic memory element, organic arithmetic element, organic switching element), organic wavelength conversion element material, photoelectric conversion element material (solar cell, photosensor, etc.) ) And can be used in a wide range of fields.
  • Z electron transport layer Z cathode (m) anode Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z cathode transport layer Z cathode Gv) anode Z hole transport layer Z light emitting layer Z hole blocking layer Z electron transport layer Z Cathode buffer layer Z cathode (V) anode Z anode buffer layer Z hole transport layer Z light-emitting layer Z hole blocking layer Z electron transport layer Z cathode buffer layer Z cathode
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, conductive transparent materials such as Cul, indium tinoxide (ITO), SnO, and ZnO. IDIXO (In O—ZnO) etc.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by a single photolithography method. m or more), a pattern may be formed through a mask of a desired shape during the deposition or sputtering of the electrode material.
  • the transmittance is larger than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ Z or less.
  • the film thickness is a force depending on the material. Usually 10 to: L000 nm, preferably 10 to 20 Onm.
  • a cathode having a work function (4 eV or less) metal referred to as an electron injecting metal
  • an alloy referred to as an electrically conductive compound
  • a mixture thereof is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum Um (Al O)
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, from the viewpoint of electron injecting properties and durability against acids, etc.
  • a magnesium Z silver mixture, a magnesium Z aluminum mixture, a magnesium Z indium mixture, an aluminum Z acid aluminum (Ai 2 o 3) mixture, a lithium Z aluminum mixture, aluminum and the like are suitable.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. Also, the sheet resistance as a cathode is several hundred ⁇ / mouth or less, and the preferred film thickness is usually ⁇ !
  • the anode or the cathode of the organic EL element is transparent or semi-transparent to improve the emission luminance.
  • the transparent conductive material described in the description of the anode is formed thereon, whereby a transparent or translucent cathode is manufactured.
  • an element in which both the anode and the cathode are transmissive can be manufactured.
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • the injection layer is a layer provided between the electrode and the organic layer in order to lower the driving voltage and improve the luminance of the light emission.
  • the organic EL element and the forefront of industrialization June 30, 1998) (Published by ES Co., Ltd.) ”, Chapter 2“ Chapter 2 Electrode Materials ”(pages 123-166) in detail, the hole injection layer (anode buffer layer) and electron injection layer (cathode buffer layer) There is.
  • anode buffer layer hole injection layer
  • the details of the cathode buffer layer are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • the buffer layer is preferably a very thin film, although the film thickness is preferably in the range of 0.1 nm to 5 m, although it depends on the desired material.
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “Organic EL device and its forefront of industrialization” (issued on November 30, 1998 by NTS). There is a hole blocking layer.
  • the hole blocking layer is an electron transporting layer, and is made of a hole blocking material that has a function of transporting electrons but has a very small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the hole blocking layer of the organic EL device of the present invention is provided adjacent to the light emitting layer.
  • the compound according to the present invention described above is preferably included as a hole blocking material of the hole blocking layer.
  • a hole blocking material of the hole blocking layer As a result, an organic EL device with even higher luminous efficiency can be obtained. Further, the lifetime can be further increased.
  • the electron blocking layer is a hole transport layer in a broad sense, and has a material force that has a function of transporting holes and has a remarkably small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode, an electron transport layer, or a hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer of the organic EL device of the present invention includes the following host compound and phosphorescent compound.
  • the present invention in which it is preferable to contain (also referred to as phosphorescent compound), it is preferable to use the compound according to the present invention described above as the host compound. As a result, the luminous efficiency can be further increased.
  • the host compound may contain a compound other than the compound according to the present invention.
  • the host compound is a compound having a phosphorescence quantum yield of phosphorescence emission less than 0.01 among the compounds contained in the light emitting layer at room temperature (25 ° C). Is defined.
  • a plurality of known host compounds may be used in combination. By using multiple types of host compounds, it is possible to adjust the movement of charges, and the organic EL device can be made highly efficient.
  • a plurality of phosphorescent compounds it is possible to mix different light emission, thereby obtaining an arbitrary emission color.
  • White light emission is possible by adjusting the type and amount of phosphorescent compound, and it can also be used for lighting and backlighting.
  • the light emitting layer may further contain a host compound having a fluorescence maximum wavelength as the host compound.
  • a host compound having a fluorescence maximum wavelength is a compound having a high fluorescence quantum yield in a solution state.
  • the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more.
  • Specific host compounds having a fluorescence maximum wavelength include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium. Pigments, perylene pigments, stilbene pigments, polythiophene pigments, and the like.
  • the fluorescence quantum yield can be measured by the method described in the third edition of Experimental Chemistry Course 7, Spectroscopy II, page 362 (1992 edition, Maruzen).
  • the material used for the light emitting layer (hereinafter referred to as the light emitting material) preferably contains the above-mentioned host compound and at the same time contains a phosphorescent compound. As a result, an organic EL element with higher luminous efficiency can be obtained.
  • the phosphorescent compound according to the present invention is a compound in which luminescence with an excited triplet force is observed, and is a compound that emits phosphorescence at room temperature (25 ° C). A compound having a rate of 0.01 or more at 25 ° C.
  • the phosphorescence quantum yield is preferably 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of 4th edition, Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence quantum compound used in the present invention can achieve the above phosphorescence quantum yield in any solvent. Bho.
  • the phosphorescent compound can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent compound used in the present invention is preferably a complex compound containing a group 8 to group 10 metal in the periodic table of elements, more preferably an iridium compound or an osmium compound. Or a platinum compound (platinum complex compound) or a rare earth complex, and most preferred is an iridium compound.
  • the phosphorescent maximum wavelength of the phosphorescent compound is not particularly limited. In principle, a central metal, a ligand, a ligand substituent, and the like are selected. The emission wavelength obtained can be changed, but it is preferable that the phosphorescence emission compound has a phosphorescence emission maximum wavelength of 380 to 480 nm! /. With such blue phosphorescent organic EL elements and white phosphorescent organic EL elements, the luminous efficiency can be further improved.
  • the light-emitting layer can be formed by forming the above compound by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • the thickness of the light emitting layer is not particularly limited, but is usually within a range of 511111 to 5111, preferably 5 to 200 nm. It is chosen with a box.
  • This light emitting layer may have a single layer structure in which these phosphorescent compounds and host compounds have one or more kinds of force, or may have a laminated structure composed of a plurality of layers having the same composition or different compositions. ⁇ .
  • the hole transport layer is a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, violazoline derivatives and pyrazolone derivatives, fluorenedamine derivatives, arylene amine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N'—tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenylmethane; N, N ' —Diphenyl N, N
  • No. 5,061,569 One having two condensed aromatic rings in the molecule, for example, 4, 4 ′ bis [N- (1-naphthyl) N phenolamino] biphenyl (NPD), described in JP-A-4 308688 Four triphenylamine units listed are connected in a starburst type 4, 4 ', A "—Tris [? ⁇ — (3-methylphenol) N phenolamine] Triphenylamine (MTD ATA) ) And the like.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • inorganic compounds such as p-type—Si and p-type—SiC can also be used as the hole injection material and the hole transport material.
  • the hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • the film thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the hole transport layer may have a single layer structure that can be one or more of the above materials.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • An electron transport layer may be provided as a single layer or multiple layers.
  • an electron transport material also serving as a hole blocking material
  • Any material can be selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the electrode to the light-emitting layer.
  • Examples include fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, strength rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • thiadiazole derivatives in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and quinoxaline derivatives having a quinoxaline ring known as an electron withdrawing group can also be used as the electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromo) 8quinolinol) aluminum, tris (2methyl 8-quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc.
  • Metal complexes in which is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type—Si, n-type—SiC, etc. These inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed.
  • a vacuum deposition method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the organic EL device of the present invention is preferably formed on a substrate.
  • the substrate (hereinafter also referred to as substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent.
  • the substrate is not particularly limited as long as it is used, but preferred examples of the substrate include glass, quartz, and a light-transmitting resin film.
  • a particularly preferable substrate is a resin film capable of imparting flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET) and polyethylene naphthalate. Phthalate (PEN), polyethersulfone (PES), polyetherimide, polyether etherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP), etc.
  • PET polyethylene terephthalate
  • PEN Phthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyether etherketone polyphenylene sulfide
  • PC polycarbonate
  • TAC cellulose triacetate
  • CAP cellulose acetate propionate
  • CAP cellulose acetate propionate
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element Z the number of electrons X 100 flowing through the organic EL element.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts light emitted from an organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • a desired electrode material for example, a thin film having a material force for an anode is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 200 nm.
  • An anode is produced.
  • a thin film having a cathode material force is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL device can be obtained.
  • the organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the multicolor display device of the present invention is provided with a shadow mask only when the light emitting layer is formed, and the other layers are common, so that there is no need for patterning such as a shadow mask.
  • a film can be formed by a method, an inkjet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • patterning using a shadow mask is preferred.
  • the production order can be reversed, and the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be produced in this order.
  • a DC voltage is applied to the multi-color display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as one polarity.
  • An alternating voltage may be applied.
  • the AC waveform to be applied may be arbitrary.
  • the display device of the present invention can be used as a display device, a display, and various light sources.
  • Display devices and displays can be displayed in full color by using three types of organic EL elements that emit blue, red, and green light.
  • Display devices and displays include televisions, computers, mono-wheel devices, AV devices, text broadcast displays, information displays in automobiles, and the like.
  • the driving method when used as a display device for reproducing moving images which may be used as a display device for reproducing still images or moving images, may be either a simple matrix (passive matrix) method or an active matrix method.
  • the lighting device of the present invention includes home lighting, interior lighting, backlights for clocks and liquid crystals, signboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors. Examples include, but are not limited to, a light source of an optical sensor.
  • the organic EL device of the present invention may be used as an organic EL device having a resonator structure.
  • the purpose of using an organic EL element having such a resonator structure includes a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, etc. Not. It can also be used for the above applications by causing laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device that projects an image, or a type that directly recognizes a still image or a moving image. It may be used as a display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using three or more organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information!
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
  • FIG. 2 shows the case where the light emitted from pixel 3 is extracted in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at orthogonal positions. (Details not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • Full-color display can be performed by using organic EL elements of red, green, and blue light emission as organic EL elements 10 in a plurality of pixels and arranging them on the same substrate.
  • an image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B force.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B force scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the organic EL element is connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Current is supplied to element 10.
  • the driving of the switching transistor 11 is turned off. However, even if the switching transistor 11 is turned off, the Since the densityr 13 holds the potential of the charged image data signal, the drive of the drive transistor 12 is kept on, and the light emission of the organic EL element 10 continues until the next scanning signal is applied.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 as active elements for each of the organic EL elements 10 of each of the plurality of pixels, thereby providing organic EL for each of the plurality of pixels 3.
  • Element 10 is emitting light.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. On, even a talent! /.
  • the potential of the capacitor 13 may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • FIG. 4 is a schematic diagram of a display device based on a noisy matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light in accordance with the image data signal.
  • the noisy matrix method there is no active element in pixel 3, and the manufacturing cost can be reduced.
  • the organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light-emitting materials emit light of a plurality of light-emitting colors at the same time to obtain white light emission by mixing colors.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or two that use complementary colors such as blue and yellow and blue-green and orange. The thing containing the light emission maximum wavelength may be used.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a fluorescent material or a phosphorescent material that emits phosphorescence.
  • a combination of a dye material that emits light from the light emitting material as excitation light it is possible to shift it.
  • the layer structure of the organic electoluminescence device for obtaining a plurality of emission colors a method in which a plurality of emission dopants exist in one emission layer, a plurality of emission layers, and each emission Examples thereof include a method in which dopants having different emission wavelengths are present in the layer, and a method in which minute pixels emitting light of different wavelengths are formed in a matrix.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like, as necessary, during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire device layer may be patterned.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the light emitting material according to the present invention is adapted so as to conform to the wavelength range corresponding to the CF (color filter) characteristics. Choose any one of platinum complexes and other known luminescent materials and combine them to make them white!
  • the light-emitting organic EL element of the present invention that emits white light can be used as a light source for lighting, a lighting device for home lighting, an interior lighting, or an exposure light source in addition to the display device and the display. It is also useful as a kind of lamp and for display devices such as knock lights for liquid crystal display devices.
  • backlights for clocks, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are also required.
  • the ITO transparent electrode was provided after patterning was performed on a substrate (NH Techno Glass NA45) on which ITO (indium oxide) was formed on a 100 mm X 100 mm X I. 1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system.
  • 200 mg of ⁇ -NPD is put into a molybdenum resistance heating boat, and 200 mg of CBP as a host compound is put into another molybdenum resistance heating boat, and another molybdenum is added.
  • BP vasophenant mouth phosphorus
  • a molybdenum resistance heating boat was charged with lOOmg of cesium, and another molybdenum resistance heating boat was charged with lOOmg of Ir-12 and attached to a vacuum evaporation system.
  • the Karo thermal boat containing BP was energized and heated, and deposited on the light emitting layer at a deposition rate of 0. InmZ seconds to provide a hole blocking layer having a film thickness of lOnm. Pass through the heated boat containing Alq and cesium.
  • Heating was performed, and deposition was performed on the hole blocking layer at a deposition rate of 0. InmZ seconds to provide a single negative electrode buffer layer having a thickness of lOnm.
  • the substrate temperature at the time of vapor deposition was room temperature. Subsequently, aluminum 1 lOnm was deposited to form a cathode, and organic EL device 1-1 was produced.
  • Table 1 shows Alq and cesium in the cathode buffer layer in the fabrication of organic EL device 1-1.
  • Organic EL devices 1-2-1 to 21-21 were produced in the same manner as organic EL device 1-1, except that each compound shown was replaced.
  • the structure of the compound used above is shown below.
  • the luminance (cd / m 2 ) was obtained using the luminance measured with a spectral radiance meter CS-1000 (manufactured by Co-force Minolta Sensing).
  • the external extraction quantum efficiency (%) was measured when a constant current of 2.5 mA / cm 2 was applied in a dry nitrogen gas atmosphere at 23 ° C.
  • a spectral radiance meter CS-1000 manufactured by Co-force Minolta Sensing was used in the same manner.
  • the organic EL device of the present invention has a high luminance, excellent external extraction quantum efficiency, and a long lifetime compared to the comparison. I understand.
  • the organic EL device 2-1 was prepared in the same manner except that the cathode buffer layer was changed to each compound shown in Table 2 and Ir 12 was changed to Ir 1. ⁇ 2-8 were prepared.
  • the storage stability was evaluated according to the measurement method shown below.
  • each organic EL device After storing each organic EL device at 85 ° C for 24 hours, measure each luminance at a constant current drive of 2.5mAZcm 2 before and after storage, and obtain each luminance ratio according to the following formula, which is a measure of storage stability. It was.
  • the cathode buffer layer was changed to each compound shown in Table 3, and Ir-12 was changed to Ir-1. — 1 to 3— 8 were produced.
  • the 50 ° C drive life was evaluated according to the measurement method shown below.
  • Each organic EL device is driven at a constant current with a current that gives an initial luminance of lOOOcdZm 2 under a constant condition of 50 ° C, and the time to obtain an initial luminance of lZ2 (500 cdZm 2 ) is obtained.
  • the scale of The 50 ° C drive life is shown as a relative value when the comparative organic EL element 3-1 is set to 100.
  • the organic EL device of the present invention is 50% more than the comparison.
  • the cathode buffer layer was changed to each compound shown in Table 4, and Ir-12 was changed to Ir-1. — 1 to 4— 8 were produced.
  • Each organic EL device was driven at a constant current with a current giving an initial luminance lOOOcdZm 2 to obtain the time for the luminance to be 90% (900 cd / m 2 ), and this was taken as a measure of the initial lifetime.
  • the initial life is expressed as a relative value when the comparative organic EL element 4-1 is 100.
  • the phosphorescence combination of the organic EL device 1-14 of the present invention produced in Example 1, the organic EL device 2-6 of the present invention produced in Example 2, and the organic EL device 2-6 of the present invention A red light-emitting organic EL device fabricated in the same manner except that the product was replaced with Ir 9 was juxtaposed on the same substrate to produce an active matrix full-color display device shown in FIG. FIG. 2 shows only a schematic diagram of the display part A of the produced full-color display device.
  • a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate, and a plurality of pixels 3 arranged in parallel (a light emission color is a pixel in a red region, a pixel in a green region, a pixel in a blue region, etc.)
  • the scanning line 5 and the plurality of data lines 6 in the wiring part are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to each other in a grid pattern and are connected to the pixel 3 at the orthogonal position. (Details not shown).
  • the plurality of pixels 3 are driven by an active matrix system in which an organic EL element corresponding to each emission color, a switching transistor as an active element, and a driving transistor are provided. When a scanning signal is applied from the scanning line 5, an image data signal is received from the data line 6, and light is emitted according to the received image data. In this way, full-color display can be achieved by juxtaposing the red, green, and blue pixels appropriately.

Description

有機エレクト口ルミネッセンス素子、照明装置及び表示装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、照明装置及び表示装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(ELD)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子や有 機エレクト口ルミネッセンス素子(以下、有機 EL素子ともいう)が挙げられる。無機エレ タトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させ るためには交流の高電圧が必要である。
[0003] 一方、有機 EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ 構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子 (ェ キシトン)を生成させ、このエキシトンが失活する際の光の放出(蛍光 ·燐光)を利用し て発光する素子であり、数 V〜数十 V程度の電圧で発光が可能であり、更に自己発 光型であるために視野角に富み、視認性が高ぐ薄膜型の完全固体素子であるため に省スペース、携帯性等の観点から注目されて 、る。
[0004] 今後の実用化に向けた有機 EL素子の開発としては、更に低消費電力で、効率よく 高輝度に発光する有機 EL素子が望まれているわけであり、例えば、スチルベン誘導 体、ジスチリルァリーレン誘導体またはトリススチリルァリーレン誘導体に、微量の蛍 光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術 (例えば、特許 文献 1参照。)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これに 微量の蛍光体をドープした有機発光層を有する素子 (例えば、特許文献 2参照。)、 8 ーヒドロキシキノリンアルミニウム錯体をホストイ匕合物として、これにキナクリドン系色素 をドープした有機発光層を有する素子 (例えば、特許文献 3参照。)等が知られてい る。
[0005] 上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、 一重項励起子と三重項励起子の生成比が 1: 3であるため発光性励起種の生成確率 が 25%であることと、光の取り出し効率が約 20%であるため、外部取り出し量子効率 ( η ext)の限界は 5%とされている。
[0006] ところが、プリンストン大より、励起三重項からの燐光発光を用いる有機 EL素子の 報告 (例えば、非特許文献 1参照。)がされて以来、室温で燐光を示す材料の研究が 活発になってきている(例えば、非特許文献 2及び特許文献 4参照。 )0励起三重項 を使用すると、内部量子効率の上限が 100%となるため、励起一重項の場合に比べ て原理的に発光効率力 倍となり、冷陰極管とほぼ同等の性能が得られ照明用にも 応用可能であり注目されている。例えば、多くの化合物力 Sイリジウム錯体系等重金属 錯体を中心に合成検討がなされている (例えば、非特許文献 3参照。 )0
[0007] また、ドーパントとして、トリス(2—フエ-ルビリジン)イリジウムを用いた検討がなされ ている(例えば、非特許文献 2参照。 )0その他、ドーパントとして L Ir (acac)、例えば
2
、 (ppy) Ir(acac) (例えば、非特許文献 4参照。)を、またドーパントとして、トリス(2
2
リ 3 ^ ^
(bzq) )、 Ir(bzq) ClP (Bu)等を用いた検討 (例えば、非特許文献 5参照。)が行わ
3 2 3
れている。
[0008] また、高 、発光効率を得るために、ホール輸送性の化合物を燐光性ィ匕合物のホス トとして用いている(例えば、非特許文献 6参照。 )0
[0009] また、各種電子輸送性材料を燐光性ィ匕合物のホストとして、これらに新規なイリジゥ ム錯体をドープして用いている(例えば、非特許文献 4参照)。更にホールブロック層 の導入により高い発光効率を得ている(例えば、非特許文献 5参照。 )0
[0010] また、含窒素芳香族環化合物の部分構造を含み、窒素原子もしくはァリールを中 心として、 3方向または 4方向に延びる化学構造であって、熱的に安定な正孔輸送材 料が開示されている (例えば、特許文献 5参照。 )0し力しながら、特許文献 5におい ては、燐光発光の有機 EL素子の開示は一切なされて!/ヽな 、。
[0011] また、含窒素芳香族環化合物であって、輝度が高い発光材料が開示されている( 例えば、特許文献 6参照。 )0し力しながら、特許文献 6においては、燐光発光の有機 EL素子の開示は一切なされて!/、な!/、。
[0012] 更に、陰極との界面にドナー (電子供与性)ドーパントとして機能する金属でドーピ ングした有機化合物層を有することを特徴とする有機 EL素子 (例えば、特許文献 7参 照。)、陰極に接する有機層がアルカリ金属イオン、アルカリ土類金属イオン、希土類 金属イオンの少なくとも 1種を含有する有機金属錯体化合物と電子輸送性有機物を 含み、陰極材料として該有機層中の有機金属錯体化合物中に含まれる金属イオン を真空中で金属に還元しうる金属を用いた有機 EL素子 (例えば、特許文献 8参照。 ) 、陽極と陰極の間に、有機発光層と電子輸送層を電子輸送層が陰極の側に配置さ れるように設け、電子輸送層に電子移動度が 10— 5cm2ZVs以上の有機化合物とセシ ゥムを含むことを特徴とする有機 EL素子 (例えば、特許文献 9参照。)が知られている 現在、この燐光発光を用いた有機 EL素子の更なる発光の高効率化、長寿命化が 検討されているが、緑色発光については理論限界である 20%近くの外部取り出し効 率が達成されているものの、低電流領域 (低輝度領域)のみであり、高電流領域 (高 輝度領域)では、いまだ理論限界は達成されていない。更にその他の発光色につい てもまだ十分な効率が得られておらず改良が必要であり、また今後の実用化に向け た有機 EL素子では、更に、低消費電力で効率よく高輝度に発光する有機 EL素子の 開発が望まれている。特に青色燐光発光の有機 EL素子において、高効率に発光す る素子が求められている。
特許文献 1:特許第 3093796号公報
特許文献 2:特開昭 63 - 264692号公報
特許文献 3 :特開平 3— 255190号公報
特許文献 4:米国特許第 6, 097, 147号明細書
特許文献 5:特公平 7— 110940号公報
特許文献 6:特開 2001— 160488号公報
特許文献 7 :特開平 10— 270171号公報
特許文献 8:特開 2000— 182774号公報
特許文献 9:特開 2003 - 347060号公報
非特許文献 1 : M. A. Baldo et al. , nature, 395卷、 151— 154ページ(1998 年) 非特許文献 2 : M. A. Baldo et al. , nature, 403卷、 17号、 750— 753ページ( 2000年)
非特許文献 3 : S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304ぺー ジ(2001年)
非特許文献 4: M. E. Tompson et al. , The 10th International Worksho p on Inorganic and Organic Electroluminescence (EL ' 00、浜松) 非特許文献 5 : Moon— Jae Youn. Og, Tetsuo Tsutsui et al. , The 10th I nternational Workshop on Inorganic and Organic Electroluminescen ce (EL,00、浜松)
非特許文献 6 :Ikai et al. , The 10th International Workshop on Inorga nic and Organic Electroluminescence (EL ' 00、浜松)
発明の開示
[0014] 本発明の目的は、発光輝度が高ぐ外部取り出し量子効率が高ぐ且つ長寿命で ある有機エレクト口ルミネッセンス素子、照明装置及び表示装置を提供することである
[0015] 本発明の上記目的を達成するための態様の一つは、陰極と陽極との間に発光層を 少なくとも有する有機エレクト口ルミネッセンス素子にぉ 、て、該発光層と該陰極の間 の有機物層の少なくとも 1層に下記一般式(1)で表される化合物の少なくとも 1種とァ ルカリ金属、アルカリ土類金属もしくはそれらの塩の少なくとも 1種を含有することを特 徴とする有機エレクト口ルミネッセンス素子にある。
図面の簡単な説明
[0016] [図 1]有機 EL素子力も構成される表示装置の一例を示した模式図である。
[図 2]表示部の模式図である。
[図 3]画素の模式図である。
[図 4]パッシブマトリクス方式フルカラー表示装置の模式図である。
[図 5]照明装置の概略図である。
[図 6]照明装置の断面図である。
発明を実施するための最良の形態 [0017] 本発明の上記目的は、下記の構成により達成された。
(1) 陰極と陽極との間に発光層を少なくとも有する有機エレクト口ルミネッセンス素 子において、該発光層と該陰極の間の有機物層の少なくとも 1層に下記一般式(1) で表される化合物の少なくとも 1種とアルカリ金属、アルカリ土類金属もしくはそれらの 塩の少なくとも 1種を含有することを特徴とする有機エレクト口ルミネッセンス素子。 一般式 (1>
^101
, - - -c 、c- . -、、
i \ ,c----z3- - -c I z2
、 ノ 2
[0018] (式中、 Zは芳香族複素環を表し、 Zは芳香族複素環または芳香族炭化水素環を表
1 2
し、 Zは 2価の連結基または単なる結合手を表す。 R は水素原子または置換基を表
3 101
す。)
(2) 前記一般式(1)で表される化合物の Z力 員環であることを特徴とする前記(1)
1
に記載の有機エレクト口ルミネッセンス素子。
(3) 前記一般式(1)で表される化合物の Z力 員環であることを特徴とする前記(1)
2
または(2)に記載の有機エレクト口ルミネッセンス素子。
(4) 前記一般式(1)で表される化合物の Zが結合手であることを特徴とする前記(1
3
)〜(3)の!、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
(5) 前記一般式(1)で表される化合物が分子量 450以上であることを特徴とする前 記(1)〜(4)の!、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
(6) 前記一般式(1)で表される化合物が下記一般式(1 1)で表されることを特徴 とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1一 1)
Figure imgf000008_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
501 507
(7) 前記一般式(1)で表される化合物が下記一般式(1 2)で表されることを特徴 とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
-般式 Π— 2)
Figure imgf000008_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
511 517
(8) 前記一般式(1)で表される化合物が下記一般式( 1 3)で表されることを特徴 とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
-般式 (1一 3)
Figure imgf000008_0003
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
521 527
(9) 前記一般式(1)で表される化合物が下記一般式(1 4)で表されることを特徴 とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1一 4)
Figure imgf000009_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
531 537
(10) 前記一般式(1)で表される化合物が下記一般式(1 5)で表されることを特 徴とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
—般式 (1—5)
Figure imgf000009_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
541 548
(11) 前記一般式(1)で表される化合物が下記一般式(1 6)で表されることを特 徴とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1—6)
Figure imgf000009_0003
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
551 558
(12) 前記一般式(1)で表される化合物が下記一般式(1 7)で表されることを特 徴とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000010_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
561 567
(13) 前記一般式(1)で表される化合物が下記一般式(1 8)で表されることを特 徴とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1—8)
Figure imgf000010_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
571 577
(14) 前記一般式(1)で表される化合物が下記一般式(1 9)で表されることを特 徴とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1—9)
Figure imgf000010_0003
(式中、 Rは水素原子または置換基を表す。また、複数の Rは各々同一でもよぐ異な つていてもよい。 )
(15) 前記一般式(1)で表される化合物が下記一般式(1 10)で表されることを特 徴とする前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1— 10)
Figure imgf000011_0001
(式中、 Rは水素原子または置換基を表す。また、複数の Rは各々同一でもよぐ異な つていてもよい。 )
(16) 前記一般式(1)で表される化合物が下記一般式(2— 1)〜(2— 10)のいずれ かで表される基を少なくとも一つ有することを特徴とする前記(1)〜(5)の 、ずれか 1 項に記載の有機エレクト口ルミネッセンス素子。
一般式 (2— 1 ) 一般式 (2— 2)
Figure imgf000012_0001
-般式 (2— 3) 一般式 (2— 4)
Figure imgf000012_0002
-般式 一 5) -般式 (2— 6)
Figure imgf000012_0003
一般式 (2— 7) 一般式 (2— 8)
-般
Figure imgf000012_0004
中、 R 〜 R , R 〜: R 、R 'R 、: R 〜: R 、: R 、R 〜: R 、: R
507 522 532 537 542 548 552 558 5
、R 〜R 、R 〜R 、R 〜R は各々独立に水素原子または置換基を表
567 572 577 582 588 592 598 し、該置換基は各々同一でもよぐ異なっていてもよい。 )
(17) 前記一般式(1)で表される化合物が下記一般式 (3)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 一般式 1
Figure imgf000013_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
601 606 601 606 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
(18) 前記一般式(1)で表される化合物が下記一般式 (4)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。
—般式 (4)
Figure imgf000013_0002
(式中、 R 〜R
611 620は各々独立に水素原子または置換基を表す力 R 〜R
611 620の少な くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
(19) 前記一般式(1)で表される化合物が下記一般式 (5)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 一般式 (5)
Figure imgf000013_0003
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
621 623 621 623 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
(20) 前記一般式(1)で表される化合物が下記一般式 (6)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 一般式 (6)
Figure imgf000014_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
631 645 631 645 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
(21) 前記一般式(1)で表される化合物が下記一般式 (7)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 般式 (7>
Figure imgf000014_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
651 656 651 656 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 naは 0〜5の整数を表し、 nbは 1〜6の整数を表すが、 naと nbの和は 6である。)
(22) 前記一般式(1)で表される化合物が下記一般式 (8)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 一般式 (8)
Figure imgf000015_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
661 672 661 672 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
(23) 前記一般式(1)で表される化合物が下記一般式 (9)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 一般式 (9)
Figure imgf000015_0002
くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
(24) 前記一般式(1)で表される化合物が下記一般式(10)で表されることを特徴と する前記(16)に記載の有機エレクト口ルミネッセンス素子。 一般式 (10)
Figure imgf000016_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表すが、 Lは 2価の連結基
691 700 1
を表す。 R 〜R の少なくとも一つは前記一般式(2— 1)〜(2— 10)表される基か
691 700
ら選ばれる少なくとも一つの基を表す。 )
(25) 前記一般式(1)で表される化合物が下記一般式(11)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (11)
Figure imgf000016_0002
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) (26) 前記一般式(1)で表される化合物が下記一般式(12)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (12)
Figure imgf000017_0001
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) (27) 前記一般式(1)で表される化合物が下記一般式(13)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (13)
Figure imgf000017_0002
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) (28) 前記一般式(1)で表される化合物が下記一般式(14)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 般式 (14)
Figure imgf000018_0001
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) (29) 前記一般式(1)で表される化合物が下記一般式(15)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (15)
Figure imgf000018_0002
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 Z
1
、 Z、 Z、 Zは各々窒素原子を少なくとも一つ含む 6員の芳香族複素環を表す。 )
2 3 4
(30) 前記一般式(1)で表される化合物が下記一般式(16)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 6)
Figure imgf000019_0001
[0043] (式中、 o、 pは各々 1〜3の整数を表し、 Ar、 Arは各々ァリーレン基または 2価の芳
1 2
香族複素環基を表す。 Z、 Zは各々窒素原子を少なくとも一つ含む 6員の芳香族複
1 2
素環を表し、 Lは 2価の連結基を表す。 )
(31) 前記一般式(1)で表される化合物が下記一般式(17)で表されることを特徴と する前記(1)〜(5)の 、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (17)
Figure imgf000019_0002
[0044] (式中、 o、 pは各々 1〜3の整数を表し、 Ar、 Arは各々ァリーレン基または 2価の芳
1 2
香族複素環基を表す。 Z、 Z、 Z、 Zは各々窒素原子を少なくとも一つ含む 6員の芳
1 2 3 4
香族複素環を表し、 Lは 2価の連結基を表す。 )
(32) 前記アルカリ金属、アルカリ土類金属もしくはそれらの塩がセシウムもしくはそ れらの塩であることを特徴とする前記(1)〜(31)のいずれか 1項に記載の有機エレク トロノレミネッセンス素子。
(33) 前記発光層と陰極の間の有機物層が陰極に隣接していることを特徴とする前 記(1)〜(32)の!、ずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
(34) 発光が白色であることを特徴とする前記(1)〜(33)のいずれか 1項に記載の 有機エレクト口ルミネッセンス素子。
(35) 前記(34)に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る表示装置。
(36) 前記(34)に記載の有機エレクト口ルミネッセンス素子を有することを特徴とす る照明装置。
(37) 前記 (36)に記載の照明装置と表示手段としての液晶素子を有することを特 徴とする表示装置。
[0045] 本発明の有機エレクト口ルミネッセンス素子において、発光層と陰極の間の有機物 層の少なくとも 1層に前記一般式( 1)で表される化合物の少なくとも 1種とアルカリ金 属、アルカリ土類金属もしくはそれらの塩の少なくとも 1種を含有することで、発光輝 度が高ぐ外部取り出し量子効率が高ぐ且つ長寿命である有機エレクト口ルミネッセ ンス素子を得ることができた。なお、発光層と陰極の間の有機物層としては、発光層 に隣接して 、ることがより好ま 、。
[0046] 《一般式 (1)で表される化合物》
本発明に係る一般式(1)で表される化合物につ 、て説明する。
[0047] 前記一般式(1)において、 Zは置換基を有してもよい芳香族複素環を表し、 Zは置
1 2 換基を有してもよい芳香族複素環、もしくは芳香族炭化水素環を表し、 Z
3は 2価の連 結基、もしくは単なる結合手を表す。 R
101は水素原子、もしくは置換基を表す。
[0048] Z、 Zで表される芳香族複素環としては、フラン環、チォフェン環、ピリジン環、ピリ
1 2
ダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァ ゾール環、トリァゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール 環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリ ン環、キナゾリン環、フタラジン環、力ルバゾール環、カルボリン環、ジァザカルバゾー ル環 (カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置 換されている環を示す)等が挙げられる。更に前記芳香族複素環は、後述する R で
101 表される置換基を有してもょ ヽ。 [0049] Zで表される芳香族炭化水素環としては、ベンゼン環、ビフエ-ル環、ナフタレン環
2
、ァズレン環、アントラセン環、フエナントレン環、ピレン環、タリセン環、ナフタセン環、 トリフエ-レン環、 o—テルフエ-ル環、 m—テルフエ-ル環、 p—テルフエ-ル環、ァ セナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタ セン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラァ ントレン環等が挙げられる。更に前記芳香族炭化水素環は、後述する R で表される
101 置換基を有してもよい。
[0050] R で表される置換基としては、アルキル基(例えば、メチル基、ェチル基、プロピル
101
基、イソプロピル基、 tert—ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシ ル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基 (例えば 、シクロペンチル基、シクロへキシル基等)、ァルケ-ル基 (例えば、ビュル基、ァリル 基等)、アルキニル基 (例えば、ェチニル基、プロパルギル基等)、ァリール基 (例えば
、フエ-ル基、ナフチル基等)、芳香族複素環基 (例えば、フリル基、チェ-ル基、ピリ ジル基、ピリダジ -ル基、ピリミジ -ル基、ピラジュル基、トリアジニル基、イミダゾリル 基、ピラゾリル基、チアゾリル基、キナゾリ-ル基、フタラジニル基等)、複素環基 (例 えば、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサゾリジル基等)、アルコキ シル基 (例えば、メトキシ基、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキ シルォキシ基、ォクチルォキシ基、ドデシルォキシ基等)、シクロアルコキシル基 (例 えば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基 (例え ば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェ チルチオ基、プロピルチオ基、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、 ドデシルチオ基等)、シクロアルキルチオ基 (例えば、シクロペンチルチオ基、シクロ へキシルチオ基等)、ァリールチオ基 (例えば、フエ-ルチオ基、ナフチルチオ基等) 、アルコキシカルボ-ル基(例えば、メチルォキシカルボ-ル基、ェチルォキシカルボ ニル基、ブチルォキシカルボ-ル基、ォクチルォキシカルボ-ル基、ドデシルォキシ カルボ-ル基等)、ァリールォキシカルボ-ル基(例えば、フエ-ルォキシカルボ-ル 基、ナフチルォキシカルボ-ル基等)、スルファモイル基(例えば、アミノスルホ -ル基 、メチルアミノスルホ -ル基、ジメチルアミノスルホ -ル基、ブチルアミノスルホ -ル基 、へキシルアミノスルホ -ル基、シクロへキシルアミノスルホ -ル基、ォクチルアミノス ルホ-ル基、ドデシルアミノスルホ-ル基、フエ-ルアミノスルホ -ル基、ナフチルアミ ノスルホ -ル基、 2—ピリジルアミノスルホ -ル基等)、ァシル基 (例えば、ァセチル基 、ェチルカルボ-ル基、プロピルカルボ-ル基、ペンチルカルボ-ル基、シクロへキ シルカルボ-ル基、ォクチルカルポ-ル基、 2—ェチルへキシルカルボ-ル基、ドデ シルカルボ-ル基、フ -ルカルポ-ル基、ナフチルカルボ-ル基、ピリジルカルボ -ル基等)、ァシルォキシ基 (例えば、ァセチルォキシ基、ェチルカルボニルォキシ 基、ブチルカルボ-ルォキシ基、ォクチルカルボ-ルォキシ基、ドデシルカルボ -ル ォキシ基、フエニルカルボ-ルォキシ基等)、アミド基 (例えば、メチルカルボ-ルアミ ノ基、ェチルカルボ-ルァミノ基、ジメチルカルボ-ルァミノ基、プロピルカルボ-ルァ ミノ基、ペンチルカルボ-ルァミノ基、シクロへキシルカルボ-ルァミノ基、 2—ェチル へキシルカルボ-ルァミノ基、ォクチルカルボ-ルァミノ基、ドデシルカルボ-ルァミノ 基、フ -ルカルポ-ルァミノ基、ナフチルカルボ-ルァミノ基等)、力ルバモイル基( 例えば、ァミノカルボ-ル基、メチルァミノカルボ-ル基、ジメチルァミノカルボ-ル基 、プロピルアミノカルボ-ル基、ペンチルァミノカルボ-ル基、シクロへキシルァミノ力 ルポ-ル基、ォクチルァミノカルボ-ル基、 2—ェチルへキシルァミノカルボ-ル基、 ドデシルァミノカルボ-ル基、フエ-ルァミノカルボ-ル基、ナフチルァミノカルボ-ル 基、 2—ピリジルァミノカルボニル基等)、ウレイド基 (例えば、メチルウレイド基、ェチ ルゥレイド基、ペンチルゥレイド基、シクロへキシルウレイド基、ォクチルゥレイド基、ド デシルゥレイド基、フ ニルゥレイド基ナフチルウレイド基、 2—ピリジルアミノウレイド 基等)、スルフィエル基(例えば、メチルスルフィ-ル基、ェチルスルフィ-ル基、プチ ルスルフィ-ル基、シクロへキシルスルフィエル基、 2—ェチルへキシルスルフィエル 基、ドデシルスルフィエル基、フヱニルスルフィ-ル基、ナフチルスルフィ-ル基、 2— ピリジルスルフィ -ル基等)、アルキルスルホ -ル基(例えば、メチルスルホ -ル基、ェ チルスルホ-ル基、ブチルスルホ -ル基、シクロへキシルスルホ -ル基、 2—ェチル へキシルスルホ -ル基、ドデシルスルホ -ル基等)、ァリールスルホ -ル基(フエ-ル スルホ-ル基、ナフチルスルホ-ル基、 2—ピリジルスルホ -ル基等)、アミノ基(例え ば、アミノ基、ェチルァミノ基、ジメチルァミノ基、ブチルァミノ基、シクロペンチルァミノ 基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァ-リノ基、ナフチルァミノ基、 2 ピリジルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素原子、臭素原子等) 、フッ化炭化水素基(例えば、フルォロメチル基、トリフルォロメチル基、ペンタフルォ 口ェチル基、ペンタフルォロフエ-ル基等)、シァノ基、ニトロ基、ヒドロキシル基、メル カプト基、シリル基 (例えば、トリメチルシリル基、トリイソプロビルシリル基、トリフエ-ル シリル基、フエ二ルジェチルシリル基等)、等が挙げられる。
[0051] これらの置換基は上記の置換基によって更に置換されて!、てもよ!/、。また、これら の置換基は複数が互いに結合して環を形成して 、てもよ 、。好ま 、置換基としては 、アルキル基、シクロアルキル基、フッ化炭化水素基、ァリール基、芳香族複素環基 である。
[0052] 2価の連結基としては、アルキレン、ァルケ-レン、アルキ-レン、ァリーレンなどの 炭化水素基の他、ヘテロ原子を含むものであってもよぐまたチォフェン 2, 5 ジ ィル基ゃピラジン 2, 3 ジィル基のような芳香族複素環を有する化合物 (ヘテロ芳 香族化合物ともいう)に由来する 2価の連結基であってもよいし、酸素や硫黄などの力 ルコゲン原子であってもよい。また、アルキルイミノ基、ジアルキルシランジィル基ゃジ ァリールゲルマンジィル基のようなヘテロ原子を会して連結する基でもよい。
[0053] 単なる結合手とは、連結する置換基同士を直接結合する結合手である。
[0054] 本発明においては、前記一般式(1)の Z力 員環であることが好ましい。これにより
1
、より発光効率を高くすることができる。更に一層長寿命化させることができる。また、 本発明においては、 z力 ½員環であることが好ましい。これにより、より発光効率を高く
2
することができる。更により一層長寿命化させることができる。更に Zと Zを共に 6員環
1 2
とすることで、より一層発光効率と高くすることができるので好ましい。更により一層長 寿命化させることができるので好まし 、。
[0055] 前記一般式(1)で表される化合物で好ましいのは、前記一般式(1 1)〜(1 10) で各々表される化合物である。
[0056] 前記一般式(1 1)において、 R 〜R は各々独立に水素原子もしくは置換基を
501 507
表す。一般式(1— 1)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。 [0057] 前記一般式(1 2)において、 R 〜R は各々独立に水素原子もしくは置換基を
511 517
表す。一般式(1— 2)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0058] 前記一般式(1 3)において、 R 〜R は各々独立に水素原子もしくは置換基を
521 527
表す。一般式(1— 3)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0059] 前記一般式(1 4)において、 R 〜R は各々独立に水素原子もしくは置換基を
531 537
表す。一般式(1—4)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0060] 前記一般式(1 5)において、 R 〜R は各々独立に水素原子もしくは置換基を
541 548
表す。一般式(1— 5)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0061] 前記一般式(1 6)において、 R 〜R は各々独立に水素原子もしくは置換基を
551 558
表す。一般式(1— 6)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0062] 前記一般式(1 7)において、 R 〜R は各々独立に水素原子もしくは置換基を
561 567
表す。一般式(1— 7)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0063] 前記一般式(1 8)において、 R 〜R は各々独立に水素原子もしくは置換基を
571 577
表す。一般式(1— 8)で表される化合物を用いることで、より発光効率の高い有機 EL 素子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0064] 前記一般式(1— 9)において、 Rは水素原子もしくは置換基を表す。また、複数の R は各々同一でもよぐ異なっていてもよい。一般式(1 9)で表される化合物を用いる ことで、より発光効率の高い有機 EL素子とすることができる。更により長寿命の有機 E L素子とすることができる。
[0065] 前記一般式(1— 10)において、 Rは水素原子もしくは置換基を表す。また、複数の Rは各々同一でもよぐ異なっていてもよい。一般式(1 10)で表される化合物を用 いることで、より発光効率の高い有機 EL素子とすることができる。更に長寿命の有機 EL素子とすることができる。
[0066] また、前記一般式(1)で表される化合物で好ましいものは、前記一般式(2— 1)〜( 2— 10)のいずれかで表される基を少なくとも一つを有する化合物である。特に、分 子内に前記一般式(2— 1)〜(2— 10)の 、ずれかで表される基を 2つから 4つ有する ことがより好ましい。このとき、前記一般式(1)で表される構造において、 R を除いた
101 部分が前記一般式 (2— 1)〜(2— 10)に置き換わる場合を含む。
[0067] このとき、特に前記一般式 (3)〜(17)で表される化合物であることが本発明の効果 を得る上で好ましい。
[0068] 前記一般式(3)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜R
601 606 601 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
606
す。一般式 (3)で表される化合物を用いることにより、より発光効率の高い有機 EL素 子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0069] 前記一般式 (4)において、 R 〜R は水素原子もしくは置換基を表す力 R 〜R
611 620 611 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
620
す。一般式 (4)で表される化合物を用いることで、より発光効率の高い有機 EL素子と することができる。更により長寿命の有機 EL素子とすることができる。
[0070] 前記一般式(5)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜R
621 623 621 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
623
す。一般式 (5)で表される化合物を用いることで、より発光効率の高い有機 EL素子と することができる。更により長寿命の有機 EL素子とすることができる。
[0071] 前記一般式 (6)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜R
631 645 631 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
645
す。一般式 (6)で表される化合物を用いることで、より発光効率の高い有機 EL素子と することができる。更により長寿命の有機 EL素子とすることができる。
[0072] 前記一般式(7)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜R
651 656 651 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
656
す。 naは 0〜5の整数を表し、 nbは 1〜6の整数を表すが、 naと nbの和が 6である。一 般式 (7)で表される化合物を用いることで、より発光効率の高!、有機 EL素子とするこ とができる。更により長寿命の有機 EL素子とすることができる。
[0073] 前記一般式 (8)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜R
661 672 661 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
672
す。一般式 (8)で表される化合物を用いることで、より発光効率の高い有機 EL素子と することができる。更により長寿命の有機 EL素子とすることができる。
[0074] 前記一般式(9)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜R
681 688 681 の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
688
す。一般式 (9)で表される化合物を用いることで、より発光効率の高い有機 EL素子と することができる。更により長寿命の有機 EL素子とすることができる。
[0075] 前記一般式(10)において、 R 〜R は水素原子もしくは置換基を表すが、 R 〜
691 700 691
R の少なくとも一つは前記一般式(2— 1)〜(2— 10)のいずれかで表される基を表
700
す。
[0076] Lで表される 2価の連結基としては、アルキレン基 (例えば、エチレン基、トリメチレ
1
ン基、テトラメチレン基、プロピレン基、ェチルエチレン基、ペンタメチレン基、へキサ メチレン基、 2, 2, 4 トリメチルへキサメチレン基、ヘプタメチレン基、オタタメチレン 基、ノナメチレン基、デカメチレン基、ゥンデカメチレン基、ドデカメチレン基、シクロへ キシレン基 (例えば、 1, 6 シクロへキサンジィル基等)、シクロペンチレン基 (例えば 、 1, 5 シクロペンタンジィル基など)等)、ァルケ-レン基 (例えば、ビ-レン基、プロ ベ-レン基等)、アルキ-レン基 (例えば、ェチ-レン基、 3—ペンチ-レン基等)、ァ リーレン基などの炭化水素基の他、ヘテロ原子を含む基 (例えば、 O 、一 S 等 のカルコゲン原子を含む 2価の基、—N (R)—基、ここで Rは水素原子またはアルキ ル基を表し、該アルキル基は、前記一般式(1)にお 、て R で表されるアルキル基と
101
同義である)等が挙げられる。また、上記のアルキレン基、ァルケ-レン基、アルキ- レン基、ァリーレン基の各々においては、 2価の連結基を構成する炭素原子の少なく とも一つが、カルコゲン原子 (酸素、硫黄等)や前記 N (R)—基等で置換されてい てもよい。
[0077] 更に Lで表される 2価の連結基としては、例えば、 2価の複素環基を有する基が用
1
いられ、例えば、ォキサゾールジィル基、ピリミジンジィル基、ピリダジンジィル基、ピ ランジィル基、ピロリンジィル基、イミダゾリンジィル基、イミダゾリジンジィル基、ピラゾ リジンジィル基、ピラゾリンジィル基、ピぺリジンジィル基、ピぺラジンジィル基、モル ホリンジィル基、キヌクリジンジィル基等が挙げられ、またチォフェン 2, 5 ジィル 基や、ピラジン 2, 3 ジィル基のような、芳香族複素環を有する化合物 (ヘテロ芳 香族化合物ともいう)に由来する 2価の連結基であってもよい。また、アルキルイミノ基 、ジアルキルシランジィル基ゃジァリールゲルマンジィル基のようなヘテロ原子を会し て連結する基であってもよ 、。
[0078] 前記一般式(10)で表される化合物を用いることで、より発光効率の高!ヽ有機 EL素 子とすることができる。更により長寿命の有機 EL素子とすることができる。
[0079] 前記一般式(11)〜一般式(15)で各々表される化合物において、 R、 Rで各々表
1 2 される置換基としては、前記一般式(1)において R で表される置換基と同義である
101
[0080] 前記一般式(15)において、 Z、 Z、 Z、 Zで各々表される、各々窒素原子を少なく
1 2 3 4
とも一つ含む 6員の芳香族複素環としては、例えば、ピリジン環、ピリダジン環、ピリミ ジン環、ピラジン環等が挙げられる。
[0081] 前記一般式(16)において、 Z、 Zで各々表される、各々窒素原子を少なくとも一つ
1 2
含む 6員の芳香族複素環としては、例えば、ピリジン環、ピリダジン環、ピリミジン環、 ピラジン環等が挙げられる。
[0082] Ar、 Arで各々表されるァリーレン基としては、 o フエ-レン基、 m—フエ-レン基
1 2
、 p フエ-レン基、ナフタレンジィル基、アントラセンジィル基、ナフタセンジィル基、 ピレンジィル基、ナフチルナフタレンジィル基、ビフエ-ルジィル基(例えば、 3, 3' ービフヱ-ルジィル基、 3, 6—ビフヱ-ルジィル基等)、テルフエ-ルジィル基、クァ テルフエ-ルジィル基、キンクフエ-ルジィル基、セキシフエ-ルジィル基、セプチフ ェ-ルジィル基、ォクチフエ-ルジィル基、ノビフエ-ルジィル基、デシフエ-ルジィ ル基等が挙げられる。また前記ァリーレン基は、更に後述する置換基を有していても よい。 Ar、 Arで各々表される 2価の芳香族複素環基は、フラン環、チォフェン環、ピ
1 2
リジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環 、ォキサジァゾール環、トリァゾール環、イミダゾール環、ピラゾール環、チアゾール環 、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環 、キノキサリン環、キナゾリン環、フタラジン環、力ルバゾール環、カルボリン環、カルボ リン環を構成する炭化水素環の炭素原子が更に窒素原子で置換されている環等か ら導出される 2価の基等が挙げられる。更に前記芳香族複素環基は、前記 R で表さ
101 れる置換基を有してもよい。
[0083] Lで表される 2価の連結基としては、前記一般式(10)において、 Lで表される 2価
1
の連結基と同義である力 好ましくはアルキレン基、 o s—等のカルコゲン原 子を含む 2価の基であり、もっとも好ましくはアルキレン基である。
[0084] 前記一般式(17)において、 Ar、 Arで各々表されるァリーレン基は、前記一般式(
1 2
16)において Ar、 Arで各々表されるァリーレン基と同義である。 Ar、 Arで各々表
1 2 1 2 される芳香族複素環基は、前記一般式(16)において Ar、 Arで各々表される 2価の
1 2
芳香族複素環基と同義である。
[0085] Z、 Z、 Z、 Zで各々表される、各々窒素原子を少なくとも一つ含む 6員の芳香族
1 2 3 4
複素環としては、例えば、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環等が挙 げられる。
[0086] Lで表される 2価の連結基としては、前記一般式(10)において、 Lで表される 2価
1
の連結基と同義である力 好ましくはアルキレン基、 o s—等のカルコゲン原 子を含む 2価の基であり、もっとも好ましくはアルキレン基である。
[0087] 以下に、本発明に係る一般式(1)で表される化合物の具体例を示すが、本発明は これらに限定されない。

Figure imgf000029_0001
化合物 中心骨格 A
Figure imgf000030_0001
化合物 中心骨格 A
Figure imgf000031_0001
30
Figure imgf000032_0001
化合物
Figure imgf000033_0001
Figure imgf000034_0001
[2600]
S8l7Cl0/S00Zdf/X3d 6C.CT0/900Z OAV 化合物 中心骨格 A
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000036_0002
600]
6ε.ειο/9θοζ OAV 化合物 中心骨格 A
Figure imgf000037_0001

Figure imgf000038_0001
Figure imgf000039_0001
6ε.ειο/9θοζ OAV
Figure imgf000040_0001
S8t7Cl0/£00Zdf/X3d 6£Ζ.εΐΟ/900ί OAV
Figure imgf000041_0001
Figure imgf000042_0001
6ε.ειο/9θοζ OAV
Figure imgf000043_0001
[ΐθΐθ]
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV
Figure imgf000044_0001
[SOTO] ひ
6£.εΐΟ/900Ι OAV
S8t'ClO/SOOZdf/X3d
Figure imgf000045_0001
[εοιο]
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV
Figure imgf000046_0001
Figure imgf000046_0002
Figure imgf000046_0003
[雨 0]
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV
Figure imgf000047_0001
[SOTO]
S8l7Cl0/S00Zdf/X3d 6C.CT0/900Z OAV
Figure imgf000048_0001
[9010]
9t
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV
Figure imgf000049_0001
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV
Figure imgf000050_0001
[80Ϊ0]
81?
6f/.£lO/90 Z OAV sst'Cio/sooidf/iad
Figure imgf000051_0001
[6010]
61?
s8 o膽 <U7ェ: w 6£Ζ.εΐΟ/900Ζ OAV
Figure imgf000052_0001
Figure imgf000052_0002
8
[οπο]
i8P£lO/SOOZdr/13d 6C.£10/900Z O
Figure imgf000053_0001
Figure imgf000053_0002
Figure imgf000054_0001
[mo]
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV 53
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0003
Figure imgf000055_0004
Figure imgf000056_0001
ĶPI
Figure imgf000056_0002
Figure imgf000056_0003
Figure imgf000057_0001
Figure imgf000057_0002
Figure imgf000057_0003
0 1-
[eno]
6ε.ειο/9θοζ OAV
Figure imgf000058_0001
[9Π0]
9S
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV
Figure imgf000059_0001
Figure imgf000059_0002
Figure imgf000059_0003
Figure imgf000059_0004
S8l7Cl0/S00Zdf/X3d 6C.CT0/900Z OAV
Figure imgf000060_0001
Figure imgf000060_0002
Figure imgf000060_0003
Figure imgf000060_0004
S8l7Cl0/S00Zdf/X3d 6ε.ειο/9θοζ OAV 171
Figure imgf000061_0001
[0121]
Figure imgf000062_0001
[0122] 以下に、本発明に係る化合物の代表的な合成例を示すが、本発明はこれらに限定 されない。 [0123] 《例示化合物 73の合成》
Figure imgf000063_0001
[0124] 4, 4' —ジョードビフエ-ル 6. 87g、 β—カルボリン 6. OOgを Ν, N—ジメチルァセ トアミド 50ml中に添加した混合液に、銅粉 4. 5g、炭酸カリウム 7. 36gをカ卩え、 15時 間加熱還流した。放冷後水クロ口ホルムを加え、不溶物を濾去した。有機層を分離し 、水、飽和食塩水で洗浄した後、減圧下に濃縮し、得られた残渣を酢酸に溶解し、活 性炭処理後、再結晶して,例示化合物 73の無色結晶 4. 2gを得た。
[0125] 例示化合物 73の構造は1 H— NMR ^ベクトル及び質量分析スペクトルによって確 認した。例示化合物 73の物性データ、スペクトルデータを下記に示す。
[0126] 無色結晶、融点 200°C
MS (FAB) m/z: 487 (M+ 1)
'H-NMR (400MHz, CDC1 ): δ /ppm 7. 3— 7. 5 (m、2H)、 7. 5— 7. 6 (
3
m, 4H)、 7. 7- 7. 8 (m, 4H)、 7. 9— 8. 0 (m, 4H)、 8. 06 (d, J= 5. 1Hz, 2H) 、 8. 24 (d, J = 7. 8Hz, 2H)、 8. 56 (d, J = 5. 1Hz, 2H)、 8. 96 (s, 2H) 《例示化合物 74の合成》
Figure imgf000064_0001
Figure imgf000064_0002
[0127] 酢酸パラジウム 0. 32g、トリ— tert ブチルホスフィン 1. 17gを無水トルエン 10ml に溶解し、水素化ホウ素ナトリウム 50mgを添加し、室温で 10分間攪拌した後、 δ - カルボリン 5. OOg、 4, 4' ージョードビフエ-ル 5. 87g、ナトリウム tert ブトキシ ド 3.42gを無水キシレン 50ml中に分散し、窒素雰囲気下、還流温度にて 10時間撹 拌した。得られた反応混合物を放冷後クロ口ホルムと水を加えて有機層を分離し、有 機層を、水、飽和食塩水で洗浄した後、減圧下に濃縮し、得られた残渣をテトラヒドロ フランに溶解し、活性炭処理を施した後、再結晶して例示化合物 74の無色結晶 5. 0 gを得た。
[0128] 例示化合物 74の構造は1 H—NMR ^ベクトル及び質量分析スペクトルによって確 認した。例示化合物 74の物性データ、スペクトルデータを下記に示す。
[0129] MS (FAB) m/z: 487 (M+ 1)
^H—NMR (400MHz, CDC1 ): δ /ppm 7. 37(dd, J=4. 7Hz, J = 8. 3Hz,
3
2H)、 7.4-7. 5(m, 2H)、 7. 5— 7. 6(m, 4H)、 7. 7— 7. 8(m, 4H)、 7. 81 (d d, J=l. 2Hz, J = 8. 3Hz, 2H)、 7. 9— 8. 0(m, 4H)、 8. 48(d, J = 7. 8Hz, 2 H), 8. 65 (dd, J=l. 2Hz, J=4. 6Hz, 2H)
《例示化合物 60の合成》
Figure imgf000065_0001
[0130] 4, 4' —ジョードビフエ-ル 6. 87g、 y—カルボリン 6. OOgを N, N ジメチルァセ トアミド 50ml中に添加した混合液に、銅粉 4. 5g、炭酸カリウム 7. 36gをカ卩え、 15時 間加熱還流した。放冷後水クロ口ホルムを加え、不溶物を濾去した。有機層を分離し 、水、飽和食塩水で洗浄した後、減圧下に濃縮し、得られた残渣をシリカゲルクロマト グラフィ一に付した後、ジクロロメタン Zシクロへキサン中で結晶化させ、例示化合物 60の無色結晶 4. 3gを得た。
[0131] 例示化合物 60の構造は、 NMR ^ベクトル及び質量分析スペクトルによって確 認した。例示化合物 60の物性データ、スペクトルデータを下記に示す。
[0132] MS (FAB) m/z: 487 (M+ 1)
'H-NMR (400MHz, CDC1 ): δ /ppm 7. 4— 7. 4 (m, 4H)、 7. 4— 7. 5 (
3
m, 4H)、 7. 7- 7. 8 (m, 4H) 7. 9— 8. 0 (m, 4H)、 8. 25 (d, J = 7. 8Hz, 2H)、 8. 57 (d, J = 5. 6Hz, 2H)、 9. 42 (s, 1H)
《例示化合物 144の合成》
Figure imgf000066_0001
Figure imgf000066_0002
[0133] 酢酸パラジウム 0. 16g、トリ— tert—ブチルホスフィン 0. 58gを無水トルエン 10ml に溶解し、水素化ホウ素ナトリウム 25mgを添加し、室温で 10分間攪拌した後、 δ - カルボリン 2. OOg、中間体 a3. 20g、ナトリウム— tert—ブ卜キシド 1. 37gを無水キシ レン 50ml中に分散し、窒素雰囲気下、還流温度にて 10時間撹拌した。放冷後クロ口 ホルムと水を加えて有機層を分離し、有機層を水、飽和食塩水で洗浄した後減圧下 に濃縮し、得られた残渣を酢酸力も再結晶して例示化合物 144の無色結晶 1. 5gを 得た。
[0134] 例示化合物 144の構造は、 ^H—NMRスペクトル及び質量分析スペクトルによって 確認した。例示化合物 144のスペクトルデータは以下の通りである。
[0135] MS (FAB) m/z: 647 (M + 1)
'H-NMR (400MHz, CDC1 ): δ /ppm 1. 80 (S, 12H)、 7. 27 (S, 4H)、 7
3
. 34 (dd, J=4. 9Hz, J = 8. 3Hz, 2H)、 7. 3— 7. 4 (m, 2H)、 7. 4— 7. 5 (m, 1 2H)、 7. 76 (dd, J= l. 3Hz, J = 8. 3Hz、 2H)、 8. 45 (d, J = 7. 8Hz, 2H)、 8. 6 3 (dd, J= l. 3Hz, J=4. 9Hz, 2H)
《例示化合物 143の合成》
Figure imgf000067_0001
[0136] 4, 4' —ジクロ口一 3, 3' —ビビリジル 0. 85g、ジァミン bO. 59g、ジベンジリデン アセトンパラジウム 44mg、イミダゾリゥム塩 36mg、ナトリウム tert ブトキシド 1. 09 gをジメトキシェタン 5mlに添加し、 80°Cで 24時間加温攪拌した。放冷後クロ口ホルム と水を加えて有機層を分離し、有機層を水、飽和食塩水で洗浄した後減圧下に濃縮 し、得られた残渣を酢酸ェチルカ 再結晶して例示化合物 143の無色結晶 0. 3gを 得た。
[0137] 例示化合物 143の構造は、 ^H—NMRスペクトル及び質量分析スペクトルによって 確認した。例示化合物 143のスペクトルデータを下記に示す。
[0138] MS (FAB) m/z: 639 (M+ 1)
iH—NMR (400MHz, CDC1 ): δ /ppm 7. 46 (d, J = 5. 7Hz, 4H)、 7. 6—
3
7. 7 (m, 4H)、 7. 8— 7. 9 (m, 4H)、 8. 67 (d, J = 5. 7Hz, 4H)、 9. 51 (S, 4H) 《例示化合物 145の合成》
例示化合物 143の合成において、 4, 4' ージクロロー 3, 3' —ビビリジルの一方 のピリジン環をベンゼンに変更した、 3—(2 クロ口フエ二ノレ)ー4 クロ口ピリジンを 用いた以外は同様にして、例示化合物 145を合成した。
[0139] 例示化合物 145の構造は、 ^H—NMRスペクトル及び質量分析スペクトルによって 確認した。例示化合物 145のスペクトルデータを下記に示す。
[0140] MS (FAB) m/z: 637 (M+ 1) Ή-NMR (400MHz, CDC1 ): δ /ppm 7. 3— 7. 4 (m, 2H)、 7. 6— 7. 7 (
3
m, 4H)、 7. 7- 7. 8 (m, 4H) 7. 8— 7. 9 (m, 4H)、 8. 06 (d, J = 5. 3Hz, 2H)、 8. 23 (d, J = 7. 8Hz, 2H)、8. 56 (d, J = 5. 3Hz, 2H) , 8. 96 (S, 2H)
なお、上記の合成例以外に、これらの化合物のァザカルバゾール環やその類緑体 ίま、 J. Chem. Soc. , Perkin Trans. 1, 1505— 1510 (1999)、 Pol. J. Chem. , 54, 1585 (1980)、 (Tetrahedron
Lett. 41 (2000) , 481— 484)に記載される合成法に従って合成することができる 。合成されたァザカルバゾール環やその類緑体と、芳香環、複素環、アルキル基など の、コア、連結基への導入は、ウルマンカップリング、 Pd触媒を用いたカップリング、 スズキカップリングなど公知の方法を用いることができる。
[0141] 本発明に係る化合物は分子量力 00以上であることが好ましぐ 450以上であるこ とがより好ましぐ更に好ましくは 600以上であり、特に好ましくは分子量が 800以上 である。これによりガラス転移温度を上昇させ熱安定性が向上し、より一層長寿命化 をさせることができる。
[0142] アルカリ金属及びアルカリ土類金属としては周期律表のものが挙げられ、それらの 塩としては、例えば、カルボン酸塩(酢酸塩等)、スルホン酸塩 (メタンスルホン酸塩、 トシル酸塩等)、ハロゲンィ匕物(フッ化物、塩化物、臭化物及びヨウ化物)、水酸ィ匕物、 炭酸塩、硝酸塩及び硫酸塩等が挙げられる。この中で、セシウムもしくはそれらの塩 力 り好ましい。
[0143] 本発明に係る一般式(1)で表される化合物は、各々有機 EL素子用材料 (バックラ イト、フラットパネルディスプレイ、照明光源、表示素子、電子写真用光源、記録光源 、露光光源、読み取り光源、標識、看板、インテリア、光通信デバイスなど)等の用途 に用いられるが、その他の用途しては、有機半導体レーザ用材料 (記録光源、露光 光源、読み取り光源光通信デバイス、電子写真用光源など)、電子写真用感光体材 料、有機 TFT素子用材料 (有機メモリ素子、有機演算素子、有機スイッチング素子) 、有機波長変換素子用材料、光電変換素子用材料 (太陽電池、光センサーなど)な どの広い分野に利用可能である。
[0144] 次に、本発明の有機 EL素子の構成層について詳細に説明する。本発明において 、有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定 されな ヽ。 (i)陽極 Z発光層 Z電子輸送層 Z陰極 (ϋ)陽極 Z正孔輸送層 Z発光層
Z電子輸送層 Z陰極 (m)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極 Gv)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッフ ァ一層 Z陰極 (V)陽極 Z陽極バッファ一層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z 電子輸送層 Z陰極バッファ一層 Z陰極
《陽極》
有機 EL素子における陽極としては、仕事関数の大きい (4eV以上)金属、合金、電 気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。こ のような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキシド (ITO ) , SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O— ZnO)等
2 2 3 非晶質で透明導電膜を作製可能な材料を用いてもょ ヽ。陽極はこれらの電極物質を 蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ一法で所望 の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要としない場合 は(100 μ m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマ スクを介してパターンを形成してもよい。この陽極より発光を取り出す場合には、透過 率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 Ω Zロ以 下が好ましい。更に膜厚は材料にもよる力 通常 10〜: L000nm、好ましくは 10〜20 Onmの範囲で選ばれる。
《陰極》
一方、陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入性金属と称する )、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる 。このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム合金、マグネ シゥム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミ -ゥム (Al O )
2 3混合物、インジウム、リチウム Zアルミニウム混合物、希土類金属等が 挙げられる。これらの中で、電子注入性及び酸ィ匕等に対する耐久性の点から、電子 注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物 、例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合物、マグネシゥ ム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Ai 2 o 3 )混合物、リチウム Z アルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着 やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通常 ΙΟηπ!〜 5 μ m、好ましくは 50〜200nmの範囲で選ばれる。なお、発光した光を透過させるた め、有機 EL素子の陽極または陰極のいずれか一方力 透明または半透明であれば 発光輝度が向上し好都合である。
[0146] また、陰極に上記金属を l〜20nmの膜厚で作製した後に、陽極の説明で挙げた 導電性透明材料をその上に作製することで、透明または半透明の陰極を作製するこ とができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製する ことができる。
[0147] 次に、本発明の有機 EL素子の構成層として用いられる、注入層、阻止層、電子輸 送層等について説明する。
[0148] 《注入層:電子注入層、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。
[0149] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0150] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる [0151] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9— 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロン チウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表される アルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよる がその膜厚は 0. lnm〜5 mの範囲が好ましい。
[0152] 《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記のごとぐ有機化合物薄膜の基本構成層の他に必要に応じて設け られるものである。例えば、特開平 11 204258号公報、同 11 204359号公報、 及び「有機 EL素子とその工業化最前線( 1998年 11月 30日ェヌ'ティー ·エス社発 行)」の 237頁等に記載されている正孔阻止(ホールブロック)層がある。
[0153] 正孔阻止層とは広い意味では電子輸送層であり、電子を輸送する機能を有しつつ 正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔 を阻止することで電子と正孔の再結合確率を向上させることができる。
[0154] 本発明の有機 EL素子の正孔阻止層は、発光層に隣接して設けられている。
[0155] 本発明では、正孔阻止層の正孔阻止材料として前述した本発明に係る化合物を含 有させることが好ましい。これにより、より一層発光効率の高い有機 EL素子とすること ができる。更により一層長寿命化させることができる。
[0156] 一方、電子阻止層とは広い意味では正孔輸送層であり、正孔を輸送する機能を有 しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電子を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0157] 《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層カゝら注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよ 、。
[0158] (ホストイ匕合物)
本発明の有機 EL素子の発光層には、以下に示す、ホストイ匕合物とリン光性ィ匕合物 (リン光発光性ィ匕合物ともいう)が含有されることが好ましぐ本発明においては、ホス ト化合物として前述した本発明に係る化合物を用いることが好ましい。これにより、より 一層発光効率を高くすることができる。また、ホストイ匕合物として、上記の本発明に係 る化合物以外の化合物を含有してもよ ヽ。
[0159] ここで、本発明においてホストイ匕合物とは、発光層に含有される化合物のうちで室 温(25°C)においてリン光発光のリン光量子収率が、 0. 01未満の化合物と定義され る。
[0160] 更に公知のホストイ匕合物を複数種併用して用いてもよい。ホスト化合物を複数種用 いることで、電荷の移動を調整することが可能であり、有機 EL素子を高効率化するこ とができる。また、リン光性ィ匕合物を複数種用いることで、異なる発光を混ぜることが 可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、ド 一プ量を調整することで白色発光が可能であり、照明、バックライトへの応用もできる
[0161] これらの公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ 発光の長波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ま 、。
[0162] 公知のホストイ匕合物の具体例としては、以下の文献に記載されている化合物が挙 げられる。
[0163] 特開 2001— 257076号公報、同 2002— 308855号公報、同 2001— 313179号 公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786 号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号 公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789 号公報、同 2002— 75645号公報、同 2002— 338579号公報、同 2002— 10544 5号公報、同 2002— 343568号公報、同 2002— 141173号公報、同 2002— 352 957号公報、同 2002— 203683号公報、同 2002— 363227号公報、同 2002— 2 31453号公報、同 2003— 3165号公報、同 2002— 234888号公報、同 2003— 2 7048号公報、同 2002— 255934号公報、同 2002— 260861号公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516号公報、同 2002 — 305083号公報、同 2002— 305084号公報、同 2002— 308837号公報等。 [0164] また、発光層は、ホストイ匕合物として更に蛍光極大波長を有するホストイ匕合物を含 有していてもよい。この場合、他のホスト化合物とリン光性化合物から蛍光性化合物 へのエネルギー移動で、有機 EL素子としての電界発光は蛍光極大波長を有する他 のホストイ匕合物力 の発光も得られる。蛍光極大波長を有するホストイ匕合物として好 ましいのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は 1 0%以上、特に 30%以上が好ましい。具体的な蛍光極大波長を有するホスト化合物 としては、クマリン系色素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スク ァリウム系色素、ォキソベンツアントラセン系色素、フルォレセイン系色素、ローダミン 系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色 素等が挙げられる。蛍光量子収率は、前記第 4版実験化学講座 7の分光 IIの 362頁( 1992年版、丸善)に記載の方法により測定することができる。
[0165] (リン光性ィ匕合物 (リン光発光性化合物) )
発光層に使用される材料 (以下、発光材料という)としては、上記のホスト化合物を 含有すると同時に、リン光性ィ匕合物を含有することが好ましい。これにより、より発光 効率の高!、有機 EL素子とすることができる。
[0166] 本発明に係るリン光性ィ匕合物は、励起三重項力もの発光が観測される化合物であ り、室温(25°C)にてリン光発光する化合物であり、リン光量子収率が、 25°Cにおいて 0. 01以上の化合物である。リン光量子収率は好ましくは 0. 1以上である。上記リン 光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸善)に記載 の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定で きるが、本発明に用いられるリン光性ィ匕合物は、任意の溶媒の何れかにおいて上記 リン光量子収率が達成されればょ ヽ。
[0167] リン光性ィ匕合物の発光は原理としては 2種挙げられ、一つはキャリアが輸送されるホ ストィ匕合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、この エネルギーをリン光性ィ匕合物に移動させることでリン光性ィ匕合物力 の発光を得ると いうエネルギー移動型、もう一つはリン光性ィ匕合物がキャリアトラップとなり、リン光性 化合物上でキャリアの再結合が起こりリン光性ィ匕合物力もの発光が得られるというキ ャリアトラップ型であるが、いずれの場合においても、リン光性化合物の励起状態の エネルギーはホストイ匕合物の励起状態のエネルギーよりも低いことが条件である。
[0168] リン光性ィ匕合物は、有機 EL素子の発光層に使用される公知のものの中から適宜選 択して用いることができる。
[0169] 本発明で用いられるリン光性ィ匕合物としては、好ましくは元素の周期表で 8族〜 10 族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物、ォスミゥ ム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も 好まし 、のはイリジウム化合物である。
[0170] 以下に、リン光性化合物の具体例を示すが、本発明はこれらに限定されない。これ らの化合物は、例えば、 Inorg. Chem. 40卷、 1704〜1711に記載の方法等により 合成できる。
Figure imgf000075_0001
9一 JI 9-J|
Figure imgf000075_0002
tL
6ε.ειο/9θοζ OAV
Figure imgf000076_0001
Figure imgf000076_0002
Figure imgf000076_0003
Figure imgf000076_0004
8— J|
Figure imgf000077_0001
Figure imgf000077_0002
0172
Figure imgf000078_0001
[0177] 本発明においては、リン光性ィ匕合物のリン光発光極大波長としては特に制限される ものではなぐ原理的には中心金属、配位子、配位子の置換基等を選択することで 得られる発光波長を変化させることができるが、リン光性ィ匕合物のリン光発光波長が 3 80〜480nmにリン光発光の極大波長を有することが好まし!/、。このような青色リン光 発光の有機 EL素子や、白色リン光発光の有機 EL素子で、より一層発光効率を高め ることがでさる。
[0178] 本発明の有機 EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ノヽ ンドブック」(日本色彩学会編、東京大学出版会、 1985)の 108頁の図 4. 16におい て、分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した結果を C IE色度座標に当てはめたときの色で決定される。
[0179] 発光層は、上記化合物を、例えば真空蒸着法、スピンコート法、キャスト法、 LB法、 インクジェット法等の公知の薄膜ィ匕法により製膜して形成することができる。発光層と しての膜厚は特に制限はないが、通常は511111〜5 111、好ましくは 5〜200nmの範 囲で選ばれる。この発光層はこれらのリン光性化合物やホスト化合物が 1種または 2 種以上力もなる一層構造であってもよいし、あるいは同一組成または異種組成の複 数層からなる積層構造であってもよ ヽ。
[0180] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料力 なり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けることができる。
[0181] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の 、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フ -レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。
[0182] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級アミンィ匕 合物を用いることが好まし 、。
[0183] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0184] 更に、これらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖と した高分子材料を用いることもできる。また、 p型— Si、 p型— SiC等の無機化合物も 正孔注入材料、正孔輸送材料として使用することができる。
[0185] 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キヤ スト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜化すること により形成することができる。正孔輸送層の膜厚については特に制限はないが、通常 は 5nm〜5 μ m程度、好ましくは 5〜200nmである。この正孔輸送層は上記材料の 1 種または 2種以上力もなる一層構造であってもよ 、。
[0186] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けるこ とがでさる。
[0187] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中から任意のものを選択して用いることができ、例えば、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、力 ルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導 体、ォキサジァゾール誘導体等が挙げられる。更に、上記ォキサジァゾール誘導体 にお 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘 導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、 電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、 またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0188] また、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ- ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ ロモ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 -キノリノール)アルミ-ゥ ム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Zn q)等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフ リー若しくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基 等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発 光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いる ことができるし、正孔注入層、正孔輸送層と同様に、 n型— Si、 n型— SiC等の無機半 導体も電子輸送材料として用いることができる。
[0189] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。電子輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5〜200nmである。電子輸送層は上記材料の 1種ま たは 2種以上力もなる一層構造であってもよ 、。
[0190] 《基体》
本発明の有機 EL素子は、基体上に形成されているのが好ましい。
[0191] 本発明の有機 EL素子に用いることのできる基体 (以下、基板、基材、支持体等とも いう)としては、ガラス、プラスチック等の種類には特に限定はなぐまた、透明のもの であれば特に制限はないが、好ましく用いられる基板としては、例えば、ガラス、石英 、光透過性榭脂フィルムを挙げることができる。特に好ましい基体は、有機 EL素子に フレキシブル性を与えることが可能な榭脂フィルムである。
[0192] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテル エーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP )等力もなるフィルム等が挙げられる。榭脂フィルムの表面には、無機物、有機物の被 膜またはその両者のハイブリッド被膜が形成されて 、てもよ 、。
[0193] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1%以上であるこ と力 子ましく、より好ましくは 5%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である。
[0194] また、カラーフィルタ一等の色相改良フィルタ一等を併用しても、有機 EL素子から の発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよ ヽ。色 変換フィルターを用いる場合においては、有機 EL素子の発光の λ maxは 480nm以 下が好ましい。
[0195] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層 Z発光層 Z電子輸送層 Z電子注入層 Z陰極からなる有機 EL素子の作製法につい て説明する。
[0196] まず適当な基体上に所望の電極物質、例えば、陽極用物質力 なる薄膜を 1 μ m 以下、好ましくは 10 200nmの膜厚になるように、蒸着やスパッタリング等の方法に より形成させ、陽極を作製する。次に、この上に有機 EL素子材料である正孔注入層 、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜 を形成させる。
[0197] この有機化合物薄膜の薄膜ィ匕の方法としては、前記の如く蒸着法、ウエットプロセス
(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得ら れやすぐ且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、 インクジェット法、印刷法が特に好ましい。更に層ごとに異なる製膜法を適用してもよ い。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により 異なるが、一般にボート加熱温度 50 450°C、真空度 10—6 10—2Pa、蒸着速度 0. 01 50nmZ秒、基板温度一 50 300 C、膜厚 0. 1 5 μ m、好ましくは 5 2 OOnmの範囲で適宜選ぶことが望まし!/、。
[0198] これらの層を形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 0nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法 により形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL 素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾 燥不活性ガス雰囲気下で行う等の配慮が必要となる。
[0199] 本発明の多色の表示装置は発光層形成時のみシャドーマスクを設け、他層は共通 であるのでシャドーマスク等のパターユングは不要であり、一面に蒸着法、キャスト法 、スピンコート法、インクジェット法、印刷法等で膜を形成できる。発光層のみパター- ングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、印 刷法である。蒸着法を用いる場合においては、シャドーマスクを用いたパターユング が好ましい。
[0200] また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、 正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の 表示装置に、直流電圧を印加する場合には、陽極を +、陰極を一の極性として電圧 2〜40V程度を印加すると、発光が観測できる。また交流電圧を印加してもよい。な お、印加する交流の波形は任意でよい。
[0201] 本発明の表示装置は、表示デバイス、ディスプレー、各種発光光源として用いるこ とができる。表示デバイス、ディスプレーにおいて、青、赤、緑発光の 3種の有機 EL 素子を用いることにより、フルカラーの表示が可能となる。
[0202] 表示デバイス、ディスプレーとしてはテレビ、ノ ソコン、モノくィル機器、 AV機器、文 字放送表示、 自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリックス (パッシブマトリックス)方式でもアクティブマトリックス方式で もどちらでもよい。
[0203] 本発明の照明装置は家庭用照明、車内照明、時計や液晶用のバックライト、看板 広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源 、光センサの光源等が挙げられるがこれに限定するものではない。
[0204] また、本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いても よい。このような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体 の光源、電子写真複写機の光源、光通信処理機の光源、光センサの光源等が挙げ られる力 これらに限定されない。また、レーザ発振をさせることにより、上記用途に使 用してちょい。
[0205] 《表示装置》
本発明の有機 EL素子は、照明用や露光光源のような 1種のランプとして使用しても よいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を直接 視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用の表示 装置として使用する場合の駆動方式は単純マトリクス (パッシブマトリクス)方式でもァ クティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発明の有 機 EL素子を 3種以上使用することにより、フルカラー表示装置を作製することが可能 である。または、一色の発光色、例えば、白色発光をカラーフィルターを用いて BGR にし、フルカラー化することも可能である。更に有機 ELの発光色を色変換フィルター を用いて他色に変換しフルカラー化することも可能であるが、その場合、有機 EL発 光の λ maxは 480nm以下であることが好まし!/、。
[0206] 有機 EL素子力も構成される表示装置の一例を図面に基づいて以下に説明する。
[0207] 図 1は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。
[0208] ディスプレイ 1は、複数の画素を有する表示部 A、画像情報に基づ!/、て表示部 Aの 画像走査を行う制御部 B等力もなる。
[0209] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。
[0210] 図 2は、表示部 Aの模式図である。 [0211] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と、複数の画 素 3等とを有する。表示部 Aの主要な部材の説明を以下に行う。図 2においては、画 素 3の発光した光が、白矢印方向(下方向)へ取り出される場合を示して 、る。
[0212] 配線部の走査線 5及び複数のデータ線 6は、各々導電材料からなり、走査線 5とデ ータ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図示せ ず)。
[0213] 画素 3は、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラ 一表示が可能となる。
[0214] 次に、画素の発光プロセスを説明する。
[0215] 図 3は、画素の模式図である。
[0216] 画素は、有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデ ンサ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発 光の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行 うことができる。
[0217] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0218] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。
[0219] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0220] すなわち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対 して、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて 、複数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法 をアクティブマトリクス方式と呼んで 、る。
[0221] ここで、有機 EL素子 10の発光は、複数の階調電位を持つ多値の画像データ信号 による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量の オン、才フでもよ!/、。
[0222] また、コンデンサ 13の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。
[0223] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0224] 図 4は、ノ ッシブマトリクス方式による表示装置の模式図である。図 4にお 、て、複 数の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられ ている。
[0225] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して 、る画素 3が画像データ信号に応じて発光する。ノ ッシブマトリクス方式では画 素 3にアクティブ素子がなく、製造コストの低減が計れる。
[0226] 本発明に係る有機 EL材料は、また照明装置として、実質白色の発光を生じる有機 EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混 色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3原色の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色 等の補色の関係を利用した 2つの発光極大波長を含有したものでもよい。 [0227] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光を発光する材料 (発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光 を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを 組み合わせたものの 、ずれでもよ!/ヽが、本発明に係わる白色有機エレクト口ルミネッ センス素子においては、発光ドーパントを複数組み合わせる方式が好ましい。
[0228] 複数の発光色を得るための有機エレクト口ルミネッセンス素子の層構成としては、複 数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有 し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波 長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。
[0229] 本発明に係る白色有機エレクト口ルミネッセンス素子においては、必要に応じ製膜 時にメタルマスクやインクジェットプリンティング法等でパター-ングを施してもよい。 パター-ングする場合は、電極のみをパター-ングしてもいいし、電極と発光層をパ ターニングしても 、 、し、素子全層をパター-ングしても 、 、。
[0230] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る白金錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!、。
[0231] このように、白色発光する本発明の発光有機 EL素子は、前記表示デバイス、デイス プレーに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光 光源のような一種のランプとして、また液晶表示装置のノ ックライト等、表示装置にも 有用に用いられる。
[0232] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサの光源等、更には表示装置を必 要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0233] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
[0234] 実施例 1
《有機 EL素子 1— 1〜1— 21の作製》 陽極として 100mm X 100mm X I. 1mmのガラス基板上に、 ITO (インジウムチン ォキシド)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行 つた後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音 波洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持 基板を市販の真空蒸着装置の基板ホルダーに固定し、一方モリブデン製抵抗加熱 ボートに α— NPDを 200mg入れ、別のモリブデン製抵抗加熱ボートにホスト化合物 として CBPを 200mg入れ、別のモリブデン製抵抗加熱ボートにバソフェナント口リン( BP)とを 200mg入れ、別のモリブデン製抵抗加熱ボートに Alqを lOOmg入れ、別の
3
モリブデン製抵抗加熱ボートにセシウムを lOOmg入れ、更に別のモリブデン製抵抗 加熱ボートに Ir— 12を lOOmg入れ、真空蒸着装置に取付けた。
[0235] 次 、で、真空槽を 4 X 10— 4Paまで減圧した後、 a—NPDの入った前記加熱ボート に通電して加熱し、蒸着速度 0. InmZ秒で透明支持基板に蒸着し、第 1正孔輸送 層を設けた。更に CBPと Ir— 12の入った前記加熱ボートに通電して加熱し、それぞ れ蒸着速度 0. 2nmZ秒、 0. 012nmZ秒で前記第 1正孔輸送層上に共蒸着して発 光層を設けた。なお、蒸着時の基板温度は室温であった。更に BPの入った前記カロ 熱ボートに通電して加熱し、蒸着速度 0. InmZ秒で前記発光層の上に蒸着して膜 厚 lOnmの正孔阻止層を設けた。更に Alqとセシウムの入った前記加熱ボートに通
3
電して加熱し、蒸着速度 0. InmZ秒で正孔阻止層の上に蒸着して膜厚 lOnmの陰 極バッファ一層を設けた。なお、蒸着時の基板温度は室温であった。引き続き、アル ミニゥム 1 lOnmを蒸着して陰極を形成し、有機 EL素子 1— 1を作製した。
[0236] 有機 EL素子 1—1の作製において、陰極バッファ一層の Alq及びセシウムを表 1に
3
示す各化合物に置き換えた以外は、有機 EL素子 1—1と同じ方法で有機 EL素子 1 — 2〜 1— 21を作製した。上記で使用した化合物の構造を以下に示す。 CBP BP
Figure imgf000089_0001
[0237] 《有機 EL素子 1 1〜 1— 21の評価》
以下のようにして作製した有機 EL素子 1— 1〜 1— 21の評価を行つた。
[0238] (輝度)
分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)で測定した輝度を用 V、て輝度 (cd/m2)を求めた。
[0239] (外部取りだし量子効率)
作製した有機 EL素子について、 23°C、乾燥窒素ガス雰囲気下で 2. 5mA/cm2 定電流を印加した時の外部取り出し量子効率(%)を測定した。なお、測定には同様 に分光放射輝度計 CS - 1000 (コ-力ミノルタセンシング社製)を用いた。
[0240] (寿命)
2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直後の輝度 (初期 輝度)の半分に低下するのに要した時間を測定し、これを半減寿命時間( τ 0. 5)と して寿命の指標とした。なお、測定には分光放射輝度計 CS— 1000 (コ-カミノルタ センシング社製)を用いた。
[0241] 表 1に記載の輝度、外部取りだし量子効率、寿命の測定結果は、有機 EL素子 1 1の測定値を 100とした時の相対値で表した。
[0242] [表 1] 陰極バッファー層
有機 EL素子 輝度 外部取りだし量子効率 叩- 備 考
1
1 一 1 A 1 q3 Cs 100 100 100 比較例
1 - 2 BP Cs 125 1 20 1 21 比較例
1 - 3 7 Ca 170 21 7 332 本発明
1 一 4 8 g 190 165 357 本発明
1 一 5 19 Na 195 202 340 本発明
1 一 6 24 U 185 183 355 本発明
1 一 7 32 CS2CO3 195 205 440 本発明
1 - 8 35 CsC I 203 202 430 本発明
1 一 9 44 CHaCOOCs 199 190 390 本発明
1 一 10 60 Cs 202 200 450 本発明
1 - 1 1 69 Cs 207 207 560 本発明
1 一 12 72 Cs 221 230 570 本発明
1 一 13 73 Cs 220 222 620 本発明
1 - 14 74 Cs 210 219 730 本発明
1 - 15 80 Cs 220 230 700 本発明
1 - 16 92 Cs 199 201 690 本発明
1 一 17 1 19 Cs 223 223 700 本発明
1 - 18 1 20 Cs 216 218 710 本発明
1 - 19 1 29 Cs 222 221 690 本発明
1 - 20 144 Cs 220 221 705 本発明
1 一 21 148 Cs 208 208 680 本発明
般式( 1 )で表される化合物
[0243] 上表に記載の結果より明らかなように、比較に比べて、本発明の有機 EL素子は輝 度が高ぐ外部取り出し量子効率に優れ、且つ長寿命化が達成されていることが分か る。
[0244] 実施例 2
《有機 EL素子 2—:!〜 2— 8の作製》
実施例 1に記載の有機 EL素子 1—1の作製において、陰極バッファ一層を表 2に 示す各化合物に変更し、 Ir 12を Ir 1に変更した以外は同様にして、有機 EL素子 2— 1〜2— 8を作製した。
Figure imgf000091_0001
[0245] 《有機 EL素子 2— 1〜2— 8の評価》
下記に示す測定法に従って、保存性の評価を行った。
[0246] (保存性)
各有機 EL素子を 85°Cで 24時間保存した後、保存前後における 2. 5mAZcm2の 定電流駆動での各輝度を測定し、各輝度比を下式に従って求め、これを保存性の尺 度とした。
[0247] 保存性 (%) =保存後の輝度 (2. 5mA/cm2) Z保存前の輝度 (2. 5mA/cm2)
X 100
[0248] [表 2]
Figure imgf000091_0002
[0249] 上表に記載の結果より明らかなように、比較に比べて、本発明の有機 EL素子は保 存性に優れて 、ることが分かる。
[0250] 実施例 3 《有機 EL素子 3— 1〜3— 8の作製》
実施例 1に記載の有機 EL素子 1—1の作製において、陰極バッファ一層を表 3に 示す各化合物に変更し、 Ir— 12を Ir— 1に変更した以外は同様にして、有機 EL素子 3— 1〜3— 8を作製した。
[0251] 《有機 EL素子 3— 1〜3— 8の評価》
下記に示す測定法に従って、 50°C駆動寿命の評価を行った。
[0252] (50°C駆動寿命)
各有機 EL素子を 50°Cの一定条件で、初期輝度 lOOOcdZm2を与える電流で定電 流駆動して、初期輝度の lZ2 (500cdZm2)になる時間を求め、これを 50°C駆動寿 命の尺度とした。なお、 50°C駆動寿命は比較の有機 EL素子 3—1を 100とした時の 相対値で表示した。
[0253] [表 3]
Figure imgf000092_0001
[0254] 上表に記載の結果より明らかなように、比較に比べて、本発明の有機 EL素子は 50
°C駆動寿命に優れていることが分かる。
[0255] 実施例 4
《有機 EL素子 4 1〜4 8の作製》
実施例 1に記載の有機 EL素子 1—1の作製において、陰極バッファ一層を表 4に 示す各化合物に変更し、 Ir— 12を Ir— 1に変更した以外は同様にして、有機 EL素子 4— 1〜4— 8を作製した。
[0256] 《有機 EL素子 4 1〜4 8の評価》 下記に示す測定法に従って、初期寿命の評価を行った。
[0257] (初期寿命)
各有機 EL素子を初期輝度 lOOOcdZm2を与える電流で定電流駆動して、輝度が 90% (900cd/m2)になる時間を求め、これを初期寿命の尺度とした。なお、初期寿 命は、比較の有機 EL素子 4— 1を 100とした時の相対値で表示した。
[0258] [表 4]
Figure imgf000093_0001
[0259] 上表に記載の結果より明らかなように、比較に比べて、本発明の有機 EL素子は初 期寿命に優れていることが分力つた。
[0260] 実施例 5
実施例 1で作製した本発明の有機 EL素子 1— 14と、実施例 2で作製した本発明の 有機 EL素子 2— 6と、本発明の有機 EL素子 2— 6のリン光性ィ匕合物を Ir 9に置き 換えた以外は同様にして作製した赤色発光有機 EL素子を同一基板上に並置し、第 1図に示すアクティブマトリクス方式フルカラー表示装置を作製した。第 2図には作製 したフルカラー表示装置の表示部 Aの模式図のみを示した。即ち、同一基板上に複 数の走査線 5及びデータ線 6を含む配線部と、並置した複数の画素 3 (発光の色が赤 領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複 数のデータ線 6はそれぞれ導電材料力 なり、走査線 5とデータ線 6は格子状に直交 して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数の画素 3 は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスイッチングト ランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動さ れており、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。このように各赤、緑、青の画素を 適宜、並置することによって、フルカラー表示が可能となる。
[0261] フルカラー表示装置を駆動することにより、外部とりだし量子効率が高ぐ耐久性の 良好な、鮮明なフルカラー動画表示が得られた。
産業上の利用可能性
[0262] 本発明により、発光輝度が高ぐ外部取り出し量子効率が高ぐ且つ長寿命である 有機エレクト口ルミネッセンス素子、照明装置及び表示装置を提供することができた。

Claims

請求の範囲
陰極と陽極との間に発光層を少なくとも有する有機エレクト口ルミネッセンス素子に おいて、該発光層と該陰極の間の有機物層の少なくとも 1層に下記一般式(1)で表さ れる化合物の少なくとも 1種とアルカリ金属、アルカリ土類金属もしくはそれらの塩の 少なくとも 1種を含有することを特徴とする有機エレクト口ルミネッセンス素子。 一般式 (1 )
Figure imgf000095_0001
(式中、 Z
1は芳香族複素環を表し、 Z
2は芳香族複素環または芳香族炭化水素環を表 し、 Zは 2価の連結基または単なる結合手を表す。 R は水素原子または置換基を表
3 101
す。)
[2] 前記一般式(1)で表される化合物の Z力 ½員環であることを特徴とする請求の範囲
1
第 1項に記載の有機エレクト口ルミネッセンス素子。
[3] 前記一般式(1)で表される化合物の Z力 ½員環であることを特徴とする請求の範囲
2
第 1項に記載の有機エレクト口ルミネッセンス素子。
[4] 前記一般式(1)で表される化合物の Zが結合手であることを特徴とする請求の範
3
囲第 1項に記載の有機エレクト口ルミネッセンス素子。
[5] 前記一般式(1)で表される化合物が分子量 450以上であることを特徴とする請求の 範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
[6] 前記一般式(1)で表される化合物が下記一般式(1 1)で表されることを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000096_0001
(式中、 R R は各々独立に水素原子または置換基を表す。)
501 507
前記一般式(1)で表される化合物が下記一般式( 1 2)で表されることを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
-般式 (1—2)
Figure imgf000096_0002
(式中、 R R は各々独立に水素原子または置換基を表す。)
511 517
前記一般式(1)で表される化合物が下記一般式( 1 3)で表されることを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1一 3)
Figure imgf000096_0003
(式中、 R R は各々独立に水素原子または置換基を表す。)
521 527
前記一般式(1)で表される化合物が下記一般式(1 4)で表されることを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 —般式 (1—4)
Figure imgf000097_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
531 537
前記一般式(1)で表される化合物が下記一般式( 1 5)で表される とを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
—般式 (1—5)
Figure imgf000097_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
541 548
前記一般式(1)で表される化合物が下記一般式( 1 6)で表される とを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1一 6)
Figure imgf000097_0003
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
551 558
前記一般式(1)で表される化合物が下記一般式( 1 7)で表される とを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1一 7)
Figure imgf000098_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
561 567
前記一般式(1)で表される化合物が下記一般式( 1 8)で表されることを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1—8)
Figure imgf000098_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す。)
571 577
前記一般式(1)で表される化合物が下記一般式( 1 9)で表されることを特徴とす る請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1 -9)
Figure imgf000098_0003
(式中、 Rは水素原子または置換基を表す。また、複数の Rは各々同一でもよぐ異な つていてもよい。 )
前記一般式(1)で表される化合物が下記一般式(1 10)で表されることを特徴と する請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (1—10)
Figure imgf000099_0001
(式中、 Rは水素原子または置換基を表す。また、複数の Rは各々同一でもよぐ異な つていてもよい。 )
前記一般式(1)で表される化合物が下記一般式(2— 1)〜(2— 10)の 、ずれかで 表される基を少なくとも一つ有することを特徴とする請求の範囲第 1項に記載の有機 エレクトロノレミネッセンス素子。
一般式 (2— 1) -般式 (2— 2)
Figure imgf000100_0001
一般式 (2— 3) -般式 (2— 4)
Figure imgf000100_0002
-般式 (2— 5) —般式 (2— 6)
Figure imgf000100_0003
一般式 一 7) -般式 (2— 8)
一般
Figure imgf000100_0004
(式中、 R 、R ノ R 、R 、R 〜R 、R 〜R 、R
502 517 522 527 537 542 548 552 558 5>
、R 〜R 、R 〜R 、R 〜R は各々独立に水素原子または置換基を表
567 572 577 582 588 592 598 し、該置換基は各々同一でもよぐ異なっていてもよい。 )
前記一般式(1)で表される化合物が下記一般式 (3)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。 一般式 (3)
Figure imgf000101_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
601 606 601 606 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
前記一般式(1)で表される化合物が下記一般式 (4)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。 一般式 (4)
Figure imgf000101_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
611 620 611 620 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
前記一般式(1)で表される化合物が下記一般式 (5)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。 一般式 (5)
N N
R6 夂 (式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
621 623 621 623 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
前記一般式(1)で表される化合物が下記一般式 (6)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000102_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
631 645 631 645 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
前記一般式(1)で表される化合物が下記一般式 (7)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。 一般式 (7)
Figure imgf000102_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
651 656 651 656 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 naは 0〜5の整数を表し、 nbは 1〜6の整数を表すが、 naと nbの和は 6である。)
前記一般式(1)で表される化合物が下記一般式 (8)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。 一般式 (8)
Figure imgf000103_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
661 672 661 672 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 )
前記一般式(1)で表される化合物が下記一般式 (9)で表されることを特徴とする請 求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。
—般式 (9)
Figure imgf000103_0002
(式中、 R 〜R は各々独立に水素原子または置換基を表す力 R 〜R の少な
681 688 681 688 くとも一つは前記一般式(2— 1)〜(2— 10)で表される基力 選ばれる少なくとも一 つの基を表す。 ) 前記一般式(1)で表される化合物が下記一般式(10)で表されることを特徴とする 請求の範囲第 16項に記載の有機エレクト口ルミネッセンス素子。 一般式 (10)
Figure imgf000104_0001
(式中、 R 〜R は各々独立に水素原子または置換基を表すが、 Lは 2価の連結基
691 700 1
を表す。 R 〜R の少なくとも一つは前記一般式(2— 1)〜(2— 10)で表される基
691 700
から選ばれる少なくとも一つの基を表す。 )
前記一般式(1)で表される化合物が下記一般式(11)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (11)
Figure imgf000104_0002
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) 前記一般式(1)で表される化合物が下記一般式(12)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000105_0001
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) 前記一般式(1)で表される化合物が下記一般式(13)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
Figure imgf000105_0002
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) 前記一般式(1)で表される化合物が下記一般式(14)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 般式 (14)
Figure imgf000106_0001
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 ) 前記一般式(1)で表される化合物が下記一般式(15)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (15)
Figure imgf000106_0002
(式中、 R、 Rは各々独立に水素原子または置換基を表す。 n、 mは各々 1〜2の整
1 2
数を表し、 k、 1は各々 3〜4の整数を表す。但し、 n+k= 5、且つ l+m= 5である。 Z
1
、 Z、 Z、 Zは各々窒素原子を少なくとも一つ含む 6員の芳香族複素環を表す。 )
2 3 4
前記一般式(1)で表される化合物が下記一般式(16)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (16)
Figure imgf000107_0001
(式中、 o、 pは各々 1〜3の整数を表し、 Ar、 Arは各々ァリーレン基または 2価の芳
1 2
香族複素環基を表す。 Z、 Zは各々窒素原子を少なくとも一つ含む 6員の芳香族複
1 2
素環を表し、 Lは 2価の連結基を表す。 )
前記一般式(1)で表される化合物が下記一般式(17)で表されることを特徴とする 請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 一般式 (17》
Figure imgf000107_0002
(式中、 o、 pは各々 1〜3の整数を表し、 Ar、 Arは各々ァリーレン基または 2価の芳
1 2
香族複素環基を表す。 Z、 Z、 Z、 Zは各々窒素原子を少なくとも一つ含む 6員の芳
1 2 3 4
香族複素環を表し、 Lは 2価の連結基を表す。 )
[32] 前記アルカリ金属、アルカリ土類金属もしくはそれらの塩がセシウムもしくはそれら の塩であることを特徴とする請求の範囲第 1項に記載の有機エレクト口ルミネッセンス 素子。
[33] 前記発光層と陰極の間の有機物層が陰極に隣接していることを特徴とする請求の 範囲第 1項に記載の有機エレクト口ルミネッセンス素子。 [34] 発光が白色であることを特徴とする請求の範囲第 1項に記載の有機エレクトロルミネ ッセンス素子。
[35] 請求の範囲第 34項に記載の有機エレクト口ルミネッセンス素子を有することを特徴 とする表示装置。
[36] 請求の範囲第 34項に記載の有機エレクト口ルミネッセンス素子を有することを特徴 とする照明装置。
[37] 請求の範囲第 36項に記載の照明装置と表示手段としての液晶素子を有することを 特徴とする表示装置。
PCT/JP2005/013485 2004-08-04 2005-07-22 有機エレクトロルミネッセンス素子、照明装置及び表示装置 WO2006013739A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006531384A JP4626613B2 (ja) 2004-08-04 2005-07-22 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004227880 2004-08-04
JP2004-227880 2004-08-04

Publications (1)

Publication Number Publication Date
WO2006013739A1 true WO2006013739A1 (ja) 2006-02-09

Family

ID=35787030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013485 WO2006013739A1 (ja) 2004-08-04 2005-07-22 有機エレクトロルミネッセンス素子、照明装置及び表示装置

Country Status (2)

Country Link
JP (1) JP4626613B2 (ja)
WO (1) WO2006013739A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235575A (ja) * 2009-03-09 2010-10-21 Konica Minolta Holdings Inc 含窒素縮合複素環化合物の製造方法
WO2011024976A1 (ja) * 2009-08-31 2011-03-03 富士フイルム株式会社 有機電界発光素子
JP2011071461A (ja) * 2009-08-31 2011-04-07 Fujifilm Corp 有機電界発光素子
JPWO2009102016A1 (ja) * 2008-02-14 2011-06-16 保土谷化学工業株式会社 置換されたピリジル基が連結したピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2012126673A (ja) * 2010-12-15 2012-07-05 Jnc Corp 縮合ピロール多環化合物、発光層用材料およびこれを用いた有機電界発光素子
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
US20130274258A1 (en) * 2010-11-03 2013-10-17 Philip Morris Products S.A. Carbazole and carboline derivatives, and preparation and therapeutic applications thereof
JP2015109470A (ja) * 2009-10-17 2015-06-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US9318711B2 (en) 2012-11-20 2016-04-19 Samsung Display Co., Ltd. Organic electroluminescence materials comprising substituted carbazoles and organic electroluminescence devices having the same
US9847501B2 (en) 2011-11-22 2017-12-19 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
US9876188B2 (en) 2013-12-27 2018-01-23 Pioneer Corporation Light emitting element and method of manufacturing light emitting element
KR101922050B1 (ko) * 2011-10-24 2018-11-27 엘지디스플레이 주식회사 인광 화합물 및 이를 이용한 유기전계발광소자
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
JP2019537587A (ja) * 2016-11-07 2019-12-26 サノフイSanofi 置換ピリド[3,4−b]インドールおよび医薬品としてのその使用
US10784446B2 (en) 2014-11-28 2020-09-22 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270171A (ja) * 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JP2003277743A (ja) * 2002-03-22 2003-10-02 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2003080760A1 (fr) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
WO2004053019A1 (ja) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2004217547A (ja) * 2003-01-14 2004-08-05 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004352655A (ja) * 2003-05-29 2004-12-16 Idemitsu Kosan Co Ltd スピロ結合含有化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2005243266A (ja) * 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp 電子輸送材料及びそれを用いた有機電界発光素子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10270171A (ja) * 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JP2003277743A (ja) * 2002-03-22 2003-10-02 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2003080760A1 (fr) * 2002-03-22 2003-10-02 Idemitsu Kosan Co., Ltd. Materiau pour dispositifs electroluminescents organiques et dispositifs electroluminescents organiques produits avec ce materiau
WO2004053019A1 (ja) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP2004217547A (ja) * 2003-01-14 2004-08-05 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2004352655A (ja) * 2003-05-29 2004-12-16 Idemitsu Kosan Co Ltd スピロ結合含有化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2005243266A (ja) * 2004-02-24 2005-09-08 Mitsubishi Chemicals Corp 電子輸送材料及びそれを用いた有機電界発光素子

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009102016A1 (ja) * 2008-02-14 2011-06-16 保土谷化学工業株式会社 置換されたピリジル基が連結したピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP5467873B2 (ja) * 2008-02-14 2014-04-09 保土谷化学工業株式会社 置換されたピリジル基が連結したピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2010235575A (ja) * 2009-03-09 2010-10-21 Konica Minolta Holdings Inc 含窒素縮合複素環化合物の製造方法
WO2011024976A1 (ja) * 2009-08-31 2011-03-03 富士フイルム株式会社 有機電界発光素子
JP2011071461A (ja) * 2009-08-31 2011-04-07 Fujifilm Corp 有機電界発光素子
JP2015109470A (ja) * 2009-10-17 2015-06-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20130274258A1 (en) * 2010-11-03 2013-10-17 Philip Morris Products S.A. Carbazole and carboline derivatives, and preparation and therapeutic applications thereof
JP2012126673A (ja) * 2010-12-15 2012-07-05 Jnc Corp 縮合ピロール多環化合物、発光層用材料およびこれを用いた有機電界発光素子
KR101922050B1 (ko) * 2011-10-24 2018-11-27 엘지디스플레이 주식회사 인광 화합물 및 이를 이용한 유기전계발광소자
US9847501B2 (en) 2011-11-22 2017-12-19 Idemitsu Kosan Co., Ltd. Aromatic heterocyclic derivative, material for organic electroluminescent element, and organic electroluminescent element
JPWO2013115340A1 (ja) * 2012-02-03 2015-05-11 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR20140121461A (ko) * 2012-02-03 2014-10-15 이데미쓰 고산 가부시키가이샤 카르바졸 화합물, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
WO2013115340A1 (ja) * 2012-02-03 2013-08-08 出光興産株式会社 カルバゾール化合物、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR102126877B1 (ko) 2012-02-03 2020-06-25 이데미쓰 고산 가부시키가이샤 카르바졸 화합물, 유기 일렉트로루미네선스 소자용 재료 및 유기 일렉트로루미네선스 소자
US9318711B2 (en) 2012-11-20 2016-04-19 Samsung Display Co., Ltd. Organic electroluminescence materials comprising substituted carbazoles and organic electroluminescence devices having the same
US10217954B2 (en) 2013-11-13 2019-02-26 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US9876188B2 (en) 2013-12-27 2018-01-23 Pioneer Corporation Light emitting element and method of manufacturing light emitting element
US10784446B2 (en) 2014-11-28 2020-09-22 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescence element material, organic electroluminescence element and electronic device
JP2019537587A (ja) * 2016-11-07 2019-12-26 サノフイSanofi 置換ピリド[3,4−b]インドールおよび医薬品としてのその使用
JP7046063B2 (ja) 2016-11-07 2022-04-01 サノフイ 置換ピリド[3,4-b]インドールおよび医薬品としてのその使用

Also Published As

Publication number Publication date
JP4626613B2 (ja) 2011-02-09
JPWO2006013739A1 (ja) 2008-05-01

Similar Documents

Publication Publication Date Title
JP5573858B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4962613B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP4810669B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4858169B2 (ja) 有機エレクトロルミネッセンス素子
JP5124943B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5782836B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置、並びに化合物
WO2006013739A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006098120A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子
WO2006132012A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2007029533A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2004095889A1 (ja) 有機エレクトロルミネッセンス素子及び表示装置
WO2006082742A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007119816A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006112265A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007097149A1 (ja) 有機エレクトロルミネッセンス素子、白色発光素子、表示装置、及び照明装置
WO2007055186A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2013058560A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置、並びに化合物
JP4655454B2 (ja) 有機エレクトロルミネッセンス素子、照明装置および表示装置
WO2006100925A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置
JP2005093098A (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2006043440A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4367068B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
WO2005062675A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置および表示装置
WO2005032216A1 (ja) 多重分岐構造化合物、有機エレクトロルミネッセンス素子、表示装置、照明装置及び多重分岐構造化合物の製造方法
JP5720253B2 (ja) 有機エレクトロニクス素子、それを具備した表示装置及び照明装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006531384

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase