WO2007088762A1 - 複合磁性シートおよびその製造方法 - Google Patents

複合磁性シートおよびその製造方法 Download PDF

Info

Publication number
WO2007088762A1
WO2007088762A1 PCT/JP2007/051127 JP2007051127W WO2007088762A1 WO 2007088762 A1 WO2007088762 A1 WO 2007088762A1 JP 2007051127 W JP2007051127 W JP 2007051127W WO 2007088762 A1 WO2007088762 A1 WO 2007088762A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite magnetic
magnetic sheet
sheet
powder
magnetic powder
Prior art date
Application number
PCT/JP2007/051127
Other languages
English (en)
French (fr)
Inventor
Fumio Uchikiba
Tsutomu Otsuka
Mitsugu Kawarai
Original Assignee
Sumida Corporation
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Corporation, Nihon University filed Critical Sumida Corporation
Priority to EP07707374A priority Critical patent/EP1986200B1/en
Priority to US12/162,669 priority patent/US20090197063A1/en
Priority to DE602007008688T priority patent/DE602007008688D1/de
Priority to CN2007800038492A priority patent/CN101375353B/zh
Publication of WO2007088762A1 publication Critical patent/WO2007088762A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • B29C70/62Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres the filler being oriented during moulding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0008Magnetic or paramagnetic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles

Definitions

  • the present invention relates to a composite magnetic sheet suitable for a magnetic body of a coil and a method for manufacturing the same.
  • magnetic members used for coil parts have been manufactured by the following method, for example.
  • a binder or acrylic dispersant is added to the ferrite-based magnetic powder, and the mixture is pulverized and mixed uniformly with a ball mill or bead mill, and then calcined.
  • the calcined powder obtained is pulverized and granulated, and then formed into a predetermined shape by press molding (see, for example, Patent Document 1).
  • a ferrite magnetic powder is kneaded with a resin and a solvent to prepare a paste, and a plurality of magnetic green sheets formed into a thin sheet shape having a thickness of 10 to: LOOm are laminated.
  • the laminate of the magnetic green sheets is pressure-bonded using a press as a magnetic member of a coil component and integrally fired in a firing furnace. Thereafter, external electrodes are formed on the side end surfaces of the sintered body to produce a laminated chip coil (see, for example, Patent Document 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-097048 (paragraph numbers 0043, 0049, 01)
  • Patent Document 2 Japanese Patent Laid-Open No. 6-333743 (paragraph number 0010, FIG. 1)
  • Patent Document 3 JP-A-5-335130 (paragraph number 0007)
  • the ferrite-based sintered body disclosed in Patent Document 1 has the advantage that it can be manufactured stably and at low cost.
  • the strength of the ferrite sintered body is reduced. The decrease becomes noticeable.
  • decreasing the volume or cross-sectional area tends to decrease the magnetic properties of the ferrite-based sintered body. For this reason, there is a problem that it is not practical as a low-profile coil component.
  • the magnetic green sheet disclosed in Patent Document 2 is suitable as a low-profile laminated coil component, while at the same time supporting a large current, that is, improving the magnetic characteristics related to magnetic saturation. It is mainly used as a signal circuit component such as a noise filter. Further, since the manufacturing process is complicated, there is a problem that the manufacturing cost is high.
  • the magnetic properties can be improved, but there is a problem that the strength is reduced when the size or the height is reduced.
  • the magnetic powder may be greatly distorted during the process, which may reduce the strength.
  • the present invention has been made to solve the above-described problems, and its object is to achieve high strength even when it is used as a magnetic member such as a thin coil component.
  • An object of the present invention is to provide a composite magnetic sheet excellent in magnetic properties and a method for producing the same while achieving the above.
  • the present invention provides a composite magnetic sheet containing at least a resin and a metal-based magnetic powder, wherein the metal-based magnetic powder has a flat shape having a major axis and a minor axis.
  • the major axis diameter of the flat-shaped powder is in the range of 5 m to 80 m, and is defined by the ratio of the dimension between the major axis and the minor axis of the flat-shaped powder.
  • the metal magnetic powder is a dispersed composite magnetic sheet with its long axis oriented parallel to the surface of the composite magnetic sheet.
  • the major axis diameter of the metal-based magnetic powder By setting the major axis diameter of the metal-based magnetic powder to 5 ⁇ m or more, the shape of the metal-based magnetic powder is flattened. Therefore, it becomes easy to orient the metallic magnetic powder in one direction, and the magnetic properties of the composite magnetic sheet can be improved. Further, when the major axis diameter of the metallic magnetic powder is 80 m or less, it becomes easy to mold. In particular, when the doctor blade method is adopted, it becomes easier to pass the blade during coating.
  • the aspect ratio of the metallic magnetic powder is 5 or more, the metallic magnetic powder is easily oriented in one direction in the resin. Further, when the aspect ratio is 20 or less, the sheet does not easily become streaked, and the metal-based magnetic powders form a bridge in the resin so that they are oriented in one direction and the filling rate is reduced. It becomes easy to make a high structure.
  • the aspect ratio of the metal-based magnetic powder is set to 5 or more and 20 or less, the composite magnetic material having a high filling property in which the metal-based magnetic powder in which the streaks enter the sheet is oriented in one direction. It becomes easy to realize the seat. As a result, the strength and magnetic properties of the composite magnetic sheet are further improved.
  • Another embodiment of the present invention is a composite magnetic sheet having a sheet thickness in the range of 10 ⁇ m to 250 ⁇ m.
  • Another aspect of the present invention is a method for producing a composite magnetic sheet including at least a resin and a metal-based magnetic powder, including a flat powder having a major axis and a minor axis,
  • the major axis diameter of the flat powder is in the range of 5 ⁇ m to 80 ⁇ m
  • the aspect ratio defined by the ratio of the dimension between the major axis and the minor axis is in the range of 5 to 20
  • a step of preparing a slurry by mixing a metallic magnetic powder, a resin, and an organic solvent a step of applying a slurry on a support to form a coating film, and drying the coating film
  • a method of manufacturing a composite magnetic sheet including a process.
  • a composite magnetic sheet having high strength and excellent magnetic properties can be easily manufactured even when employed as a magnetic member such as a thin coil component.
  • the flat metal-based magnetic powder settles naturally in the slurry with the long axis direction facing down, and then settles and is substantially parallel to the surface of the composite magnetic sheet.
  • Distortion occurs in the sheet. For this reason, cracks and the like are unlikely to occur in the composite magnetic sheet.
  • the process can be simplified and the cost can be reduced.
  • the manufacturing method of the present invention can easily adjust the thickness of the composite magnetic sheet by adjusting the viscosity of the slurry when using a doctor blade. Therefore, the manufacturing process can be simplified, and a thin composite magnetic sheet having a desired thickness that is efficient and can be manufactured at low cost.
  • Another aspect of the present invention is a method for producing a composite magnetic sheet in which a resin used for preparing a slurry is an epoxy resin.
  • Another aspect of the present invention is a method for producing a composite magnetic sheet having a thickness in the range of 10 m to 250 m after the step of drying the coating film.
  • Examples of the metallic magnetic powder contained in the composite magnetic sheet according to the present invention include iron-silicon, iron, aluminum, platinum, zinc, titanium, chromium, amorphous alloy, iron-aluminum silicon alloy, iron-nickel. Alloys, iron-based nanocrystals, and the like can be used.
  • the metal-based magnetic powder described above is merely an example, and other metal-based magnetic powder may be employed.
  • the metallic magnetic powder may be one kind of powder or a mixture of two or more kinds of powders.
  • an epoxy-based resin as the resin as a base material of the composite magnetic sheet according to the present invention.
  • an epoxy resin for example, bisphenol A type polymer epoxy resin and polyfunctional epoxy resin are the main components, and an epoxy resin having a special skeleton is added to this as a curing agent. It is preferable to use bisphenol A type novolak rosin.
  • the weight ratio of bisphenol A type polymer epoxy resin to polyfunctional epoxy resin is preferably about 2: 1.
  • the epoxy resin having a special skeleton is preferably 0.25 to 1, more preferably 0.3 to 0.5, with respect to the main component.
  • the curing agent is preferably added in a proportion of 5 to 30% by weight based on the total amount of the epoxy resin having the main component and the special skeleton and the curing agent.
  • curing agent used in the present invention in addition to bisphenol A type novolac resin, for example, phenol novolac resin, polyamide resin, maleic anhydride, phthalic anhydride and other acid anhydride curing agents, dicyandiamide , Latent aminic hardeners such as imidazole, other diaminodiphs Aromatic amines such as ether methane and diaminodiphenyl sulfone can be used. These curing agents may be used alone or in combination of two or more.
  • the main components of epoxy resin are bisphenol AD type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, naphthalene type epoxy resin, biphenol type epoxy resin. Other types may be adopted. However, it is preferable to use an epoxy resin that has moldability, moisture and heat resistance, adhesion, and insulation in use. In particular, it is more preferable to use an epoxy resin having a high Tg and a Tg range from 90 ° C to 120 ° C.
  • Examples of the organic solvent used in the production process of the composite magnetic sheet according to the present invention include toluene, methyl butyl ketone, ethanol, xylene, methyl ethyl ketone, methyl isobutyl ketone, and the like. One or more combinations of these can be used.
  • a film material that is tougher than the composite magnetic sheet and that can impart appropriate tension to the composite magnetic sheet is used.
  • PET polyethylene terephthalate
  • PET polyethylene
  • polypropylene polypropylene
  • polyimide polyimide
  • a release cloth or the like may be used as the support.
  • the “orientation” as used in the present invention is not limited to the state in which the metallic magnetic powder is completely parallel to the surface of the composite magnetic sheet, but the metallic magnetic powder in the thickness direction of the composite magnetic sheet. Compared with the direction along the surface of the sheet, the ratio is large and the state is different. Therefore, a part of the metal-based magnetic powder may exist along the thickness direction of the composite magnetic sheet.
  • FIG. 1 is a diagram schematically showing a cross section of a composite magnetic sheet according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a composite magnetic sheet manufacturing apparatus used for a part of a process of manufacturing a composite magnetic sheet according to an embodiment of the present invention.
  • FIG. 3 is a flowchart showing the manufacturing process of the composite magnetic sheet according to the embodiment of the present invention.
  • FIG. 4 shows a situation where the metallic magnetic powder is dispersed and oriented in the coating film from the coating film forming process (step S102) to the sheet drying process (step S103) shown in FIG. FIG.
  • FIG. 1 is a diagram schematically showing a cross section of the composite magnetic sheet 1 according to the embodiment of the present invention.
  • the long side direction indicates the sheet length direction
  • the short side direction indicates the sheet thickness direction.
  • the composite magnetic sheet 1 is a sheet having a structure in which the metal-based magnetic powder 10 is dispersed in the resin 20.
  • Part or all of the metallic magnetic powder 10 is a flat shape having a major axis and a minor axis.
  • the flat metallic magnetic powder 10 is oriented and dispersed in the longitudinal direction of the composite magnetic sheet 1 so that its long axis is directed.
  • the metallic magnetic powder 10 used in this embodiment is a powder mainly composed of iron-silicon.
  • the major axis size (major axis diameter) of the metallic magnetic powder 10 is in the range of 5 ⁇ m to 80 ⁇ m, and preferably in the range of 10 ⁇ m to 50 ⁇ m.
  • the major axis diameter is 5 ⁇ m or more, the magnetic properties of the metallic magnetic powder 10 are good and the major axis diameter is 80 m or less. In this case, it becomes easy to mold.
  • coating is performed by the doctor blade method, it becomes easier to pass through a blade with a long axis diameter of less than ⁇ O / zm.
  • the aspect ratio (long axis Z short axis) defined by the ratio of the dimension between the major axis and the minor axis is preferably in the range of 5 or more and 20 or less.
  • the aspect ratio of the metallic magnetic powder 10 is 5 or more, the metallic magnetic powder 10 can be easily oriented in one direction.
  • the aspect ratio is 20 or less, it is difficult for the sheet to be streaked, and the metal magnetic powders 10 are less likely to form a bridge in the resin 20, and are oriented in one direction and have a high filling rate. It becomes easy to make a structure.
  • the composite magnetic sheet 1 in which the metallic magnetic powder 10 is dispersed exhibits unique flexibility like a so-called fiber reinforcement. Therefore, the composite magnetic sheet 1 exhibits a flexural strength that cannot be obtained with a rigid material (sintered core material or flexible sheet material).
  • the thickness of the composite magnetic sheet 1 is preferably in the range of 10 ⁇ m to 250 ⁇ m, more preferably in the range of 100 ⁇ m to 200 ⁇ m.
  • the thickness is 10 ⁇ m or more, the ratio of deformation and cracking is low.
  • the thickness is 250 / zm or less, the metal-based magnetic powder 10 and the resin 20 are not separated and become a suitable thickness as a magnetic member of a low profile coil component.
  • the resin 20 suitably used in this embodiment is composed mainly of a bisphenol A type polymer epoxy resin and a polyfunctional epoxy resin, and an epoxy resin having a special skeleton added thereto. It is made by using bisphenol A type novolac resin as a hardener.
  • the weight ratio of bisphenol A type polymer epoxy resin to polyfunctional epoxy resin is preferably 2: 1.
  • the epoxy resin having a special skeleton is preferably 0.25 to 1, more preferably 0.3 to 0.5 with respect to the main component.
  • the amount of the hardener added is preferably 5 to 30% by weight based on the total amount of the epoxy resin having the main component and the special skeleton and the curing agent.
  • Examples of the polyfunctional epoxy resin mainly include those of epibis type, glycidyl ether type, diphenyl ether type, and alicyclic type.
  • epibis type for example, bisphenol type glycidyl ether is preferable.
  • glycidyl ether type for example, diglycidyl ether of phloroglysin is preferable.
  • diphenyl ether type field For example, 4,4, -di (1,2 epoxyethyl) diphenyl ether is preferred.
  • polyfunctional epoxy resins such as N, N, 1 m-phenylene bis (4,5 epoxy-1,2,1, cyclohexane) dicarboximide.
  • polyallyl glycidyl ether, tetraglycidoxytetraphenyl ethane, 1,3,5 tri- (1,2 epoxyethyl) benzene Fats can also be used.
  • performance balance such as flexibility, workability, punchability, storage stability, and maintenance of elastic modulus, availability as raw materials, and cost, use of Epibis type epoxy resin Is preferred.
  • Examples of epoxy resins having a special skeleton include biphenyl type, bisphenol S type, naphthalene type, cyclopentagen type, aralkyl type, hydroquinone type, novolac type, tetraphenol ethane type, trishydroxyl type. Examples include enylmethane type and dicyclopentadiene phenol type.
  • Tg value can be improved without degrading its properties and the stability can be improved. Is preferably used.
  • the curing agent it is possible to use aromatic amines, acid anhydrides, or one type of bisphenol A type novolac resin, and preferably bisphenol A type novolac resin.
  • bisphenol A-type novolac resin a curing system using its hydroxyl group (—OH) can be used, and the workability of sheeting can be significantly improved without degrading the performance of the basic skeleton.
  • a curing accelerator may be used.
  • the curing accelerator it is preferable to contain an imidazole compound and Z or an amine compound.
  • imidazole compounds include imidazole, 2-methylimidazole, 2-ethyl imidazole. 2, 4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-heptadecylimidazole, 2-undecylimidazole, etc. can be used.
  • an amine compound for example, triethylamine, triethylenetetramine, diethylenetriamine, and jetylaminopropylamine can be used as the aliphatic amine.
  • cyclic amines examples include N-aminoethylpiperazine, bis (4-amino-3-methylcyclohexylmethane), menthandamine, metaxylyleneamine, 3,9-bis (3-aminopropyl) -1, 2, 4, 8, 10, — Tetraoxaspiro (5, 5) undecane can be used.
  • an imidazole compound as a curing accelerator.
  • a curing accelerator it is not necessarily limited to one type of use, and two or more types may be used in combination as necessary.
  • FIG. 2 is a schematic configuration diagram of the composite magnetic sheet manufacturing apparatus 4 used in a part of the manufacturing process of the composite magnetic sheet 1 according to the embodiment of the present invention.
  • the composite magnetic sheet manufacturing apparatus 4 has an ability to set a temperature distribution with a gradient in a range from room temperature to around 150 ° C from the part force at which the manufacture of the composite magnetic sheet 1 is started to the part to be finished.
  • the reason why the temperature can be set up to 150 ° C. is because the components of the organic solvent in the slurry need to be evaporated.
  • the composite magnetic sheet manufacturing apparatus 4 has a total length of 8 m and includes a portion for a drying process of about 6 m.
  • the portion used for the drying step is a portion for evaporating the organic solvent, and it is preferable to set the temperatures at the insertion portion to the discharge portion at about 35 ° C and about 95 ° C.
  • the composite magnetic sheet manufacturing apparatus 4 includes a PET roll 41, a feed roll 40, and a roller for pulling out the PET film 41 from the feed roll 40 and changing the direction substantially at a right angle. 42 and a structure surrounding the PET film 41 that is advancing by the rotation of the roller 42, a drying unit 43 that can be adjusted to 150 ° C, and a semi-cured composite magnetic sheet discharged from the drying unit 43 1 Roller 44 for moving the attached PET film 41a at a substantially right angle, winding roller 45 for winding PET film 41a traveling by roller 44, and roller 42 and dryer 43
  • the coater head 46 is equipped. [0042]
  • the coater head 46 has a container shape into which the slurry 31 prepared in advance in the container 30 can be charged.
  • the coater head 46 has a blade 47, and a gap 48 is formed between the blade 47 and the bottom of the coater head 46.
  • the slurry 31 flows out from the gear 48 onto the PET film 41.
  • the gap 48 can be adjusted in the range of 30 to 500 ⁇ m by driving the blade 47.
  • FIG. 3 is a flow chart showing the manufacturing process of the composite magnetic sheet 1 according to the embodiment of the present invention.
  • the metal magnetic powder 10 and the resin 20 used in the composite magnetic sheet 1 are mixed with an organic solvent to prepare a slurry 31 (step S101).
  • a powder mainly composed of iron and silicon is used as the metal-based magnetic powder 10
  • bisphenol A type polymer epoxy resin, bisphenol glycidyl ether and tetraphenol ethane are used as the resin 20.
  • a mixture of a type epoxy resin and a bisphenol A type novolak resin can be suitably used.
  • the weight ratio of the metal-based magnetic powder 10 and the resin 20 is preferably larger than 2 when the metal-based magnetic powder 10 is 100.
  • the strength, the dispersibility of the metal-based magnetic powder 10 and the dispersibility of the metal-based magnetic powder 10 can be further increased.
  • the organic solvent any combination of toluene, ethyl alcohol and methyl ethyl ketone, or these three kinds of simple substances can be preferably used.
  • the slurry 31 as a plasticizer, it is also possible to add jetyl phthalate, which is a kind of solvent having a high boiling point.
  • the viscosity of the slurry 31 is preferably adjusted to 1000 to 5000 mPa's. When the viscosity is adjusted within the strong range, the dispersibility and orientation of the metal-based magnetic powder 10 can be further enhanced.
  • Step S102 the slurry 31 placed in the container 30 is placed in the coater head 46, and the slurry 48 is applied onto the PET film 41 with a gap 48 force to form a coating film on the PET film 41.
  • the PET film 41 is heated by a heating means (not shown) so as to be about 50 ° C.
  • the PET film 41 on which the coating film is formed moves into the drying section 43, and the coating film (after drying, becomes the composite magnetic sheet 1) is heated to 50 ° C and 80 ° C. Dries while drying (step S103).
  • the PET film 4 la with the composite magnetic sheet 1 is wound around the winding roller 45 while being fed to the roller 44.
  • the PET film 41a with the composite magnetic sheet 1 wound around the take-up roller 45 is cut to an appropriate length and size and peeled from the PET film 41a (step S104).
  • the cut PET film 41a with the composite magnetic sheet 1 may be dried under suitable drying conditions to further volatilize the organic solvent.
  • a plurality of peeled composite magnetic sheets 1 are put in a stacked state, and the temperature is 60 to 80 in the mold.
  • thermocompression bonding is performed at a pressure of 200 to 2000 kgZcm 2 (step S105).
  • the composite magnetic sheet 1 is cut into an appropriate shape and then subjected to a heat curing treatment under a curing condition of 200 ° C. for 2 hours (step S106).
  • the doctor blade method is employed as the coating method, but other methods such as a comma coater method can be suitably used.
  • the above-mentioned coating method is only an example, and other coating methods other than the above may be adopted.
  • step S102 Regard the situation in which the metallic magnetic powder 10 is dispersed and oriented in the coating film during the coating film forming process (step S102) force shown in FIG. 3 and the sheet drying process (step S103), This will be explained based on Fig. 4.
  • the metal-based magnetic powder 10 is dispersed in the slurry 31 in a state of being directed in a random direction. However, when the slurry 31 passes through the blade 47, it receives a strong shearing force in the vertical direction, so that the flow direction becomes parallel to the surface direction of the PET film 41. At the same time, as shown in FIG. 4 (4B), the metal-based magnetic powder 10 also has a high aspect ratio, a strong strength in the vertical direction of the blade 47, and a shearing force. It almost falls in the direction. Thereafter, as shown in FIG.
  • the metal-based magnetic powder 10 is further tilted in the process until drying, and the orientation is completed (the metal-based magnetic powder 10 is formed as shown in FIG. 4C), the dotted state force also tends to be in the state of the solid line indicated by arrow A.) 0
  • the metallic magnetic powder 10 in the vicinity of the surface of the slurry 31 has settled to the vicinity of the bottom of the PET film 41. Although the ratio is low, the metal-based magnetic powder 10 is already deposited on the dispersion * orientation. From the sedimentation process to the deposition process, most of the metallic magnetic powder 10 is the length direction of the PET film 41. Oriented to
  • the semi-cured composite magnetic sheet 1 that has undergone the drying process has a characteristic that it is easy to be integrated when it is further laminated so that the sheet is not deformed by heat or adhered by melting. is doing. For this reason, the composite magnetic sheet 1 in a semi-cured state may be covered with another PET film or the like without being peeled from the PET film 41 and stored. In this way, drying of the semi-cured composite magnetic sheet 1 can be prevented, which is advantageous for maintaining adhesiveness.
  • the slurry was applied onto a PET film by a doctor blade method.
  • the gap of the coater head that discharges slurry is in the range of 300 to 500 ⁇ m.
  • the PET film being coated was set to 50 ° C.
  • the composite magnetic sheet was dried by heating to 50 ° C. to 80 ° C. After drying, the composite magnetic sheet was peeled from the PET film and collected. As a result, a semi-cured composite magnetic sheet produced under each condition was obtained.
  • the appearance of the obtained semi-cured composite magnetic sheet was visually examined.
  • the orientation of the metallic magnetic powder and the voids of the composite magnetic sheet were examined using an electron microscope.
  • the flexibility of the composite magnetic sheet was also examined by bending the composite magnetic sheet.
  • the following cache treatment was performed. First, the obtained composite magnetic sheet was cut into a square shape with a side of about 2.5 mm and stacked in a plurality. This was loaded into a mold, under the proper conditions according to ⁇ amount of each sheet, applying a temperature 60 ° C ⁇ 80 ° C, pressure was subjected to thermocompression bonding at 200kgZcm 2 ⁇ 2000kgZcm 2.
  • the obtained sample was cut into a toroidal shape and heat-cured under a curing condition of 200 ° C. X 2 hours. Winding was applied to the heat-cured sheet to create an inductor, and the magnetic permeability was measured.
  • the above-mentioned partial piece was cut out and subjected to thermal analysis to obtain Tg.
  • the sheet strength is 2 mm x 2 mm x 20 mm, and a composite magnetic sheet square test piece is prepared, and a three-point bending test is performed in which the load is applied to the center after fixing both ends. It was evaluated from the viewpoint of whether or not to do so.
  • Table 1 shows the results of the characteristics evaluation of the composite magnetic sheet.
  • each of the composite magnetic sheets produced under the conditions of Examples 1 to 5 had a Tg of 100 ° C or higher and a magnetic permeability of 10 or higher.
  • all of the sheets obtained good characteristic results with less voids in the sheets having higher strength.
  • metal-based magnetic powder was agglomerated, whereas in each composite magnetic sheet obtained in Examples 2 to 5, metal-based magnetic powder was used. It was a good sheet with almost no aggregation.
  • high orientation of the metallic magnetic powder was observed, whereas in the composite magnetic sheet produced under the conditions of Examples 1 to 2, The orientation was somewhat low. Such a result Therefore, in order to produce a composite magnetic sheet, it is desirable to increase the amount of grease more than 2% by weight.
  • Example B a metal-based magnetic powder (sample B) mainly composed of iron-silicon, having a major axis average particle size (L) of 35. O / zm and an aspect ratio (R) of 15.
  • L major axis average particle size
  • R aspect ratio
  • Tables 2 and 3 show the results of the characteristic evaluation of each composite magnetic sheet obtained under the conditions of Examples 6 to 15.
  • the composite magnetic sheets produced under the conditions of Examples 6 to 15 each had a Tg of 90 ° C or higher and a magnetic permeability of 10 or higher.
  • the composite magnetic sheets prepared under the conditions of Examples 7 to 10 were particularly excellent in sheet appearance, low porosity, high orientation, and high strength of the sheet.
  • the composite magnetic sheet produced under the conditions of Examples 6 and 11 had relatively large agglomeration and voids in the metal-based magnetic powder, and the sheet strength was slightly low. This is thought to be due to the fact that the total amount of greaves was less than 2% by weight. From these results, in order to produce a composite magnetic sheet, as in Examples 1 to 5, it is considered that the amount of greaves should be greater than 2% by weight.
  • Example s Example Example Example Example Powder Length 3 ⁇ 4 Average
  • Example Example, Example IV Example Example Powder Length ⁇ Average Grain ⁇
  • Example 16 a metal-based magnetic powder (sample C) containing iron-silicon as the main component, the major axis average particle size (L) of 20. O / zm, and the aspect ratio (R) of 20. ) was used.
  • the resin composition (Ea, Eb, Ec, Ed), organic solvent (St, Sa, Sm), and a high-boiling point solvent as a plasticizer were mixed with stirring. The manufacturing conditions are as described above. Same as Examples 1-5.
  • Table 4 shows the results of the characteristic evaluation of each composite magnetic sheet obtained under the conditions of Examples 16 to 20.
  • the composite magnetic sheets produced under the conditions of Examples 16 to 20 each had a Tg of 100 ° C or higher and a magnetic permeability of 10 or higher.
  • the composite magnetic sheets produced under the conditions of Examples 17 to 19 were particularly excellent in sheet appearance, low porosity, high orientation, and high strength of the sheet.
  • the composite magnetic sheet produced under the conditions of Example 16 has a relatively low total fat content of 2% by weight, so there is relatively much aggregation and voids in the metallic magnetic powder, and the sheet strength is slightly low. I helped.
  • Example 6 Smiley j 7
  • Example 8 Example 1 9 Odor example 2 0 Powder Long axis average ⁇ ( ⁇ 2 0. 0 2 0. 0 2 0. 0 2 2 0. 0 ratio: R 2 0 2 0 2 0 2 0 2 0 2 0 Whole powder holder 1 0 0 0 0 0 0 0 0 0 0 0 Resin E a 2 2 2
  • Example 21 a metal-based magnetic powder (sample D) having iron-silicon as a main component, a major axis average particle size (L) of 80.0 m, and an aspect ratio (R) of 20.
  • Example D a metal-based magnetic powder having iron-silicon as a main component, a major axis average particle size (L) of 80.0 m, and an aspect ratio (R) of 20.
  • the resin composition (Ea, Eb, Ec, Ed)
  • the high boiling point solvent as a plasticizer were mixed with stirring.
  • the manufacturing conditions are as described above. Same as Examples 1-5.
  • Table 5 shows the results of the characteristic evaluation of each composite magnetic sheet obtained under the conditions of Examples 21 to 24.
  • the composite magnetic sheets produced under the conditions of Examples 21 to 24 all had a Tg of 100 ° C or higher and a magnetic permeability of 10 or higher.
  • the composite magnetic sheets prepared under the conditions of Examples 22 to 24 were particularly excellent in sheet appearance, low porosity, high orientation, and high strength of the sheet.
  • the composite magnetic sheet produced under the conditions of Example 21 had some voids due to agglomeration of the metal-based magnetic powder because the total amount of grease was as low as 2% by weight.
  • a metal-based magnetic powder (Sample E) containing iron silicon as the main component, the major axis average particle size (L) is 3 m, and the aspect ratio (R) is 5.
  • the resin composition (Ea, Eb, Ec, Ed), an organic solvent (St, Sa, Sm), and a high boiling point solvent as a plasticizer were mixed with stirring.
  • the manufacturing conditions are the same as in Examples 1 to 5 above. It is one.
  • Table 6 shows the results of the characteristic evaluation of each composite magnetic sheet obtained under the conditions of Comparative Examples 1 to 4.
  • the composite magnetic sheets obtained under the conditions of Comparative Examples 1 to 4 each had a Tg of 100 ° C or higher.
  • the magnetic permeability () was 5 or less for all sheets.
  • looking at the appearance of each sheet the streaks were almost absent and the orientation of the metallic magnetic powder was weak. The reason why there is almost no streak is that the metal-based magnetic powder was able to pass through the gap smoothly because the aspect ratio of the metal-based magnetic powder was small.
  • the orientation is weak and the magnetic permeability is low because the metal magnetic powder has a low filling factor because it is difficult to orient parallel to the surface of the sheet with a small aspect ratio of the metal magnetic powder. It is disregarded.
  • a metal-based magnetic powder (Sample F) containing iron silicon as the main component, the major axis average particle size (L) is 65.O / zm, and the aspect ratio (R) is 25.
  • the resin composition (Ea, Eb, Ec, Ed), the organic solvent (St, Sa, Sm), and a high boiling point solvent as a plasticizer were mixed with stirring.
  • the manufacturing conditions are the above-described Examples 1 to Same as 5.
  • Table 7 shows the results of the characteristic evaluation of each composite magnetic sheet obtained under the conditions of Comparative Examples 5-9.
  • the composite magnetic sheets obtained under the conditions of Comparative Examples 5 to 9 had a Tg of 100 ° C or higher and a magnetic permeability of 10 or higher).
  • the stripes were conspicuous and the orientation of the metallic magnetic powder was somewhat weak.
  • the reason why the streaks are conspicuous is considered to be that the metal magnetic powder having a high aspect ratio of 25 in the aspect ratio was used, and the metal-based magnetic powder could not pass through the gap smoothly and was attracted to the blade. .
  • the streak is not preferable because it leads to a decrease in strength of the composite magnetic sheet and a variation in the thickness dimension.
  • Comparative Example 5 when the total amount of the resin is small, the strength or voids of the composite magnetic sheet increases, and it becomes a component that the characteristics become lower.
  • Example G a metal-based magnetic powder (Sample G) containing iron silicon as a main component, having a major axis average particle size (L) of 100 / zm and an aspect ratio (R) of 25 was used. Based on the combinations shown in Table 8, the resin composition (Ea Eb Ec Ed), an organic solvent (St Sa Sm), and a high boiling point solvent as a plasticizer were stirred and mixed. The manufacturing conditions are as described in Example 1 above. Same as ⁇ 5.
  • Table 8 shows the results of the characteristic evaluation of each composite magnetic sheet obtained under the conditions of Comparative Examples 10-13.
  • the composite magnetic sheets obtained under the conditions of Comparative Examples 10 to 13 all had a Tg of 100 ° C or higher. Further, the orientation of the metal-based magnetic powder was high. However, the appearance of each sheet was as if there were many streaks, the PET film was exposed without being coated, and the sheet portion was peeled off. For this reason, the permeability) was not measurable. Power! In addition, since the coating state was as described above, the strength of the sheet was extremely fragile. The reason why such a sheet is formed is thought to be that the long axis average diameter of the metal-based magnetic powder was too large, and it was a drag force during coating.
  • the present invention can be used in industries that manufacture or use composite magnetic sheets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

 高強度化および薄型化を達成しつつ、磁気特性に優れた複合磁性シートおよびその製造方法を提供するため、少なくとも樹脂20と金属系磁性粉体10とを含む複合磁性シート1であって、金属系磁性粉体10は、長軸と短軸とを有する扁平形状の粉体を含み、当該扁平形状の粉体の長軸径が5μm以上80μm以下の範囲であり、長軸および短軸との寸法の比によって定義されるアスペクト比が5以上20以下の範囲であり、金属系磁性粉体10は、その長軸を複合磁性シート1の面に沿って平行に配向させて分散している複合磁性シート1とする。

Description

複合磁性シートおよびその製造方法
技術分野
[0001] 本発明は、コイルの磁性体に好適な複合磁性シートおよびその製造方法に関する 背景技術
[0002] 近年、電子機器の薄型化、小型化および高密度実装化の動向に伴い、電子機器 に搭載されるコイル部品等の電子部品への小型化、低背化または薄型化の要求は、 急速に高まっている。また、電源回路用途に用いられるコイル部品に対しては、印加 電流の大電流対応等の電気特性に係る高性能化も要求されている。
[0003] 従来から、コイル部品に用いられる磁性部材は、例えば、次のような方法で製造さ れている。フェライト系磁性粉体にバインダーやアクリル系分散剤を添加し、ボールミ ルゃビーズミル等で粉砕混合して均一に分散した後、仮焼する。得られた仮焼粉体 を粉砕して造粒した後、プレス成形にて所定形状に成形する (例えば、特許文献 1を 参照)。
[0004] また、次のような製造方法も採用されている。フェライト磁性体粉体を榭脂および溶 剤等と混練してペーストを作製し、厚さ 10〜: LOO mの薄いシート状に成形した磁性 体グリーンシートを用いて複数積層する。その磁性体グリーンシートの積層体は、コィ ル部品の磁性部材として、プレス機を用いて圧着し、焼成炉にて一体的に焼成処理 される。その後、焼結体の側端面に外部電極を形成し、積層チップコイルを製造する (例えば、特許文献 2を参照)。
[0005] さらに、金属系磁性粉体に榭脂をコーティングまたは混合し、高圧プレスによって金 属圧粉磁心を製造する方法も知られて!/、る。
特許文献 1 :特開 2005— 097048号公報(段落番号 0043、 0049, 01) 特許文献 2 :特開平 6— 333743号公報 (段落番号 0010、図 1)
特許文献 3 :特開平 5— 335130号公報 (段落番号 0007)
発明の開示 発明が解決しょうとする課題
[0006] しかしながら、上記従来の製造方法およびその製造方法により製造された磁性部 材には、次のような問題がある。特許文献 1に開示されるフェライト系焼結体は、安定 かつ低コストで製造ができるという利点がある一方、フェライト系焼結体を小型化また は薄型化した際、フ ライト焼結体の強度低下が顕著になる。また、体積または断面 積を減少することによって、フェライト系焼結体の磁気特性も低下する傾向にある。こ のため、低背型のコイル部品としての実用性に欠けるという問題がある。
[0007] また、特許文献 2に開示される磁性体グリーンシートの場合には、低背型の積層コ ィル部品として適している一方、大電流対応、すなわち磁気飽和に関わる磁気特性 を高めることが難しぐ主に、ノイズフィルタ等の信号回路部品として用いられている。 また、製造工程が煩雑であるため、製造コストが高いという問題もある。
[0008] また、特許文献 3に開示される金属圧粉磁心の場合には、磁気特性の向上を図り 得るが、小型化または低背化を図ると、強度が低下するという問題がある。特に、プレ ス成形を用いると、その工程で磁性粉体に大きな歪みが生じ、強度が低下するおそ れがある。
[0009] 本発明は、上記のような問題を解決するためになされたものであって、その目的と するところは、薄型のコイル部品等の磁性部材として採用した場合であっても、高強 度化を達成しつつ、磁気特性に優れた複合磁性シートおよびその製造方法を提供 することにある。
課題を解決するための手段
[0010] 上記目的を達成するため、本発明は、少なくとも榭脂と金属系磁性粉体とを含む複 合磁性シートであって、金属系磁性粉体は、長軸と短軸とを有する扁平形状の粉体 を含み、当該扁平形状の粉体の長軸径が 5 m以上 80 m以下の範囲であり、当 該扁平形状の粉体の長軸および短軸との寸法の比によって定義されるアスペクト比 力 以上 20以下の範囲であり、金属系磁性粉体は、その長軸を複合磁性シートの面 に沿って平行に配向させて、分散している複合磁性シートとしている。
[0011] このような構成の複合磁性シートとすると、フェライト系磁性粉体よりも良好な最大飽 和磁束密度 (Bm)が期待でき、また、圧粉磁芯よりも良好な透磁率( μ )が期待できる 。また、榭脂中に金属系磁性粉体を分散させた構成であるため、低背化を図っても 十分な強度を保持できる。
[0012] 金属系磁性粉体の長軸径を 5 μ m以上とすることにより、金属系磁性粉体の形状を 扁平にしゃすくなる。そのため、金属系磁性粉体を一方向に配向させやすくなり、複 合磁性シートの磁気特性を高めることができる。また、金属系磁性粉体の長軸径を 8 0 m以下とすることにより、成形しやすくなる。特に、ドクターブレード法を採用する 際に、塗工時にブレードを通りやすくなる。
[0013] 金属系磁性粉体のアスペクト比を 5以上とすると、金属系磁性粉体を榭脂中の一方 向に配向させやすくなる。また、アスペクト比を 20以下とすると、シートに筋が入りにく くなると共に、金属系磁性粉体同士が榭脂中でブリッジを構成しに《なり、一方向に 配向し、かつ充填率の高い構造を作りやすくなる。すなわち、金属系磁性粉体のァス ぺクト比を 5以上 20以下とすることにより、シートに筋が入りにくぐ金属系磁性粉体を 一方向により配向させた充填性の高い構造の複合磁性シートを実現しやすくなる。こ の結果、複合磁性シートの強度および磁気特性がより向上する。
[0014] また、別の本発明は、シートの厚みが 10 μ m以上 250 μ m以下の範囲とした複合 磁性シートとしている。
[0015] また、別の本発明は、少なくとも榭脂と金属系磁性粉体とを含む複合磁性シートの 製造方法であって、長軸と短軸とを有する扁平形状の粉体を含み、当該扁平形状の 粉体の長軸径が 5 μ m以上 80 μ m以下の範囲であり、上記長軸および上記短軸と の寸法の比によって定義されるアスペクト比が 5以上 20以下の範囲である金属系磁 性粉体と、榭脂と、有機溶剤とを混合してスラリーを作製する工程と、支持体上にスラ リーを塗工して塗膜を形成する工程と、塗膜を乾燥させる工程とを含む複合磁性シ ートの製造方法としている。
[0016] このような製法を採用することにより、薄型のコイル部品等の磁性部材として採用し た場合であっても高強度を有し、磁気特性に優れた複合磁性シートを容易に製造で きる。また、スラリーを支持体に塗工した後、扁平状の金属系磁性粉体はスラリー中 にて長軸方向を下に向けて自然沈降し、着床して複合磁性シートの面に略平行に配 向するので、磁場を印加して強制的に金属系磁性粉体を配向させる方法に比べて、 シート中に歪みが発生しに《なる。このため、複合磁性シートに割れ等が生じにくい 。また、磁場印加装置を採用する必要がないために、工程の簡略化、コストを低減で きる。さらに、本発明の製造方法は、ドクターブレードを使用する場合においてスラリ 一の粘度を調整することにより、複合磁性シートの厚さを容易に調節できる。したがつ て、製造工程を簡便化でき、かつ、低コストにて効率よぐ所望の厚さを有する薄型の 複合磁性シートを製造することができる。
[0017] また、別の本発明は、スラリーを作製する際に用いられる榭脂を、エポキシ系榭脂と した複合磁性シートの製造方法として 、る。
[0018] また、別の本発明は、塗膜を乾燥させる工程を経た後の厚みが 10 m以上 250 m以下の範囲である複合磁性シートの製造方法としている。
[0019] 本発明に係る複合磁性シートに含まれる金属系磁性粉体としては、例えば、鉄— 珪素、鉄、アルミニウム、白金、亜鉛、チタン、クロム、アモルファス合金、鉄アルミ珪 素合金、鉄ニッケル合金、鉄基ナノ結晶体等を用いることができる。ただし、上述の金 属系磁性粉体は一例に過ぎず、他の金属系磁性粉体を採用しても良い。なお、金属 系磁性粉体は、一種類の粉体でも、二種類以上の粉体の混合物でも良い。
[0020] 本発明に係る複合磁性シートの母材となる樹脂には、エポキシ系榭脂を用いるの が好ましい。エポキシ系榭脂を用いる場合、例えば、ビスフエノール A型高分子ェポ キシ榭脂と多官能エポキシ榭脂とを主成分とし、これに特殊骨格を持つエポキシ榭 脂を添加して、硬化剤にビスフエノール A型ノボラック榭脂を用いるのが好ましい。特 に、ビスフエノール A型高分子エポキシ榭脂と多官能エポキシ榭脂との重量比として は、 2 : 1程度とするのが好ましい。また、特殊骨格を持つエポキシ榭脂は、上記主成 分に対して 0. 25〜1、より好ましくは 0. 3〜0. 5とするのが良い。特殊骨格を持つェ ポキシ榭脂を力かる範囲の添加量とすることにより、 Tgが高ぐかつ強靭な複合磁性 シートを得ることができる。硬化剤は、好ましくは、上記主成分と特殊骨格を持つェポ キシ榭脂と硬化剤の総量に対して 5〜30重量%の割合で添加する。本発明に用いら れる硬化剤としては、ビスフエノール A型ノボラック榭脂以外にも、例えば、フエノール ノボラック榭脂、ポリアミド榭脂、無水マレイン酸、無水フタル酸等の酸無水物系硬化 剤、ジシアンジアミド、イミダゾール等の潜在性ァミン系硬ィ匕剤、その他、ジアミノジフ ェ-ルメタン、ジアミノジフエ-ルスルホン等の芳香族アミン類を用いることができる。 これらの硬化剤は、単独で使用しても、 2種以上併用してもよい。
[0021] なお、エポキシ榭脂の主成分に、ビスフエノール AD型エポキシ榭脂、ビスフエノー ル F型エポキシ榭脂、ビスフエノール S型エポキシ榭脂、ナフタレン型エポキシ榭脂、 ビフエ-ル型エポキシ榭脂等の他の種類のものを採用しても良い。ただし、使用にあ たって成形性、耐湿耐熱性、密着性および絶縁性を兼備しているエポキシ系榭脂を 採用するのが好ましい。特に、高い Tgを示し、 90°Cから 120°Cまでの Tg範囲のェポ キシ系榭脂を採用する方がより好ましい。
[0022] 本発明に係る複合磁性シートの製造工程にお!/ヽて用いられる有機溶剤としては、 例えば、トルエン、メチルブチルケトン、エタノール、キシレン、メチルェチルケトン、メ チルイソブチルケトン等、あるいはこれらの内の一種以上の組み合わせを用いること ができる。
[0023] 本発明に係る複合磁性シートの製造方法に用いられる支持体には、複合磁性シー トより強靱で、し力も複合磁性シートに適度な張りを与えることができるようなフィルム 材料を用いるのが好ましい。例えば、ポリエチレンテレフタレート(PET)、ポリエチレ ン、ポリプロピレン、ポリイミド等を支持体に用いるのがより好ましぐその中でも、特に 、 PETがより好ましい。その他、支持体として離型布等を用いても良い。
[0024] 本発明でいう「配向」は、金属系磁性粉体が複合磁性シートの面に完全に平行とな つている状態のみならず、金属系磁性粉体が複合磁性シートの厚さ方向に比べて、 シートの面に沿う方向に分散して 、る割合が多 、状態を 、うものとする。したがって、 金属系磁性粉体の一部に、複合磁性シートの厚さ方向に沿っているものが存在して いても良い。
発明の効果
[0025] 本発明によれば、成形性の向上および薄型化を達成しつつ、磁気特性に優れた複 合磁性シートを提供することができる。
図面の簡単な説明
[0026] [図 1]図 1は、本発明の実施の形態に係る複合磁性シートの断面を模式的に示す図 である。 [図 2]図 2は、本発明の実施の形態に係る複合磁性シートの製造の工程の一部に用 V、られる複合磁性シート製造装置の概略構成図である。
[図 3]図 3は、本発明の実施の形態に係る複合磁性シートの製造工程を示すフローチ ヤートである。
[図 4]図 4は、図 3に示す塗膜形成工程 (ステップ S102)からシートの乾燥工程 (ステ ップ S103)の間で、金属系磁性粉体が塗膜中で分散'配向する状況を模式的に示 す図である。
符号の説明
[0027] 1 複合磁性シート
10 金属系磁性粉体
20 榭脂
31 スラリー
41 PETフィルム(支持体)
発明を実施するための最良の形態
[0028] 以下に、本発明に係る複合磁性シートおよびその製造方法の好適な実施の形態に ついて、図面を参照しながら詳しく説明する。ただし、本発明は、以下に説明する好 適な実施の形態に何ら限定されるものではない。
[0029] 図 1は、本発明の実施の形態に係る複合磁性シート 1の断面を模式的に示す図で ある。図 1において、長い側の方向はシートの長さ方向を、短い側の方向はシートの 厚さ方向を、それぞれ示す。
[0030] 図 1に示すように、複合磁性シート 1は、金属系磁性粉体 10が榭脂 20中に分散し た構造を有するシートである。金属系磁性粉体 10の一部または全部の形状は、長軸 と短軸を持つ扁平形状である。扁平形状の金属系磁性粉体 10は、複合磁性シート 1 の長さ方向に、その長軸を向けるように配向して分散して 、る。
[0031] この実施の形態で用いられる金属系磁性粉体 10は、鉄—珪素を主成分とする粉 体である。また、金属系磁性粉体 10の長軸の大きさ(長軸径)は、 5 μ m以上 80 μ m 以下の範囲であり、好ましくは 10 μ m以上 50 μ m以下の範囲である。長軸径が 5 μ m以上の場合、金属系磁性粉体 10の磁気特性が良好であり、長軸径が 80 m以下 の場合、成形しやすくなる。特に、ドクターブレード法による塗工を行う場合、長軸径 力 ^O /z m以下の方力 ブレードを通りやすくなる。また、長軸及び短軸との寸法の比 によって定義されるアスペクト比 (長軸 Z短軸)は、好ましくは 5以上 20以下の範囲で ある。金属系磁性粉体 10のアスペクト比を 5以上とすると、金属系磁性粉体 10を一 方向に配向させやすくなる。また、アスペクト比を 20以下とすると、シートに筋が入り にくくなると共に、金属系磁性粉体 10同士が榭脂 20中でブリッジを構成しにくくなり、 一方向に配向し、かつ充填率の高い構造を作りやすくなる。金属系磁性粉体 10を分 散させた複合磁性シート 1は、いわゆる繊維強化材のような独特の可撓性を発現する 。したがって、複合磁性シート 1は、リジットな材料 (焼結タイプのコア材あるいは可撓 性のな 、シート材)では得られな 、たわみ強度が発現する。
[0032] 複合磁性シート 1の厚みは、好ましくは、 10 μ m以上 250 μ m以下の範囲であり、よ り好ましくは、 100 μ m以上 200 μ m以下の範囲である。厚みが 10 μ m以上の場合 には、変形やひび割れの比率が低くなる。また、厚みが 250 /z m以下の場合には、 金属系磁性粉体 10と榭脂 20とが分離せずに、かつ低背型コイル部品の磁性部材と して好適な厚さとなる。
[0033] この実施の形態で好適に用いられる榭脂 20は、ビスフエノール A型高分子ェポキ シ榭脂と多官能エポキシ榭脂とを主成分とし、これに特殊骨格を持つエポキシ榭脂 を添カロして、硬ィ匕剤にビスフエノール A型ノボラック榭脂を用いたものである。ビスフエ ノール A型高分子エポキシ樹脂と多官能エポキシ樹脂との重量比は、好ましくは 2 : 1 である。また、特殊骨格を持つエポキシ榭脂は、上記主成分に対して 0. 25〜1、より 好ましくは 0. 3〜0. 5とするのが良い。硬ィ匕剤の添カ卩量は、好ましくは、上記主成分 と特殊骨格を持つエポキシ榭脂と硬化剤の総量に対して 5〜30重量%となる量であ る。
[0034] 多官能エポキシ榭脂としては、主に、ェピビス型、グリシジルエーテル型、ジフエ- ルエーテル型、脂環族型のものが挙げられる。ェピビス型の場合、例えば、ビスフヱノ ール型のグリシジルエーテルが好ましい。また、グリシジルエーテル型の場合、例え フロログリシンのジグリシジルエーテルが好ましい。また、ジフエ-ルエーテル型の場 合、例えば、 4, 4,ージ(1, 2 エポキシェチル)ジフエ-ルエーテルが好ましい。ま た、脂環族型の場合、例えば、 3, 4 エポキシシクロへキシメチルー (3, 4エポキシ) シクロへキサンカルボキシレート、ビス一(2, 3 エポキシシクロペンチル)エーテル、 2—(3, 4 エポキシ)シクロへキサン 5, 5'スピロ(3, 4 エポキシ)シクロへキサン —m—ジォキサン、ビュルシクロヘサンジオキサイド、 2, 2'—ビス一(3, 4 ェポキ シシクロへキシル)プロパン、ビス一(3, 4—エポキシ一 6—メチルシクロへキシル)ァ ジペートが好ましい。さらに、その他の特殊な多官能エポキシ榭脂として、例えば、 N , N,一 m—フエ二レンビス一(4, 5 エポキシ一 1, 2,一シクロへキサン)ジカルボキ シイミド等の多官能性エポキシ榭脂、さらに、ノ ラァミノフエノールのトリグリシジルェ 一テル、ポリアリルグリシジルエーテル、テトラグリシドキシテトラフエニルェタン、 1, 3 , 5 トリ—(1, 2 エポキシェチル)ベンゼン等の多官能性エポキシ榭脂を用いるこ ともできる。これらの内、柔軟性、加工性、打ち抜き性、保存安定性、弾性率の維持 等の性能バランス、原料としての入手性、コストの面を考慮すると、ェピビス型のェポ キシ榭脂を用いるのが好まし 、。
[0035] 特殊骨格を持つエポキシ榭脂としては、例えばビフエ-ル型、ビスフエノール S型、 ナフタレン型、シクロペンタジェン型、ァラルキル型、ハイドロキノン型、ノボラック型、 テトラフエ二ロールエタン型、トリスヒドロキシフエニルメタン型、ジシクロペンタジェンフ エノール型等を挙げることができる。多官能エポキシ榭脂としてェピビス型エポキシ榭 脂を用いた場合には、その特性を劣化させずに Tg値を向上でき、かつ安定性を高 めることから、テトラフエ-ロールエタン型のエポキシ榭脂を用いるのが好ましい。
[0036] 硬化剤としては、芳香族ァミン類または酸無水物またはビスフエノール A型ノボラッ ク榭脂の一種を用いることが可能であり、好ましくは、ビスフエノール A型ノボラック榭 脂が用いられる。ビスフエノール A型ノボラック榭脂を用いることにより、その水酸基( — OH)を利用した硬化システムを利用し、基本骨格の性能を劣化させないで、シー ト化の作業性を著しく向上させることができる。
[0037] 上記成分に加えて、硬化促進剤を用いることもできる。硬化促進剤としては、イミダ ゾールイ匕合物および Zまたはアミン系化合物を含有させるのが好まし 、。イミダゾー ル化合物として、例えば、イミダゾール、 2—メチルイミダゾール、 2—ェチルイミダゾ ール、 2, 4—ジメチルイミダゾール、 2—ェチルー 4ーメチルイミダゾール、 2—へプタ デシルイミダゾール、 2—ゥンデシルイミダゾ一ル等を用いることができる。また、ァミン 系化合物の場合、脂肪族ァミン類として、例えば、トリェチルァミン、トリエチレンテトラ ミン、ジエチレントリァミン、ジェチルァミノプロピルアミンを用いることができる。また、 環状アミン類として、例えば、 N—アミノエチルピペラジン、ビス (4—アミノー 3—メチ ルシクロへキシルメタン)、メンタンジァミン、メタキシリレンァミン、 3, 9—ビス(3—アミ ノプロピル)一 2, 4, 8, 10, —テトラオキサスピロ(5, 5)ゥンデカン等を用いることが できる。これらの内、作業性の向上 (特に、榭脂ペースト、シートの保存安定性の向上 )の観点から、硬化促進剤として、イミダゾ—ルイ匕合物を用いるのが好ましい。なお、 硬化促進剤を使用する場合、必ずしも一種類の使用に限定されるものではなぐ必 要に応じて二種類以上を併用してもよい。
[0038] 図 2は、本発明の実施の形態に係る複合磁性シート 1の製造の工程の一部に用い られる複合磁性シート製造装置 4の概略構成図である。
[0039] 複合磁性シート製造装置 4は、複合磁性シート 1の製造を開始する部位力 終了す る部位にかけて室温から 150°C前後の範囲で勾配をつけて温度分布を設定できる 能力を有する。 150°Cまで温度を設定できるようにしているのは、スラリー中の有機溶 剤の成分を蒸発させる必要からである。
[0040] 複合磁性シート製造装置 4は、全長 8mであり、約 6mの乾燥工程に供する部分を 有する。乾燥工程に供する部分は、有機溶剤を蒸発させる部分であり、挿入部から 排出部における各温度を、約 35°Cおよび約 95°Cに設定するのが好ましい。
[0041] 複合磁性シート製造装置 4は、 PETフィルム 41を卷 、た送り出しロール 40と、当該 送り出し口ール 40から PETフィルム 41を引き出して、略直角に方向を変えて進行さ せるためのローラ 42と、ローラ 42の回転によって進行する PETフィルム 41の周囲を 囲う構成を有し、 150°Cまで温度調整可能な乾燥部 43と、乾燥部 43から排出される 半硬化状態の複合磁性シート 1付きの PETフィルム 41aを略直角に方向を変えて進 行させるためのローラ 44と、ローラ 44により進行する PETフィルム 41aを巻き取る巻き 取りローラ 45と、ローラ 42と乾燥部 43との間に配置されるコーターヘッド 46と、を備 えている。 [0042] コーターヘッド 46は、容器 30内にて予め作製したスラリー 31を投入できる容器の 形状を有している。コーターヘッド 46は、ブレード 47を有しており、ブレード 47とコー ターヘッド 46の底部との間には、ギャップ 48が形成されている。スラリー 31は、ギヤッ プ 48から PETフィルム 41上に流れ出るようになつている。なお、ギャップ 48は、ブレ ード 47を動力すことにより、 30〜500 μ mの範囲で調整可能である。
[0043] 次に、本発明の実施の形態に係る複合磁性シート 1の製造手順について説明する
[0044] 図 3は、本発明の実施の形態に係る複合磁性シート 1の製造工程を示すフローチヤ ートである。
[0045] まず、複合磁性シート 1に用いられる金属系磁性粉体 10と榭脂 20を有機溶剤に混 合して、スラリー 31を作製する (ステップ S101)。この実施の形態では、金属系磁性粉 体 10として鉄一珪素を主成分とする粉体を、榭脂 20としてビスフエノール A型高分子 エポキシ榭脂とビスフエノール型のグリシジルエーテルとテトラフエ-ロールエタン型 のエポキシ榭脂とビスフエノール A型ノボラック樹脂の混合物を、好適に用いることが できる。金属系磁性粉体 10と榭脂 20との重量比率として、好ましくは、金属系磁性粉 体 10を 100としたときに榭脂 20を 2より大きくするのが良い。力かる比率とすると、強 度、金属系磁性粉体 10の分散性および金属系磁性粉体 10の分散性をより高めるこ とができる。有機溶剤には、トルエン、エチルアルコール、メチルェチルケトンの任意 の組み合わせあるいはこれら 3種の単体を、好適に用いることができる。スラリー 31中 に、可塑剤として、高沸点の溶剤の一種であるフタル酸ジェチルを添加することもで きる。また、スラリー 31の粘度は、 1000〜5000mPa' sに調整するのが好ましい。力 かる範囲の粘度に調整すると、金属系磁性粉体 10の分散性および配向性をより高 めることができる。
[0046] 次に、容器 30内に入れられたスラリー 31を、コーターヘッド 46に入れ、ギャップ 48 力も PETフィルム 41上に、スラリー 31を塗工し、 PETフィルム 41上に塗膜を形成す る(ステップ S102)。塗工の際、 PETフィルム 41は、約 50°Cになるように、不図示の 加温手段により加温される。続いて、塗膜を形成した PETフィルム 41は、乾燥部 43 内に移動し、塗膜 (乾燥後、複合磁性シート 1となる。)は、 50°C力も 80°Cまで加温さ れながら乾燥する (ステップ S 103)。続いて、複合磁性シート 1付きの PETフィルム 4 laは、ローラ 44に送られながら巻き取りローラ 45に巻き取られる。
[0047] 巻き取りローラ 45に巻き取られた複合磁性シート 1付きの PETフィルム 41aは、適 当な長さおよび大きさに切り取られ、 PETフィルム 41aから剥離される(ステップ S104 ) oなお、ステップ S104に先立ち、切り取られた複合磁性シート 1付きの PETフィルム 41aを、適当な乾燥条件にて乾燥して、有機溶剤のさらなる揮発を行うようにしても良 い。次に、剥離された複合磁性シート 1は、複数枚重ね合わせた状態とし、金型内に て、温度 60〜80。C、圧力 200〜2000KgZcm2にて熱圧着される(ステップ S105) 。熱圧着後の複合磁性シート 1は、適当な形状に切り取られた後、 200°C— 2時間の キュア一条件にて加熱硬化処理に付される (ステップ S106)。
[0048] また、この実施の形態では、塗工方法として、ドクターブレード法を採用して 、るが、 コンマコーター法等の他の方法を好適に用いることができる。ただし、上述の塗工方 法は一例に過ぎず、上記以外の他の塗工方法を採用しても良 、。
[0049] 次に、図 3に示す塗膜形成工程 (ステップ S102)力もシートの乾燥工程 (ステップ S 103)の間で、金属系磁性粉体 10が塗膜中で分散 ·配向する状況につき、図 4に基 づいて説明する。
[0050] スラリー 31を PETフィルム 41上に塗工した初期の状態 (4A)では、金属系磁性粉 体 10は、ランダムな方向を向いた状態でスラリー 31中に分散している。しかし、スラリ 一 31は、ブレード 47を通過する際に、上下方向に強いせん断力を受けることによつ て、流動方向が PETフィルム 41の面方向と平行となる。また、それと共に、図 4 (4B) に示すように、金属系磁性粉体 10も、また、その高アスペクト比とブレード 47の上下 方向の強!、せん断力に起因し、 PETフィルム 41の面方向にほぼ倒れた状態となる。 その後、図 4 (4C)に示すように、金属系磁性粉体 10は、乾燥までの過程において、 より一層倒れる状態となって、配向が完了する (金属系磁性粉体 10は、図 4 (4C)中 、点線の状態力も矢印 Aで示す実線の状態になる傾向がある。 ) 0なお、スラリー 31 の表面近傍にある金属系磁性粉体 10は、 PETフィルム 41の底近傍まで沈降してい く割合は低いが、既に金属系磁性粉体 10が分散 *配向した上に堆積する。その沈降 過程から堆積の過程で、金属系磁性粉体 10の多くは、 PETフィルム 41の長さ方向 に配向する。
[0051] 以上、本発明に係る複合磁性シートおよびその製造方法の各実施の形態について 説明したが、本発明に係る複合磁性シートおよびその製造方法は、上述の実施の形 態に限定されず、種々変形した形態にて実施可能である。
[0052] 例えば、乾燥工程 (ステップ S103)を経た段階の半硬化状態の複合磁性シート 1は 、熱によるシートの形くずれや溶融による付着がなぐさらに積層した際に一体化しや すいという特徴を有している。このため、半硬化状態の複合磁性シート 1を PETフィル ム 41から剥離せずに、さらに一面を別の PETフィルム等で覆い、保存するようにして も良い。このようにすれば、半硬化状態の複合磁性シート 1の乾燥を防ぐことができ、 接着性の保持等に有利となる。
実施例
[0053] 次に、本発明の複合磁性シートおよびその製造方法の実施例について、比較例と 共に説明する。ただし、本発明は、これらの実施例によって限定されるものではない。 以下の実施例において、各共通の実施方法については、重複する説明を省略する。
[0054] (実施例 1〜5)
A.複合磁性シートの製造手順
表 1に示すような配合にしたがって、ビスフエノール A型高分子エポキシ榭脂 (Ea)、 多官能エポキシ榭脂 (Eb)、特殊骨格を持つエポキシ榭脂 (Ec)およびビスフエノー ル A型ノボラック榭脂 (Ed)カゝらなるエポキシ榭脂組成物を、有機溶剤であるトルエン (St)、エチルアルコール(Sa)、メチルェチルケトン(Sm)と共に混合した。そこに、鉄 —珪素を主成分とし、長軸平均粒径 (L)が 5. O ^ m,長軸 (L)と短軸 (D)との比であ るァスぺ外比 (R)が 5である金属系磁性粉体 (サンプル を投入して攪拌した。さら に、可塑剤としての高沸点の溶剤であるフタル酸ジェチルを添加して、約 24時間、ポ リポット中で混合して、スラリーを得た。表 1中、全榭脂量 (%)、全溶剤量 (%)および 高沸点溶剤 (%)は、金属系磁性粉体を 100重量%としたときの各重量比率である。 かかる量(%)は、以後の表においても、同様の意味である。
[0055] 次に、ドクターブレード法により、上記スラリーを PETフィルム上に塗工した。スラリ 一を流し出すコーターヘッドのギャップは、表 1に示すように 300〜500 μ mの範囲 で設定した。塗工においては塗工中の PETフィルムが 50°Cになるようにした。その後 、 50°Cカゝら 80°Cまで加熱し、複合磁性シートを乾燥させた。乾燥後、 PETフィルムか ら複合磁性シートを剥離し、回収した。これにより、各条件にて製造した半硬化状態 の複合磁性シートが得られた。
[0056] B.複合磁性シートの特性評価
得られた半硬化状態の複合磁性シートの外観を目視で調べた。また、電子顕微鏡 を用いて、金属系磁性粉体の配向性および複合磁性シートの空隙を調べた。また、 複合磁性シートを折り曲げることによって、複合磁性シートの柔軟性も調べた。さらに 、複合磁性シートの特性を調べるため、 次のようなカ卩ェ処理を行った。まず、得られ た複合磁性シートを一辺約 2. 5mmの正方形状に裁断して、複数に重ねた。これを 金型に装填し、各シートの榭脂量による適正条件の下、印加温度 60°C〜80°C、圧 力は 200kgZcm2〜2000kgZcm2にて熱圧着を行った。得られた試料をトロイダル 状に切り出し、 200°C X 2時間のキュア一条件にて加熱硬化させた。加熱硬化後の シートに巻き線を施しインダクタを作成して、透磁率を測った。また、上述の一部小片 を切り出し、熱分析を行い、 Tgを求めた。シートの強度は、 2mm X 2mm X 20mmの 複合磁性シートの角試験片を用意し、両端を固定した上で中心部に荷重をかける 3 点曲げ試験を行 、、 1mmまでの押し込みの途中で破損するか否かと 、う観点で評 価した。 1mmの押し込みで破損しないものは、「良好」という評価とし、 1mmの押し込 みに至る前に破損したものは、その押し込みの程度に応じて、「脆い」、「やや脆い」 等の評価とした。複合磁性シートの特性評価の結果を表 1に示した。
[0057] 表 1に示すように、実施例 1〜5の各条件で作製した複合磁性シートは、いずれも、 100°C以上の Tgおよび 10以上の透磁率 )を有していた。さらに、いずれのシート も、強度が高ぐシート中の空隙も少なぐ良好な特性結果が得られた。ただし、実施 例 1で得られた複合磁性シートでは、金属系磁性粉体の凝集が見られたのに対して 、実施例 2〜5で得られた各複合磁性シートでは、金属系磁性粉体の凝集がほとんど なぐ良好なシートであった。また、実施例 3〜5の条件で作製した複合磁性シートで は、金属系磁性粉体の高い配向性が認められたのに対して、実施例 1〜2の条件で 作製した複合磁性シートでは、当該配向性はやや低い結果であった。このような結果 から、複合磁性シートを作製するためには、榭脂量を 2重量%より多くする方が望まし いと考えられる。
[0058] [表 1]
Figure imgf000016_0001
[0059] (実施例 6〜: 15)
A.複合磁性シートの製造手順 実施例 6〜15では、鉄—珪素を主成分とし、長軸平均粒径 (L)が 35. O /z mであり 、アスペクト比 (R)が 15である金属系磁性粉体 (サンプル B)を用いた。表 2に示す配 合に基づいて、榭脂組成物(Ea、 Eb、 Ec、 Ed)、有機溶剤(St、 Sa、 Sm)および可 塑剤としての高沸点の溶剤とともに攪拌して混合した。製造手順は、実施例 1〜5と 同一である。
[0060] B.複合磁性シートの特性評価
特性評価の方法は、実施例 1〜5と同じ方法である。表 2および表 3に、実施例 6〜 15の条件で得られた各複合磁性シートの特性評価の結果を示した。
[0061] 表 2および表 3に示すように、実施例 6〜15の各条件で作製した複合磁性シートは 、いずれも 90°C以上の Tgおよび 10以上の透磁率 )を有していた。また、実施例 7 〜10の条件で作製した複合磁性シートは、特に、シート外観、空隙率の低さ、高配 向性、シートの高強度性に優れていた。一方、実施例 6および 11の各条件で作製し た複合磁性シートは、比較的、金属系磁性粉体の凝集、空隙が多めであり、シート強 度も若干低力つた。これは、全榭脂量が 2重量%以下であったことに起因すると考え られる。このような結果から、複合磁性シートを作製するためには、実施例 1〜5と同 様、榭脂量を 2重量%よりも多くする方が望ましいと考えられる。
[0062] [表 2]
実施例 s 実施例 実施 実 例 実施例 粉体 長 ¾平均
アスペスト比: 1 1 全粉体 S (%) 1 1 1 ΰ 樹脂
1 1 1
1 d o
全樹腊量
m
4 全溶剤量 (%)
s沸点溶剤 高沸点溶剤
スラリー条件 粘度
塗胰条件 ブレードギャップ
評価結果 シート厚 (μ 1
シート外 やや 集 良好 良好 良好 空陣 やや多い 良好 良好 良好 良好 配向 良 良好 良好 良好 良 シー卜 ffi度 やや脆い 良好 良好 良好 良好
1
実施例 実施例, 実 例〗 実施例 実施例 粉体 長《平均粒^
アスペスト辻:
全粉体量
掏脂
全榭腊置
t
全 iS剤置
高沸点溶剤 高沸点溶剤
スラリー条件 粘度
塗 K条件 ブレードギャップ
評俩結果 シート W
シート外 H ^集 良好 良好 良好 良好 空琛 多い 良好 aw 良好 良好 ffi向 やや不良 良好 良好 良好 良好 シー卜強度 脆い やや腌ぃ 良好 やや瞧い やや桷ぃ
(実施例 16〜20)
A.複合磁性シートの製造手順
実施例 16〜20では、鉄-珪素を主成分とし、長軸平均粒径 (L)が 20. O /z mであ り、アスペクト比 (R)が 20である金属系磁性粉体 (サンプル C)を用いた。表 4に示す 配合に基づいて、樹脂組成物(Ea、 Eb、 Ec、 Ed)、有機溶剤(St、 Sa、 Sm)および 可塑剤としての高沸点の溶剤とともに攪拌して混合した。製造条件は、上述の実施 例 1〜5と同一である。
[0065] B.複合磁性シートの特性評価
特性評価の方法は、実施例 1〜5と同じ方法である。表 4に、実施例 16〜20の条件 で得られた各複合磁性シートの特性評価の結果を示した。
[0066] 表 4に示すように、実施例 16〜20の各条件で作製した複合磁性シートは、 、ずれ も 100°C以上の Tgおよび 10以上の透磁率 )を有していた。また、実施例 17〜19 の各条件で作製した複合磁性シートは、特に、シート外観、空隙率の低さ、高配向性 、シートの高強度性に優れていた。一方、実施例 16の条件で作製した複合磁性シー トは、全榭脂量が 2重量%と低いため、比較的、金属系磁性粉体の凝集、空隙が多 めであり、シート強度も若干低力つた。
[0067] [表 4]
実 例 6 笑腳 j 7 実施例 8 実施例 1 9 臭旃例 2 0 粉体 長軸平均拉 ίϊ ( μ 2 0 . 0 2 0. 0 2 0 . 0 2 2 0. 0 ト比; R 2 0 2 0 2 0 2 0 2 0 全粉体置 1 0 0 0 0 0 0 0 0 0 樹脂 E a 2 2 2
E b 1
E c . 5 . 5 . 5 1 . 5
E d 0. 8 0. 8 0. 8 0 . & 0 . 3 全樹脂量 {%) 2 4 5 7 0 溶剤 S t 2 2 2 2
S a 2 2 2 3
S 3 3 4 全溶剤量 (%) 2 2 2 2 2 2 2 6 3 0 点溶剤 沸点溶剤 (%} 6 6 6 6 6 条件 粘度 (m P a · s ) 2 8 0 0 0 0 8 0 0 2 8 0 0 3 0 0 0 塗 H条件 ブレードギャップ ( u m) 0 0 0 0 0 0 4 0 0 0 0 評価結果 シート厚 6 0 5 0 1 0 0 G 0 シート外 n やや凝集 良好 良好 良好 良好
良好 良 良好 良好 良好 配向 やや 良好 良好 良好 やや ¾ぃ シート¾度 やや脆い 良好 好 良好 良好 透 «军 ) 1 4 2 2 2 1 8 0
T g (。C) 1 0 1 0 1 0 1 0 0
(実施例 21〜24)
A.複合磁性シートの製造手順
実施例 21〜24では、鉄-珪素を主成分とし、長軸平均粒径 (L)が 80. 0 mであ り、アスペクト比 (R)が 20である金属系磁性粉体 (サンプル D)を用いた。表 5に示す 配合に基づ 、て、榭脂組成物 (Ea、 Eb、 Ec、 Ed)、有機溶剤(Stゝ Sa、 Sm)および 可塑剤としての高沸点の溶剤とともに攪拌して混合した。製造条件は、上述の実施 例 1〜5と同一である。
[0069] B.複合磁性シートの特性評価
特性評価の方法は、実施例 1〜5と同じ方法である。表 5に、実施例 21〜24の条件 で得られた各複合磁性シートの特性評価の結果を示した。
[0070] 表 5に示すように、実施例 21〜24の各条件で作製した複合磁性シートは、いずれ も 100°C以上の Tgおよび 10以上の透磁率 )を有していた。また、実施例 22〜24 の各条件で作製した複合磁性シートは、特に、シート外観、空隙率の低さ、高配向性 、シートの高強度性に優れていた。一方、実施例 21の条件で作製した複合磁性シー トは、全榭脂量が 2重量%と低いため、若干、金属系磁性粉体の凝集に起因して空 隙があった。
[0071] [表 5]
讓 実 実肺
粉体 長軸平均粒至
アスペスト比:
全粉体量
樹脂
全 量
全洛剞置
高 点溶剤 s沸点溶剤
スラリー条件
塗膜条件 プレードギャップ
評価結果 シート厚
シート外 18 良好 ft好 良好 良好 空昧 少々 なし なし なし 配向 良好 良好 良好 良好 ンー卜強度 良 良好 良好 良好
®¾率(
(比較例 1〜4)
A.複合磁性シートの製造手順
比較例 1〜4では、鉄 珪素を主成分とし、長軸平均粒径 (L)が 3 mであり、ァス ぺクト比 (R)が 5である金属系磁性粉体 (サンプル E)を用いた。表 6に示す配合に基 づいて、榭脂組成物(Ea、 Eb、 Ec、 Ed)、有機溶剤(St、 Sa、 Sm)および可塑剤とし ての高沸点の溶剤とともに攪拌して混合した。製造条件は、上述の実施例 1〜5と同 一である。
[0073] B.複合磁性シートの特性評価
特性評価の方法は、実施例 1〜5と同じ方法である。表 6に、比較例 1〜4の条件で 得られた各複合磁性シートの特性評価の結果を示した。
[0074] 表 6に示すように、比較例 1〜4の各条件で得られた複合磁性シートは、 、ずれも 1 00°C以上の Tgを有していた。し力し、透磁率( )は、いずれのシートも 5以下であつ た。また、各シートの外観を見ると、筋がほとんどなぐかつ金属系磁性粉体の配向性 は弱力つた。筋がほとんどないのは、金属系磁性粉体のアスペクト比が小さいため、 金属系磁性粉体がギャップをスムーズに通過できたためであると考えられる。また、 配向性が弱ぐ透磁率が低いのは、金属系磁性粉体のアスペクト比が小さぐシート の表面に平行に配向しにくいため、金属系磁性粉体の充填率が低くなつたためであ ると考免られる。
[0075] [表 6]
Figure imgf000025_0001
(比較例 5〜9)
A.複合磁性シートの製造手順
比較例 5〜9では、鉄 珪素を主成分とし、長軸平均粒径 (L)が 65. O /z mであり、 アスペクト比 (R)が 25である金属系磁性粉体 (サンプル F)を用いた。表 7に示す配合 に基づいて、樹脂組成物 (Ea、 Eb、 Ec、 Ed)、有機溶剤(St、 Sa、 Sm)および可塑 剤としての高沸点の溶剤とともに攪拌して混合した。製造条件は、上述の実施例 1〜 5と同一である。
[0077] B.複合磁性シートの特性評価
特性評価の方法は、実施例 1〜5と同じ方法である。表 7に、比較例 5〜9の条件で 得られた各複合磁性シートの特性評価の結果を示した。
[0078] 表 7に示すように、比較例 5〜9の各条件で得られた複合磁性シートは、 ヽずれも 1 00°C以上の Tgおよび 10以上の透磁率 )を有していた。しかし、各シートの外観を 見ると、筋が目立ち、かつ金属系磁性粉体の配向性はやや弱い結果が得られた。筋 が目立つ原因として、アスペスト比が 25という高アスペクト比を有する金属磁性粉体 を用いたため、金属系磁性粉体がギャップをスムーズに通過できずにブレードに引つ 力かったためであると考えられる。筋は、複合磁性シートの強度の低下、厚み寸法に 係るバラツキの発生につながるので好ましくない。さらに、比較例 5の特性結果に示さ れるように、全榭脂量が少ないと、複合磁性シートの強度または空隙が多くなり、より 低 、特性となることが分力つた。
[0079] [表 7]
Figure imgf000027_0001
(比較例 10 13)
A.複合磁性シートの製造手順
比較例 10 13では、鉄 珪素を主成分とし、長軸平均粒径 (L)が 100 /z mであり 、アスペクト比 (R)が 25である金属系磁性粉体 (サンプル G)を用いた。表 8に示す配 合に基づいて、榭脂組成物 (Ea Eb Ec Ed)、有機溶剤(St Sa Sm)および可 塑剤としての高沸点の溶剤とともに攪拌して混合した。製造条件は、上述の実施例 1 〜5と同一である。
[0081] B.複合磁性シートの特性評価
特性評価の方法は、実施例 1〜5と同じ方法である。表 8に、比較例 10〜13の条件 で得られた各複合磁性シートの特性評価の結果を示した。
[0082] 表 8に示すように、比較例 10〜 13の各条件で得られた複合磁性シートは、いずれ も 100°C以上の Tgを有していた。また、金属系磁性粉体の配向性は高力つた。しか し、各シートの外観は、筋が多ぐかつ塗工されずに PETフィルムが露出しており、シ ートの部分が剥離したような状態であった。このため、透磁率 )は、測定不能であ つた。力!]えて、上記のような塗工状態であるため、シートの強度は極めて脆かった。こ のようなシートの状態となったのは、金属系磁性粉体の長軸平均径が大きすぎ、塗工 時に引つ力かったためであると考えられる。
[0083] [表 8]
ttn i o 比 K例 1 比 K例 1 比絞例 1 3 粉体 長 «平均粒 (.μ m) 1 00 00 1 00 λ 00
アスペスト比: R 25 5 25 25 全粉体置 1 00 1 00 1 00 1 00 關旨 E a 2 2 2 2
E b 1 1 1
E c 1. 5 1. 5 1. 5 1. 5
E ύ 0. 8 0. & 0. S 0. 8 全捆!)旨置 (%) 2 4 6 7
^剤 S t 3 3 3 3
S a 3 4 3 3
Sm 3 3 4 4 全溶剤置 (%) 3 D 30 30 30 高沸点溶剤 点溶剤 (%) 8 S 1 0 0 スラリー条件 粘度 (mP a - s) 3000 3 1 00 3200 3300 塗 »条件 ブレードギャップ Cum) 500 500 500 500 評価結果 シート厚 (ym) 1 60 1 80 1 90 1 90
シート外 ¾ , u 筋、 剁 SI . Dim 空陳 多い 多い 多い 多い 向 良好 良好 良好 良好 シート強度 脆い inい 脆い 脆い
; 'M定不可 ^定不可 測定不可 定不可
Tg TO 1 1 0 1 1 0 1 0 1 1 0 産業上の利用可能性
本発明は、複合磁性シートを製造あるいは使用する産業において利用する できる。

Claims

請求の範囲
[1] 少なくとも榭脂と金属系磁性粉体とを含む複合磁性シートであって、
上記金属系磁性粉体は、長軸と短軸とを有する扁平形状の粉体を含み、 当該扁平形状の粉体の長軸径が 5 μ m以上 80 μ m以下の範囲であり、 上記長軸および上記短軸との寸法の比によって定義されるアスペクト比が 5以上 20 以下の範囲であり、
上記金属系磁性粉体は、上記長軸を上記複合磁性シートの面に沿って平行に配 向させて、分散していることを特徴とする複合磁性シート。
[2] 前記複合磁性シートは、シートの厚みが 10 μ m以上 250 μ m以下の範囲であるこ とを特徴とする請求項 1に記載の複合磁性シート。
[3] 少なくとも榭脂と金属系磁性粉体とを含む複合磁性シートの製造方法であって、 長軸と短軸とを有する扁平形状の粉体を含み、当該扁平形状の粉体の長軸径が 5 μ m以上 80 μ m以下の範囲であり、上記長軸および上記短軸との寸法の比によって 定義されるアスペクト比が 5以上 20以下の範囲である上記金属系磁性粉体と、上記 榭脂と、有機溶剤とを混合してスラリーを作製する工程と、
支持体上に上記スラリーを塗工して塗膜を形成する工程と、
上記塗膜を乾燥させる工程と、
を含むことを特徴とする複合磁性シートの製造方法。
[4] 前記スラリーを作製する際に用いられる前記榭脂は、エポキシ系榭脂であることを 特徴とする請求項 3に記載の複合磁性シートの製造方法。
[5] 前記塗膜を乾燥させる工程を経た後の厚みが 10 μ m以上 250 μ m以下の範囲で あることを特徴とする請求項 3または 4に記載の複合磁性シートの製造方法。
PCT/JP2007/051127 2006-02-02 2007-01-25 複合磁性シートおよびその製造方法 WO2007088762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07707374A EP1986200B1 (en) 2006-02-02 2007-01-25 Composite magnetic sheet and process for producing the same
US12/162,669 US20090197063A1 (en) 2006-02-02 2007-01-25 Composite magnetic sheet and process for producing the same
DE602007008688T DE602007008688D1 (de) 2006-02-02 2007-01-25 Zusammengesetztes magnetisches blatt und herstellungsprozess dafür
CN2007800038492A CN101375353B (zh) 2006-02-02 2007-01-25 线圈用复合磁性薄板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-025433 2006-02-02
JP2006025433A JP2007208026A (ja) 2006-02-02 2006-02-02 複合磁性シートおよびその製造方法

Publications (1)

Publication Number Publication Date
WO2007088762A1 true WO2007088762A1 (ja) 2007-08-09

Family

ID=38327340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/051127 WO2007088762A1 (ja) 2006-02-02 2007-01-25 複合磁性シートおよびその製造方法

Country Status (7)

Country Link
US (1) US20090197063A1 (ja)
EP (1) EP1986200B1 (ja)
JP (1) JP2007208026A (ja)
CN (1) CN101375353B (ja)
DE (1) DE602007008688D1 (ja)
TW (1) TW200730353A (ja)
WO (1) WO2007088762A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074024A1 (ja) * 2010-11-30 2012-06-07 住友大阪セメント株式会社 複合磁性体とその製造方法、アンテナおよび通信装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329069B2 (ja) * 2007-10-25 2013-10-30 Tdk株式会社 磁芯用複合材料
JP2010034102A (ja) * 2008-07-25 2010-02-12 Toko Inc 複合磁性粘土材とそれを用いた磁性コアおよび磁性素子
JP2012521649A (ja) * 2009-03-26 2012-09-13 ヴァキュームシュメルツェ ゲーエムベーハー ウント コンパニー カーゲー 軟磁性材料による積層コア,及び軟磁性の積層コアを形成する接着力によりコア単層板を接合する方法
GB201110233D0 (en) * 2011-06-16 2011-08-03 Williams Hybrid Power Ltd Magnetically loaded composite rotors and tapes used in the production thereof
JP6062691B2 (ja) 2012-04-25 2017-01-18 Necトーキン株式会社 シート状インダクタ、積層基板内蔵型インダクタ及びそれらの製造方法
CN103632795A (zh) 2012-08-29 2014-03-12 比亚迪股份有限公司 一种nfc磁片用浆料及其制备方法和一种nfc磁片
US9418780B2 (en) * 2012-12-06 2016-08-16 Samsung Electronics Co., Ltd. Magnetic composite material
JP5474251B1 (ja) * 2013-02-04 2014-04-16 Necトーキン株式会社 磁芯およびインダクタ
JP6167560B2 (ja) * 2013-02-26 2017-07-26 住友大阪セメント株式会社 絶縁性の平板状磁性粉体とそれを含む複合磁性体及びそれを備えたアンテナ及び通信装置並びに複合磁性体の製造方法
JP6189633B2 (ja) * 2013-05-16 2017-08-30 山陽特殊製鋼株式会社 シート表面の平滑性に優れ高透磁率を有する磁性シート用軟磁性扁平粉末およびこれを用いた磁性シート並びに軟磁性扁平粉末の製造方法
KR101549988B1 (ko) 2014-05-30 2015-09-03 (주)창성 커버레이 분리형 자성시트와 이를 포함하는 연성인쇄회로기판 및 이들의 제조방법
EP3306623A4 (en) * 2015-06-04 2018-12-19 Poco Holding Co., Ltd. Novel high-density magnetic composite material for inductor
CN109414722B (zh) * 2016-07-29 2021-08-17 锡克拜控股有限公司 用于生产效应层的方法
ES2877163T3 (es) 2016-08-16 2021-11-16 Sicpa Holding Sa Procesos para producir capas de efectos
JP6690620B2 (ja) * 2017-09-22 2020-04-28 株式会社村田製作所 複合磁性材料及びそれを用いたコイル部品
CN108987025B (zh) * 2018-06-11 2020-07-28 中国计量大学 一种高磁导率低损耗软磁复合材料及其制备方法
KR102118955B1 (ko) * 2018-11-26 2020-06-04 엘지전자 주식회사 자성 분말, 압축 분말 코어 및 이의 제조 방법
US11682510B2 (en) * 2019-02-21 2023-06-20 Tdk Corporation Composite magnetic material, magnetic core, and electronic component
US10856455B1 (en) * 2019-09-05 2020-12-01 The Boeing Company Electromagnetic interference shielding panels and associated methods
US10932399B1 (en) * 2019-12-20 2021-02-23 The Boeing Company Electromagnetic shielding material and methods of formation
JP7309641B2 (ja) * 2020-03-18 2023-07-18 株式会社東芝 圧粉材料及び回転電機
CN114334347A (zh) * 2022-01-07 2022-04-12 浙江工业大学 一种高频低损耗非晶软磁复合膜材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301561A2 (en) 1987-07-31 1989-02-01 TDK Corporation Magnetic shield-forming magnetically soft powder, composition thereof, and process of making
JPH05335130A (ja) 1992-06-03 1993-12-17 Tokin Corp 金属圧粉磁芯
JPH06333743A (ja) 1993-05-20 1994-12-02 Murata Mfg Co Ltd 積層チップコイルおよびその製造方法
EP0959480A2 (en) 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
JP2000243615A (ja) * 1998-12-17 2000-09-08 Tokin Corp 複合磁性体と、その製造方法
JP2002289414A (ja) 2001-01-19 2002-10-04 Tdk Corp 複合磁性体、シート状物品の製造方法、複合磁性体の製造方法
JP2004247663A (ja) * 2003-02-17 2004-09-02 Nec Tokin Corp 複合磁性材シート
JP2005097048A (ja) 2003-09-25 2005-04-14 Kyocera Corp フェライト焼結体とこれを用いたフェライトコアおよびフェライトコイル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959486A (ja) * 1995-08-23 1997-03-04 Tdk Corp エポキシ樹脂組成物およびその積層体の製造方法
DE60002428T2 (de) * 1999-09-28 2004-01-15 Nec Tokin Corp Magnetische kompositfolie und herstellungsverfahren
JP2001210924A (ja) * 2000-01-27 2001-08-03 Tdk Corp 複合磁性成型物、電子部品、複合磁性組成物および製造方法
KR100533097B1 (ko) * 2000-04-27 2005-12-02 티디케이가부시기가이샤 복합자성재료와 이것을 이용한 자성성형재료, 압분 자성분말성형재료, 자성도료, 복합 유전체재료와 이것을이용한 성형재료, 압분성형 분말재료, 도료, 프리프레그및 기판, 전자부품

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301561A2 (en) 1987-07-31 1989-02-01 TDK Corporation Magnetic shield-forming magnetically soft powder, composition thereof, and process of making
JPH05335130A (ja) 1992-06-03 1993-12-17 Tokin Corp 金属圧粉磁芯
JPH06333743A (ja) 1993-05-20 1994-12-02 Murata Mfg Co Ltd 積層チップコイルおよびその製造方法
EP0959480A2 (en) 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Core material for noise filter
JP2000243615A (ja) * 1998-12-17 2000-09-08 Tokin Corp 複合磁性体と、その製造方法
JP2002289414A (ja) 2001-01-19 2002-10-04 Tdk Corp 複合磁性体、シート状物品の製造方法、複合磁性体の製造方法
JP2004247663A (ja) * 2003-02-17 2004-09-02 Nec Tokin Corp 複合磁性材シート
JP2005097048A (ja) 2003-09-25 2005-04-14 Kyocera Corp フェライト焼結体とこれを用いたフェライトコアおよびフェライトコイル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1986200A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074024A1 (ja) * 2010-11-30 2012-06-07 住友大阪セメント株式会社 複合磁性体とその製造方法、アンテナおよび通信装置

Also Published As

Publication number Publication date
US20090197063A1 (en) 2009-08-06
JP2007208026A (ja) 2007-08-16
EP1986200A4 (en) 2009-04-29
TWI343872B (ja) 2011-06-21
DE602007008688D1 (de) 2010-10-07
TW200730353A (en) 2007-08-16
EP1986200A1 (en) 2008-10-29
CN101375353A (zh) 2009-02-25
EP1986200B1 (en) 2010-08-25
CN101375353B (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
WO2007088762A1 (ja) 複合磁性シートおよびその製造方法
US8029701B2 (en) Mixed conductive powder and use thereof
CN108269671B (zh) 混合磁性粉末和使用混合磁性粉末的电子元件
JP6161864B2 (ja) 樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP7194909B2 (ja) 磁性樹脂粉末、磁性プリプレグ及び磁性樹脂ペースト
US20200216738A1 (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
US20200277189A1 (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
WO2022120715A1 (zh) 一种绝缘胶膜材料及其制备方法和应用
WO2020174864A1 (ja) 給電部材、コイル配置用磁性シート、及びコイル配置用磁性シートの製造方法
JPWO2002035554A1 (ja) 導電性金属ペースト及びその製造方法
JP6459986B2 (ja) 金属磁性粉含有シート、インダクタの製造方法及びインダクタ
KR20060018850A (ko) 절연재료, 필름, 회로기판 및 이들의 제조방법
US9279070B2 (en) Anisotropic conductive adhesive, method of producing the same, connection structure and producing method thereof
JP2006273969A (ja) 硬化可能な組成物およびその用途
TWI729774B (zh) 導電性黏接劑和導電性黏接劑的使用方法
KR101759168B1 (ko) 방열분말페이스트 및 연자성분말페이스트를 이용한 코일매립형방열인덕터의 제조방법 및 그 방법에 의하여 제조된 코일매립형방열인덕터
JP2017128662A (ja) 複合フィラー及び熱硬化性材料
JP6852846B2 (ja) 電極用ペーストおよび積層セラミック電子部品
JP5768676B2 (ja) 異方性導電フィルム、その製造方法、接続構造体及びその製造方法
WO2022118470A1 (ja) ペースト
CN112430443B (zh) 导热性粘合用片、导热性粘合用片制造方法和半导体装置
WO2022024399A1 (ja) 粉体塗料
KR20170052103A (ko) 자기장 차폐시트의 제조방법 및 이에 의한 자기장 차폐시트를 포함하는 안테나 모듈
JP2000173502A (ja) 偏向ヨ―クコア及び偏向ヨ―ク
JP5199565B2 (ja) 粘着シートの製造方法及び粘着シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200780003849.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007707374

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12162669

Country of ref document: US