WO2007102545A1 - インホイールモータ駆動装置 - Google Patents

インホイールモータ駆動装置 Download PDF

Info

Publication number
WO2007102545A1
WO2007102545A1 PCT/JP2007/054442 JP2007054442W WO2007102545A1 WO 2007102545 A1 WO2007102545 A1 WO 2007102545A1 JP 2007054442 W JP2007054442 W JP 2007054442W WO 2007102545 A1 WO2007102545 A1 WO 2007102545A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
side rotating
rotating member
motor
bearing
Prior art date
Application number
PCT/JP2007/054442
Other languages
English (en)
French (fr)
Inventor
Minoru Suzuki
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006063150A external-priority patent/JP2007239886A/ja
Priority claimed from JP2006222606A external-priority patent/JP5160756B2/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to CN200780008197.1A priority Critical patent/CN101395404B/zh
Priority to DE112007000565.3T priority patent/DE112007000565B4/de
Priority to US12/224,806 priority patent/US8132636B2/en
Publication of WO2007102545A1 publication Critical patent/WO2007102545A1/ja
Priority to US13/229,875 priority patent/US8403794B2/en
Priority to US13/229,815 priority patent/US8336652B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • H02K7/16Structural association with mechanical loads, e.g. with hand-held machine tools or fans for operation above the critical speed of vibration of the rotating parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/50Structural details of electrical machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/187Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with all four raceways integrated on parts other than race rings, e.g. fourth generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/909Gearing

Definitions

  • the present invention relates to an in-wheel motor drive apparatus that independently drives each drive wheel to rotate.
  • the present invention also relates to an in-wheel motor drive device in which an output shaft of an electric motor and a wheel hub are coaxially connected via a reduction gear.
  • a conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2001-32914.
  • the in-wheel motor drive device described in the publication includes a motor that generates a driving force, a speed reducer that decelerates the rotation of the motor and transmits it to the drive wheels, and a wheel hub that rotatably holds the drive wheels.
  • the speed reducer includes a sun gear provided on the input shaft, an internal gear fixed to the casing, and a planetary gear disposed between the sun gear and the internal gear and coupled to the output shaft.
  • a planetary gear mechanism is used.
  • two planetary gear mechanisms are arranged in series to increase the reduction ratio.
  • the wheel hub is fixedly connected to the output shaft of the speed reducer, and is supported rotatably with respect to the casing by a wheel nove bearing.
  • the wheel hub bearing holds an inner ring that fits to the outer diameter surface of the wheel hub, an outer ring that fits to the inner diameter surface of the casing, a plurality of rolling elements disposed between the inner ring and the outer ring, and a plurality of rolling elements. It is a double row rolling bearing provided with a retainer.
  • a conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2005-7914.
  • the in-wheel motor drive device described in the publication is driven A motor for generating a force, a wheel hub for connecting the tire, and a speed reducer for reducing the rotation of the rotor of the motor and transmitting it to the tire between the motor and the wheel hub.
  • This reduction gear employs a parallel shaft gear mechanism that combines multiple gears with different numbers of teeth.
  • An in-wheel motor drive device in which the output shaft of the electric motor and the wheel hub are coaxially connected via a speed reducer does not require a large-scale power transmission mechanism such as a propeller shaft or a differential gear. Therefore, it is attracting attention from the viewpoints of weight reduction and compactness of vehicles.
  • the in-wheel motor drive device that is mounted under the unsprung mass of the vehicle has a difficulty in riding comfort due to an increase in unsprung weight, and has not yet been put into practical use.
  • the output torque of the electric motor and the motor volume (weight) are in a substantially proportional relationship, and in order to obtain a large output sufficient to drive the wheels of the vehicle with a small motor volume, high-speed rotation is inevitable. It is necessary to incorporate a reduction gear between the output shaft of the electric motor and the hub. For this reason, it is meaningless if the weight of the speed reducer to be incorporated is large. Therefore, a compact speed reducer capable of obtaining a large speed reduction ratio is required for the in-wheel motor drive device.
  • a reduction device for an electric vehicle there is one in which a planetary gear reduction device is incorporated as a reduction device between an output shaft of an electric motor and a wheel hub (see, for example, JP-A-5-332401). ).
  • the one described in the publication is not an in-wheel motor drive device in which the electric motor and the speed reducer are mounted under the spring, but the planetary gear speed reducer is provided in two stages and the second stage planetary gear speed reducer is Output is distributed to the left and right unsprung wheels via the drive shaft.
  • the in-wheel motor drive device having the above-described configuration is disposed at the lower part of the suspension, there is a problem of a decrease in running stability due to an increase in so-called “unsprung weight”. This problem becomes more prominent with the recent compactness of automobiles.
  • the wheel hub bearing has a problem that the radial dimension increases because the inner ring and the outer ring are disposed between the wheel hub and the casing. Also, it is difficult to say that the number of parts is large and the assembly is good.
  • a parallel shaft gear mechanism and a planetary planetary gear employed in the speed reducer described in each of the above publications The reduction ratio of the gear mechanism is generally set to the former force SlZ2 to lZ3 and the latter to about 1Z3 to 1Z6 from the viewpoint of the strength of the gear. This is inadequate as the reduction ratio of the reduction gear mounted on the in-wheel motor drive device, and the reduction gear needs to have a multi-stage configuration in order to obtain a sufficient reduction ratio. This leads to an increase in the weight and size of the reducer, which is inappropriate for in-wheel motor drives that require compactness.
  • the planetary gear reducer can obtain a large reduction ratio as compared with the parallel shaft gear.
  • Force The planetary gear reducer is composed of a sun gear, a ring gear, a pinion gear, and a pinion gear carrier.
  • Disclosure of the invention is composed of a sun gear, a ring gear, a pinion gear, and a pinion gear carrier.
  • an object of the present invention is to provide an in-wheel motor drive device having a wheel structure and a wheel structure capable of stably holding a drive wheel, which is a small and lightweight in-wheel motor drive device. is there.
  • Another object of the present invention is to provide an in-wheel motor drive device that is small, light, excellent in durability, highly reliable.
  • An in-wheel motor drive device includes a casing, a motor unit that rotationally drives the motor side rotating member, a speed reducing unit that decelerates the rotation of the motor side rotating member and transmits the rotation to the wheel side rotating member, A wheel hub fixedly connected to the wheel side rotating member, and a wheel hub and a bearing for supporting the wheel hub rotatably with respect to the casing are provided.
  • the outer member formed with the first and second outer raceway surfaces and the first inner raceway surface provided on the outer diameter surface of the wheel-side rotating member and facing the first outer raceway surface.
  • a second inner raceway surface provided on an outer diameter surface of the wheel hub and facing the second outer raceway surface, between the first outer raceway surface and the first inner raceway surface, and the second outer raceway surface. And a plurality of rolling elements arranged between the second inner raceway surface.
  • the outer raceway surface is provided on the inner diameter surface of the casing, and the inner raceway surface is provided on the outer diameter surface of the wheel-side rotating member and the wheel knob, so that an inner ring and an outer ring as components of the bearing are provided. Therefore, the radial dimension of the wheel knob bearing can be reduced. Alternatively, when the radial dimensions are the same, the diameter of the rolling elements can be increased, so that the load capacity can be increased. Furthermore, the parts point The effect of improving the assemblability by reducing the number can be expected.
  • the wheel knob has a cylindrical hollow portion, and the wheel side rotating member is fitted inside the hollow portion of the wheel hub, and the inner diameter surface of the wheel hub and the outer diameter of the wheel side rotating member are The surface is plastically bonded by expanding and caulking the wheel side rotating member.
  • the coupling strength between the wheel hub and the wheel-side rotating member is greatly improved, so that the drive wheel can be stably held.
  • the speed reducer is rotatably held by the sun gear provided on the motor side rotating member, the internal gear fixed to the casing, and the wheel side rotating member, and the sun gear and A plurality of planetary gears disposed between the internal gears.
  • the motor-side rotating member further includes an eccentric portion, and the speed reduction portion is rotatably held by the eccentric portion, and the rotation axis of the motor-side rotating member is rotated along with the rotation of the motor-side rotating member.
  • a revolving member that revolves around the center, an outer peripheral engaging member that engages with the outer peripheral portion of the revolving member to cause the revolving member to rotate, and the revolving member that rotates.
  • a motion conversion mechanism that converts the rotational motion around the center and transmits the rotational motion to the wheel side rotational member.
  • the outer peripheral diameter member is rotatably supported on the casing by a bearing.
  • the contact resistance due to the engagement with the revolution member can be reduced.
  • an in-wheel motor drive device that suppresses torque loss due to contact between the revolution member and the outer peripheral engagement member can be obtained.
  • the outer peripheral engagement member is in direct contact with the outer peripheral portion of the revolution member.
  • the outer peripheral engagement member receives a bending stress due to contact with the revolution member. This bending stress increases in proportion to the rotational torque of the revolution member. Therefore, if the bending strength of the outer peripheral engagement member is low, there is a problem that the maximum transmission torque of the speed reduction portion cannot be set large. On the other hand, The large bending stress increases in proportion to the cross-sectional area of the outer peripheral engagement member.
  • the size of the outer peripheral engaging member is limited by the size of the revolving member and cannot be set freely. Therefore, the cross-sectional area of the outer peripheral engaging member can be set to the maximum by bringing both members into direct contact with each other without interposing other members at the contact portion between the revolving member and the outer peripheral engaging member.
  • the outer peripheral engagement member is a rod-shaped member including a large-diameter portion having a relatively large diameter and a small-diameter portion having a relatively small diameter.
  • the large diameter portion engages with the outer peripheral portion of the revolution member, and the small diameter portion is rotatably supported by the casing by a bearing.
  • the bearing that supports the outer peripheral engagement member also increases in size.
  • the bearing housing space of the casing becomes large. Therefore, the diameter of the region in contact with the revolving member is increased to ensure sufficient maximum bending stress, and the diameter of the region supported by the bearing is decreased to reduce the bearing housing space.
  • an in-wheel motor drive device that is small and has a large transfer torque capacity can be obtained.
  • An in-wheel motor drive device includes a casing, a motor unit that rotationally drives a motor-side rotating member having an eccentric portion, and wheel-side rotation by reducing the rotation of the motor-side rotating member.
  • the speed reduction portion is rotatably held by the eccentric portion, and revolves around the rotation axis as the motor side rotation member rotates, and is rotatably supported by the casing by the bearing.
  • the outer peripheral engagement member that engages with the outer periphery of the revolving member to cause the rotation of the revolving member, and the rotation of the revolving member are converted into a rotational movement around the rotation axis of the motor side rotating member.
  • a motion conversion mechanism that transmits to the wheel side rotating member.
  • FIG. 1 is a diagram showing an in-wheel motor drive device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a diameter-enlarged galling method between a wheel-side rotating member and a wheel knob of the in-wheel motor drive device of FIG. 1.
  • FIG. 3 is a view showing an in-wheel motor drive device according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view taken along IV-IV in FIG.
  • FIG. 5 is an enlarged view around the eccentric portion of FIG.
  • FIG. 6 is a schematic sectional view of an in-wheel motor drive device according to another embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is an enlarged view around the eccentric portion of FIG.
  • FIG. 9 is an enlarged view of the periphery of the outer periphery engaging member of FIG.
  • FIG. 10 is an enlarged view of an outer peripheral engagement member as a comparative example of FIG.
  • FIG. 11 is a plan view of an electric vehicle having an in-wheel motor drive device.
  • FIG. 12 is a rear sectional view of the electric vehicle shown in FIG.
  • FIG. 11 is a plan view of the electric vehicle 11
  • FIG. 12 is a view of the electric vehicle 11 as viewed from the rear.
  • electric vehicle 11 provides driving force to chassis 12, front wheels 13 as steering wheels, rear wheels 14 as drive wheels, and left and right rear wheels 14. And an in-wheel motor drive device 15 for transmission.
  • the rear wheel 14 is housed inside a wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm that extends from side to side, and absorbs the vibration of the rear wheel 14 that is also subjected to ground force by a strut including a coil spring and a shock absorber. Suppresses vibration. Furthermore, a stabilizer that suppresses the tilt of the vehicle body when turning, etc.
  • the suspension device 12b is an independent suspension type that can raise and lower the left and right wheels independently in order to improve the followability to the road surface irregularities and efficiently transmit the driving force of the driving wheels to the road surface. Desirable
  • the electric vehicle 11 includes a motor, a drive shaft, and a differential gear on the chassis 12 by providing an in-wheel motor drive device 15 that drives the left and right rear wheels 14 inside the wheel housing 12a. Since there is no need to provide a mechanism, etc., it is possible to secure a wide cabin space and control the rotation of the left and right drive wheels. /
  • in-wheel motor drive device 15 is required to be downsized in order to secure a wider cabin space. Therefore, as the in-wheel motor drive device 15, the in-wheel motor drive devices 21, 41, 61 according to the embodiment of the present invention as shown in FIGS. 1, 3, and 6 are employed.
  • FIG. 1 is a schematic cross-sectional view of the in-wheel motor drive device 21.
  • an in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a deceleration unit.
  • a wheel nove bearing part C that transmits the output from B to the drive wheel 14 is provided, and the motor part A and the speed reduction part B are housed in the casing 22, and the wheel housing 12a of the electric vehicle 11 as shown in FIG. Can be installed inside.
  • the motor part A includes a stator 23 fixed to the casing 22, a rotor 24 disposed with a gap in the axial direction inside the stator 23, and a rotor 24 fitted inside the rotor 24.
  • This is an axial gap motor including a motor-side rotating member 25 that rotates as a whole.
  • a sealing member 38 is provided on the end surface of the motor part A opposite to the speed reduction part B in order to prevent dust from entering the motor part A.
  • the rotor 24 has a flange-shaped rotor portion 24a and a cylindrical hollow portion 24b, and is rotatably supported with respect to the casing 22 by a double row rolling bearing 34. Further, a sealing member 35 is provided between the casing 22 and the rotor 24 in order to prevent the lubricant encapsulated in the speed reduction part B from entering the motor part A.
  • the motor-side rotating member 25 is spline-fitted into the hollow portion 24b of the rotor 24, and is held rotatably with respect to the casing 22 and the wheel-side rotating member 30 by the rolling bearings 36 and 37 on the left and right sides of the speed reducing portion B. Being!
  • the reduction unit B includes a sun gear 26 provided on the motor-side rotating member 25, an internal gear 27 fixed to the casing 22, and a plurality of planets arranged between the sun gear 26 and the internal gear 27.
  • the planetary carrier shaft 2 that rotatably supports the toothed wheel 28 and the planetary gear 28 by needle roller bearings 2
  • a planetary gear mechanism comprising a wheel-side rotating member 30 that takes out the revolution motion of the planet carrier shaft as an output.
  • the wheel-side rotating member 30 includes a flange portion 30a and a cylindrical hollow portion 30b.
  • the end surface of the flange portion 30a has holes for fixing the planet carrier shaft 29 at equal intervals on the circumference centered on the rotation axis, and the outer diameter surface of the hollow portion 30b is the inner diameter of the wheel hub 31 Mates with the surface.
  • the wheel hub bearing portion C includes a wheel knob 31 fixedly connected to the wheel-side rotating member 30, and a wheel knob bearing 33 that holds the wheel hub 31 rotatably with respect to the casing 22.
  • the wheel knob 31 has a cylindrical hollow portion 3 la and a flange portion 3 lb.
  • a wheel-side rotating member 30 is fitted to the inner diameter surface of the hollow portion 3 la, and a driving wheel 14 (not shown) is fixedly connected to the flange portion 31b by a bolt 31c.
  • a sealing member 32 is provided at the opening of the hollow portion 31a in order to prevent dust from entering the inside of the in-wheel motor drive device 21.
  • the wheel nove bearing 33 is a double row anguilla ball bearing that employs a ball 33e as a rolling element.
  • a first outer raceway surface 33a (right side in the figure) and a second outer raceway surface 33b (left side in the figure) are provided on the inner diameter surface of the outer member 22a.
  • the first inner raceway surface 33c facing the surface 33a is arranged on the outer diameter surface of the wheel-side rotating member 30, and the second outer raceway
  • a second inner raceway surface 33d facing the surface 33b is provided on the outer diameter surface of the wheel hub 32, respectively.
  • a plurality of balls 33e are arranged between the first outer raceway surface 33a and the first inner raceway surface 33c, and between the second outer raceway surface 33b and the second inner raceway surface 33d.
  • the wheel nove bearing 33 includes a cage 33f that holds the balls 33e in the left and right rows, and a tight seal that prevents leakage of lubricant such as grease enclosed in the bearing and contamination from outside. Including 33 g of sealing member.
  • the outer member 22 a having the first and second outer ring raceway surfaces 33 a and 33 b is fixed to the casing 22 by bolts 39 from the viewpoint of the incorporation of the wheel nove bearing 33.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23, and the rotor 24 and the motor side rotating member 25 configured by a permanent magnet or a direct current electromagnet rotate. . At this time, as the high frequency voltage is applied to the coil, the rotor 24 and the motor-side rotating member 25 rotate at a higher speed.
  • the reduction ratio r is set to about 1Z3 to LZ6 from the viewpoint of gear strength and the like.
  • the in-wheel motor drive device 21 configured as described above has the outer raceway surfaces 33a and 33b of the wheel hub bearing 33 provided on the outer member 22a, and the inner raceway surfaces 33c and 33d provided on the wheel-side rotation member 30 and By providing the wheel knob 31, the outer ring and the inner ring as components of the bearing can be omitted. As a result, the radial dimension of the wheel nove bearing 33 can be reduced. Alternatively, when the radial dimension is the same, the diameter of the ball 33e can be increased, so that the load capacity can be increased. Furthermore, an improvement in assembly man-hours can be expected by reducing the number of parts.
  • FIG. 2 is a view showing a method of joining the wheel-side rotating member and the wheel hub by expanding and caulking.
  • a cage 33f in which balls 33e are accommodated on a first inner raceway surface 33c provided on the wheel-side rotating member 30 first, a cage 33f in which balls 33e are accommodated on a first inner raceway surface 33c provided on the wheel-side rotating member 30. Put. Next, the outer member 22a is disposed at a position where the first outer raceway surface 33a properly contacts the ball 33e, and is fixed to the casing 22 by the bolt 39. Next, with the cage 33f containing the ball 33e placed on the second inner raceway surface 33d, the wheel knob 31 is rotated on the wheel side so that the ball 33e properly contacts the second outer raceway surface 33b. Fit into member 30.
  • the outer diameter surface of the wheel-side rotating member 30 and the inner diameter surface of the wheel hub 31 are plastically coupled by expanding and crimping.
  • the in-wheel motor drive device 21 is fixed, and a crimping jig 40 having an outer diameter slightly larger than the inner diameter of the hollow portion 30b of the wheel-side rotating member 30 is press-fitted into the hollow portion 30b.
  • the wheel side rotating member 30 and the wheel knob 31 are plastically coupled at the plastic coupling portion 40a.
  • the coupling strength can be significantly increased as compared with the case of fixing by fitting.
  • the wheel knob 31 can be stably held.
  • the motor-side rotating member 25 and the sun gear 26 are integrated.
  • the motor side rotating member 25 and the sun gear 26 are not limited to this, and the sun gear 26 is separately formed and fixed to a predetermined position of the motor side rotating member 25 by fitting or the like. May be.
  • the internal gear 27 is directly formed on the inner diameter surface of the casing 22 has been shown.
  • the internal gear 27 formed independently is not limited to this, and the internal gear 27 may be fitted into the casing 22.
  • the first and second outer raceway surfaces 33a and 33b are the forces shown in the example formed on the inner diameter surface of the outer member 22a. It is good also as forming in 22 directly.
  • FIG. 3 is a schematic cross-sectional view of the in-wheel motor drive device 41
  • FIG. 4 is a cross-sectional view taken along IV-IV in FIG. 3
  • FIG. 5 is an enlarged view around the eccentric portions 45a and 45b in FIG.
  • in-wheel motor drive device 41 includes motor unit A having the same configuration as in FIG. 1, decelerating unit B that decelerates and outputs the rotation of motor unit A, and decelerating unit B. 1 and a wheel nove bearing C having the same configuration as in FIG. 1, and the motor part A and the reduction part B are housed in a casing, and as shown in FIG. Installed in the wheel housing 32a. Since the motor part A and the wheel hub bearing part C have the same configuration as the in-wheel motor drive device 21 shown in FIG.
  • the motor side rotating member 45 is arranged so that the motor part A force is also applied to the speed reduction part B in order to transmit the driving force of the motor part A to the speed reduction part B, and has eccentric parts 45a and 45b in the speed reduction part B. Further, it is supported by rolling bearings 46, 47, 48 at both ends of the motor part A and at the left end of the reduction part B. Furthermore, the two eccentric portions 45a and 45b are provided with a 180 ° phase shift so as to cancel out the centrifugal force due to the eccentric motion.
  • the deceleration portion B is a curved plate 46a, 46b as a revolving member that is rotatably held by the eccentric portions 45a, 45b, and an outer peripheral portion of the curved plates 46a, 46b that are held at fixed positions on the casing 42.
  • a plurality of outer pins 47 as outer peripheral engagement members that engage with the wheel, a movement mechanism that transmits the rotation of the curved plates 46a and 46b to the wheel-side rotation member 56, and a counterweight 49.
  • curved plate 46a has a plurality of corrugations formed of a trochoidal curve such as an epitrochoid on the outer peripheral portion, and a plurality of through holes 50a penetrating one end surface force to the other end surface. , 50b.
  • a plurality of through holes 50a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 46a, and receive inner pins 51 described later.
  • the through hole 50b is provided at the center of the curved plate 46a and passes through the eccentric portion 45a.
  • the curved plate 46a is rotatably supported by the rolling bearing 52 with respect to the eccentric portion 45a.
  • This rolling bearing 52 is fitted to the eccentric portion 45a, an inner ring 52a having an inner raceway surface on the outer diameter surface, and an outer ring 52b fitted to the inner wall surface of the through hole 50b and having an outer raceway surface on the inner diameter surface.
  • a deep groove ball bearing comprising a plurality of balls 52c as rolling elements disposed between the inner ring 52a and the outer ring 52b, and a cage (not shown) that holds the plurality of balls 52c.
  • the outer pins 47 are provided at equal intervals on a circumferential track centering on the rotation axis of the motor-side rotating member 45. This coincides with the revolution trajectory of the curved plates 46a and 46b. Therefore, when the curved plates 46a and 46b revolve, the curved waveform and the outer pin 47 engage to rotate to the curved plates 46a and 46b. Give rise to Further, in order to reduce the contact resistance with the curved plates 46a and 46b, needle roller bearings 47a are provided at positions where they abut against the outer peripheral surfaces of the curved plates 46a and 46b.
  • the counterweight 49 has a disc shape and has a through-hole that fits with the motor-side rotating member 45 at a position where the central force is also off, and cancels the unbalanced inertia couple generated by the rotation of the curved plates 46a and 46b. Therefore, they are arranged outside the respective eccentric portions 45a and 45b with a phase difference of 180 ° from that of the eccentric portion.
  • the movement structure is composed of a plurality of inner pins 51 held by the wheel-side rotating member 56 and through holes 50a provided in the curved plates 46a and 46b.
  • the inner pin 51 is connected to the wheel side rotating member 56. It is provided at equal intervals on a circumferential track centering on the rotation axis. Further, in order to reduce the contact resistance with the curved plates 46a, 46b, needle roller bearings 51a are provided at positions where they contact the inner wall surfaces of the through holes 50a of the curved plates 46a, 46b.
  • the through hole 50a is provided at a position corresponding to each of the plurality of inner pins 51, and the inner diameter dimension of the through hole 50a is larger than the outer diameter dimension of the inner pin 51 (maximum outer diameter including the needle roller bearing 5 la). Set larger by a predetermined amount! Speak.
  • the motor unit A receives an electromagnetic force generated by supplying an alternating current to the coil of the stator 43, and the rotor 44 constituted by a permanent magnet or a direct current electromagnet rotates. At this time, the rotor 44 rotates at a higher speed as the high frequency voltage is applied to the coil.
  • the inner pin 51 passing through the through hole 50a comes into contact with the inner wall surface of the through hole 50a as the curved plates 46a and 46b rotate.
  • the revolving motion of the curved plates 46a, 46b is not transmitted to the inner pin 51, and only the rotational motion of the curved plates 46a, 46b is transmitted to the wheel nove bearing portion C via the wheel-side rotating member 56.
  • the in-wheel motor drive device 41 By employing the in-wheel motor drive device 41 according to the above embodiment in the electric vehicle 11, the unsprung weight can be suppressed. As a result, the electric vehicle 11 excellent in running stability can be obtained.
  • the reduction ratio of the reduction part B having the above-described configuration is such that the number of the outer pins 47 is Z, and the curved plates 46a and 46b
  • the reduction part B that can obtain a large reduction ratio without using a multi-stage configuration is adopted. By doing so, a compact and high reduction ratio in-wheel motor drive device can be obtained. Further, since the contact resistance is reduced by providing the needle roller bearings 47a, 5 la at the positions where they abut against the curved plates 46a, 46b of the outer pin 47 and the inner pin 51, the transmission efficiency of the speed reduction part B is reduced. improves.
  • the outer raceway surface of the rolling bearing 52 on the inner wall surface of the through hole 50b of the curved plates 46a and 46b, the outer ring 52b can be omitted.
  • the gap between the inner raceway surface and the outer raceway surface is increased, so that it is possible to employ balls 52c having a large diameter or increase the number of balls 52c.
  • the load capacity can be improved without changing the overall size of the rolling bearing 52, so that an in-wheel motor drive device having excellent durability and high reliability can be obtained. It can also be expected to reduce product costs by reducing the number of parts.
  • FIG. 6 is a schematic cross-sectional view of the in-wheel motor drive device 61
  • FIG. 7 is a cross-sectional view taken along the line VII-VII of FIG. 6
  • FIG. 8 is an enlarged view around the eccentric portions 65a and 65b of FIG.
  • FIG. 4 is an enlarged view of an outer peripheral engagement member.
  • an in-wheel motor drive device 61 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and a deceleration unit.
  • a wheel nove bearing C that transmits the output from B to the drive wheel 14 is provided, and the motor A and the speed reducer B are housed in the casing 62, and as shown in FIG. 12, the wheel housing 12a of the electric vehicle 11 Can be installed inside.
  • Motor portion A includes stator 63 fixed to casing 62, rotor 64 disposed at a position facing the inner side of stator 63 with a gap in the axial direction, and fixedly connected to the inside of rotor 64.
  • An axial gear comprising a motor-side rotating member 65 that rotates integrally with the rotor 64. It is a promoter.
  • a sealing member 74 is provided on the end surface of the motor portion A opposite to the speed reduction portion B in order to prevent dust from entering the inner portion of the motor portion A.
  • the rotor 64 has a flange-shaped rotor portion 64a and a cylindrical hollow portion 64b, and is rotatably supported with respect to the casing 62 by a double row rolling bearing 75.
  • a sealing member 76 is provided between the casing 62 and the rotor 64 in order to prevent the lubricant encapsulated in the speed reduction part B from entering the motor part A.
  • the motor-side rotating member 65 is disposed from the motor part A through the speed reducing part B to the hollow part 68b of the wheel-side rotating member 68, and has eccentric parts 65a, 65b in the speed reducing part B.
  • One end of the motor-side rotating member 65 is fitted to the rotor 64 and is supported by rolling bearings 77 and 78 at both ends of the speed reduction part B. Further, the two eccentric portions 65a and 65b are provided with a 180 ° phase change so as to cancel out the centrifugal force caused by the eccentric motion.
  • the deceleration portion B is rotatably supported with respect to the casing 62 by curved plates 66a, 66b as revolving members held rotatably by the eccentric portions 65a, 65b and needle roller bearings 67c.
  • a plurality of outer pins 67 as outer peripheral engaging members that engage with the outer peripheral portions of the plates 66a, 66b, a motion conversion mechanism that transmits the rotational motion of the curved plates 66a, 66b to the wheel side rotating member 68, and a counterweight 69.
  • the wheel side rotating member 68 has a flange portion 68a and a cylindrical hollow portion 68b.
  • the end face of the flange portion 68a has holes for fixing the inner pins 71 at equal intervals on the circumference around the rotation axis of the wheel side rotation member 68.
  • the outer diameter surface of the hollow portion 68b is fitted with the inner diameter surface of the wheel hub 72, and the inner diameter surface of the hollow portion 68b is the rotation axis of the motor side rotating member 65 and the rotation axis of the wheel side rotating member 68.
  • the motor-side rotating member 65 is rotatably supported by the rolling bearing 78 so as to be aligned with the center.
  • curved plate 66a has a plurality of corrugations formed of a trochoidal system curve such as an epitrochoid on the outer peripheral portion, and a plurality of through holes 70a penetrating one end surface force to the other end surface. , 70b.
  • a plurality of through holes 70a are provided at equal intervals on a circumference centering on the rotation axis of the curved plate 66a, and receive an inner pin 71 described later.
  • the through hole 70b is provided at the center of the curved plate 66a and passes through the eccentric portion 65a.
  • the curved plate 66a is rotatably supported by the rolling bearing 79 with respect to the eccentric portion 65a.
  • This rolling bearing 79 includes an inner ring 79a that is fitted to the eccentric portion 65a and has an inner raceway surface on the outer diameter surface, and an outer ring 79b that is fitted to the inner wall surface of the through hole 70b and has an outer raceway surface on the inner diameter surface.
  • a deep groove ball bearing comprising a plurality of balls 79c as rolling elements arranged between the inner ring 79a and the outer ring 79b, and a cage (not shown) for holding the plurality of balls 79c.
  • the outer pins 67 are arranged at equal intervals on a circumferential track around the rotation axis of the motor side rotation member 65. This coincides with the revolution trajectory of the curved plates 66a and 66b. Therefore, when the curved plates 66a and 66b revolve, the curved waveform and the outer pin 67 engage to rotate to the curved plates 66a and 66b. Cause movement.
  • FIG. 9 is an enlarged view around the outer pin 67 shown in FIG. 6, and
  • FIG. 10 is an enlarged view around the outer pin 87 as a comparative example of FIG.
  • the outer pin 67 has a large diameter portion 67a having a relatively large diameter at the center, a small diameter portion 67b having a relatively small diameter at both ends, and a large diameter portion 67a. And a taper portion 67d between the small diameter portion 67b and the small diameter portion 67b.
  • the large-diameter portion 67a is disposed at a position in contact with the curved plates 66a and 66b, and both are in direct contact.
  • the small diameter portion 67b is rotatably supported by the casing 62 by a needle roller bearing 67c.
  • the outer pins 67, 87 supported at both ends receive a load (bending stress) in the normal direction of the contact portion with the curved plates 66a, 66b, 86a, 86b. Since the load is applied, it is desirable to increase the diameter of the outer pins 67 and 87 in order to ensure a sufficient maximum bending stress of the outer pins 67 and 87. However, the diameter of the region in contact with the curved plates 66a, 66b, 86a, 86b (diameter d of the large diameter portion 67a in FIG. 9 and diameter d including the needle roller bearing 87c in FIG. 10)
  • the outer pin 67 in direct contact with the curved plates 66a and 66b can increase the maximum bending stress as compared with the outer pin 87 shown in FIG.
  • the large diameter portion 67a and the small diameter portion 67b in FIG. 9 may have the same diameter.
  • the needle roller bearing 67c that supports the outer pin 67 also increases in size.
  • a space for accommodating the needle roller bearing 67c of the casing 62 becomes large. Therefore, the diameter of the large-diameter portion 67a that contacts the curved plates 66a and 66b is increased to ensure a sufficient maximum bending stress, and the diameter of the small-diameter portion 67b supported by the needle roller bearing 67c is decreased. Reduce the storage space. As a result, it is possible to obtain an in-wheel motor drive device 61 that is small and has a large transmission torque.
  • the needle roller bearing 67 c is used as a bearing for supporting the outer pin 67
  • any other bearings can be adopted without being limited thereto.
  • the bearing housing space can be further reduced by / J.
  • a vertical stepped portion may be provided between the large diameter portion 67a and the small diameter portion 67b, in order to reduce the stress concentration on the boundary portion, as shown in FIG. It is desirable to provide a taper part 67d at the boundary U.
  • the counterweight 69 has a disc shape and has a through hole that fits with the motor-side rotating member 65 at a position where the central force is also off, and cancels out an unbalanced inertia couple generated by the rotation of the curved plates 66a and 66b. Therefore, they are arranged outside the respective eccentric portions 65a and 65b with a phase difference of 180 ° from that of the eccentric portion.
  • the motion structure is composed of a plurality of inner pins 71 held by the wheel-side rotating member 68 and through holes 70a provided in the curved plates 66a and 66b.
  • the inner pins 71 are provided at equal intervals on a circumferential track centering on the rotational axis of the wheel-side rotating member 68, one end is fixed to the wheel-side rotating member 68, and the other end is connected to the through hole 70a.
  • a retaining portion 71b is provided to prevent the slipping out.
  • a needle roller bearing 71a is provided at a position in contact with the inner wall surface of the through hole 70a of the curved plates 66a and 66b.
  • the through hole 70a is provided at a position corresponding to each of the plurality of inner pins 71, and the inner diameter of the through hole 70a is based on the outer diameter of the inner pin 71 (the maximum outer diameter including the needle roller bearing 71a). It is set larger by a predetermined amount.
  • the wheel hub bearing portion C includes a wheel knob 72 fixedly connected to the wheel-side rotating member 68, and a wheel knob bearing 73 that holds the wheel hub 72 rotatably with respect to the casing 62.
  • the wheel knob 72 has a cylindrical hollow portion 72a and a flange portion 72b.
  • a wheel-side rotating member 68 is fitted to the inner diameter surface of the hollow portion 72a, and the driving wheel 14 (not shown) is fixedly connected to the flange portion 72b by a bolt 72c.
  • a sealing member 72d is provided at the opening of the hollow portion 72a in order to prevent dust from entering the inside of the in-wheel motor drive device 61.
  • the wheel nove bearing 73 is a double-row anguilla ball bearing that employs balls 73e as rolling elements.
  • a first outer raceway surface 73a (right side in the figure) and a second outer raceway surface 73b (left side in the figure) are provided on the inner diameter surface of the outer member 62a.
  • the first inner raceway surface 73c facing the surface 73a is provided on the outer diameter surface of the wheel-side rotating member 68
  • the second inner raceway surface 73d facing the second outer raceway surface 73b is provided on the outer diameter surface of the wheel hub 72. It has been.
  • a plurality of balls 73e are arranged between the first outer raceway surface 73a and the first inner raceway surface 73c, and between the second outer raceway surface 73b and the second inner raceway surface 73d.
  • the wheel nove bearing 73 includes a cage 73f for holding the left and right rows of balls 73e, a seal 73f that prevents leakage of lubricant such as grease enclosed in the bearing and dust from the outside. 73 g of sealing member.
  • the outer member 62a having the first and second outer ring raceway surfaces 73a and 73b is fixed to the casing 62 by bolts 62b from the viewpoint of the incorporation of the wheel nove bearing 73.
  • the in-wheel motor drive device 61 configured as described above has the outer raceway surfaces 73a and 73b of the wheel hub bearing 73 provided on the outer member 62a, and the inner raceway surfaces 73c and 73d provided on the wheel side rotating member 68 and the wheel knob.
  • the outer ring and inner ring as components of the bearing can be omitted.
  • the radial dimension of the wheel nove bearing 73 can be reduced.
  • the diameter of the ball 73e can be increased, and the load capacity can be increased.
  • it can be expected to improve assembly by reducing the number of parts.
  • the outer diameter surface of the wheel-side rotating member 68 and the inner diameter surface of the wheel knob 72 caulk the wheel-side rotating member 68 to expand its diameter. Thus, it is plastically connected.
  • the cage 73f that accommodates the balls 73e is placed on the first inner raceway surface 73c provided on the wheel-side rotating member 68.
  • the outer member 62a is disposed at a position where the first outer raceway surface 73a properly contacts the ball 73e, and is fixed to the casing 62 with a bolt 62b.
  • the wheel nose 72 is placed on the wheel side so that the ball 73e properly contacts the second outer raceway surface 73b. Fit into the rotating member 68.
  • the outer diameter surface of the wheel-side rotating member 68 and the inner diameter surface of the wheel hub 72 are plastically coupled by expanding and crimping.
  • the in-wheel motor driving device 61 is fixed, and a caulking jig (not shown) having an outer diameter slightly larger than the inner diameter of the hollow portion 68b of the wheel-side rotating member 68 is press-fitted into the hollow portion 68b. To do.
  • the wheel-side rotating member 68 and the wheel knob 72 are plastically coupled at the plastic coupling portion 80.
  • the coupling strength can be greatly increased as compared with the case of fixing by fitting.
  • the wheel hub 72 can be stably held.
  • the rolling member 78 is interposed in the hollow portion 68b of the wheel side rotating member 68 to support the motor side rotating member 65.
  • the inner diameter side of the wheel-side rotating member 68 may be expanded to be plastically coupled by expanding and tightening.
  • a rolling bearing is disposed in the hollow portion 72a of the wheel knob 72 to provide a motor.
  • the side rotation member 65 is supported.
  • two curved plates 46a, 46b, 66a, 66b of the deceleration unit B are provided with 180 ° phase shifts.
  • the number of the curved plates can be arbitrarily set. For example, when three curved plates are provided, it is recommended to change the phase by 120 °.
  • the motion conversion mechanism in the above embodiment includes the inner pins 51, 71 fixed to the wheel-side rotating members 56, 68, and the through holes 50a, 46a, 66b provided in the curved plates 46a, 46b, 66a, 66b.
  • the force shown in the example composed of 70a can be any configuration that can transmit the rotation of the speed reducing unit B to the wheel knobs 53 and 72 without being limited to this.
  • it may be a movement mechanism composed of an inner pin fixed to a curved plate and a hole formed in the output member.
  • the power supplied to the motor unit A to drive the motor unit A and the power transmitted from the motor unit A to the drive wheels 14 On the other hand, when the vehicle decelerates or goes down a hill, the power from the drive wheel 14 side is converted into high-rotation low-torque rotation by the deceleration unit B and transmitted to the motor unit A, and the motor unit A can be used to generate electricity. Furthermore, the electric power generated here may be stored in a knotter and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
  • a brake can be provided in the configuration of the above embodiment.
  • Figure 1 and Figure 3 6 and in the configuration on the right side of the rotor 24, 44, 64 in the drawing, a rotating member that rotates integrally with the rotor 24, 4 4, 64, and the casing 22, 42, 62 cannot rotate.
  • a piston in which an axially movable piston and a cylinder for operating the piston are arranged, and the rotor 24, 44, 64 is locked by fitting the piston and the rotating member when the vehicle is stopped. Even a brake! /.
  • the flange formed on a part of the rotating member that rotates integrally with the rotor 24, 44, 64 and the friction plate installed on the casing 22, 42, 62 side may be replaced with the casing 22, 42, 62 side. It may be a disc brake sandwiched between cylinders.
  • a drum is formed on a part of the rotating member, and a brake shoe is fixed to the casing 22, 42, 62 side, and a drum brake that locks the rotating member by friction engagement and self-engagement is used. Can do.
  • the wheel-side rotating members 30, 56, 68 and the wheel knobs 31, 53, 72 are forces that are fixedly connected by diameter expansion caulking. You can fix them in any way! /.
  • the wheel hub bearings 33, 54, 73 have been shown to employ an anguilla ball bearing.
  • the present invention is not limited to this.
  • Any bearing can be applied regardless of whether it is a rolling bearing or a double row or single row.
  • any type of bearing can be adopted for the bearings arranged in other places.
  • a motor having an arbitrary configuration is not limited thereto.
  • it may be a radial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the inner side of the stator with a radial gap.
  • the outer raceway surfaces 73a and 73b of the wheel nove bearing 73 are formed on the outer member 62a, and the inner raceway surfaces 73c and 73d are formed on the wheel-side rotating member 68 and the wheel nove 72.
  • the example which formed is shown, it can be set as the arbitrary forms which are not restricted to this.
  • an outer raceway surface may be formed on the outer ring fitted to the casing, and an inner raceway surface may be provided on the inner ring fitted to the wheel side rotating member or the wheel hub.
  • the electric vehicle 11 shown in Fig. 11 shows an example in which the rear wheel 14 is a driving wheel.
  • the electric vehicle 11 is not limited to this and is a four-wheel driving vehicle in which the front wheel 13 may be a driving wheel. Also good.
  • “electric vehicle” is a concept that includes all vehicles that obtain driving force from electric power, and should be understood as including, for example, hybrid vehicles.
  • the present invention is advantageously used in an in-wheel motor drive device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Retarders (AREA)

Abstract

 インホイールモータ駆動装置21は、ケーシング22と、モータ部Aと、減速部Bと、車輪ハブ31と、車輪ハブ31をケーシング22に対して回転自在に支持する車輪ハブ軸受33とを備える。車輪ハブ軸受33は、ケーシング22の内径面に設けられた第1および第2外側軌道面33a,33bと、車輪側回転部材30の外径面に設けられ、第1外側軌道面33aに対向する第1内側軌道面33cと、車輪ハブ31の外径面に設けられ、第2外側軌道面33bに対向する第2内側軌道面33dと、外側軌道面33a,33bと内側軌道面33c,33dとの間に配置される複数の転動体33eとを含む。

Description

明 細 書
インホイールモータ駆動装置
技術分野
[0001] 本発明は、個々の駆動輪を独立して回転駆動するインホイールモータ駆動装置に 関するものである。
[0002] また、本発明は、電動モータの出力軸と車輪のハブとを減速機を介して同軸上に 連結したインホイールモータ駆動装置に関する。
背景技術
[0003] 従来のインホイールモータ駆動装置は、例えば、特開 2001— 32914号公報に記 載されている。同公報に記載されているインホイールモータ駆動装置は、駆動力を発 生させるモータと、モータの回転を減速して駆動輪に伝達する減速機と、駆動輪を回 転自在に保持する車輪ハブとを備える。
[0004] 減速機としては、入力軸に設けられた太陽歯車と、ケーシングに固定された内歯車 と、太陽歯車と内歯車との間に配置され、出力軸に連結される遊星歯車とを備える遊 星歯車機構を採用している。また、遊星歯車機構を直列に 2個配置して減速比を高 めている。
[0005] 車輪ハブは、減速機の出力軸に固定連結され、車輪ノヽブ軸受によってケーシング に対して回転自在に支持されている。車輪ハブ軸受は、車輪ハブの外径面に嵌合 する内輪と、ケーシングの内径面に嵌合する外輪と、内輪および外輪の間に配置さ れる複数の転動体と、複数の転動体を保持する保持器とを備える複列の転がり軸受 である。
[0006] 上記構成のインホイールモータ駆動装置を採用した電気自動車は、車体内にドラ イブユニットのための空間を確保する必要がないので車内有効スペースが増えること
、およびデフアレンシャル装置等の伝動系による効率低下や重量増がな 、利点を有 する旨が記載されている。
[0007] また、従来のインホイールモータ駆動装置は、例えば、特開 2005— 7914号公報 に記載されている。同公報に記載されているインホイールモータ駆動装置は、駆動 力を発生させるモータと、タイヤを接続するホイールハブと、モータおよびホイールハ ブの間に、モータのロータの回転を減速してタイヤに伝達する減速機とを備える。こ の減速機は、歯数の異なる複数の歯車を組み合わせてなる平行軸歯車機構を採用 している。
[0008] このような電動モータの出力軸と車輪のハブとを減速機を介して同軸上に連結した インホイールモータ駆動装置は、プロペラシャフトやデフアレンシャル等の大がかりな 動力伝達機構が不要となるので、車両の軽量化やコンパクト化等の面から注目され ている。し力しながら、車両のばね下に取り付けられるインホイールモータ駆動装置 は、ばね下重量の増加によって乗り心地が悪くなる難点があり、未だ実用化には至つ ていない。
[0009] 電動モータの出力トルクとモータ容積 (重量)はほぼ比例関係にあり、小さなモータ 容積で車両の車輪を駆動するのに足る大きな出力を得るためには、高速回転化が避 けられず、電動モータの出力軸とハブとの間に減速機を組み込む必要がある。この ため、組み込む減速機の重量が大きくなつては意味がないので、インホイールモータ 駆動装置では、コンパクトで大きな減速比の得られる減速機が求められている。
[0010] また、電気自動車用減速装置として、電動モータの出力軸と車輪のハブとの間に減 速機として遊星歯車減速機を組み込んだものがある(例えば、特開平 5— 332401号 公報参照)。同公報に記載されたものは、電動モータと減速機がばね下に取り付けら れるインホイールモータ駆動装置ではないが、遊星歯車減速機を 2段に設け、 2段目 の遊星歯車減速機力もの出力をドライブシャフトを介してばね下の左右の車輪に分 配している。
[0011] 上記構成のインホイールモータ駆動装置はサスペンションの下部に配置されるので 、いわゆる「ばね下重量」の増加による走行安定性の低下が問題となる。この問題は 、近年の自動車全体のコンパクトィ匕に伴ってさらに顕著となる。
[0012] また、車輪ハブ軸受は、車輪ノ、ブとケ一シングとの間に内輪および外輪を配置する ので、径方向の寸法が大きくなるという問題がある。また、部品点数が多く組立性が 良いとは言い難い。
[0013] また、上記の各公報に記載された減速機に採用されている平行軸歯車機構や遊星 歯車機構の減速比は、歯車の強度等の観点から前者力 SlZ2〜lZ3、後者が 1Z3 〜1Z6程度に設定されるのが一般的である。これは、インホイールモータ駆動装置 に搭載する減速機の減速比としては不十分であり、十分な減速比を得るためには、 減速機を多段構成とする必要がある。これは、減速機の重量およびサイズの増大を 招き、コンパクトィ匕が必要なインホイールモータ駆動装置には不適切である。
[0014] また、遊星歯車減速機は平行軸歯車と比較すると大きな減速比を得ることができる 力 遊星歯車減速機はサンギヤ、リングギヤ、ピ-オンギヤおよびピ-オンギヤのキヤ リャとで構成されるので、部品点数が多くコンパ外ィ匕が難しいという問題がある。 発明の開示
[0015] そこで、本発明の目的は、小型で軽量なインホイールモータ駆動装置であって、駆 動輪を安定して保持可能な車輪ノ、ブ構造を有するインホイールモータ駆動装置を提 供することである。
[0016] そこで、本発明の他の目的は、小型軽量で耐久性に優れ、信頼性の高!、インホイ ールモータ駆動装置を提供することである。
[0017] この発明に係るインホイールモータ駆動装置は、ケーシングと、モータ側回転部材 を回転駆動するモータ部と、モータ側回転部材の回転を減速して車輪側回転部材に 伝達する減速部と、車輪側回転部材に固定連結された車輪ハブと、車輪ハブをケー シングに対して回転自在に支持する車輪ノ、ブ軸受とを備える。車輪ハブ軸受に注目 すると、第 1および第 2外側軌道面とが形成された外方部材と、車輪側回転部材の外 径面に設けられ、第 1外側軌道面に対向する第 1内側軌道面と、車輪ハブの外径面 に設けられ、第 2外側軌道面に対向する第 2内側軌道面と、第 1外側軌道面と第 1内 側軌道面との間、および第 2外側軌道面と第 2内側軌道面との間に配置される複数 の転動体とを含む。
[0018] 上記構成のように、外側軌道面をケーシングの内径面に設け、内側軌道面を車輪 側回転部材および車輪ノヽブの外径面に設けることにより、軸受の構成要素としての 内輪および外輪を省略することができるので、車輪ノヽブ軸受の径方向の寸法を小さ くすることができる。または、径方向の寸法を同寸法とする場合には、転動体の径を 大きくすることができるので、負荷容量を増大することが可能となる。さらには、部品点 数の削減による組立性の改善効果が期待できる。
[0019] 好ましくは、車輪ノヽブは円筒状の中空部を有し、車輪側回転部材は、車輪ハブの 中空部の内側に嵌合し、車輪ハブの内径面と車輪側回転部材の外径面とは、車輪 側回転部材を拡径加締めすることによって塑性結合される。これにより、車輪ハブと 車輪側回転部材との結合強度が大幅に向上するので、駆動輪を安定して保持する ことが可能となる。
[0020] 一実施形態として、減速部は、モータ側回転部材に設けられた太陽歯車と、ケーシ ングに固定された内歯車と、車輪側回転部材に回転自在に保持され、太陽歯車およ び内歯車の間に配置される複数の遊星歯車とを含む。
[0021] また、他の実施形態として、モータ側回転部材は偏心部をさらに有し、減速部は、 偏心部に回転自在に保持されて、モータ側回転部材の回転に伴つてその回転軸心 を中心とする公転運動を行う公転部材と、公転部材の外周部に係合して公転部材の 自転運動を生じさせる外周係合部材と、公転部材の自転運動を、モータ側回転部材 の回転軸心を中心とする回転運動に変換して車輪側回転部材に伝達する運動変換 機構とを含む。
[0022] 上記構成のような、コンパクトで高減速比が得られる減速機構を採用することによつ て、モータ部が低トルクであっても、駆動輪に十分なトルクを伝達することが可能とな る。その結果、軽量で小型のインホイールモータ駆動装置を得ることができる。
[0023] この発明によれば、小型軽量で、駆動輪を安定して保持することができるインホイ一 ルモータ駆動装置を得ることができる。
[0024] 好ましくは、前記外周径合部材は、軸受によってケーシングに回転自在に支持され ている。外周係合部材をケ一シングに回転自在とすることにより、公転部材との係合 による接触抵抗を低減することができる。これにより、公転部材と外周係合部材との接 触によるトルク損失を抑えたインホイールモータ駆動装置を得ることができる。
[0025] 好ましくは、外周係合部材は、公転部材の外周部と直接接触する。外周係合部材 は、公転部材との接触によって曲げ応力を受ける。また、この曲げ応力は公転部材 の回転トルクに比例して大きくなる。したがって、外周係合部材の曲げ強度が低いと、 減速部の最大伝達トルクを大きく設定することができないという問題がある。一方、最 大曲げ応力は、外周係合部材の断面積に比例して大きくなる。ただし、外周係合部 材の大きさは、公転部材の大きさに制限されて自由に設定することはできない。そこ で、公転部材と外周係合部材との接触部分に他の部材を介在させることなぐ両者を 直接接触させることにより、外周係合部材の断面積を最大限大きく設定することがで きる。
[0026] さらに好ましくは、外周係合部材は、相対的に直径の大きい大径部と、相対的に直 径の小さい小径部とを含む棒状部材である。そして、大径部は公転部材の外周部と 係合し、小径部は軸受によってケーシングに回転自在に支持されている。外周係合 部材の直径が大きくなると、外周係合部材を支持する軸受も大型化する。その結果、 ケーシングの軸受収容スペースも大きくなるという問題がある。そこで、公転部材と接 触する領域の直径を大きくして十分な最大曲げ応力を確保すると共に、軸受に支持 される領域の直径を小さくして軸受収容スペースを小さくする。その結果、小型で伝 達トルク容量の大きいインホイールモータ駆動装置を得ることができる。
[0027] この発明の他の局面に係るインホイールモータ駆動装置は、ケーシングと、偏心部 を有するモータ側回転部材を回転駆動するモータ部と、モータ側回転部材の回転を 減速して車輪側回転部材に伝達する減速部と、車輪側回転部材に固定連結された 車輪ノヽブとを備える。そして、減速部は、偏心部に回転自在に保持されて、モータ側 回転部材の回転に伴ってその回転軸心を中心とする公転運動を行う公転部材と、軸 受によってケーシングに回転自在に支持され、公転部材の外周部に係合して公転部 材の自転運動を生じさせる外周係合部材と、公転部材の自転運動を、モータ側回転 部材の回転軸心を中心とする回転運動に変換して車輪側回転部材に伝達する運動 変換機構とを含む。
[0028] 上記構成のような、コンパクトで高減速比が得られる減速部とすることによって、モ ータ部が低トルクであっても、駆動輪に十分なトルクを伝達することが可能となる。そ の結果、軽量で小型のインホイールモータ駆動装置を得ることができる。
[0029] また、外周係合部材をケ一シングに回転自在とすることにより、公転部材との係合 による接触抵抗を低減することができる。これにより、公転部材と外周係合部材との接 触によるトルク損失を抑えたインホイールモータ駆動装置を得ることができる。 [0030] この発明によれば、低トルクのモータを採用した場合でも駆動輪に十分なトルクを 伝達可能なインホイールモータ駆動装置を得ることができる。また、外周係合部材を ケーシングに回転自在とすることによって、小型で伝達トルクの大きいインホイールモ ータ駆動装置を得ることができる。
図面の簡単な説明
[0031] [図 1]この発明の一実施形態に係るインホイールモータ駆動装置を示す図である。
[図 2]図 1のインホイールモータ駆動装置の車輪側回転部材と車輪ノヽブとの拡径カロ 締めの方法を示す図である。
[図 3]この発明の他の実施形態に係るインホイールモータ駆動装置を示す図である。
[図 4]図 3の IV— IVにおける断面図である。
[図 5]図 3の偏心部周辺の拡大図である。
[図 6]この発明の他の実施形態に係るインホイールモータ駆動装置の概略断面図で ある。
[図 7]図 6の VII— VIIにおける断面図である。
[図 8]図 6の偏心部周辺の拡大図である。
[図 9]図 6の外周係合部材周辺の拡大図である。
[図 10]図 9の比較例としての外周係合部材の拡大図である。
[図 11]インホイールモータ駆動装置を有する電気自動車の平面図である。
[図 12]図 11の電気自動車の後方断面図である。
発明を実施するための最良の形態
[0032] 図 11および図 12を参照して、この発明の一実施形態に係るインホイールモータ駆 動装置を備えた電気自動車 11を説明する。なお、図 11は電気自動車 11の平面図 であって、図 12は電気自動車 11を後方から見た図である。
[0033] 図 11および図 12を参照して、電気自動車 11は、シャーシ 12と、操舵輪としての前 輪 13と、駆動輪としての後輪 14と、左右の後輪 14それぞれに駆動力を伝達するイン ホイールモータ駆動装置 15とを備える。後輪 14は、図 12に示すように、シャーシ 12 のホイールハウジング 12aの内部に収容され、懸架装置(サスペンション) 12bを介し てシャーシ 12の下部に固定されている。 [0034] 懸架装置 12bは、左右に伸びるサスペンションアームによって後輪 14を支持すると 共に、コイルスプリングとショックァブソーバとを含むストラットによって、後輪 14が地面 力も受ける振動を吸収してシャーシ 12の振動を抑制する。さらに、左右のサスペンシ ヨンアームの連結部分には、旋回時等に車体の傾きを抑制するスタビライザーが設け られる。なお、懸架装置 12bは、路面の凹凸に対する追従性を向上し、駆動輪の駆 動力を効率良く路面に伝達するために、左右の車輪を独立して上下させることができ る独立懸架式とするのが望ま 、。
[0035] この電気自動車 11は、ホイールハウジング 12a内部に、左右の後輪 14それぞれを 駆動するインホイールモータ駆動装置 15を設けることによって、シャーシ 12上にモー タ、ドライブシャフト、およびデフアレンシャルギヤ機構等を設ける必要がなくなるので 、客室スペースを広く確保でき、かつ、左右の駆動輪の回転をそれぞれ制御すること ができると!、う利点を備えて!/、る。
[0036] 一方、この電気自動車 11の走行安定性を向上するために、ばね下重量を抑える必 要がある。また、さらに広い客室スペースを確保するために、インホイールモータ駆動 装置 15の小型化が求められる。そこで、インホイールモータ駆動装置 15として、図 1 、図 3、および図 6に示すようなこの発明の一実施形態に係るインホイールモータ駆 動装置 21, 41, 61を採用する。
[0037] 図 1および図 2を参照して、この発明の一実施形態に係るインホイールモータ駆動 装置 21を説明する。なお、図 1は、インホイールモータ駆動装置 21の概略断面図で ある。
[0038] まず、図 1を参照して、インホイールモータ駆動装置 21は、駆動力を発生させるモ ータ部 Aと、モータ部 Aの回転を減速して出力する減速部 Bと、減速部 Bからの出力 を駆動輪 14に伝える車輪ノヽブ軸受部 Cとを備え、モータ部 Aと減速部 Bとはケーシン グ 22に収納されて、図 12に示すように電気自動車 11のホイールハウジング 12a内に 取り付けられる。
[0039] モータ部 Aは、ケーシング 22に固定されるステータ 23と、ステータ 23の内側に軸方 向の隙間を設けて配置されるロータ 24と、ロータ 24の内側に嵌合してロータ 24と一 体回転するモータ側回転部材 25とを備えるアキシアルギャップモータである。また、 モータ部 Aの減速部 Bと反対側の端面には、モータ部 Aの内部への塵埃の混入等を 防止するために密封部材 38が設けられて 、る。
[0040] ロータ 24は、フランジ形状のロータ部 24aと円筒形状の中空部 24bとを有し、複列 の転がり軸受 34によってケーシング 22に対して回転自在に支持されている。また、ケ 一シング 22とロータ 24との間には、減速部 Bに封入された潤滑剤のモータ部 Aへの 侵入を防止するために密封部材 35が設けられて 、る。
[0041] モータ側回転部材 25は、ロータ 24の中空部 24bにスプライン嵌合し、減速部 Bの 左右で転がり軸受 36, 37によって、ケーシング 22および車輪側回転部材 30に対し て回転自在に保持されて!、る。
[0042] 減速部 Bは、モータ側回転部材 25に設けられた太陽歯車 26と、ケーシング 22に固 定された内歯車 27と、太陽歯車 26および内歯車 27の間に配置される複数の遊星歯 車 28と、遊星歯車 28を針状ころ軸受によって回転自在に支持する遊星キャリア軸 2
9と、遊星キャリア軸の公転運動を出力として取り出す車輪側回転部材 30とを備える 遊星歯車機構である。
[0043] 車輪側回転部材 30は、フランジ部 30aと円筒状の中空部 30bとを有する。フランジ 部 30aの端面には、回転軸心を中心とする円周上の等間隔に遊星キャリア軸 29を固 定する穴を有し、中空部 30bの外径面が車輪ノ、ブ 31の内径面と嵌合する。
[0044] 車輪ハブ軸受部 Cは、車輪側回転部材 30に固定連結された車輪ノヽブ 31と、車輪 ハブ 31をケーシング 22に対して回転自在に保持する車輪ノヽブ軸受 33とを備える。 車輪ノヽブ 31は、円筒形状の中空部 3 laとフランジ部 3 lbとを有する。中空部 3 laの 内径面には車輪側回転部材 30が嵌合し、フランジ部 31bにはボルト 31cによって駆 動輪 14 (図示省略)が固定連結される。また、中空部 31aの開口部分には、インホイ ールモータ駆動装置 21の内部への塵埃の混入等を防止するために密封部材 32が 設けられている。
[0045] 車輪ノヽブ軸受 33は、転動体としての玉 33eを採用する複列のアンギユラ玉軸受で ある。玉 33eの軌道面としては、第 1外側軌道面 33a (図中右側)および第 2外側軌道 面 33b (図中左側)とが外方部材 22aの内径面に設けられており、第 1外側軌道面 33 aに対向する第 1内側軌道面 33cが車輪側回転部材 30の外径面に、第 2外側軌道 面 33bに対向する第 2内側軌道面 33dが車輪ハブ 32の外径面にそれぞれ設けられ ている。そして、玉 33eは、第 1外側軌道面 33aと第 1内側軌道面 33cとの間、および 第 2外側軌道面 33bと第 2内側軌道面 33dとの間にそれぞれ複数個配置される。また 、車輪ノヽブ軸受 33は、左右の列の玉 33eそれぞれを保持する保持器 33fと、軸受内 部に封入されたグリース等の潤滑剤の漏洩や、外部からの塵埃の混入を防止する密 封部材 33gとを含む。さらに、第 1および第 2外輪軌道面 33a, 33bを有する外方部 材 22aは、車輪ノヽブ軸受 33の組込性の観点から、ケーシング 22にボルト 39によって 固定される。
[0046] 上記構成のインホイールモータ駆動装置 21の作動原理を詳しく説明する。
[0047] モータ部 Aは、例えば、ステータ 23のコイルに交流電流を供給することによって生じ る電磁力を受けて、永久磁石または直流電磁石によって構成されるロータ 24および モータ側回転部材 25が回転する。このとき、コイルに高周波数の電圧を印加する程 、ロータ 24およびモータ側回転部材 25は高速回転する。
[0048] これにより、モータ側回転部材 25に設けられた太陽歯車 26が回転する。このとき、 遊星歯車 28は太陽歯車 26と内歯車 27の双方に嚙合っているので、モータ側回転 部材 25の回転方向と逆方向に自転運動すると共に、モータ側回転部材 25の回転方 向と同一方向に公転運動する。
[0049] この遊星歯車 28の公転運動が遊星キャリア軸 29を介して減速部 Bの出力となり、 車輪ノヽブ軸受部 Cに伝達される。このとき、太陽歯車 26の歯数を n、内歯車 27の歯 数を nとすると、モータ側回転部材 25の回転は、数式 1で表された減速比 rで減速さ
2
れて車輪側回転部材 30に伝達される。なお、減速比 rは、歯車の強度等の観点から 1Z3〜: LZ6程度に設定される。
[0050] [数 1]
上記構成のインホイールモータ駆動装置 21は、車輪ハブ軸受 33の外側軌道面 33 a, 33bを外方部材 22aに設け、内側軌道面 33c, 33dを車輪側回転部材 30および 車輪ノヽブ 31に設けることにより、軸受の構成要素としての外輪および内輪を省略す ることができる。その結果、車輪ノヽブ軸受 33の径方向の寸法を小さくすることができる 。または、径方向の寸法を同寸法とする場合には、玉 33eの径を大きくすることができ るので、負荷容量を増大することが可能となる。さらには、部品点数の削減による組 立工数性の改善効果も期待できる。
[0052] なお、上記構成のインホイールモータ駆動装置 21にお 、て、車輪側回転部材 30 の外径面と車輪ノヽブ 31の内径面とは、車輪側回転部材 30を拡径加締めすること〖こ よって塑性結合される。図 2は、車輪側回転部材と車輪ハブとを拡径加締めによって 結合する方法を示す図である。
[0053] 図 2を参照して、車輪ノ、ブ軸受部 Cの組立方法としては、まず、車輪側回転部材 30 に設けられた第 1内側軌道面 33c上に玉 33eを収容した保持器 33fを置く。次に、外 方部材 22aを第 1外側軌道面 33aが玉 33eに適正に接触する位置に配置し、ボルト 3 9によってケーシング 22に固定する。次に、第 2内側軌道面 33d上に玉 33eを収容し た保持器 33fを置いた状態で、玉 33eが第 2外側軌道面 33bに適正に接触するよう に車輪ノヽブ 31を車輪側回転部材 30に嵌め込む。
[0054] この状態では、車輪側回転部材 30と車輪ノヽブ 31とは嵌め合いによって固定されて V、るに過ぎな、、ので、電気自動車 11の旋回時等に大きなモーメント荷重が負荷され ると、車輪ノ、ブ 31が軸方向にずれる恐れがある。これは、車輪ハブ軸受 33の回転不 良の原因となり、車輪ノヽブ 31を安定して保持することができない。
[0055] そこで、車輪側回転部材 30の外径面と車輪ハブ 31の内径面とを拡径加締めによ つて塑性結合する。具体的には、インホイールモータ駆動装置 21を固定しておき、 車輪側回転部材 30の中空部 30bの内径より僅かに大きい外径を有する加締め冶具 40を中空部 30bに圧入する。
[0056] これにより、塑性結合部 40aで車輪側回転部材 30と車輪ノヽブ 31とが塑性結合する 。上記方法で車輪側回転部材 30と車輪ノヽブ 31とを固定連結することにより、嵌め合 いで固定する場合と比較して、結合強度を大幅に高めることができる。これにより、車 輪ノヽブ 31を安定して保持することが可能となる。
[0057] なお、上記の実施形態においては、モータ側回転部材 25と太陽歯車 26とを一体 形成した例を示したが、これに限ることなぐモータ側回転部材 25と太陽歯車 26とを それぞれ別々に形成して、太陽歯車 26を嵌め合い等によってモータ側回転部材 25 の所定位置に固定してもよい。同様に、内歯車 27をケーシング 22の内径面に直接 形成した例を示したが、これに限ることなぐ独立して形成した内歯車 27をケーシン グ 22に嵌め込む等してもょ 、。
[0058] また、上記実施形態の車輪ハブ軸受 33において、第 1および第 2外側軌道面 33a , 33bは、外方部材 22aの内径面に形成した例を示した力 これに限ることなぐケー シング 22に直接形成することとしてもよい。
[0059] 次に、図 3〜図 5を参照して、この発明の他の実施形態に係るインホイールモータ 駆動装置 41を説明する。なお、図 3はインホイールモータ駆動装置 41の概略断面図 であって、図 4は図 3の IV— IVにおける断面図、図 5は図 3の偏心部 45a, 45b周辺 の拡大図である。
[0060] 図 3を参照して、インホイールモータ駆動装置 41は、図 1と同様の構成のモータ部 Aと、モータ部 Aの回転を減速して出力する減速部 Bと、減速部 Bからの出力を駆動 輪 14に伝える図 1と同様の構成の車輪ノヽブ軸受部 Cとを備え、モータ部 Aと減速部 B とはケーシングに収納されて、図 12に示すように電気自動車 11のホイールハウジン グ 32a内に取り付けられる。なお、モータ部 Aおよび車輪ハブ軸受部 Cは、図 1に示 すインホイールモータ駆動装置 21と同様の構成であるので説明は省略し、減速部 B を中心に説明する。
[0061] モータ側回転部材 45は、モータ部 Aの駆動力を減速部 Bに伝達するためにモータ 部 A力も減速部 Bにかけて配置され、減速部 B内に偏心部 45a, 45bを有する。また、 モータ部 Aの両端と減速部 Bの左端で転がり軸受 46, 47, 48によって支持される。さ らに、 2つの偏心部 45a, 45bは、偏心運動による遠心力を互いに打ち消し合うため に、 180° 位相を変えて設けられている。
[0062] 減速部 Bは、偏心部 45a, 45bに回転自在に保持される公転部材としての曲線板 4 6a, 46bと、ケーシング 42上の固定位置に保持され、曲線板 46a, 46bの外周部に 係合する外周係合部材としての複数の外ピン 47と、曲線板 46a, 46bの自転運動を 車輪側回転部材 56に伝達する運動変 構と、カウンタウェイト 49とを備える。 [0063] 図 4を参照して、曲線板 46aは、外周部にェピトロコイド等のトロコイド系曲線で構成 される複数の波形を有し、一方側端面力も他方側端面に貫通する複数の貫通孔 50a , 50bを有する。貫通孔 50aは、曲線板 46aの自転軸心を中心とする円周上に等間 隔に複数個設けられており、後述する内ピン 51を受け入れる。また、貫通孔 50bは、 曲線板 46aの中心に設けられており、偏心部 45aを揷通する。
[0064] 曲線板 46aは、転がり軸受 52によって偏心部 45aに対して回転自在に支持されて いる。この転がり軸受 52は、偏心部 45aに嵌合し、外径面に内側軌道面を有する内 輪 52aと、貫通孔 50bの内壁面に嵌合し、内径面に外側軌道面を有する外輪 52bと 、内輪 52aおよび外輪 52bの間に配置された複数の転動体としての玉 52cと、複数の 玉 52cを保持する保持器 (図示せず)とを備える深溝玉軸受である。
[0065] 外ピン 47は、モータ側回転部材 45の回転軸心を中心とする円周軌道上に等間隔 に設けられる。これは、曲線板 46a, 46bの公転軌道と一致するので、曲線板 46a, 4 6bが公転運動すると、曲線形状の波形と外ピン 47とが係合して、曲線板 46a, 46b に自転運動を生じさせる。また、曲線板 46a, 46bとの接触抵抗を低減するために、 曲線板 46a, 46bの外周面に当接する位置に針状ころ軸受 47aを有する。
[0066] カウンタウェイト 49は、円板状で、中心力も外れた位置にモータ側回転部材 45と嵌 合する貫通孔を有し、曲線板 46a, 46bの回転によって生じる不釣合い慣性偶力を 打ち消すために、各偏心部 45a, 45bの外側に偏心部と 180° 位相を変えて配置さ れる。
[0067] ここで、図 5を参照して、 2枚の曲線板 46a, 46b間の中心点を Gとすると、図 5の中 心点 Gの右側について、中心点 Gと曲線板 46aの中心との距離を L、曲線板 46aの 質量を m、曲線板 46aの重心の回転軸心力もの偏心量を ε とし、中心点 Gとカウン タウエイト 49との距離を L、カウンタウェイト 49の質量を m、カウンタウェイト 49の重心
2 2
の回転軸心からの偏心量を ε とすると、 L X m X ε =L X m X ε を満たす関係
2 1 1 1 2 2 2
となっている。また、図 5の中心点 Gの左側の曲線板 46bとカウンタウェイト 49との間 にも同様の関係が成立する。
[0068] 運動変 構は、車輪側回転部材 56に保持された複数の内ピン 51と曲線板 46a , 46bに設けられた貫通孔 50aとで構成される。内ピン 51は、車輪側回転部材 56の 回転軸心を中心とする円周軌道上に等間隔に設けられる。また、曲線板 46a, 46bと の接触抵抗を低減するために、曲線板 46a, 46bの貫通孔 50aの内壁面に当接する 位置に針状ころ軸受 51aが設けられている。一方、貫通孔 50aは、複数の内ピン 51 それぞれに対応する位置に設けられ、貫通孔 50aの内径寸法は、内ピン 51の外径 寸法 (針状ころ軸受 5 laを含む最大外径)より所定分大きく設定されて!ヽる。
[0069] 上記構成のインホイールモータ駆動装置 41の作動原理を詳しく説明する。
[0070] モータ部 Aは、例えば、ステータ 43のコイルに交流電流を供給することによって生じ る電磁力を受けて、永久磁石または直流電磁石によって構成されるロータ 44が回転 する。このとき、コイルに高周波数の電圧を印加する程、ロータ 44は高速回転する。
[0071] これにより、ロータ 44に接続されたモータ側回転部材 45が回転すると、曲線板 46a , 46bはモータ側回転部材 45の回転軸心を中心として公転運動する。このとき、外ピ ン 47が、曲線板 46a, 46bの曲線形状の波形と係合して、曲線板 46a, 46bをモータ 側回転部材 45の回転とは逆向きに自転運動させる。
[0072] 貫通孔 50aに揷通する内ピン 51は、曲線板 46a, 46bの自転運動に伴って貫通孔 50aの内壁面と当接する。これにより、曲線板 46a, 46bの公転運動が内ピン 51に伝 わらず、曲線板 46a, 46bの自転運動のみが車輪側回転部材 56を介して車輪ノヽブ 軸受部 Cに伝達される。
[0073] このとき、モータ側回転部材 45の回転が減速部 Bによって減速されて車輪側回転 部材 56に伝達されるので、低トルク、高回転型のモータ部 Aを採用した場合でも、駆 動輪 14に必要なトルクを伝達することが可能となる。
[0074] 上記の実施形態に係るインホイールモータ駆動装置 41を電気自動車 11に採用す ることにより、ばね下重量を抑えることができる。その結果、走行安定性に優れた電気 自動車 11を得ることができる。
[0075] なお、上記構成の減速部 Bの減速比は、外ピン 47の数を Z、曲線板 46a, 46bの
A
波形の数を Zとすると、(Z — Z ) /Zで算出される。図 4に示す実施形態では、 Z
B A B B A
= 12、 Z = 11
B であるので、減速比は ΐΖΐιと、非常に大きな減速比を得ることがで きる。
[0076] このように、多段構成とすることなく大きな減速比を得ることができる減速部 Bを採用 することにより、コンパクトで高減速比のインホイールモータ駆動装置を得ることができ る。また、外ピン 47および内ピン 51の曲線板 46a, 46bに当接する位置に針状ころ 軸受 47a, 5 laを設けたことにより、接触抵抗が低減されるので、減速部 Bの伝達効 率が向上する。
[0077] なお、曲線板 46a, 46bは、外ピン 47と係合しながら高速で公転運動するので、曲 線板 46a, 46bを支持する転がり軸受 52には大きなラジアル荷重が負荷される。しか し、減速部 B内部の限られたスペースでは、十分な負荷容量を備えた転がり軸受 52 を配置できない可能性がある。また、この問題は、近年の電気自動車 11のコンパクト 化の要求に伴ってさらに顕著となる。
[0078] そこで、転がり軸受 52の外側軌道面を曲線板 46a, 46bの貫通孔 50bの内壁面に 設けることにより、外輪 52bを省略することができる。その結果、内側軌道面および外 側軌道面の間の隙間が大きくなるので、径の大きな玉 52cを採用したり、玉 52cの数 を増加したりすることができる。これにより、転がり軸受 52全体の大きさを変化させるこ となく負荷容量を向上することができるので、耐久性に優れ、信頼性の高いインホイ ールモータ駆動装置を得ることができる。また、部品点数の削減による製品コストの 低減効果も期待できる。
[0079] 図 6〜図 9を参照して、この発明のさらに他の実施形態に係るインホイールモータ駆 動装置 61を説明する。なお、図 6はインホイールモータ駆動装置 61の概略断面図、 図 7は図 6の VII— VIIにおける断面図、図 8は図 6の偏心部 65a, 65b周辺の拡大図 、図 9および図 10は外周係合部材の拡大図である。
[0080] まず、図 6を参照して、インホイールモータ駆動装置 61は、駆動力を発生させるモ ータ部 Aと、モータ部 Aの回転を減速して出力する減速部 Bと、減速部 Bからの出力 を駆動輪 14に伝える車輪ノヽブ軸受部 Cとを備え、モータ部 Aと減速部 Bとはケーシン グ 62に収納されて、図 12に示すように電気自動車 11のホイールハウジング 12a内に 取り付けられる。
[0081] モータ部 Aは、ケーシング 62に固定されるステータ 63と、ステータ 63の内側に軸方 向の隙間を空けて対向する位置に配置されるロータ 64と、ロータ 64の内側に固定連 結されてロータ 64と一体回転するモータ側回転部材 65とを備えるアキシアルギヤッ プモータである。また、モータ部 Aの減速部 Bと反対側の端面には、モータ部 Aの内 部への塵埃の混入等を防止するために密封部材 74が設けられて 、る。
[0082] ロータ 64は、フランジ形状のロータ部 64aと円筒形状の中空部 64bとを有し、複列 の転がり軸受 75によってケーシング 62に対して回転自在に支持されている。また、ケ 一シング 62とロータ 64との間には、減速部 Bに封入された潤滑剤のモータ部 Aへの 侵入を防止するために密封部材 76が設けられて 、る。
[0083] モータ側回転部材 65は、モータ部 Aから減速部 Bを貫通して車輪側回転部材 68の 中空部 68bにかけて配置され、減速部 B内に偏心部 65a, 65bを有する。このモータ 側回転部材 65は、一端がロータ 64と嵌合すると共に、減速部 Bの両端で転がり軸受 77, 78によって支持される。さらに、 2つの偏心部 65a, 65bは、偏心運動による遠心 力を互いに打ち消し合うために、 180° 位相を変えて設けられている。
[0084] 減速部 Bは、偏心部 65a, 65bに回転自在に保持される公転部材としての曲線板 6 6a, 66bと、針状ころ軸受 67cによってケーシング 62に対して回転自在に支持され、 曲線板 66a, 66bの外周部に係合する外周係合部材としての複数の外ピン 67と、曲 線板 66a, 66bの自転運動を車輪側回転部材 68に伝達する運動変換機構と、カウン タウエイト 69とを備える。
[0085] 車輪側回転部材 68は、フランジ部 68aと円筒状の中空部 68bとを有する。フランジ 部 68aの端面には、車輪側回転部材 68の回転軸心を中心とする円周上の等間隔に 内ピン 71を固定する穴を有する。また、中空部 68bの外径面は車輪ノ、ブ 72の内径 面と嵌合し、中空部 68bの内径面は、モータ側回転部材 65の回転軸心と車輪側回 転部材 68の回転軸心とがー致するように、転がり軸受 78によってモータ側回転部材 65を回転自在に支持して 、る。
[0086] 図 7を参照して、曲線板 66aは、外周部にェピトロコイド等のトロコイド系曲線で構成 される複数の波形を有し、一方側端面力も他方側端面に貫通する複数の貫通孔 70a , 70bを有する。貫通孔 70aは、曲線板 66aの自転軸心を中心とする円周上に等間 隔に複数個設けられており、後述する内ピン 71を受け入れる。また、貫通孔 70bは、 曲線板 66aの中心に設けられており、偏心部 65aを揷通する。
[0087] 曲線板 66aは、転がり軸受 79によって偏心部 65aに対して回転自在に支持されて いる。この転がり軸受 79は、偏心部 65aに嵌合し、外径面に内側軌道面を有する内 輪 79aと、貫通孔 70bの内壁面に嵌合し、内径面に外側軌道面を有する外輪 79bと 、内輪 79aおよび外輪 79bの間に配置された複数の転動体としての玉 79cと、複数の 玉 79cを保持する保持器 (図示せず)とを備える深溝玉軸受である。
[0088] 外ピン 67は、モータ側回転部材 65の回転軸心を中心とする円周軌道上に等間隔 に配置されている。これは、曲線板 66a, 66bの公転軌道と一致するので、曲線板 66 a, 66bが公転運動すると、曲線形状の波形と外ピン 67とが係合して、曲線板 66a, 6 6bに自転運動を生じさせる。
[0089] 図 9および図 10を参照して、外ピン 67を詳しく説明する。なお、図 9は図 6に示す外 ピン 67周辺の拡大図、図 10は図 9の比較例としての外ピン 87周辺の拡大図である。
[0090] まず、図 9を参照して、外ピン 67は、中央部に相対的に直径の大きい大径部 67aと 、両端部に相対的に直径の小さい小径部 67bと、大径部 67aと小径部 67bとの間に テーパ部 67dとを含む棒状部材である。大径部 67aは、曲線板 66a, 66bと接触する 位置に配置され、両者は直接接触する。小径部 67bは、針状ころ軸受 67cによって ケーシング 62に回転自在に支持されている。このように、外ピン 67をケーシング 62に 回転自在とすることにより、曲線板 66a, 66bとの係合による接触抵抗を低減すること ができる。
[0091] 次に図 10を参照して、外ピン 67の比較例として、両端部がケーシング 82に固定さ れ、曲線板 86a, 86bと接触する中央部に針状ころ軸受 87cを配置した外ピン 87によ つても曲線板 86a, 86bと外ピン 87との接触抵抗を低減することができる。
[0092] 図 9および図 10を参照して、両端支持されている外ピン 67, 87には、曲線板 66a, 66b, 86a, 86bとの接触部分の法線方向に荷重(曲げ応力)が負荷されるので、外 ピン 67, 87の十分な最大曲げ応力を確保するために外ピン 67, 87の直径を大きく することが望まれる。しかし、曲線板 66a, 66b, 86a, 86bと接触する領域の直径(図 9においては大径部 67aの直径 d、図 10においては針状ころ軸受 87cを含む直径 d
1 2 を指す)は、曲線板 66a, 66b, 86a, 86bの大きさに制限されて自由に設定すること はできない。
[0093] すなわち、曲線板 66a, 66b, 86a, 86bが同じ大きさであれば、図 9に示す外ピン 6 7の大径部の直径 dと、図 10に示す外ピン 87の針状ころ軸受 87cを含む直径 dとは
1 2 同じ大きさ(d =d )となる。そうすると、図 9に示す外ピン 67の直径 dは、図 10に示
1 2 1
す外ピン 87の直径 dより大きく(d >d )設定することができる。その結果、図 9に示
3 1 3
す曲線板 66a, 66bと直接接触する外ピン 67は、図 10に示す外ピン 87と比較して最 大曲げ応力を大きくすることができる。
[0094] また、この発明の効果を得るためには、図 9において大径部 67aと小径部 67bとを 同じ直径としてもよい。しかし、小径部 67bの直径が大きくなると外ピン 67を支持する 針状ころ軸受 67cも大型化する。その結果、ケーシング 62の針状ころ軸受 67cを収 容するスペースも大きくなるという問題がある。そこで、曲線板 66a, 66bと接触する大 径部 67aの直径を大きくして十分な最大曲げ応力を確保すると共に、針状ころ軸受 6 7cに支持される小径部 67bの直径を小さくして軸受収容スペースを小さくする。その 結果、小型で伝達トルクの大き 、インホイールモータ駆動装置 61を得ることができる
[0095] なお、上記の実施形態においては、外ピン 67を支持する軸受として針状ころ軸受 6 7cを用いた例を示したが、これに限ることなぐその他のあらゆる軸受を採用すること ができる。ただし、針状ころ軸受 67cを採用することにより、軸受収容スペースをさらに /J、さくすることができる。
[0096] また、大径部 67aと小径部 67bとの間に垂直な段差部を設けてもよいが、この境界 部分への応力集中を緩和するためには、図 9に示すように両者の境界部分にテーパ 部 67dを設けるのが望ま U、。
[0097] カウンタウェイト 69は、円板状で、中心力も外れた位置にモータ側回転部材 65と嵌 合する貫通孔を有し、曲線板 66a, 66bの回転によって生じる不釣合い慣性偶力を 打ち消すために、各偏心部 65a, 65bの外側に偏心部と 180° 位相を変えて配置さ れる。
[0098] ここで、図 8を参照して、 2枚の曲線板 66a, 66b間の中心点を Gとすると、図 8の中 心点 Gの右側について、中心点 Gと曲線板 66aの中心との距離を L、曲線板 66aの 質量を m、曲線板 66aの重心の回転軸心力もの偏心量を ε とし、中心点 Gとカウン タウエイト 69との距離を L、カウンタウェイト 69の質量を m、カウンタウェイト 69の重心 の回転軸心からの偏心量を ε とすると、 L X m X ε =L X m X ε を満たす関係
2 1 1 1 2 2 2
となっている。また、図 8の中心点 Gの左側の曲線板 66bとカウンタウェイト 69との間 にも同様の関係が成立する。
[0099] 運動変 構は、車輪側回転部材 68に保持された複数の内ピン 71と曲線板 66a , 66bに設けられた貫通孔 70aとで構成される。内ピン 71は、車輪側回転部材 68の 回転軸心を中心とする円周軌道上に等間隔に設けられており、一端が車輪側回転 部材 68に固定され、他端には貫通孔 70aからの抜けを防止する抜け止め部 71bが 設けられている。また、曲線板 66a, 66bとの接触抵抗を低減するために、曲線板 66 a, 66bの貫通孔 70aの内壁面に当接する位置に針状ころ軸受 71aが設けられてい る。一方、貫通孔 70aは、複数の内ピン 71それぞれに対応する位置に設けられ、貫 通孔 70aの内径寸法は、内ピン 71の外径寸法 (針状ころ軸受 71aを含む最大外径) より所定分大きく設定されている。
[0100] 車輪ハブ軸受部 Cは、車輪側回転部材 68に固定連結された車輪ノヽブ 72と、車輪 ハブ 72をケーシング 62に対して回転自在に保持する車輪ノヽブ軸受 73とを備える。 車輪ノヽブ 72は、円筒形状の中空部 72aとフランジ部 72bとを有する。中空部 72aの 内径面には車輪側回転部材 68が嵌合し、フランジ部 72bにはボルト 72cによって駆 動輪 14 (図示省略)が固定連結される。また、中空部 72aの開口部分には、インホイ ールモータ駆動装置 61の内部への塵埃の混入等を防止するために密封部材 72d が設けられている。
[0101] 車輪ノヽブ軸受 73は、転動体としての玉 73eを採用する複列のアンギユラ玉軸受で ある。玉 73eの軌道面としては、第 1外側軌道面 73a (図中右側)および第 2外側軌道 面 73b (図中左側)とが外方部材 62aの内径面に設けられており、第 1外側軌道面 73 aに対向する第 1内側軌道面 73cが車輪側回転部材 68の外径面に、第 2外側軌道 面 73bに対向する第 2内側軌道面 73dが車輪ハブ 72の外径面にそれぞれ設けられ ている。そして、玉 73eは、第 1外側軌道面 73aと第 1内側軌道面 73cとの間、および 第 2外側軌道面 73bと第 2内側軌道面 73dとの間にそれぞれ複数個配置される。また 、車輪ノヽブ軸受 73は、左右の列の玉 73eそれぞれを保持する保持器 73fと、軸受内 部に封入されたグリース等の潤滑剤の漏洩や、外部からの塵埃の混入を防止する密 封部材 73gとを含む。さらに、第 1および第 2外輪軌道面 73a, 73bを有する外方部 材 62aは、車輪ノヽブ軸受 73の組込性の観点から、ケーシング 62にボルト 62bによつ て固定される。
[0102] 上記構成のインホイールモータ駆動装置 61は、車輪ハブ軸受 73の外側軌道面 73 a, 73bを外方部材 62aに設け、内側軌道面 73c, 73dを車輪側回転部材 68および 車輪ノヽブ 72に設けることにより、軸受の構成要素としての外輪および内輪を省略す ることができる。その結果、車輪ノヽブ軸受 73の径方向の寸法を小さくすることができる 。または、径方向の寸法を同寸法とする場合には、玉 73eの径を大きくすることができ るので、負荷容量を増大することが可能となる。さらには、部品点数の削減による組 立性の改善効果も期待できる。
[0103] なお、上記構成のインホイールモータ駆動装置 61にお 、て、車輪側回転部材 68 の外径面と車輪ノヽブ 72の内径面とは、車輪側回転部材 68を拡径加締めすること〖こ よって塑性結合される。
[0104] まず、車輪ノ、ブ軸受部 Cの組立方法としては、まず、車輪側回転部材 68に設けら れた第 1内側軌道面 73c上に玉 73eを収容した保持器 73fを置く。次に、外方部材 6 2aを第 1外側軌道面 73aが玉 73eに適正に接触する位置に配置し、ボルト 62bによ つてケーシング 62に固定する。次に、第 2内側軌道面 73d上に玉 73eを収容した保 持器 73fを置いた状態で、玉 73eが第 2外側軌道面 73bに適正に接触するように車 輪ノヽブ 72を車輪側回転部材 68に嵌め込む。
[0105] この状態では、車輪側回転部材 68と車輪ノヽブ 72とは嵌め合いによって固定されて V、るに過ぎな、、ので、電気自動車 11の旋回時等に大きなモーメント荷重が負荷され ると、車輪ノ、ブ 72が軸方向にずれる恐れがある。これは、車輪ハブ軸受 73の回転不 良の原因となり、車輪ノヽブ 72を安定して保持することができない。
[0106] そこで、車輪側回転部材 68の外径面と車輪ハブ 72の内径面とを拡径加締めによ つて塑性結合する。具体的には、インホイールモータ駆動装置 61を固定しておき、 車輪側回転部材 68の中空部 68bの内径より僅かに大きい外径を有する加締め冶具 (図示せず)を中空部 68bに圧入する。
[0107] これにより、塑性結合部 80で車輪側回転部材 68と車輪ノヽブ 72とが塑性結合する。 上記方法で車輪側回転部材 68と車輪ノヽブ 72とを固定連結することにより、嵌め合い で固定する場合と比較して、結合強度を大幅に高めることができる。これにより、車輪 ハブ 72を安定して保持することが可能となる。
[0108] また、上記の実施形態においては、車輪側回転部材 68の中空部 68bに転がり軸 受 78を介在させてモータ側回転部材 65を支持しているが、車輪ハブ 72の一部を車 輪側回転部材 68の内径側カゝら拡径させて拡径加締めを行い塑性結合するものとし てもよい、この場合は、車輪ノヽブ 72の中空部 72aに転がり軸受を配置してモータ側 回転部材 65を支持する構造となる。
[0109] なお、上記構成のインホイールモータ駆動装置 61の作動原理は、インホイールモ ータ駆動装置 41と共通するので、説明は省略する。
[0110] 上述した各実施形態では、減速部 Bの曲線板 46a, 46b, 66a, 66bを 180° 位相 を変えて 2枚設けたが、この曲線板の枚数は任意に設定することができ、例えば、曲 線板を 3枚設ける場合は、 120° 位相を変えて設けるとよい。
[0111] また、上記の実施形態における運動変換機構は、車輪側回転部材 56, 68に固定 された内ピン 51, 71と、曲線板 46a, 46b, 66a, 66bに設けられた貫通孔 50a, 70a とで構成される例を示した力 これに限ることなぐ減速部 Bの回転を車輪ノヽブ 53, 7 2に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピン と、出力部材に形成された穴とで構成される運動変 構であってもよい。
[0112] なお、上記の実施形態における作動の説明は、各部材の回転に着目して行ったが 、実際にはトルクを含む動力がモータ部 Aから駆動輪に伝達される。したがって、上 述のように減速された動力は高トルクに変換されたものとなって 、る。
[0113] また、上記の実施形態における作動の説明では、モータ部 Aに電力を供給してモ ータ部 Aを駆動させ、モータ部 Aからの動力を駆動輪 14に伝達させた力 これとは逆 に、車両が減速したり坂を下ったりするようなときは、駆動輪 14側からの動力を減速 部 Bで高回転低トルクの回転に変換してモータ部 Aに伝達し、モータ部 Aで発電して も良い。さらに、ここで発電した電力は、ノ ッテリーに蓄電しておき、後でモータ部 Aを 駆動させたり、車両に備えられた他の電動機器等の作動に用いてもよい。
[0114] さらに、上記の実施形態の構成にブレーキをカ卩えることもできる。例えば、図 1、図 3 、および図 6の構成において、ロータ 24, 44, 64の図中右側の空間に、ロータ 24, 4 4, 64と一体的に回転する回転部材と、ケーシング 22, 42, 62に回転不能にかつ軸 方向に移動可能なピストンと、このピストンを作動させるシリンダとを配置して、車両停 止時にピストンと回転部材とを嵌合させてロータ 24, 44, 64をロックするものとするパ 一キングブレーキであってもよ!/、。
[0115] または、ロータ 24, 44, 64と一体的に回転する回転部材の一部に形成されたフラ ンジおよびケーシング 22, 42, 62側に設置された摩擦板をケーシング 22, 42, 62 側に設置されたシリンダで挟むディスクブレーキであってもよい。さらに、この回転部 材の一部にドラムを形成すると共に、ケーシング 22, 42, 62側にブレーキシュ一を固 定し、摩擦係合およびセルフエンゲージ作用で回転部材をロックするドラムブレーキ を用いることができる。
[0116] また、上記の実施形態において、車輪側回転部材 30, 56, 68と車輪ノヽブ 31, 53 , 72とは、拡径加締めによって固定連結した例を示した力 これに限ることなぐ任意 の方法で両者を固定することとしてもよ!/、。
[0117] また、上記の実施形態において、車輪ハブ軸受 33, 54, 73には、アンギユラ玉軸 受を採用した例を示したが、これに限ることなぐ例えば、すべり軸受、円筒ころ軸受 、円錐ころ軸受、針状ころ軸受、自動調心ころ軸受、深溝玉軸受、アンギユラ玉軸受 、 4点接触玉軸受等、転動体力 Sころであるか玉である力を問わず、すべり軸受である か転がり軸受であるかを問わず、さらには複列か単列かを問わず、あらゆる軸受を適 用することができる。また、その他の場所に配置される軸受についても、同様に任意 の形態の軸受を採用することができる。
[0118] また、上記の実施形態においては、モータ部 Aにアキシアルギャップモータを採用 した例を示したが、これに限ることなぐ任意の構成のモータを適用可能である。例え ばケーシングに固定されるステータと、ステータの内側に径方向の隙間を空けて対向 する位置に配置されるロータとを備えるラジアルギャップモータであってもよい。
[0119] また、上記の実施形態において、車輪ノヽブ軸受 73の外側軌道面 73a, 73bを外方 部材 62aに形成し、内側軌道面 73c, 73dを車輪側回転部材 68および車輪ノヽブ 72 に形成した例を示したが、これに限ることなぐ任意の形態とすることができる。例えば 、ケーシングに嵌合する外輪に外側軌道面を形成し、車輪側回転部材または車輪ハ ブに嵌合する内輪に内側軌道面を設けてもよい。
[0120] さらに、図 11に示した電気自動車 11は、後輪 14を駆動輪とした例を示したが、これ に限ることなぐ前輪 13を駆動輪としてもよぐ 4輪駆動車であってもよい。なお、本明 細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり 、例えば、ハイブリッドカー等をも含むものとして理解すべきである。
[0121] 以上、図面を参照してこの発明の実施形態を説明した力 この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形をカ卩えることが可 能である。
産業上の利用可能性
[0122] この発明は、インホイールモータ駆動装置に有利に利用される。

Claims

請求の範囲
[1] ケーシングと、
モータ側回転部材を回転駆動するモータ部と、
前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、 前記車輪側回転部材に固定連結された車輪ハブと、
前記車輪ノ、ブを前記ケーシングに対して回転自在に支持する車輪ノ、ブ軸受とを備 え、
前記車輪ハブ軸受は、
第 1および第 2外側軌道面が形成された外方部材と、
前記車輪側回転部材の外径面に設けられ、前記第 1外側軌道面に対向する第 1内 側軌道面と、
前記車輪ハブの外径面に設けられ、前記第 2外側軌道面に対向する第 2内側軌道 面と、
前記第 1外側軌道面と前記第 1内側軌道面との間、および前記第 2外側軌道面と 前記第 2内側軌道面との間に配置される複数の転動体とを含む、インホイールモータ 駆動装置。
[2] 前記車輪ハブは、円筒状の中空部を有し、
前記車輪側回転部材は、前記車輪ハブの中空部の内側に嵌合し、
前記車輪ハブの内径面と前記車輪側回転部材の外径面とは、前記車輪側回転部 材を拡径加締めすることによって塑性結合される、請求項 1に記載のインホイールモ ータ駆動装置。
[3] 前記減速部は、
前記モータ側回転部材に設けられた太陽歯車と、
前記ケーシングに固定された内歯車と、
前記車輪側回転部材に回転自在に保持され、前記太陽歯車および前記内歯車の 間に配置される複数の遊星歯車とを含む、請求項 1に記載のインホイールモータ駆 動装置。
[4] 前記モータ側回転部材は、偏心部をさらに有し、 前記減速部は、
前記偏心部に回転自在に保持されて、前記モータ側回転部材の回転に伴ってそ の回転軸心を中心とする公転運動を行う公転部材と、
前記公転部材の外周部に係合して公転部材の自転運動を生じさせる外周係合部 材と、
前記公転部材の自転運動を、前記モータ側回転部材の回転軸心を中心とする回 転運動に変換して前記車輪側回転部材に伝達する運動変換機構とを含む、請求項
1にインホイールモータ駆動装置。
[5] 前記外周径合部材は、軸受によって前記ケーシングに回転自在に支持されている
、請求項 4に記載のインホイールモータ駆動装置。
[6] 前記外周係合部材は、前記公転部材の外周部と直接接触する、請求項 5に記載の インホイールモータ駆動装置。
[7] 前記外周係合部材は、相対的に直径の大きい大径部と、相対的に直径の小さい小 径部とを含む棒状部材であって、
前記大径部は、前記公転部材の外周部と係合し、
前記小径部は、前記軸受によってケーシングに回転自在に支持されている、請求 項 5に記載のインホイールモータ駆動装置。
[8] ケーシングと、
偏心部を有するモータ側回転部材を回転駆動するモータ部と、
前記モータ側回転部材の回転を減速して車輪側回転部材に伝達する減速部と、 前記車輪側回転部材に固定連結された車輪ハブとを備え、
前記減速部は、
前記偏心部に回転自在に保持されて、前記モータ側回転部材の回転に伴ってそ の回転軸心を中心とする公転運動を行う公転部材と、
軸受によって前記ケーシングに回転自在に支持され、前記公転部材の外周部に係 合して公転部材の自転運動を生じさせる外周係合部材と、
前記公転部材の自転運動を、前記モータ側回転部材の回転軸心を中心とする回 転運動に変換して前記車輪側回転部材に伝達する運動変換機構とを含む、インホイ ールモータ駆動装置。
PCT/JP2007/054442 2006-03-08 2007-03-07 インホイールモータ駆動装置 WO2007102545A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200780008197.1A CN101395404B (zh) 2006-03-08 2007-03-07 轮内电动机驱动装置
DE112007000565.3T DE112007000565B4 (de) 2006-03-08 2007-03-07 Motorantriebseinheit im Rad
US12/224,806 US8132636B2 (en) 2006-03-08 2007-03-07 In-wheel motor drive unit
US13/229,875 US8403794B2 (en) 2006-03-08 2011-09-12 Decelerator
US13/229,815 US8336652B2 (en) 2006-03-08 2011-09-12 In-wheel motor drive unit

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006063150A JP2007239886A (ja) 2006-03-08 2006-03-08 インホイールモータ駆動装置
JP2006-063150 2006-03-08
JP2006-222606 2006-08-17
JP2006222606A JP5160756B2 (ja) 2006-08-17 2006-08-17 インホイールモータ駆動装置

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US12/224,806 A-371-Of-International US8132636B2 (en) 2006-03-08 2007-03-07 In-wheel motor drive unit
US13/229,875 Division US8403794B2 (en) 2006-03-08 2011-09-12 Decelerator
US13/229,815 Division US8336652B2 (en) 2006-03-08 2011-09-12 In-wheel motor drive unit

Publications (1)

Publication Number Publication Date
WO2007102545A1 true WO2007102545A1 (ja) 2007-09-13

Family

ID=38474969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054442 WO2007102545A1 (ja) 2006-03-08 2007-03-07 インホイールモータ駆動装置

Country Status (4)

Country Link
US (3) US8132636B2 (ja)
CN (3) CN102287486B (ja)
DE (3) DE112007003774B3 (ja)
WO (1) WO2007102545A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221934A (ja) * 2009-03-25 2010-10-07 Aisin Seiki Co Ltd インホイールモータユニット
WO2011108329A1 (ja) * 2010-03-04 2011-09-09 Ntn株式会社 インホイールモータ駆動装置
CN102686435A (zh) * 2009-11-27 2012-09-19 Ntn株式会社 内置有内圈型电动机的带有传感器的车轮用轴承装置
CN103171420A (zh) * 2013-04-08 2013-06-26 南京康尼机电股份有限公司 一种带减速器的独立轮装置
CN105043231A (zh) * 2015-06-11 2015-11-11 北京精密机电控制设备研究所 一种伺服作动器适应内置板片式位移传感器安装机构
EP3757333A1 (de) * 2019-06-25 2020-12-30 GEZE GmbH Antrieb für einen flügel einer tür oder eines fensters

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034278A1 (de) * 2005-07-22 2007-04-12 Daimlerchrysler Ag Antriebseinheit für ein Fahrzeug
WO2008088736A2 (en) * 2007-01-16 2008-07-24 Charles Hampton Perry Machine for augmentation, storage, and conservation of vehicle motive energy
EP2145378A4 (en) * 2007-04-18 2014-07-16 Gye-Jeung Park MOTOR WITH CONCENTRICALLY ARRANGED ROTORS AND DRIVE DEVICE WITH THE ENGINE
US20100096911A1 (en) * 2008-10-17 2010-04-22 Sherif Fahmy Eldeeb Energy Wheel
US8800702B2 (en) 2009-11-13 2014-08-12 Ntn Corporation In-wheel motor drive assembly
EP2531364B1 (de) * 2010-02-07 2019-03-20 KSM Castings Group GmbH Achsmodul
WO2011098596A1 (de) * 2010-02-12 2011-08-18 Magna Powertrain Ag & Co Kg Gehäuse eines radnabenantriebs
US20130012350A1 (en) * 2010-02-12 2013-01-10 Magna Powertrain Ag Wheel hub drive for motor vehicles
JP5564352B2 (ja) 2010-07-23 2014-07-30 Ntn株式会社 インホイールモータ駆動装置
JP2014514913A (ja) * 2011-05-15 2014-06-19 カッペル アンドレアス ロータリードライブ
WO2013008694A1 (ja) * 2011-07-08 2013-01-17 日本電産株式会社 ホイールユニット
DE102011080036A1 (de) * 2011-07-28 2013-01-31 Zf Friedrichshafen Ag Radnahe Antriebseinheit für ein Kraftfahrzeug
FR2981612B1 (fr) * 2011-10-20 2013-11-01 Michelin Soc Tech Methode de lubrification d'un moyeu motorise
JP5801688B2 (ja) * 2011-10-27 2015-10-28 ナブテスコ株式会社 駆動装置
JP5812802B2 (ja) 2011-10-27 2015-11-17 ナブテスコ株式会社 駆動装置
JP6218759B2 (ja) * 2012-03-12 2017-10-25 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG トルク伝達装置用の操作装置
DE102012204795A1 (de) * 2012-03-26 2013-09-26 Schaeffler Technologies AG & Co. KG Radnabenmotor mit Potenzialausgleich
CN103358897B (zh) * 2012-03-28 2016-09-07 株式会社捷太格特 减速机构以及具备该减速机构的电机旋转力传递装置
WO2014069646A1 (ja) * 2012-11-05 2014-05-08 住友重機械工業株式会社 単純遊星減速装置
CA2913795C (en) 2013-05-17 2020-07-14 Tidnab Innovations Inc. Multi-layer sandwich-shaped electric wheel
PL3213392T3 (pl) * 2014-10-31 2021-05-31 Gkn Automotive Limited Napęd elektryczny
JP2016205603A (ja) * 2015-04-28 2016-12-08 株式会社ハーモニック・ドライブ・システムズ 遊星歯車減速機
US9562603B2 (en) * 2015-06-29 2017-02-07 Deere & Company Drive assembly with a rotating housing attached to an output interface
US9638310B2 (en) 2015-06-29 2017-05-02 Deere & Company Drive assembly with a rotating housing attached to an output interface
CN107848351B (zh) * 2015-07-30 2020-07-17 本田技研工业株式会社 车辆
TWI573374B (zh) * 2015-08-21 2017-03-01 Shihlin Electric & Eng Corp Damping type outside the rotary motor
FR3047449A3 (fr) * 2016-02-10 2017-08-11 Renault Sas Systeme d'entrainement de roue alternativement recepteur et generateur d'energie
JP6710578B2 (ja) * 2016-05-19 2020-06-17 Ntn株式会社 電動式直動アクチュエータ
JP6823418B2 (ja) * 2016-09-30 2021-02-03 Ntn株式会社 インホイールモータ駆動装置
JP6823417B2 (ja) * 2016-09-30 2021-02-03 Ntn株式会社 インホイールモータ駆動装置
JP6125083B1 (ja) * 2016-10-17 2017-05-10 Ntn株式会社 インホイールモータ駆動装置
DE202016106460U1 (de) * 2016-11-17 2018-02-22 Aktiebolaget Skf Wälzlagergetriebe
DE102016222689A1 (de) 2016-11-17 2018-05-17 Aktiebolaget Skf Wälzlagergetriebe
DE102017202444A1 (de) * 2017-02-15 2018-08-16 Aktiebolaget Skf Wälzlagergetriebe
DE102018202950A1 (de) * 2017-03-06 2018-10-25 Nabtesco Corporation Drehzahlminderer, antriebsrad und wagen
WO2019241765A1 (en) * 2018-06-15 2019-12-19 Indigo Technologies, Inc. A sealed axial flux motor with integrated cooling
JP7131330B2 (ja) * 2018-11-21 2022-09-06 トヨタ自動車株式会社 減速装置、および、それを用いたブレーキアクチュエータ
DE102019206708B4 (de) * 2019-05-09 2022-03-31 Zf Friedrichshafen Ag Antriebseinheit für ein Flurförderzeug, Antriebsachse für ein Flurförderzeug, Flurförderzeug und Verfahren zur Montage einer Antriebseinheit für ein Flurförderfahrzeug
DE102019117071A1 (de) * 2019-06-25 2020-12-31 Schaeffler Technologies AG & Co. KG Ölgeräumte elektrische Maschine mit Wälzlager für ein Kraftfahrzeug
WO2023122284A1 (en) * 2021-12-24 2023-06-29 Hyzon Motors Inc. Electrically powered vehicle and drivetrain
CN117231585B (zh) * 2023-11-16 2024-01-09 河北智昆精密传动科技有限公司 一种减速器负载机构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287300A (ja) * 1998-03-31 1999-10-19 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造の増減速機
JP2001315534A (ja) * 2000-05-09 2001-11-13 Nissan Motor Co Ltd ホイールインモータ車のモータ搭載構造
JP2005256898A (ja) * 2004-03-10 2005-09-22 Ntn Corp 車輪用軸受装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE459025C (de) * 1925-12-06 1928-04-25 Friedr Deckel Praez Smechanik UEber- oder Untersetzungsgetriebe
GB271742A (en) * 1926-11-15 1927-06-02 Lorenz Konrad Braren Improvements in epicyclic gearing
US3013447A (en) * 1960-02-23 1961-12-19 Fichtel & Sachs Ag Eccentric drive transmission mechanism
GB1089755A (en) * 1965-02-03 1967-11-08 Lansing Bagnall Ltd Improvements in or relating to motor driven trucks
GB1145266A (en) * 1965-06-24 1969-03-12 Merritt & Company Engineering Improvements in or relating to gyratory gearing
US3477316A (en) * 1967-12-26 1969-11-11 Ernest Wildhaber Gear drive with coaxial input and output members
GB1462372A (en) * 1973-03-06 1977-01-26 Newage Engineers Ltd Gyratory reduction gearboxes
GB1559276A (en) * 1975-11-04 1980-01-16 Newage Engs Co Motor in-wheel units
US4104933A (en) * 1976-11-19 1978-08-08 Caterpillar Tractor Co. Planet gear positioning and retaining mechanism
IT1144712B (it) * 1981-05-18 1986-10-29 Riv Officine Di Villar Perosa Complesso di supporto per le ruote di veicoli
JPS6116441A (ja) 1984-07-02 1986-01-24 Hitachi Ltd フレア形状検査装置
FR2579580A1 (fr) * 1985-03-26 1986-10-03 Durand Francois Roue motrice pour engin de manutention sur rail
CN2052845U (zh) * 1988-02-10 1990-02-14 郑录令 差动型的摆线针轮行星传动减速器
CN1023422C (zh) * 1991-04-23 1994-01-05 袁正敏 轮毂式减速机
JPH05332401A (ja) 1992-05-27 1993-12-14 Toyota Motor Corp 電気自動車用減速装置
DE19541806C1 (de) * 1995-11-09 1997-01-30 Rudolf Braren Planetengetriebe
JPH11263234A (ja) * 1998-01-23 1999-09-28 Trw Inc 減速器を備えた電動式ステアリングシステム
US20080289488A1 (en) * 1999-04-01 2008-11-27 Peter Robert Raffaele Reciprocating fluid machines
ES2337651T3 (es) * 1999-04-01 2010-04-28 Peter Robert Raffaele Maquinas de fluidos reciprocos.
JP4286390B2 (ja) 1999-07-16 2009-06-24 アイシン・エィ・ダブリュ株式会社 ドライブユニットの潤滑装置
CN1157840C (zh) * 1999-10-26 2004-07-14 李书贤 摆线减速型电动车轮电动机
JP3876116B2 (ja) * 2000-07-27 2007-01-31 住友重機械工業株式会社 ケーシング組込式の内歯歯車構造、及び内接噛合遊星歯車構造
WO2003019041A1 (de) * 2001-08-23 2003-03-06 Sew-Eurodrive Gmbh & Co. Kg. Getriebebaureihe
TWI223034B (en) * 2002-08-30 2004-11-01 Sumitomo Heavy Industries Power transmission device
DE10307622B4 (de) 2003-02-22 2010-08-05 Linde Material Handling Gmbh Antriebsachse mit integriertem Elektromotor für eine Hydraulikpumpe
JP4328120B2 (ja) * 2003-03-31 2009-09-09 住友重機械工業株式会社 揺動内接噛合型遊星歯車装置及びその耐久性向上方法
JP2005002914A (ja) 2003-06-12 2005-01-06 Toyota Motor Corp 火花点火式内燃機関
JP4221580B2 (ja) * 2003-06-16 2009-02-12 三菱自動車工業株式会社 車両駆動用減速機付きインホイールモータ
US7458433B2 (en) * 2003-07-31 2008-12-02 Arvinmeritor Technology, Llc Electric motor and gear drive assembly for driving a vehicle wheel
JP2005201310A (ja) * 2004-01-14 2005-07-28 Nabtesco Corp 偏心揺動型遊星歯車装置
EP1712814B1 (en) * 2004-01-30 2013-11-06 Nabtesco Corporation Eccentric oscillating-type planetary gear device
JP2005212656A (ja) * 2004-01-30 2005-08-11 Ntn Corp 電動式車輪駆動装置
JP2005231564A (ja) * 2004-02-23 2005-09-02 Ntn Corp 電動式車輪駆動装置
JP2006188153A (ja) * 2005-01-06 2006-07-20 Toyota Motor Corp インホイールモータ
EP1864765B1 (en) * 2005-03-29 2010-02-17 Nabtesco Corporation Swing part structure for industrial robot
US7785223B2 (en) * 2006-03-29 2010-08-31 Sumitomo Heavy Industries, Ltd. Oscillating internally meshing planetary gear reducer
RU2435085C2 (ru) 2006-11-03 2011-11-27 Спинеа С.Р.О. Передача
JP5158861B2 (ja) 2008-03-11 2013-03-06 Ntn株式会社 インホイールモータ駆動装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11287300A (ja) * 1998-03-31 1999-10-19 Sumitomo Heavy Ind Ltd 内接噛合遊星歯車構造の増減速機
JP2001315534A (ja) * 2000-05-09 2001-11-13 Nissan Motor Co Ltd ホイールインモータ車のモータ搭載構造
JP2005256898A (ja) * 2004-03-10 2005-09-22 Ntn Corp 車輪用軸受装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221934A (ja) * 2009-03-25 2010-10-07 Aisin Seiki Co Ltd インホイールモータユニット
EP2412554A1 (en) * 2009-03-25 2012-02-01 Aisin Seiki Kabushiki Kaisha In-wheel motor unit
EP2412554A4 (en) * 2009-03-25 2012-09-05 Aisin Seiki MOTORIZED UNIT IN WHEELS
US8590649B2 (en) 2009-03-25 2013-11-26 Aisin Seiki Kabushiki Kaisha In-wheel motor unit
CN102686435A (zh) * 2009-11-27 2012-09-19 Ntn株式会社 内置有内圈型电动机的带有传感器的车轮用轴承装置
WO2011108329A1 (ja) * 2010-03-04 2011-09-09 Ntn株式会社 インホイールモータ駆動装置
JP2011183825A (ja) * 2010-03-04 2011-09-22 Ntn Corp インホイールモータ駆動装置
US8772991B2 (en) 2010-03-04 2014-07-08 Ntn Corporation In-wheel motor driven device
CN103171420A (zh) * 2013-04-08 2013-06-26 南京康尼机电股份有限公司 一种带减速器的独立轮装置
CN105043231A (zh) * 2015-06-11 2015-11-11 北京精密机电控制设备研究所 一种伺服作动器适应内置板片式位移传感器安装机构
EP3757333A1 (de) * 2019-06-25 2020-12-30 GEZE GmbH Antrieb für einen flügel einer tür oder eines fensters

Also Published As

Publication number Publication date
DE112007003774B3 (de) 2020-04-02
US8132636B2 (en) 2012-03-13
US20120006608A1 (en) 2012-01-12
CN102336134B (zh) 2015-08-12
CN102126426B (zh) 2016-04-13
CN102126426A (zh) 2011-07-20
US20090101424A1 (en) 2009-04-23
US8336652B2 (en) 2012-12-25
DE112007000565T5 (de) 2009-01-08
US20110319219A1 (en) 2011-12-29
US8403794B2 (en) 2013-03-26
CN102287486A (zh) 2011-12-21
CN102287486B (zh) 2015-01-28
CN102336134A (zh) 2012-02-01
DE112007003768B3 (de) 2020-04-23
DE112007000565B4 (de) 2019-08-22

Similar Documents

Publication Publication Date Title
WO2007102545A1 (ja) インホイールモータ駆動装置
JP5778433B2 (ja) インホイールモータ駆動装置
JP5160756B2 (ja) インホイールモータ駆動装置
JP5069975B2 (ja) インホイールモータ駆動装置
JP5564352B2 (ja) インホイールモータ駆動装置
JP5519337B2 (ja) インホイールモータ駆動装置
JP2007239886A (ja) インホイールモータ駆動装置
JP4920456B2 (ja) インホイールモータ駆動装置
JP2007237927A (ja) インホイールモータ駆動装置
JP4877745B2 (ja) インホイールモータ駆動装置
JP2009074583A (ja) サイクロイド減速機、およびインホイールモータ駆動装置
JP2008168873A (ja) インホイールモータ駆動装置
JP2008168821A (ja) インホイールモータ駆動装置
JP2008044539A (ja) インホイールモータ駆動装置
JP2008044538A (ja) インホイールモータ駆動装置
JP2008045682A (ja) インホイールモータ駆動装置
JP5744974B2 (ja) インホイールモータ駆動装置
JP5738354B2 (ja) 電気自動車用インホイールモータ駆動装置
JP2008168822A (ja) インホイールモータ駆動装置
JP2007263150A (ja) インホイールモータ駆動装置
JP2008208911A (ja) インホイールモータ駆動装置
JP2008174020A (ja) インホイールモータ駆動装置
JP5744973B2 (ja) 電気自動車用インホイールモータ駆動装置
JP5394455B2 (ja) インホイールモータ駆動装置
JP2007239928A (ja) インホイールモータ駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12224806

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200780008197.1

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 112007000565

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07737956

Country of ref document: EP

Kind code of ref document: A1