WO2007023659A1 - 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2007023659A1
WO2007023659A1 PCT/JP2006/315461 JP2006315461W WO2007023659A1 WO 2007023659 A1 WO2007023659 A1 WO 2007023659A1 JP 2006315461 W JP2006315461 W JP 2006315461W WO 2007023659 A1 WO2007023659 A1 WO 2007023659A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
general formula
metal
substituent
Prior art date
Application number
PCT/JP2006/315461
Other languages
English (en)
French (fr)
Inventor
Tomohiro Oshiyama
Shinya Otsu
Eisaku Katoh
Noriko Yasukawa
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007532046A priority Critical patent/JP5130913B2/ja
Publication of WO2007023659A1 publication Critical patent/WO2007023659A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron

Definitions

  • Organic-elect mouth luminescence element material organic-elect luminescence element
  • the present invention relates to an organic electoluminescence device material, an organic electroluminescence device, a display device, and a lighting device.
  • ELD electoric luminescence display
  • organic EL elements organic electroluminescence elements
  • Inorganic electoric luminescence elements have been used as planar light sources, but in order to drive the light emitting elements, an alternating high voltage is required.
  • An organic EL device has a structure in which a light-emitting layer containing a light-emitting compound is sandwiched between a cathode and an anode, and excitons (excitons) are generated by injecting electrons and holes into the light-emitting layer and recombining them. It is an element that emits light using the emission of light (fluorescence 'phosphorescence) when this exciton is deactivated. It can emit light at a voltage of several to several tens of volts, and is self-luminous. As a result, it is a thin-film, completely solid element with a wide viewing angle and high visibility.
  • a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative is doped with a trace amount of a phosphor to improve emission luminance and extend the lifetime of the element.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of a phosphor is doped to the host compound for example, JP-A 63-264692
  • an 8-hydroxyquinoline aluminum complex is used as a host compound.
  • an element having an organic light emitting layer doped with a quinacridone dye for example, Japanese Patent Publication No. 3-255190
  • the upper limit of the internal quantum efficiency is 100%, so that in principle, the luminous efficiency is doubled compared to the case of an excited singlet, and almost the same performance as a cold cathode tube is obtained. It is also attracting attention as a lighting application because of its potential.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-332291
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-332292
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-338588
  • Patent Document 4 Japanese Patent Laid-Open No. 2002-226495
  • Patent Document 5 Japanese Patent Laid-Open No. 2002-234894
  • Patent Document 6 International Publication No. 02Z15645 Pamphlet
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2003-123982
  • Patent Document 8 Japanese Patent Application Laid-Open No. 2002-117978
  • Patent Document 9 Japanese Patent Laid-Open No. 2003-146996
  • Patent Document 10 Pamphlet of International Publication No. 04Z016711
  • Patent Document 11 Pamphlet of International Publication No. 04Z085450
  • Patent Document 12 Japanese Unexamined Patent Application Publication No. 2005-53912
  • Patent Document 13 Japanese Unexamined Patent Publication No. 2003-109758
  • Patent Document 14 Japanese Patent Laid-Open No. 2001-247859
  • Patent Document 15 International Publication No. 05Z007767 Pamphlet
  • Patent Document 16 Japanese Patent Laid-Open No. 2005-68110
  • Non-Patent Document 1 Inorganic Chemistry, No. 41, No. 12, pp. 3055-3066 (2002)
  • Non-patent literature 2 Aplied Physics Letters, 79, 2082 (2001)
  • Non-patent literature 3 Aplied Physics Letters, 83, 3818 (2003)
  • Non-patent literature 4 New Journal of Chemistry, 26 Tsuji, page 1171 (2002) Disclosure of invention
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an organic EL element material having a controlled emission wavelength, exhibiting high emission efficiency, and having a long emission lifetime, and an organic EL element using the same An illumination device and a display device are provided.
  • An organic electoluminescence device material which is a metal complex having the following general formula (8) as a partial structure.
  • 71 72 73 74 75 76 77 are each a hydrogen atom or a force representing a substituent R
  • the central metal, M represents a group 8-10 metal in the periodic table.
  • An organic electoluminescence device material which is a metal complex having the following general formula (1) as a partial structure.
  • 01 02 03 04 05 06 07 each represents a hydrogen atom or a substituent, and at least one of them represents an aromatic heterocyclic group.
  • 01 represents a group 8-10 metal in the periodic table.
  • An organic electoluminescence device material which is a metal complex having the following general formula (2) as a partial structure.
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • At least one of, R 1, R 2, R 3, R 4 represents an aromatic hydrocarbon ring group.
  • M represents a metal of Group 8 to Group 10 in the periodic table.
  • Organic electroluminescent element material characterized by being a metal complex represented by the following general formula (3).
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • R represents an aromatic hydrocarbon ring group.
  • X -L1 -X represents a bidentate ligand, X,
  • X represents each independently a carbon atom or a nitrogen atom.
  • L1 is co-ordinated with X and X
  • n2 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • n2 + m2 is 2 or 3.
  • the central metal M is
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • R 1, R 2 are an unsubstituted alkyl group or an aromatic carbon which may have a substituent
  • the central metal M represents a group 8-10 metal in the periodic table.
  • R 1, R 2 and R 3 are substituted or unsubstituted.
  • the organic electoluminescence device material as described in (6) above which represents a substituted alkyl group, an aromatic hydrocarbon ring group, or a cycloalkyl group.
  • An organic electoluminescence element material which is a metal complex having the following general formula (5) as a partial structure.
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • R 1, R 2, R 3 represent an amino group which may have a substituent.
  • R 1, R 2, R 3 represent an amino group which may have a substituent.
  • a certain M represents a group 8-10 metal in the periodic table.
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • At least one of, R 1, R 2, R 3 represents a cyano group.
  • the central metal M is the periodic table
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • R 1, R 2, R 3 represent a monovalent organic group.
  • the central metal M is an element
  • An organic electoluminescence device material which is a metal complex having the following general formula (9) as a partial structure.
  • R 1, R 2, R 3, R 4, R 5, R 5 each represent a hydrogen atom or a substituent.
  • M represents a group 8-10 metal in the periodic table.
  • An organic electoluminescence device material which is a metal complex having the following general formula (10) as a partial structure.
  • R 1, R 2, R 3, R 4, R 5, R 6, R 5 are each a hydrogen atom or a force R representing a substituent R
  • the central metal M is group 8 in the periodic table
  • An organic electoluminescence device material which is a metal complex having the following general formula (11) as a partial structure.
  • R 1 represents a substituent.
  • R is a hydrogen atom, alkyl group, cycloalkyl
  • 01 represents a group 8-10 metal in the periodic table.
  • each of R 1 and R 2 is a substituent.
  • the organic electoluminescence element material according to item 1.
  • An organic electroluminescent device comprising the organic electroluminescent device according to any one of (1) to (16).
  • a display device comprising the organic electroluminescence device according to any one of (17) to (20).
  • an organic EL element material useful for an organic EL element is obtained, and by using the organic EL element material, the emission wavelength is controlled, high emission efficiency is exhibited, and the emission lifetime is increased.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of display unit A.
  • FIG. 3 is a schematic diagram of a pixel.
  • FIG. 4 is a schematic diagram of a passive matrix type full-color display device.
  • FIG. 5 is a schematic view of a lighting device.
  • FIG. 6 is a schematic diagram of a lighting device.
  • the organic EL element material of the present invention the organic EL element material useful for the organic EL element is molecularly designed by the structure defined in any one of the claims 1 to 16. Succeeded.
  • the organic EL element material it was possible to provide an organic EL element, a lighting device, and a display device that exhibit high light emission efficiency and have a long light emission lifetime.
  • the inventors of the present invention have greatly influenced the stability of the complex of the phenol imidazole derivative due to the effect of the substitution position and type of the substituent on the phenylimidazole which is the mother nucleus. It has become a component that this has a great influence on the light emission lifetime.
  • the present inventors introduce an aromatic heterocycle into a phenol imidazole or introduce an aromatic hydrocarbon group at a specific position.
  • Luminous lifetime has been greatly improved, which was a problem with conventional organic EL devices made with blue metal complexes, especially organic EL device materials whose emission wavelength is controlled to the short wavelength side only by electron-withdrawing groups.
  • by specifying the substitution position of the aromatic hydrocarbon group as in the present invention it was found that the lifetime of the blue light-emitting element was further extended, and the emission lifetime of the organic EL element was greatly improved. did.
  • the molecular design for imparting the function of controlling the emission wavelength of the metal complex in the long wave region (green to red) is represented by the general formulas (1), (2), (4) to (11) according to the present invention. ), Or the general structure (3) as a starting point for the basic skeleton design.
  • the metal complex according to the present invention is a partial structure represented by the general formulas (1), (2), (4) to (11), or the general formulas (1), (2), (4) to ( 11) having at least one of the partial structures represented by each tautomer (specifically, having as a ligand), and all of the ligands of the metal complex Is a partial structure represented by the general formulas (1), (2), (4) to (11), or each of the general formulas (1), (2), (4) to (11) It may be composed only of a partial structure represented by a tautomer.
  • a ligand known by a person skilled in the art as a so-called ligand used for forming a conventionally known metal complex (also known as a coordination compound). May be included as a ligand if necessary.
  • the type of the ligand in the complex is preferably composed of 1 to 2 types, more preferably 1 type. It is.
  • ligands used in the conventionally known metal complexes.
  • Ligand for example, halogen ligands (preferably chlorine ligands), nitrogen-containing heterocycles, etc.
  • Ring ligands for example, bibilidyl, phenantorin, etc.
  • diketone ligands for example, bibilidyl, phenantorin, etc.
  • the partial structure represented by the general formula (1), (2), (4) to (11) according to the present invention, or the general formula (1), (2), (4) to (11) As a metal used for forming a metal complex having at least one of the partial structures represented by each tautomer of (specifically, having as a ligand), an element periodic table may be used. Among them, iridium and platinum are preferable transition metal elements among the forces in which Group 8 to Group 10 transition metal elements (also simply referred to as transition metals) are used.
  • a metal complex having a partial structure represented by each of the general formulas (1), (2), (4) to (11) according to the present invention, or the general formulas (1), (2), (4 ) To (11) are preferably used as the inclusion layer of the metal complex having a tautomer as a partial structure.
  • the emission layer and the Z or electron blocking layer are preferred. By using it as a light-emitting dopant (the light-emitting dopant will be described later), it is possible to increase the external extraction quantum efficiency of the organic EL device of the present invention (increase the luminance) and increase the light emission lifetime.
  • the metal complex-containing layer having the general formula (1), (2), (4) to (11) or a tautomer thereof as a partial structure according to the present invention includes a light emitting layer and Z or
  • the electron blocking layer is preferred and contained in the light emitting layer, it can be used as a light emitting dopant in the light emitting layer to increase the efficiency of the external extraction quantum efficiency of the organic EL device of the present invention (higher brightness) and light emission. Longer life can be achieved.
  • substituent represented include alkyl groups (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group).
  • alkyl groups for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group).
  • Pentadecyl group, etc. Pentadecyl group, etc.
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group eg, bur group, allyl group, etc.
  • alkynyl group eg, ethynyl group, propargyl group, etc.
  • Aromatic hydrocarbon ring group also called aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group, azulenyl group
  • aromatic heterocyclic group for example, pyriyl group) Group, pyrimidine -
  • R 1, R 2, R 3 each represents an aromatic heterocyclic group, preferably each substituted
  • R 1, R 2, R 3, R 4 and R 5 represents an aromatic hydrocarbon ring group.
  • R or R represents an aromatic hydrocarbon ring group.
  • X—LI— X is a bidentate coordination
  • a group of atoms forming a bidentate ligand is represented.
  • n2 represents an integer of 1, 2 or 3
  • m2 represents an integer of 0, 1 or 2
  • n2 + m2 is 2 or 3.
  • m2 is preferably 0.
  • R 1, R 2 and R 3 may have an unsubstituted alkyl group or a substituent.
  • R 1, R 2 are substituted or unsubstituted alkyl groups, aromatic hydrocarbons
  • R 1, R 2, R 3 and R 4 represents an amino group which may have a substituent.
  • amino group examples include a substituted amino group (for example, amino-containing dimethylamino-containing diphenylyl-amino-containing piperidino group, pyrrolidino group, morpholino group), an acylamino group (for example, acetylyl). Ami-containing benzoylamino) and the like.
  • At least one of R 1, R 2, R 3 and R 4 represents a cyano group.
  • 61 62 63 64 Represents a monovalent organic group. Specific examples of organic groups are represented by R 1, R 2, R 3, R 4, R 5, R 6, and R 5 in the general formula (1), respectively.
  • R represents an aromatic hydrocarbon group having an electron donating group as a substituent.
  • the electron-donating substituent is a substituent having a negative ⁇ ⁇ value of Met or Met as described below, and such a substituent is compared with a hydrogen atom. Therefore, it has the characteristic that it can easily give electrons to the bonding atom side.
  • substituent exhibiting an electron donating property include a hydroxyl group, an alkoxy group (for example, methoxy group), an acetyloxy group, an amino group, a dimethylamino group, an acetylamino group, an alkyl group (for example, a methyl group, Ethyl group, propyl group, tert-butyl group and the like) and aryl group (for example, phenyl group, mesityl group and the like).
  • alkoxy group for example, methoxy group
  • acetyloxy group an amino group
  • a dimethylamino group for acetylamino group
  • an alkyl group for example, a methyl group, Ethyl group, propyl group, tert-butyl group and the like
  • aryl group for example, phenyl group, mesityl group and the like.
  • Hammett's ⁇ ⁇ value for example, the following documents can be referred to
  • the Hammett ⁇ ⁇ value according to the present invention refers to Hammett's substituent constant ⁇ ⁇ .
  • Hammett's ⁇ ⁇ value is the substituent constant for which the electronic effect of the substituent on the hydrolysis of ethyl benzoate was also determined by Hammett et al., “Structure-activity relationship of drugs” (Nanedo: 1979), “ The groups described in “SuDstituent Constants for Correlation Analysis m chemistry an d biology” (C. Hansch and A. Leo, John Wiley & Sons, New York, 1971) can be cited.
  • R represents an unsubstituted secondary alkyl group.
  • R is a hydrogen atom, an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an iso
  • cycloalkyl group for example, cyclopentyl group, cyclohexyl group, etc.
  • Aromatic hydrocarbon ring group also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group
  • Aromatic hydrocarbon ring group also referred to as aromatic carbocyclic group, aryl group, etc., for example, phenyl group, p-chlorophenyl group, mesityl group, tolyl group, xylyl group, naphthyl group, anthryl group
  • azulenyl group acenaphthyl group, fluorenyl group, phenanthryl group, indur group, pyrenyl group, bif ⁇ -ryl group, etc.
  • aromatic heterocyclic group for example,
  • an electron donating group is preferable. Specific examples of substituents showing electron donating properties
  • An electron donating group is preferred.
  • Specific examples of the substituent exhibiting an electron donating property are the same as those shown in the general formula (8).
  • R, R and R, R and R, R and R, R and R, R and R, R and R, R and R, R and R are connected to each other to form aromatic carbon
  • M as the central metal is group 8 to 10 in the periodic table of elements.
  • the organic EL device of the present invention is formed on the light emitting layer or the electron blocking layer in the constituent layers (details will be described later) of the organic EL device. It is preferable to use a material. In the light emitting layer, it is preferably used as a light emitting dopant as described above.
  • a light emitting dopant for the light emitting host which is the main component of the host compound
  • the mixing ratio is preferably adjusted to a range of 0.1 to less than 30% by mass.
  • the luminescent dopant may be a mixture of a plurality of types of compounds.
  • the mixed partner may have a different structure, and other metal complexes and phosphorescent dopants or fluorescent dopants having other structures may also be used. Good.
  • Luminescent dopants can be broadly divided into two types: fluorescent dopants that emit fluorescence and phosphorescent dopants that emit phosphorescence.
  • Representative examples of the former include coumarin dyes, pyran dyes, cinine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamines. And dyes such as a dye, a pyrylium dye, a perylene dye, a stilbene dye, a polythiophene dye, or a rare earth complex phosphor.
  • a typical example of the latter is preferably a complex compound containing a transition metal element of Group 8, Group 9, or Group 10 in the periodic table, and more preferably an iridium compound.
  • An osmium compound, and most preferred is an iridium compound.
  • JP 2002-100476 JP 2002-173674, JP 2002-359082, JP 2002-175884, JP 2002-363552, JP 2002-184582 Gazette, JP 2003-7469 gazette, special table 2002- 525 808, JP 2003-7471, JP 2002-525833, JP 2003-31366, JP 2002-226495, JP 2002-234894, JP 2002-235076 Publication, JP 2002-241751, JP 2001-319779, 2001-319780, 2002-62824, 2002-10 0474, 2002-203679 JP 2002-343572 A, JP 2 002-203678 A, and the like.
  • the host compound used in the present invention represents a compound having a phosphorescence quantum yield of phosphorescence emission of less than 0.01 at room temperature (25 ° C.) among compounds contained in the light emitting layer.
  • the luminescent host used in the present invention is not particularly limited in terms of structure, but is typically a force rubazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing bicyclic compound, a thiophene derivative. , Furan derivatives, oligoarylene compounds, etc. having a basic skeleton, or a carboline derivative having a carboline ring of the carboline derivative. And derivatives having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring is substituted with a nitrogen atom.
  • a force rubazole derivative, a carboline derivative, or a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom is preferably used.
  • a plurality of known host compounds may be used in combination as host compounds.
  • multiple types of host compounds it is possible to adjust the movement of electric charges and to make the organic EL device highly efficient.
  • these known host compounds compounds having a hole transporting ability and an electron transporting ability, preventing the emission of longer wavelengths, and having a high Tg (glass transition temperature) are preferred.
  • the light-emitting host used in the present invention may be a low-molecular compound or a high-molecular compound having a repeating unit, and may be a low-molecular compound having a polymerizable group such as a vinyl group or an epoxy group (evaporation polymerizable light-emitting). (Host) But ...
  • a compound that has a hole transporting ability and an electron transporting ability, prevents an increase in the wavelength of light emission, and has a high Tg (glass transition temperature) is preferable.
  • the light emitting layer may further contain a host compound having a fluorescence maximum wavelength as the host compound.
  • a host compound having a fluorescence maximum wavelength is one having a high fluorescence quantum yield in a solution state.
  • the fluorescence quantum yield is preferably 10% or more, particularly preferably 30% or more.
  • Specific host compounds having a maximum fluorescence wavelength include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squame dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes. And pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and the like.
  • the fluorescence quantum yield can be measured by the method described in the third edition of Experimental Chemistry Course 7, Spectroscopy II, page 362 (1992 edition, Maruzen).
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the organic EL device material of the present invention for a hole blocking layer, an electron blocking layer or the like, and it is particularly preferable to use the material for an electron blocking layer.
  • the organic EL device material of the present invention is contained in the hole blocking layer and the electron blocking layer, the organic EL device of the present invention described in any one of claims 1 to 7
  • the material may be contained in a state of 100% by mass as a layer constituent component such as a hole blocking layer or an electron blocking layer, or may be mixed with other organic compounds.
  • the thickness of the blocking layer according to the present invention is preferably 3 to: LOOnm, and more preferably 5 to 30 nm.
  • the hole blocking layer has the function of an electron transport layer, which is a material force that has the function of transporting electrons while transporting holes and is extremely small, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • Examples of the hole blocking layer include, for example, Japanese Patent Application Laid-Open Nos. 11 204258 and 11 204359, and “The Front Line of Organic EL Devices and Their Industrialization (November 30, 1998, NTT Corporation)
  • the hole blocking (hole blocking) layer described in page 237 of “Issuance”) is applicable as the hole blocking layer according to the present invention.
  • the configuration of the electron transport layer described later can be It can be used as a hole blocking layer according to the invention.
  • the organic EL device of the present invention has a hole blocking layer as a constituent layer, and the hole blocking layer is at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the strong ruporin derivative or the carboline derivative. It is preferable to include a derivative having a ring structure in which one is substituted with a nitrogen atom.
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and is a material force that has a function of transporting holes and an extremely small capacity of transporting electrons, and transports holes while transporting holes. The probability of recombination of electrons and holes can be improved by blocking the children.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the organic EL device material of the present invention for the adjacent layer adjacent to the light emitting layer, that is, the hole blocking layer and the electron blocking layer, particularly for the electron blocking layer. I like it! /
  • the hole transport layer includes a material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material is not particularly limited, and is conventionally used as a hole charge injection / transport material in photoconductive materials, and used in the hole injection layer and hole transport layer of organic EL devices. Any known one can be selected and used.
  • the hole transport material has either injection / transport of holes, electron barrier properties! /, Or a deviation, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazones
  • Derivatives stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned force can be used as the hole transport material. It is preferable to use an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-p-tolylaminophenol 1, 1-bis (4 di-l-tri-laminophenol) cyclohexane; N, N, N ', N' —tetra-l-tolyl-1,4,4'-diaminobiphenyl; 1 Bis (4 di-p-triaminophenol) 4 Phenol mouth hexane; Bis (4-dimethylamino 2-methylphenol) phenylmethane; Bis (4-di-p-triaminophenol) phenylmethane; N, N ' —Diphenyl N, N
  • No. 5,061,569 having two condensed aromatic rings in the molecule for example, 4, 4 ′ bis [N- (1-naphthyl) N ferroamino ] Biffle (NPD), three triphenylamine units described in Japanese Patent Laid-Open No. 4 308688 are connected in a starburst type 4, 4 ', A "— Tris [? ⁇ — (3 -Methylphenol) N-phenylamino] triphenylamine (MTD ATA).
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • Inorganic compounds such as P-type-Si and p-type-SiC can also be used as the hole injection material and hole transport material.
  • This hole transport layer is formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. be able to. Although there is no restriction
  • This hole transport layer has a single layer structure composed of one or more of the above materials. It may be made.
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be a single layer or a plurality of layers.
  • any material selected from conventionally known compounds should be used. Can do.
  • electron transport materials examples include: -to-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and heterocyclic rings such as naphthalene perylene.
  • At least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of a tetracarboxylic anhydride, carbopositimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxaziazole derivative, carboline derivative, or the carboline derivative of the carboline derivative is substituted with a nitrogen atom And derivatives having a cyclic structure.
  • oxadiazole derivative it is known as a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, an electron withdrawing group!
  • a quinoxaline derivative having a quinoxaline ring can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • Metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dive mouth) 8 quinolinol) aluminum, tris (2methyl 8quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Place on Cu, Ca, Sn, Ga or Pb
  • the replaced metal complex can also be used as an electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transport material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and inorganic semiconductors such as n-type Si and n-type SiC can be used as well as the hole injection layer and the hole transport layer. It can be used as an electron transport material.
  • the electron transport layer may be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method. it can. Although there is no restriction
  • This electron transport layer may have a single layer structure composed of one or more of the above materials.
  • the injection layer is provided as necessary, and has an electron injection layer and a hole injection layer, and as described above, exists between the anode and the light emitting layer or hole transport layer and between the cathode and the light emitting layer or electron transport layer. Hey.
  • the injection layer is a layer that is provided between the electrode and the organic layer in order to reduce the drive voltage and increase the luminance of the light emission.
  • the organic EL element and its industry front line June 30, 1998) Chapter 2 “Electrode Materials” (pages 123-166) of “Part 2” of T.S. Co., Ltd.), the hole injection layer (one anode buffer layer) and the electron injection layer (one cathode buffer layer).
  • anode buffer layer (hole injection layer) The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9260062, JP-A-8-288069 and the like.
  • Phthalocyanine buffer layer represented by cyanine
  • oxide buffer layer represented by vanadium oxide
  • amorphous carbon buffer layer polymer buffer layer using conductive polymer such as polyarin (emeraldine) or polythiophene Etc.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum, etc. Examples thereof include a single layer of alkali metal compound buffer, one alkaline earth metal compound buffer represented by magnesium fluoride, and one acid buffer buffer represented by acid aluminum.
  • the buffer layer (injection layer) preferably has a very thin film thickness, but the film thickness is preferably in the range of 0.1 to LOOnm.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 to 5000 nm.
  • the injection layer may have a single layer structure that can be one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode substances include conductive transparent materials such as metals such as Au, Cul, indium tin oxide (ITO), SnO, and ZnO. IDIXO (In O
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern of the desired shape can be formed by photolithography, or when pattern accuracy is not so high (about 100 m or more) ), A pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • a transmittance of more than 10% it is desirable to have a transmittance of more than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ or less.
  • the film thickness depends on the material, it is usually selected within the range of 10 to: L000 nm, preferably 10 to 200 nm.
  • the cathode according to the present invention a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound, and a mixture thereof
  • a mixture thereof is used as the cathode according to the present invention.
  • Specific examples of such electrode materials include sodium, sodium-powered lithium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum (Al o) mixture, indium, lithium Z aluminum mixture, dilute
  • Examples include earth metals.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this for example, a magnesium Z silver mixture , Magnesium Z aluminum mixture, magnesium Z indium mixture, aluminum Z acid aluminum (Al
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / mouth or less.
  • the film thickness is usually selected from 10 to L000 nm, preferably 50 to 200 nm. In order to transmit light emission, it is convenient that either the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance.
  • Substrate also referred to as substrate, substrate, support, etc.
  • the substrate of the organic EL device of the present invention is not particularly limited as long as it is transparent or transparent, and there are no particular restrictions on the type of glass, plastic, etc.
  • Examples of substrates that are preferably used include glass, Examples thereof include quartz and a light-transmitting resin film.
  • the substrate is a resin film capable of giving flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyether etherketone, polyphenylene sulfide, polyarylate, polyimide, polycarbonate. (PC), cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyether etherketone polyphenylene sulfide
  • PC cellulose triacetate
  • CAP cellulose acetate propionate
  • the water vapor transmission rate is a high-noreness film having a water vapor transmission rate of 0.01 gZm 2 'dayatm or less. I prefer to be there.
  • the external extraction efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 2% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted outside the organic EL element Z the number of electrons X 100 flowing through the organic EL element.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film (such as an antiglare film) can be used in combination in order to reduce unevenness in light emission.
  • an organic EL element having at least two different emission maximum wavelengths will be described.
  • a suitable example for producing an organic EL element will be described.
  • an anode / hole injection layer / hole transport layer As an example of a method for producing the organic EL device of the present invention, an anode / hole injection layer / hole transport layer
  • a desired electrode material for example, a thin film having a material force for an anode is deposited on a suitable substrate at 1 ⁇ m or less, preferably ⁇ !
  • the anode is formed by forming the film to a thickness of ⁇ 200 nm by vapor deposition or sputtering.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, or an electron transport layer, which is an element material, is formed thereon.
  • a method for forming a thin film containing an organic compound there are a spin coating method, a casting method, an ink jet method, a vapor deposition method, a printing method, and the like. Vacuum vapor deposition or spin coating is particularly preferred because it is difficult to form. Further, a different film forming method may be applied for each layer.
  • the deposition conditions of that varies depending on the kinds of materials used generally boat temperature 50 to 450 ° C, vacuum degree of 10 one 6 ⁇ 10- 2 Pa, deposition rate 0 It is desirable to select appropriately within the range of 01 to 50 nmZ seconds, substrate temperature -50 to 300 ° C, and film thickness of 0.1 to 5 ⁇ m.
  • a thin film that also has a material force for the cathode is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm.
  • a desired organic EL device can be obtained by providing a cathode.
  • the organic EL device is preferably manufactured from the hole injection layer to the cathode consistently by a single vacuum, but it may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere.
  • the display device of the present invention will be described.
  • the display device of the present invention has the organic EL element.
  • the display device of the present invention may be monochromatic or multicolor, but here, a multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an ink jet method, a printing method, or the like.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • the vapor deposition method patterning using a shadow mask is preferred.
  • the production order can be reversed, and the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode can be produced in this order.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • full-color display is possible by using three types of organic EL elements that emit blue, red, and green light.
  • Examples of the display device and display include a television, a personal computer, a mono device, an AV device, a character broadcast display, and an information display in an automobile.
  • the driving method when using as a display device for reproducing moving images which may be used as a display device for reproducing still images or moving images, may be either a simple matrix (passive matrix) method or an active matrix method. .
  • Light emitting light sources include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor Power including light source and the like It is not limited to this.
  • the lighting device of the present invention will be described.
  • the lighting device of the present invention includes the organic EL element. Have.
  • the organic EL element having a resonator structure that may be used as an organic EL element having a resonator structure in the organic EL element of the present invention includes a light source of an optical storage medium, Examples include, but are not limited to, light sources for electrophotographic copying machines, light sources for optical communication processors, and light sources for optical sensors. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, a still image or a moving image directly visible It may be used as a type of display device (display).
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full-color display device can be manufactured by using two or more organic EL elements of the present invention having different emission colors.
  • FIG. 1 is a schematic view showing an example of a display device constituted by an organic EL element cover.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, and a control unit B that performs image scanning of the display unit A based on image information.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. In accordance with the signal, light is emitted in sequence, image scanning is performed, and image information is displayed on display A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels on a substrate.
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details) Is not shown).
  • the pixel 3 When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6, and emits light according to the received image data.
  • Full color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • Full-color display can be performed by using red, green, and blue light-emitting organic EL elements as the organic EL elements 10 for a plurality of pixels and arranging them on the same substrate.
  • an image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B force.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B force scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the organic EL element is connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Current is supplied to element 10.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 that are active elements for the organic EL elements 10 of each of the plurality of pixels, and each of the organic EL elements 10 of the plurality of pixels 3.
  • the device 10 emits light.
  • Such a light emission method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, and a predetermined light emission amount by the binary image data signal. On or off.
  • the potential of the capacitor 13 can be maintained until the next scanning signal is applied, or can be discharged immediately before the next scanning signal is applied!
  • FIG. 4 is a schematic diagram of a display device using a passive matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the organic EL material of the present invention can be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of light emitting colors are simultaneously emitted by a plurality of light emitting materials, and white light emission is obtained by mixing colors.
  • the combination of multiple emission colors may include the three emission maximum wavelengths of the three primary colors of blue, green, and blue, or the complementary colors such as blue and yellow, blue-green and orange 2 are used. It may be one containing two emission maximum wavelengths.
  • the combination of light emitting materials for obtaining a plurality of light emission colors is a combination of a plurality of materials that emit light by phosphorescence or fluorescence, or a light emitting material that emits light by fluorescence or phosphorescence
  • a mask is provided only at the time of formation of the light emitting layer, hole transport layer, electron transport layer, etc.
  • an electrode film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc., and productivity is improved. According to this method, unlike the white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
  • the light emitting material used for the light emitting layer is not particularly limited.
  • the light emitting material according to the present invention is adapted to the wavelength range corresponding to the CF (color filter) characteristics. Select any of the metal complexes and known luminescent materials and combine them to make them white!
  • the white light-emitting organic EL device is not only the display device and the display, but also a variety of light-emitting light sources and lighting devices, such as home lighting, interior lighting, and exposure light source. It is also useful for display devices such as lamps for liquid crystal displays and knock lights.
  • backlights for watches, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electronic photocopiers, light sources for optical communication processors, light sources for optical sensors, and display devices are required. And a wide range of uses such as general household appliances.
  • the transparent support substrate with this ITO transparent electrode was ultrasonically washed with isopropyl alcohol. Boiled and dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate is fixed to the substrate holder of a commercially available vacuum evaporation system, while a-NPD, H4, Ir12, BCP, and Alq are placed in five tantalum resistance-fired thermal boats, respectively. And attached to a vacuum deposition apparatus (first vacuum chamber).
  • lithium fluoride was placed in a tantalum resistance heating boat, and aluminum was placed in a tungsten resistance heating boat, and the tantalum resistance heating boat was attached to the second vacuum chamber of the vacuum evaporation apparatus.
  • the heating boat containing H4 and the boat containing Ir 12 are energized independently so that the deposition rate of H4 as a light emitting host and Ir-12 as a light emitting dopant is 100: 6.
  • the light-emitting layer was provided by adjusting and vapor-depositing to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated, and a hole blocking layer having a thickness of lOnm was provided at a deposition rate of 0.1 to 0.2 nmZ. Pass through the heated boat containing Alq.
  • An electron transport layer having a film thickness of 20 nm was provided at a deposition rate of 0.1 to 0.2 nmZ seconds.
  • the organic EL devices 1-2 to 1-25 were produced in the same manner.
  • the non-light-emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as a sealing substrate.
  • a glass substrate having a thickness of 300 m was used as a sealing substrate.
  • an epoxy-based photo-curing adhesive Latus Track LC0629B manufactured by Toagosei Co., Ltd.
  • this is superimposed on the cathode and brought into close contact with the transparent support substrate. It was irradiated with UV light, cured, sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
  • FIG. 5 shows a schematic diagram of a lighting device, in which an organic EL element 101 is covered with a glass cover 102.
  • the sealing work with the glass cover was carried out in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or more) without bringing the organic EL element 101 into contact with the atmosphere.
  • FIG. 6 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the organic EL device is turned on at room temperature (approximately 23 to 25 ° C) at a constant current of 2.5 mAZcm 2 and the emission luminance (L) [cdZm 2 ] immediately after the start of lighting is measured. Efficiency (7?) was calculated.
  • CS-1000 manufactured by Cocaminol Sensing
  • the external extraction quantum efficiency is expressed as a relative value with the organic EL element 1-1 as 100.
  • the organic EL device was continuously lit at a constant current of 2.5 mAZcm 2 at room temperature, and the time ( ⁇ ) required to achieve half the initial luminance was measured.
  • Luminous lifetime is organic EL
  • the element 1 1 is expressed as a relative value set to 100.
  • the organic EL device fabricated using the metal complex according to the present invention has higher luminous efficiency and longer lifetime than the organic EL device of the comparative example. It is clear that can be achieved. Furthermore, the carboline derivative or a derivative having a ring structure in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used in combination in the light emitting layer. Example 2 in which the effect was improved
  • This transparent support substrate is fixed to a substrate holder of a commercially available vacuum deposition apparatus, while -NPD, H2, Ir-13, BCP, and Alq are placed in five tantalum resistance heating boats, respectively.
  • lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and each was attached to the second vacuum chamber of the vacuum evaporation apparatus.
  • the heating boat containing H2 and the boat containing Ir 13 are energized independently so that the deposition rate of H2 as a light emitting host and Ir-13 as a light emitting dopant is 100: 6.
  • the light-emitting layer was provided by adjusting and vapor-depositing to a thickness of 30 nm.
  • the heating boat containing BCP was energized and heated to provide a 10 nm thick hole blocking layer at a deposition rate of 0.1 to 0.2 nmZ. Furthermore, the heated boat containing Alq
  • organic EL device 2-1 As shown in Table 2, the light emitting host and the light emitting dopant were used.
  • Organic EL devices 2-2 to 2-28 were fabricated in the same manner except that the components were changed.
  • the non-light-emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as the sealing substrate.
  • a glass substrate having a thickness of 300 m was used as the sealing substrate.
  • an epoxy-based photo-curing adhesive Latus Track LC0629B manufactured by Toagosei Co., Ltd.
  • this is superimposed on the cathode and brought into close contact with the transparent support substrate. It was irradiated with UV light, cured, sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
  • the organic EL device produced using the metal complex according to the present invention can achieve higher luminous efficiency and longer lifetime compared to the organic EL device of the comparative example. Furthermore, a carboline derivative or a derivative having a ring structure in which at least one of the carbon atoms of the hydrocarbon ring constituting the carboline ring of the carboline derivative is further substituted with a nitrogen atom is used in the light emitting layer or the hole blocking layer. As a result, the effect of the present invention was further improved.
  • a patterned mask (a mask with a light emitting area of 5 mm x 5 mm) is placed on the organic compound layer, and 0.5 nm of lithium fluoride is deposited as a cathode buffer layer and 150 nm of aluminum is deposited as a cathode in a deposition apparatus.
  • a cathode was provided to produce a blue-emitting organic EL device 3-1.
  • Organic EL elements 3-2-3-17 were prepared in the same manner as in the preparation of organic EL element 3-1, except that the luminescent dopant was changed as shown in Table 3.
  • the non-light emitting surface of each organic EL device after fabrication was covered with a glass case, and a glass substrate having a thickness of 300 m was used as a sealing substrate.
  • a glass substrate having a thickness of 300 m was used as a sealing substrate.
  • an epoxy-based photo-curing adhesive Latus Track LC0629B manufactured by Toagosei Co., Ltd.
  • this is superimposed on the cathode and brought into close contact with the transparent support substrate. It was irradiated with UV light, cured, sealed, and an illumination device as shown in FIGS. 5 and 6 was formed and evaluated.
  • a DC voltage is applied to the organic EL element to emit light, and the emission luminance (cd / m 2 ) and 2.5 mA when a DC voltage of 10 V is applied.
  • Luminous efficiency (lmZW) when a current of / cm 2 was passed was measured. Table 3 shows the results obtained.
  • the organic EL device produced using the metal complex according to the present invention is an organic
  • the organic EL device 112 of Example 1 was used as a blue light emitting device.
  • a green light emitting device was produced in the same manner as in the organic EL device 2-1 of Example 2, except that Ir-13 was changed to Ir-1, and this was used as a green light emitting device.
  • a red light emitting device was produced in the same manner as in the organic EL device 2-1 of Example 2, except that Ir-13 was changed to Ir-9, and this was used as a red light emitting device.
  • FIG. 2 shows only a schematic view of the display portion A of the display device thus manufactured. That is, a plurality of pixels 3 (light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.) juxtaposed with a wiring portion including a plurality of scanning lines 5 and data lines 6 on the same substrate.
  • a plurality of pixels 3 light emission color is a red region pixel, a green region pixel, a blue region pixel, etc.
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning line 5 and the data line 6 are orthogonal to the lattice shape and are connected to the pixel 3 at the orthogonal position (details) Is not shown).
  • the plurality of pixels 3 are driven by an active matrix system provided with an organic EL element corresponding to each emission color, a switching transistor which is an active element, and a driving transistor, and a scanning signal is applied from a scanning line 5. Then, an image data signal is received from the data line 6 and light is emitted according to the received image data. In this way, a full-color display device was produced by appropriately juxtaposing red, green, and blue pixels.
  • This full-color display device was driven by being able to obtain a clear full-color moving image display with high luminance and high durability.
  • the electrode of the transparent electrode substrate of Example 1 was patterned to 20 mm x 20 mm, and ⁇ -NPD was deposited to a thickness of 25 nm as a hole injection / transport layer on the same as in Example 1, and then H
  • the heated boat containing 4 and the boat containing Exemplified Compound 2-23 and the boat containing Ir 9 were energized independently, and CBP as the luminescent host and Illustrated Compound 2-23 as the luminescent dopant were used.
  • the deposition rate of Ir-9 was adjusted to 100: 5: 0.6, vapor deposition was performed to a thickness of 30 nm, and a light emitting layer was provided.
  • BCP was formed into an lOnm film to provide a hole blocking layer. Furthermore, Alq was deposited at 40nm.
  • An electron transport layer was provided.
  • Example 2 a square perforated mask having substantially the same shape as the transparent electrode made of stainless steel was placed on the electron injection layer, and lithium fluoride 0.5 nm as a cathode buffer layer and a cathode as a cathode buffer layer. Aluminum 150nm was deposited.
  • This element was provided with a sealing can having the same method and the same structure as in Example 1, and a flat lamp as shown in Figs. 5 and 6 was produced. When this flat lamp was energized, almost white light was obtained and it was possible to use it as a lighting device. 0]

Description

明 細 書
有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素子
、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子材料、有機エレクト口ルミネッセンス素 子、表示装置及び照明装置に関する。
背景技術
[0002] 従来、発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレ ィ(以下、 ELDという)がある。 ELDの構成要素としては、無機エレクト口ルミネッセン ス素子や有機エレクト口ルミネッセンス素子(以下、有機 EL素子という)が挙げられる 。無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子 を駆動させるためには交流の高電圧が必要である。有機 EL素子は発光する化合物 を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注 入して、再結合させることにより励起子 (エキシトン)を生成させ、このエキシトンが失 活する際の光の放出(蛍光'リン光)を利用して発光する素子であり、数 V〜数十 V程 度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性 が高ぐ薄膜型の完全固体素子であるために省スペース、携帯性等の観点力も注目 されている。
[0003] し力しながら、今後の実用化に向けた有機 EL素子においては、更に低消費電力で 効率よく高輝度に発光する有機 EL素子の開発が望まれている。
[0004] 特許第 3093796号公報では、スチルベン誘導体、ジスチリルァリーレン誘導体ま たはトリススチリルァリーレン誘導体に微量の蛍光体をドープし、発光輝度の向上、素 子の長寿命化を達成している。また、 8—ヒドロキシキノリンアルミニウム錯体をホスト 化合物として、これに微量の蛍光体をドープした有機発光層を有する素子 (例えば、 特開昭 63— 264692号公報)、 8—ヒドロキシキノリンアルミニウム錯体をホストイ匕合物 として、これにキナクリドン系色素をドープした有機発光層を有する素子 (例えば、特 開平 3— 255190号公報)等が知られている。 [0005] 以上のように、励起一重項力 の発光を用いる場合、一重項励起子と三重項励起 子の生成比が 1 : 3であるため発光性励起種の生成確率が 25%であり、光の取り出し 効率が約 20%であるため、外部取り出し量子効率( r? ext)の限界は 5%とされている
[0006] ところが、プリンストン大より励起三重項力 のリン光発光を用いる有機 EL素子の報 告(M. A. Baldo et al. , Nature, 395卷、 151〜154頁(1998年))力されて以 来、室温でリン光を示す材料の研究が活発になってきて 、る。
[0007] 例えば、 M. A. Baldo et al. , Nature, 403卷、 17号、 750〜753頁(2000年
)、また米国特許第 6, 097, 147号明細書等にも開示されている。
[0008] 励起三重項を使用すると、内部量子効率の上限が 100%となるため励起一重項の 場合に比べて原理的に発光効率力 倍となり、冷陰極管とほぼ同等の性能が得られ る可能性があることから照明用途としても注目されている。
[0009] 例えば、 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304頁(2001 年)等においては、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検 討されている。
[0010] また、前述の M. A. Baldo et al. , Nature, 403卷、 17号、 750〜753頁(200 0年)においては、ドーパントとしてトリス(2—フエ-ルビリジン)イリジウムを用いた検 討がされている。
[0011] その他、 M. E. Tompson等は、 The 10th International Workshop on In organic and Organic Electroluminescence (EL ' 00、浜松)【こお ヽて、ド ~~ノヽ ントとして L Ir (acac)、例えば、 (ppy) Ir (acac)を、また Moon— Jae Youn. 0g、 T
2 2
etsuo Tsutsui等は、やはり The 10th International Workshop on Inorga nic and Organic Electroluminescence (EL, 00、浜松)【こお ヽて、ドーノ ント としてトリス(2— (P—トリル)ピリジン)イリジウム (Ir (ptpy) ) , トリス (ベンゾ [h]キノリン
3
)イリジウム (Ir (bzq) )等を用いた検討を行って 、る (なおこれらの金属錯体は一般
3
にオルトメタル化イリジウム錯体と呼ばれて 、る。)。
[0012] また、前記 S. Lamansky et al. , J. Am. Chem. Soc. , 123卷、 4304頁(20
01年)や特許文献 14等においても、各種イリジウム錯体を用いて素子化する試みが されている。
[0013] また高い発光効率を得るために、 The 10th International Workshop on I norganic and Organic Electroluminescence (EL ' 00、浜松)で ίま、 Ikai等【ま ホール輸送性の化合物をリン光性化合物のホストとして用いている。また、 M. E. To mpson等は各種電子輸送性材料をリン光性ィ匕合物のホストとして、これらに新規なィ リジゥム錯体をドープして用いて 、る。
[0014] 中心金属をイリジウムの代わりに白金としたオルトメタルイ匕錯体も注目されて 、る。こ の種の錯体に関しては、配位子に特徴を持たせた例が多数知られている(例えば、 特許文献 1〜5及び非特許文献 1参照。 ) 0
[0015] Vヽずれの場合も発光素子とした場合の発光輝度や発光効率は、その発光する光が リン光に由来することから従来の素子に比べ大幅に改良されるものであるが、素子の 発光寿命については従来の素子よりも低いという問題点があった。このように、リン光 性の高効率の発光材料は、発光波長の短波化と素子の発光寿命の改善が難しぐ 実用に耐えうる性能を十分に達成できて 、な 、のが現状である。
[0016] また波長の短波化に関しては、これまでフエ-ルビリジンにフッ素原子、トリフルォロ メチル基、シァノ基等の電子吸引基を置換基として導入すること、配位子としてピコリ ン酸ゃビラザボール系の配位子を導入することが知られている(例えば、特許文献 6 〜10及び非特許文献 1〜4参照。)が、これらの配位子では発光材料の発光波長が 短波化して青色を達成し、高効率の素子を達成できる一方、素子の発光寿命は大幅 に劣化するため、そのトレードオフの改善が求められていた。
[0017] 配位子としてフエ-ル基を置換したフエ-ルビラゾールを有する金属錯体が知られ ている(例えば、特許文献 11、 12参照。 ) 0しかし、ここで開示されているフエ-ルビラ ゾールへのフエ-ル基の置換様式では発光の素子寿命に改善が見られる力 まだ十 分ではなく発光効率の観点からも改良の余地が残っている。一方、立体障害性の置 換基を有する配位子が発光輝度の改善に良いという知見が得られており、フエ-ル ピラゾール母核に適用された例も見られている (例えば、特許文献 13参照。;)。
[0018] 配位子としてフエ-ルイミダゾールを基本骨格にして、種々の置換基を導入した例 が開示されている力 発光寿命には大きな改善は見られず改良の余地が残っている (例えば、特許文献 15、 16参照。 )0
特許文献 1 :特開 2002— 332291号公報
特許文献 2:特開 2002— 332292号公報
特許文献 3:特開 2002— 338588号公報
特許文献 4:特開 2002 - 226495号公報
特許文献 5:特開 2002— 234894号公報
特許文献 6 :国際公開第 02Z15645号パンフレット
特許文献 7:特開 2003— 123982号公報
特許文献 8:特開 2002— 117978号公報
特許文献 9:特開 2003 - 146996号公報
特許文献 10:国際公開第 04Z016711号パンフレット
特許文献 11:国際公開第 04Z085450号パンフレット
特許文献 12 :特開 2005— 53912号公報
特許文献 13 :特開 2003— 109758号公報
特許文献 14:特開 2001— 247859号公報
特許文献 15:国際公開第 05Z007767号パンフレット
特許文献 16:特開 2005— 68110号公報
非特許文献 1 : Inorganic Chemistry,第 41卷、第 12号、 3055〜3066頁(2002 年)
非特許文献 2 :Aplied Physics Letters,第 79卷、 2082頁(2001年) 非特許文献 3 :Aplied Physics Letters,第 83卷、 3818頁(2003年) 非特許文献 4 : New Journal of Chemistry,第 26卷、 1171頁(2002年) 発明の開示
発明が解決しょうとする課題
本発明は係る課題に鑑みてなされたものであり、本発明の目的は、発光波長が制 御され、高い発光効率を示し、且つ発光寿命の長い有機 EL素子材料、それを用い た有機 EL素子、照明装置及び表示装置を提供することである。
課題を解決するための手段 [0020] 本発明の上記目的は、下記の構成により達成された。
[0021] (1) 下記一般式 (8)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。
[0022] [化 1]
Figure imgf000007_0001
[0023] (式中、 R 、R 、R 、R 、R 、R 、R
71 72 73 74 75 76 77は各々水素原子または置換基を表す力 R
7 は電子供与性基を置換基として有する芳香族炭化水素環基を表す。中心金属であ る M は元素周期表における 8族〜 10族の金属を表す。 )
01
(2) 下記一般式 (1)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。
[0024] [化 2]
Figure imgf000007_0002
[0025] (式中、 R 、R 、R 、R 、R 、R 、R
01 02 03 04 05 06 07は各々水素原子または置換基を表す力 そ の少なくとも一つは芳香族複素環基を表す。中心金属である M
01は元素周期表にお ける 8族〜 10族の金属を表す。 )
(3) 下記一般式 (2)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。
[0026] [化 3] ,般式 ί21
Figure imgf000008_0001
[0027] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
11 12 13 14 15 16 17 11
、R 、R 、R 、R の少なくとも一つが芳香族炭化水素環基を表す。中心金属である
12 13 16 17
M は元素周期表における 8族〜 10族の金属を表す。 )
01
(4) 下記一般式 (3)で表される金属錯体であることを特徴とする有機エレクト口ルミ ネッセンス素子材料。
[0028] [化 4] 般式 {3J
Figure imgf000008_0002
[0029] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
21 22 23 24 25 26 27 2' または R は芳香族炭化水素環基を表す。 X -L1 -Xは 2座の配位子を表し、 X、
25 1 2 1
Xは各々独立に炭素原子、または窒素原子を表す。 L1は X、 Xと共に 2座の配位
2 1 2
子を形成する原子群を表す。 n2は 1、 2または 3の整数を表し、 m2は 0、 1または 2の 整数を表すが、 n2+m2は 2または 3である。中心金属である M は元素周期表にお
01
ける 8族〜 10族の金属を表す。 )
(5) 前記一般式(3)にお 、て、 m2は 0であることを特徴とする前記 (4)に記載の 有機エレクト口ルミネッセンス素子材料。
[0030] (6) 下記一般式 (4)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。 [0031] [化 5]
—般式 (4>
Figure imgf000009_0001
[0032] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
31 32 33 34 35 36 37 31
、R 、R の少なくとも一つが無置換のアルキル基、置換基を有してもよい芳香族炭
32 33
化水素環基、または置換基を有してもよいシクロアルキル基を表す。中心金属である M は元素周期表における 8族〜 10族の金属を表す。 )
01
(7) 前記一般式 (4)において、 R 、R 、R の中で少なくとも 2つが置換または無
31 32 33
置換のアルキル基、芳香族炭化水素環基、またはシクロアルキル基を表すことを特 徴とする前記(6)に記載の有機エレクト口ルミネッセンス素子材料。
[0033] (8) 下記一般式 (5)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。
[0034] [化 6] 一般式 (5)
Figure imgf000009_0002
[0035] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
41 42 43 44 45 46 47 '
、R 、R 、R の少なくとも 1つが置換基を有してもよいアミノ基を表す。中心金属で
42 43 44
ある M は元素周期表における 8族〜 10族の金属を表す。 )
01
(9) 下記一般式 (6)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。 [0036] [ィ匕 7]
—般式 (6|
Figure imgf000010_0001
[0037] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
51 52 53 54 55 56 57 51
、R 、R 、R の少なくとも 1つがシァノ基を表す。中心金属である M は元素周期表
52 53 54 01
における 8族〜 10族の金属を表す。 )
(10) 下記一般式 (7)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。
[0038] [化 8] 一般式 (7)
Figure imgf000010_0002
[0039] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
61 62 63 64 65 66 67 61
、R 、R 、R の少なくとも 3つが一価の有機基を表す。中心金属である M は元素
62 63 64 01 周期表における 8族〜 10族の金属を表す。 )
(11) 下記一般式 (9)を部分構造として有する金属錯体であることを特徴とする有 機エレクト口ルミネッセンス素子材料。
[0040] [化 9] ,般式 <9>
Figure imgf000011_0001
[0041] (式中、 R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す。中心金属
81 82 83 84 85 86
である M は元素周期表における 8族〜 10族の金属を表す。 )
01
( 12) 下記一般式 ( 10)を部分構造として有する金属錯体であることを特徴とする 有機エレクト口ルミネッセンス素子材料。
[0042] [化 10] 般式 (10>
Figure imgf000011_0002
[0043] (式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
91 92 93 94 95 96 97 ! は無置換の 2級アルキル基を表す。中心金属である M は元素周期表における 8族
01
〜 10族の金属を表す。 )
(13) 下記一般式 (11)を部分構造として有する金属錯体であることを特徴とする 有機エレクト口ルミネッセンス素子材料。
[0044] [化 11] 一般式 (11 )
Figure imgf000011_0003
[0045] (式中、 R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
101 102 103 104 106 107 106
、 R の少なくとも 1つは置換基を表す。 R は水素原子、アルキル基、シクロアルキ
107 105
ル基、芳香族炭化水素環基、または芳香族複素環基を表す。中心金属である M
01は 元素周期表における 8族〜 10族の金属を表す。 )
(14) 前記一般式(11)において、 R 、R のいずれも置換基であることを特徴と
106 107
する前記(13)に記載の有機エレクト口ルミネッセンス素子材料。
[0046] (15) 前記中心金属 M 力イリジウムであることを特徴とする前記(1)〜(14)のい
01
ずれ力 1項に記載の有機エレクト口ルミネッセンス素子材料。
[0047] (16) 前記中心金属 M が白金であることを特徴とする前記(1)〜(14)のいずれ
01
力 1項に記載の有機エレクト口ルミネッセンス素子材料。
[0048] (17) 前記(1)〜(16)のいずれか 1項に記載の有機エレクト口ルミネッセンス素子 材料を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[0049] (18) 構成層として発光層を有し、該発光層が前記(1)〜(16)のいずれか 1項に 記載の有機エレクト口ルミネッセンス素子材料を含有することを特徴とする有機エレク トロノレミネッセンス素子。
[0050] (19) 構成層として発光層を有し、該発光層がカルボリン誘導体または該カルボリ ン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素 原子で置換されている環構造を有する誘導体を含有することを特徴とする前記(17) または(18)に記載の有機エレクト口ルミネッセンス素子。
[0051] (20) 構成層として正孔阻止層を有し、該正孔阻止層がカルボリン誘導体または 該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも 一つが窒素原子で置換されている環構造を有する誘導体を含有することを特徴とす る前記(17)〜(19)のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0052] (21) 前記(17)〜(20)のいずれ力 1項に記載の有機エレクト口ルミネッセンス素 子を有することを特徴とする表示装置。
[0053] (22) 前記(17)〜(20)のいずれ力 1項に記載の有機エレクト口ルミネッセンス素 子を有することを特徴とする照明装置。
発明の効果 [0054] 本発明により、有機 EL素子用に有用な有機 EL素子材料が得られ、該有機 EL素 子材料を用いることにより、発光波長が制御され、高い発光効率を示し、且つ発光寿 命の長い有機 EL素子、照明装置及び表示装置を提供することができた。
図面の簡単な説明
[0055] [図 1]有機 EL素子力 構成される表示装置の一例を示した模式図である。
[図 2]表示部 Aの模式図である。
[図 3]画素の模式図である。
[図 4]パッシブマトリクス方式フルカラー表示装置の模式図である。
[図 5]照明装置の概略図である。
[図 6]照明装置の模式図である。
符号の説明
[0056] 1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機 EL素子
11 スイッチングトランジスタ
12 馬区動トランジスタ
13 コンデンサ
A 表示部
B 制御部
102 ガラスカバー
105 陰極
106 有機 EL層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤 発明を実施するための最良の形態
[0057] 本発明の有機 EL素子材料においては、請求の範囲第 1項〜第 16項のいずれ力 1 項に規定される構成により、有機 EL素子用に有用な有機 EL素子材料を分子設計 することに成功した。また、該有機 EL素子材料を用いることにより、高い発光効率を 示し、且つ発光寿命の長い有機 EL素子、照明装置及び表示装置を提供することが できた。
[0058] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0059] 本発明の有機 EL素子材料に係る金属錯体について説明する。
[0060] 本発明者等は上記の問題点について鋭意検討を行った結果、金属錯体の配位子 としてフ 二ルイミダゾ一ルの母核を、前記一般式(1)、(2)、(4)〜(11)で各々表さ れるような形で置換基を修飾した誘導体を配位子に用いた金属錯体、または一般式 (3)で表される金属錯体を有機 EL素子材料として含む有機 EL素子により、発光効 率と発光寿命が大きく改善されるという知見を得た。
[0061] 本発明者らは、鋭意検討した結果、フエ-ルイミダゾール誘導体は、母核であるフ ェニルイミダゾールへの置換基の置換位置や種類の影響で、錯体の安定性が大きく 左右され、そのことが発光寿命に大きな影響を与えることが分力つた。
[0062] 本発明者らは、本発明に係る金属錯体のように、フエ-ルイミダゾールに、芳香族 複素環を導入するか、または特定の位置に芳香族炭化水素基を導入することにより 、従来の青色用の金属錯体、特に電子吸引基によってのみ発光波長を短波側に制 御してきた有機 EL素子材料を用いて作製された有機 EL素子の問題点であった発 光寿命が大幅に改善されることを見出し、発光効率と発光寿命を両立できるにいたつ た。また、芳香族炭化水素基の置換位置を本発明のように特定することにより、青色 用発光素子の更なる長寿命化を見出すことが分かり、有機 EL素子の発光寿命の大 幅な改善に成功した。さらに、フエ-ルイミダゾール母核に本発明の一般式 (4)〜(1 1)のような特定の置換基を特定の位置に導入した金属錯体でも同様の効果が得ら れることを見出した。
[0063] また、本発明に係る母核を有する配位子であっても、組み合わせる補助配位子や 置換基自身の発光波長が長波なものを置換基として導入することにより、金属錯体 の発光波長を長波な領域に制御できる。従って、金属錯体の発光波長を長波な領 域 (緑〜赤)に制御する機能を付与するための分子設計は、本発明に係る一般式(1 )、(2)、(4)〜(11)で各々表される部分構造、または一般式 (3)を基本骨格設計の 出発点とすることにより可能である。
[0064] (配位子)
本発明に係る金属錯体は、上記一般式 (1)、(2)、(4)〜(11)で表される部分構造 、または該一般式 (1)、(2)、(4)〜(11)の各々の互変異性体で表される部分構造 の少なくともひとつを有する(具体的には、配位子として有することである)ことが特徴 であり、該金属錯体の配位子の全てが、前記一般式(1)、(2)、(4)〜(11)で表され る部分構造、または、該一般式 (1)、(2)、(4)〜(11)の各々の互変異性体で表され る部分構造のみで構成されていてもよぐ従来公知の金属錯体形成に用いられる所 謂配位子として当該業者が周知の配位子 (配位ィ匕合物ともいう)を必要に応じて配位 子として有していてもよい。
[0065] 本発明に記載の効果を好ましく得る観点からは、錯体中の配位子の種類は、好まし くは 1〜2種類カゝら構成されることが好ましぐ更に好ましくは 1種類である。
[0066] 従来公知の金属錯体に用いられる配位子としては、種々の公知の配位子があるが 、例 は、「Photochemistry and Photopnysics of Coordination Compou nds」 Springer— Verlag社 H. Yersin著 1987年発行、「有機金属化学—基礎と 応用—」 裳華房社 山本明夫著 1982年発行 等に記載の配位子 (例えば、ハロ ゲン配位子 (好ましくは塩素配位子)、含窒素へテロ環配位子 (例えば、ビビリジル、 フエナント口リンなど)、ジケトン配位子など)が挙げられる。
[0067] (元素周期表の 8族〜 10族の遷移金属元素)
本発明に係る、一般式(1)、(2)、(4)〜(11)で表される部分構造、または、該ー 般式 (1)、(2)、(4)〜(11)の各々の互変異性体で表される部分構造の少なくともひ とつを有する(具体的には、配位子として有することである)金属錯体の形成に用いら れる金属としては、元素周期表の 8族〜 10族の遷移金属元素(単に遷移金属ともい う)が用いられる力 中でも、イリジウム、白金が好ましい遷移金属元素として挙げられ る。 [0068] 本発明に係る一般式(1)、(2)、(4)〜(11)で各々表される部分構造を有する金属 錯体、または該一般式 (1)、(2)、(4)〜(11)の各々の互変異性体を部分構造として 有する金属錯体の含有層としては、発光層及び Zまたは電子阻止層が好ましぐま た、発光層に含有する場合は、発光層中の発光ドーパント (発光ドーパントについて は後述する)として用いることにより、本発明の有機 EL素子の外部取り出し量子効率 の効率アップ (高輝度化)や発光寿命の長寿命化を達成することができる。
[0069] 更に、このような有機 EL素子材料を用いることにより、高い発光効率を示し、且つ 発光寿命の長い有機 EL素子、照明装置及び表示装置を提供することができた。
[0070] 以下、本発明に係る各構成要素の詳細について、順次説明する。
[0071] 本発明の有機 EL素子材料である金属錯体について説明する。
[0072] 本発明に係る前記一般式 (1)、(2)、(4)〜(11)またはその互変異性体を部分構 造として有する金属錯体の含有層としては、発光層及び Zまたは電子阻止層が好ま しぐまた発光層に含有する場合は、発光層中の発光ドーパントとして用いることによ り、本発明の有機 EL素子の外部取り出し量子効率の効率アップ (高輝度化)や発光 寿命の長寿命化を達成することができる。
[0073] ここで、本発明に係る金属錯体が有する前記一般式 (1)、(2)、(4)〜(11)で表さ れる部分構造、更には一般式 (3)で表される金属錯体にっ ヽて説明する。
[0074] 一般式(1)において、 R 、R 、R 、R 、R 、R 、R が置換基を表す場合、各々
01 02 03 04 05 06 07
表される置換基としては、アルキル基 (例えば、メチル基、ェチル基、プロピル基、イソ プロピル基、 tert—ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、ト リデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基 (例えば、シクロ ペンチル基、シクロへキシル基等)、ァルケ-ル基 (例えば、ビュル基、ァリル基等)、 アルキニル基 (例えば、ェチニル基、プロパルギル基等)、芳香族炭化水素環基 (芳 香族炭素環基、ァリール基等ともいい、例えば、フエニル基、 p—クロ口フエニル基、メ シチル基、トリル基、キシリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフ テュル基、フルォレ -ル基、フ ナントリル基、インデュル基、ピレ-ル基、ビフエ-リ ル基等)、芳香族複素環基 (例えば、ピリジル基、ピリミジ -ル基、フリル基、ピロリル 基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ビラジニル基、トリァゾリル基 (例えば、 1, 2, 4—トリァゾール— 1—ィル基、 1, 2, 3—トリァゾール— 1—ィル基等 )、ォキサゾリル基、ベンゾォキサゾリル基、チアゾリル基、イソォキサゾリル基、イソチ ァゾリル基、フラザ-ル基、チェ-ル基、キノリル基、ベンゾフリル基、ジベンゾフリル 基、ベンゾチェ二ル基、ジベンゾチェニル基、インドリル基、カルバゾリル基、カルボリ -ル基、ジァザカルバゾリル基 (前記カルボリ-ル基のカルボリン環を構成する炭素 原子の一つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル 基、トリアジ-ル基、キナゾリ-ル基、フタラジニル基等)、複素環基 (例えば、ピロリジ -ル基、イミダゾリジ-ル基、モルホリニル基、ォキサゾリジニル基等)、アルコキシ基( 例えば、メトキシ基、エトキシ基、プロピルォキシ基、ペンチルォキシ基、へキシルォ キシ基、ォクチルォキシ基、ドデシルォキシ基等)、シクロアルコキシ基 (例えば、シク 口ペンチルォキシ基、シクロへキシルォキシ基等)、ァリールォキシ基 (例えば、フエノ キシ基、ナフチルォキシ基等)、アルキルチオ基 (例えば、メチルチオ基、ェチルチオ 基、プロピルチオ基、ペンチルチオ基、へキシルチオ基、ォクチルチオ基、ドデシル チォ基等)、シクロアルキルチオ基 (例えば、シクロペンチルチオ基、シクロへキシル チォ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、ナフチルチオ基等)、アルコ キシカルボ-ル基(例えば、メチルォキシカルボ-ル基、ェチルォキシカルボ-ル基 、ブチルォキシカルボニル基、ォクチルォキシカルボニル基、ドデシルォキシカルボ -ル基等)、ァリールォキシカルボ-ル基(例えば、フエ-ルォキシカルボ-ル基、ナ フチルォキシカルボ-ル基等)、スルファモイル基(例えば、アミノスルホ -ル基、メチ ルアミノスルホ -ル基、ジメチルアミノスルホ -ル基、ブチルアミノスルホ -ル基、へキ シルアミノスルホ -ル基、シクロへキシルアミノスルホ -ル基、ォクチルアミノスルホ- ル基、ドデシルアミノスルホ-ル基、フエ-ルアミノスルホ -ル基、ナフチルアミノスル ホ-ル基、 2—ピリジルアミノスルホ -ル基等)、ァシル基 (例えば、ァセチル基、ェチ ルカルボニル基、プロピルカルボ-ル基、ペンチルカルボ-ル基、シクロへキシルカ ルボニル基、ォクチルカルポ-ル基、 2—ェチルへキシルカルボ-ル基、ドデシルカ ルボニル基、フヱ-ルカルボ-ル基、ナフチルカルボ-ル基、ピリジルカルボ-ル基 等)、ァシルォキシ基 (例えば、ァセチルォキシ基、ェチルカルボ-ルォキシ基、ブチ ルカルボ-ルォキシ基、ォクチルカルボ-ルォキシ基、ドデシルカルボ-ルォキシ基 、フエ-ルカルポニルォキシ基等)、アミド基 (例えば、メチルカルボニルァミノ基、ェ チルカルボ-ルァミノ基、ジメチルカルボ-ルァミノ基、プロピルカルボ-ルァミノ基、 ペンチルカルボ-ルァミノ基、シクロへキシルカルボ-ルァミノ基、 2—ェチルへキシ ルカルボ-ルァミノ基、ォクチルカルボ-ルァミノ基、ドデシルカルボ-ルァミノ基、フ ェ-ルカルボ-ルァミノ基、ナフチルカルボ-ルァミノ基等)、力ルバモイル基(例えば 、ァミノカルボ-ル基、メチルァミノカルボ-ル基、ジメチルァミノカルボ-ル基、プロ ピルアミノカルボ-ル基、ペンチルァミノカルボ-ル基、シクロへキシルァミノカルボ- ル基、ォクチルァミノカルボ-ル基、 2—ェチルへキシルァミノカルボ-ル基、ドデシ ルァミノカルボ-ル基、フエ-ルァミノカルボ-ル基、ナフチルァミノカルボ-ル基、 2 ピリジルァミノカルボ-ル基等)、ウレイド基 (例えば、メチルウレイド基、ェチルウレ イド基、ペンチルゥレイド基、シクロへキシルウレイド基、ォクチルゥレイド基、ドデシル ウレイド基、フエ-ルゥレイド基ナフチルウレイド基、 2—ピリジルアミノウレイド基等)、 スルフィエル基(例えば、メチルスルフィ-ル基、ェチルスルフィ-ル基、ブチルスル フィエル基、シクロへキシルスルフィ-ル基、 2—ェチルへキシルスルフィエル基、ド デシルスルフィ-ル基、フエ-ルスルフィ-ル基、ナフチルスルフィ-ル基、 2—ピリジ ルスルフィ -ル基等)、アルキルスルホ -ル基(例えば、メチルスルホ -ル基、ェチル スルホ-ル基、ブチルスルホ -ル基、シクロへキシルスルホ -ル基、 2—ェチルへキ シルスルホ-ル基、ドデシルスルホ -ル基等)、ァリールスルホ -ル基またはへテロア リールスルホ -ル基(例えば、フエ-ルスルホ-ル基、ナフチルスルホ-ル基、 2—ピ リジルスルホ -ル基等)、アミノ基 (例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基 、ブチルァミノ基、シクロペンチルァミノ基、 2—ェチルへキシルァミノ基、ドデシルアミ ノ基、ァ-リノ基、ナフチルァミノ基、 2—ピリジルァミノ基等)、ハロゲン原子 (例えば、 フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基 、トリフルォロメチル基、ペンタフルォロェチル基、ペンタフルォロフエ-ル基等)、シ ァノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基 (例えば、トリメチルシリル基、ト リイソプロビルシリル基、トリフエ-ルシリル基、フエ-ルジェチルシリル基等)等が挙 げられる。
これらの置換基は上記の置換基によって更に置換されて!、てもよ!/、。また、これら の置換基は複数が互いに結合して環を形成していてもよい。更に、 R 、R 、R 、R
01 02 03 (
、R 、R 、R の少なくとも一つは芳香族複素環基を表し、好ましくはそれぞれ置換
05 06 07
または無置換のチェ-ル基、ピリジル基、イミダゾリル基、ピラゾリル基である。
[0076] 一般式(2)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
13
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また、 R 、R 、R 、R 、R の少なくとも一つは芳香族炭化水素環基を表す
[0077] 一般式(3)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
21 22 23 24 25 26 27
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また R または R は芳香族炭化水素環基を表す。 X— LI— Xは 2座の配位
24 25 1 2
子を表し、 X、 Xは各々独立に炭素原子または窒素原子を表す。 L1は X、 Xと共に
1 2 1 2
2座の配位子を形成する原子群を表す。 X L1 Xで表される 2座の配位子の具
1 2
体例としては、置換または無置換のフエ-ルビリジン、フエ-ルビラゾール、フエ-ル イミダゾール、フエ-ルトリァゾール、フエ-ルテトラゾール、ビラザボール等が挙げら れる。 n2は 1、 2または 3の整数を表し、 m2は 0、 1または 2の整数を表す力 n2+m2 は 2または 3である。中でも、 m2は 0である場合が好ましい。
[0078] 一般式 (4)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
31 32 33 34 35 36 37
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また R 、R 、R の少なくとも一つが無置換のアルキル基、置換基を有しても
31 32 33
よい芳香族炭化水素環基、または置換基を有してもよいシクロアルキル基を表し、 R
31
、R 、R の中で少なくとも 2つが置換または無置換のアルキル基、芳香族炭化水素
32 33
環基、またはシクロアルキル基を表すことが好まし!/、。
[0079] 一般式(5)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
41 42 43 44 45 46 47
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また、 R 、R 、R 、R の少なくとも 1つが置換基を有してもよいアミノ基を表
41 42 43 44
す。
[0080] ァミノ基の具体例としては、置換アミノ基 (例えば、アミ入ジメチルアミ入ジフヱニル アミ入ピペリジノ基、ピロリジノ基、モルホリノ基)、ァシルァミノ基 (例えば、ァセチル アミ入ベンゾィルァミノ)等が挙げられる。
[0081] 一般式(6)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
51 52 53 54 55 56 57
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また、 R 、R 、R 、R の少なくとも 1つがシァノ基を表す。
51 52 53 54
[0082] 一般式(7)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
61 62 63 64 65 66 67
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また、 R 、R 、R 、R の少なくとも 3つが
61 62 63 64 一価の有機基を表す。有機基の具 体例としては、一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される
01 02 03 04 05 06 07
置換基の具体例からハロゲン原子を除いたものと同義である。
[0083] 一般式(8)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
71 72 73 74 75 76 77
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また、 R は電子供与性基を置換基として有する芳香族炭化水素基を表す。
75
[0084] 本発明において、電子供与性の置換基とは下記に記載のノ、メットの σ ρ値が負の 値を示す置換基のことであり、そのような置換基は、水素原子と比べて結合原子側に 電子を与えやす ヽ特性を有する。
[0085] 電子供与性を示す置換基の具体例としては、ヒドロキシル基、アルコキシ基 (例えば 、メトキシ基、 )、ァセチルォキシ基、アミノ基、ジメチルァミノ基、ァセチルァミノ基、ァ ルキル基(例えば、メチル基、ェチル基、プロピル基、 tert—ブチル基等)、ァリール 基 (例えば、フエニル基、メシチル基等)が挙げられる。また、ハメットの σ ρ値につい ては、例えば、下記文献等が参照できる。
[0086] 本発明に係るハメットの σ ρ値とはハメットの置換基定数 σ ρを指す。ハメットの σ ρ の値は、 Hammett等によって安息香酸ェチルの加水分解に及ぼす置換基の電子 的効果力も求められた置換基定数であり、『薬物の構造活性相関』 (南江堂: 1979年 )、『SuDstituent Constants for Correlation Analysis m chemistry an d biology』(C. Hansch and A. Leo, John Wiley & Sons, New York, 197 9年)等に記載の基を引用することができる。
[0087] 一般式(9)において、 R 、R 、R 、R 、R 、R で各々表される置換基は、一般
81 82 83 84 85 86
式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義であ
01 02 03 04 05 06 07 る。
[0088] 一般式(10)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基は、
91 92 93 94 95 96 97
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。また、 R は無置換の 2級アルキル基を表す。
95
[0089] 一般式(11)において、 R 、R 、R 、R 、R 、R で各々表される置換基は、
101 102 103 104 106 107
一般式(1)において、 R 、R 、R 、R 、R 、R 、R で各々表される置換基と同義
01 02 03 04 05 06 07
である。 R は水素原子、アルキル基 (例えば、メチル基、ェチル基、プロピル基、イソ
105
プロピル基、 tert—ブチル基、ペンチル基、へキシル基、ォクチル基、ドデシル基、ト リデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基 (例えば、シクロ ペンチル基、シクロへキシル基等)、芳香族炭化水素環基 (芳香族炭素環基、ァリー ル基等ともいい、例えば、フエ-ル基、 p—クロ口フエ二ル基、メシチル基、トリル基、キ シリル基、ナフチル基、アントリル基、ァズレニル基、ァセナフテュル基、フルォレニル 基、フエナントリル基、インデュル基、ピレニル基、ビフヱ-リル基等)、芳香族複素環 基 (例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ピラゾ リル基、ビラジニル基、トリァゾリル基 (例えば、 1, 2, 4—トリァゾール— 1—ィル基、 1 , 2, 3—トリァゾール— 1—ィル基等)、ォキサゾリル基、チアゾリル基、イソォキサゾリ ル基、チェ-ル基、インドリル基)を表す。一般式(11)において、 R 、 R が置換基
106 107 を表す場合、電子供与性基が好ましい。電子供与性を示す置換基の具体例としては
、一般式(8)で示したものと同義である。また、 R 、R の少なくとも 1つは上記置換
106 107
基を表し、いずれもが置換基であることが好ましい。 R 、R が置換基を表す場合、
106 107
電子供与性基が好ましい。電子供与性を示す置換基の具体例としては、一般式 (8) で示したものと同義である。
[0090] 一般式(1)〜(11)において、 R と R 、R と R 、R と R 、R と R 、R と R 、R と
06 07 16 17 26 27 36 37 46 47 56
R 、R と R 、R と R 、R と R 、R と R 、R と R が互いに連結して芳香族炭化
57 66 67 76 77 85 86 96 97 106 107
水素環、または芳香族複素環を形成することはない。
[0091] 一般式(1)〜(11)において、中心金属である M は元素周期表における 8族〜 10
01
族の金属を表すが、中でも好ましくはイリジウムまたは白金である。
[0092] 以下、本発明に係る前記一般式(1)、 (2)、 (4)〜(11)またはその互変異性体を部 分構造として有する金属錯体、前記一般式 (3)で表される金属錯体の具体例を示す 1S 本発明はこれらに限定されない。
[化 12]
Figure imgf000022_0001
Figure imgf000023_0001
一 21 1-22 1一 23
Figure imgf000023_0002
]
Figure imgf000024_0001
[0096] [化 15]
Figure imgf000025_0001
[0097] [化 16]
Figure imgf000026_0001
[0098] [化 17]
Figure imgf000027_0001
[0099] [化 18]
Figure imgf000028_0001
-21 3—22
Figure imgf000029_0001
]
Figure imgf000030_0001
[0102] [化 21]
Figure imgf000031_0001
[0103] [化 22]
Figure imgf000032_0001
[0104] [化 23]
z \ [solo]
Figure imgf000033_0001
T9l7SlC/900Zdf/X3d 6S9CZ0/.00Z OAV [S2^ ] [9010]
Figure imgf000034_0001
Figure imgf000035_0001
[0107] [化 26]
\IZ \ [8010]
Figure imgf000036_0001
[SZ^ [6010]
Figure imgf000037_0001
T9l7SlC/900Zdf/X3d 9ε 6S9CZ0/ .00Z OAV -1 12-2
Figure imgf000038_0001
]
12- 11 12— 12
Figure imgf000039_0001
[0111] これらの金属錯体は、例えば、 Organic Letter誌、 vol3、 No. 16、 2579〜258 1頁(2001)、 Inorganic Chemistry,第 30卷、第 8号、 1685〜1687頁(1991年
J. Am. Chem. Soc. , 123卷、 4304頁(2001年)、 Inorganic Chemistry, 第 40卷、第 7号、 1704〜1711頁(2001年)、 Inorganic Chemistry,第 41卷、 第 12号、 3055〜3066頁(2002年)、 New Journal of Chemistry. ,第 26卷、 1171頁(2002年)、 European Journal of Organic Chemistry,第 4卷、 695 〜709頁(2004年)、更にこれらの文献中に記載の参考文献等の方法を適用するこ とにより合成できる。
[0112] 《有機 EL素子材料の有機 EL素子への適用》
本発明の有機 EL素子材料を用いて本発明の有機 EL素子を作製する場合、有機 EL素子の構成層(詳細は後述する)の中で、発光層または電子阻止層に本発明の 有機 EL素子材料を用いることが好ましい。また、発光層中では上記のように発光ドー パントとして好ましく用いられる。
[0113] (発光ホストと発光ドーパント)
発光層中にお 、て主成分のホストイ匕合物である発光ホストに対する発光ドーパント の混合比は、好ましくは質量で 0. 1〜30質量%未満の範囲に調整することである。
[0114] 但し、発光ドーパントは複数種の化合物を混合して用いてもよぐ混合する相手は 構造を異にする、その他の金属錯体やその他の構造を有するリン光性ドーパントや 蛍光性ドーパントでもよい。
[0115] ここで、発光ドーパントとして用いられる金属錯体と併用してもよいドーパント(リン光 性ドーパント、蛍光性ドーパント等)について述べる。発光ドーパントは大きく分けて、 蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの 2種類があ る。
[0116] 前者 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、シ了ニ ン系色素、クロコニゥム系色素、スクァリウム系色素、ォキソベンツアントラセン系色素 、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチ ルベン系色素、ポリチォフェン系色素、または希土類錯体系蛍光体等が挙げられる。
[0117] 後者 (リン光性ドーパント)の代表例としては、好ましくは元素周期表で 8族、 9族、 1 0族の遷移金属元素を含有する錯体系化合物であり、更に好ましくはイリジウム化合 物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。
[0118] 具体的には以下の特許公報に記載されている化合物である。
[0119] 国際公開第 00/70655号パンフレット、特開 2002— 280178号公報、特開 2001
— 181616号公報、特開 2002— 280179号公報、特開 2001— 181617号公報、 特開 2002— 280180号公報、特開 2001— 247859号公報、特開 2002— 299060 号公報、特開 2001— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報、特開 2002— 324679号公報、国際公開第 02,15645号パンフ レッド、特開 2002— 332291号公報、特開 2002— 50484号公報、特開 2002— 33 2292号公報、特開 2002— 83684号公報、特表 2002— 540572号公報、特開 20 02— 117978号公報、特開 2002— 338588号公報、特開 2002— 170684号公報 、特開 2002— 352960号公報、国際公開第 01/93642号パンフレット、特開 2002
— 50483号公報、特開 2002— 100476号公報、特開 2002— 173674号公報、特 開 2002— 359082号公報、特開 2002— 175884号公報、特開 2002— 363552号 公報、特開 2002— 184582号公報、特開 2003— 7469号公報、特表 2002— 525 808号公報、特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003 — 31366号公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特 開 2002— 235076号公報、特開 2002— 241751号公報、特開 2001— 319779号 公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 10 0474号公報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2 002— 203678号公報等。
[0120] 以下に、具体例の一部を示す。
[0121] [化 30]
Ρί- Pt-
Figure imgf000041_0001
[0122] [化 31] lr- lr-2
Figure imgf000042_0001
2]
Figure imgf000043_0001
lr-9 lr-10
Figure imgf000043_0002
lr-11 lr-12
Figure imgf000043_0003
lr-13
Figure imgf000043_0004
[0124] (発光ホスト)
本発明に用いられるホストイ匕合物とは、発光層に含有される化合物のうちで室温(2 5°C)においてリン光発光のリン光量子収率が、 0. 01未満の化合物を表す。
[0125] 本発明に用いられる発光ホストとしては構造的には特に制限はないが、代表的に は力ルバゾール誘導体、トリアリールァミン誘導体、芳香族ボラン誘導体、含窒素複 素環化合物、チォフェン誘導体、フラン誘導体、オリゴァリーレンィ匕合物等の基本骨 格を有するもの、またはカルボリン誘導体ゃ該カルボリン誘導体のカルボリン環を構 成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構 造を有する誘導体等が挙げられる。中でも、力ルバゾール誘導体、カルボリン誘導体 ゃ該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくと も一つが窒素原子で置換されている環構造を有する誘導体が好ましく用いられる。
[0126] 以下に具体例を挙げるが、本発明はこれらに限定されない。これらの化合物は正孔 阻止材料として使用することも好ま ヽ。
[0127] [化 33]
H1 H2
Figure imgf000044_0001
[0128] [化 34]
H10
Figure imgf000045_0001
[0129] [化 35]
Figure imgf000046_0001
[0130] [化 36]
Figure imgf000047_0001
[0131] 本発明に係る発光層においては、ホストイ匕合物として公知のホストイ匕合物を複数種 併用して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を調整する ことが可能であり、有機 EL素子を高効率ィ匕することができる。これらの公知のホストイ匕 合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、 なお且つ高 Tg (ガラス転移温度)である化合物が好ま U、。
[0132] また、本発明に用いられる発光ホストは低分子化合物でも、繰り返し単位をもつ高 分子化合物でもよぐビニル基やエポキシ基のような重合性基を有する低分子化合 物 (蒸着重合性発光ホスト)でも 、 、。
[0133] 発光ホストとしては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を 防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ま 、。
[0134] 発光ホストの具体例としては、以下の文献に記載されている化合物が好適である。
例えば、特開 2001— 257076号公報、特開 2002— 308855号公報、特開 2001— 313179号公報、欄 2002— 319491号公報、欄 2001— 357977号公報、特 開 2002— 334786号公報、特開 2002— 8860号公報、特開 2002— 334787号公 報、特開 2002— 15871号公報、特開 2002— 334788号公報、特開 2002— 4305 6号公報、特開 2002— 33 9号公報、特開 2002— 75645号公報、特開 2002— 338579号公報、特開 2002— 105445号公報、特開 2002— 343568号公報、特 開 2002— 141173号公報、特開 2002— 352957号公報、特開 2002— 203683号 公報、特開 2002— 363227号公報、特開 2002— 231453号公報、特開 2003— 3 165号公報、特開 2002— 234888号公報、特開 2003— 27048号公報、特開 200 2— 255934号公報、特開 2002— 260861号公報、特開 2002— 280183号公報、 特開 2002— 299060号公報、特開 2002— 302516号公報、特開 2002— 305083 号公報、特開 2002— 305084号公報、特開 2002— 308837号公報等。
[0135] また、発光層はホストイ匕合物として更に蛍光極大波長を有するホストイ匕合物を含有 していてもよい。この場合、他のホスト化合物とリン光性化合物から蛍光性化合物へ のエネルギー移動で、有機 EL素子としての電界発光は蛍光極大波長を有する他の ホストィヒ合物からの発光も得られる。蛍光極大波長を有するホストィヒ合物として好まし いのは、溶液状態で蛍光量子収率が高いものである。ここで、蛍光量子収率は 10% 以上、特に 30%以上が好ましい。具体的な蛍光極大波長を有するホスト化合物とし ては、クマリン系色素、ピラン系色素、シァニン系色素、クロコニゥム系色素、スクァリ ゥム系色素、ォキソベンツアントラセン系色素、フルォレセイン系色素、ローダミン系 色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチォフェン系色素 等が挙げられる。蛍光量子収率は、前記第 4版実験化学講座 7の分光 IIの 362頁(1 992年版、丸善)に記載の方法により測定することができる。
[0136] 次に、代表的な有機 EL素子の構成について述べる。
[0137] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層につ 、て説明する。
[0138] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれ らに限定されない。
[0139] (i)陽極 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極
(ii)陽極 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極 (m)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極
(iv)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極
(V)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰 極バッファ一層 z陰極
(vi)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
(vii)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極
《阻止層 (電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。
[0140] 本発明においては、正孔阻止層、電子阻止層等に本発明の有機 EL素子材料を用 V、ることが好ましぐ特に好ましくは電子阻止層に用いることである。
[0141] 本発明の有機 EL素子材料を正孔阻止層、電子阻止層に含有させる場合、請求の 範囲第 1項〜第 7項のいずれか 1項に記載されている本発明の有機 EL素子材料を、 正孔阻止層や電子阻止層等の層構成成分として 100質量%の状態で含有させても よいし、他の有機化合物等と混合してもよい。
[0142] 本発明に係る阻止層の膜厚としては好ましくは 3〜: LOOnmであり、更に好ましくは 5 〜30nmである。
[0143] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0144] 正孔阻止層としては、例えば、特開平 11 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー 'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用いることができる。
[0145] 本発明の有機 EL素子は構成層として正孔阻止層を有し、該正孔阻止層が前記力 ルポリン誘導体または該カルボリン誘導体のカルボリン環を構成する炭化水素環の 炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体を含 有することが好ましい。
[0146] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
[0147] また本発明においては、発光層に隣接する隣接層、即ち正孔阻止層、電子阻止層 に上記の本発明の有機 EL素子材料を用いることが好ましぐ特に電子阻止層に用 、ることが好まし!/、。
[0148] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する材料を含み、広い意味で正孔注入 層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層もしくは複数層設ける ことができる。
[0149] 正孔輸送材料としては、特に制限はなぐ従来、光導伝材料において正孔の電荷 注入輸送材料として慣用されているものや、有機 EL素子の正孔注入層、正孔輸送 層に使用される公知のものの中から任意のものを選択して用いることができる。
[0150] 正孔輸送材料は正孔の注入もしくは輸送、電子の障壁性の!/、ずれかを有するもの であり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体、ォキ サジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン 誘導体及びピラゾロン誘導体、フ 二レンジァミン誘導体、ァリールァミン誘導体、アミ ノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、フルォレ ノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリン系共重 合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げられる。
[0151] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第三級ァミン化合物及びスチリルアミン化合物、特に芳香族第三級アミンィ匕 合物を用いることが好まし 、。
[0152] 芳香族第三級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1, 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0153] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 P型— Si、 p型— SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。
[0154] この正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。正孔輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この正孔輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0155] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層もしくは複数層を設け ることがでさる。
[0156] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、下 記の材料が知られて 、る。
[0157] 更に、電子輸送層は陰極より注入された電子を発光層に伝達する機能を有してい ればよぐその材料としては従来公知の化合物の中から任意のものを選択して用いる ことができる。
[0158] この電子輸送層に用いられる材料 (以下、電子輸送材料という)の例としては、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、ナ フタレンペリレン等の複素環テトラカルボン酸無水物、カルポジイミド、フレオレニリデ ンメタン誘導体、アントラキノジメタン及びアントロン誘導体、ォキサジァゾール誘導体 、カルボリン誘導体、または該カルボリン誘導体のカルボリン環を構成する炭化水素 環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体 等が挙げられる。更に上記ォキサジァゾール誘導体において、ォキサジァゾール環 の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知ら れて!ヽるキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いること ができる。
[0159] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。
[0160] また 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ-ゥ ム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ口 モ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 キノリノール)アルミニウム 、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Znq )等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに置 き替わった金属錯体も電子輸送材料として用いることができる。その他、メタルフリー もしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基等で 置換されているものも電子輸送材料として好ましく用いることができる。また、発光層 の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いることが できるし、正孔注入層、正孔輸送層と同様に n型 Si、 n型 SiC等の無機半導体も 電子輸送材料として用いることができる。
[0161] この電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キ ヤスト法、インクジェット法、 LB法等の公知の方法により、薄膜化することにより形成す ることができる。電子輸送層の膜厚については特に制限はないが、通常は 5〜5000 nm程度である。この電子輸送層は上記材料の一種または二種以上からなる一層構 造であってもよい。
[0162] 次に、本発明の有機 EL素子の構成層として用いられる注入層について説明する。
[0163] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在 させてちょい。
[0164] 注入層とは駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0165] 陽極バッファ一層(正孔注入層)は特開平 9— 45479号公報、同 9 260062号公 報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フタ口 シァニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される酸 化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディン) やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる。
[0166] 陰極バッファ一層(電子注入層)は特開平 6— 325871号公報、同 9 17574号公 報、同 10— 74586号公報等にもその詳細が記載されており、具体的にはストロンチ ゥムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表されるァ ルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金属 化合物バッファ一層、酸ィ匕アルミニウムに代表される酸ィ匕物バッファ一層等が挙げら れる。
[0167] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるがその 膜厚は 0. 1〜: LOOnmの範囲が好ましい。
[0168] この注入層は上記材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5〜5000nm程度である。こ の注入層は上記材料の一種または二種以上力もなる一層構造であってもよい。
[0169] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては、 Au等の金属、 Cul、インジウムチンォ キシド (ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O
2 2 3
-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよ!ヽ。陽極はこれらの 電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー 法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要とし ない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所望の 形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場合に は、透過率を 10%より大きくすることが望ましぐまた陽極としてのシート抵抗は数百 ΩΖ口以下が好ましい。更に膜厚は材料にもよるが通常 10〜: L000nm、好ましくは 10〜200nmの範囲で選ばれる。
[0170] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物 、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al o )混合物、インジウム、リチウム Zアルミニウム混合物、希
2 3
土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の 点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金 属との混合物、例えば、マグネシウム Z銀混合物、マグネシウム Zアルミニウム混合 物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (Al
2 o )混合 3 物、リチウム Zアルミニウム混合物、アルミニウム等が好適である。陰極はこれらの電 極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることにより作製する ことができる。また、陰極としてのシート抵抗は数百 Ω /口以下が好ましぐ膜厚は通 常 10〜: L000nm、好ましくは 50〜200nmの範囲で選ばれる。なお、発光を透過さ せるため、有機 EL素子の陽極または陰極のいずれか一方が、透明または半透明で あれば発光輝度が向上し好都合である。
[0171] 《基体 (基板、基材、支持体等ともいう)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた透明のものであれば特に制限はないが、好ましく用いられる基板と しては、例えば、ガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好 ま 、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムであ る。
[0172] 榭脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナ フタレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテル エーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート (PC)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP )等力 なるフィルム等が挙げられる。
[0173] 榭脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01gZm2'dayatm以下の高 ノ リア性フィルムであることが好まし ヽ。
[0174] 本発明の有機 EL素子の発光の室温における外部取り出し効率は 1%以上であるこ と力 子ましく、より好ましくは 2%以上である。ここに、外部取り出し量子効率(%) =有 機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子数 X 100である。 [0175] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0176] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。
[0177] 多色表示装置として用いる場合は、少なくとも 2種類の異なる発光極大波長を有す る有機 EL素子カゝらなるが、有機 EL素子を作製する好適な例を説明する。
[0178] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層
Z発光層 Z正孔阻止層 Z電子輸送層 Z陰極バッファ一層 Z陰極からなる有機 EL 素子の作製法について説明する。
[0179] まず適当な基体上に所望の電極物質、例えば、陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは ΙΟηπ!〜 200nmの膜厚になるように蒸着やスパッタリング等の方法 により形成させ、陽極を作製する。次に、この上に素子材料である正孔注入層、正孔 輸送層、発光層、正孔阻止層、電子輸送層等の有機化合物を含有する薄膜を形成 させる。
[0180] この有機化合物を含有する薄膜の薄膜ィ匕の方法としては、スピンコート法、キャスト 法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られやすぐ且つピ ンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法が特に好まし い。更に層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、そ の蒸着条件は、使用する化合物の種類等により異なるが、一般にボート加熱温度 50 〜450°C、真空度 10一6〜 10— 2Pa、蒸着速度 0. 01〜50nmZ秒、基板温度ー50〜3 00°C、膜厚 0. 1〜5 μ mの範囲で適宜選ぶことが望ましい。
[0181] これらの層の形成後、その上に陰極用物質力もなる薄膜を 1 μ m以下好ましくは 50 〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により 形成させ、陰極を設けることにより所望の有機 EL素子が得られる。この有機 EL素子 の作製は一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好まし いが、途中で取り出して異なる製膜法を施しても構わない。その際、作業を乾燥不活 性ガス雰囲気下で行う等の配慮が必要となる。
[0182] 《表示装置》 本発明の表示装置について説明する。本発明の表示装置は上記有機 EL素子を 有する。
[0183] 本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説 明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸 着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
[0184] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においては、シャドーマスクを 用いたパターユングが好まし 、。
[0185] また作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層、 陽極の順に作製することも可能である。
[0186] このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を +、 陰極を—の極性として電圧 2〜40V程度を印加すると発光が観測できる。また、逆の 極性で電圧を印加しても電流は流れずに発光は全く生じな!/ヽ。更に交流電圧を印加 する場合には、陽極が +、陰極が—の状態になったときのみ発光する。なお、印加 する交流の波形は任意でょ 、。
[0187] 多色表示装置は表示デバイス、ディスプレイ、各種発光光源として用いることができ る。表示デバイス、ディスプレイにおいて、青、赤、緑発光の 3種の有機 EL素子を用 いることによりフルカラーの表示が可能となる。
[0188] 表示デバイス、ディスプレイとしては、テレビ、ノ ソコン、モノくィル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリクス (パッシブマトリクス)方式でもアクティブマトリクス方式でもどち らでもよい。
[0189] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられる力 これに限定するものではない。
[0190] 《照明装置》
本発明の照明装置について説明する。本発明の照明装置は上記有機 EL素子を 有する。
[0191] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては、光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されない。また、レーザー発振をさせることにより上記用途に使用し てもよい。
[0192] また、本発明の有機 EL素子は照明用や露光光源のような一種のランプとして使用 してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像を 直接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用の 表示装置として使用する場合の駆動方式は、単純マトリクス (パッシブマトリクス)方式 でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本発 明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製すること が可能である。
[0193] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する
[0194] 図 1は有機 EL素子カゝら構成される表示装置の一例を示した模式図である。有機 E L素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模 式図である。
[0195] ディスプレイ 1は複数の画素を有する表示部 A、画像情報に基づいて表示部 Aの画 像走査を行う制御部 B等力 なる。
[0196] 制御部 Bは表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画像 情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素 が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 Aに 表示する。
[0197] 図 2は表示部 Aの模式図である。
[0198] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と複数の画素
3等とを有する。表示部 Aの主要な部材の説明を以下に行う。
[0199] 図においては、画素 3の発光した光が白矢印方向(下方向)へ取り出される場合を 示している。
[0200] 配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5と データ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図示 していない)。
[0201] 画素 3は走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー 表示が可能となる。
[0202] 次に、画素の発光プロセスを説明する。
[0203] 図 3は画素の模式図である。
[0204] 画素は有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデン サ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発光 の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行う ことができる。
[0205] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0206] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。
[0207] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0208] 即ち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対して 、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて、複 数の画素 3それぞれの有機 EL素子 10の発光を行って 、る。このような発光方法をァ クティブマトリクス方式と呼んで 、る。
[0209] ここで、有機 EL素子 10の発光は複数の階調電位を持つ多値の画像データ信号に よる複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量のオン 、オフでもよい。また、コンデンサ 13の電位の保持は次の走査信号の印加まで継続 して保持してもよ 、し、次の走査信号が印加される直前に放電させてもよ!、。
[0210] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0211] 図 4はパッシブマトリクス方式による表示装置の模式図である。図 4において、複数 の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられて いる。
[0212] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して ヽる画素 3が画像データ信号に応じて発光する。
[0213] ノ¾ /シブマトリクス方式では画素 3にアクティブ素子が無ぐ製造コストの低減が計れ る。
[0214] また本発明の有機 EL材料は照明装置として、実質白色の発光を生じる有機 EL素 子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色によ り白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3原色 の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補 色の関係を利用した 2つの発光極大波長を含有したものでもよい。
[0215] また複数の発光色を得るための発光材料の組み合わせは、複数のリン光または蛍 光で発光する材料を複数組み合わせたもの、蛍光またはリン光で発光する発光材料 と、発光材料力 の光を励起光として発光する色素材料との組み合わせたものの ヽ ずれでもよいが、本発明に係る白色有機 EL素子においては、発光ドーパントを複数 組み合わせ混合するだけでよい。発光層もしくは正孔輸送層あるいは電子輸送層等 の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよぐ他 層は共通であるのでマスク等のパターユングは不要であり、一面に蒸着法、キャスト 法、スピンコート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性 も向上する。この方法によれば、複数色の発光素子をアレー状に並列配置した白色 有機 EL装置と異なり、素子自体が発光白色である。
[0216] 発光層に用いる発光材料としては特に制限はなぐ例えば、液晶表示素子におけ るノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合する ように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して 組み合わせて白色化すればよ!、。
[0217] このように、本発明に係る白色発光有機 EL素子は、前記表示デバイス、ディスプレ ィに加えて、各種発光光源、照明装置として、家庭用照明、車内照明、また露光光源 のような一種のランプとして、また液晶表示装置のノ ックライト等、表示装置にも有用 に用いられる。
[0218] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0219] 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。
[0220] 実施例 1
《有機 EL素子 1—1の作製》
陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた。この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方 5つ のタンタル製抵抗力卩熱ボートに a— NPD、 H4、 Ir 12、 BCP、 Alqをそれぞれ入 れ、真空蒸着装置 (第 1真空槽)に取り付けた。
[0221] 更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボー トにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。
[0222] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 20nm の厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0223] 更に、 H4の入った前記加熱ボートと Ir 12の入ったボートをそれぞれ独立に通電 して発光ホストである H4と発光ドーパントである Ir— 12の蒸着速度が 100 : 6になるよ うに調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0224] 次いで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ lOnmの正孔阻止層を設けた。更に Alqの入った前記加熱ボートを通
3
電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 20nmの電子輸送層を設けた。
[0225] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0226] 第 2真空槽を 2 X 10— 4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入ったボートに通電して、蒸着速度 l〜2nmZ秒で膜厚 150nmの陰極 をつけ、有機 EL素子 1—1を作製した。
[0227] 《有機 EL素子 1 2〜1 25の作製》
有機 EL素子 1—1の作製において、表 1に記載のように発光ホスト及び発光ドーパ ントを変更した以外は同様にして、有機 EL素子 1— 2〜1— 25を作製した。
[0228] [化 37] BCP α -NPD
Figure imgf000063_0001
[0230] 《有機 EL素子の評価》
得られた有機 EL素子 1— 1〜1— 25を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤 (東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側力も UV光を照射して、硬化させて、封止して、図 5、図 6に 示すような照明装置を形成して評価した。
[0231] 図 5は照明装置の概略図を示し、有機 EL素子 101はガラスカバー 102で覆われて いる(なお、ガラスカバーでの封止作業は、有機 EL素子 101を大気に接触させること なく窒素雰囲気下のグローブボックス(純度 99. 999%以上の高純度窒素ガスの雰 囲気下)で行った)。図 6は照明装置の断面図を示し、図 6において、 105は陰極、 1 06は有機 EL層、 107は透明電極付きガラス基板を示す。なお、ガラスカバー 102内 には窒素ガス 108が充填され、捕水剤 109が設けられている。
[0232] (外部取り出し量子効率)
有機 EL素子を室温 (約 23〜25°C)、 2. 5mAZcm2の定電流条件下による点灯を 行い、点灯開始直後の発光輝度 (L) [cdZm2]を測定することにより、外部取り出し 量子効率( 7? )を算出した。ここで、発光輝度の測定は CS— 1000 (コ-カミノルタセ ンシング製)を用いた。外部取り出し量子効率は有機 EL素子 1—1を 100とする相対 値で表した。
[0233] (発光寿命)
有機 EL素子を室温下、 2. 5mAZcm2の定電流条件下による連続点灯を行い、初 期輝度の半分の輝度になるのに要する時間( τ )を測定した。発光寿命は有機 EL
1/2
素子 1 1を 100と設定する相対値で表した。
[0234] 得られた結果を表 1に示す。
[0235] [表 1]
冇機 EL素子 外部取り出し 発光 叩
発光ホスト 発光ドーパント 備 考 No. 量子効率 1 Γ 1/2)
1Η τ 一 1 H 4 Ir-12 100 100 比較例
1 - 2 H 4 比較 1 75 97 比較例
M C
1 - 3; 0]0 、 H 4 比較 2 109 113 比較例
1 - 4 i H 4 比較 3 112 40 比較例
1 - 5 H 4 1 - 2 125 255 本発明
1 - 6 H 4 1 - 6 120 310 本発明
1 ~ 7 H 4 1一 11 122 288 本発明
1 8 H 4 1 -13 130 275 本発明
1 - 9 H 4 1 -16 129 312 本発明
H 4 1 一 19 124 298 本発明
1一 11 H4 2 - 5 125 366 本発明
1 -12 H4 2一 19 128 388 本発明
1 -13 H 4 2—23 124 388 本発明
1一 14 H 4 2一 25 127 355 本発明
1 15 H 4 2 -34 128 340 本発明
1—16 H 6 3— 5 132 327 本発明
H 6 3一 18 130 315 本発明
H 6 4 - 1 127 308 本発明
1 -19 H 6 4- 3 129 330 本発明
H 6 4 - 4 131 325 本発明
1 -21 H 4 12- 1 127 360 本発明
1一 22 H24 1 -18 131 326 本発明
1 23 H24 2 -19 132 412 本発明
1 -24 H24 12— 1 131 390 本発明
1—25 H4 12-11 133 425 本発明 表 1から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、高い発光効率と発光寿命の長寿命化が達成できることが明らかで ある。更に、カルボリン誘導体またはカルボリン誘導体のカルボリン環を構成する炭 化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造を 有する誘導体を発光層に併用することにより、更に本発明の効果の向上が見られた 実施例 2
《有機 EL素子 2— 1の作製》 陽極としてガラス上に ITOを 150nm成膜した基板 (NHテクノグラス社製: NA— 45 )にパターユングを行った後、この ITO透明電極を設けた透明支持基板を iso プロ ピルアルコールで超音波洗净し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行 つた o
[0238] この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方 5つのタ ンタル製抵抗加熱ボートに、 —NPD、 H2、 Ir—13、 BCP、 Alqをそれぞれ入れ、
3
真空蒸着装置 (第 1真空槽)に取り付けた。
[0239] 更に、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボー トにアルミニウムをそれぞれ入れ、真空蒸着装置の第 2真空槽に取り付けた。
[0240] まず、第 1の真空槽を 4 X 10—4Paまで減圧した後、 a—NPDの入った前記加熱ボ ートに通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で透明支持基板に膜厚 20nm の厚さになるように蒸着し、正孔注入 Z輸送層を設けた。
[0241] 更に、 H2の入った前記加熱ボートと Ir 13の入ったボートをそれぞれ独立に通電 して発光ホストである H2と発光ドーパントである Ir— 13の蒸着速度が 100 : 6になるよ うに調節し、膜厚 30nmの厚さになるように蒸着し、発光層を設けた。
[0242] 次いで、 BCPの入った前記加熱ボートに通電して加熱し、蒸着速度 0. 1〜0. 2n mZ秒で厚さ 10nmの正孔阻止層を設けた。更に、 Alqの入った前記加熱ボートを
3
通電して加熱し、蒸着速度 0. 1〜0. 2nmZ秒で膜厚 20nmの電子輸送層を設けた
[0243] 次に、電子輸送層まで成膜した素子を真空のまま第 2真空槽に移した後、電子輸 送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部力 リ モートコントロールして設置した。
[0244] 第 2真空槽を 2 X 10—4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸 着速度 0. 01-0. 02nmZ秒で膜厚 0. 5nmの陰極バッファ一層を設け、次いでァ ルミ-ゥムの入ったボートに通電して、蒸着速度 l〜2nmZ秒で膜厚 150nmの陰極 をつけ、有機 EL素子 2—1を作製した。
[0245] 《有機EL素子2— 2〜2— 28の作製》
有機 EL素子 2—1の作製において、表 2に記載のように発光ホスト及び発光ドーパ ントを変更した以外は同様にして、有機 EL素子 2— 2〜2— 28を作製した。
[0246] [化 39]
Figure imgf000067_0001
[0247] 《有機 EL素子の評価》
得られた有機 EL素子 2— 1〜2— 28を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤 (東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側力も UV光を照射して、硬化させて、封止して、図 5、図 6に 示すような照明装置を形成して評価した。
[0248] 外部取り出し量子効率、発光寿命を実施例 1と同様の方法で評価を行った。外部 取り出し量子効率、発光寿命は、有機 EL素子 2— 1を 100として各々相対値で表し た。得られた結果を表 2に示す。
[0249] [表 2] 有機 EL素子 外部取り出し 発光寿命 発光ホス卜 発光ドーパン卜 正孔阻止材料 備考
No. 量子効率 ( τ \η)
2— 1 H 2 lr-13 B C P 100 100 比較例
2 - 2 H 2 比 B C P 83 95 比較例
2— 3 H 2 比較 4 B C P 110 66 比較例
2 - 4 H 2 比較 5 B C P 73 70 比較例
2 - 5 H 2 比較 6 B C P 90 69 比較例
2 - 6 H 2 比較 7 B C P 94 100 比較例
2 - 7 H 2 比較 8 B C P 108 94 比較例
2 - 8 H 2 5一 1 BC P 127 289 本発明
2— 9 H 2 5 - 6 BC P 130 303 本発明
2 -10 H 4 5 - 7 B C P 121 280 本発明
2 -n H 4 5 - 9 B C P 127 310 本発明
2 -12 H 4 6一 1 B C P 124 277 本発明
2—13 H 4 6 - 9 B C P 133 295 本発明
2 -14 H 6 7 - 8 B C P 125 240 本発明
2 -15 H 6 8 - 2 B C P 120 210 本発明
2 -16 H 10 9— 6 B C P 129 277 本発明
2 -17 H10 10— 1 B C P 129 288 本発明
2 -18 HtO 10- 2 B C P 125 270 本発明
2 -19 H10 11 - 1 B C P 131 3Q4 本発明
H10 11- 2 B C P 128 281 本発明
H 10 11-10 B C P 127 Ζ65 本発明
2 - 22 H 2 5一 1 H 5 132 355 本発明
2— 23 H 4 6 - 1 H 5 135 321 本発明
2 -24 H 6 7 - 8 H 5 136 301 本発明
H 6 8 - 2 H 5 131 269 本発明
2 -26 H 10 9 - 6 H 5 139 288 本発明
H10 10— 2 H26 138 345 本発明
2—28 H 10 11- 2 H26 138 330 本発明
[0250] 表 2から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機 EL素子に比べ、高い発光効率と発光寿命の長寿命化が達成できることが明らかで ある。更に、カルボリン誘導体または該カルボリン誘導体のカルボリン環を構成する 炭化水素環の炭素原子の少なくとも一つが更に窒素原子で置換されている環構造 を有する誘導体を発光層、または、正孔阻止層に併用することにより、更に本発明の 効果の向上が見られた。
[0251] 実施例 3
《有機 EL素子 3—1の作製》 25mm X 25mm X O. 5mmのガラス支持基板上に直流電源を用い、スパッタ法に てインジウム錫酸ィ匕物(ITO、インジウム Ζ錫 = 95Ζ5モル比)の陽極を形成した (厚 み 200nm)。この陽極の表面抵抗は 10 Ω ロであった。これにポリビュルカルバゾ —ル (正孔輸送性バインダーポリマー) /Ir— 13 (青発光性オルトメタルィ匕錯体) /2 — (4—ビフエ-リル)— 5— (4— t—ブチルフエ-ル)— 1, 3, 4—ォキサジァゾ—ル( 電子輸送材) = 200/2/50質量比を溶解したジクロロエタン溶液をスピンコ—タ— で塗布し、 lOOnmの発光層を得た。この有機化合物層の上にパタ—ユングしたマス ク (発光面積が 5mm X 5mmとなるマスク)を設置し、蒸着装置内で陰極バッファ一層 としてフッ化リチウム 0. 5nm及び陰極としてアルミニウム 150nmを蒸着して陰極を設 けて、青色発光の有機 EL素子 3—1を作製した。
[0252] 《有機 EL素子 3— 2〜3— 17の作製》
有機 EL素子 3— 1の作製において、表 3に記載のように発光ドーパントを変更した 以外は同様にして、有機 EL素子 3— 2〜3— 17を作製した。
[0253] 《有機 EL素子の評価》
得られた有機 EL素子 3— 1〜3— 17を評価するに際しては、作製後の各有機 EL 素子の非発光面をガラスケースで覆い、厚み 300 mのガラス基板を封止用基板と して用いて、周囲にシール材として、エポキシ系光硬化型接着剤 (東亞合成社製ラッ タストラック LC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と 密着させ、ガラス基板側力も UV光を照射して、硬化させて、封止して、図 5、図 6に 示すような照明装置を形成して評価した。
[0254] 次いで、下記のようにして発光輝度及び発光効率を測定した。
[0255] (発光輝度、発光効率)
東洋テク-力製ソースメジャ—ユニット 2400型を用いて、直流電圧を有機 EL素子 に印加して発光させ、 10Vの直流電圧を印加した時の発光輝度(cd/m2)と 2. 5m A/cm2の電流を通じた時の発光効率 (lmZW)を測定した。得られた結果を表 3に 示す。
[0256] [表 3]
Figure imgf000070_0001
[0257] 表 3から、本発明に係る金属錯体を用いて作製した有機 EL素子は、比較例の有機
EL素子に比べ、高い発光効率と高い輝度が達成できることが明らかである。
[0258] 実施例 4
《フルカラー表示装置の作製》
(青色発光素子の作製)
実施例 1の有機 EL素子 1 12を青色発光素子として用 ヽた。
[0259] (緑色発光素子の作製)
実施例 2の有機 EL素子 2— 1にお 、て、 Ir— 13を Ir— 1に変更した以外は同様にし て、緑色発光素子を作製し、これを緑色発光素子として用いた。
[0260] (赤色発光素子の作製)
実施例 2の有機 EL素子 2— 1にお 、て、 Ir— 13を Ir— 9に変更した以外は同様にし て、赤色発光素子を作製し、これを赤色発光素子として用いた。
[0261] 上記で作製した赤色、緑色、青色発光有機 EL素子を同一基板上に並置し、図 1に 記載のような形態を有するアクティブマトリクス方式フルカラー表示装置を作製した。 図 2には、作製した前記表示装置の表示部 Aの模式図のみを示した。即ち、同一基 板上に複数の走査線 5及びデータ線 6を含む配線部と並置した複数の画素 3 (発光 の色が赤領域の画素、緑領域の画素、青領域の画素等)とを有し、配線部の走査線 5及び複数のデータ線 6はそれぞれ導電材料からなり、走査線 5とデータ線 6は格子 状に直交して、直交する位置で画素 3に接続している(詳細は図示せず)。前記複数 画素 3は、それぞれの発光色に対応した有機 EL素子、アクティブ素子であるスィッチ ングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で 駆動されており、走査線 5から走査信号が印加されるとデータ線 6から画像データ信 号を受け取り、受け取った画像データに応じて発光する。このように赤、緑、青の画素 を適宜、並置することによって、フルカラー表示装置を作製した。
[0262] このフルカラー表示装置は駆動することにより、輝度が高ぐ高耐久性を有し、且つ 鮮明なフルカラー動画表示が得られることが分力つた。
[0263] 実施例 5
《白色発光素子及び白色照明装置の作製》
実施例 1の透明電極基板の電極を 20mm X 20mmにパターユングし、その上に実 施例 1と同様に正孔注入/輸送層として α— NPDを 25nmの厚さで成膜し、更に H 4の入つた前記加熱ボートと例示化合物 2— 23の入つたボート及び Ir 9の入つたボ ートをそれぞれ独立に通電して、発光ホストである CBPと発光ドーパントである例示 化合物 2— 23及び Ir— 9の蒸着速度が 100 : 5 : 0. 6になるように調節し、膜厚 30nm の厚さになるように蒸着し、発光層を設けた。
[0264] 次!、で、 BCPを lOnm成膜して正孔阻止層を設けた。更に、 Alqを 40nmで成膜し
3
電子輸送層を設けた。
[0265] 次に、実施例 1と同様に電子注入層の上にステンレス鋼製の透明電極とほぼ同じ 形状の正方形穴あきマスクを設置し、陰極バッファ一層としてフッ化リチウム 0. 5nm 及び陰極としてアルミニウム 150nmを蒸着成膜した。
[0266] この素子を実施例 1と同様な方法及び同様な構造の封止缶を具備させ、図 5、図 6 に示すような平面ランプを作製した。この平面ランプに通電したところほぼ白色の光 が得られ、照明装置として使用できることが分力つた。 0]
CBP
Figure imgf000072_0001

Claims

請求の範囲
[1] 下記一般式 (8)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。
[化 1]
Figure imgf000073_0001
(式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
71 72 73 74 75 76 77 7£ は電子供与性基を置換基として有する芳香族炭化水素環基を表す。中心金属であ る M は元素周期表における 8族〜 10族の金属を表す。 )
01
[2] 下記一般式 (1)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。
[化 2]
Figure imgf000073_0002
(式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 そ
01 02 03 04 05 06 07
の少なくとも一つは芳香族複素環基を表す。中心金属である M は元素周期表にお
01
ける 8族〜 10族の金属を表す。 )
[3] 下記一般式 (2)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。
[化 3] ,般式 <21
Figure imgf000074_0001
(式中、 R 、R 、R 、R 、R 、R 、R
11 12 13 14 15 16 17は各々水素原子または置換基を表す力 R
11
、R 、R 、R 、R の少なくとも一つが芳香族炭化水素環基を表す。中心金属である
12 13 16 17
M は元素周期表における 8族〜 10族の金属を表す。 )
01
下記一般式(3)で表される金属錯体であることを特徴とする有機エレクト口ルミネッセ ンス素子材料。
[化 4] 般式
Figure imgf000074_0002
(式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
21 22 23 24 25 26 27 24 または R は芳香族炭化水素環基を表す。 X -L1 -Xは 2座の配位子を表し、 X、
25 1 2 1
Xは各々独立に炭素原子、または窒素原子を表す。 L1は X、 Xと共に 2座の配位
2 1 2
子を形成する原子群を表す。 n2は 1、 2または 3の整数を表し、 m2は 0、 1または 2の 整数を表すが、 n2+m2は 2または 3である。中心金属である M は元素周期表にお
01
ける 8族〜 10族の金属を表す。 )
[5] 前記一般式(3)にお 、て、 m2が 0であることを特徴とする請求の範囲第 4項に記載 の有機エレクト口ルミネッセンス素子材料。
[6] 下記一般式 (4)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。 [化 5] 般式 (4>
Figure imgf000075_0001
(式中、 R 、R 、R 、R 、R 、R 、R
31 32 33 34 35 36 37は各々水素原子または置換基を表す力 R
31
、R 、R の少なくとも一つが無置換のアルキル基、置換基を有してもよい芳香族炭
32 33
化水素環基、または置換基を有してもよいシクロアルキル基を表す。中心金属である M は元素周期表における 8族〜 10族の金属を表す。 )
01
[7] 前記一般式 (4)において、 R 、R 、R の中で少なくとも 2つが置換または無置換の
31 32 33
アルキル基、芳香族炭化水素環基、またはシクロアルキル基を表すことを特徴とする 請求の範囲第 6項に記載の有機エレクト口ルミネッセンス素子材料。
[8] 下記一般式 (5)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。
[化 6] 一般式 (5>
Figure imgf000075_0002
(式中、 R 、R 、R 、R 、R 、R 、R
41 42 43 44 45 46 47は各々水素原子または置換基を表す力 R
、R 、R 、R の少なくとも 1つが置換基を有してもよいアミノ基を表す。中心金属で
42 43 44
ある M は元素周期表における 8族〜 10族の金属を表す。 )
01
下記一般式 (6)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。 [化 7] 般式 (6)
Figure imgf000076_0001
(式中、 R 、R 、R 、R 、R 、R 、R
51 52 53 54 55 56 57は各々水素原子または置換基を表す力 R
51
、R 、R 、R の少なくとも 1つがシァノ基を表す。中心金属である M は元素周期表
52 53 54 01
における 8族〜 10族の金属を表す。 )
下記一般式 (7)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。
[化 8] 一般式 <7)
Figure imgf000076_0002
(式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
61 62 63 64 65 66 67
、R 、R 、R の少なくとも 3つが一価の有機基を表す。中心金属である M は元素
62 63 64 01 周期表における 8族〜 10族の金属を表す。 )
下記一般式 (9)を部分構造として有する金属錯体であることを特徴とする有機エレク トロルミネッセンス素子材料。
[化 9] 一般式 (9>
Figure imgf000077_0001
(式中、 R 、R 、R 、R 、R 、R
81 82 83 84 85 86は各々水素原子または置換基を表す。中心金属 である M は元素周期表における 8族〜 10族の金属を表す。 )
01
下記一般式 (10)を部分構造として有する金属錯体であることを特徴とする有機エレ タトロルミネッセンス素子材料。
[化 10] 一般式 (10)
Figure imgf000077_0002
(式中、 R 、R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
91 92 93 94 95 96 97 9! は無置換の 2級アルキル基を表す。中心金属である M は元素周期表における 8族
01
〜 10族の金属を表す。 )
下記一般式 (11)を部分構造として有する金属錯体であることを特徴とする有機エレ タトロルミネッセンス素子材料。
[化 11]
—般式 (11)
Figure imgf000077_0003
(式中、 R 、R 、R 、R 、R 、R は各々水素原子または置換基を表す力 R
101 102 103 104 106 107 106
、R の少なくとも 1つは置換基を表す。 R は水素原子、アルキル基、シクロアルキ
107 105
ル基、芳香族炭化水素環基、または芳香族複素環基を表す。中心金属である M
01は 元素周期表における 8族〜 10族の金属を表す。 )
[14] 前記一般式(11)において、 R 、R のいずれも置換基であることを特徴とする請求
106 107
の範囲第 13項に記載の有機エレクト口ルミネッセンス素子材料。
[15] 前記中心金属 M 力イリジウムであることを特徴とする請求の範囲第 1項〜第 14項の
01
いずれか 1項に記載の有機エレクト口ルミネッセンス素子材料。
[16] 前記中心金属 M が白金であることを特徴とする請求の範囲第 1項〜第 14項のいず
01
れカ 1項に記載の有機エレクト口ルミネッセンス素子材料。
[17] 請求の範囲第 1項〜第 16項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子材料を含有することを特徴とする有機エレクト口ルミネッセンス素子。
[18] 構成層として発光層を有し、該発光層が請求の範囲第 1項〜第 16項のいずれか 1項 に記載の有機エレクト口ルミネッセンス素子材料を含有することを特徴とする有機エレ タトロルミネッセンス素子。
[19] 構成層として発光層を有し、該発光層がカルボリン誘導体または該カルボリン誘導体 のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置 換されている環構造を有する誘導体を含有することを特徴とする請求の範囲第 17項 または第 18項に記載の有機エレクト口ルミネッセンス素子。
[20] 構成層として正孔阻止層を有し、該正孔阻止層がカルボリン誘導体または該カルボ リン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒 素原子で置換されている環構造を有する誘導体を含有することを特徴とする請求の 範囲第 17項〜第 19項のいずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[21] 請求の範囲第 17項〜第 20項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子を有することを特徴とする表示装置。
[22] 請求の範囲第 17項〜第 20項のいずれか 1項に記載の有機エレクト口ルミネッセンス 素子を有することを特徴とする照明装置。
PCT/JP2006/315461 2005-08-25 2006-08-04 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2007023659A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007532046A JP5130913B2 (ja) 2005-08-25 2006-08-04 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005244207 2005-08-25
JP2005-244207 2005-08-25

Publications (1)

Publication Number Publication Date
WO2007023659A1 true WO2007023659A1 (ja) 2007-03-01

Family

ID=37771410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315461 WO2007023659A1 (ja) 2005-08-25 2006-08-04 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (2)

Country Link
JP (1) JP5130913B2 (ja)
WO (1) WO2007023659A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069221A (ja) * 2006-09-13 2008-03-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008367A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008263A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2011070991A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Novel iridium complex, organic light-emitting device, and image display apparatus
JP2012508258A (ja) * 2008-11-11 2012-04-05 ユニバーサル ディスプレイ コーポレイション 燐光発光体
JP2012167028A (ja) * 2011-02-10 2012-09-06 Chemiprokasei Kaisha Ltd 置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機el素子
WO2013038804A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013038843A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013038929A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子
WO2013088934A1 (ja) 2011-12-12 2013-06-20 新日鉄住金化学株式会社 有機電界発光素子用材料及びそれを用いた有機電界発光素子
WO2013137001A1 (ja) 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
WO2014002629A1 (ja) 2012-06-28 2014-01-03 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2014013936A1 (ja) 2012-07-19 2014-01-23 新日鉄住金化学株式会社 有機電界発光素子
WO2014050904A1 (ja) 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
WO2014097813A1 (ja) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053019A1 (ja) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2005007767A2 (ja) * 2003-07-22 2005-01-27 Idemitsu Kosan Co 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2005068110A (ja) * 2003-08-27 2005-03-17 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、および有機電界発光素子
JP2005129478A (ja) * 2003-09-30 2005-05-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置、表示装置
US20060008670A1 (en) * 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006060198A (ja) * 2004-07-23 2006-03-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006120905A (ja) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006120762A (ja) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI237524B (en) * 2004-05-17 2005-08-01 Au Optronics Corp Organometallic compound and organic electroluminescent device including the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004053019A1 (ja) * 2002-12-12 2004-06-24 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2005007767A2 (ja) * 2003-07-22 2005-01-27 Idemitsu Kosan Co 金属錯体化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2005068110A (ja) * 2003-08-27 2005-03-17 Mitsubishi Chemicals Corp 有機金属錯体、発光材料、および有機電界発光素子
JP2005129478A (ja) * 2003-09-30 2005-05-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置、表示装置
US20060008670A1 (en) * 2004-07-06 2006-01-12 Chun Lin Organic light emitting materials and devices
WO2006009024A1 (ja) * 2004-07-23 2006-01-26 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006060198A (ja) * 2004-07-23 2006-03-02 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006120762A (ja) * 2004-10-20 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2006120905A (ja) * 2004-10-22 2006-05-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008069221A (ja) * 2006-09-13 2008-03-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008367A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009008263A1 (ja) * 2007-07-12 2009-01-15 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JPWO2009008367A1 (ja) * 2007-07-12 2010-09-09 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5577701B2 (ja) * 2007-07-12 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5577700B2 (ja) * 2007-07-12 2014-08-27 コニカミノルタ株式会社 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
US8859110B2 (en) 2008-06-20 2014-10-14 Basf Se Cyclic phosphazene compounds and use thereof in organic light emitting diodes
JP2016026140A (ja) * 2008-11-11 2016-02-12 ユニバーサル ディスプレイ コーポレイション 燐光発光体
JP2012508258A (ja) * 2008-11-11 2012-04-05 ユニバーサル ディスプレイ コーポレイション 燐光発光体
WO2011070991A1 (en) * 2009-12-08 2011-06-16 Canon Kabushiki Kaisha Novel iridium complex, organic light-emitting device, and image display apparatus
US9045510B2 (en) 2009-12-08 2015-06-02 Canon Kabushiki Kaisha Iridium complex, organic light-emitting device, and image display apparatus
JP2012167028A (ja) * 2011-02-10 2012-09-06 Chemiprokasei Kaisha Ltd 置換フェニルピリジンイリジウム錯体、該錯体よりなる発光材料及び該錯体を用いた有機el素子
WO2013038929A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 含ケイ素四員環構造を有する有機電界発光素子用材料及び有機電界発光素子
WO2013038843A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013038804A1 (ja) 2011-09-12 2013-03-21 新日鉄住金化学株式会社 有機電界発光素子
WO2013088934A1 (ja) 2011-12-12 2013-06-20 新日鉄住金化学株式会社 有機電界発光素子用材料及びそれを用いた有機電界発光素子
WO2013137001A1 (ja) 2012-03-12 2013-09-19 新日鉄住金化学株式会社 有機電界発光素子
WO2014002629A1 (ja) 2012-06-28 2014-01-03 新日鉄住金化学株式会社 有機電界発光素子用材料及び有機電界発光素子
WO2014013936A1 (ja) 2012-07-19 2014-01-23 新日鉄住金化学株式会社 有機電界発光素子
WO2014050904A1 (ja) 2012-09-28 2014-04-03 新日鉄住金化学株式会社 有機電界発光素子用化合物及び有機電界発光素子
WO2014097813A1 (ja) 2012-12-17 2014-06-26 新日鉄住金化学株式会社 有機電界発光素子

Also Published As

Publication number Publication date
JPWO2007023659A1 (ja) 2009-02-26
JP5130913B2 (ja) 2013-01-30

Similar Documents

Publication Publication Date Title
JP4962613B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP4894513B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5011908B2 (ja) 有機エレクトロルミネッセンス素子、表示装置および照明装置
JP5076900B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4858169B2 (ja) 有機エレクトロルミネッセンス素子
JP5040077B2 (ja) 有機エレクトロルミネッセンス素子
JP5403105B2 (ja) 有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
WO2007023659A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5601036B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP4961664B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006103874A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007004380A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006082742A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007097149A1 (ja) 有機エレクトロルミネッセンス素子、白色発光素子、表示装置、及び照明装置
WO2007108459A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007029533A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2008035664A1 (fr) Matériau de dispositif électroluminescent organique, dispositif électroluminescent organique, dispositif d&#39;affichage et d&#39;éclairage
JPWO2006008976A1 (ja) 白色発光有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006132012A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2006126389A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP4830283B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5353006B2 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
JP2007081014A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5463897B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
WO2006100925A1 (ja) 有機el素子用材料、有機el素子、表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782319

Country of ref document: EP

Kind code of ref document: A1