WO2019106816A1 - シート状積層体及び積層物 - Google Patents

シート状積層体及び積層物 Download PDF

Info

Publication number
WO2019106816A1
WO2019106816A1 PCT/JP2017/043199 JP2017043199W WO2019106816A1 WO 2019106816 A1 WO2019106816 A1 WO 2019106816A1 JP 2017043199 W JP2017043199 W JP 2017043199W WO 2019106816 A1 WO2019106816 A1 WO 2019106816A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
sheet
resin layer
laminate
metal element
Prior art date
Application number
PCT/JP2017/043199
Other languages
English (en)
French (fr)
Inventor
竹内 一雅
石原 千生
前田 英雄
稲垣 孝
須田 聡一郎
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to JP2019556502A priority Critical patent/JP7020493B2/ja
Priority to PCT/JP2017/043199 priority patent/WO2019106816A1/ja
Publication of WO2019106816A1 publication Critical patent/WO2019106816A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a sheet-like laminate and a laminate.
  • a mixture of a metal powder and a resin composition is used, for example, as a raw material of an industrial product such as an inductor or a bonded magnet (see Patent Documents 1 and 2 below).
  • metal foil for example, aluminum foil or copper foil
  • coated is marketed as an electromagnetic wave shield.
  • JP 2004-31786 A Unexamined-Japanese-Patent No. 8-273916
  • a metal foil composed of a soft magnetic material such as an Fe-based alloy is used as an electromagnetic wave shield that shields an electromagnetic wave generated inside and outside the electronic device. And, by making the crystal grain size of the metal foil finer, it is possible to achieve both a high saturation magnetic flux density and a high relative magnetic permeability as compared to an amorphous (amorphous) metal foil.
  • processing and handling of the metal foils such as molding, cutting, lamination, movement, conveyance, etc. are required, so sheet flexibility is required. Ru. Further, even when the metal foil itself is used as an industrial product such as an electromagnetic wave shield, flexibility of the sheet is required to prevent breakage.
  • the present inventors have produced a sheet-like laminate in which the flexibility of the metal foil is reinforced by laminating the resin layer on the metal foil used for an electromagnetic wave shield or the like. Successful. However, since the relative permeability of the resin layer itself is lower than that of the metal foil, the present inventors have found the problem that the magnetic properties of the entire sheet-like laminate provided with the resin layer are inferior to the magnetic properties of the metal foil alone.
  • An object of the present invention is to provide a sheet-like laminate excellent in magnetic properties and flexibility, and a laminate including the sheet-like laminate.
  • the sheet-like laminate according to one aspect of the present invention includes a metal foil containing an Fe-based alloy and a resin layer laminated on the metal foil, and the metal foil has an Fe-based alloy having a crystal grain size of 10 nm or less
  • the resin layer contains the resin composition and the metal element-containing powder, and the content of the metal element-containing powder in the resin layer is more than 64% by volume and less than 93% by volume.
  • the Fe-based alloy may contain Fe and Nb.
  • the Fe-based alloy may contain Fe, Nb, Cu, Si and B.
  • the metal element-containing powder may contain an Fe-based alloy.
  • the Fe-based alloy contained in the metal element-containing powder may contain Fe, Nb, Cu, Si and B.
  • the metal element-containing powder may contain metal element-containing particles having a particle diameter of 10 nm or less.
  • the resin composition may contain an epoxy resin.
  • the resin composition may contain a phenolic resin.
  • the resin composition may contain an acrylic resin.
  • the resin layer may contain a semi-cured product of the resin composition.
  • the layered product concerning one side of the present invention is provided with the above-mentioned sheet-like layered product, and the substrate on which the sheet-like layered product was piled up, and the resin layer is in contact with the substrate.
  • the resin layer may contain at least one of a semi-cured product of the resin composition and a cured product of the resin composition.
  • a sheet-like laminate excellent in magnetic properties and flexibility, and a laminate comprising the sheet-like laminate are provided.
  • FIG. 1 is a schematic view of a cross section parallel to the stacking direction of the sheet-like laminate according to one embodiment of the present invention
  • (b) in FIG. 1 corresponds to one embodiment of the present invention
  • It is a schematic diagram of the cross section parallel to the lamination direction of the laminated body which concerns
  • (c) in FIG. 1 is a schematic diagram of a cross section parallel to the lamination direction of the laminated body which concerns on one Embodiment of this invention.
  • the sheet-like laminate 10 includes a metal foil 12 and a resin layer 11 laminated on the metal foil 12.
  • the flexibility of the metal foil 12 is reinforced.
  • the mechanical strength of the originally brittle metal foil 12 is reinforced by the resin layer 11.
  • the sheet-like laminate 10 can have superior flexibility as compared to the metal foil 12 alone.
  • the resin layer 11 functions as an adhesive.
  • the resin layer 11 may cover at least a part or the whole of the surface of the metal foil 12.
  • the resin layer 11 may be laminated directly on the surface of the metal foil 12.
  • the thickness of the metal foil 12 is not particularly limited, but may be, for example, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 20 ⁇ m or less.
  • the thickness of the metal foil 12 may be 2 ⁇ m or more.
  • the thickness of the resin layer 11 is not particularly limited, but may be, for example, 20 ⁇ m or more and 500 ⁇ m or less.
  • the dimensions of the metal foil 12 may be changed depending on the application of the sheet-like laminate 10 and is not particularly limited. For example, when the sheet-like laminate 10 is a square, the longitudinal width of the sheet-like laminate 10 may be 10 mm or more and 500 mm or less, and the width of the sheet-like laminate 10 may be 10 mm or more and 500 mm or less.
  • the shape of the entire sheet-like laminate 10 may be changed depending on the application of the sheet-like laminate 10 and is not particularly limited.
  • the shape of the sheet-like laminate 10 may be, for example, a polygon, a circle, or an ellipse.
  • Each side of the sheet-like laminate 10 may be, for example, linear or curved.
  • the metal foil 12 contains an Fe-based alloy (that is, an alloy containing Fe).
  • the metal foil 12 may be made of only an Fe-based alloy.
  • the metal foil 12 may contain one or more Fe-based alloys.
  • the Fe-based alloy may be a soft magnetic material or a hard magnetic material.
  • the metal foil 12 may include other components (for example, a metal or an alloy) in addition to the Fe-based alloy as long as the relative permeability of the metal foil 12 is not excessively reduced.
  • Fe-based alloys include Fe-Cr-based alloys, Fe-Ni-Cr-based alloys, Fe-Si-based alloys, Fe-Si-Al-based alloys, Fe-Ni-based alloys, Fe-Cu-Ni-based alloys, Fe And at least one selected from the group consisting of a Co-based alloy, an Fe-Cr-Si-based alloy, and an Nd-Fe-B-based alloy.
  • the Fe-based alloy may contain Fe and Nb.
  • the Fe-based alloy may contain Fe, Nb, Cu, Si and B.
  • an Fe-based alloy containing Fe and Nb, or an Fe-based alloy containing Fe, Nb, Cu, Si and B a high saturation magnetic flux density and a high relative magnetic permeability are easily compatible.
  • the Fe-based alloy may be represented, for example, by the following chemical formula (1).
  • a high saturation magnetic flux density and a high relative permeability are easily compatible.
  • M is one or both of Co and Ni.
  • M ′ is at least one selected from the group consisting of Nb, Mo, Ta, Ti, Zr, Hf, V, Cr, Mn and W.
  • M ′ ′ is at least one selected from the group consisting of Al, a platinum group element, Sc, a rare earth element, Au, Zn, Sn and Re.
  • X is at least one selected from the group consisting of C, Ge, P, Ga, Sb, In, Be and As.
  • a, x, y, z, ⁇ , ⁇ and ⁇ are respectively 0 ⁇ a ⁇ 0.5, 0.1 ⁇ x ⁇ 3, 0 ⁇ y ⁇ 30, 0 ⁇ z ⁇ 25, 5 ⁇ y + z ⁇ 30, 0 ⁇ ⁇ ⁇ 20, 0 ⁇ ⁇ ⁇ 20 and 0 ⁇ ⁇ ⁇ 20 are satisfied.
  • the metal foil 12 contains a crystal of an Fe-based alloy having a crystal grain size of 10 nm or less.
  • the crystal grain size of the Fe-based alloy contained in the metal foil 12 is 10 nm or less, the whole of the metal foil 12 and the sheet-like laminate 10 is superior in magnetism to the metal foil made of the conventional Fe-based alloy. It can have properties (e.g. soft magnetic properties).
  • properties e.g. soft magnetic properties.
  • the crystal grain size of the Fe-based alloy contained in the metal foil 12 is 10 nm or less, both a high saturation magnetic flux density and a high relative magnetic permeability can be achieved as compared with a conventional metal foil made of amorphous Fe-based alloy. It becomes possible.
  • the crystal grain size (for example, the average value of the crystal grain sizes) of the crystals of the Fe-based alloy contained in the metal foil 12 may be 5 nm or more and 10 nm or less.
  • the means for measuring the crystal grain size of the Fe-based alloy contained in the metal foil 12 is not particularly limited, but may be, for example, a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the grain size of the Fe-based alloy contained in the metal foil 12 may be identified using Scherrer's equation based on powder X-ray diffraction.
  • the metal foil 12 containing crystals of an Fe-based alloy having a crystal grain size of 10 nm or less can be manufactured, for example, by the following method.
  • a raw material of an Fe-based alloy having the same composition as the target metal foil 12 is produced as a raw material.
  • the material of the Fe-based alloy may be an alloy containing Fe as a main component and further containing Si, B, Cu and Nb as additive elements.
  • a melt of the alloy is obtained.
  • the melt is quenched and solidified at about 1,000,000 ° C./sec to obtain a thin strip made of an amorphous (non-crystalline) Fe-based alloy.
  • the thin strip is heat treated at a temperature above the crystallization temperature of the Fe-based alloy.
  • the crystal grain size of the Fe-based alloy is refined, and the metal foil 12 containing crystals of the Fe-based alloy having a crystal grain size of 10 nm or less is obtained.
  • the finemet contains, for example, a crystal containing Fe, Nb, Cu, Si and B and having a crystal grain size of 10 nm or less.
  • the resin layer 11 contains a resin composition and metal element-containing powder.
  • the resin layer 11 may be composed of a resin composition and metal element-containing powder.
  • the resin layer 11 containing the metal element-containing powder can have magnetic properties derived from the metal element-containing powder.
  • the content of the metal element-containing powder in the resin layer 11 is more than 64% by volume and less than 93% by volume.
  • the magnetic properties (for example, relative permeability) of the resin layer 11 and the flexibility of the resin layer 11 compatible.
  • the excellent magnetic properties and the excellent flexibility of the sheet-like laminate 10 are compatible.
  • the magnetic properties (for example, relative permeability) of the resin layer 11 derived from the metal element-containing powder are impaired, and the entire sheet-like laminate 10 is The magnetic properties of the When the content of the metal element-containing powder in the resin layer 11 is 93% by volume or more, the flexibility of the resin layer 11 derived from the resin composition is impaired, and the flexibility of the sheet-like laminate 10 as a whole is also impaired.
  • the content of the metal element-containing powder in the resin layer 11 is preferably 65% by volume or more and 90% by volume or less, more preferably 70% by volume or more and 85% by volume from the viewpoint of achieving both the magnetic properties and flexibility of the sheet-like laminate 10 It may be% by volume or less.
  • the content of the resin composition in the resin layer 11 may be 17% to 36% by volume, preferably 16% to 32% by volume, and more preferably 15% to 30% by volume.
  • the content of the metal element-containing powder in the resin layer 11 is preferably more than 93% by mass and less than 99% by mass, more preferably 95% by mass % Or more and 98% by mass or less.
  • the content of the resin composition in the resin layer 11 may be preferably 1% by mass to 7% by mass, and more preferably 2% by mass to 5% by mass.
  • the metal element-containing powder contained in the resin layer 11 may contain, for example, at least one selected from the group consisting of simple metals, alloys, and metal compounds.
  • the metal element-containing powder may be made of, for example, at least one selected from the group consisting of simple metals, alloys, and metal compounds.
  • the alloy may include at least one selected from the group consisting of solid solution, eutectic and intermetallic compounds.
  • the alloy may be, for example, stainless steel (Fe-Cr based alloy, Fe-Ni-Cr based alloy, etc.).
  • the metal compound may be, for example, an oxide such as ferrite.
  • the metal element-containing powder may contain one metal element or a plurality of metal elements.
  • the metal element contained in the metal element-containing powder may be, for example, a base metal element, a noble metal element, a transition metal element, or a rare earth element.
  • the compound powder may contain one kind of metal element-containing powder, and may contain plural kinds of metal element-containing particles.
  • the metal element contained in the metal element-containing powder is, for example, iron (Fe), copper (Cu), titanium (Ti), manganese (Mn), cobalt (Co), nickel (Ni), zinc (Zn), aluminum ( Al), tin (Sn), chromium (Cr), barium (Ba), strontium (Sr), lead (Pb), silver (Ag), praseodymium (Pr), neodymium (Nd), samarium (Sm) and dysprosium ( It may be at least one selected from the group consisting of Dy).
  • the metal element-containing powder may contain an element other than the metal element.
  • the metal element-containing powder may contain, for example, oxygen (O), beryllium (Be), phosphorus (P), boron (B), or silicon (Si).
  • the metal element-containing powder may be magnetic powder.
  • the metal element-containing powder may be a soft magnetic alloy or a hard magnetic alloy.
  • Metallic element-containing powders include, for example, Fe-Si alloys, Fe-Si-Al alloys (Sendust), Fe-Ni alloys (Permalloy), Fe-Cu-Ni alloys (Permalloy), Fe-Co alloys (Permendur), Fe-Cr-Si alloy (electromagnetic stainless steel), Nd-Fe-B alloy (rare earth magnet), Sm-Co alloy (rare earth magnet), Sm-Fe-N alloy (rare earth)
  • the magnetic powder may be at least one selected from the group consisting of magnets), Al-Ni-Co alloys (Alnico magnets), and ferrites.
  • the ferrite may be, for example, spinel ferrite, hexagonal ferrite, or garnet ferrite.
  • the metal element-containing powder may be a copper alloy such as a Cu-Sn alloy, a Cu-Sn-P alloy, a Cu-Ni alloy, or a Cu-Be alloy.
  • the metal-element-containing powder may contain one of the above-described elements and compositions, and may contain two or more of the above-described elements and compositions.
  • the metal element-containing powder may be Fe alone.
  • the metal element-containing powder may be an Fe-based alloy.
  • the Fe-based alloy may be, for example, an Fe-Si-Cr-based alloy or an Nd-Fe-B-based alloy.
  • the metal element-containing powder may be at least one of amorphous iron powder and carbonyl iron powder. When the metal element-containing powder contains at least one of Fe and Fe-based alloy, it is easy to produce the resin layer 11 having a high space factor and excellent in magnetic characteristics.
  • the metal element-containing powder may be a Fe amorphous alloy.
  • Fe amorphous alloy powder Commercial products of Fe amorphous alloy powder include, for example, AW2-08, KUAMET-6B2 (all trade names of Epson Atomics Co., Ltd., DAP MS3, DAP MS7, DAP MSA10, DAP PB, DAP PC, DAP MKV 49). , DAP 410L, DAP 430L, DAP HYB series (all trade names of Daido Steel Co., Ltd.), MH45D, MH28D, MH25D, and MH20D (all trade names of Kobe Steel Co., Ltd.) At least one may be used.
  • the Fe-based alloy contained in the metal element-containing powder may preferably contain Fe and Nb, and more preferably may contain Fe, Nb, Cu, Si and B.
  • the metal element-containing powder contains an Fe-based alloy containing Fe and Nb, or Fe, Nb, Cu, Si and B, the saturation magnetic flux density and relative permeability of the resin layer 11 can be easily improved. As a result, the magnetic properties of the sheet-like laminate 10 can be easily improved.
  • the Fe-based alloy contained in the metal element-containing powder may be represented by the above chemical formula (1).
  • the metal element-containing powder contains the Fe-based alloy represented by the chemical formula (1), the saturation magnetic flux density and relative permeability of the resin layer 11 can be easily improved, and the magnetic properties of the sheet-like laminate 10 are also improved. Easy to do. As a result, the magnetic properties of the sheet-like laminate 10 can be easily improved.
  • the average particle size of the metal element-containing powder may be, for example, 1 ⁇ m or more and 300 ⁇ m or less.
  • the median diameter D50 of the metal element-containing powder may be 1 ⁇ m or more and 90 ⁇ m or less.
  • the metal element-containing powder may contain metal element-containing particles having a particle diameter of 10 nm or less.
  • the metal element-containing powder may contain metal element-containing particles having a particle diameter of 5 nm or more and 10 nm or less. As the particle size of the metal element-containing particle is smaller, more metal element-containing particles are more easily densely packed in the resin layer 11, and the density of the entire resin layer 11 is easily improved.
  • the particle size of the metal element-containing particle may be measured, for example, using a laser diffraction / scattering type particle size distribution measuring device.
  • the metal element-containing particle having a particle diameter of 10 nm or less may be produced by using the above-mentioned metal foil containing a crystal of an Fe-based alloy having a crystal particle diameter of 10 nm or less as a raw material.
  • a metal element-containing particle having a particle diameter of 10 nm or less can be prepared by pulverizing the above-mentioned metal foil containing a crystal of an Fe-based alloy having a crystal particle size of 10 nm or less.
  • each metal element-containing particle constituting the metal element-containing powder may contain a crystal of an Fe-based alloy having a crystal grain size of 10 nm or less.
  • the shape of the individual metal element-containing particles contained in the metal element-containing powder is not particularly limited.
  • the individual metal element-containing particles may be, for example, spherical, flat, prismatic or needle-like.
  • the resin layer 11 may contain plural types of metal element-containing particles having different average particle sizes.
  • the composition of the metal foil 12 may be the same as the composition of the metal element-containing powder contained in the resin layer 11.
  • the composition of the metal foil 12 may be different from the composition of the metal element-containing powder contained in the resin layer 11.
  • the metal element-containing powder and the resin composition may be dispersed in the resin layer 11. That is, in the resin layer 11, the resin composition and the metal element-containing powder may be mixed uniformly.
  • the resin layer 11 may contain an uncured resin composition.
  • the resin layer 11 contains an uncured resin composition, it is easy to soften or liquefy a part of the resin composition in the resin layer 11 in a timely process of manufacturing an industrial product using the sheet-like laminate 10 The fluidity of the composition is likely to be improved. As a result, the resin layer 11 can be easily adhered to other members, and the resin layer 11 can be easily filled into the other members.
  • the resin layer 11 may contain a semi-cured product of the resin composition (B-stage resin composition). The resin layer 11 containing the semi-cured product of the resin composition is superior in mechanical strength to the case where the resin composition is not cured.
  • the resin layer 11 may be completely cured in a timely process of manufacturing an industrial product using the sheet-like laminate 10.
  • the resin layer 11 may contain an uncured resin composition and a semi-cured product of the resin composition.
  • the semi-cured product of the resin composition corresponds to the component excluding the metal element-containing powder among the solid content residue remaining after the resin layer 11 is dissolved in the ketone solvent (methyl ethyl ketone etc.).
  • the layered product concerning this embodiment may be provided with the above-mentioned sheet-like layered product, and a substrate on which a sheet-like layered product was piled up, and a resin layer may be in contact with a substrate.
  • the resin layer may be in close contact with the substrate.
  • the cured product of the resin layer may be in contact with the substrate.
  • the laminate 30 is sandwiched between the first metal foil 31 and the second metal foil 33, and the first metal foil 31 and the second metal foil 33. And the base material 34 embedded in the resin layer 32.
  • the laminate 30 is produced from the pair of sheet-like laminates 10 a and 10 b and the base material 34.
  • the resin compositions contained in the resin layers 32a and 32b soften or liquefy.
  • the surfaces of the resin layers 32 a and 32 b are mixed and integrated, and the surface of the base material 34 is covered with the resin layer 32 without unevenness.
  • the resin layer 32 may be cured.
  • the resin layer 32 included in the laminate 30 may include at least one of a semi-cured product of the resin composition and a cured product of the resin composition. That is, the resin layer 32 of the laminate 30 may not be completely cured, but may be completely cured.
  • compositions of the pair of overlapping resin layers may be the same as or different from each other.
  • the composition of the metal foil of one sheet-like laminate may be the same as the composition of the other metal foil.
  • the composition of the metal foil of one sheet-like laminate may be different from the composition of the other metal foil.
  • the resin composition contained in the resin layer 11 contains at least a resin.
  • the resin composition is a component that may include a resin, a curing agent, a curing accelerator, and an additive, and may be the remaining components (nonvolatile components) excluding the organic solvent and the metal element-containing powder.
  • the additive is a component of the resin composition except the resin, the curing agent and the curing accelerator.
  • the additive is, for example, a coupling agent or a flame retardant.
  • the resin composition may contain a wax as an additive. When the resin composition contains a wax, the releasability of the resin layer 11 is improved, or the flowability of the heated resin layer 11 is improved.
  • the wax may be, for example, at least one of fatty acids such as higher fatty acids and fatty acid esters.
  • the resin composition has a function as a binder (binder) of the metal element-containing granular powder, and imparts mechanical strength to the resin layer 11.
  • a binder for example, the base 34
  • the resin composition in the resin layer 11 is pressurized and brought into contact with a member (for example, the base 34), it is filled in between the metal element-containing powders and binds the metal element-containing powders to each other.
  • the cured product of the resin composition binds the metal element-containing powders more firmly, and the resin layer 11, the sheet-like laminate 10 and the laminates Mechanical strength is improved.
  • the resin composition contained in the resin layer 11 may contain a thermosetting resin.
  • the thermosetting resin may be, for example, at least one selected from the group consisting of an epoxy resin, a phenol resin, and a polyamideimide resin. If the resin composition comprises both an epoxy resin and a phenolic resin, the phenolic resin may function as a curing agent for the epoxy resin.
  • the resin composition may contain a thermoplastic resin.
  • the thermoplastic resin may be, for example, at least one selected from the group consisting of acrylic resin, polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyethylene terephthalate.
  • the resin composition may contain both a thermosetting resin and a thermoplastic resin.
  • the resin composition may contain a silicone resin.
  • the resin composition contains an epoxy resin, since the epoxy resin is excellent in fluidity among thermosetting resins.
  • the epoxy resin may be, for example, a resin having two or more epoxy groups in one molecule.
  • crystalline epoxy resins are preferred. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity.
  • the epoxy resin is, for example, stilbene epoxy resin, diphenylmethane epoxy resin, sulfur atom-containing epoxy resin, novolak epoxy resin, dicyclopentadiene epoxy resin, salicylaldehyde epoxy resin, copolymerization of naphthols and phenols
  • Type epoxy resin epoxy compound of aralkyl type phenol resin, bisphenol type epoxy resin, glycidyl ether type epoxy resin of alcohol, glycidyl ether type epoxy resin of paraxylylene and / or metaxylylene modified phenolic resin, glycidyl ether type epoxy of terpene modified phenolic resin Resin, cyclopentadiene type epoxy resin, glycidyl ether type epoxy resin of polycyclic aromatic ring modified phenolic resin, naphthalene ring containing phenolic resin Sidyl ether epoxy resin, glycidyl ester epoxy resin, glycidyl or methyl glycidyl epoxy resin,
  • the epoxy resin is selected from the group consisting of biphenyl epoxy resin, ortho cresol novolac epoxy resin, phenol novolac epoxy resin, salicylaldehyde novolac epoxy resin, and naphthol novolac epoxy resin. It may be at least one type.
  • the epoxy resin may be a crystalline epoxy resin. Although the molecular weight of the crystalline epoxy resin is relatively low, the crystalline epoxy resin has a relatively high melting point and is excellent in fluidity.
  • the crystalline epoxy resin (highly crystalline epoxy resin) may be, for example, at least one selected from the group consisting of a hydroquinone epoxy resin, a bisphenol epoxy resin, a thioether epoxy resin, and a biphenyl epoxy resin.
  • crystalline epoxy resin Commercial products of crystalline epoxy resin include, for example, Epiclon 860, Epiclon 1050, Epiclon 1055, Epiclon 2050, Epiclon 3050, Epiclon 4050, Epiclon 7050, Epiclon HM-091, Epiclon HM-101, Epiclon N-730A, Epiclon N -740, Epiclon N-770, Epiclon N-775, Epiclon N-865, Epiclon HP-4032D, Epiclon HP-7200L, Epiclon HP-7200, Epiclon HP-7200H, Epiclon HP-7200HH, Epiclon HP-7200HHH, Epiclon HP -4700, Epiclon HP-4710, Epiclon HP-4770, Epiclon HP-5000, Epiclon HP-6000, and N500P-2 (above, Product name made by IC Co., Ltd.), NC-3000, NC-3000-L, NC-3000-H, NC-3100, CER-3000-L, NC-2000-L, XD-
  • the resin composition may contain one of the above epoxy resins.
  • the resin composition may contain a plurality of epoxy resins among the above.
  • the curing agent is classified into a curing agent which cures an epoxy resin in a range from low temperature to room temperature, and a heat curing type curing agent which cures an epoxy resin with heating.
  • curing agents that cure epoxy resins in the range from low temperature to room temperature include aliphatic polyamines, polyaminoamides, polymercaptans and the like.
  • the heat-curable curing agent is, for example, an aromatic polyamine, an acid anhydride, a phenol novolac resin, and dicyandiamide (DICY).
  • the curing agent may preferably be a heat curing type curing agent, more preferably a phenol resin, and still more preferably a phenol novolac resin.
  • a phenol novolac resin as a curing agent, a cured product of an epoxy resin having a high glass transition temperature can be easily obtained. As a result, the heat resistance and mechanical strength of the molded body can be easily improved.
  • the phenolic resin is, for example, an aralkyl type phenolic resin, a dicyclopentadiene type phenolic resin, a salicylaldehyde type phenolic resin, a novolak type phenolic resin, a copolymer type phenolic resin of benzaldehyde type phenol and an aralkyl type phenol, paraxylylene and / or metaxylylene modified From the group consisting of phenolic resin, melamine modified phenolic resin, terpene modified phenolic resin, dicyclopentadiene type naphthol resin, cyclopentadiene modified phenolic resin, polycyclic aromatic ring modified phenolic resin, biphenyl type phenolic resin, and triphenylmethane type phenolic resin It may be at least one selected.
  • the phenolic resin may be a copolymer composed of two or more of the above.
  • a commercial product of a phenol resin for example, Tamanor 758 manufactured by Arakawa Chemical Industries, Ltd., HP-850N manufactured by Hitachi Chemical Co., Ltd., or the like may be used.
  • the phenol novolac resin may be, for example, a resin obtained by condensation or cocondensation of phenols and / or naphthols with aldehydes under an acidic catalyst.
  • the phenols constituting the phenol novolac resin may be, for example, at least one selected from the group consisting of phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, phenylphenol and aminophenol.
  • the naphthols constituting the phenol novolac resin may be, for example, at least one selected from the group consisting of ⁇ -naphthol, ⁇ -naphthol and dihydroxynaphthalene.
  • the aldehydes constituting the phenol novolac resin may be, for example, at least one selected from the group consisting of formaldehyde, acetaldehyde, propionaldehyde, benzaldehyde and salicylaldehyde.
  • the curing agent may be, for example, a compound having two phenolic hydroxyl groups in one molecule.
  • the compound having two phenolic hydroxyl groups in one molecule may be, for example, at least one selected from the group consisting of resorcin, catechol, bisphenol A, bisphenol F, and substituted or unsubstituted biphenol.
  • the resin composition may contain one of the above phenolic resins.
  • the resin composition may comprise a plurality of phenolic resins of the above.
  • the resin composition may contain one of the above curing agents.
  • the resin composition may contain a plurality of curing agents among the above.
  • the ratio of the active group (phenolic OH group) in the curing agent that reacts with the epoxy group in the epoxy resin is preferably 0.5 to 1.5 equivalents, more preferably one equivalent to the epoxy group in the epoxy resin. May be 0.9 to 1.4 equivalents, more preferably 1.0 to 1.2 equivalents.
  • the ratio of active groups in the curing agent is less than 0.5 equivalent, the amount of OH per unit weight of the epoxy resin after curing decreases, and the curing rate of the resin composition (epoxy resin) decreases. If the ratio of active groups in the curing agent is less than 0.5 equivalent, the glass transition temperature of the resulting cured product may be lowered, or a sufficient elastic modulus of the cured product may not be obtained.
  • the resin composition preferably contains an acrylic resin. Since the molecular weight of the acrylic resin is larger than that of the epoxy resin, the acrylic resin has higher viscosity than the epoxy resin. Therefore, when the resin composition contains an acrylic resin, the flexibility (flexibility) of the resin layer 11 containing the resin composition is likely to be improved, and the flexibility of the sheet-like laminate 10 is also likely to be improved.
  • the acrylic resin is a polymer or copolymer having at least one of a structural unit derived from acrylic acid (acrylic monomer) and a structural unit derived from methacrylic acid (methacrylic monomer).
  • the acrylic resin may be formed, for example, by radical polymerization or living polymerization.
  • the polystyrene equivalent weight average molecular weight of the acrylic resin may be preferably 500,000 to 1,500,000, and more preferably 600,000 to 1,000,000.
  • the acrylic monomer may be, for example, at least one selected from the group consisting of acrylonitrile, ethyl acrylate, and butyl acrylate.
  • the methacrylic monomer may be, for example, glycidyl methacrylate.
  • the acrylic resin may have a glycidyl group.
  • the resin composition may include one of the above acrylic resins, and the resin composition may include a plurality of the above acrylic resins.
  • the mass of the epoxy resin contained in the resin layer 11 is the weight of the epoxy resin and the acrylic resin contained in the resin layer 11 (or the resin composition).
  • the amount may be 30 to 90 parts by mass with respect to 100 parts by mass in total.
  • the mass of the acrylic resin contained in the resin layer 11 (or resin composition) is 10 to 70 mass with respect to a total of 100 parts by mass of the epoxy resin and the acrylic resin contained in the resin layer 11 (or resin composition). It may be a department.
  • the curing accelerator is not limited as long as it is, for example, a composition that reacts with the epoxy resin to accelerate the curing of the epoxy resin.
  • the resin composition may comprise one type of curing accelerator.
  • the resin composition may be provided with a plurality of curing accelerators. When the resin composition contains a curing accelerator, the moldability and releasability of the resin layer 11 can be easily improved.
  • the resin composition contains a curing accelerator to improve the mechanical strength of a laminate (for example, an electronic component) manufactured using the sheet-like laminate 10, or in a high temperature / high humidity environment. The storage stability of the resin layer 11 is improved.
  • the curing accelerator may be, for example, an alkyl group-substituted imidazole or an imidazole such as benzimidazole.
  • Examples of commercially available imidazole-based curing accelerators include 2MZ-H, C11Z, C17Z, 1,2DMZ, 2E4MZ, 2PZ-PW, 2P4MZ, 1B2MZ, 1B2PZ, 2MZ-CN, C11Z-CN, 2E4MZ-CN and 2PZ At least one selected from the group consisting of -CN, C11Z-CNS, 2P4MHZ, TPZ, and SFZ (all trade names of Shikoku Kasei Kogyo Co., Ltd.) may be used.
  • curing agents having a long chain alkyl group are preferable, and, for example, C11Z-CN (1-cyanoethyl-2-undecylimidazole) is preferable.
  • the compounding quantity of a hardening accelerator should just be an quantity which the hardening acceleration effect is acquired, and is not specifically limited.
  • the compounding amount of the curing accelerator is preferably 0.1 to 30 parts by mass, relative to 100 parts by mass of the epoxy resin. Preferably, it may be 1 to 15 parts by mass. It is preferable that content of a hardening accelerator is 0.001 mass part or more and 5 mass parts or less with respect to the sum total of the mass of an epoxy resin and a hardening agent (for example, phenol resin).
  • a hardening agent for example, phenol resin
  • the coupling agent improves the adhesion between the resin composition and the metal element-containing powder, and improves the flexibility and mechanical strength of each of the resin layer 11 and the sheet-like laminate 10.
  • the coupling agent may be, for example, at least one selected from the group consisting of silane compounds (silane coupling agents), titanium compounds, aluminum compounds (aluminum chelates), and aluminum / zirconium compounds.
  • the silane coupling agent may be, for example, at least one selected from the group consisting of epoxysilane, mercaptosilane, aminosilane, alkylsilane, ureidosilane, acid anhydride silane and vinylsilane. In particular, aminophenyl-based silane coupling agents are preferred.
  • the compound powder may include one of the above coupling agents, and may include two or more of the above coupling agents.
  • the resin composition may contain a flame retardant because of the environmental safety, recyclability, moldability and low cost of the resin layer 11.
  • the flame retardant is, for example, at least one selected from the group consisting of bromine flame retardants, stalk flame retardants, hydrated metal compound flame retardants, silicone flame retardants, nitrogen containing compounds, hindered amine compounds, organic metal compounds and aromatic engineering plastics It may be.
  • the compound powder may include one of the above-described flame retardants, and may include a plurality of the above-described flame retardants.
  • the application of the sheet-like laminate 10 is not limited. Depending on the composition of the metal foil 12, the composition of each of the metal element-containing powder resin compositions contained in the resin layer 11, and the combination thereof, various physical properties such as electromagnetic properties or thermal conductivity of the sheet-like laminate 10 It is controlled freely. Therefore, the sheet-like laminate 10 can be used for various industrial products or their materials. Industrial products manufactured using the sheet-like laminate 10 may be, for example, automobile-related equipment, medical equipment, electronic equipment, electrical equipment, information communication equipment, home appliances, audio equipment, and general industrial equipment.
  • the sheet-like laminate 10 may be used as a material of an inductor (for example, an EMI filter) or a transformer.
  • the resin layer 11 contains a permanent magnet as the metal element-containing powder
  • the sheet-like laminate 10 may be used as a material of a bond magnet.
  • the resin layer 11 contains iron and copper as the metal element-containing powder
  • the sheet-like laminate 10 may be used as an electromagnetic wave shield.
  • the manufacturing method of a sheet-like layered product may comprise the 1st process and the 2nd process.
  • the method for producing a sheet-like laminate may further include a third step following the second step, as necessary. Below, the detail of each process is demonstrated.
  • a paste is prepared by uniformly mixing the above-mentioned resin composition, metal element-containing powder and organic solvent.
  • a paste is prepared by mixing the above-mentioned resin composition, metal element-containing powder and an organic solvent.
  • the paste may contain a curing agent and a curing accelerator.
  • the paste may contain additives such as a silane coupling agent and a flame retardant.
  • the organic solvent is not particularly limited as long as it is a liquid that dissolves the components of the resin layer described above.
  • the organic solvent may be, for example, at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, benzene, toluene, carbitol acetate, butyl carbitol acetate, cyclohexanone and xylene.
  • the organic solvent is preferably liquid at normal temperature, and the boiling point of the organic solvent is preferably 60 ° C. or more and 150 ° C. or less.
  • the paste is applied to the surface of the metal foil. Then, the paste applied to the metal foil is dried to remove the organic solvent, thereby forming a B-stage resin layer on the surface of the metal foil.
  • the B-stage resin layer may be rephrased as a resin layer containing a semi-cured product of the resin composition.
  • a laminate including a B-stage resin layer and a metal foil on which the resin layer is laminated may be used as a finished product of a sheet-like laminate.
  • the paste application method may be, for example, a bar coater, a comma coater, or a dip coater.
  • the drying temperature of the paste applied to the substrate may be appropriately adjusted according to the type of the organic solvent.
  • the drying temperature may be, for example, 60 ° C. or more and 160 ° C. or less, preferably 70 ° C. or more and 140 ° C. or less, and more preferably 80 ° C. or more and 130 ° C. or less.
  • the drying temperature is less than 60 ° C.
  • drying takes a long time.
  • the drying temperature is less than 60 ° C., the organic solvent remains in the resin layer, the mechanical strength of the resin layer is impaired, wrinkles occur in the resin layer, or voids occur in the third step.
  • the drying temperature exceeds 160 ° C. voids are generated in the second step due to rapid volatilization of the organic solvent, or curing of the resin composition proceeds too much.
  • the resin layer (resin layer of B stage) is further cured by heat treatment to obtain a resin layer of C stage.
  • the C-stage resin layer may be rephrased as a resin layer containing a cured product of a resin composition.
  • a sheet-like laminate having a C-stage resin layer may be used as a finished product.
  • the temperature of the heat treatment may be a temperature at which the resin composition in the resin layer is sufficiently cured.
  • the temperature of the heat treatment may be, for example, preferably 150 ° C. or more and 300 ° C. or less, more preferably 175 ° C. or more and 250 ° C. or less.
  • the heat treatment is preferably performed in an inert atmosphere.
  • the heat treatment temperature exceeds 300 ° C., the metal element-containing powder is oxidized or the cured resin product is degraded by a trace amount of oxygen inevitably contained in the atmosphere of the heat treatment.
  • the holding time of the heat treatment temperature is preferably several minutes to 4 hours, more preferably 5 minutes. It may be one hour or less.
  • the sheet-like laminate may include a pair of metal foils and a resin layer sandwiched between the pair of metal foils.
  • the laminate 20 includes a first metal foil 23, a resin layer 22 laminated on the first metal foil 23, and a second metal foil 21 laminated on the resin layer 22.
  • the resin layer 22 may contain a semi-cured product of the resin composition, and may contain a cured product of the resin composition.
  • Example 1 219.6 g of cyclohexanone solution of acrylic resin, 39.84 g of methyl ethyl ketone solution of epoxy resin, 17.32 g of methyl ethyl ketone solution of phenol novolac resin, 2.00 g of methyl ethyl ketone solution of curing accelerator and 4.5 g of silane coupling agent are measured. Ingredients were placed in a 650 ml ointment container.
  • acrylic resin “HTR-860-P3” manufactured by Nagase ChemteX Co., Ltd. was used.
  • the NV (nonvolatile content) of the cyclohexanone solution of the acrylic resin was 12.5% by mass.
  • the polystyrene equivalent weight average molecular weight of the acrylic resin was 800,000.
  • NV3000-H manufactured by Nippon Kayaku Co., Ltd. was used as the epoxy resin.
  • the NV (nonvolatile content) of the methyl ethyl ketone solution of the epoxy resin was 50.2% by mass.
  • a phenol novolak resin hardening agent
  • "HP850N” manufactured by Hitachi Chemical Co., Ltd.
  • the NV (nonvolatile content) of the methyl ethyl ketone solution of phenol novolac resin was 43.0% by mass.
  • a curing accelerator As a curing accelerator, “2PZ-CN” manufactured by Shikoku Kasei Kogyo Co., Ltd. was used.
  • the NV (nonvolatile content) of the methyl ethyl ketone solution of the curing accelerator was 10% by mass.
  • silane coupling agent “KBM-573” manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • the resin composition varnish was obtained by stirring and mixing all the raw materials in an ointment container with a revolution stirrer.
  • a revolution-revolution stirrer As a revolution-revolution stirrer, "ARE-500” made by Shinky Co., Ltd. was used.
  • the revolution speed of the revolution / revolution stirrer was maintained at 1000 rpm for 5 minutes, and then the revolution speed was maintained at 2000 rpm for 1 minute.
  • 100 g of the metal element-containing powder was prepared by mixing 80 g of the first alloy powder with 20 g of the second alloy powder.
  • the first alloy powder was produced by grinding a metal foil of an Fe-based alloy.
  • a metal foil As a metal foil, a product "FINEMET” manufactured by Hitachi Metals, Ltd. was used.
  • the first alloy powder was a powder of an Fe-based alloy containing Fe, Nb, Cu, Si and B.
  • the particle diameter D50 of the first alloy powder was 25 ⁇ m.
  • Table 1 below, the first alloy powder is referred to as "FINEMET 1".
  • the second alloy powder was produced by grinding a metal foil of an Fe-based alloy.
  • a metal foil As a metal foil, a product "FINEMET” manufactured by Hitachi Metals, Ltd. was used.
  • the second alloy powder was a powder of an Fe-based alloy containing Fe, Nb, Cu, Si and B.
  • the particle diameter D50 of the second alloy powder was 4 ⁇ m.
  • Table 1 below, the second alloy powder is referred to as "FINEMET 2".
  • the metal foil was placed on a glass plate and the above paste was applied to the surface of the metal foil using a bar coater.
  • the paste applied to the metal foil was dried at 110 ° C. for 12 minutes to obtain a sheet-like laminate of Example 1 including the metal foil and the resin layer laminated on the metal foil.
  • the thickness of the resin layer after drying was 100 ⁇ m.
  • a hot air circulating dryer made by Tabai Espec Corp. was used to dry the paste.
  • the resin layer contained a semi-cured product of the above resin composition (B-stage resin composition).
  • the content (unit: mass%) of the metal element-containing powder in the resin layer is shown in Table 1 below.
  • the content (unit: volume%) of the metal element-containing powder in the resin layer is shown in Table 1 below.
  • metal foil As the metal foil, a product "FINEMET FT-3M" (50 W, heat-treated product) manufactured by Hitachi Metals, Ltd. was used. The thickness of the metal foil was 18 ⁇ m. This metal foil was made of an Fe-based alloy containing Fe, Nb, Cu, Si and B, and contained crystals of an Fe-based alloy having a crystal grain size of 10 nm or less.
  • Examples 2 to 5 and Comparative Examples 1 and 2 In the preparation of sheet-like laminates of Examples 2 to 5 and Comparative Examples 1 and 2 respectively, acrylic resin, epoxy resin, phenol resin, curing accelerator, cup shown in Table 1 below as components constituting the resin layer Ring agents and metal powders (metal elements) were used. In the case of Comparative Example 1, cyclohexanone was also used as a solvent. The mass of each component used in the preparation of the resin layer of each of Examples 2 to 5 and Comparative Examples 1 and 2 is shown in Table 1 below. The numerical values described in the column of each component in Table 1 below are the relative mass (unit: g) of each component to 100 g of metal powder.
  • the numerical values described in the columns of acrylic resin, epoxy resin, phenol resin and curing accelerator in Table 1 below are the mass of the solution of each component.
  • the contents (unit: mass%) of the metal element-containing powder in the resin layers of Examples 2 to 5 and Comparative Examples 1 and 2 are shown in Table 1 below.
  • the contents (unit: volume%) of the metal element-containing powders in the resin layers of Examples 2 to 5 and Comparative Examples 1 and 2 are shown in Table 1 below.
  • 9A4 in Table 1 below is a product “KUAMET 9A4-II” manufactured by Epson Atomics Co., Ltd., and is a powder of iron amorphous alloy (average particle diameter 25 ⁇ m).
  • SQ-I in Table 1 below is carbonyl iron powder (average particle diameter 5 ⁇ m) manufactured by BASF Japan Ltd.
  • Type A in Table 1 below is a powder (average particle diameter: 2 ⁇ m) made of FeSiCr manufactured by Shinto Kogyo Co., Ltd.
  • a sheet-like laminate of each of Examples 2 to 5 and Comparative Examples 1 and 2 was produced in the same manner as Example 1 except for the above matters.
  • the sheet laminate was wound on a plastic tube. During winding, the resin layer of the sheet-like laminate was brought into contact with the surface of the plastic tube. The dimensions of the sheet-like laminate were 10 cm ⁇ 20 cm. The diameter of the plastic tube was 10 cm. The state of the sheet-like laminate wound around a plastic tube was visually observed.
  • the sheet-like laminate according to the present invention is excellent in magnetic properties and flexibility, and has high industrial value.
  • 10, 10a, 10b sheet-like laminate, 12, 21, 23, 31, 31, 33: metal foil, 11, 22, 32, 32, 32a, 32b: resin layer, 34: base material, 20, 30: laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

磁気特性及び可撓性に優れたシート状積層体が提供される。シート状積層体10は、Fe系合金を含む金属箔12と、金属箔12に積層された樹脂層11と、を備え、金属箔12は、結晶粒径が10nm以下であるFe系合金の結晶を含み、樹脂層11は、樹脂組成物及び金属元素含有粉を含み、樹脂層11における金属元素含有粉の含有量は、64体積%よりも大きく93体積%未満である。

Description

シート状積層体及び積層物
 本発明は、シート状積層体及び積層物に関する。
 金属粉末及び樹脂組成物の混合物は、例えば、インダクタ又はボンド磁石等の工業製品の原材料として利用される(下記特許文献1及び2参照)。また、接着剤が塗布された金属箔(例えば、アルミニウム箔又は銅箔)は、電磁波シールドとして市販されている。
特開2004-31786号公報 特開平8-273916号公報
 Fe系合金等の軟磁性体から構成される金属箔は、電子機器の内外で発生した電磁波を遮蔽する電磁波シールドとして用いられる。そして、金属箔の結晶粒径が微細化されることにより、アモルファス(非晶質)の金属箔に比べて高い飽和磁束密度と高い比透磁率を両立させることが可能になる。このような金属箔を用いた工業製品の製造過程では、例えば、成形、切削、積層、移動及び搬送等のような金属箔の加工及びハンドリングが必要であるため、シートの可撓性が要求される。また金属箔自体を電磁波シールド等の工業製品として用いる場合であっても、破損防止のためにシートの可撓性が要求される。
 しかし、結晶粒径が微細化された金属箔は脆く、十分な可撓性を有しないため、加工及びハンドリングに伴って破損し易かった。そこで本発明者らは、従来の常識に反して、電磁波シールド等に用いられる金属箔に樹脂層を積層することにより、金属箔の可撓性が補強されたシート状積層体を作製することに成功した。しかし、本発明者らは、樹脂層自体の比透磁率は金属箔に比べて低いため、樹脂層を備えるシート状積層体全体の磁気特性は金属箔単独の磁気特性に劣る、という問題を見出した。
 本発明は、磁気特性及び可撓性に優れたシート状積層体、及び当該シート状積層体を備える積層物を提供することを目的とする。
 本発明の一側面に係るシート状積層体は、Fe系合金を含む金属箔と、金属箔に積層された樹脂層と、を備え、金属箔は、結晶粒径が10nm以下であるFe系合金の結晶を含み、樹脂層は、樹脂組成物及び金属元素含有粉を含み、樹脂層における金属元素含有粉の含有量は、64体積%よりも大きく93体積%未満である。
 本発明の一側面において、Fe系合金は、Fe及びNbを含有してよい。
 本発明の一側面において、Fe系合金は、Fe、Nb、Cu、Si及びBを含有してよい。
 本発明の一側面において、金属元素含有粉は、Fe系合金を含有してよい。
 本発明の一側面において、金属元素含有粉に含有されるFe系合金は、Fe、Nb、Cu、Si及びBを含有してよい。
 本発明の一側面において、金属元素含有粉は、粒子径が10nm以下である金属元素含有粒子を含んでよい。
 本発明の一側面において、樹脂組成物は、エポキシ樹脂を含有してよい。
 本発明の一側面において、樹脂組成物は、フェノール樹脂を含有してよい。
 本発明の一側面において、樹脂組成物は、アクリル樹脂を含有してよい。
 本発明の一側面において、樹脂層は、樹脂組成物の半硬化物を含んでよい。
 本発明の一側面に係る積層物は、上記のシート状積層体と、シート状積層体が重ねられた基材と、を備え、樹脂層が基材に接している。
 本発明の一側面に係る積層物において、樹脂層は、樹脂組成物の半硬化物、及び樹脂組成物の硬化物のうち少なくともいずれか一方を含んでもよい。
 本発明によれば、磁気特性及び可撓性に優れたシート状積層体、及び当該シート状積層体を備える積層物が提供される。
図1中の(a)は、本発明の一実施形態に係るシート状積層体の積層方向に平行な断面の模式図であり、図1中の(b)は、本発明の一実施形態に係る積層物の積層方向に平行な断面の模式図であり、図1中の(c)は、本発明の一実施形態に係る積層物の積層方向に平行な断面の模式図である。
 以下、場合により図面を参照して、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。
 図1中の(a)に示されるように、本実施形態に係るシート状積層体10は、金属箔12と、金属箔12に積層された樹脂層11、とを備える。樹脂層11が金属箔12に積層されることにより、金属箔12の可撓性が補強される。換言すれば、元々脆い金属箔12の機械的強度が樹脂層11によって補強される。その結果、シート状積層体10は、金属箔12単独に比べて優れた可撓性を有することができる。シート状積層体10が他の部材(例えば後述の基材)に積層される際に、樹脂層11は接着剤として機能する。樹脂層11は、金属箔12の表面の少なくとも一部又は全体を覆っていてよい。樹脂層11は、金属箔12の表面に直接積層されていてよい。金属箔12の厚みは、特に限定されないが、例えば、好ましくは100μm以下、より好ましくは50μm以下、さらに好ましくは20μm以下であってよい。金属箔12の厚みは、2μm以上であってよい。樹脂層11の厚みは、特に限定されないが、例えば、20μm以上500μm以下であってよい。金属箔12の寸法は、シート状積層体10の用途によって変更されてよく、特に限定されない。例えば、シート状積層体10が四角形である場合、シート状積層体10の縦幅は10mm以上500mm以下であってよく、シート状積層体10の横幅は10mm以上500mm以下であってよい。シート状積層体10全体の形状は、シート状積層体10の用途によって変更されてよく、特に限定されない。シート状積層体10の形状は、例えば、多角形、円形、又は楕円形であってよい。シート状積層体10の各辺は、例えば、直線状又は曲線状であってよい。
 金属箔12は、Fe系合金(つまりFeを含有する合金)を含む。金属箔12は、Fe系合金のみからなっていてよい。金属箔12は、一種又は複数種のFe系合金を含んでよい。Fe系合金は、軟磁性体又は硬磁性体であってよい。金属箔12は、金属箔12の比透磁率を過度に低下させない限度において、Fe系合金に加えて他の成分(例えば、金属又は合金)を含んでよい。Fe系合金は、例えば、Fe‐Cr系合金、Fe‐Ni‐Cr系合金、Fe‐Si系合金、Fe‐Si‐Al系合金、Fe‐Ni系合金、Fe‐Cu‐Ni系合金、Fe‐Co系合金、Fe‐Cr‐Si系合金、及びNd‐Fe‐B系合金からなる群より選ばれる少なくとも一種を含んでよい。
 Fe系合金は、Fe及びNbを含有してよい。Fe系合金は、Fe、Nb、Cu、Si及びBを含有してよい。Fe及びNbを含有するFe系合金、又はFe、Nb、Cu、Si及びBを含有するFe系合金では、高い飽和磁束密度と高い比透磁率が両立し易い。
 Fe系合金は、例えば、下記化学式(1)で表されてよい。下記化学式(1)で表されるFe系合金では、高い飽和磁束密度と高い比透磁率が両立し易い。
(Fe1-a100-x-y-z-α-β-γCuSiM’αM’’βγ   (1)
化学式(1)中、Mは、Co及びNiのうち一方又は両方である。M’は、Nb、Mo、Ta、Ti、Zr、Hf、V、Cr、Mn及びWからなる群より選ばれる少なくとも一種である。M’’は、Al、白金族元素、Sc、希土類元素、Au、Zn、Sn及びReからなる群より選ばれる少なくとも一種である。Xは、C、Ge、P、Ga、Sb、In、Be及びAsからなる群より選ばれる少なくとも一種である。a、x、y、z、α、β及びγは、それぞれ0≦a≦0.5、0.1≦x≦3、0≦y≦30、0≦z≦25、5≦y+z≦30、0≦α≦20、0≦β≦20及び0≦γ≦20を満足する。
 金属箔12は、結晶粒径が10nm以下であるFe系合金の結晶を含む。金属箔12に含まれるFe系合金の結晶粒径が10nm以下であることにより、金属箔12及びシート状積層体10の全体が、従来のFe系合金からなる金属箔に比べて、優れた磁気特性(例えば軟磁気特性)を有することができる。例えば、金属箔12に含まれるFe系合金の結晶粒径が10nm以下であることにより、従来のアモルファスなFe系合金からなる金属箔に比べて、高い飽和磁束密度と高い比透磁率と両立させることが可能になる。金属箔12に含まれるFe系合金の結晶の結晶粒径(例えば結晶粒径の平均値)は、5nm以上10nm以下であってよい。金属箔12に含まれるFe系合金の結晶粒径の測定手段は、特に限定されないが、例えば、走査型電子顕微鏡(SEM)、又は透過型電子顕微鏡(TEM)であってよい。粉末X線回折法に基づくシェラー(Scherrer)の式を用いて、金属箔12に含まれるFe系合金の結晶粒径が特定されてもよい。
 結晶粒径が10nm以下であるFe系合金の結晶を含む金属箔12は、例えば、以下の方法によって製造することができる。原料として、目的とする金属箔12と同じ組成を有するFe系合金の素材を作製する。例えば、Fe系合金の素材は、Feを主成分として含み、さらにSi、B、Cu及びNbを添加元素として含む合金であってよい。Fe系合金の素材を高温で加熱することにより、合金の融液を得る。融液を約100万℃/秒程度で急冷及び固化することにより、アモルファス(非晶質)のFe系合金からなる薄帯を得る。この薄帯を、Fe系合金の結晶化温度以上の温度で熱処理する。以上の方法により、Fe系合金の結晶粒径が微細化され、結晶粒径が10nm以下であるFe系合金の結晶を含む金属箔12が得られる。
 Fe系合金の市販品としては、例えば、日立金属株式会社製のナノ結晶軟磁性材料である「ファインメット」(登録商標)が好適である。ファインメットは、例えば、Fe、Nb、Cu、Si及びBを含有し、結晶粒径が10nm以下である結晶を含む。
 樹脂層11は、樹脂組成物及び金属元素含有粉を含む。樹脂層11は、樹脂組成物及び金属元素含有粉からなっていてよい。金属元素含有粉を含む樹脂層11は、金属元素含有粉に由来する磁気特性を有することができる。樹脂層11における金属元素含有粉の含有量は、64体積%よりも大きく93体積%未満である。樹脂層11における金属元素含有粉の含有量が64体積%よりも大きく93体積%未満であることにより、樹脂層11の磁気特性(例えば、比透磁率)と、樹脂層11の可撓性が両立する。その結果、シート状積層体10の優れた磁気特性と優れた可撓性が両立する。樹脂層11における金属元素含有粉の含有量が64体積%以下である場合、金属元素含有粉に由来する樹脂層11の磁気特性(例えば、比透磁率)が損なわれ、シート状積層体10全体としての磁気特性も損なわれる。樹脂層11における金属元素含有粉の含有量が93体積%以上である場合、樹脂組成物に由来する樹脂層11の可撓性が損なわれ、シート状積層体10全体としての可撓性も損なわれる。シート状積層体10の磁気特性及び可撓性を両立させる観点において、樹脂層11における金属元素含有粉の含有量は、好ましくは65体積%以上90体積%以下、より好ましくは70体積%以上85体積%以下であってよい。樹脂層11における樹脂組成物の含有量は、17体積%以上36体積%以下、好ましくは16体積%以上32体積%以下、より好ましくは15体積%以上30体積%以下であってよい。
 シート状積層体10の磁気特性及び可撓性を両立させ易い観点において、樹脂層11における金属元素含有粉の含有量は、好ましくは93質量%よりも大きく99質量%未満、より好ましくは95質量%以上98質量%以下であってよい。同様の理由から、樹脂層11における樹脂組成物の含有量は、好ましくは1質量%以上7質量%以下、より好ましくは2質量%以上5質量%以下であってよい。
 樹脂層11に含まれる金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種を含有してよい。金属元素含有粉は、例えば、金属単体、合金及び金属化合物からなる群より選ばれる少なくとも一種からなっていてよい。合金は、固溶体、共晶及び金属間化合物からなる群より選ばれる少なくとも一種を含んでよい。合金とは、例えば、ステンレス鋼(Fe‐Cr系合金、Fe‐Ni‐Cr系合金等)であってよい。金属化合物とは、例えば、フェライト等の酸化物であってよい。金属元素含有粉は、一種の金属元素又は複数種の金属元素を含んでよい。金属元素含有粉に含まれる金属元素は、例えば、卑金属元素、貴金属元素、遷移金属元素、又は希土類元素であってよい。コンパウンド粉は、一種の金属元素含有粉を含んでよく、複数種の金属元素含有粒粉を含んでもよい。
 金属元素含有粉に含まれる金属元素は、例えば、鉄(Fe)、銅(Cu)、チタン(Ti)、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、スズ(Sn)、クロム(Cr)、バリウム(Ba)、ストロンチウム(Sr)、鉛(Pb)、銀(Ag)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)及びジスプロシウム(Dy)からなる群より選ばれる少なくとも一種であってよい。金属元素含有粉は、金属元素以外の元素を含んでもよい。金属元素含有粉は、例えば、酸素(О)、ベリリウム(Be)、リン(P)、ホウ素(B)、又はケイ素(Si)を含んでもよい。金属元素含有粉は、磁性粉であってよい。金属元素含有粉は、軟磁性合金、又は硬磁性合金であってよい。金属元素含有粉は、例えば、Fe‐Si系合金、Fe‐Si‐Al系合金(センダスト)、Fe‐Ni系合金(パーマロイ)、Fe‐Cu‐Ni系合金(パーマロイ)、Fe‐Co系合金(パーメンジュール)、Fe‐Cr‐Si系合金(電磁ステンレス鋼)、Nd‐Fe‐B系合金(希土類磁石)、Sm‐Co系合金(希土類磁石)、Sm‐Fe‐N系合金(希土類磁石)、Al‐Ni‐Co系合金(アルニコ磁石)及びフェライトからなる群より選ばれる少なくとも一種からなる磁性粉であってよい。フェライトは、例えば、スピネルフェライト、六方晶フェライト、又はガーネットフェライトであってよい。金属元素含有粉は、Cu‐Sn系合金、Cu‐Sn‐P系合金、Cu-Ni系合金、又はCu‐Be系合金等の銅合金であってもよい。金属元素含有粉は、上記の元素及び組成物のうち一種を含んでよく、上記の元素及び組成物のうち複数種を含んでもよい。
 金属元素含有粉は、Fe単体であってもよい。金属元素含有粉は、Fe系合金であってもよい。Fe系合金は、例えば、Fe‐Si‐Cr系合金、又はNd‐Fe‐B系合金であってよい。金属元素含有粉は、アモルファス系鉄粉及びカルボニル鉄粉のうち少なくともいずれかであってもよい。金属元素含有粉がFe単体及びFe系合金のうち少なくともいずれかを含む場合、高い占積率を有し、且つ磁気特性に優れる樹脂層11を作製し易い。金属元素含有粉は、Feアモルファス合金であってもよい。Feアモルファス合金粉の市販品としては、例えば、AW2‐08、KUAMET‐6B2(以上、エプソンアトミックス株式会社製の商品名)、DAP MS3、DAP MS7、DAP MSA10、DAP PB、DAP PC、DAP MKV49、DAP 410L、DAP 430L、DAP HYBシリーズ(以上、大同特殊鋼株式会社製の商品名)、MH45D、MH28D、MH25D、及びMH20D(以上、神戸製鋼株式会社製の商品名)からなる群より選ばれる少なくとも一種が用いられてよい。
 金属元素含有粉に含まれるFe系合金は、好ましくはFe及びNbを含有してよく、より好ましくはFe、Nb、Cu、Si及びBを含有してよい。金属元素含有粉が、Fe及びNb、又はFe、Nb、Cu、Si及びBを含有するFe系合金含むことにより、樹脂層11の飽和磁束密度及び比透磁率が向上し易い。その結果、シート状積層体10の磁気特性も向上し易い。
 金属元素含有粉に含まれるFe系合金は、上記化学式(1)で表されてよい。金属元素含有粉が、上記化学式(1)で表されるFe系合金を含有することにより、樹脂層11の飽和磁束密度及び比透磁率が向上し易く、シート状積層体10の磁気特性も向上し易い。その結果、シート状積層体10の磁気特性も向上し易い。
 金属元素含有粉の平均粒子径は、例えば、1μm以上300μm以下であってよい。金属元素含有粉のメジアン径D50は1μm以上90μm以下であってよい。金属元素含有粉は、粒子径が10nm以下である金属元素含有粒子を含んでよい。金属元素含有粉は、粒子径が5nm以上10nm以下である金属元素含有粒子を含んでよい。金属元素含有粒子の粒子径が小さいほど、より多数の金属元素含有粒子が樹脂層11中に緻密に充填され易く、樹脂層11全体の密度が向上し易い。その結果、樹脂層11の飽和磁束密度及び比透磁率が向上し易く、金属元素含有粉の含有に伴う樹脂層11の機械的強度及び可撓性の低下が抑制され易い。したがって、シート状積層体10の磁気特性及び可撓性も向上し易い。金属元素含有粒子の粒子径は、例えば、レーザ回折・散乱式の粒子径分布測定装置を用いて測定されてよい。粒子径が10nm以下である金属元素含有粒子は、結晶粒径が10nm以下であるFe系合金の結晶を含む上記の金属箔を原料して用いることにより、作製されてよい。例えば、結晶粒径が10nm以下であるFe系合金の結晶を含む上記の金属箔を粉砕することにより、粒子径が10nm以下である金属元素含有粒子を調製することができる。シート状積層体10の磁気特性が向上させる観点において、金属元素含有粉を構成する個々の金属元素含有粒子は、結晶粒径が10nm以下であるFe系合金の結晶を含んでもよい。
 金属元素含有粉に含まれる個々の金属元素含有粒子の形状は、特に限定されない。個々の金属元素含有粒子は、例えば、球状、扁平形状、角柱状又は針状であってよい。樹脂層11は、平均粒子径が異なる複数種の金属元素含有粒子を含んでよい。金属箔12の組成は、樹脂層11に含まれる金属元素含有粉の組成と同じであってよい。金属箔12の組成は、樹脂層11に含まれる金属元素含有粉の組成と異なっていてもよい。金属元素含有粉及び樹脂組成物が、樹脂層11中において分散していてよい。つまり、樹脂層11において、樹脂組成物及び金属元素含有粉は均一に混ざっていてよい。
 樹脂層11は、未硬化の樹脂組成物を含んでよい。樹脂層11が未硬化の樹脂組成物を含む場合、シート状積層体10を用いた工業製品の製造過程の適時において、樹脂層11中の樹脂組成物の一部を軟化又は液化させ易く、樹脂組成物の流動性が向上し易い。その結果、樹脂層11を他の部材に密着させ易く、樹脂層11を他の部材に充填させ易い。樹脂層11は、樹脂組成物の半硬化物(Bステージの樹脂組成物)を含んでもよい。樹脂組成物の半硬化物を含む樹脂層11は、樹脂組成物が硬化されていない場合に比べて、機械的強度に優れている。樹脂層11が樹脂組成物の半硬化物を含む場合、シート状積層体10を用いた工業製品の製造過程の適時において、樹脂層11を完全に硬化させてよい。樹脂層11は、未硬化の樹脂組成物と、樹脂組成物の半硬化物と、を含んでもよい。樹脂組成物の半硬化物は、樹脂層11をケトン系溶媒(メチルエチルケトン等)へ溶解した後に残る固形分残渣のうち金属元素含有粉を除く成分に相当する。
 本実施形態に係る積層物は、上記のシート状積層体と、シート状積層体が重ねられた基材と、を備えてよく、樹脂層が基材に接していてよい。樹脂層が基材に密着していてよい。樹脂層の硬化物が基材に接していてよい。例えば、図1中の(c)に示されるように、積層物30は、第一の金属箔31及び第二の金属箔33と、第一の金属箔31及び第二の金属箔33に挟まれた樹脂層32と、樹脂層32中に埋設された基材34と、を備える。積層物30は、一対のシート状積層体10a及び10bと、基材34と、から作製される。一方のシート状積層体10aの樹脂層32aと、他方のシート状積層体10bの樹脂層32bを、互いに向かい合わせて、基材34を一対の樹脂層32a及び32bで挟み込み、樹脂層32a及び32bを互いに密着させる。樹脂層32a及び32bを樹脂組成物の硬化温度よりも低い温度で加熱することにより、樹脂層32a及び32bに含まれる樹脂組成物が軟化又は液化する。その結果、樹脂層32a及び32b其々の表面が混ざり合って一体化し、基材34の表面が樹脂層32で斑なく覆われる。続いて、樹脂層32を硬化してもよい。基材34がコイルである場合、例えば、樹脂層32a及び32bがコイルを包み込み、且つコイルの内側に充填される。つまり樹脂層32a及び32bがコイルの磁芯になる。積層物30が備える樹脂層32は、樹脂組成物の半硬化物、及び樹脂組成物の硬化物のうち少なくともいずれか一方を含んでよい。つまり、積層物30が備える樹脂層32は、完全に硬化していなくてもよく、完全に硬化していてよい。
 一対のシート状積層体から積層物が形成する場合、重なり合う一対の樹脂層の組成は互いに同じであってもよく、異なっていてもよい。一方のシート状積層体の金属箔の組成は、他方の金属箔の組成と同じであってよい。一方のシート状積層体の金属箔の組成は、他方の金属箔の組成と異なっていてもよい。
 樹脂層11に含まれる樹脂組成物は、少なくとも樹脂を含有する。樹脂組成物は、樹脂、硬化剤、硬化促進剤及び添加剤を包含し得る成分であって、有機溶媒と金属元素含有粉とを除く残りの成分(不揮発性成分)であってよい。添加剤とは、樹脂組成物のうち、樹脂、硬化剤及び硬化促進剤を除く残部の成分である。添加剤とは、例えば、カップリング剤又は難燃剤等である。樹脂組成物が添加剤としてワックスを含んでいてもよい。樹脂組成物がワックスを含有することにより、樹脂層11の離型性が向上したり、加熱された樹脂層11の流動性が向上したりする。ワックスは、例えば、ワックスは、高級脂肪酸等の脂肪酸、及び脂肪酸エステルのうち少なくともいずれか一つであってよい。
 樹脂組成物は金属元素含有粒粉の結合剤(バインダー)としての機能を有し、樹脂層11に機械的強度を付与する。例えば、樹脂層11中の樹脂組成物が加圧されて部材(例えば基材34)へ当接される際に、金属元素含有粉の間に充填され、金属元素含有粉を互いに結着する。樹脂層11中の樹脂組成物を硬化させることにより、樹脂組成物の硬化物が金属元素含有粉同士をより強固に結着して、樹脂層11、シート状積層体10及び積層物其々の機械的強度が向上する。
 樹脂層11に含まれる樹脂組成物は、熱硬化性樹脂を含有してよい。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂及びポリアミドイミド樹脂からなる群より選ばれる少なくとも一種であってよい。樹脂組成物がエポキシ樹脂及びフェノール樹脂の両方を含む場合、フェノール樹脂はエポキシ樹脂の硬化剤として機能してもよい。樹脂組成物は、熱可塑性樹脂を含んでもよい。熱可塑性樹脂は、例えば、アクリル樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、及びポリエチレンテレフタレートからなる群より選ばれる少なくとも一種であってよい。樹脂組成物は、熱硬化性樹脂及び熱可塑性樹脂の両方を含んでよい。樹脂組成物は、シリコーン樹脂を含んでもよい。
 エポキシ樹脂は熱硬化性樹脂の中でも流動性に優れているので、樹脂組成物はエポキシ樹脂を含有することが好ましい。エポキシ樹脂は、例えば、1分子中に2個以上のエポキシ基を有する樹脂であってよい。エポキシ樹脂の中でも、結晶性のエポキシ樹脂が好ましい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。
 エポキシ樹脂は、例えば、スチルベン型エポキシ樹脂、ジフェニルメタン型エポキシ樹脂、硫黄原子含有型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、サリチルアルデヒド型エポキシ樹脂、ナフトール類とフェノール類との共重合型エポキシ樹脂、アラルキル型フェノール樹脂のエポキシ化物、ビスフェノール型エポキシ樹脂、アルコール類のグリシジルエーテル型エポキシ樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、テルペン変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂、多環芳香環変性フェノール樹脂のグリシジルエーテル型エポキシ樹脂、ナフタレン環含有フェノール樹脂のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジル型又はメチルグリシジル型のエポキシ樹脂、脂環型エポキシ樹脂、ハロゲン化フェノールノボラック型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、トリメチロールプロパン型エポキシ樹脂、及びオレフィン結合を過酢酸等の過酸で酸化して得られる線状脂肪族エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。
 流動性に優れている観点において、エポキシ樹脂は、ビフェニル型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、サリチルアルデヒドノボラック型エポキシ樹脂、及びナフトールノボラック型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。
 エポキシ樹脂は、結晶性のエポキシ樹脂であってよい。結晶性のエポキシ樹脂の分子量は比較的低いにもかかわらず、結晶性のエポキシ樹脂は比較的高い融点を有し、且つ流動性に優れる。結晶性のエポキシ樹脂(結晶性の高いエポキシ樹脂)は、例えば、ハイドロキノン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、チオエーテル型エポキシ樹脂、及びビフェニル型エポキシ樹脂からなる群より選ばれる少なくとも一種であってよい。結晶性のエポキシ樹脂の市販品は、例えば、エピクロン860、エピクロン1050、エピクロン1055、エピクロン2050、エピクロン3050、エピクロン4050、エピクロン7050、エピクロンHM-091、エピクロンHM-101、エピクロンN-730A、エピクロンN-740、エピクロンN-770、エピクロンN-775、エピクロンN-865、エピクロンHP-4032D、エピクロンHP-7200L、エピクロンHP-7200、エピクロンHP-7200H、エピクロンHP-7200HH、エピクロンHP-7200HHH、エピクロンHP-4700、エピクロンHP-4710、エピクロンHP-4770、エピクロンHP-5000、エピクロンHP-6000、及びN500P-2(以上、DIC株式会社製の商品名)、NC-3000、NC-3000-L、NC-3000-H、NC-3100、CER-3000-L、NC-2000-L、XD-1000、NC-7000-L、NC-7300-L、EPPN-501H、EPPN-501HY、EPPN-502H、EOCN-1020、EOCN-102S、EOCN-103S、EOCN-104S、CER-1020、EPPN-201、BREN-S、BREN-10S(以上、日本化薬株式会社製の商品名)、YX-4000、YX-4000H、YL4121H、及びYX-8800(以上、三菱ケミカル株式会社製の商品名)からなる群より選ばれる少なくとも一種であってよい。
 樹脂組成物は、上記のうち一種のエポキシ樹脂を含有してよい。樹脂組成物は、上記のうち複数種のエポキシ樹脂を含有してもよい。
 硬化剤は、低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤と、加熱に伴ってエポキシ樹脂を硬化させる加熱硬化型硬化剤と、に分類される。低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤は、例えば、脂肪族ポリアミン、ポリアミノアミド、及びポリメルカプタン等である。加熱硬化型硬化剤は、例えば、芳香族ポリアミン、酸無水物、フェノールノボラック樹脂、及びジシアンジアミド(DICY)等である。
 低温から室温の範囲でエポキシ樹脂を硬化させる硬化剤を用いた場合、エポキシ樹脂の硬化物のガラス転移点は低く、エポキシ樹脂の硬化物は軟らかい傾向がある。その結果、樹脂層11も軟らかくなり易い。一方、樹脂層11の耐熱性を向上させる観点から、硬化剤は、好ましくは加熱硬化型の硬化剤、より好ましくはフェノール樹脂、さらに好ましくはフェノールノボラック樹脂であってよい。特に硬化剤としてフェノールノボラック樹脂を用いることで、ガラス転移点が高いエポキシ樹脂の硬化物が得られ易い。その結果、成形体の耐熱性及び機械強度が向上し易い。
 フェノール樹脂は、例えば、アラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、サリチルアルデヒド型フェノール樹脂、ノボラック型フェノール樹脂、ベンズアルデヒド型フェノールとアラルキル型フェノールとの共重合型フェノール樹脂、パラキシリレン及び/又はメタキシリレン変性フェノール樹脂、メラミン変性フェノール樹脂、テルペン変性フェノール樹脂、ジシクロペンタジエン型ナフトール樹脂、シクロペンタジエン変性フェノール樹脂、多環芳香環変性フェノール樹脂、ビフェニル型フェノール樹脂、及びトリフェニルメタン型フェノール樹脂からなる群より選ばれる少なくとも一種であってよい。フェノール樹脂は、上記のうちの2種以上から構成される共重合体であってもよい。フェノール樹脂の市販品としては、例えば、荒川化学工業株式会社製のタマノル758、又は日立化成株式会社製のHP-850N等を用いてもよい。
 フェノールノボラック樹脂は、例えば、フェノール類及び/又はナフトール類と、アルデヒド類と、を酸性触媒下で縮合又は共縮合させて得られる樹脂であってよい。フェノールノボラック樹脂を構成するフェノール類は、例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、フェニルフェノール及びアミノフェノールからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するナフトール類は、例えば、α‐ナフトール、β‐ナフトール及びジヒドロキシナフタレンからなる群より選ばれる少なくとも一種であってよい。フェノールノボラック樹脂を構成するアルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ベンズアルデヒド及びサリチルアルデヒドからなる群より選ばれる少なくとも一種であってよい。
 硬化剤は、例えば、1分子中に2個のフェノール性水酸基を有する化合物であってもよい。1分子中に2個のフェノール性水酸基を有する化合物は、例えば、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、及び置換又は非置換のビフェノールからなる群より選ばれる少なくとも一種であってよい。
 樹脂組成物は、上記のうち一種のフェノール樹脂を含有してよい。樹脂組成物は、上記のうち複数種のフェノール樹脂を備えてもよい。樹脂組成物は、上記のうち一種の硬化剤を含有してよい。樹脂組成物は、上記のうち複数種の硬化剤を含有してもよい。
 エポキシ樹脂中のエポキシ基と反応する硬化剤中の活性基(フェノール性OH基)の比率は、エポキシ樹脂中のエポキシ基1当量に対して、好ましくは0.5~1.5当量、より好ましくは0.9~1.4当量、さらに好ましくは1.0~1.2当量であってよい。硬化剤中の活性基の比率が0.5当量未満である場合、硬化後のエポキシ樹脂の単位重量当たりのOH量が少なくなり、樹脂組成物(エポキシ樹脂)の硬化速度が低下する。また硬化剤中の活性基の比率が0.5当量未満である場合、得られる硬化物のガラス転移温度が低くなったり、硬化物の充分な弾性率が得られなかったりする。一方、硬化剤中の活性基の比率が1.5当量を超える場合、樹脂層11の硬化後の機械的強度が低下する傾向がある。ただし、硬化剤中の活性基の比率が上記範囲外である場合であっても、本発明に係る効果は得られる。
 樹脂組成物はアクリル樹脂を含有することが好ましい。アクリル樹脂の分子量はエポキシ樹脂よりも分子量が大きいため、アクリル樹脂はエポキシ樹脂に比べて高い粘性を有する。したがって、樹脂組成物がアクリル樹脂を含有することにより、樹脂組成物を含む樹脂層11の可撓性(柔軟性)が向上し易く、シート状積層体10の可撓性も向上し易い。アクリル樹脂は、アクリル酸由来の構造単位(アクリルモノマー)及びメタクリル酸由来の構造単位(メタクリルモノマー)のうち少なくともいずれかを有する重合体又は共重合体である。アクリル樹脂は、例えば、ラジカル重合又はリビング重合によって形成されてよい。シートの可撓性を向上させる観点から、アクリル樹脂のポリスチレン換算の重量平均分子量は、好ましくは50万以上150万以下、より好ましくは60万以上100万以下であってよい。アクリルモノマーは、例えば、アクリロニトリル、エチルアクリレート、及びブチルアクリリレートからなる群より選ばれる少なくとも一種であってよい。メタクリルモノマーは、例えば、グリシジルメタクリレートであってよい。アクリル樹脂がグリシジル基を有していてよい。樹脂組成物は上記のうち一種のアクリル樹脂を備えてよく、樹脂組成物は上記のうち複数種のアクリル樹脂を備えてもよい。
 樹脂組成物がエポキシ樹脂及びアクリル樹脂を含有する場合、樹脂層11(又は樹脂組成物)に含まれるエポキシ樹脂の質量は、樹脂層11(又は樹脂組成物)に含まれるエポキシ樹脂及びアクリル樹脂の質量の合計100質量部に対して、30~90質量部であってよい。樹脂層11(又は樹脂組成物)に含まれるアクリル樹脂の質量は、樹脂層11(又は樹脂組成物)に含まれるエポキシ樹脂及びアクリル樹脂の質量の合計100質量部に対して、10~70質量部であってよい。
 硬化促進剤は、例えば、エポキシ樹脂と反応してエポキシ樹脂の硬化を促進させる組成物であれば限定されない。樹脂組成物は、一種の硬化促進剤を備えてよい。樹脂組成物は、複数種の硬化促進剤を備えてもよい。樹脂組成物が硬化促進剤を含有することにより、樹脂層11の成形性及び離型性が向上し易い。また樹脂組成物は硬化促進剤を含有することにより、シート状積層体10を用いて製造された積層物(例えば、電子部品)の機械的強度が向上したり、高温・高湿な環境下における樹脂層11の保存安定性が向上したりする。硬化促進剤は、例えば、アルキル基置換イミダゾール、又はベンゾイミダゾール等のイミダゾール類であってよい。イミダゾール系硬化促進剤の市販品としては、例えば、2MZ-H、C11Z、C17Z、1,2DMZ、2E4MZ、2PZ-PW、2P4MZ、1B2MZ、1B2PZ、2MZ-CN、C11Z-CN、2E4MZ-CN、2PZ-CN、C11Z-CNS、2P4MHZ、TPZ、及びSFZ(以上、四国化成工業株式会社製の商品名)からなる群より選ばれる少なくとも一種を用いてよい。これらの中でも長鎖アルキル基を有する硬化剤が好ましく、例えば、C11Z-CN(1-シアノエチル-2-ウンデシルイミダゾール)が好ましい。
 硬化促進剤の配合量は、硬化促進効果が得られる量であればよく、特に限定されない。ただし、樹脂組成物の吸湿時の硬化性及び流動性を改善する観点からは、硬化促進剤の配合量は、100質量部のエポキシ樹脂に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部であってよい。硬化促進剤の含有量は、エポキシ樹脂及び硬化剤(例えばフェノール樹脂)の質量の合計に対して0.001質量部以上5質量部以下であることが好ましい。硬化促進剤の配合量が0.1質量部未満である場合、十分な硬化促進効果が得られ難い。硬化促進剤の配合量が30質量部を超える場合、樹脂層11の保存安定性が低下し易い。ただし、硬化促進剤の配合量及び含有量が上記範囲外である場合であっても、本発明に係る効果は得られる。
 カップリング剤は、樹脂組成物と金属元素含有粉との密着性を向上させ、樹脂層11及びシート状積層体10其々の可撓性及び機械的強度を向上させる。カップリング剤は、例えば、シラン系化合物(シランカップリング剤)、チタン系化合物、アルミニウム化合物(アルミニウムキレート類)、及びアルミニウム/ジルコニウム系化合物からなる群より選ばれる少なくとも一種であってよい。シランカップリング剤は、例えば、エポキシシラン、メルカプトシラン、アミノシラン、アルキルシラン、ウレイドシラン、酸無水物系シラン及びビニルシランからなる群より選ばれる少なくとも一種であってよい。特に、アミノフェニル系のシランカップリング剤が好ましい。コンパウンド粉は、上記のうち一種のカップリング剤を備えてよく、上記のうち複数種のカップリング剤を備えてもよい。
 樹脂層11の環境安全性、リサイクル性、成形加工性及び低コストのために、樹脂組成物は難燃剤を含んでよい。難燃剤は、例えば、臭素系難燃剤、鱗茎難燃剤、水和金属化合物系難燃剤、シリコーン系難燃剤、窒素含有化合物、ヒンダードアミン化合物、有機金属化合物及び芳香族エンプラからなる群より選ばれる少なくとも一種であってよい。コンパウンド粉は、上記のうち一種の難燃剤を備えてよく、上記のうち複数種の難燃剤を備えてもよい。
 シート状積層体10の用途は、限定されない。金属箔12の組成、樹脂層11に含まれる金属元素含有粉樹脂組成物其々の組成、及びこれらの組合せに応じて、シート状積層体10の電磁気的特性又は熱伝導性等の諸物性は自在に制御される。したがって、シート状積層体10を様々な工業製品又はそれらの材料に利用することができる。シート状積層体10を用いて製造される工業製品は、例えば、自動車関連機器、医療機器、電子機器、電気機器、情報通信機器、家電製品、音響機器、及び一般産業機器であってよい。例えば、樹脂層11が金属元素含有粉としてFe系合金又はフェライト等の軟磁性粉を含む場合、シート状積層体10は、インダクタ(例えばEMIフィルタ)又はトランスの材料として利用されてよい。樹脂層11が金属元素含有粉として永久磁石を含む場合、シート状積層体10はボンド磁石の材料として利用されてよい。樹脂層11が金属元素含有粉として鉄と銅とを含む場合、シート状積層体10は、電磁波シールドとして利用されてよい。
 シート状積層体の製造方法は、第一工程及び第二工程を備えてよい。シート状積層体の製造方法は、必要に応じて、第二工程に続く第三工程を更に備えてもよい。以下では、各工程の詳細を説明する。
 第一工程では、上述の樹脂組成物、金属元素含有粉及び有機溶媒を均一に混合することにより、ペーストを調製する。換言すれば、上述の樹脂組成物、金属元素含有粉及び有機溶媒を混合することにより、ペーストを調製する。ペーストは、硬化剤及び硬化促進剤を含んでよい。ペーストは、シランカップリング剤及び難燃剤等の添加剤を含んでよい。有機溶媒は、上述の樹脂層の各成分を溶解する液体であればよく、特に限定されない。有機溶媒は、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、ベンゼン、トルエン、カルビトールアセテート、ブチルカルビトールアセテート、シクロヘキサノン及びキシレンからなる群より選ばれる少なくとも一種であってよい。作業性の観点から、有機溶媒は常温で液体であることが好ましく、且つ有機溶媒の沸点が60℃以上150℃以下であることが好ましい。
 第二工程では、ペーストを金属箔の表面に塗布する。そして、金属箔に塗布されたペーストを乾燥して有機溶媒を除去することにより、Bステージの樹脂層を金属箔の表面に形成する。Bステージの樹脂層とは、樹脂組成物の半硬化物を含む樹脂層と言い換えられてよい。Bステージの樹脂層と、当該樹脂層が積層された金属箔とを備える積層体を、シート状積層体の完成品として用いてよい。ペーストの塗布方法は、例えば、バーコータ、コンマコータ、又はディップコータであってよい。
 基材に塗布されたペーストの乾燥温度は、有機溶媒の種類に応じて適宜調整されてよい。乾燥温度は、例えば、60℃以上160℃以下、好ましくは70℃以上140℃以下、さらに好ましくは80℃以上130℃以下であってよい。乾燥温度が60℃未満である場合、乾燥に長時間を要する。また乾燥温度が60℃未満である場合、有機溶媒が樹脂層中に残って樹脂層の機械的強度が損なわれたり、樹脂層に皺が生じたり、第三工程においてボイドが発生したりする。一方、乾燥温度が160℃を超える場合、有機溶媒の急激な揮発によって第二工程においてボイドが発生したり、樹脂組成物の硬化が進み過ぎたりする。
 第三工程では、樹脂層(Bステージの樹脂層)を熱処理によって更に硬化させ、Cステージの樹脂層を得る。Cステージの樹脂層とは、樹脂組成物の硬化物を含む樹脂層と言い換えられてよい。Cステージの樹脂層を備えるシート状積層体を、完成品として用いてよい。熱処理の温度は、樹脂層中の樹脂組成物が十分に硬化する温度であればよい。熱処理の温度は、例えば、好ましくは150℃以上300℃以下、より好ましくは175℃以上250℃以下であってよい。樹脂層中の金属元素含有粉の酸化を抑制するために、熱処理を不活性雰囲気下で行うことが好ましい。熱処理温度が300℃を超える合、熱処理の雰囲気に不可避的に含まれる微量の酸素によって金属元素含有粉が酸化されたり、樹脂硬化物が劣化したりする。金属元素含有粉の酸化、及び樹脂硬化物の劣化を抑制しながら樹脂組成物を十分に硬化させるためには、熱処理温度の保持時間は、好ましくは数分以上4時間以下、より好ましくは5分以上1時間以下であってよい。
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、シート状積層体は、一対の金属箔と一対の金属箔に挟まれた樹脂層とを備えてよい。
 一つのシート状積層体の樹脂層を、別のシート状積層体の樹脂層に直接重ねることより、図1中の(b)に示されるような積層物20を作製してよい。積層物20は、第一の金属箔23と、第一の金属箔23に積層された樹脂層22と、樹脂層22に積層された第二の金属箔21と、を備える。樹脂層22は、樹脂組成物の半硬化物を含んでよく、樹脂組成物の硬化物を含んでもよい。
 以下では実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 (実施例1)
 アクリル樹脂のシクロヘキサノン溶液219.6g、エポキシ樹脂のメチルエチルケトン溶液39.84g、フェノールノボラック樹脂のメチルエチルケトン溶液17.32g、硬化促進剤のメチルエチルケトン溶液2.00g及びシランカップリング剤4.5gを計り取り、これらの原料を650mlの軟膏容器に入れた。
 アクリル樹脂としては、ナガセケムテックス株式会社製の「HTR-860-P3」を用いた。アクリル樹脂のシクロヘキサノン溶液のNV(不揮発分の含有量)は、12.5質量%であった。アクリル樹脂のポリスチレン換算の重量平均分子量は、80万であった。
 エポキシ樹脂としては、日本化薬株式会社製の「NC3000-H」を用いた。エポキシ樹脂のメチルエチルケトン溶液のNV(不揮発分の含有量)は、50.2質量%であった。
 フェノールノボラック樹脂(硬化剤)としては、日立化成株式会社製の「HP850N」を用いた。フェノールノボラック樹脂のメチルエチルケトン溶液のNV(不揮発分の含有量)は、43.0質量%であった。
 硬化促進剤としては、四国化成工業株式会社製の「2PZ-CN」を用いた。硬化促進剤のメチルエチルケトン溶液のNV(不揮発分の含有量)は、10質量%であった。
 シランカップリング剤としては、信越化学工業株式会社製の「KBM-573」を用いた。
 軟膏容器内の全原料を自公転撹拌機で攪拌・混合することにより、樹脂組成物ワニスを得た。自公転撹拌機としては、株式会社シンキー製の「ARE-500」を用いた。攪拌・混合工程では、自公転撹拌機の公転速度を5分間1000rpmに維持し、続いて公転速度を1分間2000rpmに維持した。
 上記の樹脂組成物ワニス8.85g、及び金属元素含有粉100gを計り取り、これらを150mlの軟膏容器に入れた。軟膏容器内の原料を、自公転撹拌機を用いて公転速度1000rpmで40秒撹拌した。軟膏容器内の原料を自公転撹拌機で計5回撹拌することにより、樹脂層用のペーストを得た。
 100gの金属元素含有粉は、80gの第一合金粉末と20gの第二合金粉末とを混合することによって調製された。
 第一合金粉末は、Fe系合金の金属箔の粉砕によって作製した。金属箔としては、日立金属株式会社製の商品「ファインメット」を用いた。第一合金粉末は、Fe、Nb、Cu、Si及びBを含有するFe系合金の粉末であった。第一合金粉末の粒子径D50は、25μmであった。下記表1では、第一合金粉末を「ファインメット1」と表記する。
 第二合金粉末は、Fe系合金の金属箔の粉砕によって作製した。金属箔としては、日立金属株式会社製の商品「ファインメット」を用いた。第二合金粉末は、Fe、Nb、Cu、Si及びBを含有するFe系合金の粉末であった。第二合金粉末の粒子径D50は、4μmであった。下記表1では、第二合金粉末を「ファインメット2」と表記する。
 金属箔をガラス板上に置き、バーコータを用いて上記のペーストを金属箔の表面に塗布した。金属箔に塗布されたペーストを110℃で12分間乾燥することにより、金属箔と金属箔に積層された樹脂層とを備える実施例1のシート状積層体を得た。乾燥後の樹脂層の厚みは、100μmであった。ペーストの乾燥には、タバイエスペック社製の温風循環型乾燥機を用いた。樹脂層は、上記樹脂組成物の半硬化物(Bステージの樹脂組成物)を含んでいた。樹脂層における金属元素含有粉の含有量(単位:質量%)は、下記表1に示される。樹脂層における金属元素含有粉の含有量(単位:体積%)は、下記表1に示される。
 金属箔としては、日立金属株式会社製の商品「ファインメットFT-3M」(50W、加熱処理品)を用いた。金属箔の厚みは、18μmであった。この金属箔は、Fe、Nb、Cu、Si及びBを含有するFe系合金からなり、結晶粒径が10nm以下であるFe系合金の結晶を含んでいた。
(実施例2~5及び比較例1,2)
 実施例2~5及び比較例1,2其々のシート状積層体の作製では、樹脂層を構成する成分として、下記表1に示されるアクリル樹脂、エポキシ樹脂、フェノール樹脂、硬化促進剤、カップリング剤及び金属粉(金属元素)が用いられた。比較例1の場合、更に溶剤として、シクロヘキサノンも用いられた。実施例2~5及び比較例1,2其々の樹脂層の作製に用いられた各成分の質量は、下記表1に示さる。下記表1中の各成分の欄に記載の数値は、100gの金属粉に対する各成分の相対的な質量(単位:g)である。下記表1中のアクリル樹脂、エポキシ樹脂、フェノール樹脂及び硬化促進剤其々の欄に記載の数値は、各成分の溶液の質量である。実施例2~5及び比較例1,2其々の樹脂層における金属元素含有粉の含有量(単位:質量%)は、下記表1に示される。実施例2~5及び比較例1,2其々の樹脂層における金属元素含有粉の含有量(単位:体積%)は、下記表1に示される。
 下記表1中の「9A4」は、エプソンアトミックス株式会社製の商品「KUAMET 9A4‐II」であり、鉄アモルファス合金の粉末(平均粒子径25μm)である。
 下記表1中の「SQ-I」は、BASFジャパン株式会社製のカルボニル系鉄粉(平均粒子径5μm)である。
 下記表1中の「TypeA」は、新東工業株式会社製のFeSiCrからなる粉末(平均粒子径2μm)である。
 以上の事項を除いて実施例1と同様の方法で、実施例2~5及び比較例1,2其々のシート状積層体を作製した。
[可撓性の評価]
 以下の試験により、実施例1~5及び比較例1,2其々のシート状積層体の可撓性を評価した。
 シート状積層体をプラスチック管に巻き付けた。巻き付けの際には、シート状積層体の樹脂層をプラスチック管の表面に接触させた。シート状積層体の寸法は10cm×20cmであった。プラスチック管の直径は10cmであった。プラスチック管に巻き付けられたシート状積層体の状態を目視により観察した。
 実施例1~5及び比較例2のシート状積層体のいずれも可撓性に優れていたので、実施例1~5及び比較例2のシート状積層体におけるクラック(亀裂)は発見されなかった。つまり、実施例1~5及び比較例2のシート状積層体には、巻き付けに伴う変化及び破損がなかった。一方、比較例1の場合、巻き付けの過程でシート状積層体にクラックが生じたりした。つまり比較例1の場合、シート状積層体を破損することなくプラスチック管に巻き付けることができなかった。以上のように、実施例1~10及び比較例2其々のシート状積層体は、比較例1のシート状積層体に比べて可撓性(ハンドリング性)に優れていた。
[磁気特性の評価]
 実施例1~5及び比較例2其々の樹脂層の比透磁率μ’を、インピーダンス・アナライザによって個別に測定した。測定結果は、下記表1に示される。比透磁率μ’の測定には、金属箔に積層される前の樹脂層を用いた。測定装置としては、キーサイト・テクノロジー合同会社製の測定装置「F9049A」(商品名)を用いた。比較例1の場合、樹脂層自体の機械的強度が著しく低かったため、樹脂層の比透磁率μ’を測定することはできなかった。
Figure JPOXMLDOC01-appb-T000001
 本発明に係るシート状積層体は、磁気特性及び可撓性に優れており、高い工業的な価値を有している。
 10,10a,10b…シート状積層体、12,21,23,31,33…金属箔、11,22,32,32a,32b…樹脂層、34…基材、20,30…積層物。

Claims (12)

  1.  Fe系合金を含む金属箔と、
     前記金属箔に積層された樹脂層と、
    を備え、
     前記金属箔は、結晶粒径が10nm以下である前記Fe系合金の結晶を含み、
     前記樹脂層は、樹脂組成物及び金属元素含有粉を含み、
     前記樹脂層における前記金属元素含有粉の含有量は、64体積%よりも大きく93体積%未満である、
    シート状積層体。
  2.  前記Fe系合金は、Fe及びNbを含有する、
    請求項1に記載のシート状積層体。
  3.  前記Fe系合金は、Fe、Nb、Cu、Si及びBを含有する、
    請求項1又は2に記載のシート状積層体。
  4.  前記金属元素含有粉は、Fe系合金を含有する、
    請求項1~3のいずれか一項に記載のシート状積層体。
  5.  前記金属元素含有粉に含有される前記Fe系合金は、Fe、Nb、Cu、Si及びBを含有する、
    請求項4に記載のシート状積層体。
  6.  前記金属元素含有粉は、粒子径が10nm以下である金属元素含有粒子を含む、
    請求項4又は5に記載のシート状積層体。
  7.  前記樹脂組成物は、エポキシ樹脂を含有する、
    請求項1~6のいずれか一項に記載のシート状積層体。
  8.  前記樹脂組成物は、フェノール樹脂を含有する、
    請求項1~7のいずれか一項に記載のシート状積層体。
  9.  前記樹脂組成物は、アクリル樹脂を含有する、
    請求項1~8のいずれか一項に記載のシート状積層体。
  10.  前記樹脂層は、前記樹脂組成物の半硬化物を含む、
    請求項1~9のいずれか一項に記載のシート状積層体。
  11.  請求項1~10のいずれか一項に記載のシート状積層体と、
     前記シート状積層体が重ねられた基材と、
    を備え、
     前記樹脂層が前記基材に接している、
    積層物。
  12.  前記樹脂層は、前記樹脂組成物の半硬化物、及び前記樹脂組成物の硬化物のうち少なくともいずれか一方を含む、
    請求項11に記載の積層物。
PCT/JP2017/043199 2017-11-30 2017-11-30 シート状積層体及び積層物 WO2019106816A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019556502A JP7020493B2 (ja) 2017-11-30 2017-11-30 シート状積層体及び積層物
PCT/JP2017/043199 WO2019106816A1 (ja) 2017-11-30 2017-11-30 シート状積層体及び積層物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/043199 WO2019106816A1 (ja) 2017-11-30 2017-11-30 シート状積層体及び積層物

Publications (1)

Publication Number Publication Date
WO2019106816A1 true WO2019106816A1 (ja) 2019-06-06

Family

ID=66665498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043199 WO2019106816A1 (ja) 2017-11-30 2017-11-30 シート状積層体及び積層物

Country Status (2)

Country Link
JP (1) JP7020493B2 (ja)
WO (1) WO2019106816A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040893A (ja) * 1998-07-23 2000-02-08 Nippon Paint Co Ltd 電磁波制御積層材及び電子機器
JP2000051933A (ja) * 1998-08-07 2000-02-22 Hitachi Metals Ltd 磁性薄帯の製造方法
JP2000077890A (ja) * 1998-08-27 2000-03-14 Hitachi Ltd 磁気シールドルーム
JP2004273751A (ja) * 2003-03-07 2004-09-30 Tdk Corp 磁性部材、電磁波吸収シート、磁性部材の製造方法、電子機器
JP2005228939A (ja) * 2004-02-13 2005-08-25 Denki Kagaku Kogyo Kk 電磁波吸収体及びその製造方法
JP2008060634A (ja) * 2006-08-29 2008-03-13 Sumida Corporation アンテナコイル
JP2011082228A (ja) * 2009-10-02 2011-04-21 Kajima Corp 開放型磁気シールド構造及び磁気シールド用の帯状積層磁性板
JP2015531094A (ja) * 2012-06-04 2015-10-29 アモセンス カンパニー,リミテッド デジタイザ用磁場遮蔽シートおよびその製造方法、並びにこれを利用した携帯端末機器
JP2017045743A (ja) * 2015-08-24 2017-03-02 株式会社西淀マーク製作所 小型電子機器用の電磁波シールド材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000040893A (ja) * 1998-07-23 2000-02-08 Nippon Paint Co Ltd 電磁波制御積層材及び電子機器
JP2000051933A (ja) * 1998-08-07 2000-02-22 Hitachi Metals Ltd 磁性薄帯の製造方法
JP2000077890A (ja) * 1998-08-27 2000-03-14 Hitachi Ltd 磁気シールドルーム
JP2004273751A (ja) * 2003-03-07 2004-09-30 Tdk Corp 磁性部材、電磁波吸収シート、磁性部材の製造方法、電子機器
JP2005228939A (ja) * 2004-02-13 2005-08-25 Denki Kagaku Kogyo Kk 電磁波吸収体及びその製造方法
JP2008060634A (ja) * 2006-08-29 2008-03-13 Sumida Corporation アンテナコイル
JP2011082228A (ja) * 2009-10-02 2011-04-21 Kajima Corp 開放型磁気シールド構造及び磁気シールド用の帯状積層磁性板
JP2015531094A (ja) * 2012-06-04 2015-10-29 アモセンス カンパニー,リミテッド デジタイザ用磁場遮蔽シートおよびその製造方法、並びにこれを利用した携帯端末機器
JP2017045743A (ja) * 2015-08-24 2017-03-02 株式会社西淀マーク製作所 小型電子機器用の電磁波シールド材

Also Published As

Publication number Publication date
JPWO2019106816A1 (ja) 2020-12-10
JP7020493B2 (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
JP7388502B2 (ja) 金属元素含有粉及び成形体
JP7416124B2 (ja) コンパウンド及びタブレット
WO2019229960A1 (ja) コンパウンド及び成形体
TWI804603B (zh) 複合物及成形體
JP7180071B2 (ja) 金属元素含有粉、成形体、及び金属元素含有粉の製造方法
JP7081611B2 (ja) コンパウンド粉
WO2019167182A1 (ja) コンパウンド粉
WO2019106812A1 (ja) コンパウンド粉
WO2019202741A1 (ja) 封止材、電子部品、電子回路基板、及び封止材の製造方法
WO2019106816A1 (ja) シート状積層体及び積層物
JP7001103B2 (ja) シート状積層体及び積層物
JP7009782B2 (ja) シート
WO2021112135A1 (ja) コンパウンド及び成形体
WO2022050170A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2021172685A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7480565B2 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP7231017B2 (ja) コンパウンドの製造方法
WO2021153688A1 (ja) コンパウンド、成形体、及びコンパウンドの硬化物
WO2021241513A1 (ja) コンパウンド、成型体、及び硬化物
JP2021120432A (ja) コンパウンド、成形体、及びコンパウンドの硬化物
JP2023049648A (ja) 成形体の製造方法及び半導体装置の製造方法
JP2018203811A (ja) ペースト

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17933703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019556502

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17933703

Country of ref document: EP

Kind code of ref document: A1