WO2022024399A1 - 粉体塗料 - Google Patents

粉体塗料 Download PDF

Info

Publication number
WO2022024399A1
WO2022024399A1 PCT/JP2020/031411 JP2020031411W WO2022024399A1 WO 2022024399 A1 WO2022024399 A1 WO 2022024399A1 JP 2020031411 W JP2020031411 W JP 2020031411W WO 2022024399 A1 WO2022024399 A1 WO 2022024399A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder coating
coating material
flow rate
less
sample
Prior art date
Application number
PCT/JP2020/031411
Other languages
English (en)
French (fr)
Inventor
浩史 山村
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP20946733.1A priority Critical patent/EP4190457A1/en
Priority to US18/014,669 priority patent/US20230312938A1/en
Priority to CN202080104421.2A priority patent/CN116075367A/zh
Priority to JP2020564007A priority patent/JP6888748B1/ja
Publication of WO2022024399A1 publication Critical patent/WO2022024399A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • B05D1/22Processes for applying liquids or other fluent materials performed by dipping using fluidised-bed technique
    • B05D1/24Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints

Definitions

  • the present invention relates to a powder coating material.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 9-272820 describes a technique relating to an epoxy resin-based powder coating material containing a lubricant.
  • the document states that by using a powder coating material containing a lubricant, particularly a powder coating material surface-treated with a lubricant, a uniform matte coating film having excellent fluidity and no rough skin was obtained. Has been done.
  • Patent Document 2 Japanese Unexamined Patent Publication No. 11-104481
  • a fluidity modifier for a thermosetting powder coating material having both free flowability and melt flow property is improved, and a thermosetting powder coating material using the same.
  • a technique for providing a method for improving the fluidity of the above a heat consisting of a crystalline epoxy resin exhibiting a specific average particle size and a melting point and spherical fine particles having a specific average particle size, and the weight ratio of these is in a specific range.
  • a fluidity modifier for curable powder coatings is described.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2018-483144 describes an epoxy resin powder coating material containing a bisphenol A type epoxy resin, spherical inorganic particles having an average particle diameter of 16 to 50 ⁇ m, and acrylic core-shell type particles as essential components.
  • the epoxy resin powder paint has a structure that is a complex combination of multiple types of metals of recent years without impairing workability and paintability during coating, and has a high standard. It is said that it is possible to form a coating film having excellent heat cycle resistance even for metal parts that are required to have the above performance.
  • Japanese Unexamined Patent Publication No. 9-272820 Japanese Unexamined Patent Publication No. 11-104481 Japanese Unexamined Patent Publication No. 2018-48314
  • thermosetting resin composition is Epoxy resin and Hardener and Inorganic filler and Including
  • the particle size d 90 of the thermosetting resin composition measured by the laser diffraction method is 55 ⁇ m or more and 200 ⁇ m or less.
  • the flow rate change index R of the powder coating material measured according to the following procedure 1 is 0% or more and 26% or less.
  • the powder coating material is stored at 40 ° C. for 15 days, and the flow rate and the flow rate change index R before and after storage are calculated by the following method.
  • Measurement method of flow rate (1) 0.5 g of the powder coating material is placed in a 10 mm ⁇ molding die and pressure-molded at 20 kgf for 10 seconds to prepare a tubular sample.
  • thermosetting resin composition is Epoxy resin and Hardener and Inorganic filler and Including
  • the particle size d 90 of the thermosetting resin composition measured by the laser diffraction method is 55 ⁇ m or more and 200 ⁇ m or less.
  • the flow rate X (15) of the powder coating material measured according to the following procedure 2 after storage for 15 days is 15% or more and 60% or less.
  • the powder coating material is stored at 40 ° C. for 15 days, and the flow rate before and after storage is calculated by the following method.
  • Measurement method of flow rate (1) 0.5 g of the powder coating material is placed in a 10 mm ⁇ molding die and pressure-molded at 20 kgf for 10 seconds to prepare a tubular sample.
  • a coil having the coil end in which the exposed portion is sealed by the powder coating material in the present invention.
  • the coil end of a coil having a coil end in which the conductor portion is covered with an insulating coating and the conductor portion is exposed from the insulating coating is immersed in a flow tank in which powder coating material flows.
  • the step of adhering the melt of the powder coating material to the outside of the exposed portion is included.
  • the powder coating material is the powder coating material according to the present invention.
  • FIG. 1 It is a perspective view which shows the structural example of the stator in embodiment. It is a top view which shows the configuration example of the coil end of the stator coil in the stator shown in FIG.
  • composition may contain each component alone or in combination of two or more.
  • the powder coating material flows through the coil end of a coil having a coil end in which the conductor portion is covered with an insulating coating and the conductor portion is exposed from the insulating coating.
  • a powder coating material used in a powder coating method which comprises a step of immersing the powder coating material in a fluidizing tank to adhere the melt of the powder coating material to the outside of an exposed portion, and includes a granular thermosetting resin composition. ..
  • This thermosetting resin composition contains an epoxy resin, a curing agent, and an inorganic filler, and the particle size d 90 of the thermosetting resin composition measured by a laser diffraction method is 55 ⁇ m or more and 200 ⁇ m or less.
  • the powder coating material may be composed of a particulate thermosetting resin composition, or may contain other components.
  • the powder coating material has one or both of the configurations according to the following aspects 1 and 2 with respect to the flow rate after storage.
  • the flow rate change index R of the powder coating material measured according to the following procedure 1 is 0% or more and 26% or less, and the flow rate X (0) of the powder coating material before storage is 15% or more and 60% or less. be.
  • the powder coating material is stored at 40 ° C. for 15 days, and the flow rate and the flow rate change index R before and after storage are calculated by the following method.
  • Measurement method of flow rate (1) 0.5 g of powder coating material is placed in a 10 mm ⁇ molding die and pressure-molded at 20 kgf for 10 seconds to prepare a tubular sample.
  • the powder coating material is stored at 40 ° C. for 15 days, and the flow rate before and after storage is calculated by the following method.
  • Measurement method of flow rate (1) 0.5 g of powder coating material is placed in a 10 mm ⁇ molding die and pressure-molded at 20 kgf for 10 seconds to prepare a tubular sample.
  • the particulate thermosetting resin composition contained in the powder coating material contains a specific component, exhibits a specific particle size characteristic, and has a flow rate after storage of the powder coating material according to the first aspect and the second embodiment. Since it has at least one configuration of the second aspect, it is possible to obtain a powder coating material which is suitable for coating a coil end and has excellent storage stability. Further, according to the present embodiment, for example, it is possible to provide a powder coating material having excellent storage stability and good reactivity.
  • the present inventor focused on the behavior and melting behavior of the powder coating in the flow tank as a design guideline for the powder coating that can stably coat the coil end by the powder coating.
  • the flow rate X (0) of the sample before storage of the powder coating material and the flow rate change index R or 15 It has been newly found that the coating of the coil end can be stably performed by controlling these with at least one of the flow rate X (15) after storage for a day as an index.
  • the coil end is immersed in the flow rate tank in a state where the powder coating material is preferably fluttering in the flow tank. Since the change in the physical properties of the powder is small, it is possible to suppress fluctuations in conditions and paint with a stable film thickness, and when the adhered powder paint melts, it covers the entire area to be covered by the coil end. It is thought that this is because it can be spread stably. This is considered to be able to suitably suppress the generation of coating unevenness and voids when, for example, the coil end is coated with the powder coating material.
  • the powder coating material in the present embodiment is preferably used in a powder coating method for adhering the melt from the exposed portion of the coil end to the insulating coating in the step of adhering the melt of the powder coating to the outside of the exposed portion. .. More specifically, the powder coating material in the present embodiment can stably seal the connection portion, the welded portion, etc. of the conductor in the exposed portion, thereby improving the strength of the connection portion, the welded portion, for example. It is also possible to do.
  • the configuration of the powder coating material will be described more specifically.
  • the flow rate change index R before and after storage of the powder coating material is specifically 45% or less, preferably 26% or less, from the viewpoint of suppressing fluctuations in the thickness and appearance of the formed coating film. Yes, more preferably 25% or less, still more preferably 24% or less, still more preferably 22% or less. Further, the flow rate change index R is, for example, 0% or more, and more specifically, 0% or more than 0%.
  • the flow rate and the flow rate change index R before and after storage are measured by the above-mentioned procedure 1 or 2, and more specifically, they are measured by the following procedure.
  • the sample is placed on a 70 mm ⁇ 150 mm ⁇ 0.8 mm SPCC plate and allowed to stand in a hot air dryer at 150 ° C. for 30 minutes. After standing, the diameter D1 on the contact surface of the sample with the SPCC plate is measured.
  • the flow rate X (0) before storage is calculated based on the following formula (i).
  • X (t) (%) (D1-D0) / D0 ⁇ 100 (i)
  • the flow rate change index R before and after storage is calculated from the obtained flow rate X (0) and flow rate X (15) based on the following formula (ii).
  • R X (0) -X (15) (ii)
  • the particle size d 90 of the thermosetting resin composition is, for example, 55 ⁇ m or more, preferably 70 ⁇ m or more, and more preferably 90 ⁇ m from the viewpoint of allowing the powder coating material to flow preferably in the flow tank when the coil end is coated.
  • the above is more preferably 100 ⁇ m or more, still more preferably 110 ⁇ m or more, and even more preferably 120 ⁇ m or more.
  • the particle size d 90 of the thermosetting resin composition is, for example, 200 ⁇ m or less, preferably 145 ⁇ m or less, more preferably. It is 140 ⁇ m or less, more preferably 135 ⁇ m or less.
  • the laser diffraction method is used, specifically, a commercially available laser diffraction type particle size distribution measurement. It can be obtained by measuring the particle size distribution of particles on a volume basis using an apparatus (for example, SALD-7000 manufactured by Shimadzu Corporation).
  • the particle size d 10 of the thermosetting resin composition is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 15 ⁇ m or more, from the viewpoint of ensuring the film thickness of the coating film formed by the powder coating material and suppressing aggregation. It is 20 ⁇ m or more, and more preferably 25 ⁇ m or more. Further, from the viewpoint of reducing the production cost, the particle size d 10 of the thermosetting resin composition is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, still more preferably 40 ⁇ m or less, still more preferably 35 ⁇ m or less.
  • the characteristics of the powder coating material as a powder can be, for example, as follows.
  • the angle of repose of the powder coating material is preferably 25 ° or more, more preferably 28 ° or more, still more preferably 30 ° or more, from the viewpoint of the melt adhesion of the powder coating material when the coil end is coated. Further, the angle of repose of the powder coating material is preferably 45 ° or less, more preferably 40 ° or less, still more preferably 40 ° or less, from the viewpoint of allowing the powder coating material to flow preferably in the flow tank when the coil end is coated. It is 38 ° or less.
  • the decay angle of the powder coating material is preferably 10 ° or more, more preferably 11 ° or more, still more preferably 12 ° or more, from the viewpoint of the melt adhesion of the powder coating material when the coil end is coated. Further, from the viewpoint of allowing the powder coating material to flow preferably in the flow tank when the coil end is coated, the decay angle of the powder coating material is preferably 25 ° or less, more preferably 20 ° or less, still more preferably. It is 15 ° or less.
  • the collapse angle and the angle of repose are specifically measured by a device such as a powder tester (for example, manufactured by Hosokawa Micron Co., Ltd.).
  • the true specific gravity of the powder coating material is preferably 1.0 g / cm 3 or more, more preferably 1.2 g / cm 3 or more, still more preferably 1.5 g / cm 3 or more, from the viewpoint of low line expansion. be. Further, from the viewpoint of making the appearance of the coating film more preferable, the true specific gravity of the powder coating material is preferably 3.0 g / cm 3 or less, more preferably 2.5 g / cm 3 or less, still more preferably 2. It is 0 g / cm 3 or less.
  • the true specific gravity of the powder coating material is specifically measured by a dry automatic densitometer.
  • the bulk specific gravity of the powder coating material is preferably 0.3 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, still more preferably 0.6 g, from the viewpoint of stabilizing the flow in the flow tank. / Cm 3 or more. Further, from the viewpoint of enhancing the fluidity of the powder coating material, the bulk specific gravity of the powder coating material is preferably 1.5 g / cm 3 or less, more preferably 1.2 g / cm 3 or less, still more preferably 1.0 g. It is less than / cm3 .
  • the bulk specific gravity of the powder coating material is specifically measured by a powder tester (manufactured by Hosokawa Micron Co., Ltd.).
  • the ratio of the bulk specific density (bulk specific gravity / true specific gravity) of the powder coating material to the true specific gravity is preferably 0.3 or more, more preferably 0.3 or more, from the viewpoint of forming a more stable film during powder coating of the coil end. It is 0.35 or more, more preferably 0.4 or more, preferably 0.7 or less, more preferably 0.6 or less, still more preferably 0.5 or less.
  • the subdivided powder is loosened by hand. Is preferable.
  • the powder coating material comprises a thermosetting resin composition
  • the thermosetting resin composition contains an epoxy resin, a curing agent and an inorganic filler.
  • the epoxy resin include those having two or more epoxy groups in the molecule and solid at room temperature.
  • examples of such epoxy resins include epoxy resins such as bisphenol A type, bisphenol F type, bisphenol S type, novolak type, phenol novolak type, cresol novolak type, biphenyl type, naphthalene type, biphenyl aralkyl type, and aromatic amine type. Be done.
  • the epoxy resin is preferably bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolak type epoxy resin, phenol novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin. And one or more selected from the group consisting of biphenyl aralkyl type epoxy resin, and more preferably at least one selected from the group consisting of bisphenol A type epoxy resin and biphenyl aralkyl type epoxy resin.
  • the content of the epoxy resin in the thermosetting resin composition is preferably 20% by mass or more with respect to the entire thermosetting resin composition from the viewpoint of improving the smoothness of the surface of the cured product of the powder coating. , More preferably 25% by mass or more, and even more preferably 30% by mass or more. Further, from the viewpoint of improving the coating formability of the powder coating material, the content of the epoxy resin in the thermosetting resin composition is preferably 95% by mass or less with respect to the entire thermosetting resin composition. , More preferably 90% by mass or less, still more preferably 80% by mass or less, still more preferably 60% by mass or less.
  • thermosetting resin composition may contain other thermosetting resins.
  • other thermosetting resins include one or more selected from the group consisting of phenol resins, melamine resins, unsaturated polyester resins, and polyurethane resins.
  • the thermosetting resin may contain a resin curing agent such as a phenol resin curing agent described later.
  • the content of the thermosetting resin in the thermosetting resin composition is preferably 20% by mass or more with respect to the entire thermosetting resin composition from the viewpoint of improving the smoothness of the surface of the cured product of the powder coating. It is more preferably 25% by mass or more, and even more preferably 30% by mass or more. Further, from the viewpoint of improving the coating formability of the powder coating material, the content of the thermosetting resin in the thermosetting resin composition is preferably 95% by mass or less with respect to the entire thermosetting resin composition. It is more preferably 90% by mass or less, further preferably 80% by mass or less, and even more preferably 60% by mass or less.
  • the curing agent include aromatic amines such as diaminodiphenylmethane and aniline resin, condensates of aliphatic amines and aliphatic dicarboxylic acids, and amines such as dicyandiamide and its derivatives; Various imidazoles and imidazoline compounds; Polydicarboxylic acids such as adipic acid, sebatic acid, phthalic acid, maleic acid, trimellitic acid, benzophenone dicarboxylic acid, pyromellitic acid or their acid anhydrides; Phenolic resins such as biphenyl aralkyl type phenol resin and naphthol aralkyl type phenol resin; Novolacs, which are condensates of aldehydes with dihydrazides such as adipic acid and phthalic acid, phenol, cresol, xylenol, and bisphenol A; Carboxylic acid amide; Methylolated melamines; and
  • the ratio of the curing agent to the epoxy resin can be adjusted, for example, depending on the type of epoxy resin and curing agent used.
  • the functional group (number) of the curing agent is preferably 0.3 mol with respect to the epoxy group (number) of the epoxy resin from the viewpoint of obtaining good curability and cured product properties.
  • Equivalent or more more preferably 0.5 molar equivalent or more, still more preferably 0.6 molar equivalent or more, and preferably 1.2 molar equivalent or less, more preferably 1.1 molar equivalent or less, still more preferably 0. It is 9.9 molar equivalents or less.
  • the inorganic filler examples include fused silica such as crystalline silica and fused crushed silica, spherical silica, silica such as surface-treated silica; calcium compounds such as calcium carbonate and calcium sulfate; barium sulfate and aluminum oxide (specifically).
  • Alumina aluminum hydroxide, magnesium hydroxide, talc, kaolin, clay, mica, dolomite, wollastonite, glass fiber, glass beads, zircon, molybdenum compound.
  • the inorganic filler preferably contains one or more selected from the group consisting of silica, alumina and calcium carbonate, and more preferably the group consisting of silica, alumina and calcium carbonate. One or more selected from.
  • the content of the inorganic filler in the thermosetting resin composition is preferably 20% by mass or more with respect to the entire thermosetting resin composition from the viewpoint of improving the mechanical strength of the thermosetting resin composition. Yes, more preferably 30% by mass or more, still more preferably 40% by mass or more. Further, from the viewpoint of enhancing the smoothness of the cured product of the thermosetting resin composition, the content of the inorganic filler in the thermosetting resin composition is preferably 75 mass with respect to the entire thermosetting resin composition. % Or less, more preferably 65% by mass or less.
  • thermosetting resin composition may contain components other than the above-mentioned components.
  • the thermosetting resin composition may contain a curing accelerator, a coloring agent, a leveling material, a flame retardant, a coupling agent, and the like.
  • the curing accelerator include organic phosphines such as triphenylphosphine; imidazole compounds such as 2-phenylimidazole; and amine compounds such as tertiary amines.
  • the content of the curing accelerator in the thermosetting resin composition is preferably 0.005% by mass or more, more preferably 0, based on the entire thermosetting resin composition from the viewpoint of obtaining good curing characteristics. 0.01% by mass or more, more preferably 0.02% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, still more preferably 0. .2% by mass or less, more preferably 0.1% by mass or less.
  • the thermosetting resin composition may further contain a colorant such as a pigment.
  • a colorant such as a pigment.
  • the pigment include one or more selected from the group consisting of titanium oxide, iron oxide, zinc oxide, carbon black and cyanine blue.
  • the content of the pigment in the powder coating material is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, still more preferably 0.05% by mass or more, based on the entire powder coating material, from the viewpoint of obtaining a preferable coloring property. It is 0.1% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, still more preferably 1% by mass or less.
  • the leveling material include acrylic oligomers.
  • the content of the pigment in the powder coating material is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.05% by mass or more with respect to the entire powder coating material from the viewpoint of improving the smoothness of the coating film. It is preferably 0.1% by mass or more, preferably 2% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less.
  • the powder coating material may contain components other than the particulate thermosetting resin composition.
  • a component include a fluidity-imparting material.
  • the fluidity-imparting material include inorganic particles. That is, the powder coating material further contains inorganic particles as a component other than the particulate thermosetting resin composition from the viewpoint of further improving the fluidity.
  • the material of the inorganic particles is preferably one or more selected from the group consisting of alumina and silica, and more preferably alumina.
  • the average particle size d 50 of the inorganic particles measured by the laser diffraction method is preferably 1 nm or more, more preferably 5 nm or more, still more preferably 10 nm or more, from the viewpoint of improving the fluidity of the powder coating material. Further, it is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 20 nm or less.
  • the content of the inorganic particles in the powder coating material is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and further preferably 0.10% by mass or more with respect to the entire powder coating material. Also, for example, it may be 5% by mass or less, preferably 3.0% by mass or less, and more preferably 1.0% by mass or less.
  • the average particle size d 50 of the inorganic particles measured by the laser diffraction method is 1 nm or more and 100 nm or less, and the inorganic particles in the powder coating have. It is also preferable that the content is 0.01% by mass or more and 3.0% by mass or less with respect to the entire powder coating material.
  • the method for producing a powder coating material includes a step of preparing a thermosetting resin composition.
  • the method for producing the powder coating material includes, for example, a step of mixing the thermosetting resin composition with another component. Further may be included.
  • thermosetting resin composition for example, an epoxy resin, an inorganic filler, a curing agent, and an arbitrary component are all mixed and then melt-kneaded while heating to obtain a kneaded product of all raw materials.
  • the obtained kneaded raw material is pulverized by an impact type fine pulverizer, and fine powder and coarse grain are cut by sieving to obtain an epoxy resin powder coating material.
  • the coil has a coil end in which the exposed portion is sealed by the powder coating material in the present embodiment.
  • Specific examples of the coil include a motor coil such as a drive motor coil.
  • the stator coil of the motor will be described in more detail as an example.
  • FIG. 1 is a perspective view showing a configuration example of the stator in the embodiment.
  • the stator 100 shown in FIG. 1 has a stator core 101 and a stator coil 103.
  • the stator coil 103 is arranged in a groove portion (slot, not shown) provided on the inner wall of the stator core 101.
  • FIG. 2 is a top view showing a configuration example of the coil end 105 of the stator coil 103.
  • the coil end 105 is provided with an insulating coating, for example, an enamel coating portion 107 in which the conductor portion is covered with enamel, and an exposed portion 109 in which the conductor portion is exposed from the enamel coating. It is sealed with the powder coating in this embodiment.
  • a covering portion 111 is provided from the exposed portion 109 to the enamel covering portion 107.
  • the covering portion 111 is composed of a cured product of the powder coating material in the present embodiment.
  • the powder coating method is, for example, a method of sealing the coil end using the powder coating according to the present embodiment.
  • a method is a coil end of a coil (stator coil 103) having a coil end 105 provided with an exposed portion 109 in which the conductor portion is covered with an insulating coating and the conductor portion is exposed from the insulating coating.
  • the step (step 1) of immersing the 105 in a flow tank in which the powder paint flows and adhering the melt of the powder paint to the outside of the exposed portion is included.
  • Step 1 is, for example, a step of introducing air into a flow tank containing the powder paint to flow the powder paint (step 1-1), and a coil end 105 in the flow tank in which the powder paint is flowing.
  • the step of immersing the powder (step 1-2) may be included.
  • step 1-1 for example, a flow tank provided with a perforated plate at the bottom is used to fill the upper part of the perforated plate with powder paint, and air is introduced from the outside of the perforated plate to introduce air through the perforated plate. This can be done by introducing air into the flow tank.
  • immersing the coil end 105 in the flow tank and adhering the melt of the powder coating material to the outside of the exposed portion may be performed as a single step or stepwise. However, from the viewpoint of improving the sealing stability of the exposed portion 109, it is preferably performed as a single step. That is, the adhesion of the powder coating material to the outside of the exposed portion preferably occurs when the coil end 105 is immersed in the flow tank.
  • the powder coating method preferably further includes a step of heating the coil end 105 before immersing the coil end 105 in the flow tank. At this time, by immersing the heated coil end 105 in the flow tank in which the powder paint flows, the powder paint in the vicinity of the coil end 105 adheres to the coil end 105 as a melt in the flow tank. Further, from the viewpoint of making the powder coating material adhering to the coil end 105 a more stable melt, the coil end 105 may be heated after the coil end 105 is taken out from the flow tank. The heating of the coil end 105 can be performed, for example, by a heater arranged in the upper part of the flow tank.
  • the coil end 105 is heated to cure the powder coating (step 2). May be further included.
  • the heat curing conditions can be appropriately set according to the type and size of the coil end 105, the constituent components of the powder coating material, and the like. Further, in the powder coating method, steps 1 and 2 may be alternately repeated a plurality of times from the viewpoint of increasing the thickness of the coating.
  • the coil end 105 is stably sealed by containing a thermosetting resin composition having a specific component and particle size characteristics and using a powder coating having a specific property regarding the flow rate.
  • the covering portion 111 can be formed.
  • Examples 1 to 6 Comparative Examples 1 to 6
  • a powder coating was produced and evaluated.
  • the components used in the powder coating are shown below.
  • Epoxy resin 1 Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, JER1002 (No. 1002 type), softening point 78 ° C.
  • Epoxy resin 2 Bisphenol A type epoxy resin, manufactured by Mitsubishi Chemical Corporation, JER1003F (No. 1003 type), softening point 89 ° C.
  • Epoxy resin 3 Biphenyl aralkyl type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., NC-3000, softening point 53-63 ° C.
  • Epoxy resin 4 Orthocresol novolak type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., 102 (Inorganic filler) Inorganic filler 1: Calcium carbonate, manufactured by Maruo Calcium, N-35 Inorganic filler 2: Spherical silica, manufactured by Nittetsu Chemical & Materials Co., Ltd., HS-208 Inorganic filler 3: melt crushed silica, manufactured by Fumitec, FMT-20 (Pigment) Pigment 1: Titanium oxide, manufactured by Ishihara Sangyo Co., Ltd., CR-500 Pigment 2: Carbon black, manufactured by Mitsubishi Chemical Corporation, MA-600 (Leveling material) Leveling material 1: Acrylic oligomer, manufactured by allnex, Modaflow powder 3 (Hardener) Hardener 1: 3,3', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA) Hardener 2: Biphenyl aralkyl type phenol resin, manufactured by Mei
  • thermosetting resin composition was prepared according to the formulation shown in Table 1, and the obtained thermosetting resin composition and other components were mixed according to a conventional method to obtain a powder coating material of each example.
  • the raw material components are mixed by a mixer, melt-kneaded under 80 ° C. conditions, pulverized by a pulverizer, and the particle size shown in Table 1 is used by air flow classification and a sieve.
  • a thermosetting resin composition having characteristics was obtained.
  • thermosetting resin composition particles size distribution of thermosetting resin composition
  • the particle size distribution of the particles was measured on a volume basis using a laser diffraction type particle size distribution measuring device (Partica LA-950V2 manufactured by HORIBA).
  • powder coating is performed by the flow dipping method, and the gloss of the coating film surface, the maximum void diameter in the cross section of the coating film, the amount of adhesion during coating, and the shear tension at the overlapped portion of the copper plate are performed. The strength was measured.
  • the powder coating materials of each example were evaluated immediately after production and after storage at 40 ° C. for 15 days. The evaluation results are also shown in Table 1.
  • the surface gloss was measured as an index of the smoothness of the coating film. After heating the copper plate (material C1100: 15 mm ⁇ 100 mm ⁇ 1 mm) at 190 ° C. for 10 minutes, the copper plate (material C1100: 15 mm ⁇ 100 mm ⁇ 1 mm) was immersed in a fluidized dipping tank in which the powder coating material was flown twice for 1 second. After heating at 190 ° C. for 20 minutes, the surface gloss was measured with PG-1M (manufactured by Nippon Denshoku Co., Ltd.) as a gloss meter. The angle was compared with the measured values of 60 °.
  • a copper plate (material C1100: 15 mm ⁇ 100 mm ⁇ 1 mm) was heated at 190 ° C. for 10 minutes and then immersed in a fluidized dipping tank in which powder coating material was flowed for 20 mm for 5 seconds to form a coating film. After heating at 190 ° C. for 20 minutes, polishing was carried out from the tip to a portion 10 mm, and voids in the cross section of the coating film were observed with a microscope (VHX-5000: manufactured by KEYENCE CORPORATION).
  • Two copper plates (material C1100: width 15 mm x length 100 mm x thickness 1 mm) were overlapped and shifted in opposite directions in the length direction, and arranged so that the overlapping portion of the two sheets was 10 mm in the length direction. .. That is, the overlapping region of the two sheets is a region having a width of 15 mm and a length of 10 mm.
  • the two copper plates in the overlapping region were bonded together with 0.1 g of melted powder coating material, and heated at 190 ° C. for 20 minutes to obtain a test piece.
  • Shear tensile measurement was performed by sandwiching both ends of the test piece, that is, the end opposite to the overlapping region of each copper plate, between autographs (manufactured by Shimadzu Corporation) and pulling the test piece at 10 mm / min until it broke.
  • the powder coating materials obtained in each example preferable surface gloss, suppression of voids, stable adhesion of the coating material during coating, and adhesion of the copper plate before and after storage are performed. The balance of each effect of strength was excellent.
  • the powder coating material in each embodiment has excellent storage stability and can be preferably used for coating the exposed portion of the coil end.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

絶縁被覆で導体部が覆われているとともに絶縁被覆から導体部が露出する露出部が設けられたコイルエンドを有するコイルのコイルエンドを粉体塗料が流動する流動槽に浸漬し、粉体塗料の溶融物を露出部の外側に付着させる工程を含む、粉体塗装方法に用いられる粉体塗料であって、粒子状の熱硬化性樹脂組成物を含み、熱硬化性樹脂組成物が、エポキシ樹脂と、硬化剤と、を含み、レーザー回折法にて測定される熱硬化性樹脂組成物の粒径d90が、55μm以上200μm以下であり、粉体塗料の流れ率変化指数Rが0%以上26%以下であり、粉体塗料の保存前の流れ率X(0)が15%以上60%以下である、粉体塗料。

Description

粉体塗料
 本発明は、粉体塗料に関する。
 エポキシ樹脂が配合された粉体塗料に関する技術として、特許文献1~3に記載のものがある。
 特許文献1(特開平9-272820公報)には、滑剤を含有するエポキシ樹脂系粉体塗料に関する技術が記載されている。同文献には、滑剤を含有する粉体塗料、特に滑剤で表面処理された粉体塗料を用いることにより、流動性に優れ、塗膜の肌荒れもない均一な艶消し塗膜が得られたと記載されている。
 特許文献2(特開平11-104481号公報)には、フリーフロー性及びメルトフロー性の双方が向上する熱硬化性粉体塗料用流動性改質剤及びそれを用いた熱硬化性粉体塗料の流動性向上方法を提供するための技術として、特定の平均粒径および融点を示す結晶性エポキシ樹脂と特定の平均粒径の球状微粒子とからなり、これらの重量比が特定の範囲にある熱硬化性粉体塗料用流動性改質剤について記載されている。
 特許文献3(特開2018-48314号公報)には、ビスフェノールA型エポキシ樹脂、平均粒子径16~50μm球状無機粒子、及びアクリル系コアシェル型粒子を必須成分として含有するエポキシ樹脂粉体塗料について記載されており、かかるエポキシ樹脂粉体塗料により、塗工時の作業性や塗装性を損なうことなく、近年の金属部品(材質が異なる複数種の金属を複雑に組み合わせた構造からなり、かつ高基準の性能が要求される金属部品)に対しても、耐ヒートサイクル性に優れた塗膜を形成することができるとされている。
特開平9-272820公報 特開平11-104481号公報 特開2018-48314号公報
 しかしながら、上記文献に記載の技術について本発明者が検討したところ、保存安定性に優れるコイルエンド被覆用の粉体塗料を提供するという点で、改善の余地があることが見出された。
 本発明によれば、
 絶縁被覆で導体部が覆われているとともに前記絶縁被覆から前記導体部が露出する露出部が設けられたコイルエンドを有するコイルの前記コイルエンドを、粉体塗料が流動する流動槽に浸漬し、前記粉体塗料の溶融物を前記露出部の外側に付着させる工程を含む、粉体塗装方法に用いられる粉体塗料であって、
 粒子状の熱硬化性樹脂組成物を含み、
 前記熱硬化性樹脂組成物が、
  エポキシ樹脂と、
  硬化剤と、
  無機充填材と、
 を含み、
 レーザー回折法にて測定される前記熱硬化性樹脂組成物の粒径d90が、55μm以上200μm以下であり、
 以下の手順1に従って測定される当該粉体塗料の流れ率変化指数Rが、0%以上26%以下であり、
 前記手順1に従って測定される当該粉体塗料の保存前の流れ率X(0)が、15%以上60%以下である、粉体塗料が提供される。
(手順1)
 当該粉体塗料を40℃にて15日間保存し、以下の方法で保存前後の流れ率および流れ率変化指数Rを算出する。
(流れ率の測定方法)
(1)0.5gの当該粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製する。
(2)前記試料の直径D0を測定した後、70mm×150mm×0.8mmのSPCC板上に前記試料を配置し、150℃の熱風乾燥機中に30分静置する。
(3)静置後の前記試料の前記SPCC板との接触面における直径D1を測定する。
(4)保存前(t=0日)および40℃、15日保存後(t=15日)のそれぞれについて、前記D0およびD1を測定し、下記式(i)に基づき、前記保存前の試料の流れ率X(0)および前記15日保存後の試料の流れ率X(15)をそれぞれ算出する。
X(t)(%)=(D1-D0)/D0×100  (i)
(5)下記式(ii)に基づき、流れ率変化指数Rを算出する。
R=X(0)-X(15)  (ii)
 本発明によれば、
 絶縁被覆で導体部が覆われているとともに前記絶縁被覆から前記導体部が露出する露出部が設けられたコイルエンドを有するコイルの前記コイルエンドを、粉体塗料が流動する流動槽に浸漬し、前記粉体塗料の溶融物を前記露出部の外側に付着させる工程を含む、粉体塗装方法に用いられる粉体塗料であって、
 粒子状の熱硬化性樹脂組成物を含み、
 前記熱硬化性樹脂組成物が、
  エポキシ樹脂と、
  硬化剤と、
  無機充填材と、
 を含み、
 レーザー回折法にて測定される前記熱硬化性樹脂組成物の粒径d90が、55μm以上200μm以下であり、
 以下の手順2に従って測定される当該粉体塗料の15日保存後の流れ率X(15)が、15%以上60%以下であり、
 前記手順2に従って測定される当該粉体塗料の保存前の流れ率X(0)が、15%以上60%以下である、粉体塗料が提供される。
(手順2)
 当該粉体塗料を40℃にて15日間保存し、以下の方法で保存前後の流れ率を算出する。
(流れ率の測定方法)
(1)0.5gの当該粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製する。
(2)前記試料の直径D0を測定した後、70mm×150mm×0.8mmのSPCC板上に前記試料を配置し、150℃の熱風乾燥機中に30分静置する。
(3)静置後の前記試料の前記SPCC板との接触面における直径D1を測定する。
(4)保存前(t=0日)および40℃、15日保存後(t=15日)のそれぞれについて、前記D0およびD1を測定し、下記式(i)に基づき、前記保存前の試料の流れ率X(0)および前記15日保存後の試料の流れ率X(15)を算出する。
X(t)(%)=(D1-D0)/D0×100  (i)
 本発明によれば、本発明における前記粉体塗料により前記露出部が封止されている前記コイルエンドを有する、コイルが提供される。
 本発明によれば、
 絶縁被覆で導体部が覆われているとともに前記絶縁被覆から前記導体部が露出する露出部が設けられたコイルエンドを有するコイルの前記コイルエンドを、粉体塗料が流動する流動槽に浸漬し、前記粉体塗料の溶融物を前記露出部の外側に付着させる工程を含み、
 前記粉体塗料が、前記本発明における粉体塗料である、コイルエンドの封止方法が提供される。
 なお、これらの各構成の任意の組み合わせや、本発明の表現を方法、装置などの間で変換したものもまた本発明の態様として有効である。
 たとえば、本発明によれば、前記本発明における粉体塗料により塗装されてなる、物品を得ることもできる。
 本発明によれば、保存安定性に優れるコイルエンド被覆用の粉体塗料を提供することができる。
実施形態における固定子の構成例を示す斜視図である。 図1に示した固定子における固定子コイルのコイルエンドの構成例を示す上面図である。
 以下、実施の形態について説明する。本実施形態において、組成物は、各成分をいずれも単独でまたは2種以上を組み合わせて含むことができる。
 (粉体塗料)
 本実施形態において、粉体塗料は、絶縁被覆で導体部が覆われているとともに絶縁被覆から導体部が露出する露出部が設けられたコイルエンドを有するコイルのコイルエンドを、粉体塗料が流動する流動槽に浸漬し、粉体塗料の溶融物を露出部の外側に付着させる工程を含む、粉体塗装方法に用いられる粉体塗料であって、粒子状の熱硬化性樹脂組成物を含む。この熱硬化性樹脂組成物は、エポキシ樹脂と、硬化剤と、無機充填材と、を含み、レーザー回折法にて測定される熱硬化性樹脂組成物の粒径d90が、55μm以上200μm以下である。粉体塗料は、粒子状の熱硬化性樹脂組成物により構成されてもよいし、他の成分を含んでもよい。粉体塗料は、保存後の流れ率について、以下の態様1および2に係る構成のいずれか一方または両方を有する。
(態様1)
 以下の手順1に従って測定される粉体塗料の流れ率変化指数Rが、0%以上26%以下であり、粉体塗料の保存前の流れ率X(0)が、15%以上60%以下である。
(手順1)
 粉体塗料を40℃にて15日間保存し、以下の方法で保存前後の流れ率および流れ率変化指数Rを算出する。
(流れ率の測定方法)
(1)0.5gの粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製する。
(2)試料の直径D0を測定した後、70mm×150mm×0.8mmのSPCC板上に試料を配置し、150℃の熱風乾燥機中に30分静置する。
(3)静置後の試料のSPCC板との接触面における直径D1を測定する。
(4)保存前(t=0日)および40℃、15日保存後(t=15日)のそれぞれについて、D0およびD1を測定し、下記式(i)に基づき、保存前の試料の流れ率X(0)および15日保存後の試料の流れ率X(15)をそれぞれ算出する。
X(t)(%)=(D1-D0)/D0×100  (i)
(5)下記式(ii)に基づき、流れ率変化指数Rを算出する。
R=X(0)-X(15)  (ii)
(態様2)
 以下の手順2に従って測定される粉体塗料の15日保存後の流れ率X(15)が、15%以上60%以下であり、粉体塗料の保存前の流れ率X(0)が、15%以上60%以下である。
(手順2)
 粉体塗料を40℃にて15日間保存し、以下の方法で保存前後の流れ率を算出する。
(流れ率の測定方法)
(1)0.5gの粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製する。
(2)試料の直径D0を測定した後、70mm×150mm×0.8mmのSPCC板上に試料を配置し、150℃の熱風乾燥機中に30分静置する。
(3)静置後の試料のSPCC板との接触面における直径D1を測定する。
(4)保存前(t=0日)および40℃、15日保存後(t=15日)のそれぞれについて、D0およびD1を測定し、下記式(i)に基づき、保存前の試料の流れ率X(0)および15日保存後(t=15日)の試料の流れ率X(15)を算出する。
X(t)(%)=(D1-D0)/D0×100  (i)
 本実施形態においては、粉体塗料に含まれる粒子状の熱硬化性樹脂組成物が、特定の成分を含み、特定の粒度特性を示すとともに、粉体塗料の保存後の流れ率について態様1および態様2の少なくとも1つの構成を有するため、コイルエンドの被覆用として好適であって、保存安定性に優れる粉体塗料を得ることができる。また、本実施形態によれば、たとえば、保存安定性に優れるとともに、反応性も好ましい粉体塗料を提供することも可能となる。
 本発明者は、粉体塗装によりコイルエンドを安定的に被覆できる粉体塗料の設計指針として、流動槽内での粉体塗料の舞い挙動および溶融挙動に着目して検討した。その結果、粉体塗料中に含まれる熱硬化性樹脂組成物の成分および粒度特性を制御しつつ、粉体塗料の保存前の試料の流れ率X(0)と、流れ率変化指数Rまたは15日保存後の流れ率X(15)の少なくとも1つとを指標としてこれらを制御することにより、コイルエンドの被覆を安定的におこなうことができることを新たに見出した。この理由は必ずしも明らかではないが、上記構成を有する粉体塗料の流れ率またはその変化率を制御することにより、流動槽内で粉体塗料が好ましく舞っている状態でコイルエンドを流動槽に浸漬することができ、さらに粉体の物性変化も小さいため、条件の変動を抑制して安定した膜厚で塗装ができるとともに、付着した粉体塗料が溶融する際にコイルエンドの被覆したい領域全体に安定的に塗り広げることができるためであると考えられる。これにより、たとえばコイルエンドを粉体塗料で被覆する際の被覆むらやボイドの発生を好適に抑制できると考えられる。
 本実施形態における粉体塗料は、好ましくは、粉体塗料の溶融物を露出部の外側に付着させる工程において、コイルエンドの露出部から絶縁被覆にわたって溶融物を付着させる粉体塗装方法に用いられる。さらに具体的には、本実施形態における粉体塗料により、露出部における導体の結線部分、溶接部分等を安定的に封止することができ、これにより、たとえば結線部分や溶接部分の強度を向上することも可能となる。
 以下、粉体塗料の構成をさらに具体的に説明する。
 粉体塗料の保存前(t=0日)の流れ率X(0)は、流動槽内での粉体塗料の流動性を好ましい状態としてコイルエンドへの塗布性を向上する観点から、たとえば15%以上であり、好ましくは20%以上、より好ましくは25%以上、さらに好ましくは30%以上、さらにより好ましくは35%以上である。
 また、塗膜の垂れを抑制する観点から、流れ率X(0)は、好ましくは60%以下であり、より好ましくは55%以下、さらに好ましくは50%以下、さらにより好ましくは45%以下、さらにより好ましくは41%以下である。
 粉体塗料において、40℃で15日保存後(t=15日)の流れ率X(15)は、ボイドが少なく、良好な塗膜外観とする観点から、好ましくは15%以上であり、より好ましくは18%以上、さらに好ましくは20%以上である。
 また、塗膜の垂れ抑制の観点から、流れ率X(15)は、好ましくは60%以下であり、より好ましくは55%以下、さらに好ましくは50%以下、さらにより好ましくは45%以下、さらにより好ましくは34%以下、よりいっそう好ましくは30%以下である。
 また、粉体塗料の保存前後の流れ率変化指数Rは、形成される塗膜の厚みの変動や外観変動を抑える観点から、具体的には45%以下であって、好ましくは26%以下であり、より好ましくは25%以下、さらに好ましくは24%以下、さらにより好ましくは22%以下である。
 また、流れ率変化指数Rはたとえば0%以上であり、さらに具体的には0%または0%超である。
 保存前後の流れ率および流れ率変化指数Rは上述の手順1または2により測定され、さらに具体的には以下の手順で測定される。
 まず、保存前(t=0日)の粉体塗料の流れ率は以下の手順で測定される。すなわち、0.5gの粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製し、得られた試料の直径D0を測定する。
 次に、70mm×150mm×0.8mmのSPCC板上に試料を配置し、150℃の熱風乾燥機中に30分静置する。静置後、試料のSPCC板との接触面における直径D1を測定する。
 下記式(i)に基づき、保存前の流れ率X(0)が算出される。
X(t)(%)=(D1-D0)/D0×100  (i)
 保存後(t=15日)の流れ率については、まず、粉体塗料を40℃にて15日間保存する。具体的には、上述の成形工程をおこなっていない粉体塗料を保存する。保存後、保存前の粉体塗料(t=0)の流れ率の測定手順に準じて、保存後の粉体塗料の試料の作製、D0の測定、150℃にて30分静置、D1の測定をそれぞれおこなう。上記式(i)に基づき、保存後の流れ率X(15)が算出される。
 保存前後の流れ率変化指数Rは、得られた流れ率X(0)および流れ率X(15)より、下記式(ii)に基づき算出される。
R=X(0)-X(15)  (ii)
 次に、粉体塗料中の熱硬化性樹脂組成物の粒度特性を説明する。
 熱硬化性樹脂組成物の粒径d90は、コイルエンドの被覆時に粉体塗料が流動槽内で好ましく流動するようにする観点から、たとえば55μm以上であり、好ましくは70μm以上、より好ましくは90μm以上、さらに好ましくは100μm以上、さらにより好ましくは110μm以上、よりいっそう好ましくは120μm以上である。
 また、流動槽底面への粗粉の堆積を防ぎ、より安定的に塗装する観点から、熱硬化性樹脂組成物の粒径d90は、たとえば200μm以下であり、好ましくは145μm以下、より好ましくは140μm以下、さらに好ましくは135μm以下である。
 ここで、熱硬化性樹脂組成物の粒径d90および他の粒度特性、ならびに、後述する無機粒子の粒度特性については、レーザー回折法により、具体的には、市販のレーザー回折式粒度分布測定装置(たとえば、島津製作所社製、SALD-7000)を用いて粒子の粒度分布を体積基準で測定することにより得ることができる。
 熱硬化性樹脂組成物の粒径d10は、粉体塗料により形成される塗膜の膜厚の確保や凝集抑制の観点から、好ましくは5μm以上であり、より好ましくは15μm以上、さらに好ましくは20μm以上、さらにより好ましくは25μm以上である。
 また、生産コスト低減の観点から、熱硬化性樹脂組成物の粒径d10は、好ましくは50μm以下であり、より好ましくは45μm以下、さらに好ましくは40μm以下、さらにより好ましくは35μm以下である。
 また、粉体塗料の粉体としての特性は、たとえば以下のようにすることができる。
 粉体塗料の安息角は、コイルエンドの被覆時の粉体塗料の溶融付着性の観点から、好ましくは25°以上であり、より好ましくは28°以上、さらに好ましくは30°以上である。
 また、コイルエンドの被覆時に粉体塗料が流動槽内で好ましく流動するようにする観点から、粉体塗料の安息角は、好ましくは45°以下であり、より好ましくは40°以下、さらに好ましくは38°以下である。
 粉体塗料の崩壊角は、コイルエンドの被覆時に粉体塗料の溶融付着性の観点から、好ましくは10°以上であり、より好ましくは11°以上、さらに好ましくは12°以上である。
 また、コイルエンドの被覆時に粉体塗料が流動槽内で好ましく流動するようにする観点から、粉体塗料の崩壊角は、好ましくは25°以下であり、より好ましくは20°以下、さらに好ましくは15°以下である。
 ここで、崩壊角および安息角は、具体的には、パウダーテスター(たとえばホソカワミクロン社製)等の装置により測定される。
 粉体塗料の真比重は、低線膨張化の観点から、好ましくは1.0g/cm3以上であり、より好ましくは1.2g/cm3以上、さらに好ましくは1.5g/cm3以上である。
 また、塗膜外観をより好ましいものとする観点から、粉体塗料の真比重は、好ましくは3.0g/cm3以下であり、より好ましくは2.5g/cm3以下、さらに好ましくは2.0g/cm3以下である。
 ここで、粉体塗料の真比重は、具体的には乾式自動密度計により測定される。
 粉体塗料のかさ比重は、流動槽内での流動の安定化の観点から、好ましくは0.3g/cm3以上であり、より好ましくは0.5g/cm3以上、さらに好ましくは0.6g/cm3以上である。
 また、粉体塗料の流動性を高める観点から、粉体塗料のかさ比重は、好ましくは1.5g/cm3以下であり、より好ましくは1.2g/cm3以下、さらに好ましくは1.0g/cm3以下である。
 ここで、粉体塗料のかさ比重は、具体的にはパウダーテスター(ホソカワミクロン社製))により測定される。
 粉体塗料の真比重に対するかさ比重の比(かさ比重/真比重)は、コイルエンドの粉体塗装時により安定的に被膜を形成する観点から、好ましくは0.3以上であり、より好ましくは0.35以上、さらに好ましくは0.4以上であり、また、好ましくは0.7以下であり、より好ましくは0.6以下、さらに好ましくは0.5以下である。
 また、粉体塗料の保存安定性を向上する観点から、1.5kgの粉体塗料を40℃にて保存した後、そのうち0.7kgを小分けしたときに、小分けした粉体が手でほぐれる状態であることが好ましい。
 粉体塗料の構成成分について説明する。
 粉体塗料は、熱硬化性樹脂組成物を含み、熱硬化性樹脂組成物は、エポキシ樹脂、硬化剤および無機充填材を含む。
 エポキシ樹脂の具体例として、分子中に2個以上のエポキシ基を有し、室温下で固形のものが挙げられる。このようなエポキシ樹脂として、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ノボラック型、フェノールノボラック型、クレゾールノボラック型、ビフェニル型、ナフタレン型、ビフェニルアラルキル型、芳香族アミン型などのエポキシ樹脂が挙げられる。
 コイルエンドをより安定的に被覆する観点から、エポキシ樹脂は、好ましくはビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂およびビフェニルアラルキル型エポキシ樹脂からなる群から選択される1種または2種以上を含み、より好ましくはビスフェノールA型エポキシ樹脂およびビフェニルアラルキル型エポキシ樹脂からなる群から選択される少なくとも1種を含む。
 熱硬化性樹脂組成物中のエポキシ樹脂の含有量は、粉体塗料の硬化物の表面の平滑性を向上する観点から、熱硬化性樹脂組成物全体に対して好ましくは20質量%以上であり、より好ましくは25質量%以上、さらにより好ましくは30質量%以上である。
 また、粉体塗料の塗装成形性を良好なものとする観点から、熱硬化性樹脂組成物中のエポキシ樹脂の含有量は、熱硬化性樹脂組成物全体に対して好ましく95質量%以下であり、より好ましくは90質量%以下、さらに好ましくは80質量%以下、さらにより好ましくは60質量%以下である。
 また、熱硬化性樹脂組成物は、他の熱硬化性樹脂を含んでもよい。他の熱硬化性樹脂として、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂からなる群から選択される1種または2種以上が挙げられる。
 また、熱硬化性樹脂は、後述するフェノール樹脂硬化剤等の樹脂硬化剤を含んでもよい。
 熱硬化性樹脂組成物中の熱硬化性樹脂の含有量は、粉体塗料の硬化物の表面の平滑性を向上する観点から、熱硬化性樹脂組成物全体に対して好ましくは20質量%以上であり、より好ましくは25質量%以上、さらにより好ましくは30質量%以上である。
 また、粉体塗料の塗装成形性を良好なものとする観点から、熱硬化性樹脂組成物中の熱硬化性樹脂の含有量は、熱硬化性樹脂組成物全体に対して好ましく95質量%以下であり、より好ましくは90質量%以下、さらに好ましくは80質量%以下、さらにより好ましくは60質量%以下である。
 硬化剤の具体例として、ジアミノジフェニルメタンやアニリン樹脂などの芳香族アミン、脂肪族アミンと脂肪族ジカルボン酸との縮合物、ジシアンジアミドおよびその誘導体等のアミン類;
各種イミダゾールやイミダゾリン化合物;
アジピン酸、セバチン酸、フタル酸、マレイン酸、トリメリット酸、ベンゾフェノンジカルボン酸、ピロメリット酸などのポリジカルボン酸またはその酸無水物;
ビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂等のフェノール樹脂;
アジピン酸やフタル酸などのジヒドラジッド、フェノール、クレゾール、キシレノール、ビスフェノールAなどとアルデヒドとの縮合物であるノボラック類;
カルボン酸アミド;
メチロール化メラミン類;および
ブロック型イソシアヌレート類が挙げられる。
 得られる粉体塗料の接着性、耐熱性、耐ヒートサイクル性、硬化性を向上する観点から、硬化剤は、好ましくは酸無水物およびフェノール樹脂からなる群から選択される1種以上を含む。
 エポキシ樹脂に対する硬化剤の割合は、たとえば使用するエポキシ樹脂および硬化剤の種類により調整することができる。
 エポキシ樹脂に対する硬化剤の割合は、良好な硬化性および硬化物特性を得る観点から、硬化剤の官能基(数)が、エポキシ樹脂のエポキシ基(数)に対して、好ましくは0.3モル当量以上、より好ましくは0.5モル当量以上、さらに好ましくは0.6モル当量以上であり、また、好ましくは1.2モル当量以下、より好ましくは1.1モル当量以下、さらに好ましくは0.9モル当量以下である。
 無機充填材として、具体的には、結晶シリカ、溶融破砕シリカ等の溶融シリカ、球状シリカ、表面処理シリカ等のシリカ;炭酸カルシウム、硫酸カルシウム等のカルシウム化合物;硫酸バリウム、酸化アルミニウム(具体的にはアルミナ)、水酸化アルミニウム、水酸化マグネシウム、タルク、カオリン、クレー、マイカ、ドロマイト、ウォラストナイト、ガラス繊維、ガラスビーズ、ジルコン、モリブデン化合物が挙げられる。
 入手の容易さの観点から、無機充填材は、好ましくは、シリカ、アルミナおよび炭酸カルシウムからなる群から選択される1種または2種以上を含み、より好ましくはシリカ、アルミナおよび炭酸カルシウムからなる群から選択される1種または2種以上である。
 熱硬化性樹脂組成物中の無機充填材の含有量は、熱硬化性樹脂組成物の機械的強度を向上する観点から、熱硬化性樹脂組成物全体に対して、好ましくは20質量%以上であり、より好ましくは30質量%以上、さらに好ましくは40質量%以上である。また、熱硬化性樹脂組成物の硬化物の平滑性を高める観点から、熱硬化性樹脂組成物中の無機充填材の含有量は、熱硬化性樹脂組成物全体に対して、好ましくは75質量%以下であり、より好ましくは65質量%以下である。
 熱硬化性樹脂組成物は、上述した成分以外の成分を含んでもよい。たとえば、熱硬化性樹脂組成物が、硬化促進剤、着色剤、レベリング材、難燃剤、カップリング剤等を配合してもよい。
 硬化促進剤の具体例として、トリフェニルホスフィン等の有機ホスフィン;2-フェニルイミダゾール等のイミダゾール化合物;3級アミン等のアミン化合物が挙げられる。
 熱硬化性樹脂組成物中の硬化促進剤の含有量は、良好な硬化特性を得る観点から、熱硬化性樹脂組成物全体に対して好ましくは0.005質量%以上であり、より好ましくは0.01質量%以上、さらに好ましくは0.02質量%以上であり、また、好ましくは2質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下、さらにより好ましくは0.2質量%以下、よりいっそう好ましくは0.1質量%以下である。
 熱硬化性樹脂組成物は、顔料等の着色剤をさらに含んでもよい。
 顔料の具体例として、酸化チタン、酸化鉄、酸化亜鉛、カーボンブラックおよびシアニンブルーからなる群から選択される1種または2種以上が挙げられる。
 粉体塗料中の顔料の含有量は、好ましい着色性を得る観点から、粉体塗料全体に対して好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは5質量%以下であり、より好ましくは3質量%以下、さらに好ましくは2質量%以下、さらにより好ましくは1質量%以下である。
 レベリング材の具体例として、アクリルオリゴマーが挙げられる。
 粉体塗料中の顔料の含有量は、被覆膜の平滑性向上観点から、粉体塗料全体に対して好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、また、好ましくは2質量%以下であり、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下である。
 また、粉体塗料は、粒子状の熱硬化性樹脂組成物以外の成分を含んでもよい。かかる成分の具体例として、流動性付与材が挙げられる。流動性付与材の具体例として、無機粒子が挙げられる。すなわち、粉体塗料は、その流動性をさらに向上する観点から、粒子状の熱硬化性樹脂組成物以外の成分として、好ましくは無機粒子をさらに含む。
 無機粒子の材料は、好ましくはアルミナおよびシリカからなる群から選択される1種以上であり、より好ましくはアルミナである。
 レーザー回折法にて測定される無機粒子の平均粒径d50は、粉体塗料の流動性を向上する観点から、好ましくは1nm以上であり、より好ましくは5nm以上、さらに好ましくは10nm以上であり、また、好ましくは100nm以下であり、より好ましくは50nm以下、さらに好ましくは20nm以下である。
 粉体塗料中の無機粒子の含有量は、粉体塗料全体に対して好ましくは0.01質量%以上であり、より好ましくは0.05質量%以上、さらに好ましくは0.10質量%以上であり、また、たとえば5質量%以下であってよく、好ましくは3.0質量%以下、より好ましくは1.0質量%以下である。
 また、粉体塗料の流動性をより好ましいものとする観点から、レーザー回折法にて測定される無機粒子の平均粒径d50が、1nm以上100nm以下であり、粉体塗料中の無機粒子の含有量が、粉体塗料全体に対して0.01質量%以上3.0質量%以下であることも好ましい。
 次に、粉体塗料の製造方法を説明する。粉体塗料の製造方法は、具体的には、熱硬化性樹脂組成物を準備する工程を含む。また、粉体塗料が熱硬化性樹脂組成物以外の成分(たとえば無機粒子)を含むとき、粉体塗料の製造方法は、たとえば、熱硬化性樹脂組成物と他の成分とを混合する工程をさらに含んでもよい。
 ここで、熱硬化性樹脂組成物の粒径d90と、保存前の流れ率X(0)と、粉体塗料の流れ率変化指数Rおよび15日保存後の流れ率X(15)の少なくとも一方とがそれぞれ特定の範囲にある粉体塗料を得るためには、たとえば、熱硬化性樹脂組成物の組成および粉体塗料の組成を適切に選択するとともに、熱硬化性樹脂組成物の製造工程を適切に選択することが重要である。
 ここで、熱硬化性樹脂組成物の製造方法は、たとえば、エポキシ樹脂、無機充填材、硬化剤および任意成分の全部混合後、加熱しつつ溶融混練して、全原料の混練物を得る。次いで、得られた全原料混練物を、衝撃式微粉砕機により粉砕し、篩分けにより微粉、粗粒カットを実施し、エポキシ樹脂粉体塗料を得る。
 (コイル)
 コイルは、本実施形態における粉体塗料により、露出部が封止されているコイルエンドを有する。
 コイルの具体例として、駆動モーターコイル等のモーターコイルが挙げられる。以下、モーターの固定子コイルを例にさらに具体的に説明する。
 図1は、実施形態における固定子の構成例を示す斜視図である。図1に示した固定子100は、固定子鉄心101と固定子コイル103とを有する。固定子コイル103は、固定子鉄心101の内壁に設けられた溝部(スロット、不図示)に配設されている。
 図2は、固定子コイル103のコイルエンド105の構成例を示す上面図である。コイルエンド105には、絶縁被覆、たとえばエナメルで導体部が覆われているエナメル被覆部107と、エナメル被覆から導体部が露出している露出部109とが設けられており、露出部109が、本実施形態における粉体塗料により封止されている。図2においては、露出部109からエナメル被覆部107にわたって被覆部111が設けられている。被覆部111は、本実施形態における粉体塗料の硬化物により構成される。
 (粉体塗装方法)
 粉体塗装方法は、たとえば本実施形態における粉体塗料を用いてコイルエンドを封止する方法である。かかる方法は、具体的には、絶縁被覆で導体部が覆われているとともに絶縁被覆から導体部が露出する露出部109が設けられたコイルエンド105を有するコイル(固定子コイル103)のコイルエンド105を、粉体塗料が流動する流動槽に浸漬し、粉体塗料の溶融物を露出部の外側に付着させる工程(工程1)を含む。
 工程1は、たとえば、粉体塗料が収容された流動槽に空気を導入して粉体塗料を流動させる工程(工程1-1)と、粉体塗料が流動している流動槽にコイルエンド105を浸漬する工程(工程1-2)と、を含んでもよい。
 工程1-1は、たとえば、底部に多孔板が設けられている流動槽を用いて多孔板の上部に粉体塗料を充填し、多孔板の外側から空気を導入することにより、多孔板を介して流動槽中に空気を導入しておこなうことができる。
 工程1-2において、流動槽にコイルエンド105を浸漬すること、および、粉体塗料の溶融物を露出部の外側に付着させることは、単一の工程としておこなわれてもよいし、段階的におこなわれてもよいが、露出部109の封止安定性向上の観点から、好ましくは単一の工程としておこなわれる。すなわち、粉体塗料の溶融物の露出部の外側への付着は、好ましくはコイルエンド105を流動槽に浸漬している際に生じる。
 粉体塗装方法は、露出部109の封止安定性向上の観点から、好ましくは、流動槽にコイルエンド105を浸漬する前に、コイルエンド105を加熱する工程をさらに含む。このとき、粉体塗料が流動する流動槽に加熱されたコイルエンド105を浸漬することにより、流動槽中で、コイルエンド105の近傍の粉体塗料が溶融物としてコイルエンド105に付着する。また、コイルエンド105に付着した粉体塗料をさらに安定的に溶融物とする観点から、コイルエンド105を流動槽から取り出した後、コイルエンド105を加熱してもよい。
 コイルエンド105の加熱は、たとえば、流動槽の上部に配置されたヒータにておこなうことができる。
 本実施形態において、粉体塗装方法は、粉体塗料の溶融物を105の露出部109の外側に付着させる工程の後、コイルエンド105を加熱して粉体塗料を硬化する工程(工程2)をさらに含んでもよい。加熱硬化条件は、コイルエンド105の種類や大きさ、粉体塗料の構成成分等に応じて適宜設定することができる。
 また、粉体塗装方法は、被覆の厚さを増す観点から、工程1および工程2を交互に複数回繰り返してもよい。
 本実施形態においては、特定の成分および粒度特性を有する熱硬化性樹脂組成物を含むとともに、流れ率について特定の性質を有する粉体塗装を用いることにより、コイルエンド105を安定的に封止して被覆部111を形成することができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。
(実施例1~6、比較例1~6)
 本例では、粉体塗料を製造し、評価した。粉体塗料に用いた成分を以下に示す。
(熱硬化性樹脂組成物の原料)
(エポキシ樹脂)
エポキシ樹脂1:ビスフェノールA型エポキシ樹脂、三菱ケミカル社製、JER1002(1002番タイプ)、軟化点78℃
エポキシ樹脂2:ビスフェノールA型エポキシ樹脂、三菱ケミカル社製、JER1003F(1003番タイプ)、軟化点89℃
エポキシ樹脂3:ビフェニルアラルキル型エポキシ樹脂、日本化薬社製、NC-3000、軟化点53~63℃
エポキシ樹脂4:オルソクレゾールノボラック型エポキシ樹脂、日本化薬社製、102
(無機充填材)
無機充填材1:炭酸カルシウム、丸尾カルシウム社製、N-35
無機充填材2:球状シリカ、日鉄ケミカル&マテリアル社製、HS-208
無機充填材3:溶融破砕シリカ、フミテック社製、FMT-20
(顔料)
顔料1:酸化チタン、石原産業社製、CR-500
顔料2:カーボンブラック、三菱ケミカル社製、MA-600
(レベリング材)
レベリング材1:アクリルオリゴマー、allnex社製、モダフローパウダー3
(硬化剤)
硬化剤1:3,3',4,4'-ベンゾフェノンテトラカルボン酸二無水物(BTDA)
硬化剤2:ビフェニルアラルキル型フェノール樹脂、明和化成社製、MEHC-7851-H
(硬化促進剤)
硬化促進剤1:2,4-ジアミノ-6-[2'-メチルイミダゾリル-(1')]-エチル-s-トリアジン、四国化成社製、2MZ-A
硬化促進剤2:トリフェニルホスフィン(TPP)、ケイアイ化成社製
硬化促進剤3:2-フェニルイミダゾール、四国化成社製、2PZ
(その他成分)
(流動性付与材)
粉体流動性付与材1:微粒アルミナ、エボニック社製、AEROXIDE AluC、d50=13nm
粉体流動性付与材2:微粒シリカ、エボニック社製、AEROSIL R972、d50=16nm
(粉体塗料の製造)
 表1に記載の配合で熱硬化性樹脂組成物を調製し、得られた熱硬化性樹脂組成物およびその他の成分を常法にしたがって混合することにより、各例の粉体塗料を得た。
 ここで、熱硬化性樹脂組成物については、原料成分をミキサーにより混合し、80℃条件下で溶融混練した後、粉砕機により粉砕し、気流分級および篩を用いて、表1に記載の粒度特性を有する熱硬化性樹脂組成物を得た。
(粉体塗料の物性)
 各例で得られた粉体塗料の流れ率、かさ比重、真比重、安息角および崩壊角ならびに、粉体塗料の調製に用いた熱硬化性樹脂組成物の粒度分布を以下の方法で測定した。測定結果を表1にあわせて示す。
(流れ率)
(保存前(t=0))
 各例で得られた粉体塗料0.5gを10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製し、得られた試料の直径D0を測定した。次に、70mm×150mm×0.8mmのSPCC板上に試料を配置し、150℃の熱風乾燥機中に30分静置した。静置後、試料のSPCC板との接触面における直径D1を測定した。
 下記式(i)に基づき、保存前の水平流れ率すなわち流れ率X(0)[%]を算出した。
X(t)(%)=(D1-D0)/D0×100  (i)
(保存後(t=15))
 各例で粉体塗料を、成形せずに、40℃にて15日間保存した。保存後、保存前の粉体塗料(t=0)の流れ率の測定手順に準じて、保存後の試料の作製、D0の測定、150℃にて30分静置、D1の測定をそれぞれおこなった。上記式(i)に基づき、保存後の水平流れ率すなわち流れ率X(15)[%]を算出した。
(流れ率変化指数R)
 得られた流れ率X(0)および流れ率X(15)より、下記式(ii)に基づきR[%]を算出した。
R=X(0)-X(15)  (ii)
(かさ比重)
パウダテスタTP-X(ホソカワミクロン社製)で、室温にて測定を実施した。
(真比重)
 乾式自動密度計 アキュピックII1340(島津製作所社製)で、室温にて粉末状態の真比重を測定した。
(安息角、崩壊角)
 パウダテスタTP-X(ホソカワミクロン社製)で、室温にて実施した。
(熱硬化性樹脂組成物の粒度分布)
 レーザー回折式粒度分布測定装置(HORIBA社製、Partica LA-950V2)を用いて粒子の粒度分布を体積基準で測定した。
(評価)
 各例で得られた粉体塗料を用いて流動浸漬法による粉体塗装をおこない、塗膜表面の光沢、塗膜断面中の最大ボイド径、塗装時付着量および銅板の重ね合わせ部におけるせん断引張強度を測定した。
 各例の粉体塗料について、製造直後、および、40℃にて15日保管後の評価をおこなった。評価結果を表1にあわせて示す。
(表面光沢)
 塗膜の平滑性の指標として、表面光沢を測定した。銅板(材質C1100:15mm×100mm×1mm)を190℃で10分間加熱後、粉体塗料を流動させた流動浸漬槽に、1秒間20mm浸漬を2回実施した。190℃で20分加熱後、光沢計としてPG-1M(日本電色社製)にて表面光沢を測定した。角度は60°の測定値を比較した。
(最大ボイド径)
 銅板(材質C1100:15mm×100mm×1mm)を190℃で10分間加熱後、粉体塗料を流動させた流動浸漬槽に20mm、5秒間浸漬し、塗膜を形成した。190℃で20分加熱後、先端から10mmの部分まで研磨を実施し、塗膜断面中のボイドを顕微鏡(VHX-5000:キーエンス社製)で観察した。
(塗装時付着量)
 銅板(材質C1100:15mm×100mm×1mm)を190℃で10分間加熱後、粉体塗料を流動させた流動浸漬槽に、1秒間20mm浸漬を2回実施した。190℃で20分加熱後、先端から10mmの部分まで研磨を実施し、塗膜厚みを顕微鏡(VHX-5000:キーエンス社製)で観察した。
 表1中、「垂れ落ち」とは溶融粘度が低く、塗膜が落下する現象であり、「流動しない」とは粉体が凝集して流動槽から吹き出す現象であり、「浮上しない」とは、粉体が、流動槽に導入されるエアーで持ち上がらない現象である。
(せん断引張強度)
 2枚の銅板(材質C1100:幅15mm×長さ100mm×厚さ1mm)を重ね合わせて長さ方向に互いに逆方向にずらし、2枚の重なり部分が長さ方向に10mmとなるように配置した。すなわち、2枚の重なり領域は幅15mm×長さ10mmの領域である。重なり領域の2枚の銅板間を溶融した粉体塗料0.1gで貼り合わせ、190℃、20分加熱を実施し、テストピースを得た。
 上記テストピースの両端、すなわち各銅板における重なり領域と逆側の端部をオートグラフ(島津製作所社製)に挟み、10mm/分にて破断するまで引っ張ることにより、せん断引張測定を実施した。
Figure JPOXMLDOC01-appb-T000001
 表1より、各実施例で得られた粉体塗料においては、保存前および保存後のいずれにおいても、好ましい表面光沢、ボイドの抑制、塗装時の安定的な塗料の付着、および、銅板の接着強度の各効果のバランスに優れていた。各実施例における粉体塗料は、保存安定性に優れるものであり、コイルエンドの露出部の被覆に好ましく用いることができる。
 この出願は、2020年7月31日に出願された日本出願特願2020-130536号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
100 固定子
101 固定子鉄心
103 固定子コイル
105 コイルエンド
107 エナメル被覆部
109 露出部
111 被覆部

Claims (13)

  1.  絶縁被覆で導体部が覆われているとともに前記絶縁被覆から前記導体部が露出する露出部が設けられたコイルエンドを有するコイルの前記コイルエンドを、粉体塗料が流動する流動槽に浸漬し、前記粉体塗料の溶融物を前記露出部の外側に付着させる工程を含む、粉体塗装方法に用いられる粉体塗料であって、
     粒子状の熱硬化性樹脂組成物を含み、
     前記熱硬化性樹脂組成物が、
      エポキシ樹脂と、
      硬化剤と、
      無機充填材と、
     を含み、
     レーザー回折法にて測定される前記熱硬化性樹脂組成物の粒径d90が、55μm以上200μm以下であり、
     以下の手順1に従って測定される当該粉体塗料の流れ率変化指数Rが、0%以上26%以下であり、
     前記手順1に従って測定される当該粉体塗料の保存前の流れ率X(0)が、15%以上60%以下である、粉体塗料。
    (手順1)
     当該粉体塗料を40℃にて15日間保存し、以下の方法で保存前後の流れ率および流れ率変化指数Rを算出する。
    (流れ率の測定方法)
    (1)0.5gの当該粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製する。
    (2)前記試料の直径D0を測定した後、70mm×150mm×0.8mmのSPCC板上に前記試料を配置し、150℃の熱風乾燥機中に30分静置する。
    (3)静置後の前記試料の前記SPCC板との接触面における直径D1を測定する。
    (4)保存前(t=0日)および40℃、15日保存後(t=15日)のそれぞれについて、前記D0およびD1を測定し、下記式(i)に基づき、前記保存前の試料の流れ率X(0)および前記15日保存後の試料の流れ率X(15)をそれぞれ算出する。
    X(t)(%)=(D1-D0)/D0×100  (i)
    (5)下記式(ii)に基づき、流れ率変化指数Rを算出する。
    R=X(0)-X(15)  (ii)
  2.  当該粉体塗料の前記15日保存後の流れ率X(15)が、15%以上60%以下である、請求項1に記載の粉体塗料。
  3.  絶縁被覆で導体部が覆われているとともに前記絶縁被覆から前記導体部が露出する露出部が設けられたコイルエンドを有するコイルの前記コイルエンドを、粉体塗料が流動する流動槽に浸漬し、前記粉体塗料の溶融物を前記露出部の外側に付着させる工程を含む、粉体塗装方法に用いられる粉体塗料であって、
     粒子状の熱硬化性樹脂組成物を含み、
     前記熱硬化性樹脂組成物が、
      エポキシ樹脂と、
      硬化剤と、
      無機充填材と、
     を含み、
     レーザー回折法にて測定される前記熱硬化性樹脂組成物の粒径d90が、55μm以上200μm以下であり、
     以下の手順2に従って測定される当該粉体塗料の15日保存後の流れ率X(15)が、15%以上60%以下であり、
     前記手順2に従って測定される当該粉体塗料の保存前の流れ率X(0)が、15%以上60%以下である、粉体塗料。
    (手順2)
     当該粉体塗料を40℃にて15日間保存し、以下の方法で保存前後の流れ率を算出する。
    (流れ率の測定方法)
    (1)0.5gの当該粉体塗料を10mmφの成形用金型に入れ、20kgfで10秒間加圧成形し、筒状の試料を作製する。
    (2)前記試料の直径D0を測定した後、70mm×150mm×0.8mmのSPCC板上に前記試料を配置し、150℃の熱風乾燥機中に30分静置する。
    (3)静置後の前記試料の前記SPCC板との接触面における直径D1を測定する。
    (4)保存前(t=0日)および40℃、15日保存後(t=15日)のそれぞれについて、前記D0およびD1を測定し、下記式(i)に基づき、前記保存前の試料の流れ率X(0)および前記15日保存後の試料の流れ率X(15)を算出する。
    X(t)(%)=(D1-D0)/D0×100  (i)
  4.  前記エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂およびビフェニルアラルキル型エポキシ樹脂からなる群から選択される1種または2種以上を含む、請求項1乃至3いずれか1項に記載の粉体塗料。
  5.  前記硬化剤が酸無水物およびフェノール樹脂からなる群から選択される1種以上を含む、請求項1乃至4いずれか1項に記載の粉体塗料。
  6.  レーザー回折法にて測定される前記熱硬化性樹脂組成物の粒径d10が、5μm以上50μm以下である、請求項1乃至5いずれか1項に記載の粉体塗料。
  7.  当該粉体塗料が、無機粒子をさらに含み、
     レーザー回折法にて測定される前記無機粒子の平均粒径d50が、1nm以上100nm以下であり、
     当該粉体塗料中の前記無機粒子の含有量が、当該粉体塗料全体に対して0.01質量%以上3.0質量%以下である、請求項1乃至6いずれか1項に記載の粉体塗料。
  8.  当該粉体塗料の真比重に対するかさ比重の比(かさ比重/真比重)が0.3以上0.75以下である、請求項1乃至7いずれか1項に記載の粉体塗料。
  9.  当該粉体塗料の安息角が25°以上45°以下である、請求項1乃至8いずれか1項に記載の粉体塗料。
  10.  当該粉体塗料の崩壊角が10°以上25°以下である、請求項1乃至9いずれか1項に記載の粉体塗料。
  11.  粉体塗料の溶融物を露出部の外側に付着させる前記工程において、前記コイルエンドの前記露出部から前記絶縁被覆にわたって前記溶融物を付着させる前記粉体塗装方法に用いられる、請求項1乃至10いずれか1項に記載の粉体塗料。
  12.  請求項1乃至11いずれか1項に記載の粉体塗料により前記露出部が封止されている前記コイルエンドを有する、コイル。
  13.  絶縁被覆で導体部が覆われているとともに前記絶縁被覆から前記導体部が露出する露出部が設けられたコイルエンドを有するコイルの前記コイルエンドを、粉体塗料が流動する流動槽に浸漬し、前記粉体塗料の溶融物を前記露出部の外側に付着させる工程を含み、
     前記粉体塗料が、請求項1乃至11いずれか1項に記載の粉体塗料である、コイルエンドの封止方法。
PCT/JP2020/031411 2020-07-31 2020-08-20 粉体塗料 WO2022024399A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20946733.1A EP4190457A1 (en) 2020-07-31 2020-08-20 Powder coating material
US18/014,669 US20230312938A1 (en) 2020-07-31 2020-08-20 Powder coating material
CN202080104421.2A CN116075367A (zh) 2020-07-31 2020-08-20 粉体涂料
JP2020564007A JP6888748B1 (ja) 2020-07-31 2020-08-20 粉体塗料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130536 2020-07-31
JP2020130536 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022024399A1 true WO2022024399A1 (ja) 2022-02-03

Family

ID=80035349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031411 WO2022024399A1 (ja) 2020-07-31 2020-08-20 粉体塗料

Country Status (1)

Country Link
WO (1) WO2022024399A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272820A (ja) 1996-04-02 1997-10-21 Nippon Kayaku Co Ltd エポキシ樹脂系粉体塗料
JPH11104481A (ja) 1997-09-30 1999-04-20 Somar Corp 熱硬化性粉体塗料用流動性改質剤及びそれを用いた熱硬化性粉体塗料の流動性向上方法
JP2002348528A (ja) * 2001-03-22 2002-12-04 Sumitomo Bakelite Co Ltd エポキシ樹脂粉体塗料
JP2013048997A (ja) * 2011-08-30 2013-03-14 Aisin Aw Co Ltd 粉体塗装方法及び粉体塗装装置
JP2013203764A (ja) * 2012-03-27 2013-10-07 Sumitomo Bakelite Co Ltd エポキシ樹脂粉体塗料及びこれを用いて塗装された物品
JP2018048314A (ja) 2016-09-16 2018-03-29 ソマール株式会社 エポキシ樹脂粉体塗料
JP2019104829A (ja) * 2017-12-12 2019-06-27 住友ベークライト株式会社 エポキシ樹脂粉体塗料及び塗装物品
JP2019172804A (ja) * 2018-03-28 2019-10-10 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂粉体塗料
JP2020130536A (ja) 2019-02-18 2020-08-31 青葉化成株式会社 液状高分子化合物組成物および医療材料

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272820A (ja) 1996-04-02 1997-10-21 Nippon Kayaku Co Ltd エポキシ樹脂系粉体塗料
JPH11104481A (ja) 1997-09-30 1999-04-20 Somar Corp 熱硬化性粉体塗料用流動性改質剤及びそれを用いた熱硬化性粉体塗料の流動性向上方法
JP2002348528A (ja) * 2001-03-22 2002-12-04 Sumitomo Bakelite Co Ltd エポキシ樹脂粉体塗料
JP2013048997A (ja) * 2011-08-30 2013-03-14 Aisin Aw Co Ltd 粉体塗装方法及び粉体塗装装置
JP2013203764A (ja) * 2012-03-27 2013-10-07 Sumitomo Bakelite Co Ltd エポキシ樹脂粉体塗料及びこれを用いて塗装された物品
JP2018048314A (ja) 2016-09-16 2018-03-29 ソマール株式会社 エポキシ樹脂粉体塗料
JP2019104829A (ja) * 2017-12-12 2019-06-27 住友ベークライト株式会社 エポキシ樹脂粉体塗料及び塗装物品
JP2019172804A (ja) * 2018-03-28 2019-10-10 日鉄ケミカル&マテリアル株式会社 エポキシ樹脂粉体塗料
JP2020130536A (ja) 2019-02-18 2020-08-31 青葉化成株式会社 液状高分子化合物組成物および医療材料

Similar Documents

Publication Publication Date Title
KR101389496B1 (ko) 우수한 내마모성과 굴곡성을 갖는 분체도료 조성물
WO2020180979A1 (en) Thermosetting epoxy composition for powder coating
CN108884894B (zh) 高耐久性弹簧及其涂装方法
US11512221B2 (en) Powder paint composition
JPH0641278A (ja) 可とう性エポキシ樹脂組成物
JP2008501499A (ja) 導電性支持体を被覆する方法
WO2022024399A1 (ja) 粉体塗料
JP6888748B1 (ja) 粉体塗料
US8580879B2 (en) Resin composition of high thermal conductivity and high glass transition temperature (Tg) and for use with PCB, and prepreg and coating thereof
JP2004002792A (ja) エポキシ粉体塗料組成物
JP2013203764A (ja) エポキシ樹脂粉体塗料及びこれを用いて塗装された物品
JP7275731B2 (ja) 粉体塗装方法
JP2024061335A (ja) 粉体塗料、コイルおよびコイルエンドの封止方法
JP2020157182A (ja) 粉体塗装方法
JPS6055066A (ja) エポキシ粉体塗料
JPS5945363A (ja) エポキシ樹脂系粉体塗料
JP2024061646A (ja) 粉体塗料、コイルおよびコイルエンドの封止方法
JPS63309566A (ja) エポキシ樹脂粉体塗料
JP2000001632A (ja) 粉体塗料用組成物
KR101292354B1 (ko) 엔진블록용 에폭시 반광 분체도료 조성물, 그의 제조방법 및 도장방법
KR960008474B1 (ko) 열경화성 에폭시 수지를 기본으로 하는 분말 피복 조성물
JP5317400B2 (ja) エポキシ樹脂粉体塗料
JP2000169672A (ja) プリント配線板用熱硬化性固体状樹脂組成物
JPS5945364A (ja) エポキシ樹脂系粉体塗料
CN111051450A (zh) 粉体涂料用组合物及涂装物品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020564007

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020946733

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020946733

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE