WO2007086158A1 - 成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法及び製造装置 - Google Patents

成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法及び製造装置 Download PDF

Info

Publication number
WO2007086158A1
WO2007086158A1 PCT/JP2006/315552 JP2006315552W WO2007086158A1 WO 2007086158 A1 WO2007086158 A1 WO 2007086158A1 JP 2006315552 W JP2006315552 W JP 2006315552W WO 2007086158 A1 WO2007086158 A1 WO 2007086158A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
strength
hot
plating
less
Prior art date
Application number
PCT/JP2006/315552
Other languages
English (en)
French (fr)
Inventor
Kazuhiko Honda
Tetsuo Nishiyama
Yoshihiro Suemune
Takeo Itoh
Koki Tanaka
Yoichi Ikematsu
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38308967&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007086158(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from JP2006021426A external-priority patent/JP4741376B2/ja
Priority claimed from JP2006181747A external-priority patent/JP4837459B2/ja
Priority claimed from JP2006190555A external-priority patent/JP4837464B2/ja
Priority to PL06782398T priority Critical patent/PL1980638T3/pl
Priority to ES06782398T priority patent/ES2441959T5/es
Priority to EP06782398.9A priority patent/EP1980638B2/en
Priority to BRPI0621421A priority patent/BRPI0621421B8/pt
Priority to CN200680052096XA priority patent/CN101336308B/zh
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to US12/162,739 priority patent/US8592049B2/en
Priority to CA2640646A priority patent/CA2640646C/en
Publication of WO2007086158A1 publication Critical patent/WO2007086158A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • C22C18/04Alloys based on zinc with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/1266O, S, or organic compound in metal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a high-strength hot-dip galvanized steel sheet, a high-strength galvannealed steel sheet, and a method for producing them, and more specifically, a good appearance with no flaws and excellent adhesiveness, formability, and corrosion resistance.
  • the present invention relates to a plated steel sheet that can be applied to various uses, for example, steel sheets for building materials and automobiles. Background art
  • hot-dip galvanized steel sheet in which the most used as a good plated steel sheet corrosion 1 properties.
  • This hot dip galvanized steel sheet is usually degreased and then preheated in a non-oxidizing furnace, subjected to reduction annealing in a reducing furnace to clean the surface and secure the material, and is immersed in a molten zinc bath.
  • Manufactured by controlling the amount of adhesion.
  • it is widely used mainly for automobiles and building materials because of its excellent formability, corrosion resistance and plating adhesion.
  • SI is particularly easy to oxidize than Fe.
  • S i in the steel is exposed to the surface during the annealing process. Thickening is known to cause non-plating defects and poor adhesion.
  • the addition of these elements delays alloying, and therefore requires higher temperature and longer alloying than mild steel. This alloying for a long period of time at high temperature transforms the ostenite remaining in the steel sheet into a pallet and lowers the workability. As a result, the effect of the additive element is lost.
  • Japanese Patent Publication No. 55-5 1 2 2 8 6 5 discloses that steel has an oxide film thickness of 400 to 100 OA. After oxidation, the method of annealing and plating in an atmosphere containing hydrogen is shown. However, in this technology, it is extremely difficult to adjust the reduction time of the iron oxide film. If the reduction time is too long, it causes Si surface concentration, and if it is too short, the iron oxide film remains on the steel surface. Therefore, after all, the problem that the plating failure is not completely solved and the iron oxide film on the surface becomes too thick. The problem is that the peeled oxide adheres to the roll and causes appearance defects. Have.
  • the present inventors oxidized the pan plate surface in Japanese Patent Application Laid-Open No. 2 0 0 1-3 2 3 3 5 5 and Japanese Patent Application Laid-Open No. 20 03-1 0 5 5 1 6. Then, we proposed a manufacturing method that prevents the surface concentration of Si from being reduced in a reducing furnace with controlled atmosphere.
  • Japanese Patent Application Laid-Open No. 2 0 0 1-2 9 5 0 1 8 [wherein, a steel sheet having a Si content of 0.2 to 2.0 mass% is added to A ⁇ : 2 to 19 mass%, Mg: 1 to 10% by mass, with the balance being Zn and molten Zn n -A 1 — Mg plating layer with inevitable impurities formed on the steel surface with excellent corrosion resistance Si-containing high-strength hot-dip galvanized steel sheet.
  • a reducing atmosphere is controlled, and Si oxide, M oxide, or combined oxidation of Si and M n is formed inside the steel plate surface.
  • One or more kinds of oxide particles selected from the above materials are included to improve the vitrification, but even with this method, it is possible to significantly reduce the non-plating defects caused by the surface concentration of Si. , can not be completely prevented exposure to S i ⁇ 2 of the steel sheet surface, it is impossible to completely prevent the non-coating defects Ya tight adhesion failure.
  • the manufacturing technology for steel sheets containing S i disclosed so far focuses on ensuring the smoothness, and various properties such as formability when used as a steel plate. No improvement was made. Accordingly, the present invention solves the above problems, and provides a high-strength hot-dip galvanized steel sheet, a high-strength galvannealed steel sheet, and a method for producing them, which have a good appearance and excellent plating adhesion, formability and corrosion resistance. It is a proposal.
  • the present inventors have found that a steel to which S i and M n are added in a certain amount or more is a continuous hot dip galvanizing facility in which heat treatment conditions and plating conditions are optimized.
  • the high-strength hot-dip galvanized steel sheet and high-strength coalescence melting with excellent appearance, excellent adhesion, formability, and corrosion resistance, by controlling the type and position of Si oxides The present invention was made by finding that a galvanized steel sheet can be produced. _That is, the gist of the present invention is as follows.
  • a high-strength steel plate containing 0% or less and the balance Fe and inevitable impurities A 1: 0.05 to 10% by mass, Fe: 0.05
  • a hot dip galvanized steel sheet having a zinc galvanized layer containing 3 mass% and the balance being Zn and inevitable impurities 5 or less crystal grains on the steel sheet side from the interface between the high strength steel sheet and the plated layer
  • An oxide containing Si in the boundary and crystal grains exists with an average content of 0.6 to 10% by mass, and a 6-211 alloy having an average particle size of 0.5 to 3 111 on the plating side has an arbitrary cross section.
  • a high-strength hot-dip galvanized steel sheet excellent in formability and tackiness, characterized in that it is present at a ratio of 500 m or more.
  • N On a high-strength steel plate containing 0.00 60% or less, with the balance being Fe and inevitable impurities, A 1: 4-20% by mass, Mg: 2-5% %, Si: 0 to 0.5 mass%, and the balance is a hot dip galvanized steel sheet having a zinc galvanized layer composed of Zn and inevitable impurities. Formability and tightness characterized by the presence of an Si-containing oxide at an average content of 0.6 to 10% by mass in the crystal grain boundary on the side of the steel sheet 5 m or less from the interface and in the crystal grain. High strength hot-dip galvanized steel sheet with excellent properties.
  • a 1 0. 0 0 5 to 0.5%
  • N 0. 0 0 60 0% or less
  • high-strength steel sheet comprising Fe and unavoidable impurities, on top of high-strength steel plate, Fe containing Fe and the balance consisting of Zn and unavoidable impurities
  • the average content of oxides containing Si in the grain boundaries and crystal grains on the steel sheet side 5 or less from the interface between the high-strength steel sheet and the plating layer is 0.6 to 10% by mass
  • High-strength alloying and melting excellent in formability and tackiness characterized in that an oxide containing Si in the plating layer is present at an average content of 0.05 to 1.5 mass%.
  • the oxide containing S i described in any one of (1) to (5) is S i O F e S i O 3 , F e 2 S i O M n S i 0 3 > M n 2 S i O 4 , a high-strength hot-dip galvanized steel sheet excellent in formability and glazing, characterized by being at least one selected from n 2 S i O 4 .
  • the high-strength galvannealed steel sheet excellent in formability and tackiness according to any one of (1) to (9).
  • S i O 2 A method for producing a high-strength hot-dip galvanized steel sheet excellent in formability and squeezability, characterized in that zinc galvanization or zinc alloy galvanization is performed on a high-strength steel sheet containing an oxide.
  • S i O 2 A method for producing a hot-dip galvanized steel sheet, characterized by forming zinc on a high-strength steel sheet in the presence of oxides and then alloying, and forming a high-strength alloy with excellent formability and tightness .
  • the high-strength hot-dip galvanized steel sheet and the high-strength alloyed hot-dip galvanized steel sheet according to any one of (11) to (14) are in mass%, C: 0.05 to 0.00. 2 5%, S i: 0.3 to 2.5%, M n: 1.5 to 2.8%, P: 0.0 3% or less, S: 0.0 2% or less, A 1: 0 High strength hot-dip galvanized steel sheet with excellent formability and corrosion resistance, characterized by comprising 0 to 5 to 0.5%, N: 0. 0 0 6 0% or less, balance Fe and inevitable impurities And a method for producing high-strength galvannealed steel sheets.
  • High-strength hot-dip galvanized steel plate and high-strength alloyed hot-dip zinc alloy which are excellent in formability and glazing, characterized by reduction in a controlled atmosphere Manufacturing method of plated steel sheet.
  • the combustion air ratio in the oxidation zone before the reduction zone is 0.9 to 1.
  • a steel slab containing C, S i and M n is finish-rolled at a temperature of Ar 3 or higher, cold-rolled by 50 to 85%, and subsequently subjected to hot dip galvanizing.
  • the atmosphere of H 2 contains 1 to 60% by volume of H 2 , and the balance is one or more of N 2 , H 2 0, 0 2 , C 0 2 , C 0 and unavoidable impurities.
  • Logarithm of the partial pressure of oxygen in the atmosphere 1 og P o 2
  • a method for producing a high-strength alloyed hot-dip galvanized steel sheet excellent in formability and tackiness characterized by being carried out at a temperature T (K) that satisfies the following conditions.
  • (2 4) has a non-oxidizing furnace or direct fired furnace, in the production facilities of the molten zinc plated steel sheet subjected to continuous molten zinc Me with a steel sheet, containing C_ ⁇ 2 1-1 0 0 vol%, the remainder
  • a facility for producing fused steel sheets characterized in that an apparatus for introducing a gas composed of N 2 , H 2 0, 0 2 , CO, and inevitable impurities is installed in the reduction furnace.
  • (2 5) has a non-oxidizing furnace or direct fired furnace, in the production facilities of the molten zinc plated steel sheet subjected to continuous molten zinc Me with a steel plate, by burning CO or a hydrocarbon in the reduction furnace, C_ ⁇ 2 1 to 100% by volume, and a device for generating a gas composed of the balance N 2 , H 2 0, 0 2 , CO and unavoidable impurities is provided. production equipment.
  • Figure 1 shows the results of observing the cross-section of the high-strength hot-dip galvanized steel sheet with good tackiness after embedding and polishing, and then observing the cross section with a SEM image.
  • Fig. 2 is a diagram showing the results of embedding and polishing with the cross section of a high-strength hot-dip galvanized steel sheet with good tackiness tilted at 10 ° and observing each cross section with a SEM image.
  • Figure 3 shows high-strength hot-dip galvanized plating with good plating properties (Z n — A 1 — M g — S i plating) Embedded polishing with the steel sheet cross-section inclined to 10 degrees It is a figure which shows the result of having performed and observing the cross section with a SEM image.
  • Fig. 4 is a diagram showing the results of observing the cross section of the high-strength alloyed hot-dip galvanized steel sheet with good plating properties by inclining the cross section at an angle of 10 degrees and observing the cross section with a SEM image.
  • FIG. 5 is a side view showing an example of production equipment for hot-dip galvanized steel sheets according to the present invention.
  • FIG. 6 is a side view showing an example of a production facility for hot dip galvanized steel sheets according to the present invention.
  • C is an essential element for increasing the strength of steel sheets by strengthening the structure by martensite or retained austenite.
  • the reason for setting the C content to 0.05% or more is that if C is less than 0.05%, it is difficult to rapidly cool from the annealing temperature using misted jet water as the cooling medium. This is because it is difficult to secure the required tensile strength.
  • the C content exceeds 0.25% it becomes difficult to form a sound weld with spot welding. This is because the prejudice is prominent and the workability deteriorates.
  • S i is added in an amount of 0.3 to 2.5% as an element that increases the strength of the workability of the steel sheet, especially without significantly reducing the elongation.
  • the reason why the Si content is 0.3% or more is that it is difficult to secure the required tensile strength if the Si force S is less than 0.3%.
  • the reason for setting it to 5% or less is that when S i exceeds 2.5%, the effect of increasing the strength is saturated and the ductility is lowered.
  • Mochitaka is more than 4 times the C content
  • Mn is added in an amount of 1.5% or more for the purpose of stabilizing the austenite before the steel strip is immersed in the plating bath.
  • re-heating for alloying performed immediately after plating significantly delays the progress of pearlite and bainite transformation and cools to room temperature.
  • 3 to 20% by volume ratio of martensite and residual austenite ⁇ can be formed into a metal structure mixed in the ferro.
  • the amount added is excessive, cracks are likely to occur in the slab, and spot weldability deteriorates, so the upper limit is 2.8%.
  • P is generally contained in steel as an inevitable impurity. However, if its amount exceeds 0.03%, spot weldability deteriorates remarkably, and the tensile strength as in the present invention is 490 MPa. High-strength steel sheets that exceed the above range are markedly deteriorated in toughness and cold rollability, so the content should be 0.03% or less. S is also generally included in steel as an unavoidable impurity, but if its amount exceeds 0.02%, the presence of MnS stretched in the rolling direction becomes prominent and adversely affects the bendability of the steel sheet. Its content is not more than 0.02%.
  • a 1 as a deoxidizing element in steel and to improve the material by suppressing the grain refinement of the hot-rolled material by A 1 N and the coarsening of crystal grains in a series of heat treatment steps It is necessary to add. However, if it exceeds 0.5%, not only the cost increases, but also the surface properties deteriorate, so the content should be 0.5% or less. N is also generally inevitable ' Although it is contained in steel as an impurity, if its amount exceeds 0.06%, the brittleness deteriorates with elongation, so the content is made 0.06% or less.
  • the reason for limiting the A 1 content to 0.05 to 10% by mass in the hot-dip zinc plating layer is that the Fe — A 1 alloying reaction proceeds when the A 1 content exceeds 10% by mass. This is because the plating adhesion is deteriorated too much.
  • the reason why the content of A 1 is limited to 0.05% by mass or more is as follows:
  • the reason for limiting the Fe content to 0.01 to 3% by mass is that if the content is less than 0.01% by mass, the effect of improving the adhesiveness is insufficient, which exceeds 3% by mass. This is because a brittle alloy layer develops at the interface between the iron and steel and the adhesiveness decreases.
  • the high strength hot dip galvanized steel sheet of the present invention has an average content of oxide containing S 1 in the crystal grain boundary and the crystal grains on the side of the steel sheet 5 m or less from the interface between the high strength steel sheet and the plating layer.
  • the presence of Fe-Zn alloy having an average particle size of 0.5 to 3 m on the plating side can be improved in plating adhesion.
  • the reason why the adhesiveness of the high-strength steel sheet is improved by the presence of an oxide containing S i in the crystal grain boundaries and in the crystal grains is that the oxide containing Si is formed in the steel sheet during the annealing process. This is thought to be because S i O 2, which causes a decrease in plating adhesion on the surface, is not exposed.
  • the reason why the plating adhesion is improved by forming an Fe-Zn alloy with an average particle size of 0.5 to 3 m from the interface between the high-strength steel plate and the plating layer to the plating side is that the steel plate and the plating bath are This is thought to be due to the improvement of adhesion due to the reaction.
  • Figure 1 shows the results of observing the cross section with an SEM image after embedding and polishing a high-strength hot-dip galvanized steel sheet with good plating adhesion.
  • the Fe-Zn intermetallic compounds present in the plating layer can be clearly distinguished by microscopic observation.
  • the analysis of Fe% of this intermetallic compound is about 7%; ⁇
  • the intermetallic compound is considered to be the ⁇ phase.
  • the average particle diameter of the Fe-Zn-based metal alloy was determined by measuring the long and short diameters of this rectangle or parallelogram, and using the average value.
  • the reason for limiting the average particle size of the Fe-Zn intermetallic compound to 0.5 to 3 is that if it is less than 0.5 m, the effect of improving the adhesiveness is insufficient. If it exceeds / zm, the Zn—Fe alloying reaction will proceed too much, and a brittle alloy layer will develop at the iron-iron interface, resulting in poor plating adhesion.
  • Figure 2 shows the cross-sectional observation results of an example of an oxide containing Si in the crystal grain boundary and crystal grains on the side of the steel sheet 5 m or less from the interface between the high-strength steel plate and the plating layer.
  • Figure 2 shows the results of embedding and polishing with a cross section of a high-strength hot-dip galvanized steel sheet with good plating adhesion tilted at 10 degrees and observing it in a SEM image.
  • the grain boundaries of high-strength steel sheets and the oxides containing S i present in the grains can be clearly distinguished by microscopic observation.
  • the content of A 1 is set to 0.
  • the reason for limiting to 0 5 to 10 quality is that, when the content of A 1 exceeds 10% by mass, a decrease in adhesiveness is observed, so that Si is not added and A 1 in the adhesive layer This is because the content of C must be 10% by mass or less.
  • the reason for limiting the A 1 content to 0.05% by mass or more is that when a normal melt staking process is performed with an A 1 amount of less than 0.05% by mass, This is because the n—Fe alloying reaction occurs, and a brittle alloy layer develops on the surface of the base metal, resulting in poor plating adhesion. Therefore, in the case of the fusion-bonded steel material according to the present invention, in particular, when the A 1 concentration is a high concentration exceeding 10% by mass, in order to ensure plating adhesion, Si It is essential to add.
  • the reason for limiting the content of A 1 to 4 to 22 mass% in the Zn 1 A 1 —Mg—Si-based plating layer is to significantly improve the corrosion resistance of the plating layer. This is because it is necessary to add more than 1% by mass of A 1, and if it exceeds 22 2, the effect of improving corrosion resistance is saturated -3.
  • S i has the effect of improving the adhesion, and the adhesion exceeds 0.5% by mass. This is because the effect of improving the property is saturated. Desirably, it is 0 • 0 0 0 0 1 to 0.5% by mass, and more preferably
  • Si is indispensable for plating layers with an A 1 content exceeding 10% by mass, but it is also effective for improving adhesion in plating layers with an A 1 content of 10% or less. Because it is large, it is used for parts that are severely processed.
  • [Mg 2 S i phase] crystallizes in the solidified structure of the adhesion layer by addition of Si. Since this [Mg 2 S i phase] is effective in improving corrosion resistance, the amount of S i added is increased, and [M g 2 S i phase] is added to the solidified structure of the plating layer. It is more desirable to produce a metal structure mixed with [2Si phase].
  • the Mg content is limited to 0.01 to 5% by mass is that the effect of improving the corrosion resistance is insufficient if the content is less than 0.01% by mass, and it is more than 5% by mass. This is because the layer becomes brittle and adhesion decreases. Since the corrosion resistance increases as the amount of Mg added increases, in order to significantly improve the corrosion resistance of the plating layer, the Mg content is desirably 2 to 5% by mass.
  • the added amount of the above-mentioned [M g 2 S i phase] is M g
  • increasing the amount of M g the solidification structure in flashing can layer [M g 2 SI It is more desirable to produce a metal structure with a mixed phase.
  • n, Zr, Hf, Sr, V, Sc, and REM are contained alone or in combination within 0.5% by mass, the effect of the present invention is not impaired, and the appearance is further improved depending on the amount. In some cases, it is preferable.
  • the amount of adhesion of molten zinc it is desirable that it is 10 g Zm 2 or more from the viewpoint of corrosion resistance and 35 g gm 2 or less from the viewpoint of workability.
  • the average content of oxides containing Si in the grain boundaries and grain boundaries on the steel sheet side of 5 m or less from the interface between high-strength steel sheets and plating layers is 0.6 to 10 mass%. Therefore, it is possible to eliminate non-plating defects.
  • the reason why it is possible to eliminate non-plating defects when there is an oxide containing Si in the crystal grain boundary and in the crystal grain of the high-strength steel sheet is that an oxide containing Si is generated in the steel sheet during the annealing process. This is considered to be because S i O 2 that causes non-plating defects is not exposed on the steel sheet surface.
  • FIG. 3 shows the cross-sectional observation results as an example of the grain boundary on the steel sheet side of 5 m or less from the interface between the high-strength steel sheet and the plating layer and the oxide containing S 1 in the crystal grains.
  • Fig. 3 shows the results of SEM images observed by embedding and polishing the cross-section of a high-strength hot-dip galvanized steel plate that did not undergo non-plating at an angle of 10 degrees.
  • the grain boundaries of high-strength steel sheets and the oxides containing S i present in the grains can be clearly distinguished by microscopic observation.
  • the alloyed hot-dip galvanized layer is a staking layer mainly composed of Fe_Zn alloy in which Fe in steel has diffused during Zn plating by alloying reaction. That is.
  • the Fe content is not particularly limited, but if the Fe content in the plating is less than 7% by mass, a soft phase remains on the surface of the mating surface, deteriorating the press formability, and the Fe content is 15% by mass. If it exceeds, a brittle alloy layer develops too much at the interface of the iron and the plating adhesion deteriorates, so 7 to 15 mass% is appropriate.
  • a 1 is added to the plating bath to control the alloying reaction in the plating bath. Contains 5% by weight of A 1.
  • the elements added to the steel diffuse simultaneously with the diffusion of Fe, so these elements are also included in the plating.
  • the steel sheet according to the present invention can be used for Pb, Sb, Si, Sn, Mg, Mn, Ni, Cr, Co, Ca, Cu, Even if Li, Ti, Be, Bi, or one or more of rare earth elements are contained or mixed, the effect of the present invention is not impaired, and the amount is not limited. Accordingly, there are cases where the corrosion resistance and workability are improved, etc. There are no particular restrictions on the adhesion amount of alloyed molten zinc, but it is desirable that it be 20 g Zm 2 or more from the viewpoint of corrosion resistance and 150 gm 2 or less from the viewpoint of economy.
  • the high strength alloyed hot dip galvanized steel sheet of the present invention has an average content of oxides containing S 1 in the grain boundaries and the grain boundaries on the steel sheet side 5 m or less from the interface between the high strength steel sheet and the plating layer.
  • the presence of 0.6 to 10% by mass of the oxide containing Si in the plating layer with an average content of 0.05 to 1.5% by mass makes it possible to eliminate non-plating defects. Become.
  • the reason why it is possible to eliminate non-plating defects when there is an oxide containing S i in the grain boundaries of the high-strength steel plate and in the crystal grain is because the oxide containing Si is generated in the steel plate during the annealing process. This is thought to be because an oxide film containing Si that causes non-plating defects does not form on the surface of the steel sheet.
  • the oxide in the plating layer is considered to be an oxide containing Si generated in the steel plate during the annealing process and diffused during plating during the alloying process.
  • Figure 4 shows the cross-sectional observation results as an example of the grain boundary on the steel sheet side of 5 m or less from the interface between the high-strength steel sheet and the plating layer and the oxide containing Si in the grains.
  • Figure 4 shows the results of embedding polishing with a cross-section of the high-strength galvannealed steel sheet, in which no unplating occurred, tilted at 10 degrees and observed with a SEM image.
  • the grain boundaries of high-strength steel sheets and the oxides containing S i present in the grains can be clearly distinguished by microscopic observation.
  • oxides containing Si that are present in the plating layer can be clearly distinguished by microscopic observation. Furthermore, when these crystal grain boundaries, oxides in the crystal grains, and oxides in the plating layer are analyzed by EDX, peaks of Si, Mn, Fe, and O are observed. These oxides are considered to be S i 0 2 , F e S i 0 3 , F e 2 S i 0 4 , M n S i 0 3 , and M n 2 S i 0 4 .
  • the steel layer containing an oxide containing S i is a layer in which an oxide containing S i is observed by microscopic observation.
  • the average content of the oxide containing S 1 indicates the content of the oxide contained in the steel layer, and the thickness of the steel layer containing the oxide containing S i is the surface of the steel sheet. To the part where these oxides are observed.
  • the content of the oxide containing S i may be measured by any method as long as the mass% of the oxide can be measured, but the layer containing the oxide containing S 1 is dissolved with an acid, and S i After separating the oxide containing, the method of measuring the weight is reliable.
  • the method for measuring the thickness of the steel layer containing the oxide containing Si is not particularly specified, but the method of measuring from the cross-section by microscopic observation is reliable.
  • the reason why the average content of the Si-containing oxide is limited to 0.6 to 10% by mass is that if it is less than 0.6% by mass, the suppression of the external oxide film is insufficient and non-plating defects are prevented. This is because the effect of preventing non-plating defects is saturated when the content exceeds 10% by mass.
  • the reason why the average content of the Si-containing oxide in the alloyed hot-dip zinc plating layer is limited to 0.05 to 1.5% by mass is that if it is less than 0.05% by mass, the external oxide film is suppressed. This is because the effect of preventing non-plating defects is not observed due to insufficiency, and if it exceeds 1.5 mass%, non-plating defects are prevented. This is because the effect of performing is saturated.
  • the content of the oxide containing Si in the plating layer may be measured by any method as long as the mass% of the oxide can be measured, but only the plating layer is dissolved with an acid, and the oxide containing Si is added. After separation, the method of measuring the weight is reliable.
  • a high-strength steel plate having excellent workability has a tensile strength of 4 90 M Pa or more, and the relationship between tensile strength F (M Pa) and elongation L (%) is
  • the reason for limiting the elongation L to [5 1 — 0. 0 3 5 XF]% or more is that when L is lower than [5 1 — 0. 0 3 5 XF], it breaks during severe processing such as deep drawing. This is because the isoformability is insufficient.
  • an internal oxidation method of the oxide containing Si is effective in the annealing process of the continuous melting staking line. It is.
  • the internal oxidation of the oxide containing S i is a phenomenon in which oxygen diffused in the steel sheet reacts with S i in the vicinity of the surface layer of the alloy and precipitates the oxide.
  • the internal oxidation phenomenon occurs when the inward diffusion rate of oxygen is much faster than the outward diffusion rate of S i, that is, the oxygen potential in the atmosphere is relatively high or the concentration of S i is low. happenss when.
  • S i since S i hardly moves and is oxidized in situ, it is possible to prevent the concentration of S i oxide on the steel plate surface, which is the cause of the decrease in plating adhesion.
  • F e S i O F e 2 S i ⁇ M n S i ⁇ 3 , M n 2 S i ⁇ 4 is stable in the region where the oxygen potential is higher than S i 0 2, so the steel sheet surface or surface side F e S i ⁇ 3, F e 2 S i ⁇ 4, M n S i ⁇ 3, M n 2 S i 0 1 or more S i oxides selected from 4 exists in, the steel plate inner surface side In order to make S i O 2 exist, the oxygen potential needs to be made larger than when S i 0 2 alone undergoes internal oxidation.
  • one or more kinds selected from F e S i 0 3 , F e 2 S i 0 4 , M n S i 0 3 , and M n 2 S i 0 4 are formed on the surface of the steel plate thus manufactured or on the surface side.
  • zinc alloying to the steel sheet where the S i oxide is formed and alloying it, it is possible to enter the coating layer into the coating layer F e S i 0 3 , F e 2 S i 0 4 , M n S 1 0 3 , M n 2 Diffusion of one or more S i oxides selected from S i 0 4 occurs
  • PH 2 OZ PH 2 is the square of P 0 2 and the equilibrium constant 1 / Proportional to K
  • the equilibrium constant ⁇ is a variable that depends on temperature, when temperature changes, ⁇ ⁇ 2 ⁇ ⁇ ⁇ 2 and ⁇ ⁇ 2 change separately. That is, even in the region of the ratio of the water pressure and the hydrogen partial pressure, which corresponds to the oxygen potential of the internal oxidation region of S i at a certain temperature range, it corresponds to the oxygen potential of the region where iron is oxidized at another temperature range, This corresponds to the oxygen potential of the external oxidation region of i.
  • PC 2 2 ZPCO is the square of P 0 2 and the equilibrium constant 1 proportional to / K 2.
  • ⁇ 0 2 is not determined unless the temperature is determined as PH 20 , ⁇ ⁇ 2 , PC 0 2 , and PCO, PO 2 is defined to produce the oxide defined in the present invention. Or specify all of the above values ; Need to do.
  • the atmosphere of the reduction zone contains 1 to 60% by volume of H 2 and the balance N 2 , H 2 0 , 0 2 , C 0 2 , one or more of CO and unavoidable impurities, and the logarithm of the partial pressure of oxygen in the atmosphere is 1 og P o 2
  • Reduction is performed in a controlled atmosphere.
  • H 2 to 1 to 60% by volume The reason for limiting H 2 to 1 to 60% by volume is that if it is less than 1%, the oxide film formed on the surface of the steel sheet cannot be sufficiently reduced, and plating wettability cannot be ensured. This is because there is no improvement in action and cost increases.
  • log P 0 2 is limited to less than 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 ⁇ -9 0. 4 or less is to reduce iron oxide in the reduction zone.
  • log P 0 2 force 1 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 ⁇ -9 0. Beyond 4, it enters the iron oxidation region, so an iron oxide film is formed on the steel plate surface. A non-plating defect occurs.
  • log P 0 2 — 0. 0 0 0 0 3 4 T 2 + 0. 1 0 5 T— 0. 2 [S i% 2 + 2. 1 [3 1%]-9 8. Limited to 8 or more The reason for log P 0 2 is — 0. 0 0 0 0 3 4 T 2 + 0. 1 0 5 ⁇ -0. 2 [S i%] 2 + 2. '1 CS i% — 9 8. This is because the oxide S i 0 2 is exposed on the surface, causing non-plating defects and poor plating adhesion.
  • log P ⁇ 2 is set to 0. 0 0 0 0 3 4 T 2 + 0. 1 0 5 T-0.2.
  • One or more kinds of S i oxides selected from F e S i 0 3 , F e 2 S i O, M n S i 0 3 , and M n 2 S i 0 4 are present on the steel sheet surface or surface side. An oxidized state in which S i 0 2 exists on the inner surface side of the steel sheet can be obtained.
  • peak metal temperature T of the steel sheet defining the logarithm log P_ ⁇ 2 oxygen partial pressure in the atmosphere is 9 2 3 K or more, and 1 1 7 3 K below
  • the reason for limiting T to 9 2 3 K or more is that if T is less than 9 2 3 K, the oxygen potential for external oxidation of S i is small, and the oxygen potential in the range where it can be industrially operated is the iron oxidation region. This is because, since Fe 0 is generated on the surface of the steel sheet, the plating adhesion is lowered.
  • the reason for limiting T to 1 1 7 3 K or lower is that annealing at a temperature exceeding 1 1 7 3 K requires a lot of energy and is uneconomical. For the purpose of obtaining the mechanical properties of the steel sheet, the maximum reached plate temperature of 1 15 3 K or less is sufficient as described later.
  • P 0 2 is operated by introducing one or more of H 2 0, 0 2 , C 0 2 and CO.
  • the equilibrium reaction equation described above If the temperature is determined, the equilibrium constant is determined, and the oxygen partial pressure, that is, the oxygen potential is determined based on the equilibrium constant.
  • P_ ⁇ 2 PH 2, PH 2 ⁇ in the furnace, PC_ ⁇ 2, PCO and atmosphere Determine when the temperature is determined.
  • H 2 0, C_ ⁇ 2 may if the amount introduced necessary, the manner of its introduction is not particularly limited, for example, by burning gas of a mixture of CO and H 2, to introduce the generated H 2 0, C 0 2 Method, a method of introducing hydrocarbon gas such as CHC 2 H 6 and C 3 H 8 and a mixture of hydrocarbons such as LNG and introducing the generated H 2 0 and C 0 2 , gasoline and light oil, A method of burning a mixture of liquid hydrocarbons such as heavy oil and introducing the generated H 2 0 and C 0 2 , burning alcohols such as CH 3 OH and C 2 H 5 OH and their mixtures, and various organic solvents And a method to introduce the generated H 2 0, C 0 2
  • a gas containing a mixture of C 0 and H 2 , a hydrocarbon gas such as CH 4 , C 2 H 6 , and C 3 H 8 , Hydrocarbon mixtures such as LNG, gasoline, light oil, heavy oil, etc., liquid hydrocarbon mixtures, alcohols such as CH 3 0 H, C 2 H 5 0 H, and mixtures thereof, various organic solvents Etc. can be introduced into the annealing furnace simultaneously with oxygen and burned in the furnace to generate H 2 0, C 0 2
  • a hydrocarbon gas such as CH 4 , C 2 H 6 , and C 3 H 8
  • Hydrocarbon mixtures such as LNG, gasoline, light oil, heavy oil, etc., liquid hydrocarbon mixtures, alcohols such as CH 3 0 H, C 2 H 5 0 H, and mixtures thereof, various organic solvents Etc.
  • the reduction time at P 0 2 and temperature specified in the claims is not particularly specified, but is preferably 10 seconds or more and 3 minutes or less.
  • log P 0 2 passes through the region exceeding _ 0. 0 0 0 0 3 8 ⁇ 2 + 0. 1 0 7 ⁇ -9 0. 4 during the heating process. -0. 0 0 0 0 3 8 ⁇ 2 + 0.
  • the molten plated method using an annealing furnace of molten plated method and all-radians Bok tube system of conventional non-oxidizing furnace method can be used. Regardless of which method is used, 1 og PQ 2 is _ 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 T— 9 0 before the plate temperature exceeds 9 2 3 K in the temperature rising process.
  • the temperature may be appropriately controlled within the scope of the present invention. For example, as described in Japanese Patent Application Laid-Open No. SHO 5-5 1 2 2 8 6 5 and Japanese Patent Application Laid-Open No. 5-2 7 1 8 9 1, an oxide film is previously formed on the surface of a steel sheet, and then annealing and iron oxidation are performed. A method of reducing the membrane can also be used.
  • an iron oxide film for example, the method of forming an iron oxide film by controlling the combustion air ratio in the oxidation zone to 0.9 to 1.2, or the dew point of the oxidation zone to 2 73 K or more is controlled.
  • a method of forming a ferric oxide film can be used.
  • the reason for adjusting the combustion air ratio to the range of 0.9 to .1.2 is that the combustion air ratio of 0.9 or more is required to generate an iron oxide film sufficient to suppress the external oxidation of Si. It is necessary, and if it is less than 0.9, a sufficient iron oxide film cannot be formed. In addition, if the combustion air ratio exceeds 1.2, the iron oxide film formed in the oxidation zone is too thick, and the peeled oxide adheres to the roll and causes appearance defects.
  • the reason for controlling the dew point of the oxidation zone to 2 73 K or higher is that a dew point of 2 73 K or higher is required to generate an iron oxide film sufficient to suppress external oxidation of Si. This is because if it is less than 2 73 K, a sufficient iron oxide film cannot be formed.
  • the upper limit of the dew point is not specified, but considering the impact on equipment deterioration, etc., it is desirable that it is 3 73 K or less.
  • the thickness of the oxide film is not only the combustion air ratio, dew point but also the line speed It is desirable to control these appropriately and pass through under the condition that the thickness of the oxide film becomes 200-200 OA. However, the reduction of the generated iron oxide film is recommended. In order to complete the process, it is desirable that the reduction time at P 0 2 and temperature specified in the claims is 20 seconds or longer.
  • a device that introduces a gas consisting of the balance N 2 , H 2 0, 0 2 , C 0 and inevitable impurities is installed in the reduction furnace, or CO or hydrocarbons are introduced into the reduction furnace. burned, has 1-1 0 0 vol% including the C_ ⁇ 2, 'balance N 2, H 2 0, can by arranging the apparatus for generating a gas consisting of ⁇ 2, CO and unavoidable impurities It becomes. Examples of specific production facilities are shown in Figs.
  • a device that introduces a gas composed of 1 to 100% by volume of OO 2 and the balance N 2 , H 2 0, 0 2 , CO, and unavoidable impurities is disposed in the reduction furnace. and, the combustion of CO or hydrocarbons in a reducing furnace contains a hundred 2 1-1 0 0 vol%, generating a remainder N 2, H 2 0, 0 2, CO and unavoidable impurities Karakara Naru gas
  • the device it is possible to control the reduction furnace to an atmosphere in which the target oxide layer can be obtained. Its enormous point is to make it a metal structure containing 3 to 20% of mal and achieve both high strength and good press workability. If the volume ratio of the steel is less than 3%, it will not become high strength steel and residual steel.
  • the hot rolling finishing temperature must be at least 3 points from the viewpoint of ensuring the press formability of the steel sheet.
  • the cooling conditions and coiling temperature after hot rolling are not particularly limited, but the coiling temperature is subject to material variations at both ends of the coil.
  • the temperature should be set to 10 2 3 K or less. Since it tends to occur, and in the extreme case, the plate may break, it is desirable that the temperature be 8 2 3 K or higher.
  • Cold rolling may be performed under normal conditions, and the rolling rate is 50% for the purpose of finely dispersing martensite and residual austenite so that the ferritic material is easy to work harden and maximize the improvement of workability. That's it. On the other hand, it is not realistic to perform cold rolling at a rolling rate exceeding 85% because a large cold rolling load is required.
  • the annealing temperature should be in the range of 10 2 3 K or more and 1 1 5 3 K or less of ferrite and austenite toni phase. If the annealing temperature is less than 10 2 3 K, recrystallization is insufficient and the press workability required for the steel sheet cannot be achieved. 1 1 5
  • Annealing at temperatures above 3 K is not preferred as production costs increase and equipment degrades faster. Also, in the process of immersing in the plating bath and cooling, even if it is slowly cooled to 9 2 3 K, ferrite with sufficient volume fraction does not grow, so both high strength and good press workability are achieved. It becomes difficult.
  • the steel strip is cooled during the subsequent immersion in the plating bath after annealing.
  • the average up to 9 2 3 K 0.5: L 0 degree second is to increase the volume ratio of Ferai ⁇ ⁇ to improve the additivity, and at the same time The purpose is to lower the free energy of formation by increasing the c concentration of the solution, and to keep the temperature at which martensi transformation starts below the bath temperature.
  • the average cooling rate shall be 0.5 degree seconds or more.
  • the reason why the average cooling rate from 9 2 3 K to 7 7 3 K is set to 3 degrees or more is to avoid the transformation of austenite ⁇ to palai ⁇ during the cooling process, and the cooling rate is 3 degrees Z If it is less than 2 seconds, it is specified in the present invention. Even if annealing is performed at a temperature and cooling to 9 2 3 K, the formation of pearlite is inevitable. Although the upper limit of the average cooling rate is not specified, it is difficult to cool the steel strip to exceed the average cooling rate of 20 degrees Z seconds in a dry atmosphere.
  • the speed is set to 0.5 degrees or more in order to avoid the transformation of Ausdenai ⁇ to Parlay ⁇ during the cooling, and the cooling rate is 0.5. If the temperature is less than 50 ° / sec, it is inevitable to generate a pile even if the annealing is performed at the temperature specified in the present invention and the temperature is lowered to 773 K.
  • the upper limit of the average cooling rate is not specified, but the average It is difficult to cool the steel strip to exceed the cooling rate of 20 degrees nos in a dry atmosphere.
  • the reason for maintaining the time to reach 6 2 3 K from 7 7 3 K to 25 3 seconds or more and 2 40 seconds or less is that the concentration of C in the austenite cocoon is promoted and the workability is excellent This is because high strength molten zinc plating is obtained. If the time from 7 7 3 K to 6 2 3 K is reached in less than 25 seconds, the concentration in the austenite will be insufficient, and the C concentration in the austenite will be austenite at room temperature. If the time exceeds 2400 seconds, the transformation of the Paynai ⁇ ⁇ progresses so much that the amount of austenite is reduced and a sufficient amount of residual austenite cannot be generated. is there.
  • the molten zinc plating bath is passed while cooling from 7 7 3 K to 6 2 3 K, but the above average cooling rate, 7 7 3 K to 6 2 There is no problem if the time up to 3 K is within the scope of the present invention.
  • the bath temperature of the hot dip zinc bath varies depending on the bath composition, 6 7 3 to 7 5 3 K is appropriate in the bath composition range of the present invention.
  • the bath composition of the plating bath may be any composition as long as it can obtain a steel plate with the objective, but in general, a plating bath having a composition close to that of the metal with the target is used.
  • the cooling end temperature is 6 9 3 K 77 33 3 K because the concentration of C in the austenite ⁇ is promoted and Is obtained.
  • the reason for holding from 7 7 3 K to the bathing bath for more than 25 seconds and less than 2 40 seconds is that if less than 25 seconds, the concentration of C in the austenite will be insufficient, and C in the austenite This is because the concentration does not reach a level that allows the austenite to remain at room temperature. If the concentration exceeds 2400 seconds, the Paine ⁇ transformation proceeds too much, and the amount of austenite decreases. This is because residual austenite cocoons cannot be generated.
  • the hot dip galvanized bath used is adjusted to an A 1 concentration of 0.07 to 0.105 wt% with an effective A 1 concentration C in the bath.
  • the effective A 1 concentration in the hot water bath is a value obtained by subtracting the Fe concentration in the bath from the A 1 concentration in the bath.
  • the reason for limiting the effective A 1 concentration to 0.07 to 0.1 0 5 wt% is effective.
  • the A 1 concentration is lower than 0.0 7%, it becomes an alloying barrier at the initial stage of plating F e-A 1 — Z Insufficient formation of n phase and brittle gamma phase at plated steel plate interface during plating process, resulting in only alloyed hot dip galvanized steel plate with poor adhesion of galvanized film during processing It is because it is not possible.
  • the effective A 1 concentration is higher than 0.15%, high temperature and long-time alloying is required, and the austenite remaining in the steel is transformed into perlite. It is difficult to achieve both good workability and good workability. Desirably, it is 0.09 9 w t% or less.
  • the alloying temperature during the alloying treatment is 7 2 0 ⁇ T ⁇ 6 9 0 X exp (1. 3 5 X (A 1%))
  • the reason why the alloying temperature T is limited to 7 20 K or more and 6 90 Xexp (1.35 X [A 1%]) or less is that the alloying temperature T is lower than 720 K. This is because the alloying has not progressed or the alloying has not been processed yet, and the surface layer is covered with a phase having poor formability. Also, if T is higher than 6 90 X exp (1.35 X [A 1%]), alloying proceeds too much, and a brittle ⁇ phase can be formed at the plated steel interface, so plating during processing This is because the adhesion is reduced.
  • the reason for limiting the time until it is cooled to a temperature of 6 7 3 K or less after melting is limited to 30 seconds or more and 120 seconds or less is that alloying is insufficient and alloying is untreated if it is less than 30 seconds. This is because the surface layer is covered with the 7? Phase, which is inferior in formability. If it exceeds 120 seconds, the bainitic transformation proceeds too much and the amount of austenite decreases, resulting in a sufficient amount of residual austenite. It is because cannot be generated.
  • the alloying furnace heating method is not particularly limited. If the temperature of the present invention can be secured, radiation heating by a normal gas furnace or high frequency induction heating may be used. In addition, the method of cooling from the highest reached plate temperature after alloying heating is not questioned. If the heat is shut off by air seal etc. after alloying, it is sufficient to leave open and cool more quickly. There is no problem with gas cleaning. Example
  • a slab with the composition shown in Table 1 is heated to 1 4 2 3 K and the finishing temperature is 1 1 8 3-:
  • the continuous hot-dip zinc plating equipment used a method of reducing and annealing in the reduction zone after heating in a non-oxidizing furnace.
  • the combustion air ratio of the non-oxidizing furnace was adjusted to 1.0 and used as the oxidation zone.
  • Reduction zone is CO and H 2 H 2 0 which were gas mixture is burned to generate, fitted with a device for introducing a C_ ⁇ 2, and H 2 ⁇ and C 0 2 in N 2 gas containing of H 2 1 0 vol% Introduced.
  • the maximum reached temperature was adjusted to the value shown in Table 2, and the soaking time in the soaking temperature (range from the highest reached temperature of 120 degrees to the highest reached temperature) was 60 seconds. After that, cool down from the highest temperature to 9 2 3 K at an average cooling rate of 1 degree second, then cool down from 9 2 3 K to 7 7 3 K at an average cooling rate of 4 degree seconds, and Average cooling rate from 7 7 3 K 1. Cool to 7 2 3 K in 7 seconds or more and hold at 7 2 3 K until simmering bath. ⁇ . Secure 30 3 seconds from 7 3 K to smut bath. After that, hot dip galvanizing was performed and alloying treatment was performed at 7 7 3 K.
  • P 0 2 in the reduction furnace is the equilibrium reaction with the measured values of hydrogen concentration, water vapor concentration, co 2 concentration, CO concentration, and atmospheric temperature in the furnace.
  • T S Tensile strength
  • ⁇ 1 elongation
  • the amount of plating deposited was measured by the gravimetric method after the plating was dissolved in hydrochloric acid containing an inhibitor.
  • Fe,% during plating Dissolved with hydrochloric acid and measured by ICP.
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by observing the embedded and polished plated steel sheet from a cross-section with a SEM image. The state of the internalized layer was observed by a SEM image. The oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed. Similarly, the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured. The composition of the internal oxide layer was analyzed using E D X attached to S E M, where S i, the peak where O was observed was X, and X was not observed.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • the oxide containing S i present in the plating layer was evaluated by observing the steel plate from the cross section with a SEM image for embedding and polishing. The state of the oxide was observed by a SEM image, where the oxide containing S i was observed in the plating layer was marked as “X”, and the oxide not being observed was marked as “X”.
  • the content of the oxide containing Si in the plating layer is measured by dissolving the plating with hydrochloric acid containing the inhibitor, separating the oxide containing Si, and measuring its weight. Asked.
  • (F e, n) S i 0 3 , (F e, M n) 2 S i O 2 S i 0 2 is the position of the C MA image of the oxide containing S i from the section of the embedded polished steel sheet.
  • F e or M n and S i O is observed at the same position, O is observed at the same position as O, F e or M n and S i, 0 is observed at the same position X was defined as one in which no oxide was observed.
  • the plating appearance was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • a slab with the composition shown in Table 1 is heated to 1 4 2 3 K to a hot rolled steel strip with a finishing temperature of 1 1 8 3 to 1 2 0 3 KT 4.5 mm, 8 5 3 to 9 5 3 K I wound up with.
  • plating under the conditions shown in Table 3 is performed using an in-line annealing method of continuous hot dip galvanizing equipment.
  • the continuous molten zinc plating equipment used a method in which reduction and annealing were performed in the reduction zone after heating in a non-oxidizing furnace.
  • Reduction zone H 2 ⁇ generated by burning gas of a mixture of CO and H 2, fitted with a device for introducing a C_ ⁇ 2, the N 2 gas containing of H 2 1 0 vol% of H 2 ⁇ and C_ ⁇ 2 Introduced.
  • the maximum temperature reached was adjusted to the value shown in Table 3, and the soaking time in the soaking temperature (range from the maximum temperature of 120 ° C to the maximum temperature) was 60 seconds. Then, from the maximum temperature reached 9 2 3 K, the average cooling rate was 1 degree second, and subsequently from 9 2 3 K to 7 7 3 K, the average cooling rate was 4 degrees Z seconds. Cooling rate from 7 7 3 K to 7 2 3 K at 7 degrees / second or more, and hold at 7 2 3 K until squeezing bath, 30 s from 7 7 3 K to squeezing bath After securing, molten zinc plating was performed and alloying was performed at 7 7 3 K.
  • H 2 0 H 2 + l / 20 2
  • Tensile strength (TS) and elongation ( ⁇ 1) were determined by cutting JIS No. 5 test pieces from each steel sheet and conducting a tensile test at room temperature. The amount of plating deposited was measured by the gravimetric method after dissolving the plating with hydrochloric acid containing the inhibitor. The Fe% in the test was determined by dissolving the plating with hydrochloric acid containing an inhibitor and measuring with ICP.
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by observing the embedded and polished plated steel sheet from a cross-section with a SEM image.
  • the state of the internal oxide layer was observed by a SEM image, where the oxides containing S i were observed in the grain boundaries and in the grains, and X was not observed.
  • the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured.
  • the composition of the internal oxide layer was analyzed using E D X attached to S E M, where “O” was observed for the Si and O peaks, and “X” was not observed.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S i, the weight thereof was measured.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • the oxide containing S i present in the plating layer was evaluated by observing the steel plate from the cross-section with a SEM image for embedding and polishing. The state of the oxide was observed by a SEM image, where the oxide containing S i was observed in the plating layer was marked as “X”, and the oxide not being observed was marked as “X”.
  • the content of the oxide containing Si in the plating layer is measured by dissolving the plating with hydrochloric acid containing the inhibitor, separating the oxide containing Si, and measuring its mass. Asked.
  • the plating appearance was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • a slab having the composition shown in Table 1 is heated to 1 4 2 3 K to form a hot rolled steel strip of 4.5 mm at a finishing temperature of 1 1 8 3 to 1 2 0 3 K, 8 5 3 to 9 5 3 Winded up with K.
  • plating is performed under the conditions shown in Table 4 using an in-line annealing method of continuous hot dip galvanizing equipment.
  • An alloyed hot-dip galvanized steel sheet was produced.
  • the continuous molten zinc plating equipment used a method in which reduction and annealing were performed in the reduction zone after heating in a non-oxidizing furnace.
  • the dew point of the non-oxidizing furnace and the zone that uses the waste heat to raise the temperature is adjusted to 28 3 K, and the reduction zone introduces H 2 0 and CO 2 generated by burning a gas mixture of CO and H 2 the device mounting that, by introducing H 2 0 and C_ ⁇ 2 to N 2 gas containing H 2 1 0 vol%, adjusted to the logarithm log P_ ⁇ 2 oxygen potential in the furnace becomes a value shown in Table 4 did.
  • the maximum reached temperature was adjusted to the value shown in Table 4, and the soaking time in the soaking temperature (range from the highest reached temperature of 120 degrees to the highest reached temperature) was 60 seconds. did.
  • T S Tensile strength
  • ⁇ 1 elongation
  • the amount of plating deposited was measured by the gravimetric method after dissolving the film with hydrochloric acid containing inhibitor.
  • the Fe% during plating was obtained by dissolving the plating with hydrochloric acid containing an inhibitor and measuring it by ICP.
  • the oxides containing S i existing in the grain boundaries and in the grains of the steel were evaluated by observing them from the cross section with SEM images.
  • the state of the internal oxide layer is observed with an SEM image.
  • the oxides containing S i are observed in the grain boundaries and in the crystal grains, and X is not observed.
  • the thickness of the internal oxide layer was observed with an SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured.
  • the composition of the internal oxide layer was analyzed using EDX attached to the SEM, and “X” was observed when the Si and O peaks were observed, and “X” was not observed.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing inhibitor, and the layer containing the oxide containing Si was dissolved with acid. After the oxide containing i was separated, its weight was measured.
  • the oxide containing S i present in the plating layer was evaluated by observing the steel plate from the cross section with a SEM image for embedding and polishing. The state of the oxide was observed by a SEM image, where the oxide containing S i was observed in the plating layer was marked as “X”, and the oxide not being observed was marked as “X”.
  • the content of the oxide containing S i in the plating layer was determined by dissolving the plating with hydrochloric acid containing inhibitor, separating the oxide containing S i, and measuring its mass. .
  • the appearance of plating was determined by the following rating of the unplated area ratio of the passed coil. A score of 3 or higher was accepted.
  • the evaluation results are shown in Table 4.
  • the method of the present invention makes it possible to produce a high-strength galvannealed steel sheet with excellent plating wettability.
  • the manufacturing methods shown in 2, 2, 8, 2, 9 and 30 are suitable for the cooling rate in the annealing furnace, the effective A 1 concentration in the molten zinc plating bath, and the alloying treatment temperature. This makes it possible to produce high-strength galvannealed steel sheets with good quality.
  • a slab composed of the composition shown in E in Table 1 is heated to 1 4 2 3 K to form a hot rolled steel strip of 4.5 mm at a finishing temperature of 1 1 8 3 to 1 2 0 31 ⁇ , and 8 5 3 to 9 5 Scattered at 3 K.
  • the conditions shown in Table 5 were used using a continuous hot-dip zinc plating facility using an all-radiant tube type annealing furnace.
  • An alloyed hot-dip galvanized steel sheet was produced.
  • Reduction furnace is H 2 0 generated by burning gas of a mixture of CO and H 2, fitted with a device for introducing a C_ ⁇ 2, introducing H 2 0 and C0 2 in N 2 gas containing H 2 1 0 vol% did.
  • the soaking temperature For annealing, adjust the soaking temperature to the value shown in Table 5, and set the soaking time in the soaking temperature (range from the maximum reaching temperature of 120 ° C to the maximum reaching temperature) to 60 seconds. Then, from the maximum temperature reached 9 3 3 K, the average cooling rate was 1 degree Z seconds, and subsequently from 9 2 3 K to 7 7 3 K, the average cooling rate was 4 degrees Z seconds. Furthermore, from 7 7 3 K, the average cooling rate 1. Cool to 7 2 3 K at over 7 degrees nos, and hold at 7 2 3 K until the simmering bath, 30 seconds from 7 7 3 K to the smut bath After securing, molten zinc plating was performed and alloying treatment was performed at 7 7 3 K.
  • T S Tensile strength
  • E 1 elongation
  • the amount of plating deposited was measured by the gravimetric method after dissolving the plating with hydrochloric acid containing the inhibitor. Fe% during plating It was obtained by dissolving with a hydrochloric acid solution and measuring by ICP.
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by observing the embedded and polished plated steel sheet from a cross-section with a SEM image. The state of the internal oxide layer was observed with a SEM image. The oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed. Similarly, the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured. The composition of the internal oxide layer was analyzed using E D X attached to S E M, and “X” was observed when the peak of S i, 0 was observed, and “X” was not observed.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S i, the weight thereof was measured.
  • the presence or absence of FeO was measured by XRD from the surface of the steel plate, and the case where the diffraction peak of FeO was not observed was shown as X, and the case where the diffraction peak was observed was taken as X.
  • the oxide containing S i present in the plating layer was evaluated by observing the steel plate from the cross section with a SEM image for embedding and polishing. The state of the oxide was observed by a SEM image, where the oxide containing S i was observed in the plating layer was marked as “X”, and the oxide not being observed was marked as “X”.
  • the content of the oxide containing Si in the plating layer is measured by dissolving the plating with hydrochloric acid containing the inhibitor, separating the oxide containing Si, and measuring its mass. Asked.
  • (F e, M n) S i 0 3 , (F e, n) 2 S i O 2 S i 0 2 is the position of the C MA image of the oxide containing S i from the section of the embedded polished plated steel sheet.
  • O, F e or M n and S i, O observed at the same position O oxide observed on the steel plate surface, F e or M n and S i, O observed at the same position X was defined as one in which no oxide was observed.
  • the appearance of the plating was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • the evaluation results are shown in Table 5.
  • Number 5 was enriched is S i oxides on the surface of the steel sheet for 1 og P_ ⁇ 2 in the furnace is out of the scope of the present invention, the appearance for non eyes occurred had failed.
  • No. 6 since 1 og P 0 2 in the furnace was outside the scope of the present invention, Fe oxide was formed on the steel sheet surface and non-plating occurred, so the appearance was rejected.
  • the steel sheet produced by the method of the present invention was a high-strength galvannealed steel sheet with excellent appearance.
  • a slab having the composition shown in Table 6 is heated to 1 4 2 3 K, and finished at a finishing temperature of 1 1 8 3 to 1 2 0 31: 4.5 mm hot rolled steel strip, 8 5 3 to 9 5 3 K I wound up with.
  • After pickling and cold rolling to obtain a 1.6 mm cold-rolled steel strip it is passed under the conditions shown in Table 7 using a continuous hot-dip galvanizing facility with an in-line annealing method.
  • a hot-dip galvanized steel sheet was produced.
  • the continuous molten zinc plating equipment used a method in which reduction and annealing were performed in the reduction zone after heating in a non-oxidizing furnace.
  • Reduction zone is fitted with a device for introducing the H 2 0, C 0 2 generated by burning gas of a mixture of CO and H 2, the E 2 0 and C_ ⁇ 2 to N 2 gas containing H 2 1 0 vol% Introduced.
  • the maximum temperature reached was adjusted to the value shown in Table 7, and the soaking time in the soaking temperature (the range from the highest temperature of 120 ° C to the maximum temperature) was 60 seconds. After that, cool down from the highest temperature to 9 2 3 K at an average cooling rate of 1 degree / second, and subsequently cool down from 9 2 3 K to 7 7 3 K at an average cooling rate of 4 degrees Z seconds.
  • the average cooling rate from 7 7 3 K 1. Cool to 7 2 3 K at 7 degrees or more and hold at 7 2 3 K until the plating bath, and 30 seconds from 7 7 3 K to the plating bath After securing it, melt it for 3 seconds in a Zn-Mg-Al-Si plating bath with a bath temperature of 7 2 3 K. Adjust the amount of plating with N 2 wiping, 6 2 3 Cooled to K over 20 seconds.
  • the composition in the plated layer of the obtained plated steel sheet was g 3%, A 1 11 1%, S i O 15 5%.
  • Tensile strength (TS) and elongation ( ⁇ 1) are determined from each steel sheet by JIS 5 test. The piece was cut out and obtained by conducting a tensile test at room temperature.
  • the amount of plating was measured by dissolving the plating with hydrochloric acid containing inhibitor and measuring the mass by the gravimetric method.
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by observing the embedding and polished plated steel sheet from the cross section with a SEM image.
  • the state of the internal oxide layer was observed with a SEM image.
  • the oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed.
  • the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured.
  • the composition of the internal oxide layer was analyzed using E D X attached to S E M, and the peaks where S 1 and ⁇ were observed were indicated as “O”, and those where no peaks were observed as “X”.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S 1, the mass was determined by measurement.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • Oxides observed at the same position of S i and O are observed inside the steel plate than oxides observed at the same position of Fe or M n and S i and O
  • the appearance of the plating was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • Adhesion was defined as “X” when the adhesive tape was applied to the molten steel plate after the DuPont impact test, and then peeled off.
  • the DuPont test was performed using a shooting type with a 12-inch round tip and dropping a 1 kg weight from a height of 1 m.
  • a slab with the composition shown in Table 6 was heated to 1 4 2 3 K and the finishing temperature 1 1 8 3 to: L 2 0 3 K was used as a 4.5 mm hot rolled steel strip, and wound at 85 3 to 95 3 K.
  • a hot-dip galvanized steel sheet was produced.
  • the continuous hot dip galvanizing equipment used a method of reducing and annealing in the reduction zone after heating in a non-oxidizing furnace.
  • Reduction zone H 2 0 generated by burning gases combined mixing the C_ ⁇ and H 2 attach the device to introduce C_ ⁇ 2, the N 2 gas containing H 2 1 0 vol% H 2 0 and C ⁇ 2 was introduced and the logarithm of the oxygen potential in the furnace, 1 og P 0 2, was adjusted to the value shown in Table 9.
  • the maximum temperature reached was adjusted to the value shown in Table 9, and the soaking time in the soaking temperature (range from the maximum temperature of 120 ° C to the maximum temperature) was 60 seconds. After that, cool down from the highest temperature to 9 2 3 K at an average cooling rate of 1 degree second, then cool down from 9 2 3 K to 7 7 3 K at an average cooling rate of 4 degree seconds, and Average cooling rate from 7 7 3 K 1.
  • H 2 0 H 2 + l / 20 2
  • Tensile strength (TS) and elongation ( ⁇ 1) are determined from each steel sheet by JIS 5 test. A piece was cut out and obtained by conducting a tensile test at room temperature.
  • the amount of plating was measured by dissolving the plating with hydrochloric acid containing inhibitor and measuring the mass by the measurement method.
  • the composition of the plating layer was measured by chemical analysis after dissolving the plating with hydrochloric acid containing inhibitor.
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by observing the embedded and polished plated steel sheet from a cross-section with a SEM image. The state of the internal oxide layer was observed with a SEM image. The oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed. Similarly, the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured. The composition of the internal oxide layer was analyzed using E D X attached to S E M, where “O” was observed for the Si and O peaks, and “X” was not observed.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S i, the mass was determined by measurement.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • Oxide observed at the same position of S i, O is observed inside the steel plate than oxide observed at the same position of Fe or M n and S i, O
  • the appearance of the plating was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • the adhesion was defined as “X” when the adhesive tape was applied to the molten steel plate after the DuPont impact test and then peeled off, and the plating did not peel off, and “X” when the plating peeled off.
  • the Dubon test was carried out using a shot type with a 1/2 inch roundness at the tip and dropping a 1 kg weight from the height of l m.
  • the evaluation results are as shown in Table 10 (continued in Table 9). 3 ⁇ 4 ⁇ No. 1 was rejected because the A 1 concentration in the methas layer was outside the range of the present invention, so that a Zn-Fe alloying reaction occurred and the plating adhesion decreased. No. 16 Since the A 1 concentration and the Si concentration in the intimate layer were out of the range of the present invention, the plating adhesion deteriorated and it was rejected. Other than these, the steel sheet produced by the method of the present invention was a high-strength hot-dip galvanized steel sheet with excellent plating properties and adhesion.
  • a slab having the composition shown in Table 6 was heated to 1 4 2 3 K and finished at a temperature of 1 1 8 3 to 1: 2 0 3 ⁇ to a 4.5 mm hot rolled steel strip, 8 5 3 to 9 5 3 Winded up with K.
  • the continuous hot dip galvanizing facility used a method of reducing and annealing in the reduction zone after heating in a non-oxidizing furnace.
  • Reduction zone H 2 ⁇ generated by burning gas of a mixture of CO and H 2 attach the device to introduce C_ ⁇ 2, and H 2 0 to N 2 gas containing H 2 1 0 vol% C_ ⁇ 2 was introduced, and the logarithm of the oxygen potential in the furnace, 1 og PO 2, was adjusted to the value shown in Table 11.
  • the maximum temperature reached was adjusted to the value shown in Table 11 and the soaking time at the soaking temperature (range from the maximum temperature of 120 ° C to the maximum temperature) was 60 seconds. It was.
  • P 0 2 in the reduction furnace is the equilibrium reaction with measured values of hydrogen concentration, water vapor concentration, C 0 2 concentration, CO concentration, and atmospheric temperature in the furnace.
  • T S Tensile strength
  • ⁇ 1 elongation
  • the oxides containing S i existing in the grain boundaries and in the grains of the steel were evaluated by observing them from the cross section with SEM images.
  • the state of the internal oxide layer was observed with an s EM image, where the oxide containing Si was observed in the crystal grain boundary and in the crystal grain, and X was not observed.
  • the thickness of the internal oxide layer was observed with an SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • Oxides observed at the same position of S i and O are observed inside the steel plate than oxides observed at the same positions of Fe or M n and S i and O ⁇ : Oxide observed at the same position of S i and O is observed inside the steel plate
  • the appearance of the plating was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • Adhesion was defined as “X” when the adhesive tape was applied to the molten steel plate after the DuPont impact test, and then peeled off.
  • the DuPont test was performed by using a shooting die with a 1 Z 2 inch roundness at the tip and dropping a 1 kg weight from a height of 1 m.
  • the evaluation results are as shown in Table 11.
  • the method of the present invention makes it possible to produce a high-strength hot-dip galvanized steel sheet with excellent platability and adhesion.
  • a slab with the composition shown in Table 1 2 is heated to 1 4 2 3 K to a hot rolled steel strip of 4.5 mm at a finishing temperature of 1 1 8 3 to 1 2 0 3 K, 8 5 3 to 9 5 3 Wound up with K: After pickling and cold rolling to obtain a 1.6 mm cold rolled steel strip, it is passed under the conditions shown in Table 13 using a continuous hot-dip galvanizing facility with an in-line annealing method. A hot-dip galvanized steel sheet was produced.
  • the continuous hot dip galvanizing equipment used a method of reducing and annealing in the reduction zone after heating in a non-oxidizing furnace. Reduction zone is CO and H 2 H 2 0 to the mixed gas is burned to generate, C_ ⁇ attach the device to introduce 2, H 2 O and CO 2 in N 2 gas containing H 2 1 0 vol% Was introduced.
  • Tensile strength (TS) and elongation ( ⁇ 1) are determined from each steel sheet by JIS 5 test. The piece was cut out and obtained by conducting a tensile test at room temperature.
  • the amount of plating deposited was measured by the gravimetric method after dissolving the plating with hydrochloric acid containing the inhibitor.
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel coating were evaluated by observing the embedding and polished plated steel sheet from the cross section with a SEM image. The state of the internal oxide layer was observed with a SEM image. The oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed. Similarly, the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured. The composition of the internal oxide layer was analyzed using E D X attached to S E M, where “O” was observed for the Si and O peaks, and “X” was not observed.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S i, the weight thereof was measured.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was rated as X, and the case where the diffraction peak was observed as X.
  • Oxides observed at the same position of S i and O are observed inside the steel plate than oxides observed at the same positions of Fe or M n and S i and O
  • the Fe—Zn intermetallic compounds present in the plating layer were evaluated by embedding a 2 cm cross section in the rolling vertical direction of the plated steel sheet, polishing, and observing the cross section with a SEM image.
  • the particle size of the Fe-Zn-based intermetallic compound was determined by measuring the major axis and minor axis of the observed crystals and averaging them. For the average particle size, 4 to 10 particles having a large particle size were selected from the observed crystals, and the average value was calculated. In all of the inventions observed this time, more than 4 crystals were observed. '
  • the appearance of the plating was determined by visually observing the entire length of the passed coil and by scoring the area ratio of non-sticking as shown below. A score of 3 or higher was accepted.
  • .Powdering properties are: after applying tape to the plated steel plate, bending it 180 degrees, then bending back and peeling off the tape. X was given when the peel width was greater than 3 mm.
  • Adhesive adhesion is determined when the adhesive tape is applied to the molten steel plate after the DuPont impact test, and then peeled off. X is the case where the plating peels off.
  • the DuPont test was carried out by using a shooting type with a 1 inch and 2 inch roundness at the tip and dropping a 3 kg weight from a height of lm.
  • Table 1 Slabs with composition 2 are heated to 1 4 2 3 K and finishing temperature 1 A hot rolled steel strip of 4.5 mm from 1 8 3 to 1 2 0 31 was taken up at 8'5 3 to 9 5 3 K. After pickling, cold rolling to obtain a 1.6 mm cold rolled steel strip, and then plating under the conditions shown in Table 15 using an in-line annealing method of continuous hot dip galvanizing equipment To produce a hot-dip galvanized steel sheet.
  • the continuous hot dip galvanizing equipment used a method of reducing and annealing in the reduction zone after heating in a non-oxidizing furnace.
  • Reduction zone is CO and H 2 H 2 0 which were gas mixture is burned to generate, fitted with a device for introducing a C_ ⁇ 2, the N 2 gas containing H 2 1 0 vol% H 2 0 and C_ ⁇ 2 Introduced and adjusted so that the logarithm of the oxygen potential in the furnace, 1 og P0 2, becomes the value shown in Table 15.
  • the maximum temperature reached was adjusted to the value shown in Table 3, and the soaking time in the soaking temperature (range from the maximum temperature of 120 ° C to the maximum temperature) was 60 seconds. After that, cool down from the highest temperature to 9 2 3 K at an average cooling rate of 1 degree Z seconds, and subsequently cool down from 9 2 3 K to 7 7 3 K at an average cooling rate of 4 degrees Z seconds. In addition, the average cooling rate from 7 7 3 K 1.
  • Tensile strength (TS) and elongation ( ⁇ 1) are determined from each steel sheet by JIS 5 test. A piece was cut out and obtained by conducting a tensile test at room temperature.
  • the amount of plating adhered was measured by the gravimetric method after dissolving the plating with hydrochloric acid contained in the inhibitor.
  • the composition of the plating layer was measured by chemical analysis by dissolving the mess with hydrochloric acid containing inhibitor.
  • the oxides containing s i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by embedding and polishing the steel sheet with a cross-sectional observation with a SEM image.
  • the state of the internal oxide layer was observed with a SEM image.
  • the oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed.
  • the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured.
  • the composition of the inner oxide layer is E D attached to S E M
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S i, the weight thereof was measured.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • Oxides observed at the same position of S i and O are observed inside the steel plate than oxides observed at the same position of Fe or M n and S i and O
  • the Fe-Zn F intermetallic compound present in the plating layer was evaluated by embedding a 2 cm cross section in the rolling vertical direction of the plated steel sheet, polishing it, and observing it from the cross section with a SEM image.
  • the particle size of the Fe-Zn-based intermetallic compound was determined by measuring the major axis and minor axis of the observed crystals and averaging them. For the average particle size, 4 to 10 particles having a large particle size were selected from the observed crystals, and the average value was calculated. In the inventions observed this time, more than 4 crystals were observed. In the comparative example of No. 1 1, no Fe-Zn intermetallic compound was observed, but a thick Fe-A1 intermetallic compound was observed.
  • the appearance of the plating was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted.
  • Plating adhesion is determined when the adhesive tape is applied to the molten steel plate after the DuPont impact test, and then peeled off.
  • X is the case where the plating peels off.
  • DuPont test has 1 Z 2 at the tip A shot type with inch roundness was used, and a 3 kg weight was dropped from a height of lm.
  • a slab with the composition shown in Table 1 2 is heated to 1 4 2 3 K to a hot rolled steel strip of 4.5 mm at a finishing temperature of 1 1 8 3 to 1 2 0 3 K, 8 5 3 to 9 5 3 I scraped it with K.
  • the continuous hot dip galvanizing equipment used a method of reducing and annealing in the reduction zone after heating in a non-oxidizing furnace.
  • Reduction zone is fitted with a device for introducing the H 2 0, C 0 2 generated by burning gas of a mixture of CO and H 2, the C_ ⁇ 2 and H 2 0 to N 2 gas containing H 2 1 0 vol%
  • the logarithm of the oxygen potential in the furnace, 1 og P 0 2 becomes the value shown in Table 17 It adjusted so that.
  • the maximum temperature reached was adjusted to the value shown in Table 17 and the soaking time at the soaking temperature (range from the highest temperature of 120 ° C to the maximum temperature) was 60 seconds. It was.
  • T S Tensile strength
  • E 1 elongation
  • the oxides containing S i present in the grain boundaries and in the crystal grains of the steel sheet were evaluated by observing the embedding and polished plated steel sheet from the cross section with a SEM image.
  • the state of the internal oxide layer was observed with a SEM image.
  • the oxides containing S i were observed in the crystal grain boundaries and in the crystal grains, and X was not observed.
  • the thickness of the internal oxide layer was observed by a SEM image, and the thickness of the portion where the oxide was observed in the crystal grain boundary and in the crystal grain from the interface between the steel sheet and the adhesive layer was measured.
  • the composition of the internal oxide layer was analyzed using E D X attached to S E M, where “O” was observed for the Si and O peaks, and “X” was not observed.
  • the measurement of the content of oxides containing S i in the steel sheet was performed by using the steel sheet after the plating was dissolved with hydrochloric acid containing an inhibitor, and the layer containing the oxide containing Si was dissolved with an acid. After separating the oxide containing S i, It was determined by measuring the weight.
  • the presence or absence of FeO was measured by XRD from the surface of the steel sheet.
  • the case where the diffraction peak of FeO was not observed was marked as ⁇ , and the case where the diffraction peak was observed was marked as X.
  • Oxides observed at the same position of S i and O are observed inside the steel plate than oxides observed at the same positions of Fe or M n and S i and O
  • the Fe—Zn intermetallic compounds present in the plating layer were evaluated by embedding a 2 cm cross section in the rolling vertical direction of the plated steel sheet, polishing, and observing the cross section with a SEM image.
  • the average particle diameter of the Fe—Zn-based intermetallic compound of the obtained plated steel sheet was 0.5 to 3; um.
  • four or more crystals were observed.
  • the plating appearance was determined by visually observing the entire length of the passed coil and rating the unplated area ratio as shown below. A score of 3 or higher was accepted. 4: Unplated area ratio ⁇ 1%
  • Plating adhesion was defined as “X” when the adhesive tape was applied to the molten steel plate after the DuPont impact test, and then peeled off, and the plating did not peel off, and “X” when the plating peeled off.
  • the DuPont test was performed by using a shooting type with a 1 inch 2 inch roundness at the tip and dropping a 3 kg weight from a height of l m.
  • the evaluation results are shown in Table 17 and Table 18 (continued from Table 17).
  • the method of the present invention makes it possible to produce a high-strength hot-dip galvanized steel sheet having excellent plating properties and adhesion.
  • the present invention makes it possible to provide a high-strength hot-dip galvanized steel sheet, a high-strength galvannealed steel sheet, and a method for producing them, which have good tackiness, formability and adhesion, and excellent corrosion resistance. It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

質量%で、 C:0.05~0.25%、 Si:0.3~2.5%、 Mn:1.5~2.8%、 P:0.03%以下、 S:0.02%以下、 Al:0.005~0.5%、 N:0.0060%以下を含有し、残部Fe及び不可避的不純物からなる高強度鋼板の上に、Al:0.05~10質量%、Fe:0.05~3質量%を含有し、残部がZn及び不可避的不純物からなる亜鉛めっき層を有する溶融亜鉛めっき鋼板において、高強度鋼板とめっき層との界面から5μm以下の鋼板側の結晶粒界と結晶粒内にSiを含む酸化物が平均含有率0.6~10質量%で存在し、めっき側に平均粒径0.5~3μmのFe−Zn合金が存在することを特徴とする成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板。

Description

明 細 書 成形性及びめつき性に優れた高強度溶融亜鉛めつき鋼板及ぴ髙強度 合金化溶融亜鉛めつき鋼板ならびにそれらの製造方法及 製造装置 技術分野
本発明は、 高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜铅 めっき鋼板ならびにそれらの製造方法に係わり、 更に詳しくは不め つきの無い良好な外観と優れためつき密着性及び成形性、 耐食性を 有し、 種々の用途、 例えば建材用や自動車用鋼板として適用できる めっき鋼板に関するものである。 背景技術
耐食1性の良好なめっき鋼板として最も使用されるものに溶融亜鉛 めっき鋼板がある。 この溶融亜鉛めつき鋼板は, 通常、 鋼板を脱脂 後, 無酸化炉にて予熱し、 表面の清浄化および材質確保のために還 元炉にて還元焼鈍を行い、 溶融亜鉛浴に浸潰し、 付着量制御を行う ことによって製造される。 その特徵として、 成形性、 耐食性および めっき荦着性等に優れることから, 自動車、 建材用途等を中心とし て広く使用されている。
特に近年、 自動車分野においては衝突時に乗員を保護するような 機能の確保と共に燃費向上を目的とした軽量化を両立させるために 、 めっき鋼板の高強度化が必要とされてきている。
加工性を恶化させずに鋼板を高強度化するためには、 S i や M n 、 Pといった元素を添加することが有効であるが、 この内 S I は F eよりも特に酸化し易いことから、 S i,を含有した鋼板を通常の溶 融亜鉛めつき条件でめっきすると、 焼鈍過程で鋼中の S i が表面に 濃化し、 不めっき欠陥やめつき密着性低下の原因となることが知ら れている。 また、 これらの元素の添加は合金化を遅延させるため、 軟鋼に比べて高温長時間の合金化を必要とする。 この高温長時間の 合金化は、 鋼板中に残存していたォ一ステナイ 卜をパーライ 卜に変 態させ、 加工性を低下させるため、 結果として添加元素の効果を相 殺することになる。
S i を含有した鋼板の不めっき欠陥を抑制する技術としては、 特 開昭 5 5— 1 2 2 8 6 5号公報において鋼、 表面に酸化膜の厚みが 400〜 1 0 0 0 O Aになるように酸化した後、 水素を含む雰囲気 中で焼鈍し、 めっきする方法が示されている。 しかし本技術におい ては、 鉄酸化膜の還元時間の調節は 際上困難であり、 還元時間が 長すぎれば S iの表面濃化を引き起こし、 短すぎれば鋼表面に鉄の 酸化膜が残存するので、 結局完全にめっき性不良の解消にはならな いという問題点と, 表面の鉄酸化膜が厚くなりすぎると.、 剥離した 酸化物がロールに付着し外観疵を発生させるという問題点を有して いる。
上記問題点を改善する目的で、 本発明者らは特開 2 0 0 1— 3 2 3 3 5 5号公報および特開 20 0 3— 1 0 5 5 1 6号公報において 鍋板表面を酸化させた後に雰囲気を制御した還元炉中で還元するこ とにより、 S i の表面濃化を防止する製造方法を提案した。
また、 特開 2 0 0 1 — 2 9 5 0 1 8号公報【こおいて、 S i含有量 が 0. 2〜 2. 0質量%である鋼板に A〗 : 2 ~ 1 9質量%、 Mg : 1〜 1 0質量%、 残部が Z nおよび不可避的不純物からなる溶融 Z n - A 1 — M gめっき層を鋼板表面に形成した耐食性の良好な S i含有髙強度溶融亜鉛めつき鋼板を、
さらに、 特関 2 0 0 4— 3 2 3 9 7 0号公報において S i含有量 が 0, 2〜 3. 0質量%である鋼板表面の内部に、 S 1酸化物、 M π酸化物、 又は S ί と M nの複合酸化物から選ばれる 1種以上の酸 化物粒子を含有することを特徴とするめつき性の良好な高強度溶融 亜鉛めつき鋼板を提案した。
また、 特開昭 5 6— 3 3 4 6 3号公報及び特開昭 5 7— 7 9 1 6 0号'公報には、 鋼板表面に C ir 、 N i 、 F e等のプレめっきを行う ことによって不めっき欠陥を抑制する方法が示されている。 更に、 特開 2 0 0 2 - 1 6 1 3 1 5号公報には、 連続焼鈍ラインで銅板の 表面直下に内部酸化層を生成させ、 同時に生成した表面酸化物を酸 洗で除去した後に連続溶融亜鉛めつきラインでめつきを行う方法が 示されている。 発明の開示
しかし、 上記及びその他これまで開示された製造技術では、 不め つき欠陥や密着性不良を完全に防止することができない。 特開昭 5 5 - 1 2 2 8 6 5号公報では、 鉄酸化膜の還元時間の調節は実際上 困難であり、 還元時間が長すぎれば S i の表面澳化を引き起こし、 短すぎれば鋼表面に鉄の酸化膜が残存するので、 不めっき欠陥を完 全に防止することができない。
このため、 特開 2 0 0 1— 3 2 3 3 5 5号公報および特開 2 0 0 3 - 1 0 5 5 1 6号公報では、 S iの表面濃化により発生する不め つき欠陥を抑制する目的で、 還元雰囲気を制御し S i 02を内部酸 化状態としている。 この方法により、 S iが表面漉化して起こる不 めっき欠陥をかなり減らすことが可能となるが、 それでも不めっき 欠陥や密着性不良を完全に防止することはできない。
これは、 上記特許に記載された方法では、 S i の外部酸化による 表面への濃化を防ぐことができても、 S i 02の鋼板表面への露出 を完全には防止できないためである。 従って、 不めっき欠陥や密着 性不良を防止するためには、 より厳密な S i o 2の制御が必要とな る。
また、 特開 2 0 0 4 - 3 2 3 9 7 0号公報では、 還元雰囲気を制 御し 、 鋼板表面の内部に、 S i 酸化物、 M 酸化物、 又は S i と M nの複合酸化物から選ばれる 1種以上の酸化物粒子を含有させ、 め さ性を向上させているが、 の方法でも、 S i が表面濃化して起 こる不めっき欠陥をかなり減らすことが可能となるが、 S i 〇 2の 鋼板表面への露出を完全には防止できないため、 不めっき欠陥ゃ密 着性不良を完全に防止することはできない。
溶融亜鉛めつき鋼板は合金化溶融亜鉛めつき鋼板のように合金化 による密着性の向上を期待できないため、 S i を添加した鋼板のよ うにめつき 鋼板界面の密着性が低くなり易い鋼板のめっき密着性 を.向上させることは難しい。 そのため特開 2 0 0 1 - 3 2 3 3 5 5 号公報、 特開 2 0 Q 3 — 1 0 5 5 1 6号公報および特開 2 0 0 4— 3 2 3 9 7 0号公報においても、 曲げ試験で剥離しない程度のめつ き密着性は一確保されているが、 デュポン衝撃試験のような厳しい評 価によるめつき密着性は十分確保されていなかった。
更に、 特開昭 5 6 - 3 3 4 6 3号公報および特開昭 5 7 - 7 9 1
6 0号公報のようなプレめっき法ではめつき設備が必要となるため
、 そのスペースがない場合は採用できない。 また、 プレめっき設備 置により生産コス 卜が上昇する問題も生じる。 また 、 特開 2 0 0
2 ― 1 6 1 3 1 5号公報のような 2回焼鈍も生産コス 卜が上昇する 問題が生じる。
さ らに、 これまで開示された S i を含有した鋼板の製造技術は、 めづき性を確保することに重点が置かれ、 成形性などめつき鋼板と して使用させる際の様々な性能を向上させることまではなされてい なかった。 そこで、 本発明は上記問題点を解決し、 外観が良好でめっき密着 性、 成形性および耐食性に優れた高強度溶融亜鉛めつき鋼板および 高強度合金化溶融亜鉛めつき鋼板ならびにそれらの製造方法を提案 するものである。
本発明者らは、 高強度鋼板のめっき処理について鋭意研究を重ね た結果、 S i 、 M nがー定量以上添加された鋼を、 熱処理条件及び めっき条件を最適化した連続溶融亜鉛めつき設備でめっき処理する ことにより、 S i 酸化物の種類と位置を制御し、 外観が良好でめつ き密着性、 成形性および耐食性に優れた高強度溶融亜鉛めつき鋼板 および高強度合傘化溶融亜鉛めつき鋼板を製造できることを見いだ して本発明をなした。 _すなわち、 本発明の要旨とするところは以下 に示すとおりである。
( 1 ) 質量%で、
C : 0. 0 &〜 0. 2 5 %、
S i : 0. 3〜 2. 5 %、
M n : 1. 5〜 2. 8 %、
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部 F e及び不可避的不純物 からなる高強度鋼板の上に、 A 1 : 0. 0 5〜 1 0質量%、 F e : 0. 0 5〜 3質量%を含有し、 残部が Z n及び不可避的不純物から なる亜鉛めつき層を有する溶融亜鉛めつき鋼板において、 高強度鋼 板とめっき層との界面から 5 以下の鋼板側の結晶粒界と結晶粒 内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在し、 めっき側に平均粒径 0. 5〜 3 mの F e 一 Z n合金が存在するこ とを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛めつき 鋼板。
( 2 ) 質量%で、
C : 0. 0 5〜 0. 2 5 %、
S i : 0. 3〜 2. 5 %、
M n : 1. 5〜 2. 8 %、
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A l : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部 F e及び不可避的不純物 からなる高強度鋼板の上に、 A 1 : 0. 0 5〜 1 0質量%、 F e : 0. 0 5〜 3質量%を含有し、 残部が Z n及び不可避的不純物から なる亜鉛めつき層を有する溶融亜鉛めつき鋼板において、 高強度鋼 板とめっき層との界面から 5 以下の鋼板側の結晶粒界と結晶粒 内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在し、 めっき側に平均粒径 0. 5〜 3 111の 6 — 2 11合金が任意の断面. において 1個ノ 5 0 0 m以上の割合で存在することを特徴とする 成形性及びめつき性に優れた高強度溶融亜鉛めつき鋼板。
( 3 ) 質量%で、
C : 0. 0 5〜 0. 2 5 %、
S i : 0. 3〜 2. 5 % ,
n : 1. 5〜 2. 8 %、
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A l : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部が F e及び不可避的不純 物からなる高強度鋼板の上に、 A 1 : 0. 0 5〜 1 0質量%、 g : 0. 0 1〜 5質量%を含有し、 残部が Z n及び不可避的不純物か らなる亜鉛めつき層を有する溶融亜鉛めつき鋼板において、 高強度 鋼板とめっき層との界面から 5 /z m以下の鋼板側の結晶粒界と結晶 粒内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在す ることを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛め つさ鋼板。
( 4 ) 質量%で、
C : 0. 0 5〜 0. 2 5 %、
S i : 0. 3〜 2. 5 %、
M n : 1. 5〜 2. 8 % ,
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部が F e及び不可避的不純 物からなる高強度綱板の上に、 A 1 : 4〜 2 0質量%、 M g : 2〜 5質量%、 S i : 0〜 0. 5質量%を含有し、 残部が Z n及び不可 避的不純物からなる亜鉛めつき層を有する溶融亜鉛めつき鋼板にお いて、 高強度鋼板とめっき層との界面から 5 m以下の鋼板側の結 晶粒界と結晶粒内に S i を含む酸化物が平均含有率 0. 6〜 1 0質 量%で存在することを特徴とする成形性及びめつき性に優れた高強 度溶融亜鉛めつき鋼板。
( 5 ) 質量%で、
C : 0. 0 5〜 0. 2 5 %、
S i : 0. 3〜 2. 5 %、
M n : 1. 5〜 2. 8 %、
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、 N : 0. 0 0 6 0 %以下を含有し、 残部 F e及び不可避的不純物 からなる高強度鋼板の上に、 F e を含有し、 残部が Z n及び不可避 的不純物からなる合金化溶融亜鉛めつき層を有する鋼板において、 高強虔鋼板とめっき層との界面から 5 以下の鋼板側の結晶粒界 と結晶粒内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で 存在し、 めっき層中に S i を含む酸化物が平均含有率 0. 0 5〜 1 . 5質量%で存在することを特徴とする成形性及びめつき性に優れ た高強度合金化溶融亜鉛めつき鋼板。
( 6 ) ( 1 ) 〜 ( 5 ) の何れかに記載の S i を含む上記酸化物が S i 〇い F e S i 〇3、 F e 2 S i Oい M n S i 03 > M n 2 S i O 4、 から選ばれた 1種以上であることを特徴とする成形性及びめつ き性に優れた高強度溶融亜鉛めつき鋼板。
( 7 ) ( 5 ) に記載の合金化溶融亜鉛めつき鋼板において、 めつ き層中及び鋼板表面に F e S i 〇3、 F e 2 S i 04、 M n S i 〇3、 M n 2 S i 〇4から選ばれた 1種以上の S i酸化物が存在し、 鋼板内 面側に S i 〇2が存在することを特徴とする成形性及びめつき性に 優れた高強度合金化溶融亜鉛めつき鋼板。
( 8 ) ( 5 ) に記載の合金化溶融亜鉛めつき鋼板において、 めつ き層中に F e S i 〇3、 F e 2 S i 〇4、 M n S i 03、 M n 2 S i 04 から選ばれた 1種以上の S i 酸化物が存在し、 めっき層の鋼板側及 び鋼板中に S i 02が存在することを特徴とする成形性及びめつき 性に優れた高強度合金化溶融亜鉛めつき鋼板。
( 9 ) ( 1 ) 〜 ( 4 ) のいずれかに記載の高強度溶融亜鉛めつき 鋼板において、 鋼板表面または表面側に F e S i O 3、 F e 2 S i O 4、 M n S i 〇3、 n 2 S i 〇4から選ばれた 1種以上の S i 酸化物 が存在し、 鋼板内面側に S i 02が存在することを特徴とする成形 性及びめつき性に優れた高強度溶融亜鉛めつき鋼板。 ( 1 0 ) 引張強さ F (M P a ) と伸び L ( ) の関係が
L≥ 5 1 - 0. 0 3 5 X F
を満足することを特徴とする ( 1 ) 〜 ( 9 ) のいずれかに記載の 成形性及びめつき性に優れた高強度合金化溶融亜鉛めつき鋼板。
( 1 1 ) S i 、 M nを含有する高強度鋼板に、 連続的に溶融亜鉛 めっきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i 03
、 F e 2 S i 04、 M n S i 〇3、 M n 2 S i 04から選ばれた 1種以 上の S i酸化物を存在させ、 かつ鋼板内面側に S i O 2の酸化物を 存在させた高強度鋼板の上に亜鉛めつき、 又は亜鉛合金めつきを施 すことを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛め つき鋼板の製造方法。
( 1 2 ) S i 、 M nを含有する高強度鋼板に、 連続的に溶融亜鉛 めっきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i 03
、 F e 2 S i 〇4、 M n S i 〇3、 M n 2 S i 04から選ばれた 1種以 上の S i酸化物を存在させ、 かつ鋼板内面側に S i O 2の酸化物を 存在させた高強度鋼板の上に亜鉛めつきを施し、 次いで合金化処理 を行う ことを特徴とする成形性及びめつき性に優れた高強度合金化 溶融亜鉛めつき鋼板の製造方法。
( 1 3 ) C、 S i 、 M nを含有する高強度鋼板に、 連続的に溶融 亜鉛めつきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i 〇3、 F e 2 S i 〇4、 M n S i Oい M n2 S i 〇4力、ら選ばれた 1種 以上の S i 酸化物を存在させ、 かつ鋼板内面側に S i 02の酸化物 を存在させた高強度鋼板の上に亜鉛めつき、 又は亜鉛合金めつきを 施すことを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛 めっき鋼板の製造方法。
( 1 4 ) C、 S i 、 M nを含有する高強度鋼板に、 連続的に溶融 亜鉛めつきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i 〇3、 F e 2 S i 〇4、 M n S i 03、 M n 2 S i 〇4力、ら選ばれた 1種 以上の S i酸化物を存在させ、 かつ鋼板内面側に S i 〇2の酸化物 を存在させた高強度鋼板の上に亜鉛めつきを施し、 次いで合金化処 理を疔う ことを特徴とする成形性及びめつき性に優れた高強度合金 化溶融亜鉛めつき鋼板の製造方法。
( 1 5 ) ( 1 1 ) 〜 ( 1 4 ) のいずれかに記載の高強度溶融亜鉛 めっき鋼板及び高強度合金化溶融亜鉛めつき鋼板が、 質量%で、 C : 0. 0 5〜 0. 2 5 %、 S i : 0. 3〜 2. 5 % , M n : 1. 5 〜 2. 8 %、 P : 0. 0 3 %以下、 S : 0. 0 2 %以下、 A 1 : 0 . 0 0 5〜 0. 5 %、 N : 0. 0 0 6 0 %以下、 残部 F e及び不可 避的不純物からなることを特徴とする成形性及び耐食性に優れた高 強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつき鋼板の製 造方法。
( 1 6 ) 質量%で、
C、 S i 、 M nを含有する高強度鋼板に連続的に溶融亜鉛めつき を施すに際し、 還元帯の雰囲気として、 H2を 1〜 6 0体積%含有 し、 残部 N2、 H20、 02、 C〇2、 C Oの 1種又は 2種以上及び不 可避的不純物からなり、 その雰囲気中の酸素分圧の対数 1 o g P O
2を ■
一 0. 0 0 0 0 3 4 Τ2 + Ό . 1 0 5 Τ - 0. 2 [ S i % ] 2 + 2 . 1 [ S i % ) - 9 8. 8≤ l o g P O2≤ - 0. 0 0 0 0 3 8 T2 + 0. 1 0 7 T - 9 0. 4 ( 1式)
9 2 3≤T≤ 1 1 7 3 ( 2式)
T : 鋼板の最高到達温度 (K)
〔 S i %〕 : 鋼板中の S i含有量 (質量%)
に制御した雰囲気で還元を行う ことを特徴とする成形性及びめつ き性に優れた高強度溶融亜鉛めつき鋼裉及び高強度合金化溶融亜鉛 めっき鋼板の製造方法。
( 1 7 ) ( 1 6 ) に記載の高強度溶融亜鉛めつき鋼板及び高強度 合金化溶融亜鉛めつき鋼板の製造方法において、 還元帯の前の酸化 帯において燃焼空気比 0. 9〜 1. 2の雰囲気中にて酸化せしめ、 その後の還元帯において、 還元を行う ことを特徴とする成形性及び めっき性に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融 亜鉛めつき鋼板の製造方法。
( 1 8 ) ( 1 6 ) に記載の高強度溶融亜鉛めつき鋼板及び高強度 合金化溶融亜鉛めつき鋼板の製造方法において、 還元帯の前の酸化 帯において露点 2 7 3 K以上の雰囲気中にて酸化せしめ、 その後の 還元帯において、 還元を行う ことを特徴とする成形性及びめつき性 に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつ き鋼板の製造方法。
( 1 9 ) 質量%で、
C、 S i 、 M nを含有する鋼スラブを A r 3点以上の温度で仕上 圧延を行い、 5 0〜 8 5 %の冷間圧延を施し、 引き続いて、 溶融亜 鉛めつきを施す際、 還元帯の雰囲気として、 H2を 1〜 6 0体積% 含有し、 残部 N2、 H20、 .〇2、 C 02、 C Oの 1種又は 2種以上及 び不可避的不純物からなり、 その雰囲気中の酸素分圧の対数 l o g P〇2
— 0. 0 0 0 0 3 4 Τ2 + 0. 1 0 5 Τ - 0. 2 [ S i % ] 2 + 2 . 1 〔 S i %〕 - 9 8. 8≤ 1 o g P O2≤ - 0. 0 0 0 0 3 8 T2 + 0. 1 0 7 T - 9 0. 4 ( 1式)
9 2 3≤ T≤ 1 1 7 3 ( 2式)
T : 鋼板の最高到達温度 (K)
〔 S i %〕 : 鋼板中の S i含有量 (w t %)
に制御した雰囲気の連続溶融亜鉛めつき設備を使用し、 1 0 2 3 K以上 1 1 5 3 Κ以下のフェライ ト、 オーステナイ 卜の二相共存温 度域で焼鈍し、 その最高到達温度から 9 2 3 Κまでを平均冷却速度 0. 5〜 1 0度ノ秒で冷却し、 引き続いて 9 2 3 Κから 7 7 3 Κま でを平均冷却速度 3度ノ秒以上で冷却し、 さ らに 7 7 3 Κから平均 冷却速度 0. 5度 Ζ秒以上で冷却し、 溶融亜鉛めつき処理を行う こ とによって、 前記冷延鋼板の表面上に溶融亜鉛めつき層を形成する 製造方法において、 7 7 3 Κからめつき後 6 2 3 Κに到達するまで の時間を 2 5秒以上 2 4 0秒以下とすることを特徴とする成形性及 びめつき性に優れた高強度溶融亜鉛めつき鋼板の製造方法。
( 2 0 ) 質量%で、
C、 S i 、 M nを含有する鋼スラブを A r 3点以上の温度で仕上 圧延を行い、 5 0〜 8 5 %の冷間圧延を施し、 引き続いて溶融亜鉛 めっきを施す際、 還元帯の雰囲気と して、 H2を 1〜 6 0体積%含 有し、 残部 N2、 H20、 02、 C 02、 C〇の 1種又は 2種以上およ び不可避的不純物からなり、 その雰囲気中の酸素分圧の対数 1 o g P o2
— 0. 0 0 0 0 3 4 T 2 + 0. 1 0 5 T - 0. 2 [ S i % ) 2 + 2 . 1 [ S i % ] 一 9 8. 8≤ 1 o g P O2≤ - 0. 0 0 0 ひ 3 8 T2 + 0.. 1 0 7 T - 9 0. 4 ( 1式)
9 2 3≤ Τ≤ 1 1 7 3 · · · - - ( 2式)
Τ : 鋼板の最高到達温度 (Κ)
〔 S i %〕 : 鋼板中の S i含有量 (質量%)
に制御した雰囲気の連続溶融亜鉛めつき設備を使用し、 1 0 2 3 K以上 1 1 5 3 K以下のフェライ ト、 オーステナイ 卜の二相共存温 度域で焼鈍し、 その最高到達温度から 9 2 3 Kまでを平均冷却速度 0. 5〜 1 0度 秒で、 引き続いて 9 2 3 Kから 7 7 3 Kまでを平 均冷却速度 3度/秒以上で冷却し、 さ らに 7 7 3 から平均冷却速 度 0. 5度 秒以上で 6 9 3 K〜 7 3 3 Kまで冷却し、 且つ、 7 7 3 Κからめつき浴までを 2 5秒以上 2 4 0秒以下保持した後、 溶融 亜鉛めつき処理を行う ことによって、 前記冷延鋼板の表面上に溶融 亜鉛めつき層を形成し、 次いで、 前記溶融亜鉛めつき層が形成され た前記鋼板に対し合金化処理を施すことによって、 前記鋼板の表面 上に合金化溶融亜鉛めつき層を形成する合金化溶融亜鉛めつき鋼板 の製造方法において、 前記溶融亜鉛めつき処理を、 浴中有効 A 1 濃 度 : 0. 0 7〜 0. 1 0 5 w t %、 残部が Z nおよび不可避的不純 物からなる成分組成の溶融亜鉛めつき浴中で行い、 そして、 前記合 金化処理を、
7 2 0≤ T≤ 6 9 0 X e X p ( 1 . 3 5 X [A 1 % )
但し、 〔A 1 %〕 : 亜鉛めつき浴中の浴中有効 A 1 濃度 (w t %
)
を満足する温度 T (K) において行う ことを特徴とする成形性及 びめつき性に優れた高強度合金化溶融亜鉛めつき鋼板の製造方法。
( 2 1 ) ( 1 6 ) 、 ( 1 9 ) 又は ( 2 0 ) のいずれかに記載の高 強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつき鋼板が、 質量%で、 C : 0. 0 5〜 0. 2 5 %、 S i : 0. 3〜 2. 5 % , M n : 1 . 5〜 2. 8 %\ P : 0. 0 3 %以下、 S : 0. 0 2 %以 下、 A 1 : 0. 0 0 5〜 0. 5 %、 N : 0. 0 0 6 0 %以下、 残部 F e及び不可避的不純物からなることを特徴とする成形性及びめつ き性に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛 めっき鋼板の製造方法。
( 2 2 ) ( 2 0 ) に記載の高強度合金化溶融亜鉛めつき鋼板の製 造方法において、 焼鈍後 6 7 3 K以上 7 2 3 K以下まで冷却した後 、 7 ひ 3 K以上 7 4 3 K以下まで再加熱を行い、 溶融亜鉛めつき処 理を行う'ことを特徴とする成形性及びめつき性に優れた高強度合金 化溶融亜鉛めつき鋼板の製造方法。
( 2 3 ) ( 2 0 ) 又は ( 2 2 ) に記載の高強度合金化溶融亜鉛め つき鋼板の製造方法において、 溶融めつき後 6 7 3 K以下の温度に 冷却されるまでの時間を 3 0秒以上 1 2 0秒以下とすることを特徴 とする成形性及びめつき性に優れた高強度合金化溶融亜鉛めつき鋼 板の製造方法。
( 2 4 ) 無酸化炉又は直火炉を有し、 鋼板に連続的に溶融亜鉛め つきを施す溶融亜鉛めつき鋼板の製造設備において、 C〇2を 1 〜 1 0 0体積%含有し、 残部 N2、 H20、 02、 C O及び不可避的不 純物からからなる気体を導入する装置を還元炉に配設することを特 徴とする溶融めつき鋼板の製造設備。
( 2 5 ) 無酸化炉又は直火炉を有し、 鋼板に連続的に溶融亜鉛め つきを施す溶融亜鉛めつき鋼板の製造設備において、 還元炉中で C O又は炭化水素を燃焼させ、 C〇2を 1 〜 1 0 0体積%含有し、 残 部 N2、 H20、 02、 C O及び不可避的不純物からからなる気体を 発生させる装置を配設することを特徴とする溶融めつき鋼板の製造 設備。 図面の簡単な説明
図 1 は、 めつき性が良好な高強度溶融亜鉛めつき鋼板を埋め込み 研磨し、 エッチング後、 断面を S E M像で観察した結果を示す図で ある。
図 2 は、 めつき性が良好な高強度溶融亜鉛めつき鋼板の断面を 1 0度に傾斜させて埋め込み研磨を行い、 ぞの断面を S E M像で観察 した結果を示す図である。
図 3 は、 めっき性が良好な高強度溶融亜鉛めつき ( Z n — A 1 — M g— S i めっき) 鋼板の断面を 1 0度に傾斜させて埋め込み研磨 を行い、 その断面を S E M像で観察した結果を示す図である。
図 4は、 めっき性が良好な高強度合金化溶融亜鉛めつき鋼板の断 面を 1 0度に傾斜させて埋め込み研磨を行い、 その断面を S E M像 で観察した結果を示す図である。
図 5は、 本発明に係わる溶融亜鉛めつき鋼板の製造設備の一例を 示す側面図である。
図 6は、 本発明に係わる溶融亜鉛めつき鋼板の製造設備の一例を 示す側面図である。 発明を実施するための最良の形態
以下に本発明を詳細に説明する。
まず、 C、 S i 、 M n、 P、 S、 A 1 、 Nの数値限定理由につい て述べる。 Cはマルテンサイ トゃ残留オーステナイ トによる組織強 化で鋼板を高強度化しよう とする場合 必須の元素である。 Cの含 有量を 0. 0 5 %以上とする理由は、 Cが 0. 0 5 %未満ではミス トゃ噴流水を冷却媒体として焼鈍温度から急速冷却することが困難 な溶融亜鉛めつきライ ンにおいてセメンタイ 卜やパーライ 卜が生成 しゃすく、 必要とする引張強さの確保が困難であるためである。 一 方、 Cの含有量を 0. 2 5 %以下とする理由は、 Cが 0. 2 5 %を 超えると、 スポッ ト溶接で健全な溶接部を形成することが困難とな ると同時に Cの偏祈が顕著となり加工性が劣化するためである。
. S i は鋼板の加工性、 特に伸びを大きく損なう ことなく強度を増 す元素として 0. 3〜 2. 5 %添加する。 S i の含有量を 0. 3 % 以上とする理由は、 S i 力 S 0. 3 %未満では必要とする引張強さの 確保が困難であるためであり、 S i の含有量を 2. 5 %以下とする 理由は、 S i が 2. 5 %を超えると強度を増す効果が飽和すると共 に延性の低下が起こるためである。 望孝しく は、 C含有量の 4倍以 上の質量%とすることで、 めっき直後に行う合金化処理のための再 加熱でパーライ 卜およびべィナイ 卜変態の進行を著しく遅滞させ、 室温まで冷却後にも体積率で 3〜 2 0 %のマルテンサイ トおよび残 留オーステナイ 卜がフェライ ト中に混在する金属組織とすることが できる。
M nは Cとともにオーステナイ トの自由エネルギーを下げるため 、 めっき浴に鋼帯を浸漬するまでの間にオーステナイ 卜を安定化す る目的で 1 . 5 %以上添加する。 また、 C含有量の 1 2倍以上の質 量%を添加することにより、 めっき直後に行う合金化処理のための 再加熱でパーライ 卜およびべィナイ ト変態の進行を著しく遅滞させ 、 室温まで冷却後にも体積率で 3〜 2 0 %のマルテンサイ トおよび 残留オーステナイ 卜がフェライ 卜中に混在する金属組織とできる。 しかし添加量が過大になるとスラブに割れが生じやすく、 またスポ ッ ト溶接性も劣化するため、 2 . 8 %を上限とする。
Pは一般に不可避的不純物として鋼に含まれるが、 その量が 0 . 0 3 %を超えるとスポッ ト溶接性の劣化が著しいうえ、 本発明にお けるような引張強さが 4 9 0 M P aを超すような高強度鋼板では靭 性とともに冷間圧延性も著しく劣化するため、 その含有量は 0 . 0 3 %以下とする。 S も一般に不可避的不純物として鋼に含まれるが 、 その量が 0 . 0 2 %を超えると、 圧延方向に伸張した M n Sの存 在が顕著となり、 鋼板の曲げ性に悪影響をおよぼすため、 その含有 量は 0 . 0 2 %以下とする。
A 1 は鋼の脱酸元素として、 また A 1 Nによる熱延素材の細粒化 、 および一連の熱処理工程における結晶粒の粗大化を抑制し材質を 改善するために 0 . 0 0 5 %以上添加する必要がある。 ただし、 0 . 5 %を超えるとコス ト高となるばかりか、 表面性状を劣化させる ため、 その含有量は 0 . 5 %以下とする。 Nもまた一般に不可避的' 不純物として鋼に含まれるが、 その量が 0. 0 0 6 %を超えると、 伸びとともに脆性も劣化するため、 その含有量は 0. 0 0 6 %以下 とする。
ま 、 これらを主成分とする鋼に N b、 T i 、 B、 M o、 C u、 N i 、 S n、 Z n、 Z r、 W、 C o、 C a、 希土類元素 (Yを含む ) 、 V、 T a、 H f 、 P b、 M g、 A s 、 S b、 B i を合計で 1 % 以下含有しても本発明の効果を損なわず、 その量によっては耐食性 や加工性が改善される等好ましい場合もある。
次に、 めっき層について述べる。
溶融亜鉛めつき層において A 1 の含有量を 0. 0 5〜 1 0質量% に限定した理由は、 A 1 の含有量が 1 0質量%を超えると F e — A 1 合金化反応が進みすぎてめっき密着性の低下が見られるためであ る。 また、 A 1 の含有量を 0. 0 5質量%以上に限定した理由は、
0. 0 5質量%未満の A 1 量で通常の溶融めつき処理を行う と、 め つき処理時において Z n— F e合金化反応が進みすぎて、 地鉄界面 に脆い合金層が発達し、 めっき密着性が劣化するためである。
F eの含有量を 0. 0 1〜 3質量%に限定した理由は、 0. 0 1 質量%未満ではめつき密着性を向上させる効果が不十分であるため であり、 3質量%を超えると地鉄界面に脆い合金層が発達し、 めつ き密着性が低下するためである。
めっき層中には、 これ以外に S b、 P b、 B i 、 C a、 B e、 T
1 、 C u、 N i 、 C o、 C r、 M n、 P、 B、 S n、 Z r、 H f 、 S r、 V、 S e、 R E Mを単独あるいは複合で 0. 5質量%以内含 有しても本発明の効果を損なわず、 その量によってはさ らに外観が 改善される等好ましい場合もある。
溶融亜鉛めつきの付着量については特に制約は設けないが、 耐食 性の観点から 1 0 gZm2以上、 加工性 ;の観点から 3 5 0 gZm2以 下で有ることが望ましい。
また、 本発明の高強度溶融亜鉛めつき鋼板は、 高強度鋼板とめつ き層との界面から 5 m以下の鋼板側の結晶粒界と結晶粒内に S 1 を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在し、 めっき側 に平均粒径 0. 5〜 3 mの F e 一 Z n合金が存在することにより めっき密着性を向上させることが可能となる。 高強度鋼板の結晶粒 界と結晶粒内に S i を含む酸化物が存在するとめつき密着性が向上 する理由は、 焼鈍過程で鋼板内に S i を含む酸化物が生成すること によって、 鋼板表面にめっき密着性を低下させる原因となる S i O 2が露出しなくなるためであると考えられる。
また、 高強度鋼板とめっき層との界面からめっき側に平均粒径 0 . 5〜 3 mの F e — Z n合金が生成することによりめっき密着性 が向上する理由は、 鋼板とめっき浴が反応することによって密着性 が向上するためであると考えられる。
一般に S i含有量が 0. 3 %未満の鋼板においては、 鋼板とめつ き浴が反応し F e — A 1 — Z n系の金属間化合物が生成し、 密着性 を向上させることが知られているが、 発明者らが種々実験した結果 、 S i含有量が 0. 3 %以上の鋼板においては、 F e — Z n系の金 属間化合物が生成することでめっき密着性を向上させることが明ら かになつた。 従って鋼板表面に S i O 2が露出している場合は、 こ れが鋼板とめっき浴の反応を阻害するため、 F e — Z n 金が生成 せず、 同時にめつき密着性が低下すると考えられる。
図 1 は、 めっき密着性が良好な高強度溶融亜鉛めつき鋼板を埋め 込み研磨し、 エッチング後、 断面を S E M像で観察した結果である 。 この図からも解るように、 めっき層に存在する F e — Z n系の金 属間化合物は顕微鏡観察によって明瞭に区別できる。 本金属間化合 物の F e %を分析すると約 7 %である;^とから、 この F e 一 Z n系 金属間化合物は ζ相であると考えられる。
ζ相は単斜晶の結晶構造を取るため、 断面から観察すると図 1 に 示すように長方形又は平行四辺形となる。 従って、 F e — Z n系の 金属阛化合物の平均粒径はこの長方形又は平行四辺形の長径と短径 を測定し、 その平均値を使用した。
F e - Z n系金属間化合物の平均粒径を 0. 5〜 3 ; に限定し た理由は、 0. 5 m未満ではめつき密着性を向上させる効果が十 分でないためであり、 3 /z mを超えると Z n— F e合金化反応が進 みすぎて、 地鉄界面に脆い合金層が発達し、 めっき密着性が劣化す るためである。
本発明者等が多数のめっき中の F e — Z n系金属間化合物を調査 した結果、 めっき密着性が良好な高強度溶融亜鉛めつき鋼板におい ては、 任意の断面において F e — Z n系金属間化合物が 1個 Z 5 0 0 m以上の割合で存在することを確認した。
また、 前記結晶粒界と結晶粒内に存在する S i を含む酸化物も、 顕微鏡観察において明瞭に区別できる。 高強度鋼板とめっき層との 界面から 5 m以下の鋼板側の結晶粒界と結晶粒内に S i を含む酸 化物の一例として、 断面観察結果を図 2に示す。 図 2は、 めっき密 着性が良好な高強度溶融亜鉛めつき鋼板の断面を 1 0度に傾斜させ て埋め込み研磨を行い、 S E M像で観察した結果である。 この図か らも解るように、 高強度鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は顕微鏡観察によって明瞭に区別できる。
さらに、 これら結晶粒界と結晶粒内の酸化物を E D Xにより分析 すると S i 、 M n、 F e、 Oのピークが観察されることから、 観察 される酸化物は S i 〇2、 F e S i 〇3、 F e 2 S i 〇4、 M n S i 〇 3、 M n 2 S i 04であると考えられる。
次に、 Z n— A 1 一 M g系めつき層において A 1 の含有量を 0. 0 5 〜 1 0質 に限定した理由は、 A 1 の含有量が 1 0質量%を 超えるとめつき密着性の低下が見られるため、 S i を添加していな レ めつき層中の A 1 の含有量は 1 0質量%以下にする必要があるた めである。 また、 A 1 の含有量を 0 . 0 5質量%以上に限定した理 由は、 0 . 0 5質量 %未満の A 1 量で通常の溶融めつき処理を行う と、 めつき処理時において Z n— F e合金化反応が起こ り、 地鉄界 面に脆い合金層が発達し、 めっき密着性が劣化するためである。 従つて、 本発明における溶融めつき鋼材においては、 特に A 1 濃 度が 1 0質量 %を超えるような高濃度の場合には、 めっき密着性を 確保するために、 めつき層中に S i を添加することが必須である。
一方 、 Z n 一 A 1 — M g— S i 系めつき層において、 A 1 の含有 量を 4 〜 2 2質量 %に限定した理由は、 めっき層の耐食性を顕著に 向上させるためには 4質量%以上の A 1 の添加が必要であるためで あり、 2 2質 を超えると耐食性を向上させる効果が飽和するた めであ -3。
S i の含有量を 0 . 5質量%以下 (但し、 0質量%を除く) に限 定した理由は 、 S i は密着性を向上させる効果がある力 0 . 5質 量%を超えると密着性を向上させる効果が飽和するからである。 望 ましく は 0 • 0 0 0 0 1 〜 0 . 5質量%である、 さ らに望ましく は
0 . 0 0 0 1 〜 0 • 5質量%である。
S i の添加は A 1 の含有量が 1 0質量%を超えるめっき層には必 須であるが 、 A 1 の含有量が 1 0 %以下のめっき層においてもめつ き密着性向上に効果が大きいため、 加工が厳しい部材に使用する等
、 高いめっき密着性を必要とする場合には S i を添加することが有 効である。 また、 S i 添加によりめつき層の凝固組織中に 〔M g 2 S i 相〕 が晶出する。 この 〔M g 2 S i 相〕 は耐食性向上に効果が あるため、 S i の添加量を多く し、 めっき層の凝固組織中に 〔M g 2 S i 相〕 が混在した金属組織を作製することがより望ましい。
M gの含有量を 0. 0 1〜 5質量%に限定した理由は、 0. 0 1 質量%未満では耐食性を向上させる効果が不十分であるためであり 、 5貧量%を超えるとめつき層が脆くなつて密着性が低下するため である。 耐食性は M gの添加量が多いほど向上するため、 めっき層 の耐食性を顕著に向上させるためには、 M gの含有量を 2〜 5質量 %とすることが望ましい。 また、 前述の 〔M g2 S i 相〕 は M gの 添加量が多いほど晶出しゃすいため、 M gの添加量を多く し、 めつ き層の凝固組織中に 〔M g2 S I相〕 が混在した金属組織を作製す ることがより望ましい。
めっき層中には、 これ以外に F e、 S b、 P b、 B i 、 C a、 B e、 T i 、 C u、 N i 、 C o、 C r、 M n、 P、 B、 S n、 Z r、 H f 、 S r、 V、 S c、 R E Mを単独あるいは複合で 0. 5質量% 以内含有しても本発明の効果を損なわず、 その量によってはさ らに 外観が改善される等好ましい場合もある。 溶融亜鉛めつきの付着量 については特に制約は設けないが、 耐食性の観点から 1 0 g Zm2 以上、 加工性の観点から 3 5 0 gZm2以下で有ることが望ましい また、 本発明の高強度溶融亜鉛めつき鋼板は、 高強度鋼板とめつ き層との界面から 5 m以下の鋼板側の結晶粒界と結晶粒内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在することによ り不めっき欠陥を無くすことが可能となる。 高強度鋼板の結晶粒界 と結晶粒内に S i を含む酸化物が存在すると不めっき欠陥を無くす ことが可能となる理由は、 焼鈍過程で鋼板内に S i を含む酸化物が 生成することによって、 鋼板表面に不めっき欠陥の原因となる S i O 2が露出しなくなるためであると考えられる。
上記結晶粒界と結晶粒内に存在する S i を含む酸化物は、 顕微鏡 観察において明瞭に区別できる。 高強度鋼板とめっき層との界面か ら 5 m以下の鋼板側の結晶粒界と結晶粒内に S 1 を含む酸化物の 一例として、 断面観察結果を図 3に示す。 図 3は、 不めっきが発生 しな った高強度溶融亜鉛めつき鋼板の断面を 1 0度に傾斜させて 埋め込み研磨を行い、 S E M像で観察した結果である。 この図から も解るように、 高強度鋼板の結晶粒界と結晶粒内に存在する S i を 含む酸化物は顕微鏡観察によって明瞭に区別できる。
さ らに、 これら結晶粒界と結晶粒内の酸化物を E D Xにより分析 すると S i 、 M n、 F e、 Oのピークが観察されることから、 観察 される酸化物は S i 〇2、 F e S i 〇3、 F e 2 S i 〇4、 M n S i O 3、 M n 2 S i 〇4であると考えられる。
また、 本発明において、 合金化溶融亜鉛めつき層とは、 合金化反 応によって Z nめっき中に鋼中の F eが拡散しできた F e _ Z n合 金を主体と しためつき層のことである。 F eの含有率は特に限定し ないが、 めっき中の F e含有率 7質量%未満ではめつき表面に軟ら かい 相が残存しプレス成形性を劣化させ、 F e含有率 1 5質量% を超えると地鉄界面に脆い合金層が発達し過ぎてめっき密着性が劣 化するため、 7〜 1 5質量%が適切である。
また、 一般に連続的に溶融亜鉛めつきを施す際、 めっき浴中での 合金化反応を制御する目的でめっき浴に A 1 を添加するため、 めつ き中には 0. 0 5〜 0. 5質量%の A 1 が含まれる。 また、 合金化 の過程では F eの拡散と同時に鋼中に添加した元素も拡散するため 、 めっき中にはこれらの元素も含まれる。
本発明鋼板は、 溶融亜鉛めつき浴中あるいは亜鉛めつき中に P b 、 S b、 S i 、 S n、 M g、 M n、 N i 、 C r、 C o、 C a、 C u 、 L i 、 T i 、 B e、 B i 、 希土類元素の 1種または 2種以上を含 有、 あるいは混入してあっても本発明 効果を損なわず、 その量に よっては耐食性や加工性が改善される等好ましい場合もある。 合金 化溶融亜鉛めつきの付着量については特に制約は設けないが、 耐食 性の観点から 2 0 g Z m 2以上、 経済性の観点から 1 5 0 g m 2以 下で有ることが望ましい。
本発明の高強度合金化溶融亜鉛めつき鋼板は、 高強度鋼板とめつ き層との界面から 5 m以下の鋼板側の結晶粒界と結晶粒内に S 1 を含む酸化物が平均含有率 0 . 6〜 1 0質量%で存在し、 めっき層 中に S i を含む酸化物が平均含有率 0 . 0 5〜 1 . 5質量%で存在 することにより不めっき欠陥を無くすことが可能となる。 高強度鋼 板の結晶粒界と結晶粒内に S i を含む酸化物が存在すると不めっき 欠陥を無くすことが可能となる理由は、 焼鈍過程で鋼板内に S i を 含む酸化物が生成することによって、 鋼板表面に不めっき欠陥の原 因となる S i を含む酸化膜が生成しなくなるためであると考えられ る。
また、 めっき層中の酸化物は焼鈍過程で鋼板内に生成した S i を 含む酸化物が合金化過程でめっき中に拡散したものであると考えら れる。
上記結晶粒界と結晶粒内に存在する S i を含む酸化物は、 顕微鏡 観察において明瞭に区別できる。 高強度鋼板とめっき層との界面か ら 5 m以下の鋼板側の結晶粒界と結晶粒内に S i を含む酸化物の 一例として、 断面観察結果を図 4に示す。 図 4は、 不めっきが発生 しなかった高強度合金化溶融亜鉛めつき鋼板の断面を 1 0度に傾斜 させて埋め込み研磨を行い、 S E M像で観察した結果である。 この 図からも解るように、 高強度鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は顕微鏡観察によって明瞭に区別できる。
また、 めっき層中に存在する S i を含む酸化物も顕微鏡観察にお いて明瞭に区別できる。 さ らに、 これら結晶粒界と結晶粒内の酸化物、 及びめつき層中の 酸化物を E D Xにより分析すると S i 、 M n、 F e、 Oのピークが 観察されることから、 観察される酸化物は S i 〇2、 F e S i 03、 F e 2 S i 04、 M n S i 〇3、 M n 2 S i 〇4であると考えられる。 本発明において、 S i を含む酸化物を含有する鋼層とは、 顕微鏡 観察において S i を含む酸化物が観察される層である。 また、 S 1 を含む酸化物の平均含有率とは、 この鋼層中に含まれる酸化物の含 有率を示し、 S i を含む酸化物を含有する鋼層の厚みとは、 鋼板表 面からこれら酸化物が観察される部分までの幅を示す。
S i を含む酸化物の含有率の測定は、 酸化物の質量%が測定でき ればどの様な方法でも構わないが、 S 1 を含む酸化物を含有する層 を酸で溶解し、 S i を含む酸化物を分離させた後、 重量を測定する 方法が確実である。 また、 S i を含む酸化物を含有する鋼層の厚み の測定方法も特に規定しないが、 断面から顕微鏡観察で測定する方 法が確実である。
本発明において、 S i を含む酸化物の平均含有率を 0. 6〜 1 0 質量%に限定した理由は、 0. 6質量%未満では外部酸化膜の抑制 が不十分で不めっき欠陥を防止する効果がみられないためであり、 1 0質量%を超えると不めっき欠陥を防止する効果が飽和するため である。
また、 S i を含む酸化物を含有する鋼層の厚みを 5 m以下に限 定した理由は、 5 / mを超えるとめつき密着性を向上させる効果が 飽和するためである。
また、 合金化溶融亜鉛めつき層中に S i を含む酸化物を平均含有 率 0. 0 5〜 1. 5質量%に限定した理由は、 0. 0 5質量%未満 では外部酸化膜の抑制が不十分で不めっき欠陥を防止する効果がみ られないためであり、 1. 5質量%を超えると不めっき欠陥を防止 する効果が飽和するためである。
めっき層中の S i を含む酸化物の含有率の測定も、 酸化物の質量 %が測定できればどの様な方法でも構わないが、 めっき層のみを酸 で溶 し、 S i を含む酸化物を分離させた後、 重量を測定する方法 が確実である。
本発明において加工性の優れた高強度めつき鋼板とは、 引張強さ が 4 9 0 M P a以上で、 引張強さ F (M P a ) と伸び L ( % ) の関 係が、
L≥ 5 1 - 0. 0 3 5 X F
を満足する性能を持つ鋼板である。
伸び Lを [ 5 1 — 0. 0 3 5 X F ] %以上と限定した理由は、 L が [ 5 1 — 0. 0 3 5 X F ] より低い場合、 深絞り等の厳しい加工 のときに破断する等加工性が不十分であるためである。
次に、 製造条件の限定理由について述べる。 本発明において、 S i を含む酸化物を含有する鋼層を積極的に生成させるためには、 連 続式溶融めつきラインの焼鈍過程で S i を含む酸化物の内部酸化さ せる方法が有効である。
ここで、 S i を含む酸化物の内部酸化とは鋼板内に拡散した酸素 が合金の表層付近で S i と反応して酸化物を析出する現象である。 内部酸化現象は、 酸素の内方への拡散速度が S i の外方への拡散速 度よりはるかに早い場合、 即ち、 雰囲気中の酸素ポテンシャルが比 較的高いかもしくは S i の濃度が低い場合に起こる。 このとき S i はほとんど動かずその場で酸化されるため、 めっき密着性低下の原 因である鋼板表面への S i の酸化物の濃化を防ぐことができる。 ただし、 内部酸化法で調整された鋼板であっても、 S i酸化物の 種類とその位置関係によって、 その後のめっき性に差が出るため、 S i の酸化物は、 鋼板表面または表面側に F e S i 〇3、 F e 2 S i 04、 M n S i 03、 M n 2 S i 〇4から選ばれた 1種以上の S i酸化 物が存在し、 鋼板内面側に S i O 2が存在する状態とする。 これは 、 S i 〇2が内部酸化状態であっても、 鋼板表面に存在するとめつ き性を低下させるためである。
F e S i Oい F e 2 S i 〇 M n S i 〇3、 M n 2 S i 〇4は、 S i 02より も酸素ポテンシャルが大きい領域で安定なため、 鋼板表 面または表面側に F e S i 〇3、 F e 2 S i 〇4、 M n S i 〇3、 M n 2 S i 04から選ばれた 1種以上の S i 酸化物が存在し、 鋼板内面側 に S i O 2が存在する状態とするためには、 酸素ポテンシャルを S i 02が単独で内部酸化する場合より大きくする必要がある。
鋼中の酸素ポテンシャルは鋼板表面から内部に向かって減少する ため、 鋼板表面または表面側に F e S i 〇3、 F e 2 S i 〇4、 n S i 〇 3、 M n 2 S i O 4から選ばれた 1種以上の S i 酸化物が生成 する酸素ポテンシャルに鋼板表面を制御すると、 鋼板表面または表 面側に F e S i 〇3、 F e 2 S i 〇4、 M n S i 〇3、 M n 2 S i 〇4か ら選ばれた 1種以上の S i 酸化物が生成し、 酸素ポテンシャルが減 少した鋼板内面側に S i 02が生成する。 '
上記のような S i 酸化物の種類とその位置関係とすることにより 、 次の溶融亜鉛めつき浴への浸漬過程において S i 02による不め つき欠陥を防止することが可能となる。
また、 こう して作製した鋼板表面または表面側に F e S i 03、 F e 2 S i 04、 M n S i 03、 M n 2 S i 〇4から選ばれた 1種以上 の S i 酸化物が生成した鋼板に亜鉛めつきを行い、 合金化すること によって、 めっき層中へ F e S i 03、 F e 2 S i 04, M n S 1 03 、 M n 2 S i 04から選ばれた 1種以上の S i 酸化物の拡散が起こる
S i の酸化状態は雰囲気中の酸素ポテンシャルで決まるため、 本 発明で規定した酸化物を所望の条件で生成させるためには雰囲気中 の P O2を直接管理する必要がある。
雰囲気中のガスが H2、 H2〇、 〇2、 残部 N2の場合、 下記平衡反 応が起こると考えられ、 P H2 OZ P H2は P 02の 1ノ 2乗と平衡 定数 1 / K ,に比例する。
H2 O = H2 + I / 2 02 : K , = P (Η2 ) · Ρ (〇2) 172 / Ρ (Η2〇)
ただし、 平衡定数 Κ,は温度に依存する変数であるため、 温度が 変化した場合、 Ρ Η 2 Ο Ρ Η 2と Ρ Ο 2は別々に変化する。 即ち、 ある温度域で S i の内部酸化領域の酸素ポテンシャルにあたる水分 圧と水素分圧の比の領域であっても、 別の温度域では鉄が酸化する 領域の酸素ポテンシャルに対応したり、 S i の外部酸化領域の酸素 ポテンシャルに対応したりするためである。
従って、 P I^ OZ P Hsを管理しても本発明で規定した酸化物を 生成させることができない。
また、 雰囲気中のガスが H2、 C〇2、 C O、 〇2、 残部 N2の場合 、 下記平衡反応が起こると考えられ、 P C〇2Z P C Oが P 02の 1 2乗と平衡定数 1 /K2に比例する。
C〇2 = C O+ l / 2 〇2 : K2 = P ( C O) · Ρ (02) 1 / 2 / Ρ ( C ο2)
また、 同時に下記平衡反応が起こるため、 雰囲気中に Η2〇が発 生すると考えられる。
C 02 + H2 = C O + H20 : K3 = P ( C O) · Ρ (Η20) / Ρ ( C 02) · Ρ (Η2)
従って、 Ρ 02は、 P H20、 Ρ Η2、 P C 02、 P C Oと温度が決 まらないと決まらないため、 本発明で規定した酸化物を生成させる ためには、 P O 2を規定するか、 上記値 ;を全て規定するかのどちら かを行う必要がある。
具体的には、 還元帯において鉄を還元しながら S i の外部酸化を 抑制し、 鋼板表面または表面側に F e S i O 3、 F e 2 S i O 4、 M n S i' 03、 n 2 S i 〇4から選ばれた 1種以上の S i 酸化物を生 成させる目的で、 還元帯の雰囲気として H2を 1〜 6 0体積%含有 し、 残部 N2、 H20、 02、 C 02、 C Oの 1種又は 2種以上および 不可避的不純物からなり、 その雰囲気中の酸素分圧の対数 1 o g P o2
— 0. 0 0 0 0 3 4 T2 + 0. 1 0 5 T— 0. 2 C S i % ] 2 + 2 . 1 [ S i % - 9 8. 8≤ 1 o g P O2≤ - 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 T - 9 0. 4 ( 1式)
9 2 3≤ T≤ 1 1 7 3 ( 2式)
T : 鋼板の最高到達板温 (K)
〔 S i %〕 : 鋼板中の S i含有量 (w t %)
に制御した雰囲気で還元を行う。
ここで、 本発明においては、 対数は全て常用対数で示す。
H 2を 1〜 6 0体積%に限定する理由は、 1 %未満では鋼板表面 に生成した酸化膜を十分還元できず、 めっき濡れ性が確保できない ためであり、 6 0 %を超えると、 還元作用の向上が見られず、 コス 卜が増加するためである。
l o g P 02を一 0. 0 0 0 0 3 8 T2 + 0. 1 0 7 Τ - 9 0. 4 以下に限定する理由は、 還元帯において鉄の酸化物を還元するため である。 l o g P〇2力 一 0. 0 0 0 0 3 8 T2 + 0. 1 0 7 Τ - 9 0. 4を超えると鉄の酸化領域にはいるため、 鋼板表面に鉄の酸化 膜が生成し、 不めっき欠陥が発生する。
l o g P 02を— 0. 0 0 0 0 3 4 T2 + 0. 1 0 5 T— 0. 2 〔 S i % 2 + 2. 1 〔3 1 %〕 ー 9 8. ,8以上に限定する理由は、 l o g P 02が— 0. 0 0 0 0 3 4 T2 + 0. 1 0 5 Τ - 0. 2 〔 S i %] 2 + 2.' 1 C S i % — 9 8. 8未満では S i の酸化物 S i 〇2が表面に露出し、 不めっき欠陥や、 めっき密着性低下の原因と なるためである。
l o g P〇2を— 0. 0 0 0 0 3 4 T2 + 0. 1 0 5 T - 0. 2 〔 S i % ] 2 + 2. 1 C S 1 % - 9 8. 8以上とすることで鋼板表 面または表面側に F e S i 〇3、 F e 2 S i O , M n S i 〇3、 M n 2 S i 04から選ばれた 1種以上の S i 酸化物が存在し、 鋼板内面側 に S i 02が存在する酸化状態が得られるようになる。
また、 1 o g P 02がさ らに小さい雰囲気では、 S i の外部酸化 領域にはいるため、 めっき密着性は著しく低下する。
本発明において、 雰囲気中の酸素分圧の対数 l o g P〇2を規定 する鋼板の最高到達板温 Tは 9 2 3 K以上、 1 1 7 3 K以下とする
Tを 9 2 3 K以上に限定する理由は、 Tが 9 2 3 K未満では S i が外部酸化する酸素ポテンシャルが小さ く、 工業的に操業できる範 囲の酸素ポテンシャルでは鉄の酸化域となって、 鋼板表面に F e 〇 を生成するため、 めっき密着性が低下するためである。 一方、 Tを 1 1 7 3 K以下に限定する理由は、 1 1 7 3 Kを超える温度で焼鈍 するのは多大のエネルギーを要して不経済であるためである。 鋼板 の機械特性を得る目的であれば、 後に記すように最高到達板温は 1 1 5 3 K以下で十分である。
また、 炉内の雰囲気温度は高いほど鋼板の板温を上げ易くなるた め有利であるが、 雰囲気温度が高すぎると炉内の耐火物の寿命が短 くなり、 コス トがかかるため 1 2 7 3 K以下が望ましい。
本発明において、 P〇2は H2〇、 〇2、 C〇2、 C Oの 1種または 2種以上を導入することにより操作する。 前述した平衡反応式にお いて、 温度が決まれば平衡定数が決定し、 その平衡定数に基づいて 酸素分圧、 即ち酸素ポテンシャルが決定する。 雰囲気温度 7 7 3 K から 1 2 7 3 Kにおいては、 気体の反応は短時間で平衡状態に達す るため、 P〇2は炉内の P H2、 P H2〇、 P C〇2、 P C Oと雰囲気 温度が決まると決定する。
O 2と C Oは意識的に導入する必耍はないが、 本焼鈍温度で H 2を 1体積%以上含有する炉内に H20、 C〇2を導入した場合、 その一 部と H2との平衡反応により、 〇2、 C Oが生成する。 H20、 C〇2 は必要な量導入できればよく、 その導入方法は特に限定しないが、 例えば、 C Oと H2を混合した気体を燃焼させ、 発生した H20、 C 02を導入する方法や、 C H C2 H6、 C3 H8等の炭化水素の気体 や、 L N G等の炭化水素の混合物を燃焼させ、 発生した H20、 C 〇2を導入する方法、 ガソリ ンや軽油、 重油等、 液体の炭化水素の 混合物を燃焼させ、 発生した H20、 C 02を導入する方法、 C H3 O H、 C2 H5 O H等のアルコール類やその混合物、 各種の有機溶剤 を燃焼させ、 発生した H20、 C 02を導入する方法等が上げられる
C Oのみ燃焼させ、 発生した C 02を導入する方法も考えられる が、 本焼鈍温度、 雰囲気の炉内に C 02を導入した場合、 その一部 が H2により還元され、 C Oと H20が生成するため、 H20、 C〇2 を導入した場合と本質的に差はない。
また、 燃焼させ、 発生した H20、 C 02を導入する方法以外にも 、 C〇と H2を混合した気体、 C H4、 C 2 H6、 C3 H8等の炭化水素 の気体や、 L N G等の炭化水素の混合物、 ガソ リ ンや軽油、 重油等 、 液体の炭化水素の混合物、 C H3〇 H、 C2 H5〇 H等のアルコー ル類やその混合物、 各種の有機溶剤等を酸素と同時に焼鈍炉内に導 入し、 炉内で燃焼させて H20、 C 02を発生させる方法も使用でき る。
こう した方法は、 水蒸気を飽和させた N2や露点を上げた N2を利 用して水蒸気を供給する方法に比べ、 簡便で制御性が優れる。 また 、 配食内で結露したりする心配もないため、 配管の断熱を行う手間 なども省く ことができる。
本発明において、 請求項に規定した P 02と温度における還元時 間は特に規定しないが、 望ましく は 1 0秒以上 3分以下である。 還 元炉内において P 02を大きくすると、 昇温過程において、 l o g P 02が _ 0. 0 0 0 0 3 8 Τ2 + 0. 1 0 7 Τ - 9 0. 4を超える 領域を通過した後、 — 0. 0 0 0 0 3 8 Τ2 + 0. 1 0 7 Τ - 9 0 . 4以下の領域で還元されるため、 最初に生成した鉄の酸化膜を還 元し、 目的とした鋼板表面または表面側に F e S i 03、 F e 2 S i 04、 M n S i 〇3、 M n 2 S i 〇4から選ばれた 1種以上の S i 酸化 物が存在し、 鋼板内面側に S i 〇2が存在する鋼板を得るためには 、 1 0秒以上保持することが望ましい。 ただし、 3分を超えて保持 してもエネルギーの無駄となるばかりか連続ライ ンでの生産性低下 を引き起こすため好ましくない。
また、 還元雰囲気の P〇2と温度が本発明範囲内であれば、 通常 の無酸化炉方式の溶融めつき法やオールラジアン 卜チューブ方式の 焼鈍炉を使用した溶融めつき法を使用できる。 いずれの方式を使用 しても、 昇温過程において板温が 9 2 3 Kを超えるまでに 1 o g P Q2が _ 0. 0 0 0 0 3 8 T2 + 0. 1 0 7 T— 9 0. 4を超える領 域を通過し、 鋼板表面に鉄の酸化膜が生成するため、 これを還元し ながら S i の外部酸化を抑制し、 鋼板表面または表面側に F e S i 〇3、 F e 2 S i 〇4、 M n S i 〇3、 M n 2 S i 〇4力、ら選ばれた 1種 以上の S i酸化物を生成させる目的で、 還元帯の雰囲気の P 02と 温度を本発明範囲内に適切に制御すればよい。 例えば、 特開昭 5 5— 1 2 2 8 6 5号公報、 特開平 5— 2 7 1 8 9 1 に記されたように予め鋼板表面に酸化膜を生成させた後、 焼鈍 及び前記鉄酸化膜の還元を行う方法も使用可能である。
鉄酸化膜を形成せしめる方法としては、 例えば酸化帯において燃 焼空気比を 0. 9〜 1. 2 に制御し鉄酸化膜を形成させる方法や酸 化帯の露点を 2 7 3 K以上に制御し鉄酸化膜を形成させる方法が使 用できる。
燃焼空気比を 0. 9〜 .1. 2の範囲に調節する理由は、 S i の外 部酸化を抑制するのに十分な鉄酸化膜を生成するために 0. 9以上 の燃焼空気比が必要であり、 0. 9未満の場合は十分な鉄酸化膜を 形成せしめることができないためである。 又、 燃焼空気比が 1. 2 を超えると酸化帯内で形成される鉄酸化膜厚が厚すぎて、 剥離した 酸化物がロールに付着し外観疵を発生ざせるためである。
また、 酸化帯の露点を 2 7 3 K以上に制御する理由は、 S i の外 部酸化を抑制するのに十分な鉄酸化膜を生成するために 2 7 3 K以 上の露点が必要であり、 2 7 3 K未満の場合は十分な鉄酸化膜を形 成せしめることができないためである。 露点の上限は特に規定しな いが、 設備の劣化などへの影響を考慮し、 3 7 3 K以下が望ましい 酸化膜の厚みは、 燃焼空気比、 露点のみではなく、 ライ ン速度、 到達板温等も影響するため、 これらを適切に制御し、 酸化膜の厚み が 2 0 0〜 2 0 0 O Aになるような条件で通板することが望ましい ただし、 生成した鉄の酸化膜の還元を終了させるため、 請求項に 規定した P 02と温度における還元時間は、 2 0秒以上とすること が望ましい。
上記製造方法は、 連続溶融めつき設備に、 じ 02を 1〜 1 0 0体 積%含有し、 残部 N2、 H2〇、 〇2、 C〇および不可避的不純物か らからなる気体を導入する装置を還元炉に配設することや、 還元炉 中で C Oまたは炭化水素を燃焼させ、 C〇2を 1〜 1 0 0体積%含 有し、' 残部 N2、 H20、 〇2、 C Oおよび不可避的不純物からから なる気体を発生させる装置を配設することにより可能となる。 具体 的な製造設備の例を図 5、 図 6に示す。 このように、 〇〇2を 1〜 1 0 0体積%含有し、 残部 N2、 H20、 02、 C Oおよび不可避的 不純物からからなる気体を導入する装置を還元炉に配設することや 、 還元炉中で C Oまたは炭化水素を燃焼させ、 〇〇2を 1〜 1 0 0 体積%含有し、 残部 N2、 H20、 02、 C Oおよび不可避的不純物 からからなる気体を発生させる装置を配設することにより、 目的と した酸化層を得られる雰囲気に還元炉を制御することが可能となる 次 いて述べる。 その巨的は マル を 3〜 2 0 %含む金属組 織とし、 高強度とプレス加工性が良い が両立させることにある 。 マ 卜の体積率が 3 %未満の 場合には高強度とならない ンサイ 卜および残留ォー 高強度ではあるものの鋼 されない。
ものではなく、 連続踌 JB. ものであればよい また 直送圧延 ( C C ― D R) のようなプロセスにも適合する。
熱間圧延の仕上温度は鋼板のプレス成形性を確保するという観点 から A r 3点以上とする必要がある。 熱延後の冷却条件や巻取温度 は特に限定しないが、 巻取温度はコイル両端部での材質ばらつきが 大ききなることを避け、 またスケール厚の増加による酸洗性の劣化 を避けるためには 1 0 2 3 K以下とし、 また部分的にペイナイ 卜や マルテンサイ 卜が生成すると冷間圧延時に耳割れを生じやすく、 極 端な場合には板破断することもあるため 8 2 3 K以上とすることが 望ましい。 冷間圧延は通常の条件でよく、 フェライ トが加工硬化し やすいようにマルテンサイ トおよび残留オーステナイ トを微細に分 散させ、 加工性の向上を最大限に得る目的からその圧延率は 5 0 % 以上とする。 一方、 8 5 %を超す圧延率で冷間圧延を行う ことは多 大の冷延負荷が必要となるため現実的ではない。
ライ ン内焼鈍方式の連続溶融亜鉛めつき設備で焼鈍する際、 その 焼鈍温度は 1 0 2 3 K以上 1 1 5 3 K以下のフェライ ト、 オーステ ナイ トニ相共存域とする。 焼鈍温度が 1 0 2 3 K未満では再結晶が 不十分であり、 鋼板に必要なプレス加工性を具備できない。 1 1 5
3 Kを超すような温度で焼鈍することは生産コス トが上昇すると共 に設備の劣化が早くなるため好まし <ない。 また引き続さめっき浴 へ浸漬し、 冷却する過程で、 9 2 3 Kまでを緩冷却しても十分な体 積率のフェライ トが成長しないため高強度とプレス加工性の良いこ との両立が困難となる。
鋼帯は焼鈍後、 引き続きめっき浴へ浸漬する過程で冷却されるが
、 この場合の冷却速度は、 その最高到達温度から 9 2 3 Kまでを平 均 0 . 5〜 : L 0度 Z秒で、 引き続いて 9 2 3 Kから 7 7 3 Kまでを 平均冷却速度 3度 Z秒以上で冷却し 、 さ らに 7 7 3 Kから平均冷却 速度 0 . 5度 Z秒以上で溶融亜鉛めつき処理を経て 6 2 7 Kまで冷 却し、 且つ、 7 7 3 Kからめつき後 6 2 3 Kに到達するまでの時間 を 2 5秒以上 2 4 0秒以下保持する
9 2 3 Kまでを平均 0 . 5〜 : L 0度 秒とするのは、 加ェ性を改 善するためにフェライ 卜の体積率を増すと同時に、 才ーステナイ 卜 の c濃度を増すことにより、 その生成自由エネルギーを下げ、 マル テンサイ 卜変態の開始する温度をめつき浴温度以下とすることを目 的とする。 9 2 3 Kまでの平均冷却速度を 0 . 5度 秒未満とする ためには連続溶融亜鉛めつき設備のライ ン長を長くする必要があり コス ト高となるため、 9 2 3 Kまでの平均冷却速度は 0 . 5度 秒 以上とする。
9 2 3 Kまでの平均冷却速度を 0 . 5度 秒未満とするためには 、 最高到達温度を下げ、 オーステナイ トの体積率が小さい温度で焼 鈍することも考えられるが、 その場合には実際の操業で許容すべき 温度範囲に比べて適切な温度範囲が狭く、 僅かでも焼鈍温度が低い とオーステナイ 卜が形成されず目的を達しない。
一方、 9 2 3 Kまでの平均冷却速度を 1 0度/秒を超えるように すると、 フェライ トの体積率の増加が十分でないばかり力 オース テナイ 卜中 C濃度の増加も少ないため、 高強度と加工性の良いこと の両立が困難となる。
9 2 3 Kから 7 7 3 Kまでの平均冷却速度を 3度 秒以上とする のは、 その冷却途上でオーステナイ 卜がパーライ 卜に変態するのを 避けるためであり、 その冷却速度が 3度 Z秒未満では本発明で規定 する.温度で焼鈍し、 また 9 2 3 Kまで冷却したとしてもパーライ ト の生成を避けられない。 平均冷却速度の上限は特に規定しないが、 平均冷却速度 2 0度 Z秒を超えるように鋼帯を冷却することはドラ ィな雰囲気では困難である。
7 7 3 Kからの平均冷却.速度を 0 . 5度ノ秒以上とするのは、 そ の冷却途上でオースデナイ 卜がパーライ 卜に変態するのを避けるた めであり、 その冷却速度が 0 . 5度/秒未満では本発明で規定する 温度で焼鈍し、 また 7 7 3 Kまで冷却したとしてもパ一ライ 卜の生 成を避けられない。 平均冷却速度の上限は特に規定しないが、 平均 冷却速度 2 0度ノ秒を超えるように鋼帯を冷却することはドライな 雰囲気では困難である。
7 7 3 Kからめつき後 6 2 3 Kに到達するまでの時間を 2 5秒以 上 2 4 0秒以下保持する理由は、 ォーステナイ 卜中への Cの濃化が 促進され加工性の優れた高強度溶融亜鉛めつきが得られるためであ る。 7 7 3 Kからめつき後 6 2 3 Kに到達するまでの時間が 2 5秒 未満ではオーステナイ ト中への の濃化が不十分となり、 オーステ ナイ ト中の C濃度が、 室温でのォーステナイ 卜の残留を可能とする 水準まで到達しないためであり、 2 4 0秒を超えると、 ペイナイ 卜 変態が進行し過ぎて、 オーステナイ 卜量が少なくなり、 十分な量の 残留オーステナイ トを生成できないためである。
合金化を行わない溶融亜鉛めつきでは、 7 7 3 Kから 6 2 3 Kま で冷却する間に、 溶融亜鉛めつき浴を通過するが、 上記平均冷却速 度、 7 7 3 Kから 6 2 3 Kまでの時間が本発明範囲内であれば問題 ない。 溶融亜鉛めつき浴の浴温は浴組成により違うが、 本発明の浴 組成範囲では 6 7 3〜 7 5 3 Kが適切である
めっき浴の浴組成は、 目的としためつき鋼板を得ることができれ ばどんな組成でも構わないが、 一般的には目的としためつき組成に 近似した組成のめっき浴を使用する。
一方、 合金化溶融亜鉛めつき おいては オーステナイ 卜中への
Cの濃化が十分でない ちにム金化を巨的 した加熱を行うと、 ォ ーステナイ ト量が少な <なり 、 高強度とプ
両立が困難となるため 、 めつさ前
3 Kとし、 7 7 3 Kからめ さ浴
持する。
冷却終了温度を 6 9 3 K 77 33 3 Kとするのは、 オーステナィ 卜 中への Cの濃化が促進され加ェ性 が得られるためである。
7 7 3 Kからめつき浴までを 2 5秒以上 2 4 0秒以下保持する理 由は、 2 5秒未満ではオーステナイ ト中への Cの濃化が不十分とな り、 オーステナィ 卜中の C濃度が、 室温でのオーステナイ トの残留 を可能とする水準まで到達しないためであり、 2 4 0秒を超えると 、 ペイナイ 卜変態が進行し過ぎて、 オーステナイ ト量が少なくなり 、 十分な量の残留オーステナイ 卜を生成できないためである。
さ らにこの 7 7 3 Kからめつき浴まで保持する間、 一度 6 7 3 K 〜 7 2 3 Kの温度まで冷却し、 保持するとオーステナイ ト中への C の濃化が促進され加工性の優れた高強度合金化溶融亜鉛めつきが得 られる。 ただし、 7 0 3 K以下でめっき浴中へ板を浸潰させ続ける とめつき浴が冷却され凝固するため、 7 0 3〜 7 4 3 Kの温度まで 再加熱を行った後、 溶融亜鉛めつき処理を行う必要がある。
本発明の合金化溶融亜鉛めつき鋼板の製造において、 用いる溶融 亜鉛めつき浴は A 1 濃度が浴中有効 A 1 濃度 Cで 0. 0 7〜 0. 1 0 5 w t %に調整する。 ここでめつき浴中の有効 A 1 濃度とは、 浴 中 A 1 濃度から浴中 F e.濃度を差し引いた値である。
有効 A 1 濃度を 0. 0 7〜 0. 1 0 5 w t %に限定する理由は、 有効. A 1 濃度が 0. 0 7 %より も低い場合には、 めっき初期の合金 化バリアとなる F e - A 1 — Z n相の形成が不十分であってめっき 処理時にめっき鋼板界面に脆い Γ相が厚くできるため、 加工時のめ つき皮膜密着力が劣る合金化溶融亜鉛めつき鋼板しか得られないた めである。 一方、 有効 A 1 濃度が 0. 1 0 5 %より も高い場合には 、 高温長時間の合金化が必要となり、 鋼中に残存していたオーステ ナイ トがパーライ トに変態するため、 高強度と加工性の良いことの 両立が困難となる。 望ましく は 0. 0 9 9 w t %以下である。
更に、 本発明において合金化処理時の合金化温度を 7 2 0≤ T≤ 6 9 0 X e x p ( 1. 3 5 X 〔A 1 %〕 )
但し、 〔A 1 %〕 : 亜鉛めつき浴中の浴中有効 A l 濃度 (w t %
)
を満足する温度 T (K) において行う ことが望ましい。
合金化温度 Tを 7 2 0 K以上、 6 9 0 X e x p ( 1. 3 5 X 〔A 1 %〕 ) 以下に限定した理由は、 合金化温度 Tが 7 2 0 Kより も 低いと合金化が進行しないか、 或いは合金化の進行が不十分で合金 化未処理となりめつき表層が成形性の劣る 相に覆われるためであ る。 また、 Tが 6 9 0 X e x p ( 1. 3 5 X [A 1 %] ) でより も 高いと、 合金化が進み過ぎてめっき鋼板界面に脆い Γ相が厚くでき るため、 加工時のめっき密着力が低下するためである。
溶融めつき後 6 7 3 K以下の温度に冷却されるまでの時間を 3 0 秒以上 1 2 0秒以下に限定する理由は、 3 0秒未満では合金化が不 十分で合金化未処理となりめつき表層が成形性の劣る 7?相に覆われ るためであり、 1 2 0秒を越えると、 ベイナイ ト変態が進行し過ぎ て、 オーステナイ ト量が少なくなり、 十分な量の残留オーステナイ トを生成できないためである。
本発明において合金化炉加熱方式については特に限定するもので はなく、 本発明の温度が確保できれば、 通常のガス炉による輻射加 熱でも、 高周波誘導加熱でもかまわない。 また、 合金化加熱後の最 高到達板温度から冷却する方法も、 問うものではなく、 合金化後、 エアーシール等により、 熱を遮断すれば、 開放放置でも十分であり 、 より急速に冷却するガスク一リ ング等でも問題ない。 実施例
(実施例 1 )
表 1の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 : 1 2 0 3 Kで 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間圧 延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備を用 いて表 2に示すような条件のめっきを行い、 合金化溶融亜鉛めつき 鋼板を製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱 後、 還元帯で還元 · 焼鈍を行う方式を使用した。 無酸化炉の燃焼空 気比は 1. 0 に調節し、 酸化帯として使用した。 還元帯は C Oと H 2を混合した気体を燃焼させ発生した H20、 C〇2を導入する装置 を取り付け、 H2を 1 0体積%含む N2ガスに H2〇と C 02を導入し た。
焼鈍は、 最高到達温度を表 2に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入って いる均熱時間を 6 0秒と した後、 その最高到達温度から 9 2 3 Kま でを平均冷却速度 1度 秒で、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 4度 秒で冷却し、 さ らに 7 7 3 Kから平均冷却 速度 1. 7度 秒以上で 7 2 3 Kまで冷却し、 且つめつき浴まで 7 2 3 Kで保持し、 Ί. 7 3 Kからめつき浴までを 3 0秒確保した後、 溶融亜鉛めつきを行い 7 7 3 Kで合金化処理を行った。
還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 co2濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
Η2〇 = Η2 + 1 / 2〇2
C 02 - C O + l / 202
の平衡定数 Κ2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行う ことにより求めた。
めっきの付着量は、 めっきをイ ンヒビ夕一入りの塩酸で溶解し、 重量法により測定した。 めっき中の F e, %は、 めっきをイ ンヒビ夕 —入りの塩酸で溶解し、 I C Pにより測定して求めた。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部 化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S i 、 〇のピークが観察されたものを〇、 観 察されなかったものを Xと した。 - 鋼板内の S i を含む酸化物の含有率の測定は、 めっきをイ ンヒビ 夕一入りの塩酸で溶解した後の鋼板を使用 し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 質量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i 〇3、 ( F e、 n ) 2 S i 〇い S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
( F e、 n ) S i 〇3、 ( F e、 M n ) 2 S i 〇4の位置
. 〇 : F eまたは M n と S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F e または M n と S i 、 〇が同じ位置に観察される酸化物が 観察されないもの
S i O 2の位置
〇 : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 きれないもの
めっき層に存在する S i を含む酸化物は、 埋め込み研磨しためつ き鋼板を断面から S E M像で観察して評価した。 酸化物の状態は、 S E M像で観察し、 S i を含む酸化物がめっき層内に観察されたも のを〇、 観察されなかったものを Xとした。
めっき層内の S i を含む酸化物の含有率の測定は、 めっきをイン ヒビ夕一入りの塩酸で溶解させた後、 S i を含む酸化物を分離させ た後、 その重量を測定して求めた。
(F e、 n ) S i 〇3、 ( F e、 M n ) 2 S i Oい S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 F e または M nと S i 、 〇が同じ位置に観察さ れる酸化物が鋼板表面に観察されるものを〇、 F eまたは M nと S i 、 0が同じ位置に観察される酸化物が観察されないものを Xとし た。
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めつき面積率 1 %未満、
3 : 不めっき面積率 1 %以上 5 %未満、
2 : 不めっき面積率 5 %以上 1 0 %未満、
. 1 : 不めつき面積率 1 0 %以上
評価結果は表 2に示す通りである。 番号 5、 9、 1 2、 1 5、 1 7、 2 0、 2 3、 2 6、 3 0、 3 2、 3 5、 3 8、 4 2、 4 5は炉 内の 1 o g P〇2が本発明の範囲外であるため鋼板表面に S i 酸化 物が濃化し、 不めっきが発生したため外観が不合格となった。 番号 6、 8、 1 1、 1 4、 1 8、 2 1、 2 4、 2 7、 2 9、 3 3、 3 6 3 9 4 1 > 4 4は炉内の 1 o g P O 2が本発明の範匪外である ため鋼板表面の F e の酸化物を還元できず不めっきが発生したため 、 外観が不合格となった。 これら以外の本発明方法で作製した鋼板 は、 外観が優れた高強度合金化溶融亜鉛めつき鋼板であった。
表 1 記 化学成分 (ma ss%)
C Si Mn P s Al N Ni Cu
A 0.02 0.73 1.87 0.006 0.004 0.045 0.0023
B 0.07 0.43 2.18 0.011 0. 4002 0.035 0.0028
C 0.07 0.66 1.55 0.006 0.003 0.283 0.0026
D 0.07 0.71 2.08 0.004 0.002 0.031 0.0030
E 0.07 1.14 1.95 0.007 0.003 0.037 0.0027
F 0.08 1.65 1.80 0.008 0.003 0.027 0.0035
G 0.10 0.69 2.32 0.009 0.004 0.044 0.0033
H 0.14 0.50 1.61 0.013 0.005 0.038 0.0042
I 0.13 0.36 2.11 0.011 0.003 0.026 0.0036
J 0.14 0.82 2.27 0.008 0.002 0.054 0.0034
K 0.18 0.94 2.77 0.018 0.004 0.037 0.0039
L 0.08 1.83 2.35 0.004 0.005 0.063 0.0030
M 0.09 1.78 1.13 0.008 0.001 0.290 0.0027
N 0.07 1.14 1.95 0.007 0.003 0.037 0.0027 0.5 0.1
0 0.08 1.83 2.35 0.004 0.005 0.063 0.0030 1.5
Figure imgf000045_0001
(実施例 2 )
表 1 の組成からなるスラブを 1 4 2 · 3 Kに加熱し、 仕上温度 1 1 8 3〜 1 2 0 3 KT 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間圧 延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備を用 いて表 3に示すような条件のめっきを行い、 合金化溶融亜鉛めつき 鋼板を製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱 後、 還元帯で還元 · 焼鈍を行う方式を使用 した。 無酸化炉及びその 廃熱を利用して昇温させるゾーンの露点は 2 8 3 Kに調節し、 酸化 帯として使用した。 還元帯は C Oと H2を混合した気体を燃焼させ 発生した H2〇、 C〇2を導入する装置を取り付け、 H2を 1 0体積 %含む N2ガスに H2〇と C〇2を導入した。
焼鈍は、 最高到達温度を表 3 に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入って いる均熱時間を 6 0秒とした後、 その最高到達温度から 9 2 3 Kま でを平均冷却速度 1度 秒で、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 4度 Z秒で冷却し、 さ らに 7 7 3 Kから平均冷却 速度 1. 7度/秒以上で 7 2 3 Kまで冷却し、 且つめつき浴まで 7 2 3 Kで保持し、 7 7 3 Kからめつき浴までを 3 0秒確保じた後、 溶融亜鉛めつきを行い 7 7 3 Kで合金化処理を行った。
還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 C〇2濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
H20 = H2 + l / 202
C〇2 = C O + 1 / 2 O 2
の平衡定数 Κ2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行う ことにより求めた。 めっきの付着量は、 めっきをインヒビ夕一入りの塩酸で溶解し、 重量法により測定した。 めづき中の F e %は、 めっきをインヒビ夕 一入りの塩酸で溶解し、 I C Pにより測定して求めた。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 . 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S i 、 Oのピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 重量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i 〇3 、 ( F e、 M n ) 2 S i 〇4、 S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C M A像で観察し、 .以下の基準で評価した。
( F e、 M n ) S i 〇い (F e、 M n ) 2 S i 04の位置
〇 : F eまたは M nと S i 、 〇が同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F e または M nと S i 、 0が同じ位置に観察される酸化物が 観察されないもの S i 〇 2の位置
〇 : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S 1 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき層に存在する S i を含む酸化物は、 埋め込み研磨しためつ き鋼板を断面から S E M像で観察して評価した。 酸化物の状態は、 S E M像で観察し、 S i を含む酸化物がめっき層内に観察されたも のを〇、 観察されなかったものを Xとした。
めっき層内の S i を含む酸化物の含有率の測定は、 めっきをイン ヒビ夕一入りの塩酸で溶解させた後、 S i を含む酸化物を分離させ た後、 その質量を測定して求めた。
( F e、 M n ) S i 〇3、 ( F e、 M n ) 2 S i Oい S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 6または¥ 1 と 3 1 、 Oが同じ位置に観察さ れる酸化物が鋼板表面に観察されるものを〇、 F eまたは M nと S i 、 Oが同じ位置に.観察される酸化物が観察されないものを Xとし た。
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めつき面積率 1 %未満、
3 : 不めっき面積率 1 %以上 5 %未満、
2 : 不めっき面積率 5 %以上 1 0 %未満、
1 : 不めっき面積率 1 0 %以上
評価結果は表 3に示す通りである。 番号 5、 9、 1 2、 1 5、 1 7、 2 0、 2 3、 2 6、 3 0、 3 2、 3 5、 3 8、 4 2、 4 5は炉 内の 1 o g P 02が本発明の範囲外であ;るため鋼板表面に S i 酸化 物が濃化し、 不めっきが発生したため外観が不合格となった。 番号
6、 8、 1 1、 1 4、 1 8、 2 1、 2 4、 2 7、 2 9、 3 3、 3 6 、 3 9、 4 1、 4 4は炉内の l o g P〇2が本発明の範囲外である ため鋼板表面の F eの酸化物を還元できず不めっきが発生したため 、 外観が不合格となった。 これら以外の本発明方法で作製した鋼板 は、 外観が優れた高強度合金化溶融亜鉛めつき鋼板であった。
Figure imgf000050_0001
8S1980/L00Z: OAV (実施例 3 )
表 1 に示す組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 1 2 0 3 Kで 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 mmの冷 間圧延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備 を用いて表 4に示すような条件のめっきを行い、 合金化溶融亜鉛め つき鋼板を製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による 加熱後、 還元帯で還元 · 焼鈍を行う方式を使用した。 無酸化炉及び その廃熱を利用して昇温させるゾーンの露点は 2 8 3 Kに調節し、 還元帯は C Oと H2を混合した気体を燃焼させ発生した H20、 C O 2を導入する装置を取り付け、 H2を 1 0体積%含む N2ガスに H20 と C〇2を導入し、 炉内の酸素ポテンシャルの対数 l o g P〇2が表 4に示す値となるように調節した。
焼鈍は、 最高到達温度を表 4に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入って いる均熱時間を 6 0秒とした。
還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 C〇2濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
Η20 = Η2 + 1 / 202
C 02 = C O + lん 202
の平衡定数 K,、 K2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行う ことにより求めた。
めっきの付着量は、 皮膜をイ ンヒビ夕一入りの塩酸で溶解し、 重 量法により測定した。 めっき中の F e %は、 めっきをイ ンヒビ夕一 入りの塩酸で溶解し、 I C Pにより測定して求めた。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とし こ。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S i 、 Oのピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ ター入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 重量を測定して求めた。
めっき層に存在する S i を含む酸化物は、 埋め込み研磨しためつ き鋼板を断面から S E M像で観察して評価した。 酸化物の状態は、 S E M像で観察し、 S i を含む酸化物がめっき層内に観察されたも のを〇、 観察されなかったものを Xとした。
めっき層内の S i を含む酸化物の含有率の測定は、 めっきをイン ヒビター入りの塩酸で溶解させた後、 S i を含む酸化物を分離させ た後、 その質量を測定して求めた。
めっき外観は通板したコイルの不めっき面積率を以下に示す評点 づけで判定した。 評点は 3以上を合格とした。
. 4 : 不めっき面積率 1 %未満、
3 : 不めっき面積率 1 %以上 5 %未満、
2 : 不めっき面積率 5 %以上 1 0 %未満、
1 : 不めつき面積率 1 0 %以上
評価結果は表 4に示す通りである。 本発明方法により、 めっき濡 れ性が優れた高強度合金化溶融亜鉛め き鋼板が製造可能となった 特に、 番号 1、 2、 3、 4、 6、 7、 9、 1 0、 1 1、 1 2、 1 5、 1 6、 1 7、 1 8、 1 9、 2 0、 2 4、 2 5、 2 6、 2 8、 2 9、 3 0に示す製造方法は、 焼鈍炉内での冷却速度、 溶融亜鉛めつ き浴中の有効 A 1 濃度、 合金化処理温度が適切であるため、 加工性 の良好な高強度合金化溶融亜鉛めつき鋼板を製造することが可能と なった。
表 4
Figure imgf000054_0001
(実施例 4 )
表 1の Eに示す組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上 温度 1 1 8 3〜 1 2 0 31^で4. 5 m mの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで卷き取った。 酸洗後、 冷間圧延を施して 1. 6 mm の冷間圧延鋼帯とした後、 オールラジアントチューブ方式の焼鈍炉 を使用した連続溶融亜鉛めつき設備を用いて表 5に示すような条件 のめつきを行い、 合金化溶融亜鉛めつき鋼板を製造した。 還元炉は C Oと H2を混合した気体を燃焼させ発生した H20、 C〇2を導入 する装置を取り付け、 H2を 1 0体積%含む N2ガスに H20と C02 を導入した。
焼鈍は、 最高到達温度を表 5に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最髙到達温度までの範囲〉 に入って いる均熱時間を 6 0秒とした後, その最高到達温度から 9 2 3 Kま でを平均冷却速度 1度 Z秒で、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 4度 Z秒で冷却し、 さらに 7 7 3 Kから平均冷却 速度 1. 7度ノ秒以上で 7 2 3 Kまで冷却し、 且つめつき浴まで 7 2 3 Kで保持し、 7 7 3 Kからめつき浴までを 3 0秒確保した後、 溶融亜鉛めつきを行い 7 7 3 Kで合金化処理を行った。
還元炉内の P〇2は、 炉内の水素濃度、 水蒸気濃度、 co2濃度、 CO濃度、 雰囲気温度の測定値と平衡反応
H20 = H2 + 1 Z202
C 02 = C O + l / 202
の平衡定数 Κ, ,. Κ2を使用して求めた。
引張強さ (T S) 、 伸び (E 1 ) は、 各鍋板から J I S 5号試験 片を切り出し、 常温での引張試験を行うことにより求めた。
めっきの付着量は、 めっきをインヒビ夕一入りの塩酸で溶解し、 重量法により測定した。 めっき中の F e %は、 めっきをインヒビ夕 一入りの塩酸で溶解し、 I C Pにより測定して求めた。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して'解析し、 S i 、 0のピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 重量を測定して求めた。
F e〇の有無は、 鋼—板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかつたものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i 03—、― (F e、 M n ) 2 S i 〇い S i 〇2の位 置は、 埋め込み研磨しケこめつき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
(F e、 M n ) S i 〇い (F e、 M n ) 2 S i 〇4の位置
.〇 : F eまたは M nと S i 、 〇が同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F e またはM n と S i 、 〇が同じ位置に観察される酸化物が 観察されないもの
S i O 2の位置
〇 : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき層に存在する S i を含む酸化物は、 埋め込み研磨しためつ き鋼板を断面から S E M像で観察して評価した。 酸化物の状態は、 S E M像で観察し、 S i を含む酸化物がめっき層内に観察されたも のを〇、 観察されなかったものを Xとした。
めっき層内の S i を含む酸化物の含有率の測定は、 めっきをイン ヒビ夕一入りの塩酸で溶解させた後、 S i を含む酸化物を分離させ た後、 その質量を測定して求めた。
( F e、 M n ) S i 〇3、 (F e、 n ) 2 S i Oい S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 F eまたは M nと S i 、 Oが同じ位置に観察さ れる酸化物が鋼板表面に観察されるものを〇、 F eまたは M nと S i 、 〇が同じ位置に観察される酸化物が観察されないものを Xとし た。
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めっき面積率 1 %未満、
3 : 不めっき面積率 1 %以上 5 %未満、
2 : 不めっき面積率 5 %以上 1 0 %未満、
. 1 : 不めっき面積率 1 0 %以上
評価結果は表 5に示す通りである。 番号 5は炉内の 1 o g P〇2 が本発明の範囲外であるため鋼板表面に S i酸化物が濃化し、 不め つきが発生したため外観が不合格となった。 番号 6は炉内の 1 o g P 02が本発明の範囲外であるため鋼板表面に F eの酸化物が生成 し不めっきが発生したため、 外観が不合格となった。 これら以外の 本発明方法で作製した鋼板は、 外観が優れた高強度合金化溶融亜鉛 めっき鋼板であった。
Figure imgf000059_0001
(実施例 5 )
表 6の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 1 2 0 31:で 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間圧 延鋼帯とした後、 ライン内焼鈍方式の連続溶融亜鉛めつき設備を用 いて表 7 に示すような条件で通板し、 溶融亜鉛めつき鋼板を製造し た。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱後、 還元帯で 還元 · 焼鈍を行う方式を使用 した。 還元帯は C Oと H2を混合した 気体を燃焼させ発生した H20、 C 02を導入する装置を取り付け、 H2を 1 0体積%含む N2ガスに Ή20と C〇2を導入した。
焼鈍は、 最高到達温度を表 7に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入って いる均熱時間を 6 0秒とした後、 その最高到達温度から 9 2 3 Kま でを平均冷却速度 1度/秒で、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 4度 Z秒で冷却し、 さ らに 7 7 3 Kから平均冷却 速度 1. 7度 秒以上で 7 2 3 Kまで冷却し、 且つ、 めっき浴まで 7 2 3 Kで保持し、 7 7 3 Kからめつき浴までを 3 0秒確保した後 、 浴温 7 2 3 Kの Z n— M g— A l — S i めっき浴で 3秒溶融めつ きを.行い、 N2ワイ ビングでめっき付着量を調整し、 6 2 3 Kまで 2 0秒かけて冷却した。 得られためっき鋼板のめっき層中組成は、 g 3 % , A 1 1 1 % , S i O . 1 5 %であった。
還元炉内の P〇2は、 炉内の水素濃度、 水蒸気濃度、 C 02濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
Η20 = Η2 + 1 / 202
C 02 = C O + l / 202
の平衡定数 Κ,、 Κ2を使用 して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行う ことにより求めた。
めっきの付着量は、 めっきをインヒビ夕一入りの塩酸で溶解し、 重量法による質量を測定した。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S 1 、 〇のピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S 1 を含む酸化物を分離させた後、 その 質量を測定して求めた。
F e 0の有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ). S i 〇3、 ( F e、 n ) 2 S i 〇4、 S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
( F e、 M n ) S i 〇3、 ( F e、 M n ) 2 S i 〇4の位置 〇 : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F eまたは M nと S i 、 〇が同じ位置に観察される酸化物が 観察されないもの S i 〇 2の位置
〇 : S i 、 Oが同じ位置に観察される酸化物が、 F eまたは M n と S i 、 〇が同じ位置に観察される酸化物より鋼板の内側に観察さ れるもの
△ : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めっき面積率 1 %未満
3 : 不めっき面積率 1 %以上 5 %未満
2 : 不めっき面積率 5 %以上 1 0 %未満
1 : 不めつき面積率 1 0 %以上
密着性は、 デュポン衝撃試験後の溶融めつき鋼板に粘着テープを 貼り、 その後引き剥がし、 めっきが剥離しなかった場合を〇、 めつ きが剥離した場合を Xとした。 デュポン試験は先端に 1 2インチ の丸みを持つ撃ち型を使用し、 1 k gの重りを l mの高さから落下 させて行った。
評価結果は表 7及び表 8 (表 7のつづき) に示す通りである。 番 3、 6、 9、 1 2、 1 7、 2 0、 2 3、 2 6、 2 9、 3 3、 3 5 、 3 8、 4 1、 4 5、 4 8は炉内の l o g P 02が本発明の範囲外 であるため鋼板表面に S i 酸化物が濃化し、 不めっき、 密着性低下 が発生し不合格となった。 番号 2、 5、 8、 1 1 、 1 8、 2 1、 2 4、 2 7、 3 0、 3 2、 3 6、 3 9、 4 2、 4 4、 4 7は炉内の 1 o g P〇2が本発明の範囲外であるため鋼板表面の F eの酸化物を 還元できず不めっき、 密着性低下が発生し不合格となった。 これら 以外の本発明方法で作製した鋼板は、 めっき性、 密着性、 成形性及 び耐食性に優れた高強度溶融亜鉛めつき鋼板であった。
表 6
Figure imgf000063_0001
Figure imgf000064_0002
Figure imgf000064_0001
8 (表 7 のつづき)
6 3
Figure imgf000065_0001
(奘施例 6 )
表 6 の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 : L 2 0 3 Kで 4. 5 m mの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間圧 延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備を用 いて 9に示すような条件のめっきを行い、 溶融亜鉛めつき鋼板を 製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱後、 還 元帯で還元 · 焼鈍を行う方式を使用 した。 還元帯は C〇と H2を混 合した気体を燃焼させ発生した H20、 C〇2を導入する装置を取り 付け、 H2を 1 0体積%含む N2ガスに H20と C〇2を導入し、 炉内 の酸素ポテンシャルの対数 1 o g P 02が表 9に示す値となるよう に調節した。
焼鈍は、 最高到達温度を表 9に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入って いる均熱時間を 6 0秒とした後、 その最高到達温度から 9 2 3 Kま でを平均冷却速度 1度 秒で、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 4度 秒で冷却し、 さ らに 7 7 3 Kから平均冷却 速度 1. 7度 秒以上で 7 2 3 Kまで冷却し、 且つ、 めっき浴まで 7 2 3 Kで保持し、 7 7 3 Kからめつき浴までを 3 0秒確保した後 、 Z n— M g— Α Ι めっき浴、 又は、 Z n— M g— Α Ι — S i めつ き浴で 3秒溶融めつきを行い、 N 2ワイ ビングでめっき付着量を調 整し、 6 2 3 Kまで 2 0秒かけて冷却した。 得られためっき鋼板の めっき層中組成は、 表 1 0 (表 9のつづき) に示す値であった。 還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 C 02濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
H20 = H2 + l / 202
C 02 = C O + 1 / 202
の平衡定数 K,、 K2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行うことにより求めた。
めっきの付着量は、 めっきをインヒビ夕一入りの塩酸で溶解し、 計量法による質量を測定した。 めっき層の組成は、 めっきをインヒ ビ夕一入りの塩酸で溶解し、 化学分析により測定した。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S i 、 Oのピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 質量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i 03、 (F e、 M n ) 2 S i 〇い S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
( F e、 M n ) S i 03、 (F e、 M n ) 2 S i 〇4の位置 〇 : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F eまたは M nと S i 、 〇が同じ位置に観察される酸化物が 観察されないもの
S 1 〇 2の位置
〇 : S i 、 Oが同じ位置に観察される酸化物が、 F e または M n と S i 、 Oが同じ位置に観察される酸化物より鋼板の内側に観察さ れるもの
△ : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めつき面積率 1 %未満
3 : 不めつき面積率 1 %以上 5 %未満
2 : 不めつき面積率 5 %以上 1 0 ·¾> 滴
1 : 不めつき面積率 1 0 %以上
密着性は、 デュポン衝撃試験後の溶融めつき鋼板に粘着テープを 貼り、 その後引き剥がし、 めっきが剥離しなかった場合を〇 、 めつ きが剥離した場合を Xとした。 デュボン試験は先端に 1 / 2イ ンチ の丸みを持つ撃ち型を使用 し、 1 k gの重り を l mの高さから落 「一 させて行った
評価結果は表 1 0 (表 9 のつづさ ) に示す通りであ 。 ¾·号 1 は めつさ層中の A 1 濃度が本発明の範囲外であるため、 Z n - F e合 金化反応が起こ り、 めっき密着性低下が発生したため不合格となつ た。 番号 1 6 はめつき層中の A 1 濃度と S i 濃度が本発明の範囲外 であるため、 めっき密着性低下が発生し不合格となった。 これら以 外の本発明方法で作製した鋼板は、 めっき性、 密着性に優れた高強 度溶融亜鉛めつき鋼板であった。
Figure imgf000069_0001
(表 9 のつづき)
Figure imgf000070_0001
(実施例 7 )
表 6の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 : 1 2 0 3 Κで 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間圧 延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備を用 いて表 1 1 に示すような条件のめっきを行い、 溶融亜鉛めつき鋼板 を製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱後、 還元帯で還元 · 焼鈍を行う方式を使用した。 還元帯は C Oと H2を 混合した気体を燃焼させ発生した H2〇、 C〇2を導入する装置を取 り付け、 H2を 1 0体積%含む N2ガスに H20と C〇2を導入し、 炉 内の酸素ポテンシャルの対数 1 o g P O 2が表 1 1 に示す値となる ように調節した。
焼鈍は、 最高到達温度を表 1 1 に示す値となるよう調節し、 均熱 温度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入つ ている均熱時間を 6 0秒とした。
還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 C 02濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
Η20 = Η2 + 1 / 202
C 02 = C O + l / 202
の平衡定数 K K2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行う ことにより求めた。
溶融めつきは、 Z n— M g— A 1 - S i めっき浴で 3秒溶融めつ きを行い、 N2ワイ ビングでめっき付着量を片面 1 0 0 g Zm2に調 整した。 得られためっき鋼板のめっき層中組成は、 M g 3 % , A 1 1 1 %、 S i 0. 1 5 %であった。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためつさ 板を断面から S E M像で観察して評価した。 内部酸化層の状態は 、 s EM像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観 ヽされたものを〇、 観察されなか たものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し 、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した 内部酸化層の組成は、 s E Mに取り付けた E D
Xを使用して解析し 、 S i 、 0のピークが観察されたちのを〇、 観 察されなかったものを Xとした。
鋼板内の S 1 を含む酸化物の含有率の測定は、 めつさをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 質量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i 〇3、 (F e、 M n ) 2 S i 〇4、 S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
( F e、 M n ) S i 〇3、 ( F e M n ) 2 S i 〇4の位置 〇 : F e または M nと S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F e または M nと S i 、 Oが同じ位置に観察される酸化物が 観察されないもの
S i O 2の位置
〇 : S i 、 Oが同じ位置に観察される酸化物が、 F eまたは M n と S i 、 Oが同じ位置に観察される酸化物より鋼板の内側に観察さ れるもの Δ : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格と した。
4 : 不めっき面積率 1 %未満
3 : 不めっき面積率 1 %以上 5 %未満
2 : 不めっき面積率 5 %以上 1 0 %未満
1 : 不めつき面積率 1 0 %以上
密着性は、 デュポン衝撃試験後の溶融めつき鋼板に粘着テープを 貼り、 その後引き剥がし、 めっきが剥離しなかった場合を〇、 めつ きが剥離した場合を Xとした。 デュポン試験は先端に 1 Z 2イ ンチ の丸みを持つ撃ち型を使用し、 1 k gの重り を l mの高さから落下 させて行った。
評価結果は表 1 1 に示す通りである。 本発明方法により、 めっき 性、 密着性に優れた高強度溶融亜鉛めつき鋼板が製造可能となった
表 1 1
Figure imgf000074_0001
(実施例 8 )
表 1 2の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 1 2 0 3 Kで 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 K:で巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間 圧延鋼帯と した後、 ライン内焼鈍方式の連続溶融亜鉛めつき設備を 用いて表 1 3に示すような条件で通板し、 溶融亜鉛めつき鋼板を製 造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱後、 還元 帯で還元 · 焼鈍を行う方式を使用した。 還元帯は C Oと H2を混合 した気体を燃焼させ発生した H20、 C〇2を導入する装置を取り付 け、 H2を 1 0体積%含む N2ガスに H 2 Oと C O 2を導入した。
焼鈍は、 最高到達温度を表 1 3に示す値となるよう調節し、 均熱 温度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入つ ている均熱時間を 6 0秒とした後、 その最高到達温度から 9 2 3 K までを平均冷却速度 1度/秒で、 引き続いて 9 2 3 Kから 7 7 3 K までを平均冷却速度 4度 秒で冷却し、 さ らに 7 7 3 Kから平均冷 却速度 1. 7度 Z秒以上で 7 2 3 Kまで冷却し、 且つ、 めっき浴ま で 7 2 3 Kで保持し、 7 7 3 Kからめつき浴までを 3 0秒確保した 後、 浴温 7 2 3 Kの Z η— A 1 めっき浴で 3秒溶融めつきを行い、 N2ワイ ビングでめっき付着量を調整し、 6 2 3 Kまで 2 0秒かけ て冷却した。 得られためっき鋼板のめっき層中組成は、 表 1 3、 表 1 4 (表 1 3のつづき) に示す値であった。
還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 C〇2濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
H2 O = H2 + 1 / 202
C 02 = C O + l / 2〇2
の平衡定数 Κ2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行う ことにより求めた。
めっきの付着量は、 めっきをインヒビ夕一入りの塩酸で溶解し、 重量法により測定した。
鋼被の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S i 、 Oのピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 重量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e〇の回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
(F e、 M n ) S i 〇3、 ( F e、 M n ) 2 S i Oい S i 〇2の位 置は、 埋め込み研磨しためっき鋼板の断面から、 C MA像で S i を 含む酸化物を観察し、 以下の基準で評価した。
(F e、 n ) S i 〇3、 ( F e、 M n ) 2 S i 〇4の位置 〇 : F e または M nと S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 観察されないもの S i O 2の位置
〇 : S i 、 Oが同じ位置に観察される酸化物が、 F eまたは M n と S i 、 Oが同じ位置に観察される酸化物より鋼板の内側に観察さ れるもの
△ : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき層に存在する F e— Z n系の金属間化合物は、 めっき鋼板 の圧延垂直方向断面を 2 c m埋め込み、 研磨後、 断面から S E M像 で観察して評価した。 F e — Z n系の金属間化合物の粒径は、 観察 された結晶の長径と短径を測定しその平均値とした。 平均粒径は、 観察された結晶から、 粒径の大きいものを 4〜 1 0個選び、 その平 均値を計算した。 今回観察した発明品では、 何れも' 4個以上の結晶 が観察された。 '
めつき外観は通板したコイル全長を目視で観察し、 不めつき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めつき面積率 1 %未満
3 : 不めつき面積率 1 %以上 5 %未満
2 : 不めつき面積率 5 %以上 1 0 %未満
1 : 不めつき面積率 1 0 %以上
.パゥダリング性は、 めっき鋼板にテープを貼り付けた後、 1 8 0 度折り曲げ 、 曲げ戻してテープをはがし、 テープに付着しためっき の Φを剥離巾とし、 検査し、 その剥離巾が 3 m m以下となつた場合 を〇 、 剥離巾が 3 m m超となった場合を Xとした。
めつき密着性は、 デュポン衝撃試験後の溶融めつき鋼板に粘着テ ープを貼り 、 その後引き剥がし、 めっきが剥離しなかった場合を〇 、 めっきが剥離した場合を Xとした。 デュポン試験は先端に 1ノ 2 インチの丸みを持つ撃ち型を使用し、 3 k gの重りを l mの高さか ら落下させて行った。
評 iffi結果は表 1 3、 表 1 4 (表 1 3のつづき) に示す通りである 。 番号 3、 6、 9、 1 2、 1 7、 2 0、 2 3、 2 6、 2 9、 3 3、 3 5、 3 8、 ' 4 1、 4 5、 4 8は炉内の l o g P〇2が本発明の範 囲外であるため鋼板表面に S i酸化物が濃化し、 不めっき、 めっき 密着性低下が発生し不合格となった。 番号 2、 5、 8、 1 1、 1 8 、 2 1、 2 4、 2 7、 3 0、 3 2、 3 6、 3 9、 4 2、 4 4、 4 7 は炉内の 1 o g P〇2が本発明の範囲外であるため鋼板表面の F e の酸化物を還元できず不めっき、 めっき密着性低下が発生し不合格 となった。 これら以外の本発明方法で作製した鋼板は、 めっき性、 密着性に優れた高強度溶融亜鉛めつき鋼板であった。
表 1 2
Figure imgf000078_0001
表 1 3
溶融亜鉛めつき鋼板
Figure imgf000079_0001
表 1 4 (表 1 3 のつづき)
Figure imgf000080_0001
(実施例 9 )
表 1 2の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 1 2 0 31 で 4. 5 mmの熱間圧延鋼帯とし、 8'5 3〜 9 5 3 Kで巻き取った。 酸洗後、 冷間圧延を施して 1. 6 m mの冷間 圧延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備を 用いて表 1 5に示すような条件のめっきを行い、 溶融亜鉛めつき鋼 板を製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱後 、 還元帯で還元 ' 焼鈍を行う方式を使用した。 還元帯は C Oと H2 を混合した気体を燃焼させ発生した H20、 C〇2を導入する装置を 取り付け、 H2を 1 0体積%含む N2ガスに H20と C〇2を導入し、 炉内の酸素ポテンシャルの対数 1 o g P〇2が表 1 5に示す値とな るように調節した。
焼鈍は、 最高到達温度を表 3 に示す値となるよう調節し、 均熱温 度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入って いる均熱時間を 6 0秒とした後、 その最高到達温度から 9 2 3 Kま でを平均冷却速度 1度 Z秒で、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 4度 Z秒で冷却し、 さ らに 7 7 3 Kから平均冷却 速度 1. 7度 秒以上で 7 2 3 Kまで冷却し、 且つ、 めっき浴まで 7 2 3 Kで保持し、 7 7 3 Kからめつき浴までを 3 0秒確保した後 、 . Z n _ A 1 めっき浴で 3秒溶融めつきを行い、 N 2ワイ ビングで めっき付着量を調整し、 6 2 3 Kまで 2 0秒かけて冷却した。 得ら れためつき鋼板のめっき層中組成は、 表 1 5、 表 1 6 (表 1 5のつ づき) に示す値であった。
還元炉内の P〇2は、 炉内の水素濃度、 水蒸気濃度、 C〇2濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
Η20 = Η2 + 1 / 202
C〇2 = C O + 1 / 2 O 2
の平衡定数 Κ2を使用して求めた。
引張強さ (T S ) 、 伸び (Ε 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行うことにより求めた。
めっきの付着量は、 めっきをインヒビ夕 ―入りの塩酸で溶解し、 重量法により測定した。 めっき層の組成は 、 めつきをインヒビ夕一 入りの塩酸で溶解し、 化学分析により測定した
鋼板の結晶粒界と結晶粒内に存在する s i を含む酸化物は、 埋め 込み研磨しためつき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D
Xを使用して解析し、 S i 、 Oのピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 重量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i 〇3、 (F e、 M n ) 2 S i Oい S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
( F e、 M n ) S i 〇3、 ( F e、 M n ) 2 S i 〇4の位置 〇 : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 観察されないもの
S i O 2の位置
〇 : S i 、 Oが同じ位置に観察される酸化物が、 F eまたは M n と S i 、 〇が同じ位置に観察される酸化物より鋼板の内側に観察さ れるもの
△ : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 Oが同じ位 gに観察される酸化物が鋼板の内側に観察 されないもの
めっき層に存在する F e - Z n竭の金属間化合物は、 めっき鋼板 の圧延垂直方向断面を 2 c m埋め込み、 研磨後、 断面から S E M像 で観察して評価した。 F e — Z n系の金属間化合物の粒径は、 観察 された結晶の長径と短径を測定しその平均値とした。 平均粒径は、 観察された結晶から、 粒径の大きいものを 4 〜 1 0個選び、 その平 均値を計算した。 今回観察した発明品では、 何れも 4個以上の結晶 が観察された。 また、 番号 1 1 の比較例は、 F e — Z n系金属間化 合物は観察されなかったが、 厚い F e — A 1 系金属間化合物が観察 された。
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。
4 : 不めっき面積率 1 %未満
3 : 不めっき面積率 1 %以上 5 %未満
2 : 不めっき面積率 5 %以上 1 0 %未満
1 : 不めつき面積率 1 0 %以上
めっき密着性は、 デュポン衝撃試験後の溶融めつき鋼板に粘着テ —プを貼り、 その後引き剥がし、 めっきが剥離しなかった場合を〇
、 めっきが剥離した場合を Xとした。 デュポン試験は先端に 1 Z 2 インチの丸みを持つ撃ち型を使用し、 3 k gの重りを l mの高さか ら落下させて行つた。
評価結果は表 1 5、 表 1 6 (表 1 5のつづさ ) に示す通 Όである
。 番夸 1 はめつき層中の A 1 濃度が本発明の範囲外であるため 、 Z n— F e合金化反応が進みすぎて 、 地鉄界面に脆い合金層が発達し
、 めつさ密着性低下が発生したため不合格となつた。 番号 1 1 はめ つき層中の A 1 濃度が本発明の範囲外であるため 、 F e — A 1 合金 化反応が進みすぎて、 めっき密着性低下が発生したため不合格とな つた。 これら以外の本発明方法で作製した鋼板は、 めっき性、 密着 性に優れた高強度溶融亜鉛めつき鋼板であった。
表 1 5
Figure imgf000084_0001
表 1 6 (表 1 5のつづき)
Figure imgf000085_0001
(実施例 1 0 )
表 1 2の組成からなるスラブを 1 4 2 3 Kに加熱し、 仕上温度 1 1 8 3〜 1 2 0 3 Kで 4. 5 mmの熱間圧延鋼帯とし、 8 5 3〜 9 5 3 Kで卷き取った。 酸洗後、 冷間圧延を施して 1. 6 mmの冷間 圧延鋼帯とした後、 ライ ン内焼鈍方式の連続溶融亜鉛めつき設備を 用いて表 1 7 に示すような条件のめっきを行い、 溶融亜鉛めつき鋼 板を製造した。 連続溶融亜鉛めつき設備は、 無酸化炉による加熱後 、 還元帯で還元 · 焼鈍を行う方式を使用した。 還元帯は C Oと H2 を混合した気体を燃焼させ発生した H20、 C 02を導入する装置を 取り付け、 H2を 1 0体積%含む N2ガスに H20と C〇2を導入し、 炉内の酸素ポテンシャルの対数 1 o g P 02が表 1 7に示す値とな るように調節した。
焼鈍は、 最高到達温度を表 1 7に示す値となるよう調節し、 均熱 温度 (最高到達温度一 2 0度から最高到達温度までの範囲) に入つ ている均熱時間を 6 0秒とした。
還元炉内の P 02は、 炉内の水素濃度、 水蒸気濃度、 C〇2濃度、 C O濃度、 雰囲気温度の測定値と平衡反応
H2 O = H2 + 1 / 202
C〇2 = C O + 1 / 202
の平衡定数 ^、 Κ2を使用して求めた。
引張強さ (T S ) 、 伸び (E 1 ) は、 各鋼板から J I S 5号試験 片を切り出し、 常温での引張試験を行うことにより求めた。
溶融めつきは、 Z n— A 1 めっき浴で 3秒溶融めつきを行い、 N 2ワイビングでめっき付着量を片面 1 0 0 g Zm2に調整した。 得ら れためつき鋼板のめっき層中組成は、 A 1 0. 4〜 0. 5 %、 F e 0. 4〜 0. 6 %であった。
鋼板の結晶粒界と結晶粒内に存在する S i を含む酸化物は、 埋め 込み研磨しためっき鋼板を断面から S E M像で観察して評価した。 内部酸化層の状態は、 S E M像で観察し、 S i を含む酸化物が結晶 粒界と結晶粒内に観察されたものを〇、 観察されなかったものを X とした。 内部酸化層の厚みは、 同様に S E M像で観察し、 鋼板とめ つき層との界面から結晶粒界と結晶粒内に酸化物が観察される部分 の厚さを測定した。 内部酸化層の組成は、 S E Mに取り付けた E D Xを使用して解析し、 S i 、 Oのピークが観察されたものを〇、 観 察されなかったものを Xとした。
鋼板内の S i を含む酸化物の含有率の測定は、 めっきをインヒビ 夕一入りの塩酸で溶解した後の鋼板を使用し、 S i を含む酸化物を 含有する層を酸で溶解して S i を含む酸化物を分離させた後、 その 重量を測定して求めた。
F e Oの有無は、 鋼板表面から X R D測定を行い、 F e Oの回折 ピークが観察されなかったものを〇、 回折ピークが観察されたもの を Xとした。
( F e、 M n ) S i Oい ( F e、 M n ) 2 S i 〇4、 S i 〇2の位 置は、 埋め込み研磨しためっき鋼板を断面から S i を含む酸化物を C MA像で観察し、 以下の基準で評価した。
( F e、 M n ) S i 〇3、 ( F e、 M n ) 2 S i 〇4の位置 〇 : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 鋼板表面に観察されるもの
X : F eまたは M nと S i 、 Oが同じ位置に観察される酸化物が 観察されないもの
S i O 2の位置
〇 : S i 、 Oが同じ位置に観察される酸化物が、 F eまたは M n と S i 、 Oが同じ位置に観察される酸化物より鋼板の内側に観察さ れるもの
Δ : S i 、 Oが同じ位置に観察される酸化物が鋼板の内側に観察 されるもの
X : S i 、 〇が同じ位置に観察される酸化物が鋼板の内側に観察 されないもの
めっき層に存在する F e— Z n系の金属間化合物は、 めっき鋼板 の圧延垂直方向断面を 2 c m埋め込み、 研磨後、 断面から S E M像 で観察して評価した。 得られためっき鋼板の F e — Z n系の金属間 化合物の平均粒径は、 0. 5〜 3 ;u mであった。 また、 今回観察し た発明品では、 何れも 4個以上の結晶が観察された。
めっき外観は通板したコイル全長を目視で観察し、 不めっき面積 率を以下に示す評点づけで判定した。 評点は 3以上を合格とした。 4 : 不めっき面積率 1 %未満
3 : 不めっき面積率 1 %以上 5 %未満
2 : 不めっき面積率 5 %以上 1 0 %未満
1 : 不めっき面積率 1 0 %以上
めっき密着性は、 デュポン衝撃試験後の溶融めつき鋼板に粘着テ ープを貼り、 その後引き剥がし、 めっきが剥離しなかった場合を〇 、 めっきが剥離した場合を Xと した。 デュポン試験は先端に 1ノ 2 イ ンチの丸みを持つ撃ち型を使用し、 3 k gの重り を l mの高さか ら落下させて行った。
評価結果は表 1 7、 表 1 8 (表 1 7のつづき) に示す通りである 。 本発明方法により、 めっき性、 密着性に優れた高強度溶融亜鉛め つき鋼板が製造可能となった。
表 1 7
Figure imgf000089_0001
Figure imgf000090_0001
産業上の利用可能性
本発明はめつき性、 成形性および密着性が良好で耐食性に優れた 高強度溶融亜鉛めつき鋼板、 高強度合金化溶融亜鉛めつき鋼板なら びにそれらの製造方法を提供することを可能としたものである。

Claims

1. 質重 ¾>で、
C : 0. 0 5〜 0. 2 5
S 1 : 0. 3〜 2. 5 % 、
M n : 1. 5〜 2. 8 % 、
P : 0. 0 3 %以下 請
S : 0. 0 2 %以下 、
A 1 : 0. 0 0 5〜 0 5
N : 0. 0 0 6 0 %以下を含有し、 残部 F e及び不可避的不純物 からなる高強度鋼板の上に、 A 1 : 0. 0 5〜 1 0質量%、 F e :
0. 0 5〜 '3質量%を含有し、 残部が Z n及び不可避的不純物から なる亜鉛めつき層を有する溶融亜鉛めつき鋼板において、 高強度鋼 板とめっき層との界面から 5 m以下の鋼板側の結晶粒界と結晶粒 内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在し、 めっき側に平均粒径 0. 5〜 3 mの F e — Z n合金が存在するこ とを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛めつき 1¾板。
2. 質量%で、
C : 0. 0 5〜 0. 2 5
S i : 0. 3〜 2. 5 % 、
n : 1. 5〜 2. 8 % 、
P : 0. 0 3 %以下 、
S : 0. 0 2 %以下 、
A 1 : 0. 0 0 5〜 0 5
N : 0. 0 0 6 0 %以下を含有し、 残部 F e及び不可避的不純物 からなる高強度鋼板の上に、 A 1 : 0. 0 5〜 1 0質量%、 F e :
0. 0 5〜 3質量%を含有し、 残部が Z n及び不可避的不純物から なる亜鉛めつき層を有する溶融亜鉛めつき鋼板において、 高強度鋼 板とめっき層との界面から 5 μ m以下の鋼板側の結晶粒界と結晶粒 内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在し、 めっき側に平均粒径 0. 5〜 3 /mの F e 一 Z n合金が任意の断面 において 1個 5 0 0 m以上の割合で存在することを特徴とする 成形性及びめつき性に優れた高強度溶融亜鉛めつき鋼板。
3. 質量%で、
C : 0. 0 5〜 0. 2 5 %、
S i : 0. 3〜 2. 5 %、
n : 1. 5〜 2. 8 % ,
P : 0. 0 3 %以下、
S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部が F e及び不可避的不純 物からなる高強度鋼板の上に、 A 1 : 0. 0 5〜 1 0質量%、 M g : 0. 0 1〜 5質量%を含有し、 残.部が Z n及び不可避的不純物か らなる亜鉛めつき層を有する溶融亜鉛めつき鋼板において、 高強度 鋼板とめっき層との界面から 5 m以下の鋼板側の結晶粒界と結晶 粒内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で存在す ることを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛め つ. 鋼恨。
4. 質量%で、
C : 0. 0 5〜 0. 2 5 %、
5 i : 0. 3〜 2. 5 %、
M n : 1. 5〜 2. 8 % ,
P : 0. 0 3 %以下、 S : 0. 0 2 %以下、
A 1 : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部が F e及び不可避的不純 物かもなる高強度鋼板の上に、 A 1 : 4〜 2 0質量%、 g : 2〜 5質量%、 S i : 0〜 0. 5質量%を含有し、 残部が Z n及び不可 避的不純物からなる亜鉛めつき層を有する溶融亜鉛めつき鋼板にお いて、. 高強度鋼板とめっき層との界面から 5 z m以下の鋼板側の結 晶粒界と結晶粒内に S 1 を含む酸化物が平均含有率 0. 6〜 1 0質 量%で存在することを特徴とする成形性及びめつき性に優れた高強 度溶融亜鉛めつき鋼板。
5. 質量%で、
C : 0. 0 5〜 0. 2 5 %、
S i : 0. 3〜 2. 5 %、
M n : 1. 5〜 2. 8 %、
P : 0. 0 3 %以下、
5 : 0. 0 2 %以下、
A l : 0. 0 0 5〜 0. 5 %、
N : 0. 0 0 6 0 %以下を含有し、 残部 F e及び不可避的不純物 からなる高強度鋼板の上に、 F e を含有し、 残部が Z n及び不可避 的不純物からなる合金化溶融亜鉛めつき層を有する鋼板において、 高強度鋼板とめ き層との界面から 5 以下の鋼板側の結晶粒界 と結晶粒内に S i を含む酸化物が平均含有率 0. 6〜 1 0質量%で 存在し、 めっき層中に S i を含む酸化物が平均含有率 0. 0 5〜 1 . 5質量%で存在することを特徴とする成形性及びめつき性に優れ た高強度合金化溶融亜鉛めつき鋼板。
6. 請求項 1乃至請求項 5の何れかに記載の S i を含む上記酸化 物が S i 02、 F e S i Oい F e 2 S i Oい M n S i 〇3、 n 2 S i 〇4、 から選ばれた 1種以上であることを特徴とする成形性及び めっき性に優れた高強度溶融亜鉛めつき鋼板。
7. 請求項 5に記載の合金化溶融亜鉛めつき鋼板において、 めつ き層 及び鋼板表面に F e S i 〇3、 F e 2 S i 04、 M n S i 〇3、 n 2 S i 〇4から選ばれた 1種以上の S i 酸化物が存在し、 鋼板内 面側に S i 〇2が存在することを特徴とする成形性及びめつき性に 優れた高強度合金化溶融亜鉛めつき鋼板。
8. 請求項 5に記載の 金化溶融亜鉛めつき鋼板において、 めつ き層中に F e S i 〇3、 F e 2 S i 〇4、 M n S i 〇3、 M n 2 S i O 4 から選ばれた 1種以上の S i 酸化物が存在し、 めっき層の鋼板側及 び鋼板中に S i 〇2が存在することを特徴とする成形性及びめつき 性に優れた高強度合金化溶融亜鉛めつき鋼板。
9. 請求項 1乃至請求項 4のいずれかに記載の高強度溶融亜鉛め つき鋼板において、 鋼板表面又は表面側に F e S i 〇3、 F e 2 S 1 O, , M n S i 〇3、 M n 2 S 1 〇4から選ばれた 1種以上の S i酸化 物が存在し、 鋼板内面側に S i 〇2が存在することを特徴とする成 形性及びめつき性に優れた高強度溶融亜鉛めつき鋼板。
1 0. 引張強さ F (M P a ) と伸び L (%) の関係が
L≥ 5 1 - 0. 0 3 5 X F
を満足することを特徴とする請求項 1乃至請求項 9のいずれかに 記載の成形性及びめつき性に優れた高強度合金化溶融亜鉛めつき鋼 板。
1 1. S i 、 M nを含有する高強度鋼板に、 連続的に溶融亜鉛め つきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i 03、 F e 2 S i 〇4、 M n S i 〇3、 M n2 S i 〇4から選ばれた 1種以上 の S i 酸化物を存在させ、 かつ鋼板内面側に S i 〇2の酸化物を存 在させた高強度鋼板の上に亜鉛めつき、 又は亜鉛合金めつきを施す ことを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛めつ き鋼板の製造方法。
1 2. S i 、 M nを含有する高強度鋼板に、 連続的に溶融亜鉛め つきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i 〇3、 F e 2 S i 〇4、 M n S i 〇3、 M n 2 S i 〇4から選ばれた 1種以上 の S i 酸化物を存在させ、 かつ鋼板内面側に S i 02の酸化物を存 在させた高強度鋼板の上に亜鉛めつきを施し、 次いで合金化処理を 行う ことを特徴とする成形性及びめつき性に優れた高強度合金化溶 融亜鉛めつき鋼板の製造方法。 ·
1 3. C、 S i 、 M nを含有する高強度鋼板に、 連続的に溶融亜 鉛めつきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i O 3、 F e 2 S i 〇4、 M n S i 〇3、 111125 1 04から選ばれた 1種以 上の S i酸化物を存在させ、 かつ鋼板内面側に S i 02の酸化物を 存在させた高強度鋼板の上に亜鉛めつき、 又は亜鉛合金めつきを施 すことを特徴とする成形性及びめつき性に優れた高強度溶融亜鉛め つき鋼板の製造方法。
1 4. C、 S i 、 M nを含有する高強度鋼板に、 連続的に溶融亜 鉛めつきを施すに際し、 鋼表面又は鋼板とめっき界面に F e S i O 3、 F e 2 S i 04、 M n S i 〇3、 M n 2 S i 〇4から選ばれた 1種以 上の S i酸化物を存在させ、 かつ鋼板内面側に S i 02の酸化物を 存在させた高強度鋼板の上に亜鉛めつきを施し、 次いで合金化処理 を行う ことを特徴とする成形性及びめつき性に優れた高強度合金化 溶融亜鉛めつき鋼板の製造方法。
1 5. 請求項 1 1〜 1 4のいずれかの項に記載の高強度溶融亜鉛 めっき鋼板及び高強度合金化溶融亜鉛めつき鋼板が、 質量%で、 C : 0. 0 5〜 0. 2 5 %、 S i : 0. 3〜 2. 5 %, n : 1. 5
〜 2. 8 %、 P : 0. 0 3 %以下、 S : 0. 0 2 %以下、 A 1 : 0
. 0 0 5〜 0. 5 %、 N : 0. 0 0 6 0 %以下、 残部 F e及び不可 避的不純物からなることを特徴とする成形性及びめつき性に優れた 高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつき鋼板の 製造方法。
1 6. 質量%で、
C、 S i 、 M nを含有する高強度鋼板に連続的に溶融亜鉛めつき を施すに際し、 還元帯の雰囲気として、 H2を 1〜 6 0体積%含有 し、 残部 N2、 H20、 02、 C 02、 C Oの 1種又は 2種以上及び不 可避的不純物からなり、 その雰囲気中の酸素分圧の対数 1 o g P O
2を
_ 0. 0 0 0 0 3 4 T2 + 0. 1 0 5 Τ - 0. 2 〔 S .i %〕 2 + 2 . 1 〔 S i %〕 - 9 8. 8≤ l o g P O2≤ - 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 Τ - 9 0. 4 ( 1式)
9 2 3≤Τ≤ 1 1 7 3 ( 2式)
Τ : 鋼板の最高到達温度 (Κ)
〔 S i %〕 : 鋼板中の S i含有量 (質量%)
に制御した雰囲気で還元を行う ことを特徴とする成形性及びめつ き性に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛 めっき鋼板の製造方法。
1 7. 請求項 1 6に記載の高強度溶融亜鉛めつき鋼板及び高強度 合金化溶融亜鉛めつき鋼板の製造方法において、 還元帯の前の酸化 帯において燃焼空気比 0. 9〜 1. 2の雰囲気中にて酸化せしめ、 その後の還元帯において、 還元を行う ことを特徴とする成形性及び めっき性に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融 亜鉛めつき鋼板の製造方法。
1 8. 請求項 1 6に記載の高強度溶融亜鉛めつき鋼板及び高強度 合金化溶融亜鉛めつき鋼板の製造方法において、 還元帯の前の酸化 帯において露点 2 7 3 K以上の雰囲気中にて酸化せしめ、 その後の 還元帯において、 還元を行う ことを特徴とする成形性及びめつき性 に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつ き鋼板の製造方法。
1 9. 質量%で、
C、 S i 、 M nを含有する鋼スラブを A r 3点以上の温度で仕上 圧延を行い、 5 0〜 8 5 %の冷間圧延を施し、 引き続いて、 溶融亜 鉛めつきを施す際、 還元帯の雰囲気と して、 H2を 1〜 6 0体積% 含有し、 残部 N2、 H20、 02、 C〇2、 C Oの 1種又は 2種以上及 び不可避的不純物からなり、 その雰囲気中の酸素分圧の対数 1 o g P 02
— 0. 0 0 0 0 3 4 Τ2 + 0. 1 0 5 Τ - 0. 2 C S i % 2 + 2 . 1 〔 S i %〕 - 9 8. 8≤ 1 o g P O2≤ - 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 T - 9 0. 4 ( 1式)
9 2 3≤ T≤ 1 1 7 3 ( 2式)
T : 鋼板の最高到達温度 (K)
〔 S i %〕 : 鋼板中の S i含有量 (w t %)
に制御した雰囲気の連続溶融亜鉛めつき設備を使用し、 1 0 2 3 K以上 1 1 5 3 K以下のフェライ ト、 オーステナイ トの二相共存温 度域で焼鈍し、 その最高到達温度から 9 2 3 Kまでを平均冷却速度 0. 5〜 : L 0度 秒で冷却し、 引き続いて 9 2 3 Kから 7 7 3 Kま でを平均冷却速度 3度 秒以上で冷却し、 さ らに 7 7 3 Kから平均 冷却速度 0. 5度 秒以上で冷却し、 溶融亜鉛めつき処理を行う こ とによって、 前記冷延鋼板の表面上に溶融亜鉛めつき層を形成する 製造方法において、 7 7 3 Kからめつき後 6 2 3 Kに到達するまで の時間を 2 5秒以上 2 4 0秒以下とすることを特徴とする成形性及 びめつき性に優れた高強度溶融亜鉛めつき鋼板の製造方法。
2 0. 質量%で、
C、 S i 、 M nを含有する鋼スラブを A r 3点以上の温度で仕上 圧延を行い、 5 0〜 8 5 %の冷間圧延を施し、 引き続いて溶融亜鉛 めっきを施す際、 還元帯の雰囲気として、 H2を 1〜 6 0体積%含 有し、 残部 N2、 H2〇、 02、 C 02、 C〇の 1種又は 2種以上及び 不可避的不純物からなり、 その雰囲気中の酸素分圧の対数 1 o g P o2
— 0. 0 0 0 0 3 4 Τ2 + 0. 1 0 5 Τ - 0. 2 C S i % 2 + 2 . 1 〔 S i %〕 - 9 8. 8≤ l o g P O2≤ - 0. 0 0 0 0 3 8 T 2 + 0. 1 0 7 T - 9 0. 4 ( 1式)
9 2 3≤ T≤ 1 1 7 3 ( 2式)
T : 鋼板の最高到達温度 (K)
〔 S i %〕 : 鋼板中の S i含有量 (質量%)
に制御した雰囲気の連続溶融亜鉛めつき設備を使用し、 1 0 2 3 K以上 1 1 5 3 K以下のフェライ ト、 オーステナィ 卜の二相共存温 度域で焼鈍し、 その最高到達温度から 9 2 3 Kまでを平均冷却速度 0. 5〜 1 0度 秒で、 引き続いて 9 2 3 Kから 7 7 3 Kまでを平 均冷却速度 3度/秒以上で冷却し、 さ らに 7 7 3 Kから平均冷却速 度 0. 5度/秒以上で 6 9 3 :〜 7 3 3 Kまで冷却し、 且つ、 7 7 3 Kからめつき浴までを 2 5秒以上 2 4 0秒以下保持した後、 溶融 亜鉛めつき処理を行う ことによって、 前記冷延鋼板の表面上に溶融 亜鉛めつき層を形成し、 次いで、 前記溶融亜鉛めつき層が形成され た前記鋼板に対し合金化処理を施すことによって、 前記鋼板の表面 上に合金化溶融亜鉛めつき層を形成する合金化溶融亜鉛めつき鋼板 の製造方法において、 前記溶融亜鉛めつき処理を、 浴中有効 A 1 濃 度 : 0. 0 7〜 0. 1 0 5 w t %、 残部が Z nおよび不可避的不純 物からなる成分組成の溶融亜鉛めつき浴中で行い、 そして、 前記合 金化処理を、
7 2 0≤ T≤ 6 9 0 X e x p ( 1. 3 5 X 〔A 1 %〕 )
但し、 〔A 1 %〕 : 亜鉛めつき浴中の浴中有効 A 1 濃度 (w t %
)
を満足する温度 T (K) において行う ことを特徴とする成形性及 びめつき性に優れた高強度合金化溶融亜鉛めつき鋼板の製造方法。
2 1. 請求項 1 6、 1 9又は 2 0のいずれかの項に記載の高強度 溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつき鋼板が、 質量 %で、 C : 0. 0 5〜 0. 2 5 %、 S i : 0. 3〜 2. 5 % , n : 1 . 5〜 2. 8 %、 P : 0. 0 3 %以下、 S : 0. 0 2 %以下、 A 1 : 0. 0 0 5〜 0. 5 %、 N : 0. 0 0 6 0 %以下.、 残部 F e 及び不可避的不純物からなることを特徴とする成形性及びめつき性 に優れた高強度溶融亜鉛めつき鋼板及び高強度合金化溶融亜鉛めつ き鋼板の製造方法。
2 2. 請求項 2 0に記載の高強度合金化溶融亜鉛めつき鋼板の製 造方法において、 焼鈍後 6 7 3 K以上 7 2 3 K以下まで冷却した後 、 7 0 3 K以上 7 4 3 K以下まで再加熱を行い、 溶融亜鉛めつき処 理を行う ことを特徴とする成形性及びめつき性に優れた高強度合金 化溶融亜鉛めつき鋼板の製造方法。
2 3. 請求項 2 0又は 2 2に記載の高強度合金化溶融亜鉛めつき 鋼板の製造方法において、 溶融めつき後 6 7 3 K以下の温度に冷却 されるまでの時間を 3 0秒以上 1 2 0秒以下とすることを特徴とす る成形性及びめつき性に優れた高強度合金化溶融亜鉛めつき鋼板の 製造方法。
2 4. 無酸化炉又は直火炉を有し、 鋼板に連続的に溶融亜鉛めつ きを施す溶融亜鉛めつき鋼板の製造設備において、 C〇2を 1〜 1 0 0体積%含有し、 残部 N2、 H2〇、 02、 C O及び不可避的不純 物からからなる気体を導入する装置を還元炉に配設することを特徴 とする溶融めつき鋼板の製造設備。
2 5. 無酸化炉又は直火炉を有し、 鋼板に連続的に溶融亜鉛めつ きを施す溶融亜鉛めつき鋼板の製造設備において、 還元炉中で C O 又は炭化水素を燃焼させ、 C 02を 1〜 1 0 0体積%含有し、 残部 N2、 H20、 02、 C〇及び不可避的不純物からからなる気体を発 生させる装置を配設することを特徴とする溶融めつき鋼板の製造設 備。
PCT/JP2006/315552 2006-01-30 2006-07-31 成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法及び製造装置 WO2007086158A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA2640646A CA2640646C (en) 2006-01-30 2006-07-31 High strength hot-dip galvanized steel sheet and high strength hot-dip galvannealed steel sheet and methods of production and apparatuses for production of the same
US12/162,739 US8592049B2 (en) 2006-01-30 2006-07-31 High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability
PL06782398T PL1980638T3 (pl) 2006-01-30 2006-07-31 Wysokowytrzymała blacha cynkowana ogniowo o doskonałej podatności na formowanie i nadająca się do platerowania, wysokowytrzymała stopowa blacha cynkowana ogniowo oraz procesy i urządzenie do ich wytwarzania
CN200680052096XA CN101336308B (zh) 2006-01-30 2006-07-31 成形性及镀覆性优良的高强度热浸镀锌钢板和高强度合金化热浸镀锌钢板及其制造方法和制造装置
ES06782398T ES2441959T5 (es) 2006-01-30 2006-07-31 Chapa de acero galvanizado por inmersión en caliente de alta resistencia que presenta excelente aptitud para el moldeo e idoneidad para el chapado, y chapa de acero galvanizado por inmersión en caliente aleado de alta resistencia, y métodos para la producción de las mismas
EP06782398.9A EP1980638B2 (en) 2006-01-30 2006-07-31 High-strength hot-dip zinced steel sheet excellent in moldability and suitability for plating, high-strength alloyed hot-dip zinced steel sheet, and processes for producing these
BRPI0621421A BRPI0621421B8 (pt) 2006-01-30 2006-07-31 chapa de aço galvanizada por imersão a quente, chapa de aço galvanizada e recozida e métodos de produção das mesmas

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006021426A JP4741376B2 (ja) 2005-01-31 2006-01-30 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
JP2006-021426 2006-01-30
JP2006181747A JP4837459B2 (ja) 2006-06-30 2006-06-30 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP2006-181747 2006-06-30
JP2006-190555 2006-07-11
JP2006190555A JP4837464B2 (ja) 2006-07-11 2006-07-11 めっき密着性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Publications (1)

Publication Number Publication Date
WO2007086158A1 true WO2007086158A1 (ja) 2007-08-02

Family

ID=38308967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315552 WO2007086158A1 (ja) 2006-01-30 2006-07-31 成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法及び製造装置

Country Status (10)

Country Link
US (1) US8592049B2 (ja)
EP (1) EP1980638B2 (ja)
KR (1) KR101016526B1 (ja)
CN (1) CN101336308B (ja)
BR (1) BRPI0621421B8 (ja)
CA (1) CA2640646C (ja)
ES (1) ES2441959T5 (ja)
PL (1) PL1980638T3 (ja)
TW (1) TWI354706B (ja)
WO (1) WO2007086158A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100591794C (zh) * 2008-07-31 2010-02-24 攀钢集团研究院有限公司 热镀锌钢板的镀锌方法
US20100282373A1 (en) * 2007-08-15 2010-11-11 Corus Stall Bv Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
US20110017362A1 (en) * 2007-11-05 2011-01-27 Thyssenkrupp Steel Europe Ag Steel flat product having a metallic coating which protects against corrosion and method for producing a metallic zn-mg coating, which protects against corrosion, on a steel flat product
JP2013513725A (ja) * 2009-12-10 2013-04-22 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 容易に成形可能な平鋼製品の製造方法、平鋼製品及び該平鋼製品から部品を製造する方法
US8721809B2 (en) 2007-02-23 2014-05-13 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby
US8864921B2 (en) 2007-07-19 2014-10-21 Tata Steel Ijmuiden B.V. Method for annealing a strip of steel having a variable thickness in length direction
US20140314616A1 (en) * 2011-11-17 2014-10-23 Jfe Steel Corporation Hot-rolled steel sheet for high-strength galvanized steel sheet or high-strength galvannealed steel sheet and method for manufacturing the same (as amended)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411326B2 (ja) * 2007-01-29 2010-02-10 株式会社神戸製鋼所 リン酸塩処理性に優れた高強度合金化溶融亜鉛めっき鋼板
JP2010126757A (ja) * 2008-11-27 2010-06-10 Jfe Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
CN102292464B (zh) 2009-01-16 2014-02-12 新日铁住金株式会社 耐蚀性优异的热浸镀Zn-Al-Mg-Si-Cr合金的钢材
CN102369305B (zh) * 2009-03-31 2014-07-09 杰富意钢铁株式会社 高强度热镀锌钢板及其制造方法
JP5043234B2 (ja) * 2009-06-30 2012-10-10 新日本製鐵株式会社 Zn−Al−Mg系溶融めっき鋼板とその製造方法
CN101851713B (zh) * 2010-06-22 2012-03-07 绍兴市天龙锡材有限公司 一种易切削高强度锌合金
US20130327452A1 (en) * 2010-09-30 2013-12-12 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
KR20120041544A (ko) * 2010-10-21 2012-05-02 주식회사 포스코 도금성, 도금밀착성 및 스폿용접성이 우수한 용융아연도금강판 및 그 제조방법
RU2566121C1 (ru) 2011-09-30 2015-10-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Высокопрочный гальванизированный погружением стальной лист с превосходной характеристикой сопротивления удару и способ его изготовления и высокопрочный, подвергнутый легированию, гальванизированный погружением стальной лист и способ его изготовления
KR101601001B1 (ko) * 2011-09-30 2016-03-08 신닛테츠스미킨 카부시키카이샤 고강도 용융 아연 도금 강판
BR112014007500A2 (pt) 2011-09-30 2017-04-04 Nippon Steel & Sumitomo Metal Corp folha de aço galvanizada por imersão a quente e método de fabricação da mesma
KR101594268B1 (ko) 2011-09-30 2016-02-15 신닛테츠스미킨 카부시키카이샤 기계 절단 특성이 우수한 고강도 용융 아연 도금 강판, 고강도 합금화 용융 아연 도금 강판 및 그들의 제조 방법
MX2014003713A (es) 2011-09-30 2014-06-05 Nippon Steel & Sumitomo Metal Corp Placa de acero galvanizado, y metodo para fabricarla.
WO2013047760A1 (ja) 2011-09-30 2013-04-04 新日鐵住金株式会社 耐遅れ破壊特性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法
CN102400075B (zh) * 2011-11-23 2013-06-12 河北卓亿线路器材有限公司 L形全封闭型环保热镀锌生产设备及工艺方法
KR101360734B1 (ko) * 2011-12-28 2014-02-10 주식회사 포스코 도금성 및 도금 밀착성이 우수한 용융아연도금강판 및 그 제조방법
JP5982906B2 (ja) * 2012-03-19 2016-08-31 Jfeスチール株式会社 高強度溶融亜鉛めっき鋼板の製造方法
KR101657866B1 (ko) * 2012-04-18 2016-09-19 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
ES2725310T3 (es) * 2012-12-25 2019-09-23 Nippon Steel Corp Lámina de acero galvanizado por inmersión en caliente aleado y método de fabricación de la misma
CN105164298A (zh) 2013-05-01 2015-12-16 新日铁住金株式会社 镀锌钢板及其制造方法
EP2993245B1 (en) 2013-05-01 2018-08-01 Nippon Steel & Sumitomo Metal Corporation High-strength low-specific gravity steel sheet having superior spot weldability
IN2015DN00128A (ja) 2013-05-13 2015-05-29 Arcelormittal Investigación Y Desarrollo Sl
CN103374723A (zh) * 2013-07-12 2013-10-30 江苏法尔胜泓昇集团有限公司 钢丝表面余热热镀锌的方法
JP5799997B2 (ja) * 2013-09-12 2015-10-28 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP5799996B2 (ja) * 2013-09-12 2015-10-28 Jfeスチール株式会社 外観性とめっき密着性に優れる溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
KR20160085830A (ko) * 2013-12-10 2016-07-18 아르셀러미탈 강판의 어닐링 방법
KR101797417B1 (ko) * 2013-12-13 2017-11-13 제이에프이 스틸 가부시키가이샤 고강도 합금화 용융 아연 도금 강판의 제조 방법
JP6131919B2 (ja) 2014-07-07 2017-05-24 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP6505480B2 (ja) 2014-08-29 2019-04-24 株式会社神戸製鋼所 溶融亜鉛めっき用または合金化溶融亜鉛めっき用原板、および溶融亜鉛めっき鋼板または合金化溶融亜鉛めっき鋼板
CN104372279A (zh) * 2014-09-17 2015-02-25 朱忠良 一种具有优异的冲压性、耐腐蚀性的热浸镀锌钢板
CN107109554B (zh) * 2014-11-05 2018-11-09 新日铁住金株式会社 热浸镀锌钢板
EP3216886A4 (en) * 2014-11-05 2018-04-11 Nippon Steel & Sumitomo Metal Corporation Hot-dip galvanized steel sheet
TWI601848B (zh) * 2014-11-05 2017-10-11 新日鐵住金股份有限公司 熔融鍍鋅鋼板
KR101674771B1 (ko) * 2014-12-24 2016-11-10 주식회사 포스코 가공성이 우수한 합금화 용융아연도금강판 및 그 제조방법
JP6020605B2 (ja) * 2015-01-08 2016-11-02 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
US20180100213A1 (en) * 2015-04-15 2018-04-12 Nippon Steel & Sumitomo Metal Corp Hot-rolled steel sheet and method for producing the same
EA035895B1 (ru) * 2015-04-22 2020-08-27 Кокрий Ментенанс Эт Энженьери С.А. Способ и устройство для управления реакцией
EP3378965B1 (en) 2016-02-25 2020-08-12 Nippon Steel Corporation High-strength hot-dip galvanized steel sheet excellent in impact peeling resistance and worked portion corrosion resistance
KR101786377B1 (ko) * 2016-08-22 2017-10-18 주식회사 포스코 내골링성, 성형성 및 실러 접착성이 우수한 용융 아연도금 강판 및 그 제조방법
WO2018234839A1 (en) 2017-06-20 2018-12-27 Arcelormittal ZINC COATED STEEL SHEET HAVING HIGH STRENGTH POINTS WELDABILITY
JP6315154B1 (ja) 2017-07-31 2018-04-25 新日鐵住金株式会社 溶融亜鉛めっき鋼板
BR112020001128A2 (pt) 2017-07-31 2020-07-21 Nippon Steel Corporation folha de aço galvanizada por imersão a quente
JP6281671B1 (ja) * 2017-07-31 2018-02-21 新日鐵住金株式会社 溶融亜鉛めっき鋼板
JP7147772B2 (ja) * 2017-09-26 2022-10-05 日立金属株式会社 めっき形成黒心可鍛鋳鉄部材の製造方法、並びにめっき形成黒心可鍛鋳鉄部材及び管継手
KR102414090B1 (ko) 2017-12-15 2022-06-28 닛폰세이테츠 가부시키가이샤 강판, 용융 아연 도금 강판 및 합금화 용융 아연 도금 강판
KR102031465B1 (ko) 2017-12-26 2019-10-11 주식회사 포스코 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법
KR101934524B1 (ko) * 2018-08-24 2019-01-02 김상호 Mg이 포함된 용융아연도금강판의 제조방법 및 제조장치
US11208711B2 (en) 2018-11-15 2021-12-28 Psitec Oy Method and an arrangement for manufacturing a hot dip galvanized rolled high strength steel product
CN110616392B (zh) * 2019-10-24 2022-08-02 常州大学 一种提高可锻铸铁热浸锌镀层质量的表面预处理方法
CN115398024A (zh) * 2020-03-30 2022-11-25 日本制铁株式会社 热浸镀钢板
WO2023244075A1 (ko) * 2022-06-17 2023-12-21 주식회사 포스코 강판 및 그 제조방법
CN115109967B (zh) * 2022-06-22 2023-10-13 首钢集团有限公司 一种热浸镀高强钢板及其制备方法
CN116162824B (zh) * 2023-03-07 2024-04-12 保定奥琦圣新型金属材料制造有限公司 一种含Mo、Cr的锌铝镁合金及其生产方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295018A (ja) * 2000-04-11 2001-10-26 Nippon Steel Corp 耐食性の優れたSi含有高強度溶融亜鉛めっき鋼板とその製造方法
JP2004323970A (ja) * 2003-04-10 2004-11-18 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2005060742A (ja) * 2003-08-19 2005-03-10 Nippon Steel Corp 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2005060743A (ja) * 2003-08-19 2005-03-10 Nippon Steel Corp 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP2006233333A (ja) * 2005-01-31 2006-09-07 Nippon Steel Corp 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039153A (ja) 1983-08-10 1985-02-28 Kawasaki Steel Corp 耐加工性に優れる合金化溶融亜鉛めつき鋼板
JP2978096B2 (ja) * 1995-07-31 1999-11-15 川崎製鉄株式会社 めっき性に優れた高強度溶融亜鉛めっき鋼板
JP3130470B2 (ja) * 1996-05-20 2001-01-31 川崎製鉄株式会社 プレス加工性及びメッキ密着性に優れる高強度溶融亜鉛メッキ鋼板
JP3468004B2 (ja) * 1997-01-16 2003-11-17 Jfeスチール株式会社 高強度溶融亜鉛めっき熱延鋼板
TW504519B (en) * 1999-11-08 2002-10-01 Kawasaki Steel Co Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same
JP2001288550A (ja) 2000-01-31 2001-10-19 Kobe Steel Ltd 溶融亜鉛めっき鋼板
JP2001279412A (ja) * 2000-03-29 2001-10-10 Nippon Steel Corp 耐食性の良好なSi含有高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP2001323355A (ja) 2000-05-11 2001-11-22 Nippon Steel Corp めっき密着性と塗装後耐食性の良好なSi含有高強度溶融亜鉛めっき鋼板と塗装鋼板およびその製造方法
JP3506233B2 (ja) 2000-06-28 2004-03-15 シャープ株式会社 半導体装置及びその製造方法
AU2003211728A1 (en) 2002-03-01 2003-09-16 Kawasaki Steel Corporation Surface treated steel plate and method for production thereof
JP2004124187A (ja) 2002-10-03 2004-04-22 Sumitomo Metal Ind Ltd 密着性・溶接性に優れた高強度溶融亜鉛めっき鋼板
ES2347435T3 (es) 2003-03-31 2010-10-29 Nippon Steel Corporation Chapa de acero recubierta en caliente con cinc aleado y metodo para su produccion.
KR20050118306A (ko) * 2003-04-10 2005-12-16 신닛뽄세이테쯔 카부시키카이샤 고강도 용융 아연 도금 강판 및 그 제조 방법
JP4238153B2 (ja) * 2004-02-02 2009-03-11 新日本製鐵株式会社 均一外観性に優れた高強度電気亜鉛めっき鋼板およびその製造方法
JP4837459B2 (ja) 2006-06-30 2011-12-14 新日本製鐵株式会社 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP4837464B2 (ja) 2006-07-11 2011-12-14 新日本製鐵株式会社 めっき密着性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001295018A (ja) * 2000-04-11 2001-10-26 Nippon Steel Corp 耐食性の優れたSi含有高強度溶融亜鉛めっき鋼板とその製造方法
JP2004323970A (ja) * 2003-04-10 2004-11-18 Nippon Steel Corp 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2005060742A (ja) * 2003-08-19 2005-03-10 Nippon Steel Corp 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP2005060743A (ja) * 2003-08-19 2005-03-10 Nippon Steel Corp 高強度合金化溶融亜鉛めっき鋼板の製造方法と製造設備
JP2006233333A (ja) * 2005-01-31 2006-09-07 Nippon Steel Corp 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8721809B2 (en) 2007-02-23 2014-05-13 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby
US9481916B2 (en) 2007-02-23 2016-11-01 Tata Steel Ijmuiden B.V. Method of thermomechanical shaping a final product with very high strength and a product produced thereby
US8864921B2 (en) 2007-07-19 2014-10-21 Tata Steel Ijmuiden B.V. Method for annealing a strip of steel having a variable thickness in length direction
US20100282373A1 (en) * 2007-08-15 2010-11-11 Corus Stall Bv Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip
US20110017362A1 (en) * 2007-11-05 2011-01-27 Thyssenkrupp Steel Europe Ag Steel flat product having a metallic coating which protects against corrosion and method for producing a metallic zn-mg coating, which protects against corrosion, on a steel flat product
CN100591794C (zh) * 2008-07-31 2010-02-24 攀钢集团研究院有限公司 热镀锌钢板的镀锌方法
JP2013513725A (ja) * 2009-12-10 2013-04-22 ティッセンクルップ スチール ヨーロッパ アクチェンゲゼルシャフト 容易に成形可能な平鋼製品の製造方法、平鋼製品及び該平鋼製品から部品を製造する方法
US20140314616A1 (en) * 2011-11-17 2014-10-23 Jfe Steel Corporation Hot-rolled steel sheet for high-strength galvanized steel sheet or high-strength galvannealed steel sheet and method for manufacturing the same (as amended)
US9758847B2 (en) * 2011-11-17 2017-09-12 Jfe Steel Corporation Hot-rolled steel sheet for high-strength galvanized steel sheet or high-strength galvannealed steel sheet and method for manufacturing the same (as amended)

Also Published As

Publication number Publication date
CA2640646A1 (en) 2007-08-02
PL1980638T3 (pl) 2014-03-31
EP1980638A1 (en) 2008-10-15
EP1980638A4 (en) 2011-11-16
CN101336308A (zh) 2008-12-31
CA2640646C (en) 2011-07-26
KR101016526B1 (ko) 2011-02-25
EP1980638B1 (en) 2013-10-23
US20100304183A1 (en) 2010-12-02
EP1980638B2 (en) 2022-05-11
TW200728474A (en) 2007-08-01
TWI354706B (en) 2011-12-21
BRPI0621421B8 (pt) 2019-05-21
KR20080080416A (ko) 2008-09-03
ES2441959T5 (es) 2022-09-07
BRPI0621421A2 (pt) 2011-12-13
US8592049B2 (en) 2013-11-26
BRPI0621421B1 (pt) 2018-02-06
ES2441959T3 (es) 2014-02-07
CN101336308B (zh) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2007086158A1 (ja) 成形性及びめっき性に優れた高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法及び製造装置
JP4741376B2 (ja) 外観が良好な高強度合金化溶融亜鉛めっき鋼板及びその製造方法と製造設備
JP4932376B2 (ja) めっき性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP4837464B2 (ja) めっき密着性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
WO2016072479A1 (ja) 溶融亜鉛めっき鋼板
RU2418094C2 (ru) Высокопрочный горячеоцинкованный погружением стальной лист и высокопрочный отожженный после цинкования стальной лист с превосходными формуемостью и способностью к нанесению гальванопокрытия и способы изготовления и устройства для изготовления таких листов
CN111936650B (zh) 高强度镀锌钢板、高强度部件和它们的制造方法
JP4119804B2 (ja) 密着性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
WO2016072477A1 (ja) 溶融亜鉛めっき鋼板
JP4932363B2 (ja) 高強度合金化溶融亜鉛めっき鋼板及びその製造方法
JP4837604B2 (ja) 合金化溶融亜鉛めっき鋼板
JP4837459B2 (ja) 外観が良好な耐食性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法
JP5811841B2 (ja) Si含有高強度合金化溶融亜鉛めっき鋼板の製造方法
KR20150088310A (ko) 합금화 용융 아연 도금 강판과 그 제조 방법
JP2008024972A (ja) 耐チッピング性に優れた高強度合金化溶融めっき鋼板
JP5392116B2 (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JPH0913147A (ja) 成型性及びめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
US11377712B2 (en) Hot dipped high manganese steel and manufacturing method therefor
WO2004061137A1 (ja) 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
KR101736640B1 (ko) 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법
JP4452126B2 (ja) 合金化溶融亜鉛めっき用鋼板
JP7480928B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP5092858B2 (ja) 溶融亜鉛めっき用鋼板及び合金化溶融亜鉛めっき鋼板
JP4598700B2 (ja) 外観品位に優れる合金化溶融亜鉛めっき鋼およびその製造方法
KR102031459B1 (ko) 도금성이 우수한 초고강도 고망간 용융아연도금강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 6163/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006782398

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2640646

Country of ref document: CA

Ref document number: 1020087018619

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680052096.X

Country of ref document: CN

Ref document number: 12162739

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008135330

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: PI0621421

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080730