WO2007088768A1 - 有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス - Google Patents

有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス Download PDF

Info

Publication number
WO2007088768A1
WO2007088768A1 PCT/JP2007/051158 JP2007051158W WO2007088768A1 WO 2007088768 A1 WO2007088768 A1 WO 2007088768A1 JP 2007051158 W JP2007051158 W JP 2007051158W WO 2007088768 A1 WO2007088768 A1 WO 2007088768A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
organic
thin film
general formula
film transistor
Prior art date
Application number
PCT/JP2007/051158
Other languages
English (en)
French (fr)
Inventor
Yasushi Okubo
Rie Katakura
Hidekane Ozeki
Hiroshi Kita
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007556826A priority Critical patent/JP5245117B2/ja
Publication of WO2007088768A1 publication Critical patent/WO2007088768A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene

Definitions

  • Organic thin film transistor organic semiconductor material, organic semiconductor film, and organic semiconductor device
  • the present invention relates to an organic thin film transistor, an organic semiconductor material, an organic semiconductor film, and an organic semiconductor device.
  • a display medium is formed by using elements utilizing liquid crystal, organic EL (organic electoluminescence), electrophoresis, or the like.
  • a technology using an active drive element (TFT element) as an image drive element has become mainstream to ensure uniformity of screen brightness, screen rewriting speed, and the like!
  • TFT element active drive element
  • these TFT elements are formed on a glass substrate, and liquid crystal, organic EL elements, etc. are sealed.
  • TFT elements such as a—Si (amorphous silicon) and p—Si (polysilicon) can be mainly used for TFT elements, and these S ⁇ conductors (and metal films as required).
  • the TFT element is manufactured by forming a multi-layered structure and sequentially forming source, drain, and gate electrodes on the substrate. The manufacture of such TFT elements usually requires high temperature or high vacuum manufacturing processes such as sputtering and plasma CVD.
  • organic semiconductor materials have been vigorously advanced as an organic compound having a high charge transport property. These compounds have been reported in many papers such as organic laser oscillators as discussed in Non-Patent Document 1, etc., as well as, for example, Non-Patent Document 2, in addition to charge transport materials for organic EL devices.
  • organic TFT devices organic thin film transistor devices
  • a TFT element may be formed on the transparent resin substrate. If a TFT element is formed on a transparent resin substrate and the display material can be driven by the TFT element, the display will be lighter and more flexible than conventional ones and will not crack even if dropped (or very cracked). It can be a display).
  • Sarako considers that there is a possibility of obtaining a semiconductor that can be dissolved in a solvent by appropriately improving the molecular structure of the organic semiconductor material. It is possible to manufacture by a printing method that includes, and since the number of processes can be greatly reduced compared to the patterning method using conventional photolithographs, further cost reduction is expected.
  • Non-Patent Documents 1 to 3 A material that exhibits a sufficient carrier mobility and a ZOFF ratio while maintaining sufficient solubility in a solvent that can only be obtained with a light source has been found.
  • Examples of acene-based compounds that are relatively stable with respect to acid ⁇ include non-patent documents 5 and 6 and patent document 7, in which some compounds 1S in which pentacene 6- and 13-positions are substituted with a silylethyl group There are some reports that the stability of the coating film is high.
  • V is not yet stable enough to withstand practical use.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-55568
  • Patent Document 2 JP-A-5-190877
  • Patent Document 3 JP-A-8-264805
  • Patent Document 4 JP-A-11-195790
  • Patent Document 5 Japanese Patent Laid-Open No. 2003-155289
  • Patent Document 6 Pamphlet of International Publication No. 03Z016599
  • Patent Document 7 U.S. Pat.No. 6,690,029
  • Non-Patent Document 1 Science 289 ⁇ , 599 pages (2000)
  • Non-Patent Document 2 “Nature” (Nature) 403 ⁇ , 521 pages (2000)
  • Non-Patent Document 3 "Advanced Material", 2002, No.2, p. 99
  • Non-Patent Document 4 Science, vol. 303 (2004), p. 1644
  • Non-Patent Document 5 Org. Lett., Vol. 4 (2002), p. 15
  • Non-Patent Document 6 J. Am. Chem. Soc., Vol. 127 (2005), p. 4986
  • An object of the present invention is to provide an organic semiconductor material that can be produced at low temperature, has good characteristics as a transistor, is stable against oxygen in the air, and sufficiently suppresses deterioration over time.
  • Organic semiconductor film, organic semiconductor device and organic thin film transistor used, and Another object of the present invention is to provide an organic semiconductor device and an organic thin film transistor that can be formed by a simple coating process.
  • An organic thin film transistor characterized in that a planar tetradentate ortho metal complex is contained in a semiconductor layer.
  • the organic thin film transistor according to 1 or 2 which has a condensed polycyclic structure in which the ligand of the planar tetradentate orthometallic complex is condensed in three or more rings.
  • planar tetradentate orthometallic complex is a compound represented by the following general formula (1):
  • M represents a metal atom of Pt, Au or Pd, and Z to Z are substituted or unsubstituted aromatic atoms.
  • An organic semiconductor material that also has a planar tetradentate orthometallic complex ability, and has a condensed polycyclic structure in which three or more rings of the ligand of the planar tetradentate orthometallic complex are condensed.
  • Organic semiconductor material
  • M represents a metal atom of Pt, Au, or Pd, and Z or unsubstituted aromatic.
  • the organic semiconductor material according to 9 or 10 which is a compound having a substituent
  • An organic semiconductor device comprising the organic semiconductor material according to any one of 8 to 12.
  • an organic semiconductor material that can be manufactured at low temperature, has good characteristics as a transistor, is stable with respect to oxygen in the air, and sufficiently suppresses deterioration with time.
  • the organic semiconductor film, the organic semiconductor device, the organic thin film transistor, and the organic semiconductor device and the organic thin film transistor that can be formed by a simple coating process can be provided.
  • FIG. 1 is a diagram showing a configuration example of an organic TFT according to the present invention.
  • FIG. 2 is an example of a schematic equivalent circuit diagram of the organic TFT of the present invention.
  • FIG. 3 is a schematic view showing an example of an organic EL element having a sealing structure.
  • FIG. 4 is a schematic view showing an example of a substrate having TFTs used for an organic EL element.
  • an ortho-metal complex complex having a structure in which an aromatic compound having a specific structure having excellent characteristics as an organic semiconductor is combined with a specific noble metal that is stable against oxygen, has excellent characteristics as a semiconductor. It has been found that the organic semiconductor material has stability against oxygen.
  • organic semiconductor film, organic semiconductor device, and organic thin film transistor (hereinafter, also referred to as organic TFT) of the present invention produced using the organic semiconductor material have excellent carrier mobility and good ONZOFF characteristics. It was found that the transistor characteristics were high and the durability was high.
  • the organic semiconductor material of the present invention is a planar tetradentate orthometallic complex.
  • the ortho-metaly ⁇ complex is Akio Yamamoto, “Organic Metal Chemistry Fundamentals and Applications,” p. 150 and p. 232, Houbobo (1982), “Photochemistry” by H. Yersin.
  • V is a general term for a group of compounds described on pages V and ld5 to 146, Springer-Verlag (1987).
  • the ligand forms a complex in a planar tetradentate coordination.
  • a planar tetradentate structure By having a planar tetradentate structure, the crystallinity of the molecule is improved, and an organic thin film with high mobility can be obtained.
  • the central metal that forms the ortho-metal complex must be a divalent or trivalent metal species.
  • Any such metal species can be used without limitation.
  • divalent platinum, palladium, and trivalent gold can be preferably used.
  • an organic semiconductor thin film having a complex structure with a flat surface, high crystallinity, and high mobility can be obtained.
  • it is a metal species that is difficult to oxidize it is possible to keep the degradation due to oxygen very low.
  • the ligand that forms the orthometal ⁇ complex is not particularly limited as long as it is a ligand that can form a planar structure. However, in order to obtain an organic semiconductor thin film having high mobility, three or more rings are used. It is preferable that the ligand has a condensed polycyclic ring. With this structure As a result, the crystallinity of the organic thin film is improved, and the ⁇ stack area between the condensed polycycles is increased in the crystal, so that high mobility can be obtained.
  • the condensed polycycle itself is a compound represented by the general formula (1) in which an ortho metal complex is formed.
  • ⁇ to ⁇ represent a substituted or unsubstituted aromatic ring.
  • Examples of the aromatic ring represented by ⁇ to ⁇ include, for example, a benzene ring, a pyridine ring, and a pyridazine.
  • the aromatic ring represented by ⁇ has at least one nitrogen atom
  • Examples of such condensed polycycles include benzo [h] quinoline, benzo [h] cinnoline, benzo [f] quinoxaline, benzo [c] naphthyridine, benzo [h] naphthyridine, 1, 7- Phenanthroline, 1, 8—Phenant mouth ring, 1, 9—Phenant mouth ring, 2, 3, 5—Triazaphenanthrene, 2, 5, 9—Triazaphenanthrene, 4, 9, 10—Triazaphenanthrene, Forces including thieno [2,3-h] quinoline, naphtho [1,2-d] thiazole, benzo [4,5] thieno [3,2-b] pyridin and the like, but not limited thereto.
  • a complex in which the central metal is divalent Pt is more preferable. This is because an ortho-metal complex composed of Pt can stabilize an organic thin film that is very difficult to generate acid.
  • the organic thin film made of the above organic semiconductor material may be formed by vacuum vapor deposition or by solution coating. However, when the film is formed by vacuum vapor deposition, the solid film is formed by vacuum vapor deposition. After 5 ⁇ : It is necessary to perform patterning by photolithography over the LO process. If solution coating is possible, it can be directly patterned by various printing methods and inkjet methods. Therefore, a material that can be formed by solution coating is preferred. [0049] In order to obtain such a soluble organic semiconductor material, it is necessary to add a substituent that gives solubility to the orthometalated complex having the above structure.
  • Such a soluble substituent is preferably a substituent represented by the general formula (2).
  • R represents a substituent selected from an alkyl group, a cycloalkyl group, an alkylsilyl group, and an alkylsilylalkyl group, and n represents an integer of 1 to 3.
  • a soluble material can be obtained by substituting a part of the above orthometallic complex with a substituent having such a structure.
  • Examples of the substituent represented by R in the general formula (2) include the following substituents.
  • Alkyl group for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, neopentyl group, hexyl group, octyl group, decyl group, dodecyl group, tetradecyl group, pentadecyl group, etc.
  • a cycloalkyl group for example, a cyclopentyl group, a cyclohexyl group, etc.
  • Silyl group For example, trimethylsilyl group, triisopropylpropylsilyl group, tricyclohexylsilyl group, tri-furylsilyl group, fluorethylsilyl group, trimethoxysilyl group, triethoxysilinole group, silatrane group,
  • Alkylsilyl alkyl group (triethylsilyl) methyl group, (triisopropylpropylsilyl) propyl group, bis (trimethylsilyl) methyl group, tris (trimethylsilyl) methyl group.
  • substituents R are connected to the ligand of the orthometallic complex by an (n + 1) -valent coupler L. If n is 0, the solubility of the orthometallic complex is insufficient, and if it is 4 or more, the crystallinity of the organic thin film after coating and film formation may decrease, and the semiconductor characteristics may deteriorate. It is preferable that More preferably, it is 1-2, and more preferably 1.
  • the number of substituents represented by the general formula (2) substituting the ligand of the ortho-metal complex is solubilized that the compound can be dissolved at about 0.1% by mass. Any number is possible, but if it is substituted by too many substituents, the crystallinity decreases, Since the characteristics as a semiconductor deteriorate, it is preferably between 1 and 4. The number is more preferably 2, and still more preferably a compound in which each of the two ligands is replaced one by one.
  • Substituent R linked to the ligand of orthometal ⁇ complex is a sterically large substituent, and when present in the vicinity of the acene host nucleus, the stack area of the acene host nuclei is reduced, and the semiconductor Since the properties may be deteriorated, it is preferable that the linking group L exists at a position that is not far apart from the stacking of the acene-based nuclei.
  • C ⁇ C is a linear linking group unlike an alkylene group, an alkene group, etc., and has the same thickness as the acene host nucleus, and does not inhibit the stack of the acene host nucleus. Therefore, the crystallinity of the thin film obtained by coating can be improved while solubilizing the ortho-metal complex.
  • the molecular weight of these orthometalated complexes is preferably in the range of 300 to 5,000! /.
  • the molecular weight By setting the molecular weight to 300 or more, the volatility of the compound can be made sufficiently low, and the volatilization during production can be prevented to a certain extent. Moreover, by setting it to 5000 or less, solubility in a solvent can be maintained in a favorable range.
  • the molecular weight In the case where the semiconductor layer is formed by vapor deposition, the molecular weight is preferably 1000 or less. By setting it within such a range, film formation can be performed at a relatively low degree of vacuum, and productivity can be increased.
  • the molecular weight of the organic semiconductor material of the present invention can be measured with a mass spectrometer, GPC or the like.
  • an organic semiconductor device and an organic thin film transistor that are driven well can be provided.
  • An organic thin film transistor has a source electrode and a drain electrode connected by an organic semiconductor as a semiconductor layer on a support, on which a gate electrode is formed.
  • a top gate type having a gate electrode through a gate insulating layer
  • a bottom gate type having a gate electrode on a support and a source electrode and a drain electrode connected by an organic semiconductor through the gate insulating layer. Broadly divided.
  • a vacuum deposition method or a solution coating method may be appropriately selected according to the characteristics of the material. it can. However, since it is easier to form a film by the solution coating method and the area can be easily increased, it is preferable to form the organic semiconductor layer by the solution coating method if the material has a high solubility. Examples of the solution coating method include cast coating, spin coating, printing, ink-jet method, abrasion method, etc., but depending on the coating speed, fineness, substrate material to be formed, viscosity of the solution used, etc. .
  • the solvent for dissolving the organic semiconductor material of the present invention is not particularly limited as long as it can prepare a solution having an appropriate concentration by dissolving the organic semiconductor material.
  • Chain ether solvents such as ethyl ether diisopropyl ether, cyclic ether solvents such as tetrahydrofuran and dioxane, keton solvents such as acetone methylethyl ketone, halogenated forms such as chloroform and 1,2-dichloroethane.
  • Examples include alkyl solvents, toluene, aromatic solvents such as o-dichlorobenzene, nitrobenzene, and m-talezole, N-methylpyrrolidone, and carbon dioxide.
  • a solvent containing a non-halogen solvent is preferably a non-halogen solvent.
  • a nonpolar solvent having a surface energy smaller than the surface energy of such a hydrophobic surface is preferably used. Cyclohexane, toluene and the like are preferable.
  • the organic semiconductor material of the present invention is preferably used for a semiconductor layer.
  • the semiconductor layer is preferably formed by applying a solution or dispersion containing these organic semiconductor materials.
  • the material for forming the source electrode, the drain electrode, and the gate electrode is not particularly limited as long as it is a conductive material.
  • conductive polymers whose conductivity has been improved by doping or the like, for example, conductive polyarlin, conductive polypyrrole, conductive polythiophene, a complex of polyethylene dioxythiophene and polystyrene sulfonic acid, etc. are also suitably used. . Of these, those having low electrical resistance on the contact surface with the semiconductor layer are preferred.
  • a method for forming an electrode a method for forming an electrode using a known photolithographic method or a lift-off method, using a conductive thin film formed by a method such as vapor deposition or sputtering using the above as a raw material, aluminum, copper, or the like
  • a method of etching on a metal foil using a resist by thermal transfer, ink jet or the like.
  • the conductive polymer solution or dispersion, or the conductive fine particle dispersion may be directly patterned by inkjet, or may be formed from the coating film by lithography, laser abrasion, or the like.
  • a method of patterning an ink containing a conductive polymer or conductive fine particles, a conductive paste, or the like by a printing method such as relief printing, intaglio printing, planographic printing, or screen printing can also be used.
  • an inorganic oxide film having a high relative dielectric constant is preferable.
  • inorganic oxides include silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, tin oxide, vanadium oxide, barium strontium titanate, barium zirconate titanate, lead zirconate titanate, titanate Examples include lead lanthanum, strontium titanate, barium titanate, barium magnesium fluoride, bismuth titanate, strontium bismuth titanate, strontium bismuth tantanoate, bismuth tantalate niobate, and trioxide yttrium.
  • silicon oxide, acid aluminum, acid tantalum, and acid titanium are silicon nitride, Inorganic nitrides such as aluminum nitride can also be suitably used.
  • Examples of the method for forming the film include a vacuum deposition method, a molecular beam epitaxy growth method, an ion cluster beam method, a low energy ion beam method, an ion plating method, a CVD method, a sputtering method, and an atmospheric pressure plasma method. Dry process, spray coating method, spin coating method, blade coating method, dip coating method, casting method, roll coating method, bar coating method, die coating method, and other methods by patterning such as printing and inkjet Etc., and can be used depending on the material.
  • the wet process includes a method of applying and drying a liquid in which inorganic oxide fine particles are dispersed in an arbitrary organic solvent or water using a dispersion aid such as a surfactant as necessary, or an oxide precursor.
  • a so-called sol-gel method in which a solution of a body, for example, an alkoxide body is applied and dried is used.
  • the atmospheric pressure plasma method and the sol-gel method are preferable.
  • the method for forming an insulating film by plasma film formation under atmospheric pressure is a process in which a thin film is formed on a substrate by discharging at atmospheric pressure or a pressure in the vicinity of atmospheric pressure to excite reactive gas in plasma.
  • the method is described in JP-A-11-61406, JP-A-11-133205, JP-A-2000-121804, JP-A-2000-147209, JP-A-2000-185362, etc. Also referred to as atmospheric pressure plasma method).
  • a highly functional thin film can be formed with high productivity.
  • organic compound film polyimide, polyamide, polyester, polyacrylate, photo-radical polymerization system, photo-curable thiol polymerization-type photocurable resin, or copolymer containing acrylonitrile component, polybutanol, Polybulal alcohol, novolak rosin, and cyanoethyl pullulan can also be used.
  • the wet process is preferred as a method for forming the organic compound film.
  • An inorganic oxide film and an organic oxide film can be laminated and used together.
  • the film thickness of these insulating films is generally 5011111 to 3111, preferably 100 nm to l ⁇ m.
  • the support is composed of glass or a flexible resin sheet, and for example, a plastic film can be used as the sheet.
  • plastic films include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetherol sulfone (PES), polyetherimide, polyetheretherketone, and polyphenylenesulfur.
  • films having strength such as fluid, polyarylate, polyimide, polycarbonate (PC), triacetyl cellulose (TAC), diacetyl cellulose (DAC), and cellulose acetate propionate (CAP).
  • TAC triacetyl cellulose
  • DAC diacetyl cellulose
  • CAP cellulose acetate propionate
  • FIG. 1 is a diagram showing a configuration example of an organic thin film transistor of the present invention.
  • a source electrode 2 and a drain electrode 3 are formed on a support 6 with a metal foil or the like, an organic semiconductor layer 1 made of the organic semiconductor material of the present invention is formed between the two electrodes, and the organic semiconductor layer 1 is formed thereon.
  • An insulating layer 5 is formed, and further a gate electrode 4 is formed thereon to form an organic thin film transistor.
  • FIG. 2B shows the organic semiconductor layer 1 formed between the electrodes in FIG. 1A so as to cover the entire surface of the electrode and the support using a coating method or the like.
  • C shows that the organic semiconductor layer 1 is first formed on the support 6 by using a coating method or the like, and then the source electrode 2, the drain electrode 3, the insulating layer 5, and the gate electrode 4 are formed.
  • FIG. 4D after forming the gate electrode 4 with a metal foil or the like on the support 6, the insulating layer 5 is formed, and the source electrode 2 and the drain electrode 3 are formed with the metal foil or the like thereon. Then, an organic semiconductor layer 1 formed of the organic semiconductor material of the present invention is formed between the electrodes.
  • Other configurations such as shown in (e) and (f) of FIG.
  • FIG. 2 is a diagram showing an example of a schematic equivalent circuit diagram of an organic thin film transistor sheet.
  • the organic thin film transistor sheet 10 has a large number of organic thin film transistors 11 arranged in a matrix. 7 is a gate bus line of each organic thin film transistor 11, and 8 is a source bus line of each organic thin film transistor 11.
  • An output element 12 is connected to the source electrode of each organic thin film transistor 11, and this output 12 is, for example, a liquid crystal, an electrophoretic element or the like, and constitutes a pixel in the display device.
  • the pixel electrode may be used as the input electrode of the photosensor.
  • the liquid crystal is shown as an output element in an equivalent circuit having resistance and capacitor power.
  • 13 is a storage capacitor
  • 14 is a vertical drive circuit
  • 15 is a horizontal drive circuit.
  • the performance of the organic thin film transistor varies depending on the application.
  • carrier mobility 0. 01 (1. 0 X 10- 2 ) ⁇ : as L OCM 2 / is preferably Vsec in the range of instrument ON / OFF ratio Is preferably in the range of 1.0 ⁇ 10 5 to l ⁇ 0 ⁇ 10 7 .
  • the display can be driven at a sufficient speed, and good gradation can be given to the display.
  • a 200-nm-thick thermal oxide film was formed on a Si wafer with a specific resistance of 0.01 ⁇ 'cm as the gate electrode to form a gate insulating layer, and then surface treatment with octadecyltrichlorosilane was performed.
  • Comparative Compound 1 (Pentacene, manufactured by Aldrich Co., Ltd., used after sublimation purification of a commercially available reagent) was vapor-deposited, and then at 50 ° C under a nitrogen atmosphere. A 30 minute heat treatment was applied.
  • Source and drain electrodes are 100 m wide, 200 nm thick, and channel width W
  • Comparative compound 2 (2, 3, 9, 10-tetrahexylpentacene) was synthesized by the method described in Organic Letters, vol. 2 (2000), p85.
  • Organic thin film transistor 2 was produced in the same manner as in the production of organic thin film transistor 1, except that comparative compound 1 was changed to comparative compound 2.
  • Comparative I ⁇ product 3 Comparative I ⁇ product 1 was changed to (rubrene, Aldrich, and was used sublimation purification commercially available reagent) in a similar manner, an organic thin film transistor 3 Produced. [0094] ⁇ Production of Organic Thin Film Transistors 4-8 >>
  • Organic thin film transistors 4 to 8 were produced in the same manner as in the production of the organic thin film transistor 1, except that instead of the comparative compound 1, the organic semiconductor material of the present invention described in Table 1 was changed.
  • the carrier mobility and ONZOF F ratio of each element were measured immediately after element preparation.
  • the carrier mobility is also obtained for the saturation region of the IV characteristic
  • the ONZOFF ratio is obtained from the ratio of the drain current value when the drain bias is set to 50 V and the gate bias is set to 50 V and OV.
  • each element was placed in an environmental room at 40 ° C. and 90% RH for 48 hours, and then carrier mobility and ONZOFF ratio were measured again.
  • the organic thin film transistors 4 to 8 produced using the organic semiconductor material of the present invention show excellent characteristics in both carrier mobility and ONZOFF ratio immediately after production, and the mobility is 10 after the durability test. - two or more, ON / OFF ratio is at even 10 5 or more units, less after time degradation high, when both the durability, it is found Ukoto.
  • the organic thin film transistor 8 using an orthometal complex having a tricyclic condensation type ligand and using Pt as the central metal has a mobility of 10 even after the durability test. — It was confirmed that one unit has extremely excellent durability.
  • Example 1 a silicon oxide film having a specific resistance of 0.01 ⁇ 'cm as a gate electrode was formed on a silicon oxide film having a thickness of 2 OOnm to form a gate insulating layer, and then octadecyltrichlorosilane. The surface treatment was carried out.
  • Organic thin film transistors 10 to 13 were produced in the same manner except that the organic semiconductor material of the present invention shown in Table 2 was used instead of the comparative compound 1.
  • the carrier mobility is obtained from the saturation region of the IV characteristic
  • the ON / OFF ratio is obtained from the ratio of the drain current value when the drain bias is set to 50 V and the gate bias is set to 50 V and OV.
  • each element was placed in an environmental room at 40 ° C and 90% RH for 48 hours, and then carrier mobility and ONZOFF ratio were measured again.
  • Comparative Compound 1 was unable to form a film by coating with low solubility, and organic thin film transistor 9 could not be confirmed to be driven as a semiconductor.
  • Comparative Compounds 2 and 3 have improved solubility as compared with Comparative Compound 1 and can form a coating film, and organic thin film transistors 10 and 11 are confirmed to be driven as semiconductors.
  • the ONZOFF ratio is relatively low at 10 3 units or less, and that the performance greatly deteriorates after the durability test.
  • an organic thin film transistor prepared using the compound of the present invention having a specific soluble group.
  • the transistors 12 and 13 a thin film that can be dissolved in an organic solvent and can confirm the drive as an organic semiconductor was obtained.
  • the organic EL device was manufactured by referring to the method described in Nature, 395 ⁇ , pages 151 to 154, and a top emission type organic EL device having a sealing structure as shown in FIG.
  • 101 denotes a substrate
  • 102a denotes an anode
  • 102b denotes an organic EL layer (specifically, an electron transport layer, a light-emitting layer, a hole transport layer, etc.)
  • 102c denotes a cathode
  • the organic EL element 102 is formed by 2a, the organic EL layer 102b, and the cathode 102c.
  • Reference numeral 103 denotes a sealing film.
  • the organic EL device of the present invention may be either a bottom emission type or a top emission type.
  • the organic EL element of the present invention and the organic thin film transistor of the present invention are combined to produce an active matrix light-emitting element.
  • the organic thin film transistor of the present invention is used as a switching transistor, a drive transistor, etc.
  • an active matrix light-emitting element for example, as shown in FIG. 4, a mode in which a substrate in which a TFT 602 (or an organic thin film transistor 602) is formed on a glass substrate 601 is used is given as an example.
  • a known TFT manufacturing method can be referred to for the TFT602 manufacturing method.
  • the TFT may be a conventionally known top gate TFT or bottom gate TFT.
  • the organic EL device produced above showed good emission characteristics in various emission modes such as single color, full color, and white.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Description

明 細 書
有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導 体デバイス
技術分野
[0001] 本発明は、有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半 導体デバイスに関する。 背景技術
[0002] 情報端末の普及に伴い、コンピュータ用のディスプレイとしてフラットパネルディスプ レイに対するニーズが高まっている。また、情報化の進展に伴い、従来、紙媒体で提 供されていた情報が電子化される機会が増え、薄くて軽い、手軽に持ち運びが可能 なモパイル用表示媒体として、電子ペーパーあるいはデジタルペーパーへのニーズ も高まりつつある。
[0003] 一般に平板型のディスプレイ装置にぉ 、ては、液晶、有機 EL (有機エレクト口ルミ ネッセンス)、電気泳動等を利用した素子を用いて表示媒体を形成している。また、こ うした表示媒体では画面輝度の均一性や画面書き換え速度等を確保するために、 画像駆動素子としてアクティブ駆動素子 (TFT素子)を用いる技術が主流になって!/ヽ る。例えば、通常のコンピュータディスプレイではガラス基板上にこれら TFT素子を形 成し、液晶、有機 EL素子等が封止されている。
[0004] ここで TFT素子には主に a— Si (アモルファスシリコン)、 p— Si (ポリシリコン)等の半 導体を用いることができ、これらの S泮導体 (必要に応じて金属膜も)を多層化し、ソ ース、ドレイン、ゲート電極を基板上に順次形成していくことで TFT素子が製造される 。こうした TFT素子の製造には通常、スパッタリング、プラズマ CVD等の高温あるい は高真空の製造プロセスが必要とされる。
[0005] このような従来からの Si材料を用いた TFT素子の形成には高い温度の工程が含ま れるため、基板材料には工程温度に耐える材料であると ヽぅ制限が加わることになる 。このため実際上はガラスを用いざるをえず、先に述べた電子ペーパーあるいはデジ タルペーパーと 、つた薄型ディスプレイを、こうした従来知られた TFT素子を利用し て構成した場合、そのディスプレイは重ぐ柔軟性に欠け、落下の衝撃で割れる可能 性のある製品となってしまう。ガラス基板上に TFT素子を形成することに起因するこ れらの特徴は、情報化の進展に伴う手軽な携行用薄型ディスプレイへの-一ズを満 たすにあたり望ましくないものである。
[0006] 一方、近年にぉ 、て高 、電荷輸送性を有する有機化合物として、有機半導体材料 の研究が精力的に進められて 、る。これらの化合物は有機 EL素子用の電荷輸送性 材料のほか、例えば非特許文献 1等において論じられているような有機レーザー発 振素子や、例えば非特許文献 2等、多数の論文に報告されている有機薄膜トランジ スタ素子 (有機 TFT素子)への応用が期待されて!ヽる。これら有機半導体デバイスを 実現できれば、基板耐熱性に関する制限が緩和され、透明榭脂基板上にも、例えば TFT素子を形成できる可能性がある。透明榭脂基板上に TFT素子を形成し、その T FT素子により表示材料を駆動させることができれば、ディスプレイを従来のものよりも 軽ぐ柔軟性に富み、落としても割れない (もしくは非常に割れにくい)ディスプレイと することができるであろう。
[0007] さら〖こは、有機半導体材料の分子構造を適切に改良することによって、溶剤に溶解 できる半導体を得る可能性があると考えられ、有機半導体溶液をインク化すること〖こ よりインクジェット方式を含む印刷法による製造も可能となり、従来のフォトリソグラフに よってパター-ングする方法と比べて大幅な工程数の削減が可能となるため、さらな る低コストィ匕が可能になると期待される。
[0008] し力しながら、こうした TFT素子を実現するための有機半導体としてこれまでに検討 されてきたのは、ペンタセンゃテトラセンといったァセン類 (例えば、特許文献 1参照) 、鉛フタロシアニンを含むフタロシアニン類、ペリレンやそのテトラカルボン酸誘導体と いった低分子化合物(例えば、特許文献 2参照)や、 a チェニールもしくはセクシ チォフェンと呼ばれるチォフェン 6量体を代表例とする芳香族オリゴマー(例えば、特 許文献 3参照)、ナフタレン、アントラセンに 5員の芳香族複素環が対称に縮合したィ匕 合物(例えば、特許文献 4参照)、モ入オリゴ及びポリジチエノピリジン (例えば、特許 文献 5参照)、さらにはポリチォフェン、ポリチェ-レンビ-レン、ポリ p—フエ-レン ビ-レンといった共役高分子等限られた種類の化合物 (例えば、非特許文献 1〜3参 照)でしかなぐ溶剤への十分な溶解性を保持しながら、十分なキャリア移動度 ·ΟΝ ZOFF比を示す材料は見出されて ヽな 、。
[0009] 最近、溶解性の高!、ァセン類であるルブレンの単結晶が非常に高 、移動度を有す ることが報告 (非特許文献 4参照)されているが、このような単結晶は気相成長法で作 成したものであり、溶液キャストで製膜した膜は通常アモルファスであり、十分な移動 度は得られていない。
[0010] また、真空蒸着によって高いキャリア移動度を有する化合物であるペンタセンに官 能基を付与した化合物等も開示され、溶液塗布によって比較的良好なキャリア移動 度が得られるとの報告 (例えば、特許文献 6参照)もなされている。
[0011] しかし、ルブレンやペンタセン等のァセン系の化合物は、空気中に含まれる酸素に よって容易に酸化されてエンドバーオキシドと呼ばれる酸化体に転化し、電界効果ト ランジスタとしての性能が大きく劣化してしまうことが知られており、溶液での保存安 定性や塗布膜の安定性にっ 、ては 、まだ解決すべき課題が残されて 、る。
[0012] このような有機半導体素子の経時安定性については、例えば、特開 2003— 2925 88号公報、米国特許出願公開第 2003Z136958号明細書、同第 2003/16023 0号明細書、同第 2003/164495号明細書において、「マイクロエレクトロニクス用 の集積回路論理素子にポリマー TFTを用いると、その機械的耐久性が大きく向上し 、その使用可能寿命が長くなる。し力 半導体ポリチォフェン類の多くは、周囲の酸 素によって酸ィ匕的にドープされ、導電率が増大してしまうため空気に触れると安定で はないと考えられる。この結果、これらの材料カゝら製造したデバイスのオフ電流は大き くなり、そのため電流オン Zオフ比は小さくなる。従って、これらの材料の多くは、材 料加工とデバイス製造の間に環境酸素を排除して酸ィ匕的ドーピングを起こさない、あ るいは最小とするよう厳重に注意しなければならない。この予防措置は製造コストを 押し上げるため、特に大面積デバイスのための、アモルファスシリコン技術に代わる 経済的な技術としてのある種のポリマー TFTの魅力が削がれてしまう。従って、酸素 に対して強 ヽ対抗性を有し、比較的高 、電流 ONZOFF比を示すエレクトロニックデ バイスが望まれている」との記載があるように、有機半導体材料が経時で劣化すること を!ヽかに防ぐかと!/ヽつた課題が、実用化を行う上での大きな課題となってきて!ヽる。 [0013] 酸ィ匕に対して比較的安定なァセン系化合物の例としては、非特許文献 5や 6、特許 文献 7において、ペンタセンの 6、 13位をシリルェチュル基で置換した一部の化合物 1S 塗布膜の安定性がょ 、との報告がある程度である。
[0014] し力しこれらの報告においては、文章中において酸ィ匕に対する安定性が向上したと 定性
的な性状を述べて 、るのみであり、 V、まだ実用に耐えうる程度の安定性は得られて いない。
[0015] このように、高移動度と耐久性、さらには溶解性を兼ね備えた有機半導体材料は未 だ得られていない。
特許文献 1:特開平 5— 55568号公報
特許文献 2:特開平 5 - 190877号公報
特許文献 3:特開平 8 - 264805号公報
特許文献 4:特開平 11— 195790号公報
特許文献 5 :特開 2003— 155289号公報
特許文献 6:国際公開第 03Z016599号パンフレット
特許文献 7 :米国特許第 6, 690, 029号明細書
非特許文献 1:『サイエンス』 (Science)誌 289卷, 599ページ(2000)
非特許文献 2:『ネイチヤー』 (Nature)誌 403卷, 521ページ(2000)
非特許文献 3 :『アドバンスド 'マテリアル』(Advanced Material)誌, 2002年,第 2 号, 99ページ
非特許文献 4 : Science, vol. 303 (2004) , 1644ページ
非特許文献 5 : Org. Lett. , vol. 4 (2002) , 15ページ
非特許文献 6 :J. Am. Chem. Soc. , vol. 127 (2005) , 4986ページ
発明の開示
発明が解決しょうとする課題
[0016] 本発明の目的は、低温で製造することができ、トランジスタとしての特性が良好であ り、空気中の酸素に対して安定で経時劣化が十分抑制された有機半導体材料、そ れを用いた有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ、さらには 、簡便な塗布プロセスによって形成可能な有機半導体デバイス及び有機薄膜トラン ジスタを提供することである。
課題を解決するための手段
[0017] 本発明の上記課題は、以下の構成により達成される。
1.平面 4座配位のオルトメタルイ匕錯体を半導体層に含有することを特徴とする有機 薄膜トランジスタ。
[0018] 2.前記平面 4座配位のオルトメタル化錯体の中心金属が Pt、Auまたは Pdであるこ とを特徴とする 1に記載の有機薄膜トランジスタ。
[0019] 3.前記平面 4座配位のオルトメタルィ匕錯体の配位子が 3環以上縮合した縮合多環 構造を有することを特徴とする 1または 2に記載の有機薄膜トランジスタ。
4.前記平面 4座配位のオルトメタルィ匕錯体が下記一般式(1)で表される化合物であ ることを特徴とする 1〜3のいずれか 1項に記載の有機薄膜トランジスタ。
[0020] [化 1] 一般式 (1}
Figure imgf000007_0001
[0021] (式中、 Mは Pt、 Auまたは Pdの金属原子を表し、 Z〜Zは置換または無置換の芳
1 3
香族環を表す。 )
5.前記一般式(1)の Mで表される金属原子が Ptであることを特徴とする 4に記載 の有機薄膜トランジスタ。
[0022] 6.前記一般式(1)の Z〜Zで表される縮合多環が、下記一般式(2)で表される置
1 3
換基を有する化合物であることを特徴とする 4または 5に記載の有機薄膜トランジスタ
[0023] [化 2] 一般式 (2)
[0024] (式中、 Lは単結合、酸素原子、硫黄原子、窒素原子、 C = C一、 C≡C一、ァリ 一レン基力 選ばれる(n+ 1)価の連結基を表し、 Rはアルキル基、シクロアルキル基 、アルキルシリル基、(アルキルシリル)アルキル基力 選ばれる置換基を表し、 nは 1 〜3の整数を表す。 )
7.前記一般式(2)の Lで表される連結基しが C≡ C であることを特徴とする 6に 記載の有機薄膜トランジスタ。
8.平面 4座配位のオルトメタルィ匕錯体力もなる有機半導体材料において、平面 4座 配位のオルトメタルィ匕錯体の配位子が 3環以上が縮合した縮合多環構造を有するこ とを特徴とする有機半導体材料。
[0025] 9.前記平面 4座配位のオルトメタルィ匕錯体が下記一般式(1)で表される化合物で あることを特徴とする 8に記載の有機半導体材料。
[0026] [化 3] 一般式 (1 }
Figure imgf000008_0001
[0027] (式中、 Mは Pt、 Auまたは Pdの金属原子を表し、 Z たは無置換の芳
1〜Zは置換ま
3
香族環を表す。 )
10.前記一般式(1)の Mで表される金属原子が Ptであることを特徴とする 9に記載の 有機半導体材料。
[0028] 11.前記一般式(1)の Z〜Zで表される縮合多環が、下記一般式(2)で表される
1 3
置換基を有する化合物であることを特徴とする 9または 10に記載の有機半導体材料
[0029] [化 4] 一般式 (2)
[0030] (式中、 Lは単結合、酸素原子、硫黄原子、窒素原子、 C = C一、 C≡C一、ァリ 一レン基力 選ばれる(n+ 1)価の連結基を表し、 Rはアルキル基、シクロアルキル基 、アルキルシリル基、(アルキルシリル)アルキル基力 選ばれる置換基を表し、 nは 1 〜3の整数を表す。 )
12.前記一般式(2)の Lで表される連結基しが C≡ C であることを特徴とする 1 1に記載の有機半導体材料。
13. 8〜 12の 、ずれか 1項に記載の有機半導体材料を用 、ることを特徴とする有機 半導体膜。
14. 8〜12のいずれか 1項に記載の有機半導体材料を用いることを特徴とする有機 半導体デバイス。
発明の効果
[0031] 本発明によれば、低温で製造することができ、トランジスタとしての特性が良好であ り、空気中の酸素に対して安定で経時劣化が十分抑制された有機半導体材料、そ れを用いた有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ、さらには 、簡便な塗布プロセスによって形成可能な有機半導体デバイス及び有機薄膜トラン ジスタを提供することができる。
図面の簡単な説明
[0032] [図 1]本発明に係る有機 TFTの構成例を示す図である。
[図 2]本発明の有機 TFTの概略等価回路図の 1例である。
[図 3]封止構造を有する有機 EL素子の一例を示す模式図である。
[図 4]有機 EL素子に用いる、 TFTを有する基板の一例を示す模式図である。
符号の説明
[0033] 1 有機半導体層
2 ソース電極 3 ドレイン電極
4 ゲート電極
5 絶縁層
6 支持体
7 ゲートバスライン
8 ソースノ スライン
10 有機薄膜トランジスタシート
11 有機薄膜トランジスタ
12 出力素子
13 蓄積コンデンサ
14 垂直駆動回路
15 水平駆動回路
101 基板
102 有機 EL素子
102a 陽極
102b 有機 EL層
102c 陰極
103 封止膜
601 ガラス基板
602 TFT
発明を実施するための最良の形態
[0034] 上記課題について本発明者等が鋭意検討を行ったところ、平面 4座配位のオルトメ タルィ匕錯体が半導体としての優れた特性を持つことを見出した。
[0035] また、有機半導体として優れた特性を有する特定構造の芳香族系化合物を、酸素 に対して安定である特定の貴金属と組み合わせた構造を有するオルトメタルイ匕錯体 力 半導体としての優れた特性と、酸素に対する安定性を兼ね備えた有機半導体材 料となることを見出した。
[0036] また、これらのオルトメタルイ匕錯体を特定の置換基によって置換することによって、 有機溶媒に溶解することのできる化合物となり、常圧塗布プロセスによって半導体素 子を形成することができることを見出し、本発明を完成させるに至った。
[0037] 請求の範囲第 1〜7項のいずれ力 1項に規定される構造を有する化合物は、有機 薄膜トランジスタ用途に有用な有機半導体材料となる。また、該有機半導体材料を用 いて作製した本発明の有機半導体膜、有機半導体デバイス、有機薄膜トランジスタ( 以下、有機 TFTともいう)は、キャリア移動度が高ぐ良好な ONZOFF特性を示す 等、優れたトランジスタ特性を示しながら、かつ、高耐久性であることが判明した。
[0038] 以下、本発明に係る各構成要素の詳細について説明する。
[0039] 〔有機半導体材料〕
本発明の有機半導体材料は、平面 4座配位のオルトメタルィ匕錯体であることを特徴 とする。
[0040] オルトメタルィ匕錯体とは、山本明夫著「有機金属化学 基礎と応用」, 150頁及び 2 32頁,裳華房社(1982年)、 H. Yersin著「Photochemistry
and Photophysics of Coordination CompoundsJ , /'l〜? V頁及ぴ ld5〜 146頁, Springer— Verlag社(1987年)等に記載されている化合物群の総称であ る。
[0041] 本発明の効果を得るためには配位子が平面 4座配位で錯体を形成することが必要 である。平面 4座配位構造を有することで分子の結晶性が向上し、移動度の高い有 機薄膜を得ることができるようになる。
[0042] そのため、オルトメタルイ匕錯体を形成する中心金属としては、 2価または 3価の金属 種である必要がある。そのような金属種であれば、制限なく用いることができる。それ らの金属種の中でも、 2価の白金、パラジウム、 3価の金を好ましく用いることができる 。このような金属種を用いることで、錯体の構造が平面となり、結晶性が高く移動度の 高い有機半導体薄膜を得ることができる。さらには、酸化されにくい金属種であるた め、酸素による劣化を非常に低く抑えることができる。
[0043] オルトメタルイ匕錯体を形成する配位子としては、平面構造を形成しうる配位子であ れば特に限定されないが、高い移動度を有する有機半導体薄膜を得るためには、 3 環以上が縮合した縮合多環を有する配位子であることが好ま 、。このような構造と することで、有機薄膜の結晶性が向上し、かつ、結晶内で縮合多環同士の πスタック 面積が増大し、高い移動度を得ることができる。
[0044] このような配位子の中でも、縮合多環自体がオルトメタルイ匕錯体を形成する、前記 一般式(1)で表されるような化合物であることが好ま 、。
[0045] 前記一般式(1)において、 Ζ〜Ζは置換または無置換の芳香族環を表す。これら
1 3
の ζ〜ζで表される芳香族環としては、例えば、ベンゼン環、ピリジン環、ピリダジン
1 3
環、ピリミジン環、ピラジン環、トリアジン環、テトラジン環等の 6員環構造、また、ピロ ール環、ピラゾール環、イミダゾール環、トリァゾール環、テトラゾール環、フラン環、 ベンゾフラン環、イソべンゾフラン環、ォキサゾール環、イソォキサゾール環、フラザン 環、チオフ ン環、チアゾール環等の 5員環構造のどちらであっても制限なく用いるこ とができる。ただし、 Ζで表される芳香族環は、少なくとも 1つ以上窒素原子を有する
3
香族環である必要がある。
[0046] このような縮合多環としては、例えば、ベンゾ [h]キノリン、ベンゾ [h]シンノリン、ベ ンゾ [f]キノキサリン、ベンゾ [c]ナフチリジン、ベンゾ [h]ナフチリジン、 1, 7—フエナ ントロリン、 1, 8—フエナント口リン、 1, 9—フエナント口リン、 2, 3, 5—トリァザフエナン トレン、 2, 5, 9—トリァザフエナントレン、 4, 9, 10—トリァザフエナントレン、チエノ [2 , 3— h]キノリン、ナフト[1, 2— d]チアゾール、ベンゾ [4, 5]チエノ [3, 2— b]ピリジ ン等が挙げられる力 これらに限定されるものではない。
[0047] 上記のような構造を有するオルトメタルィ匕錯体の中でも、より好ましくは中心金属が 2価の Ptである錯体である。 Ptからなるオルトメタルィ匕錯体では、非常に酸ィ匕が起こり にくぐ形成した有機薄膜を安定なものとすることができるためである。
[0048] 上記の有機半導体材料からなる有機薄膜は、真空蒸着で形成しても溶液塗布によ つて形成してもよいが、真空蒸着で製膜した際には、真空蒸着によってベタで製膜し た後に 5〜: LO工程にもわたるフォトリソグラフィ一によつてパターユングを行う必要が あり、溶液塗布が可能であれば各種の印刷法やインクジェット法によって直接パター ユングすることができ、製造工程を簡便なものとすることができるため、溶液塗布によ つて形成できる材料である方が好ま 、。 [0049] このような溶解性の有機半導体材料を得るためには、上記の構造を有するオルトメ タル化錯体に対して、溶解性を与えるような置換基を付与する必要がある。
[0050] そのような溶解性の置換基としては、前記一般式 (2)で表される置換基であることが 好ましい。
[0051] 前記一般式(2)において、 Lは単結合、酸素原子、硫黄原子、窒素原子、 C = C ―、— C≡C―、ァリーレン基力 選ばれる(n+ 1)価の連結基を表し、 Rはアルキル 基、シクロアルキル基、アルキルシリル基、アルキルシリルアルキル基から選ばれる置 換基を表し、 nは 1〜3の整数を表す。
[0052] このような構造を有する置換基によって上記のオルトメタルィ匕錯体の一部を置換す ることで、溶解性の材料とすることができる。
[0053] 前記一般式(2)で Rによって表される置換基の例としては、以下のような置換基を 挙げることができる。
[0054] アルキル基:例えば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert—ブ チル基、ネオペンチル基、へキシル基、ォクチル基、デシル基、ドデシル基、テトラデ シル基、ペンタデシル基等、
シクロアルキル基:例えば、シクロペンチル基、シクロへキシル基等、
シリル基:例えば、トリメチルシリル基、トリイソプロビルシリル基、トリシクロへキシルシ リル基、トリフ -ルシリル基、フ -ルジェチルシリル基、トリメトキシシリル基、トリエト キシシリノレ基、シラトラン基、
(アルキルシリル)アルキル基:(トリエチルシリル)メチル基、(トリイソプロビルシリル) プロピル基、ビス(トリメチルシリル)メチル基、トリス(トリメチルシリル)メチル基。
[0055] これらの置換基 Rは、(n+ 1)価の連結器 Lによってオルトメタルィ匕錯体の配位子と 連結される。 nが 0ではオルトメタルィ匕錯体の溶解度が不十分であり、 4以上では塗布 製膜後の有機薄膜の結晶性が低下し、半導体としての特性が低下することがあるた め、 nは 1〜3であることが好ましい。より好ましくは 1〜2、さらに好ましくは 1である。
[0056] また、前記一般式 (2)で表される置換基がオルトメタルィ匕錯体の配位子を置換する 数としては、化合物を 0. 1質量%程度に溶解することができる溶解性を付与できれ ば何個でもよいが、あまり多くの置換基によって置換されると結晶性が低下し、ひいて は半導体としての特性が低下するため、好ましくは 1〜4個の間であることが好ましい 。より好ましくは 2個であり、さらに好ましくは 2つの配位子のそれぞれを 1つずつ置換 した化合物である。
[0057] 上記一般式(2)で表される置換基のうち、好ましくは連結基 Lがー C≡C一である化 合物が好ましい。
[0058] 有機半導体の導電性は、主に芳香族環が形成する平面と垂直な方向に伝わること が知られており、結晶薄膜中において芳香族環 (オルトメタルィ匕錯体の配位子)同士 の重なりが大きいほど、良好な半導体特性を得ることができる。
[0059] オルトメタルィ匕錯体の配位子と連結される置換基 Rは立体的に大きな置換基であり 、ァセン系母核近傍に存在すると、ァセン系母核同士のスタック面積を減少させ、半 導体特性を低下させることがあるため、連結基 Lによってァセン系母核同士のスタック を阻害しな 、程度に離れた位置に存在することが好ま 、。
[0060] C≡C一はアルキレン基、ァルケ-レン基等と異なり直線状の連結基であり、大き さもァセン系母核と同じ厚さであるため、ァセン系母核のスタックを阻害しない。その ため、オルトメタルイ匕錯体を可溶化させながら、塗布によって得られる薄膜の結晶性 を高いものにすることができる。
[0061] これらのオルトメタル化錯体の分子量は 300〜5000の範囲であることが好まし!/、。
分子量を 300以上とすることで、化合物の揮発性を十分低くすることができ、生産時 の揮発 ·:!:程汚染を防止することができる。また 5000以下とすることで、溶媒への溶 解性を良好な範囲に保つことができる。なお、蒸着で半導体層を形成する場合には 、分子量は 1000以下であることが好ましい。このような範囲とすることで、製膜を比較 的低真空度で行うことができ、生産性を高くすることができる。なお本発明の有機半 導体材料の分子量は、質量分析装置、 GPC等によって測定することができる。
[0062] 以下、本発明の有機半導体材料の具体例を示すが、本発明はこれらに限定されな い。
[0063] [化 5] [^9oo]
Figure imgf000015_0001
SllS0/.00Zdf/X3J 89Z.880/Z.00Z OAV [S900]
Figure imgf000016_0001
[ ] [9900]
Figure imgf000017_0001
SllS0/.00Zdf/X3d 91- 89.880/.00Z OAV
Figure imgf000018_0001
[0067] なお、上記の化合物は、 Inorg. Chem. , vol. 41 (2002) , p3055を参考にして 合成することができる。
[0068] 〔有機半導体膜、有機半導体デバイス、有機薄膜トランジスタ〕
本発明の有機半導体膜、有機半導体デバイス、有機薄膜トランジスタについて説 明する。
[0069] 本発明の有機半導体材料は、有機半導体膜、有機半導体デバイス、有機薄膜トラ ンジスタの半導体層に用いることにより、良好に駆動する有機半導体デバイス、有機 薄膜トランジスタを提供することができる。有機薄膜トランジスタは、支持体上に、半導 体層として有機半導体で連結されたソース電極とドレイン電極を有し、その上にゲー ト絶縁層を介してゲート電極を有するトップゲート型と、支持体上にまずゲート電極を 有し、ゲート絶縁層を介して有機半導体で連結されたソース電極とドレイン電極を有 するボトムゲート型に大別される。
[0070] 本発明の有機半導体材料を有機半導体膜、有機半導体デバイス、有機薄膜トラン ジスタの半導体層に設置するには、材料の特性に応じて真空蒸着法、溶液塗布法を 適宜選択することができる。しかし溶液塗布法によって製膜する方が簡便であり、大 面積化も容易であるため、溶解度が高 ヽ材料であれば溶液塗布法で有機半導体層 を形成することが好ましい。溶液塗布法としては、キャストコート、スピンコート、印刷、 インクジェット法、アブレーシヨン法等が挙げられるが、塗布速度、精細度、製膜する 基板材料、用いる溶液の粘度等に応じて選択すればょ 、。
[0071] この場合、本発明の有機半導体材料を溶解する溶媒は、有機半導体材料を溶解し て適切な濃度の溶液が調製できるものであれば格別の制限はな 、が、具体的にはジ ェチルエーテルゃジイソプロピルエーテル等の鎖状エーテル系溶媒、テトラヒドロフ ランやジォキサン等の環状エーテル系溶媒、アセトンゃメチルェチルケトン等のケト ン系溶媒、クロ口ホルムや 1, 2—ジクロロェタン等のハロゲン化アルキル系溶媒、トル ェン、 o—ジクロ口ベンゼン、ニトロベンゼン、 m—タレゾール等の芳香族系溶媒、 N— メチルピロリドン、 2硫ィ匕炭素等を挙げることができる。これらの溶媒のうち、非ハロゲ ン系溶媒を含む溶媒が好ましぐ非ハロゲン系溶媒で構成することが好ましい。また、 絶縁膜表面を疎水化処理した絶縁膜上に塗布する場合には、そのような疎水化表 面の表面エネルギーよりも表面エネルギーが小さい非極性な溶媒であることが好まし ぐへキサン、シクロへキサン、トルエン等が好ましい。
[0072] 本発明の有機薄膜トランジスタは、本発明の有機半導体材料を半導体層に用いる ことが好ましい。前記半導体層は、これらの有機半導体材料を含有する溶液または 分散液を塗布することにより形成することが好ましい。
[0073] 本発明にお 、て、ソース電極、ドレイン電極及びゲート電極を形成する材料は導電 性材料であれば特に限定されず、白金、金、銀、ニッケル、クロム、銅、鉄、錫、アン チモン鈴、タンタル、インジウム、パラジウム、テルル、レニウム、イリジウム、ァノレミ-ゥ ム、ルテニウム、ゲルマニウム、モリブデン、タングステン、酸化スズ 'アンチモン、酸化 インジウム'スズ (ITO)、フッ素ドープ酸ィ匕亜鉛、亜鉛、炭素、グラフアイト、グラッシ一 カーボン、銀ペースト及びカーボンペースト、リチウム、ベリリウム、ナトリウム、マグネ シゥム、カリウム、カルシウム、スカンジウム、チタン、マンガン、ジルコニウム、ガリウム 、ニオブ、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、ァノレミ-ゥム、 マグネシウム Ζ銅混合物、マグネシウム Ζ銀混合物、マグネシウム Ζアルミニウム混 合物、マグネシウム Ζインジウム混合物、アルミニウム Ζ酸ィ匕アルミニウム混合物、リ チウム Ζアルミニウム混合物等が用いられるが、特に、白金、金、銀、銅、アルミ-ゥ ム、インジウム、 ιτο及び炭素が好ましい。あるいはドーピング等で導電率を向上させ た公知の導電性ポリマー、例えば、導電性ポリア-リン、導電性ポリピロール、導電性 ポリチォフェン、ポリエチレンジォキシチォフェンとポリスチレンスルホン酸の錯体等も 好適に用いられる。中でも半導体層との接触面にぉ ヽて電気抵抗が少な ヽものが好 ましい。
[0074] 電極の形成方法としては、上記を原料として蒸着やスパッタリング等の方法を用い て形成した導電性薄膜を、公知のフォトリソグラフ法やリフトオフ法を用いて電極形成 する方法、アルミニウムや銅等の金属箔上に熱転写、インクジェット等によるレジスト を用いてエッチングする方法がある。また導電性ポリマーの溶液あるいは分散液、導 電性微粒子分散液を直接インクジェットによりパターユングしてもよ ヽし、塗工膜から リソグラフやレーザーアブレーシヨン等により形成してもよい。さらに導電性ポリマーや 導電性微粒子を含むインク、導電性ペースト等を凸版、凹版、平版、スクリーン印刷 等の印刷法でパターユングする方法も用いることができる。
[0075] ゲート絶縁層としては種々の絶縁膜を用いることができる力 特に比誘電率の高い 無機酸ィ匕物皮膜が好ましい。無機酸ィ匕物としては、酸化ケィ素、酸ィ匕アルミニウム、 酸化タンタル、酸化チタン、酸化スズ、酸化バナジウム、チタン酸バリウムストロンチウ ム、ジルコニウム酸チタン酸バリウム、ジルコニウム酸チタン酸鉛、チタン酸鉛ランタン 、チタン酸ストロンチウム、チタン酸バリウム、フッ化バリウムマグネシウム、チタン酸ビ スマス、チタン酸ストロンチウムビスマス、タンタノレ酸ストロンチウムビスマス、タンタノレ 酸ニオブ酸ビスマス、トリオキサイドイットリウム等が挙げられる。それらのうち好ましい のは酸化ケィ素、酸ィ匕アルミニウム、酸ィ匕タンタル、酸ィ匕チタンである。窒化ケィ素、 窒化アルミニウム等の無機窒化物も好適に用いることができる。
[0076] 上記皮膜の形成方法としては、真空蒸着法、分子線ェピタキシャル成長法、イオン クラスタービーム法、低エネルギーイオンビーム法、イオンプレーティング法、 CVD法 、スパッタリング法、大気圧プラズマ法等のドライプロセスや、スプレーコート法、スピ ンコート法、ブレードコート法、ディップコート法、キャスト法、ロールコート法、バーコ ート法、ダイコート法等の塗布による方法、印刷やインクジェット等のパターユングに よる方法等のウエットプロセスが挙げられ、材料に応じて使用できる。
[0077] ウエットプロセスは、無機酸化物の微粒子を、任意の有機溶媒あるいは水に必要に 応じて界面活性剤等の分散補助剤を用いて分散した液を塗布、乾燥する方法や、 酸化物前駆体、例えば、アルコキシド体の溶液を塗布、乾燥する、いわゆるゾルゲル 法が用いられる。これらのうち好ましいのは、大気圧プラズマ法とゾルゲル法である。
[0078] 大気圧下でのプラズマ製膜処理による絶縁膜の形成方法は、大気圧または大気圧 近傍の圧力下で放電し、反応性ガスをプラズマ励起し、基材上に薄膜を形成する処 理で、その方法については特開平 11— 61406号公報、同 11 133205号公報、特 開 2000— 121804号公報、同 2000— 147209号公報、同 2000— 185362号公報 等に記載されている(以下、大気圧プラズマ法とも称する)。これによつて高機能性の 薄膜を、生産性高く形成することができる。
[0079] また有機化合物皮膜として、ポリイミド、ポリアミド、ポリエステル、ポリアタリレート、光 ラジカル重合系、光力チオン重合系の光硬化性榭脂、あるいはアクリロニトリル成分 を含有する共重合体、ポリビュルフエノール、ポリビュルアルコール、ノボラック榭脂、 及びシァノエチルプルラン等を用いることもできる。有機化合物皮膜の形成法として は、前記ウエットプロセスが好ましい。無機酸ィ匕物皮膜と有機酸ィ匕物皮膜は積層して 併用することができる。またこれら絶縁膜の膜厚としては、ー般に5011111〜3 111、好 ましくは 100nm〜l μ mである。
[0080] また、支持体はガラスやフレキシブルな榭脂製シートで構成され、例えば、プラスチ ックフィルムをシートとして用いることができる。プラスチックフィルムとしては、例えば、 ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテノレス ルホン(PES)、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリフエ-レンスル フイド、ポリアリレート、ポリイミド、ボリカーボネート(PC)、トリアセチルセルロース(TA C)、ジァセチルセルロース(DAC)、セルロースアセテートプロピオネート(CAP)等 力もなるフィルム等が挙げられる。このように、プラスチックフィルムを用いることで、ガ ラス基板を用いる場合に比べて軽量ィ匕を図ることができ、可搬性を高めることができ るとともに、衝撃に対する耐性を向上できる。
[0081] 以下に、本発明の有機半導体材料を用いて形成された有機半導体膜を用いた有 機薄膜トランジスタについて説明する。
[0082] 図 1は、本発明の有機薄膜トランジスタの構成例を示す図である。同図(a)は、支持 体 6上に金属箔等によりソース電極 2、ドレイン電極 3を形成し、両電極間に本発明の 有機半導体材料からなる有機半導体層 1を形成し、その上に絶縁層 5を形成し、さら にその上にゲート電極 4を形成して有機薄膜トランジスタを形成したものである。同図 (b)は、有機半導体層 1を、(a)では電極間に形成したものを、コート法等を用いて電 極及び支持体表面全体を覆うように形成したものを表す。(c)は、支持体 6上に先ず コート法等を用いて、有機半導体層 1を形成し、その後ソース電極 2、ドレイン電極 3、 絶縁層 5、ゲート電極 4を形成したものを表す。
[0083] 同図(d)は、支持体 6上にゲート電極 4を金属箔等で形成した後、絶縁層 5を形成 し、その上に金属箔等で、ソース電極 2及びドレイン電極 3を形成し、該電極間に本 発明の有機半導体材料により形成された有機半導体層 1を形成する。その他同図 (e )、 (f)に示すような構成を取ることもできる。
[0084] 図 2は、有機薄膜トランジスタシートの概略等価回路図の 1例を示す図である。
[0085] 有機薄膜トランジスタシート 10はマトリクス配置された多数の有機薄膜トランジスタ 1 1を有する。 7は各有機薄膜トランジスタ 11のゲートバスラインであり、 8は各有機薄膜 トランジスタ 11のソースバスラインである。各有機薄膜トランジスタ 11のソース電極に は、出力素子 12が接続され、この出力 12は例えば液晶、電気泳動素子等であり、表 示装置における画素を構成する。画素電極は光センサの入力電極として用いてもよ い。図示の例では、出力素子として液晶が、抵抗とコンデンサ力もなる等価回路で示 されている。 13は蓄積コンデンサ、 14は垂直駆動回路、 15は水平駆動回路である。
[0086] 有機薄膜トランジスタの性能としては、その用途に応じて必要とされる性能は変化 するが、例えば電子ペーパーのような用途においては、キャリア移動度は 0. 01 ( 1. 0 X 10— 2)〜: L Ocm2/Vsecの範囲であることが好ましぐ ON/OFF比としては 1. 0 X 105〜l . 0 X 107の範囲であることが好ましい。このような範囲とすることで十分な速 度でディスプレイを駆動することができ、またディスプレイに良好な階調を付与するこ とがでさる。
実施例
[0087] 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されな い。
[0088] 実施例 1
《有機薄膜トランジスタ 1の作製》
ゲート電極としての比抵抗 0. 01 Ω ' cmの Siウェハーに、厚さ 200nmの熱酸化膜 を形成してゲート絶縁層とした後、ォクタデシルトリクロロシランによる表面処理を行つ た。
[0089] このような表面処理を行った Siウェハー上に、比較化合物 1 (ペンタセン、アルドリツ チ社製、市販試薬を昇華精製して用いた)を蒸着した後、窒素雰囲気下で 50°C、 30 分間の熱処理を施した。
[0090] さらに、この膜の表面にマスクを用いて金を蒸着してソース電極及びドレイン電極を 形成した。ソース電極及びドレイン電極は幅 100 m、厚さ 200nmで、チャネル幅 W
= 3mm、チャネル長 L = 20 μ mの有機薄膜トランジスタ 1を作製した。
[0091] 《有機薄膜トランジスタ 2の作製》
比較化合物 2 (2, 3, 9, 10—テトラへキシルペンタセン)は、 Organic Letters, v ol. 2 (2000) , p85【こ記載の方法で合成した。
[0092] 有機薄膜トランジスタ 1の作製において、比較ィ匕合物 1を比較ィ匕合物 2に変更した 以外は同様にして、有機薄膜トランジスタ 2を作製した。
[0093] 《有機薄膜トランジスタ 3の作製》
有機薄膜トランジスタ 1の作製において、比較ィ匕合物 1を比較ィ匕合物 3 (ルブレン、 アルドリッチ社製、市販試薬を昇華精製して用いた)に変更した以外は同様にして、 有機薄膜トランジスタ3を作製した。 [0094] 《有機薄膜トランジスタ 4〜8の作製》
有機薄膜トランジスタ 1の作製において、比較化合物 1の代わりに、表 1に記載の本 発明の有機半導体材料に変更した以外は同様にして、有機薄膜トランジスタ 4〜8を 作製した。
[0095] [化 9] 比較化合物 1 比較化合物 2
Figure imgf000024_0001
比較化合物 3
Figure imgf000024_0002
[0096] 《キャリア移動度及び ONZOFF比の評価》
得られた有機薄膜トランジスタ 1〜8について、各素子のキャリア移動度と ONZOF F比を、素子作成直後に測定した。なお、本発明では、 I V特性の飽和領域カもキ ャリア移動度を求め、さらに、ドレインバイアス一 50Vとし、ゲートバイアス一 50V及び OVにしたときのドレイン電流値の比率から ONZOFF比を求めた。
[0097] また同様の評価を、各素子を 40°C90%RHの環境室に 48時間投入した後、キヤリ ァ移動度及び ONZOFF比の再測定を行った。
[0098] 得られた結果を表 1に示す。
[0099] [表 1] 有機薄膜 製膜直後 40 °C 90%RH48時間保管後 トランジスタ 化合物 移動度 備考
0NZ0FF比 移動度 ON/OFF比
No. (cm"/Vsec) (,cm2/ Vsec)
1 比較化合物 1 1.1X10° 4X106 7.7X10— 3 7X104 比 較
2 比較化合物 2 7.2X10"2 7X105 2.1X10—3 4X103 比 較
3 比較化合物 3 2.5X10-5 5X103 6.7X10— 6 3X102 比 較
4 例示化合物 4 5.8X10"2 1X106 4.1X10—2 4X105 本発明
5 例示化合物 6 9. IX 10-2 3X106 6.7X10— 2 6X105 本発明
6 例示化合物 7 1.6X10— 1 6X106 8.8X10一2 1X106 本発明
7 例示化合物 8 9.3X10- 2 4X106 7.4X10— 2 8X105 本発明
8 例示化合物 9 5.1X10— 1 2X107 3.0X10一1 4X106 本発明
[0100] 表 1から、これまで公知の化合物である比較ィ匕合物 1〜3を用いた有機薄膜トランジ スタ 1〜3では、蒸着直後は十分な TFT性能を示したが、耐久試験後では移動度は 10— 3台、 ONZOFF比も 104台と、ディスプレイの駆動が可能な値まで保持されてい ない。
[0101] 他方、本発明の有機半導体材料を用いて作製した有機薄膜トランジスタ 4〜8では 、作製直後においてキャリア移動度、 ONZOFF比ともに優れた特性を示し、かつ、 耐久試験後においても移動度が 10—2台以上、 ON/OFF比も 105台以上であり,経 時劣化が少なく高 、耐久性を併せ持つと 、うことが分かる。
[0102] 本発明の有機半導体素子の中でも、 3環縮合型の配位子を有するオルトメタルイ匕 錯体を用い、中心金属として Ptを用いた有機薄膜トランジスタ 8では、耐久試験後に おいても移動度が 10— 1台と非常に優れた耐久性を有していることが確認された。
[0103] 実施例 2
《有機薄膜トランジスタ 9〜 13の作製》
実施例 1と同様に、ゲート電極としての比抵抗 0. 01 Ω 'cmの Siウェハーに、厚さ 2 OOnmの熱酸ィ匕膜を形成してゲート絶縁層とした後、ォクタデシルトリクロロシランによ る表面処理を行った。
[0104] このような表面処理を行った Siウェハー上に、窒素雰囲気下で窒素を 30分間パブ リングしたトルエンに対して 0. 5質量%の濃度で比較ィ匕合物 1を溶解させ、窒素雰囲 気下でスピンコート塗布(回転数 2500rpm、 15秒)し、自然乾燥することによりキャス ト膜を形成して、窒素雰囲気下で 50°C、 30分間の熱処理を施した。 [0105] さらに、この膜の表面にマスクを用いて金を蒸着してソース電極及びドレイン電極を 形成した。ソース電極及びドレイン電極は幅 100 m、厚さ 200nmで、チャネル幅 W = 3mm、チャネル長 L = 20 ^ mの有機薄膜トランジスタ 9を作製した。
[0106] また、比較化合物 1の代わりに、表 2に記載の本発明の有機半導体材料に変更した 以外は同様にして、有機薄膜トランジスタ 10〜13を作製した。
[0107] 《キャリア移動度及び ONZOFF比の評価》
実施例 1と同様に、得られた有機薄膜トランジスタ 9〜 13につ V、て各素子のキャリア 移動度と ONZOFF比を、素子作成直後に測定した。なお、本発明では、 I—V特性 の飽和領域からキャリア移動度を求め、さらに、ドレインバイアス一 50Vとし、ゲートバ ィァス— 50V及び OVにしたときのドレイン電流値の比率から ON/OFF比を求めた
[0108] また同様の評価を、各素子を 40°C90%RHの環境室に 48時間投入した後、キヤリ ァ移動度 · ONZOFF比の再測定を行った。
[0109] 得られた結果を表 2に示す。
[0110] [表 2]
Figure imgf000026_0001
[0111] 表 2から、比較ィ匕合物 1は、溶解性が低ぐ塗布によって膜を作ることができず、有 機薄膜トランジスタ 9は半導体としての駆動を確認できなかった。
[0112] また比較化合物 2、 3は、比較ィ匕合物 1に比べて溶解性が向上し、塗布膜を形成す ることができ、有機薄膜トランジスタ 10、 11は半導体としての駆動を確認することがで きたが、 ONZOFF比が 103台以下と比較的低ぐまた耐久試験の後では大きく性能 が劣化する材料であることが分かる。
[0113] しかし、特定の溶解性基を有する本発明の化合物を用いて作製した有機薄膜トラ ンジスタ 12、 13では、有機溶剤に溶解することが可能であり、有機半導体としての駆 動を確認できる薄膜を得ることができた。しかも、耐久試験後であっても移動度が 10— 2台以上、 ONZOFF比も 105台以上であり、高い半導体特性と高い耐久性を併せ持 つ素子を
塗布プロセスによって形成できることが確認された。
[0114] 実施例 3
《有機 EL素子の作製》
有機 EL素子の作製は、 Nature, 395卷, 151〜154頁に記載の方法を参考にし て、図 3に示したような封止構造を有するトップェミッション型の有機 EL素子を作製し た。なお、図 3において、 101は基板、 102aは陽極、 102bは有機 EL層(具体的に は、電子輸送層、発光層、正孔輸送層等が含まれる)、 102cは陰極を示し、陽極 10 2a、有機 EL層 102b、陰極 102cにより、有機 EL素子 102が形成されている。 103は 封止膜を示す。なお、本発明の有機 EL素子は、ボトムェミッション型でもトップェミツ シヨン型のどちらでもよい。
[0115] 本発明の有機 EL素子と本発明の有機薄膜トランジスタ (ここで、本発明の有機薄膜 トランジスタは、スイッチングトランジスタや駆動トランジスタ等として用いられる)を組 み合わせて、アクティブマトリクス型の発光素子を作製した力 その場合は、例えば、 図 4に示すように、ガラス基板 601上に TFT602 (有機薄膜トランジスタ 602でもよい) が形成されている基板を用いる態様が一例として挙げられる。ここで、 TFT602の作 製方法は公知の TFTの作製方法が参照できる。もちろん、 TFTとしては、従来公知 のトップゲート型 TFTであってもボトムゲート型 TFTであっても構わない。
[0116] 上記で作製した有機 EL素子は、単色、フルカラー、白色等の種々の発光形態にお いて、良好な発光特性を示した。

Claims

請求の範囲
[1] 平面 4座配位のオルトメタル化錯体を半導体層に含有することを特徴とする有機薄膜 トランジスタ。
[2] 前記平面 4座配位のオルトメタル化錯体の中心金属が Pt、 Auまたは Pdであることを 特徴とする請求の範囲第 1項に記載の有機薄膜トランジスタ。
[3] 前記平面 4座配位のオルトメタルィ匕錯体の配位子が 3環以上縮合した縮合多環構造 を有することを特徴とする請求の範囲第 1項または第 2項に記載の有機薄膜トランジ スタ。
[4] 前記平面 4座配位のオルトメタルィ匕錯体が下記一般式(1)で表される化合物であるこ とを特徴とする請求の範囲第 1項乃至第 3項に記載の有機薄膜トランジスタ。
[化 1] 一般式 (1}
Figure imgf000028_0001
(式中、 Mは Pt、 Auまたは Pdの金属原子を表し、 Z〜Zは置換または無置換の芳
1 3
香族環を表す。 )
[5] 前記一般式(1)の Mで表される金属原子が Ptであることを特徴とする請求の範囲第
4項に記載の有機薄膜トランジスタ。
[6] 前記一般式(1)の Z〜Zで表される縮合多環が、下記一般式 (2)で表される置換基
1 3
を有する化合物であることを特徴とする請求の範囲第 4項または第 5項に記載の有機 薄膜トランジスタ。
[化 2]
—般式 (2>
一し ) π
(式中、 Lは単結合、酸素原子、硫黄原子、窒素原子、 C = C一、 C≡C 一レン基力 選ばれる(n+ 1)価の連結基を表し、 Rはアルキル基、シクロアルキル基 、アルキルシリル基、(アルキルシリル)アルキル基力 選ばれる置換基を表し、 nは 1 〜3の整数を表す。 )
[7] 前記一般式(2)の Lで表される連結基しが C≡ C であることを特徴とする請求の 範囲第 6項に記載の有機薄膜トランジスタ。
[8] 平面 4座配位のオルトメタルィ匕錯体力ゝらなる有機半導体材料において、平面 4座配 位のオルトメタルィ匕錯体の配位子が 3環以上が縮合した縮合多環構造を有すること を特徴とする有機半導体材料。
[9] 前記平面 4座配位のオルトメタルィ匕錯体が下記一般式(1)で表される化合物であるこ とを特徴とする請求の範囲第 8項に記載の有機半導体材料。
[化 3]
一般式 (1》
Figure imgf000029_0001
(式中、 Mは Pt、 Auまたは Pdの金属原子を表し、 Z
1〜Zは置換または無置換の芳 3
香族環を表す。 )
[10] 前記一般式(1)の Mで表される金属原子が Ptであることを特徴とする請求の範囲第
9項に記載の有機半導体材料。
[11] 前記一般式(1)の Z
1〜Zで表される縮合多環が、下記一般式 (2)で表される置換基 3
を有する化合物であることを特徴とする請求の範囲第 9項または第 10項に記載の有 機半導体材料。
[化 4] 一般式 (2)
(式中、 Lは単結合、酸素原子、硫黄原子、窒素原子、 C = C一、 C≡C 一レン基力 選ばれる(n+ 1)価の連結基を表し、 Rはアルキル基、シクロアルキル基 、アルキルシリル基、(アルキルシリル)アルキル基力 選ばれる置換基を表し、 nは 1 〜3の整数を表す。 )
[12] 前記一般式(2)の Lで表される連結基しが C≡ C であることを特徴とする請求の 範囲第 11項に記載の有機半導体材料。
[13] 請求の範囲第 8項乃至第 12項のいずれか 1項に記載の有機半導体材料を用いるこ とを特徴とする有機半導体膜。
[14] 請求の範囲第 8項乃至第 12項のいずれか 1項に記載の有機半導体材料を用いるこ とを特徴とする有機半導体デバイス。
PCT/JP2007/051158 2006-02-01 2007-01-25 有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス WO2007088768A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556826A JP5245117B2 (ja) 2006-02-01 2007-01-25 有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006024291 2006-02-01
JP2006-024291 2006-02-01

Publications (1)

Publication Number Publication Date
WO2007088768A1 true WO2007088768A1 (ja) 2007-08-09

Family

ID=38327346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051158 WO2007088768A1 (ja) 2006-02-01 2007-01-25 有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス

Country Status (2)

Country Link
JP (1) JP5245117B2 (ja)
WO (1) WO2007088768A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110012093A1 (en) * 2009-07-14 2011-01-20 Vivian Wing-Wah Yam Luminescent gold(iii) compounds containing bidentate ligand for organic light-emitting devices and their preparation
WO2011044988A1 (de) * 2009-10-16 2011-04-21 Merck Patent Gmbh Metallkomplexe
JP2011176324A (ja) * 2011-03-22 2011-09-08 Dainippon Printing Co Ltd 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク
WO2012007087A1 (de) * 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
US9837623B2 (en) 2013-12-09 2017-12-05 Samsung Sdi Co., Ltd. Compound, organic optoelectronic device comprising the same, and display device
US10170348B2 (en) 2013-12-26 2019-01-01 Konica Minolta, Inc. Production system for printing electronic devices
US20190319199A1 (en) * 2018-04-13 2019-10-17 Universal Display Corporation Organic electroluminescent materials and devices
US20200194693A1 (en) * 2018-12-13 2020-06-18 Samsung Display Co., Ltd. Organic light-emitting device, apparatus including the same, and organometallic compound
CN114478636A (zh) * 2020-11-12 2022-05-13 季昀 铂错合物、含氮双牙配位基及可发出可见光或近红外光的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345183A (ja) * 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2002117978A (ja) * 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2004155711A (ja) * 2002-11-06 2004-06-03 Toyota Central Res & Dev Lab Inc 機能素子及び有機金属錯体化合物
JP2004319438A (ja) * 2003-03-28 2004-11-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置及びロジウム錯体化合物
JP2007091660A (ja) * 2005-09-29 2007-04-12 Fujifilm Corp 金属錯体の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1181842B1 (en) * 1999-03-23 2016-05-25 University Of Southern California Cyclometallated metal complexes as phosphorescent dopants in organic leds
JP2001181617A (ja) * 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化白金錯体からなる発光素子材料および発光素子
JP2001181616A (ja) * 1999-12-27 2001-07-03 Fuji Photo Film Co Ltd オルトメタル化パラジウム錯体からなる発光素子材料および発光素子
JP2004158669A (ja) * 2002-11-07 2004-06-03 Konica Minolta Holdings Inc 半導体性組成物及びそれを用いる電界効果トランジスタ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345183A (ja) * 2000-03-28 2001-12-14 Fuji Photo Film Co Ltd 高効率赤色発光素子、イリジウム錯体から成る発光素子材料及び新規イリジウム錯体
JP2002117978A (ja) * 2000-07-17 2002-04-19 Fuji Photo Film Co Ltd 発光素子及びイリジウム錯体
JP2004155711A (ja) * 2002-11-06 2004-06-03 Toyota Central Res & Dev Lab Inc 機能素子及び有機金属錯体化合物
JP2004319438A (ja) * 2003-03-28 2004-11-11 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、照明装置及びロジウム錯体化合物
JP2007091660A (ja) * 2005-09-29 2007-04-12 Fujifilm Corp 金属錯体の製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102574870A (zh) * 2009-07-14 2012-07-11 香港大学 用于有机发光器件的含双齿配体的发光金(iii)化合物及其制备方法
WO2011006353A1 (en) * 2009-07-14 2011-01-20 The University Of Hong Kong Luminescent gold(iii) compounds containing bidentate ligand for organic light-emitting devices and their preparation
DE112010002628B4 (de) 2009-07-14 2018-10-31 The University Of Hong Kong Lumineszierende Gold (III)-Verbindungen, die bidentate Liganden enthalten, für organische Leuchtelemente und ihre Herstellung
US20110012093A1 (en) * 2009-07-14 2011-01-20 Vivian Wing-Wah Yam Luminescent gold(iii) compounds containing bidentate ligand for organic light-emitting devices and their preparation
US8372977B2 (en) * 2009-07-14 2013-02-12 The University Of Hong Kong Luminescent gold(III) compounds containing bidentate ligand for organic light-emitting devices and their preparation
TWI568739B (zh) * 2009-10-16 2017-02-01 麥克專利有限公司 金屬錯合物
US9181289B2 (en) 2009-10-16 2015-11-10 Merck Patent Gmbh Metal complexes
WO2011044988A1 (de) * 2009-10-16 2011-04-21 Merck Patent Gmbh Metallkomplexe
JP2013507404A (ja) * 2009-10-16 2013-03-04 メルク パテント ゲーエムベーハー 金属錯体
CN102574882A (zh) * 2009-10-16 2012-07-11 默克专利有限公司 金属络合物
CN102574882B (zh) * 2009-10-16 2015-11-25 默克专利有限公司 金属络合物
US9382253B2 (en) 2010-07-16 2016-07-05 Merck Patent Gmbh Metal complexes
JP2013538190A (ja) * 2010-07-16 2013-10-10 メルク パテント ゲーエムベーハー 金属錯体
CN102985433B (zh) * 2010-07-16 2016-06-15 默克专利有限公司 金属络合物
CN102985433A (zh) * 2010-07-16 2013-03-20 默克专利有限公司 金属络合物
WO2012007087A1 (de) * 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
JP2011176324A (ja) * 2011-03-22 2011-09-08 Dainippon Printing Co Ltd 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク
US9837623B2 (en) 2013-12-09 2017-12-05 Samsung Sdi Co., Ltd. Compound, organic optoelectronic device comprising the same, and display device
US10170348B2 (en) 2013-12-26 2019-01-01 Konica Minolta, Inc. Production system for printing electronic devices
US20190319199A1 (en) * 2018-04-13 2019-10-17 Universal Display Corporation Organic electroluminescent materials and devices
US11882759B2 (en) * 2018-04-13 2024-01-23 Universal Display Corporation Organic electroluminescent materials and devices
US20200194693A1 (en) * 2018-12-13 2020-06-18 Samsung Display Co., Ltd. Organic light-emitting device, apparatus including the same, and organometallic compound
CN114478636A (zh) * 2020-11-12 2022-05-13 季昀 铂错合物、含氮双牙配位基及可发出可见光或近红外光的装置

Also Published As

Publication number Publication date
JPWO2007088768A1 (ja) 2009-06-25
JP5245117B2 (ja) 2013-07-24

Similar Documents

Publication Publication Date Title
US7800103B2 (en) Organic thin film transistor material, organic thin film transistor, field-effect transistor, switching element, organic semiconductor material and organic semiconductor film
JP5499422B2 (ja) 有機半導体材料、有機半導体膜、有機薄膜トランジスタ及び有機薄膜トランジスタの製造方法
JP4736324B2 (ja) 半導体素子及びその製造方法
WO2007088768A1 (ja) 有機薄膜トランジスタ、有機半導体材料、有機半導体膜、及び有機半導体デバイス
KR100708721B1 (ko) 박막 트랜지스터 및 이를 구비한 평판 표시 장치
WO2005122278A1 (ja) 有機半導体薄膜、有機半導体デバイス、有機薄膜トランジスタ及び有機エレクトロルミネッセンス素子
WO2005122277A1 (ja) 有機薄膜トランジスタ
JP2004006782A (ja) 有機半導体材料、これを用いた有機トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2007067262A (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP2007273594A (ja) 電界効果トランジスタ
WO2007123030A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
US20100041861A1 (en) Semiconducting polymers
WO2007105473A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP4419425B2 (ja) 有機薄膜トランジスタ素子
JP4443944B2 (ja) トランジスタとその製造方法
WO2006038459A1 (ja) 有機薄膜トランジスタ材料、有機薄膜トランジスタ、電界効果トランジスタ及びスイッチング素子
US20100038631A1 (en) Electronic device comprising semiconducting polymers
JP2006028055A (ja) 有機半導体材料、有機トランジスタ、電界効果トランジスタ及びスイッチング素子
JP2004146733A (ja) 有機半導体及びそれを用いる有機薄膜トランジスタ素子
WO2006098121A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス、有機薄膜トランジスタ及び有機薄膜トランジスタの形成方法
WO2007066466A1 (ja) 有機半導体材料、有機半導体膜、有機半導体デバイス及び有機薄膜トランジスタ
JP4736352B2 (ja) 電界効果トランジスタ
JP2004165257A (ja) 有機薄膜トランジスタ素子
JP2004214482A (ja) 有機半導体材料および有機薄膜トランジスタ
WO2014006700A1 (ja) 有機薄膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007556826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707405

Country of ref document: EP

Kind code of ref document: A1