WO2007088958A1 - 化合物半導体成長用基板およびエピタキシャル成長方法 - Google Patents

化合物半導体成長用基板およびエピタキシャル成長方法 Download PDF

Info

Publication number
WO2007088958A1
WO2007088958A1 PCT/JP2007/051764 JP2007051764W WO2007088958A1 WO 2007088958 A1 WO2007088958 A1 WO 2007088958A1 JP 2007051764 W JP2007051764 W JP 2007051764W WO 2007088958 A1 WO2007088958 A1 WO 2007088958A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
compound semiconductor
angle
plane
growth
Prior art date
Application number
PCT/JP2007/051764
Other languages
English (en)
French (fr)
Inventor
Hideki Kurita
Ryuichi Hirano
Original Assignee
Nippon Mining & Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining & Metals Co., Ltd. filed Critical Nippon Mining & Metals Co., Ltd.
Priority to US12/223,453 priority Critical patent/US7745854B2/en
Priority to JP2007556925A priority patent/JP5173441B2/ja
Priority to EP07707938.2A priority patent/EP1988194B1/en
Publication of WO2007088958A1 publication Critical patent/WO2007088958A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness

Definitions

  • the present invention relates to an epitaxial growth technique for a compound semiconductor layer, and more particularly to a compound semiconductor growth substrate used for epitaxial growth.
  • MOCVD method metal organic chemical vapor deposition method
  • Patent Document 1 a wafer with an off-angle from the [100] direction of 0.1 to 0.2 ° is used as an epitaxial growth substrate, and the substrate temperature is 600 ° C or higher and 700 °.
  • a method of epitaxial growth under the conditions below C has been proposed and succeeded in significantly reducing hillock-like defects (referred to as tear-like defects in Patent Document 1) on the surface of the epitaxial layer. ing.
  • Patent Document 2 in order to prevent orange peel from occurring when the off-angle of the substrate becomes large, an epitaxial growth in which the off-angle range is defined by a function of the growth rate and the substrate temperature. A method has been proposed. As a result, the hillock-like defects generated on the surface of the epitaxial layer can be greatly reduced and the occurrence of orange peel has been successfully prevented.
  • Patent Document 3 proposes a method for defining the substrate's offering in consideration of the defect density (dislocation density) of the substrate.
  • defect density location density
  • compound semiconductor on InP substrate When epitaxially growing a thin film, the off-angle 0 (°) from the [100] direction satisfies ⁇ 1 X 10 " 3 D 1 2 (D (cm -2 ): substrate defect density) and to use the substrate. for example, off-angle 0 ⁇ 0 If the defect density D of the substrate is 1000cm- 2. 03 der Ru using the substrate, off-angle in the case of 1000cm 2 0 ⁇ 0. 10 Will be used.
  • Patent Document 1 Japanese Patent Publication No. 6-92278
  • Patent Document 2 Japanese Patent No. 2750331
  • Patent Document 3 Japanese Patent No. 3129112
  • Patent Document 4 Japanese Patent No. 1786503
  • Patent Document 5 Japanese Patent No. 3081706
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2002-273647
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-339003
  • the present invention relates to a growth material effective for suppressing the occurrence of surface defects of a type different from hillock defects when a compound semiconductor layer, particularly an A1-based compound semiconductor layer, is epitaxially grown. It is an object of the present invention to provide a substrate and an epitaxial growth method. Means for solving the problem
  • the present invention has been made to solve the above-described problem, and is a compound semiconductor growth substrate having a crystal plane that is inclined at a predetermined off-angle with respect to a (100) plane as a main surface, The direction of the normal vector of the principal plane projected on the (100) plane and any of the [0-11], [01-1], [011], or [0-1 1] directions
  • the angle formed by the direction (deviation angle ⁇ ) is less than 35 °.
  • the force S that defines the deviation angle with respect to the [0-11] direction, the [01-1] direction, the [011] direction, or the [01-1] direction, and the like Needless to say, it can be defined with reference to the axial direction (eg, [001] direction, [0 0-1] direction, [010] direction, or [0-10] direction).
  • the predetermined off-angle is preferably in the range of 0.05-0.2 °.
  • III-V group compound semiconductor substrate such as a ⁇ ⁇ substrate
  • an A1 compound semiconductor layer such as InAlAs is epitaxially grown on the substrate. It is effective when
  • symbol W denotes a semiconductor growth substrate sliced so that the main surface is not parallel to the (100) plane.
  • the angle formed by the normal vector n of the substrate W and the normal direction [100] of the (100) plane is the angle ⁇ .
  • the vector obtained by projecting the normal vector ⁇ of the principal surface onto the (100) plane is the solid ⁇ .
  • the direction of the vector ⁇ can be referred to as the substrate tilt direction.
  • the angle ⁇ (hereinafter referred to as the misalignment angle) formed by the vector ⁇ and the [01-1] direction. It is possible to specify with
  • the epitaxial growth of the compound semiconductor layer includes the tilt direction of the growth substrate and the surface defects of the epitaxial layer. Considering that there might be some relationship, we examined the relationship between the growth substrate tilt direction and the surface defects.
  • 8 (Fig.
  • the compound semiconductor layer was epitaxially grown on the growth substrate using a growth substrate in which 1 was changed in the range of 0 ° to 50 °. At this time, the off angle of the main surface with respect to the (100) plane was set to 0.10 ° and 0.15 ° so that hillock-like defects due to the off angle of the growth substrate did not occur.
  • an S-doped InP substrate was used as the growth substrate, and an InAlAs layer was epitaxially grown as a compound semiconductor layer.
  • Table 1 is a table showing the occurrence of the surface defects with respect to the deviation angle ⁇ .
  • indicates that no surface defects occurred
  • X indicates that surface defects occurred. From Table 1, it can be seen that the above surface defects occur when the misalignment angle exceeds j8 force ⁇ 5 °. Regardless of the size of the misalignment angle j8, the occurrence of hillock defects was strong. [0022] [Table 1]
  • the deviation is the same as when the [0 1-1] direction is used as a reference.
  • the angle j8 is in the range of -35 ° ⁇
  • the present invention has been completed based on the above findings, and is a semiconductor growth substrate having a principal surface inclined in a specific direction. Specifically, epitaxy can be performed using a growth substrate in which the vector p obtained by projecting the normal vector n of the principal surface onto the (100) plane is in the hatched region shown in FIG.
  • the normal vector of the main surface is projected onto the (100) plane.
  • the angle between the direction of the vector and any of the [0-11], [01-1], [011], or [0-1 1] directions should be less than 35 °. Since the compound semiconductor layer is epitaxially grown on the growth substrate, it is possible to reduce the occurrence of surface defects other than hillock-like defects, and to obtain an extremely high quality epitaxial layer. Can do.
  • FIG. 1 is an explanatory diagram showing an off-angle and a tilt direction of a growth substrate.
  • FIG. 2 is an explanatory diagram showing an effective region of a deviation angle ⁇ according to the present invention.
  • FIG. 3 is a descriptive diagram showing the correspondence between normal notation and notation in the present specification and claims with respect to the direction representation.
  • an S-doped InP single crystal having a plane orientation of (100) and a diameter of 2 inches was prepared by the liquid encapsulated Czochralski (LEC) method, and a predetermined [100 A substrate for epitaxial growth was produced by cutting it so as to have an off-angle of directional force and a deviation angle j8 of [01-1] directional force.
  • LOC liquid encapsulated Czochralski
  • this InP single crystal substrate is mirror-polished by the usual method, and the off-angle of the [100] direction force is 0.1 °, and the deviation angle of the [01–1] direction force is j8 force SO, 5 , 10, 15, 20, 25, 30 °, S doping concentration force ⁇ 4 X 10 18 cm— 3 , 350 ⁇ m thick InP substrate was prepared.
  • an InAlAs epitaxial crystal layer was grown by 1 ⁇ m by MOCVD, and the surface state of the epitaxial layer was observed.
  • the surface state of the epitaxial layer was observed.
  • an epitaxial growth substrate was fabricated, and the surface of this InP single crystal substrate was mirror-polished by a normal method, and the off-angle from the [100] direction was 0.1 °, [01 1 ] Inclined angle of directional force ⁇ force 35, 40, 45, 50 °, S-doped concentration force 4 X 10 18 cm- 3 , 350 ⁇ m thick InP substrate was prepared.
  • an InAlAs epitaxial crystal layer was grown to 1 ⁇ m by MOCVD, and the surface state of the epitaxial layer was observed. As a result, no hillock defects were observed in the obtained epitaxial crystal layer, but they were different from the hillock defects. A type of surface defect was observed.
  • an InP substrate with an off-angle of the main surface of 0.1 ° and a [0-11] directional force deviation angle of 0 ⁇ j8 ⁇ 35 is used.
  • surface defects other than hillock-like defects can be reduced, and an extremely good epitaxial layer can be obtained.
  • a deviation angle force of [01-1] direction force is set to SO ⁇
  • the same effect can be obtained when j8 is set in the negative direction. That is, the use of an InP substrate having a deviation angle ⁇ from the [01-1] direction in the range of ⁇ 35 ° ⁇ j8 ⁇ 35 ° can reduce the surface defects generated in the epitaxial layer.
  • the off-angle of the InP substrate is 0.1 °, but the off-angle of the main surface may be in the range of 0.05 to 0.2 °. By doing so, it is possible to effectively prevent the occurrence of hillock-like defects on the surface of the epitaxial layer.
  • the force described in the example of the epitaxial growth of the InAlAs layer on the InP substrate is used on the InP substrate.
  • a III-V group compound semiconductor layer for example, InGaAs
  • the present invention can be similarly applied to the case of the epitaxial growth.
  • InP substrates it can be applied to general epitaxial growth using other compound semiconductor substrates.

Abstract

 化合物半導体層、特に、Al系化合物半導体層をエピタキシャル成長させる際に、ヒロック状欠陥とは異なるタイプの表面欠陥が発生するのを抑制するのに有効な成長用基板を提供する。 (100)面に対して所定のオフアングルで傾斜した結晶面を主面とする化合物半導体成長用基板において、主面の法線ベクトルを(100)面に投影したベクトルの方向と、[0-11]方向、[01-1]方向、[011]方向、または[0-1-1]方向の何れかの方向のなす角が35°未満となるようにし、該成長用基板上に化合物半導体層をエピタキシャル成長させるようにした。

Description

化合物半導体成長用基板およびェピタキシャル成長方法
技術分野
[0001] 本発明は、化合物半導体層のェピタキシャル成長技術に関し、特に、ェピタキシャ ル成長に使用される化合物半導体成長用基板に関する。
背景技術
[0002] 従来、発光素子ゃ受光素子等の半導体素子の用途には、 InP基板上に InP等の II I V族系化合物半導体層をェピタキシャル成長させた半導体ウェハが広く用いられ ている。この化合物半導体力もなるェピタキシャル層は、例えば、有機金属気相成長 法 (以下、 MOCVD法と称する)により形成される。
[0003] ところで、 MOCVD法により上述した III— V族系化合物半導体層をェピタキシャル 成長させた場合、ェピタキシャル層の表面にヒロックとよばれる微小な凸状の欠陥や 、オレンジピールとよばれるシヮ状の欠陥が発生してしまい、ェピタキシャル層の表面 モホロジ一が劣化するという問題があった。そこで、ェピタキシャル層の表面モホロジ 一を改善するための種々の技術が提案されている(特許文献 1〜3)。
[0004] 例えば、特許文献 1では、ェピタキシャル成長用基板として、 [100]方向からのオフ アングルが 0. 1〜0. 2° であるウェハを用い、かつ基板温度を 600°C以上 700°C以 下の条件でェピタキシャル成長させる方法が提案されており、ェピタキシャル層の表 面におけるヒロック状欠陥(特許文献 1においては涙状欠陥と称している)を著しく低 減させることに成功している。
[0005] さらに、特許文献 2では、基板のオフアングルが大きくなつた場合にオレンジピール が発生するのを防止するために、オフアングルの範囲を成長速度と基板温度の関数 により規定したェピタキシャル成長方法が提案されている。これにより、ェピタキシャ ル層表面に生じるヒロック状欠陥を大幅に低減できるとともに、オレンジピールの発生 を防止することに成功して 、る。
[0006] また、特許文献 3では、基板の欠陥密度 (転位密度)も考慮に入れて基板のオファ ングルを規定する方法が提案されている。具体的には、 InP基板上に化合物半導体 の薄膜をェピタキシャル成長させる際に、 [100]方向からのオフアングル 0 (° )が、 Θ≥1 X 10"3D1 2 (D (cm-2):基板の欠陥密度)を満足する基板を使用するようにして いる。例えば、基板の欠陥密度 Dが 1000cm— 2の場合はオフアングル 0≥0. 03であ る基板を使用し、 1000cm 2の場合はオフアングル 0≥0. 10である基板を使用する こととなる。
[0007] 一方、シリコン単結晶膜のェピタキシャル成長技術に関しては、ェピタキシャル層表 面の微小な凹凸やその他の欠陥発生を低減するために、基準面 (例えば、(100)面 )に対する成長用基板のオフアングルだけでなぐその傾斜方向を規定するようにし た技術が提案されて 、る (特許文献 4〜7)。
特許文献 1:特公平 6— 92278号公報
特許文献 2:特許第 2750331号公報
特許文献 3:特許第 3129112号公報
特許文献 4:特許第 1786503号公報
特許文献 5:特許第 3081706号公報
特許文献 6:特開 2002 - 273647号公報
特許文献 7:特開 2004— 339003号公報
発明の開示
発明が解決しょうとする課題
[0008] 従来は、 III V族系化合物半導体層のェピタキシャル成長技術に関して、上記特 許文献 1〜3のように主面 (成長面)のオフアングルと転位密度を規定した成長用基 板を用い、さらに、所定の成長条件で気相成長させることにより表面モホロジ一が良 好で実用的なェピタキシャル層を成長させることができていた。すなわち、上記特許 文献 1〜3に記載の技術により、半導体成長用基板の面方位および基板転位に起因 して発生すると考えられているヒロック状欠陥は効果的に低減することができていた。
[0009] し力しながら、本発明者等が、上記特許文献 1〜3に記載の技術を利用して、種々 の化合物半導体層をェピタキシャル成長させたところ、従来から注目されているヒロッ ク状欠陥とは異なるタイプの表面欠陥が発生することが判明した。このヒロック状欠陥 とは異なるタイプの表面欠陥とは、針のような細長い形状をした欠陥であり、特に、近 年盛んに開発されて ヽる A1系化合物半導体層(例えば、 InAlAs等) をェピタキシャ ル成長させたときに発生しやす 、ことが分力つた。
[0010] 本発明は、化合物半導体層、特に、 A1系化合物半導体層をェピタキシャル成長さ せる際に、ヒロック状欠陥とは異なるタイプの表面欠陥が発生するのを抑制するのに 有効な成長用基板およびェピタキシャル成長方法を提供することを目的とする。 課題を解決するための手段
[0011] 本発明は、上記課題を解決するためになされたものであり、(100)面に対して所定 のオフアングルで傾斜した結晶面を主面とする化合物半導体成長用基板であって、 主面の法線ベクトルを(100)面に投影したベクトルの方向と、 [0— 11]方向、 [01— 1]方向、 [011]方向、または [0— 1 1]方向の何れかの方向とのなす角(ズレ角 β )が 35° 未満であることを特徴とする。このように、主面が特定の方向に傾斜している 成長用基板を使用して、該基板上に化合物半導体層をェピタキシャル成長させるこ とで、ェピタキシャル層の表面欠陥(特に、ヒロック状欠陥とは異なるタイプの表面欠 陥)を低減させることができる。
[0012] ここで、方向の表し方について、値が負の場合、一般には数字の上に" "を付して 表す力 本明細書および特許請求の範囲においては数字の前に" "を付して表す こととする。つまり、通常の表記と本明細書および特許請求の範囲における表記の対 応関係は図 3の通りである。
[0013] なお、本発明では、 [0—11]方向、 [01— 1]方向、 [011]方向、または [0—1— 1] を基準としてズレ角 を規定している力 S、その他の軸方向(例えば、 [001]方向、 [0 0— 1]方向、 [010]方向、または [0— 10]方向等)を基準として規定できることはいう までもない。
[0014] また、ェピタキシャル層表面にヒロック状欠陥が発生するのを防止するために、上記 所定のオフアングルは、 0. 05-0. 2° の範囲であることが望ましい。
[0015] また、上記成長用基板として、 ΙηΡ基板等の III V族系化合物半導体基板を適用 した場合に有効であり、特に、該基板上に InAlAs等の A1系化合物半導体層をェピ タキシャル成長させる場合に有効である。
[0016] ここで、図 1を参照して、成長用基板のオフアングルおよび傾斜方向について説明 する。図 1において、符号 Wは、主面が(100)面と平行にならないようにスライスされ た半導体成長用基板である。
[0017] このとき、基板 Wの法線ベクトル nと(100)面の法線方向 [100]とのなす角がオファ ングル αとなる。また、主面の法線ベクトル ηを(100)面に投影したベクトルがべタト ル ρとなる。このベクトル ρの方向を基板の傾斜方向ということができ、例えば、 [01 - 1 ]方向を基準とすれば、ベクトル ρと [01— 1]方向とのなす角 β (以下、ズレ角と称す る)で特定することがでさる。
[0018] 以下に、本発明を完成するに至った経緯について説明する。
まず、本発明者等が、上記特許文献 1〜3に記載の技術を利用して種々の化合物 半導体層をェピタキシャル成長させたところ、従来力も注目されているヒロック状欠陥 とは異なるタイプの新たな表面欠陥が発生することが判明した。また、この新たな表 面欠陥は、特に、 A1系化合物半導体層(例えば、 InAlAs等)をェピタキシャル成長 させたときに発生しやす 、ことが分力つた。
[0019] そこで、上記特許文献 4〜7に記載のシリコンェピタキシャル成長に関する技術を 参考にし、化合物半導体層のェピタキシャル成長においても、成長用基板の傾斜方 向とェピタキシャル層の表面欠陥には何らかの関係があるのではないかと考え、成長 用基板の傾斜方向と上記表面欠陥との関係につ 、て検討した。
[0020] 具体的には、 [01— 1]方向を基準として、主面の法線ベクトル nを(100)面に投影 したベクトル pと [01— 1]方向とのなす角 |8 (図 1参照)を 0° 〜50° の範囲で変化さ せた成長用基板を使用して、該成長用基板上に化合物半導体層をェピタキシャル 成長させた。このとき、成長用基板のオフアングルに起因するヒロック状欠陥が発生し ないように、(100)面に対する主面のオフアングルを 0. 10° 、0. 15° とした。また、 成長用基板としては Sドープ InP基板を使用し、化合物半導体層として InAlAs層を ェピタキシャル成長させた。
[0021] 表 1は、ズレ角 βに対する上記表面欠陥の発生状況を示す表である。表 1中、〇は 表面欠陥の発生がないことを示し、 Xは表面欠陥が発生したことを示す。表 1より、ズ レ角 j8力^ 5° を超えると上記表面欠陥が発生することがわかる。なお、ズレ角 j8の 大きさに関係なくヒロック状欠陥の発生は見られな力つた。 [0022] [表 1]
Figure imgf000007_0001
[0023] さらに実験を重ねた結果、 [01— 1]方向を基準として、ズレ角 13をマイナス方向に とった場合も表 1と同様の結果が得られた。これより、本発明者等は、ェピタキシャル 層に発生する上記表面欠陥を低減するためには、ズレ角 j8が 0≤ |8 < 35° の範囲 にある成長用基板を使用することが有効であるという知見を得た。
[0024] また、 [0—11]方向、 [011]方向、または [0—1— 1]方向を基準とした場合も、 [0 1— 1]方向を基準としたときと同様に、ズレ角 j8がー 35° < |8 < 35° の範囲にある 成長用基板を使用することで、ェピタキシャル層に発生する上記表面欠陥を低減す ることがでさた。
[0025] 本発明は、上記知見に基づいて完成されたもので、特定の方向に傾斜した主面を 有する半導体成長用基板である。具体的には、主面の法線ベクトル nを(100)面に 投影したベクトル pが図 2に示す斜線領域にある成長用基板を使用してェピタキシャ ル成長させればよ 、こととなる。
発明の効果
[0026] 本発明によれば、(100)面に対して所定のオフアングルで傾斜した結晶面を主面 とする化合物半導体成長用基板において、主面の法線ベクトルを(100)面に投影し たベクトルの方向と、 [0— 11]方向、 [01— 1]方向、 [011]方向、または [0— 1 1] 方向の何れかの方向のなす角が 35° 未満となるようにし、該成長用基板上に化合 物半導体層をェピタキシャル成長させるようにしたので、ヒロック状欠陥以外の表面 欠陥が発生するのを低減することができ、極めて良質なェピタキシャル層を得ること ができる。
図面の簡単な説明
[0027] [図 1]成長用基板のオフアングルおよび傾斜方向を示す説明図である。
[図 2]本発明に係るズレ角 βの有効領域を示す説明図である。
[図 3]方向の表し方について、通常の表記と本明細書および請求の範囲における表 記の対応関係を示す説明図である。
発明を実施するための最良の形態
[0028] 以下、本発明の好適な実施の形態を図面に基づいて説明する。
[0029] (実施例)
はじめに、液体封止チヨクラノレスキー法(Liquid Encapsulated Czochralski; LEC)に より面方位が(100)で直径が 2インチの Sドープ InP単結晶を作製し、該 InP単結晶 から、所定の [100]方向力 のオフアングルおよび [01— 1]方向力 のズレ角 j8を 有するように切り出してェピタキシャル成長用基板を作製した。そして、この InP単結 晶基板の表面を通常の方法により鏡面力卩ェし [100]方向力 のオフアングルが 0. 1 ° 、 [01— 1]方向力らのズレ角 j8力 SO, 5, 10, 15, 20, 25, 30° 、 Sドープ濃度力 ^4 X 1018cm— 3、 350 μ m厚の InP基板を準備した。
[0030] この InP基板を用いて、 MOCVD法により InAlAsェピタキシャル結晶層を 1 μ m成 長させ、ェピタキシャル層の表面状態を観察した。その結果、得られたェピタキシャ ル結晶層において、ヒロック状欠陥はもちろん、ヒロック状欠陥とは異なるタイプの表 面欠陥も観察されず、表面状態は極めて良好であった。
[0031] (比較例)
上記実施例と同様に、ェピタキシャル成長用基板を作製し、この InP単結晶基板の 表面を通常の方法により鏡面力卩ェし [100]方向からのオフアングルが 0. 1° 、 [01 1]方向力らのズレ角 β力 35, 40, 45, 50° 、 Sドープ濃度力4 X 1018cm— 3、 350 μ m厚の InP基板を準備した。
[0032] この InP基板を用いて、 MOCVD法により InAlAsェピタキシャル結晶層を 1 μ m成 長させ、ェピタキシャル層の表面状態を観察した。その結果、得られたェピタキシャ ル結晶層において、ヒロック状欠陥は観察されなかったが、ヒロック状欠陥とは異なる タイプの表面欠陥が観察された。
[0033] 上述したように、主面のオフアングルが 0. 1° で、 [0—11]方向力 のズレ角が 0 ≤ j8 < 35の InP基板を用い、該 InP基板上に InAlAsィ匕合物半導体層をェピタキシ ャル成長させることで、ヒロック状欠陥以外の表面欠陥も低減させることができ、極め て良質なェピタキシャル層を得ることができた。
[0034] 以上、本発明者によってなされた発明を実施形態に基づいて具体的に説明したが 、本発明は上記実施形態に限定されるものではなぐその要旨を逸脱しない範囲で 変更可能である。
[0035] 例えば、上記実施形態では、 [01— 1]方向力ものズレ角力 SO≤ |8く 35の InP基板 を用いるようにして 、るが、 [01— 1]方向を基準として、ズレ角 j8をマイナス方向にと つた場合も同様の効果を得ることができる。すなわち、 [01— 1]方向からのズレ角 β がー 35° < j8 < 35° の範囲にある InP基板を使用することで、ェピタキシャル層に 発生する上記表面欠陥を低減することができる。
[0036] また、 [0—11]方向、 [011]方向、または [0—1— 1]方向を基準とした場合も、 [0 1— 1]方向を基準としたときと同様に、ズレ角 j8がー 35° < j8 < 35° の範囲にある I nP基板を使用することで、 InAlAsェピタキシャル層に発生する上記表面欠陥を低 減することができる。すなわち、主面の傾斜方向(ズレ角 β )が図 2に示す斜線領域に ある InP基板を使用することで、極めて良質なェピタキシャル層を得ることができる。
[0037] また、上記実施形態では、 InP基板のオフアングルを 0. 1° としたが、主面のオフ アングルは 0. 05〜0. 2° の範囲であればよい。このようにすることで、ェピタキシャ ル層表面にヒロック状欠陥が発生するのを有効に防止することができる。
[0038] さらに、上記実施形態では、 InP基板上に InAlAs層をェピタキシャル成長させた例 について説明した力 InP基板上に、 InAlAs以外の III— V族系化合物半導体層( 例えば、 InGaAs)をェピタキシャル成長させる場合にも本発明を同様に適用できる。 また、 InP基板に限らず、他の化合物半導体基板を用いたェピタキシャル成長全般 に適用できると考えられる。

Claims

請求の範囲
[1] (100)面に対して所定のオフアングルで傾斜した結晶面を主面とする化合物半導 体成長用基板であって、
主面の法線ベクトルを(100)面に投影したベクトルの方向と、 [0— 11]方向、 [01 1]方向、 [011]方向、または [0— 1 1]方向の何れかの方向とのなす角が 35° 未満であることを特徴とする化合物半導体成長用基板。
[2] 上記所定のオフアングルは、 0. 05〜0. 2° の範囲であることを特徴とする請求の 範囲第 1項に記載の化合物半導体成長用基板。
[3] (100)面に対して所定のオフアングルで傾斜した主面を有し、該主面の法線べタト ルを(100)面に投影したベクトルの方向と、 [0— 11]方向、 [01— 1]方向、 [011]方 向、または [0— 1 1]方向の何れかの方向とのなす角が 35° 未満である化合物半 導体成長用基板を用いて、該成長用基板上に化合物半導体層をェピタキシャル成 長させることを特徴とするェピタキシャル成長方法。
[4] 上記所定のオフアングルは、 0. 05〜0. 2° の範囲であることを特徴とする請求の 範囲第 3項に記載のェピタキシャル成長方法。
[5] 上記化合物半導体層は、 InAlAs等の A1系化合物半導体層であることを特徴とす る請求の範囲第 3項または第 4項に記載のェピタキシャル成長方法。
PCT/JP2007/051764 2006-02-02 2007-02-02 化合物半導体成長用基板およびエピタキシャル成長方法 WO2007088958A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/223,453 US7745854B2 (en) 2006-02-02 2007-02-02 Substrate for growing compound semiconductor and epitaxial growth method
JP2007556925A JP5173441B2 (ja) 2006-02-02 2007-02-02 化合物半導体成長用基板およびエピタキシャル成長方法
EP07707938.2A EP1988194B1 (en) 2006-02-02 2007-02-02 Substrate for growing of compound semiconductor and method of epitaxial growth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006026199 2006-02-02
JP2006-026199 2006-02-02

Publications (1)

Publication Number Publication Date
WO2007088958A1 true WO2007088958A1 (ja) 2007-08-09

Family

ID=38327526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051764 WO2007088958A1 (ja) 2006-02-02 2007-02-02 化合物半導体成長用基板およびエピタキシャル成長方法

Country Status (5)

Country Link
US (1) US7745854B2 (ja)
EP (1) EP1988194B1 (ja)
JP (1) JP5173441B2 (ja)
TW (1) TWI402896B (ja)
WO (1) WO2007088958A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017659A (ja) * 2018-07-26 2020-01-30 富士通株式会社 赤外線検出器、撮像素子、光半導体装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4743453B2 (ja) * 2008-12-25 2011-08-10 住友電気工業株式会社 気体モニタリング装置、燃焼状態モニタリング装置、経年変化モニタリング装置、および不純物濃度モニタリング装置
JP2011035018A (ja) * 2009-07-30 2011-02-17 Renesas Electronics Corp 半導体受光素子

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482525A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0361634B2 (ja) 1986-03-28 1991-09-20 Shinetsu Handotai Kk
JPH0692278B2 (ja) 1989-03-09 1994-11-16 株式会社ジャパンエナジー エピタキシャル成長方法
JPH076957A (ja) * 1993-01-13 1995-01-10 Sumitomo Chem Co Ltd 半導体エピタキシャル基板
JPH07193007A (ja) * 1993-12-27 1995-07-28 Nec Kansai Ltd エピタキシャル成長方法
JPH0837293A (ja) * 1994-07-25 1996-02-06 Nec Corp 電界効果型半導体装置
JP2750331B2 (ja) 1992-04-23 1998-05-13 株式会社ジャパンエナジー エピタキシャル成長用基板およびエピタキシャル成長方法
JP3081706B2 (ja) 1992-06-12 2000-08-28 株式会社東芝 半導体装置用基板
JP3129112B2 (ja) 1994-09-08 2001-01-29 住友電気工業株式会社 化合物半導体エピタキシャル成長方法とそのためのInP基板
JP2002273647A (ja) 2001-03-16 2002-09-25 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の切断方法
JP2004339003A (ja) 2003-05-15 2004-12-02 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハ及びシリコンエピタキシャルウェーハの製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170180A (ja) 1984-09-12 1986-04-10 Daikin Ind Ltd 密閉形圧縮機
JPS61144017A (ja) * 1984-12-18 1986-07-01 Fujitsu Ltd 半導体ウエハ
JP2678611B2 (ja) * 1988-03-11 1997-11-17 市川毛織株式会社 抄紙用ニードルフェルト
KR100281939B1 (ko) 1993-01-13 2001-03-02 고오사이 아끼오 반도체 에피택셜 기판
JPH113989A (ja) * 1997-06-11 1999-01-06 Hitachi Cable Ltd 化合物半導体トランジスタ
JP4015865B2 (ja) * 2002-03-22 2007-11-28 松下電器産業株式会社 半導体装置の製造方法
CN100401482C (zh) * 2002-12-03 2008-07-09 日矿金属株式会社 外延生长方法以及外延生长用衬底
CA2519885A1 (en) * 2003-05-07 2004-12-09 Sumitomo Electric Industries, Ltd. Indium phosphide substrate, indium phosphide single crystal and process for producing them

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0361634B2 (ja) 1986-03-28 1991-09-20 Shinetsu Handotai Kk
JPS6482525A (en) * 1987-09-24 1989-03-28 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH0692278B2 (ja) 1989-03-09 1994-11-16 株式会社ジャパンエナジー エピタキシャル成長方法
JP2750331B2 (ja) 1992-04-23 1998-05-13 株式会社ジャパンエナジー エピタキシャル成長用基板およびエピタキシャル成長方法
JP3081706B2 (ja) 1992-06-12 2000-08-28 株式会社東芝 半導体装置用基板
JPH076957A (ja) * 1993-01-13 1995-01-10 Sumitomo Chem Co Ltd 半導体エピタキシャル基板
JPH07193007A (ja) * 1993-12-27 1995-07-28 Nec Kansai Ltd エピタキシャル成長方法
JPH0837293A (ja) * 1994-07-25 1996-02-06 Nec Corp 電界効果型半導体装置
JP3129112B2 (ja) 1994-09-08 2001-01-29 住友電気工業株式会社 化合物半導体エピタキシャル成長方法とそのためのInP基板
JP2002273647A (ja) 2001-03-16 2002-09-25 Sumitomo Mitsubishi Silicon Corp シリコン単結晶の切断方法
JP2004339003A (ja) 2003-05-15 2004-12-02 Shin Etsu Handotai Co Ltd シリコンエピタキシャルウェーハ及びシリコンエピタキシャルウェーハの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1988194A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020017659A (ja) * 2018-07-26 2020-01-30 富士通株式会社 赤外線検出器、撮像素子、光半導体装置
JP7187867B2 (ja) 2018-07-26 2022-12-13 富士通株式会社 赤外線検出器、撮像素子、光半導体装置

Also Published As

Publication number Publication date
EP1988194A4 (en) 2011-09-21
JP5173441B2 (ja) 2013-04-03
TWI402896B (zh) 2013-07-21
TW200737313A (en) 2007-10-01
US20090025629A1 (en) 2009-01-29
JPWO2007088958A1 (ja) 2009-06-25
US7745854B2 (en) 2010-06-29
EP1988194A1 (en) 2008-11-05
EP1988194B1 (en) 2016-01-27

Similar Documents

Publication Publication Date Title
US9903046B2 (en) Reduction of carrot defects in silicon carbide epitaxy
JP4691911B2 (ja) Iii−v族窒化物系半導体自立基板の製造方法
US20100199910A1 (en) Method of manufacturing silicon carbide single crystal
JP2005343713A (ja) Iii−v族窒化物系半導体自立基板及びその製造方法並びにiii−v族窒化物系半導体
US10161059B2 (en) Group III nitride bulk crystals and their fabrication method
JP2003321298A (ja) SiC単結晶及びその製造方法,エピタキシャル膜付きSiCウエハ及びその製造方法,並びにSiC電子デバイス
CN110637109B (zh) SiC外延晶片及其制造方法
JP2010076967A (ja) 炭化ケイ素基板の製造方法および炭化ケイ素基板
JP6526811B2 (ja) Iii族窒化物結晶を加工する方法
WO2007088958A1 (ja) 化合物半導体成長用基板およびエピタキシャル成長方法
JP5120285B2 (ja) Iii−v族窒化物系半導体自立基板の製造方法
US10236338B2 (en) SiC single crystal seed, SiC ingot, SiC single crystal seed production method, and SiC single crystal ingot production method
JP2006062931A (ja) サファイア基板とその熱処理方法、及び結晶成長方法
US10125435B2 (en) SiC single crystal, SiC wafer, SiC substrate, and SiC device
JP4696070B2 (ja) エピタキシャル結晶の成長方法
JP4657724B2 (ja) エピタキシャル成長方法およびエピタキシャル成長用基板
JP2012232884A (ja) 窒化物半導体基板及びその製造方法並びにそれを用いた素子
JP2007019048A (ja) エピタキシャル成長方法及びエピタキシャル成長用基板
JPH07193007A (ja) エピタキシャル成長方法
US20110215439A1 (en) Epitaxial growth substrate, manufacturing method thereof, nitride-based compound semiconductor substrate, and nitride-based compound semiconductor self-supporting substrate

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556925

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12223453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707938

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)