JP6020605B2 - 合金化溶融亜鉛めっき鋼板の製造方法 - Google Patents

合金化溶融亜鉛めっき鋼板の製造方法 Download PDF

Info

Publication number
JP6020605B2
JP6020605B2 JP2015002543A JP2015002543A JP6020605B2 JP 6020605 B2 JP6020605 B2 JP 6020605B2 JP 2015002543 A JP2015002543 A JP 2015002543A JP 2015002543 A JP2015002543 A JP 2015002543A JP 6020605 B2 JP6020605 B2 JP 6020605B2
Authority
JP
Japan
Prior art keywords
gas
zone
dew point
soaking zone
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015002543A
Other languages
English (en)
Other versions
JP2016125131A (ja
Inventor
玄太郎 武田
玄太郎 武田
三宅 勝
勝 三宅
洋一 牧水
洋一 牧水
善継 鈴木
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015002543A priority Critical patent/JP6020605B2/ja
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to KR1020177018739A priority patent/KR101949631B1/ko
Priority to EP15876790.5A priority patent/EP3243924B1/en
Priority to PCT/JP2015/006328 priority patent/WO2016110910A1/ja
Priority to US15/541,401 priority patent/US20180051356A1/en
Priority to CN201580070798.XA priority patent/CN107109609B/zh
Priority to MX2017008964A priority patent/MX368095B/es
Publication of JP2016125131A publication Critical patent/JP2016125131A/ja
Application granted granted Critical
Publication of JP6020605B2 publication Critical patent/JP6020605B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/563Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/04Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity adapted for treating the charge in vacuum or special atmosphere
    • F27B9/045Furnaces with controlled atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/063Special atmospheres, e.g. high pressure atmospheres

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、加熱帯、均熱帯及び冷却帯がこの順に並置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき設備と、該溶融亜鉛めっき設備と隣接した合金化設備と、を有する連続溶融亜鉛めっき装置を用いた合金化溶融亜鉛めっき鋼板の製造方法に関する。
近年、自動車、家電、建材等の分野において、構造物の軽量化等に寄与する高張力鋼板(ハイテン鋼材)の需要が高まっている。ハイテン鋼材としては、例えば、鋼中にSiを含有することにより穴広げ性の良好な鋼板や、SiやAlを含有することにより残留γが形成しやすく延性の良好な鋼板が製造できることがわかっている。
しかし、Siを多量に(特に0.2質量%以上)含有する高張力鋼板を母材として合金化溶融亜鉛めっき鋼板を製造する場合、以下の問題がある。合金化溶融亜鉛めっき鋼板は、還元雰囲気又は非酸化性雰囲気中で600〜900℃程度の温度で母材の鋼板を加熱焼鈍した後に、該鋼板に溶融亜鉛めっき処理を行い、さらに亜鉛めっきを加熱合金化することによって、製造される。
ここで、鋼中のSiは易酸化性元素であり、一般的に用いられる還元雰囲気又は非酸化性雰囲気中でも選択酸化されて、鋼板の表面に濃化し、酸化物を形成する。この酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて、不めっきを生じさせる。そのため、鋼中Si濃度の増加と共に、濡れ性が急激に低下して不めっきが多発する。また、不めっきに至らなかった場合でも、めっき密着性に劣るという問題がある。さらに、鋼中のSiが選択酸化されて鋼板の表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じ、生産性を著しく阻害するという問題もある。
このような問題に対して、例えば、特許文献1には、直火型加熱炉(DFF)を用いて、鋼板の表面を一旦酸化させた後、還元雰囲気下で鋼板を焼鈍することで、Siを内部酸化させ、鋼板の表面にSiが濃化するのを抑制し、溶融亜鉛めっきの濡れ性および密着性を向上させる方法が記載されている。加熱後の還元焼鈍については常法(露点−30〜−40℃)でよいと記載されている。
特許文献2には、順に加熱帯前段、加熱帯後段、保熱帯及び冷却帯を有する焼鈍炉と溶融めっき浴とを用いた連続焼鈍溶融めっき方法において、鋼板温度が少なくとも300℃以上の領域の鋼板の加熱または保熱を間接加熱とし、各帯の炉内雰囲気を水素1〜10体積%、残部が窒素及び不可避的不純物よりなる雰囲気とし、前記加熱帯前段で加熱中の鋼板到達温度を550℃以上750℃以下とし、かつ、露点を−25℃未満とし、これに続く前記加熱帯後段及び前記保熱帯の露点を−30℃以上0℃以下とし、前記冷却帯の露点を−25℃未満とする条件で焼鈍を行うことにより、Siを内部酸化させ、鋼板の表面にSiが濃化するのを抑制する技術が記載されている。また、加熱帯後段及び/又は保熱帯に、窒素と水素の混合ガスを加湿して導入することも記載されている。
特許文献3には、炉内ガスの露点を測定しながら、その測定値に応じて、炉内ガスの供給及び排出の位置を変化させることによって、還元炉内ガスの露点を−30℃超0℃以下の範囲内になるように制御して、鋼板の表面にSiが濃化するのを抑制する技術が記載されている。加熱炉についてはDFF(直火加熱炉)、NOF(無酸化炉)、ラジアントチューブタイプのいずれでもよいが、ラジアントチューブタイプで顕著に発明効果が発現できるので好ましいとの記載がある。
特許文献4には、リファイナによって焼鈍炉内の露点を−50℃以下まで低下させることで、Si、Mnの表面濃化を抑制させる技術が記載されている。焼鈍炉内を短時間で安定した低露点雰囲気にできるので、ピックアップ等のトラブルが発生しないことも記載されている。
特開2010−202959号公報 WO2007/043273号公報 特開2009−209397号公報 特開2013−245362号公報
しかし、特許文献1に記載の方法では、還元後のめっき密着性は良好であるものの、Siの内部酸化量が不足しやすく、鋼中のSiの影響で合金化温度が通常よりも30〜50℃高温になってしまい、その結果鋼板の引張強度が低下する問題があった。十分な内部酸化量を確保するために酸化量を増加させると、焼鈍炉内のロールに酸化スケールが付着し鋼板に押し疵、いわゆるピックアップ欠陥が発生する。このため、酸化量を単に増加させる手段は取れない。
特許文献2に記載の方法では、加熱帯前段、加熱帯後段、保熱帯の加熱・保温を間接加熱としているため、特許文献1の直火加熱の場合のような鋼板表面の酸化が起こりにくく、特許文献1と比較してもSiの内部酸化が不十分であり、合金化温度が高くなるという問題がより顕著である。更に、外気温変動や鋼板の種類によって炉内に持ち込まれる水分量が変化することに加え、混合ガス露点も外気温変動によって変動しやすく、安定して最適露点範囲に制御することが困難であった。このように露点変動が大きいことで、上記露点範囲や温度範囲であっても、不めっき等の表面欠陥が発生し、安定した製品を製造するは困難であった。
特許文献3に記載の方法では、加熱炉にDFFを使用すれば鋼板表面の酸化は起こりえるが、焼鈍炉に積極的に加湿ガスを供給しないので、露点を制御範囲の中でも高露点領域の−20〜0℃で安定的に制御することが困難である。また、仮に露点が上昇した場合には炉上部の露点が高くなりやすく、炉下部の露点計で0℃となったときには、炉上部では+10℃以上の高露点雰囲気となる場合があり、そのまま長期間操業するとピックアップ欠陥が発生することがわかった。
特許文献4に記載の方法では、Si、Mn等の表面濃化は抑制されて溶融亜鉛めっきの濡れ性が増すものの、固溶元素によって鉄と亜鉛の合金化反応が遅延することから、所定の合金化度にするために合金化温度を過大に上昇させる必要があり、材料の機械特性との両立が困難であった。
そこで本発明は、上記課題に鑑み、Siを0.2質量%以上含む鋼帯に合金化溶融亜鉛めっきを施した場合でも、めっき密着性が高く良好なめっき外観を得ることができ、かつ、合金化温度を下げることで引張強度の低下を抑制することが可能な、合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とする。
本発明は、加熱帯に直火加熱炉(DFF)を用いて鋼板表面の酸化を十分に行わせた後に、均熱帯全体を常法の露点よりも高露点としてSiの内部酸化を十分に行わせることにより、Siの表面濃化を抑制して合金化温度を低減させる技術である。
本発明の要旨構成は以下のとおりである。
(1)直火型加熱炉を含む加熱帯と、均熱帯と、冷却帯とがこの順に並置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき設備と、該溶融亜鉛めっき設備と隣接した合金化設備と、を有する連続溶融亜鉛めっき装置を用いた合金化溶融亜鉛めっき鋼板の製造方法であって、
鋼帯を前記焼鈍炉の内部で、前記加熱帯、前記均熱帯及び前記冷却帯の順に搬送して、前記鋼帯に対して焼鈍を行う工程と、
前記溶融亜鉛めっき設備を用いて、前記冷却帯から排出される鋼帯に溶融亜鉛めっきを施す工程と、
前記合金化設備を用いて、前記鋼帯に施された亜鉛めっきを加熱合金化する工程と、
を有し、
前記均熱帯に供給される還元性ガス又は非酸化性ガスは、加湿装置により加湿されたガスと、前記加湿装置により加湿されていないガスとを所定の混合比で混合して得た混合ガス、及び、前記加湿装置により加湿されていない乾燥ガスであり、
前記混合ガスが、前記均熱帯の高さ方向の下部1/2の領域に設けられた少なくとも1つの混合ガス供給口から前記均熱帯内に適時供給される一方で、
前記乾燥ガスが、前記均熱帯の上部ハースロール中心から、高さ方向の下部2mの範囲に設けられた少なくとも1つの乾燥ガス供給口から前記均熱帯内に適時供給されるとともに、前記上部ハースロールよりも上方に設けられた少なくとも1つのガス排出口を介して炉内ガスを前記均熱帯から適時排出することによって、前記均熱帯内の少なくとも最上部における露点を−20℃以上0℃以下に制御することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
(2)前記ガス排出口を介して排出された炉内ガスを、脱酸素装置及び除湿装置を有するリファイナに導入して、該炉内ガス中の酸素及び水分を除去してその露点を低下させて乾燥ガスとし、この乾燥ガスを、前記乾燥ガス供給口から前記均熱帯内に適時供給する乾燥ガスとして用いる上記(1)に記載の合金化溶融亜鉛めっき鋼板の製造方法。
(3)前記均熱帯の高さ方向の上部1/2の領域における露点と、最下部における露点とが、共に−20℃以上0℃以下となるように、前記混合ガスの供給を制御する上記(1)又は(2)に記載の合金化溶融亜鉛めっき鋼板の製造方法。
(4)前記ガス排出口及び/又は前記乾燥ガス供給口は、同じ高さ位置に複数配置される上記(1)〜(3)のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
(5)前記混合ガス供給口は、2つ以上の異なる高さ位置にそれぞれ複数配置される上記(1)〜(4)のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
(6)前記直火型加熱炉は、酸化用バーナと、該酸化用バーナより鋼板移動方向下流に位置する還元用バーナと、を有し、前記酸化用バーナの空気比を0.95以上1.5以下とし、前記還元用バーナの空気比を0.5以上0.95未満とする上記(1)〜(5)のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
本発明の合金化溶融亜鉛めっき鋼板の製造方法によれば、Siを0.2質量%以上含む鋼帯に合金化溶融亜鉛めっきを施した場合でも、めっき密着性が高く良好なめっき外観を得ることができ、かつ、合金化温度を下げることで引張強度の低下を抑制することが可能である。
本発明の一実施形態による合金化溶融亜鉛めっき鋼板の製造方法に用いる連続溶融亜鉛めっき装置100の構成を示す模式図である。 図1における均熱帯12への混合ガス及び乾燥ガスの供給、並びに均熱帯12からの炉内ガスの排出を示す模式的である。
まず、本発明の一実施形態による合金化溶融亜鉛めっき鋼板の製造方法に用いる連続溶融亜鉛めっき装置100の構成を、図1を参照して説明する。連続溶融亜鉛めっき装置100は、加熱帯10、均熱帯12及び冷却帯14,16がこの順に並置された焼鈍炉20と、冷却帯16に隣接した溶融亜鉛めっき設備としての溶融亜鉛めっき浴22と、この溶融亜鉛めっき浴22と隣接した合金化設備23と、を有する。本実施形態において加熱帯10は、第1加熱帯10A(加熱帯前段)及び第2加熱帯10B(加熱帯後段)を含む。冷却帯は、第1冷却帯14(急冷帯)及び第2冷却帯16(除冷帯)を含む。第2冷却帯16と連結したスナウト18は、先端が溶融亜鉛めっき浴22に浸漬しており、焼鈍炉20と溶融亜鉛めっき浴22とが接続されている。本発明の一実施形態は、この連続溶融亜鉛めっき装置100を用いた合金化溶融亜鉛めっき鋼板の製造方法である。
鋼帯Pは、第1加熱帯10Aの下部の鋼帯導入口から第1加熱帯10A内に導入される。各帯10,12,14,16には、上部及び下部に1つ以上のハースロールが配置される。ハースロールを起点に鋼帯Pが180度折り返される場合、鋼帯Pは焼鈍炉20の所定の帯の内部で上下方向に複数回搬送され、複数パスを形成する。図1においては、均熱帯12で10パス、第1冷却帯14で2パス、第2冷却帯16で2パスの例を示したが、パス数はこれに限定されず、処理条件に応じて適宜設定可能である。また、一部のハースロールでは、鋼帯Pを折り返すことなく直角に方向転換させて、鋼帯Pを次の帯へと移動させる。このようにして、鋼帯Pを焼鈍炉20の内部で、加熱帯10、均熱帯12及び冷却帯14,16の順に搬送して、鋼帯Pに対して焼鈍を行うことができる。
焼鈍炉20において、隣接する帯は、それぞれの帯の上部同士または下部同士を接続する連通部を介して連通している。本実施形態では、第1加熱帯10Aと第2加熱帯10Bとは、それぞれの帯の上部同士を接続するスロート(絞り部)を介して連通する。第2加熱帯10Bと均熱帯12とは、それぞれの帯の下部同士を接続するスロートを介して連通する。均熱帯12と第1冷却帯14とは、それぞれの帯の下部同士を接続するスロート32を介して連通する。第1冷却帯14と第2冷却帯16とは、それぞれの帯の下部同士を接続するスロートを介して連通する。各スロートの高さは適宜設定すればよいが、ハースロールの直径が1m程度であることから、1.5m以上とすることが好ましい。ただし、各帯の雰囲気の独立性を高める観点から、各連通部の高さはなるべく低いことが好ましい。焼鈍炉20内のガスは、炉の下流から上流に流れ、第1加熱帯10Aの下部の鋼帯導入口から排出される。
(加熱帯)
本実施形態において、第2加熱帯10Bは、直火型加熱炉(DFF)である。DFFは例えば特許文献1に記載されるような公知のものを用いることができる。図1においては図示しないが、第2加熱帯10Bにおける直火型加熱炉の内壁には、複数のバーナが鋼帯Pに対向して分散配置される。複数のバーナは複数のグループに分けられ、グループごとに燃料率及び空気比を独立に制御可能とすることが好ましい。第1加熱帯10Aの内部には、第2加熱帯10Bの燃焼排ガスが供給され、その熱で鋼帯Pを予熱する。
燃焼率は、実際にバーナに導入した燃料ガス量を、最大燃焼負荷時のバーナの燃料ガス量で割った値である。バーナを最大燃焼負荷で燃焼したときが燃焼率100%である。バーナは、燃焼負荷が低くなると安定した燃焼状態が得られなくなる。よって、燃焼率は通常30%以上とすることが好ましい。
空気比は、実際のバーナに導入した空気量を、燃料ガスを完全燃焼するために必要な空気量で割った値である。本実施形態では、第2加熱帯10Bの加熱用バーナを4つの群(#1〜#4)に分割し、鋼板移動方向上流側の3つの群(#1〜#3)は酸化用バーナ、最終ゾーン(#4)は還元用バーナとし、酸化用バーナ及び還元用バーナの空気比を個別に制御可能とした。酸化用バーナでは、空気比を0.95以上1.5以下とすることが好ましい。還元用バーナでは、空気比を0.5以上0.95未満とすることが好ましい。また、第2加熱帯10Bの内部の温度は、800〜1200℃とすることが好ましい。
(均熱帯)
本実施形態において均熱帯12では、加熱手段としてラジアントチューブ(RT)(図示せず)を用いて、鋼帯Pを間接加熱することができる。均熱帯12の内部の平均温度Tr(℃)は、均熱帯内に熱電対を挿入することによりにより測定されるが、700〜900℃とすることが好ましい。
均熱帯12には還元性ガス又は非酸化性ガスが供給される。還元性ガスとしては、通常H2−N2混合ガスが用いられ、例えばH2:1〜20体積%、残部がN2および不可避的不純物からなる組成を有するガス(露点:−60℃程度)が挙げられる。また、非酸化性ガスとしては、N2および不可避的不純物からなる組成を有するガス(露点:−60℃程度)が挙げられる。
本実施形態では、均熱帯12に供給される還元性ガス又は非酸化性ガスは、混合ガス及び乾燥ガスの二形態である。ここで、「乾燥ガス」とは、露点が−60℃〜−50℃程度の上記還元性ガス又は非酸化性ガスであって、加湿装置により加湿されていないものである。一方、「混合ガス」とは、加湿装置により加湿されたガスと、加湿装置により加湿されていないガスとを、露点が−20〜10℃となるように所定の混合比で混合して得たものである。
均熱帯12における還元焼鈍工程は、加熱帯10における酸化処理工程で鋼帯表面に形成された鉄酸化物を還元するとともに、鉄酸化物から供給される酸素によって、SiやMnの合金元素が鋼帯内部に内部酸化物として生成する。結果として、鋼帯最表面には鉄酸化物から還元された還元鉄層が形成され、SiやMnは内部酸化物として鋼帯内部に留まるために、鋼帯表面でのSiやMnの酸化が抑制され、鋼帯と溶融めっきの濡れ性の低下を防止し、不めっきなく良好なめっき密着性を得ることができる。
しかしながら、良好なめっき密着性は得られるものの、Si含有鋼における合金化温度は高温になるために、残留オーステナイト相のパーライト相への分解や、マルテンサイト相の焼き戻し軟化が起こるために、所望の機械特性が得られない場合がある。そこで、合金化温度を低減させるための技術の検討を行った結果、Siの内部酸化を更に積極的に形成させることで、鋼帯表層の固溶Si量を低下させ、合金化反応を促進できることがわかった。そのためには、均熱帯12内の雰囲気露点を−20℃以上に制御することが有効である。
均熱帯12内の露点を−20℃以上に制御すると、鉄酸化物から酸素が供給されて、Siの内部酸化物が形成した後も、雰囲気のH2Oから供給される酸素によってSiの内部酸化が継続して起こるために、より多くのSiの内部酸化が生じる。すると、内部酸化が形成された鋼帯表層の内部の領域において、固溶Si量が低下する。固溶Si量が低下すると、鋼帯表層はあたかも低Si鋼のような挙動を示し、その後の合金化反応が促進され、低温で合金化反応が進行する。合金化温度が低下した結果として、残留オーステナイト相が高分率で維持できることにより延性が向上する。また、マルテンサイト相の焼き戻し軟化が進行せずに、所望の強度が得られることになる。均熱帯12内では、露点が+10℃以上になると、鋼帯地鉄が酸化し始めるため、均熱帯12内の露点分布の均一性や露点変動幅を最小化する理由から、露点の上限は0℃で管理することが好ましい。
このように、本発明は、均熱帯12内の雰囲気の露点を常時−20〜0℃に制御する方法に関するものである。露点計は、下部ハースロール48の近傍(均熱帯の最下部)に少なくとも1箇所(露点測定位置46A)、上部ハースロール48Aよりも上部(均熱帯の最上部)に少なくとも1箇所(露点測定位置46C)、上部ハースロール48Bより下方で、均熱帯の高さ方向1/2より高い位置(均熱帯の上部)に少なくとも1箇所(露点測定位置46B)設置する。図2は、均熱帯12への混合ガス及び乾燥ガスの供給、並びに均熱帯12からの炉内ガスの排出を示す模式的である。
まず、均熱帯12の高さ方向の下部1/2の領域に設けられた少なくとも1つの乾燥ガス供給口(本実施形態では、4つの乾燥ガス供給口39A〜39D)から、乾燥ガスが均熱帯12内に常時供給される。これは一般的な条件である。
次に、混合ガスは、均熱帯12の高さ方向の下部1/2の領域に設けられた少なくとも1つの混合ガス供給口から均熱帯12内に適時供給される。本実施形態では、混合ガスは、混合ガス供給口36A,36B,36Cと、混合ガス供給口38A,38B,38Cの二系統で供給される。図2において、上記還元性ガス又は非酸化性ガス(乾燥ガス)は、ガス分配装置24によって、一部は加湿装置26へと送られ、残部はガス混合装置30へと送られる。ガス混合装置30では、加湿装置26で加湿されたガスと、ガス分配装置24から直接送られた乾燥ガスとを所定比率で混合して、所定の露点の混合ガスに調製する。調製された混合ガスは、混合ガス用配管34を経由して、混合ガス供給口36,38より均熱帯12内に供給される。符号32は混合ガス用露点計である。
加湿装置26内には、フッ素系もしくはポリイミド系の中空糸膜又は平膜等を有する加湿モジュールがあり、膜の内側には乾燥ガスを流し、膜の外側には循環恒温水槽28で所定温度に調整された純水を循環させる。フッ素系もしくはポリイミド系の中空糸膜又は平膜とは、水分子との親和力を有するイオン交換膜の一種である。中空糸膜の内側と外側に水分濃度差が生じると、その濃度差を均等にしようとする力が発生し、水分はその力をドライビングフォースとして低い水分濃度の方へ膜を透過し移動する。乾燥ガス温度は、季節や1日の気温変化にしたがって変化するが、この加湿装置では、水蒸気透過膜を介したガスと水の接触面積を十分に取ることで熱交換も行えるため、乾燥ガス温度が循環水温より高くても低くても、乾燥ガスは設定水温と同じ露点まで加湿されたガスとなり、高精度な露点制御が可能となる。加湿ガスの露点は5〜50℃の範囲で任意に制御可能である。加湿ガスの露点が配管温度よりも高いと配管内で結露してしまい、結露した水が直接炉内に浸入する可能性があるので、加湿ガス用の配管は加湿ガス露点以上かつ外気温以上に加熱・保熱されている。
ガス混合装置30におけるガスの混合割合を調整すれば、任意の露点の混合ガスを均熱帯12内に供給できる。均熱帯12内の露点が目標範囲を下回るようであれば、高い露点の混合ガスを供給し、均熱帯12内の露点が目標範囲を上回るようであれば、低い露点の混合ガスを供給することができる。このようにして、均熱帯の高さ方向の上部1/2の領域(露点測定位置46B)における露点と、最下部(露点測定位置46A)における露点とを、共に−20℃以上0℃以下に制御できる。
投入する混合ガスの露点および流量は、製造する鋼板のサイズやライン速度に応じて投入量をあらかじめ確認し、設定しておけばよい。また、混合ガスを投入し始めてから実際に露点が上昇し始めるまでの応答時間も事前に確認しておく。例えば応答時間が5分であれば、対象となる鋼板が均熱帯に進入する5分前から混合ガスを投入する。また、混合ガスの投入を止めてから露点が通常範囲までに戻る時間も事前に確認しておき、対象となる鋼板が均熱帯を抜ける所定時間前から混合ガスを順次低下させればよい。このように混合ガスは、対象となる鋼板の通過に合わせて、適時投入する。また、対象となる鋼板が均熱帯内を通過する間は、基本的に混合ガス流量は一定で構わないが、ライン速度変更やその他操業条件の変更、炉内露点の変動に応じて、変更すればよい。
次に本発明では、均熱帯12の上部での乾燥ガスの供給、及び、均熱帯12の最上部からの炉内ガスの排出を制御して、均熱帯12の最上部(露点測定位置46C)における露点を−20〜0℃に維持することが肝要である。水蒸気の比重は窒素ガスよりも軽いので、均熱帯12の上部では露点が高くなりやすい。均熱帯12内では、露点が+10℃以上になると、鋼帯地鉄が酸化し始めるため、均熱帯12内の露点分布の均一性や露点変動幅を最小化する理由から、露点の上限は0℃で管理することが好ましい。そこで、上部ハースロール48A中心から、高さ方向の下部2mの範囲に設けられた少なくとも1つの乾燥ガス供給口(本実施形態では3つの乾燥ガス供給口40A,40B,40C)から、均熱帯12内に乾燥ガスを適時供給する。それとともに、上部ハースロール48Aよりも上方に設けられた少なくとも1つのガス排出口(本実施形態では2つのガス排出口42A,42B)を介して炉内ガスを均熱帯12から適時排出する。これによって、均熱帯12内の最上部における露点を−20℃以上0℃以下に制御する。
例えば、均熱帯12の最上部(露点測定位置46C)における露点が−5℃以上になったら、乾燥ガスの供給及び炉内ガスの排出を行い、露点が−15℃以下になったら乾燥ガスの供給及び炉内ガスの排出を停止する。露点の高い炉内ガスを排出し、露点が低い乾燥ガスを供給することにより、均熱帯12の最上部の露点を効果的に低くできる。
本実施形態のように、脱酸素装置及び除湿装置を有するリファイナ44を用いることが望ましい。この場合、ガス排出口42A,42Bを介して排出された炉内ガスをリファイナに導入して、該炉内ガス中の酸素及び水分を除去してその露点を低下させて乾燥ガスとする。この乾燥ガスを、乾燥ガス供給口40A,40B,40Cから均熱帯12内に適時供給する。これにより、炉圧を変動させることなく、また、均熱帯12の大部分の露点を低下させることなく、最上部の高露点ガスを速やかに排出できるため、ピックアップ等のトラブルを回避できる。
本実施形態のように、ガス排出口及び/又は乾燥ガス供給口は、同じ高さ位置に複数配置されることが好ましく、鋼帯進行方向に均等に配置されることがより好ましい。
混合ガス供給口は、本実施形態のように、2つ以上の異なる高さ位置にそれぞれ複数配置されることが好ましく、鋼帯進行方向に均等に配置することがより好ましい。
混合ガスが均熱帯12に供給されている間のガス流量Qrwは、配管34に設けられたガス流量計(図示せず)により測定され、特に限定されないが、100〜500(Nm3/hr)程度とする。これによって、均熱帯12内の炉圧を適切に(直火帯よりも高く)維持し、過大な炉圧になることがない。
均熱帯12に供給される混合ガスの含有水分Wrは、露点計により測定され、特に限定されないが、2820〜12120(ppm)程度とする。この範囲であれば、均熱帯12内露点を−20〜0℃に維持しやすくなる。混合ガスの露点から含有水分Wrを算出するのは、以下の式(1)に従って行うことができる。
Figure 0006020605
T:露点(℃)
均熱帯12の高さ方向の下部1/2の領域に設けられた乾燥ガス供給口(本実施形態では、乾燥ガス供給口39A〜39D)から均熱帯12に常時供給される乾燥ガスのガス流量Qrdは、配管に設けられたガス流量計(図示せず)により測定され、特に限定されないが、0〜600(Nm3/hr)程度とする。これによって、均熱帯12内の炉圧を適切に(直火帯よりも高く)維持し、過大が炉圧になることもない。
(冷却帯)
本実施形態において冷却帯14,16では、鋼帯Pが冷却される。鋼帯Pは、第1冷却帯14では480〜530℃程度にまで冷却され、第2冷却帯16では470〜500℃程度にまで冷却される。
冷却帯14,16にも、上記還元性ガス又は非酸化性ガスが供給されるが、ここでは、乾燥ガスのみが供給される。冷却帯14,16への乾燥ガスの供給は特に限定されないが、冷却帯内に均等に投入されるように、高さ方向2ヶ所以上、長手方向2ヶ所以上の投入口から供給することが好ましい。冷却帯14,16に供給される乾燥ガスの合計ガス流量Qcdは、配管に設けられたガス流量計(図示せず)により測定され、特に限定されないが、200〜1000(Nm3/hr)程度とする。これによって、均熱帯12内の炉圧を適切に(直火帯よりも高く)維持し、過大が炉圧になることもない。
(溶融亜鉛めっき浴)
溶融亜鉛めっき浴22を用いて、第2冷却帯16から排出される鋼帯Pに溶融亜鉛めっきを施すことができる。溶融亜鉛めっきは定法に従って行えばよい。
(合金化設備)
合金化設備23を用いて、鋼帯Pに施された亜鉛めっきを加熱合金化することができる。合金化処理は定法に従って行えばよい。本実施形態によれば、合金化温度が高温にならないため、製造された合金化溶融亜鉛めっき鋼板の引張強度が低下することがない。
焼鈍及び溶融亜鉛めっき処理の対象とする鋼帯Pは特に限定されないが、Siを0.2質量%以上含有する成分組成の鋼帯の場合、本発明の効果を有利に得ることができる。
(実験条件)
図1及び図2に示す連続溶融亜鉛めっき装置を用いて、表1に示す成分組成の鋼帯を表2に示す各種焼鈍条件で焼鈍し、その後溶融亜鉛めっき及び合金化処理を施した。
第2加熱帯はDFFとした。加熱用バーナを4つの群(#1〜#4)に分割し、鋼板移動方向上流側の3つの群(#1〜#3)は酸化用バーナ、最終ゾーン(#4)は還元用バーナとし、酸化用バーナ及び還元用バーナの空気比を表2に示す値に設定した。なお、各群の鋼板搬送方向の長さは4mである。
均熱帯は、容積Vrが700m3のRT炉とした。均熱帯の内部の平均温度Trは表2に示すものに設定した。乾燥ガスとしては、15体積%のH2で残部がN2および不可避的不純物からなる組成を有するガス(露点:−50℃)を用いた。この乾燥ガスの一部を、中空糸膜式加湿部を有する加湿装置により加湿して、混合ガスを調製した。中空糸膜式加湿部は、10台の膜モジュールからなり、各モジュールに最大500L/minの乾燥ガスと、最大10L/minの循環水を流すようにした。循環恒温水槽は共通とし、計100L/minの純水を供給可能である。乾燥ガス供給口及び混合ガス供給口は、図2に示す位置に配置した。図2に示した均熱帯の下部の乾燥ガス供給口(39A〜39D)から、乾燥ガスを表2に示す流量Qrdで常時供給した。表2のNo.2,3,5,6,8,9では、混合ガスを適時供給した。本実施例で用いた加湿装置では、露点が所定範囲に上昇するまでの時間は5分、混合ガスの投入をやめ、乾燥ガスのみを投入した場合に通常範囲の露点になるまでの時間は1分であった。したがって、対象となる鋼板が均熱帯に進入する5分前から混合ガスの投入を開始し、対象となる鋼板が均熱帯を抜ける1分前から混合ガス投入量を低下させた。表2のNo.1,4,7では、混合ガスは供給しなかった。
表2のNo.3,6,9(発明例)では、ガス排出口を介して排出された炉内ガスは、リファイナに導入して酸素及び水分を除去した乾燥ガスに変換し、この乾燥ガスを再度乾燥ガス供給口から均熱帯内に供給する循環系とした。ただし、この循環は、均熱帯の最上部(露点測定位置46C)における露点が−5℃以上となった場合のみ行った。表2のNo.1,2,4,5,7,8(比較例)では、このような炉上部でのガス制御を行わなかった。その他の条件は表2に示す。
第1冷却帯及び第2冷却帯には、各帯の最下部から上記乾燥ガス(露点:−50℃)を表2に示す流量で供給した。
めっき浴温は460℃、めっき浴中Al濃度0.130%、付着量はガスワイピングにより片面当り45g/m2に調節した。なお、ライン速度は80〜100mpmとした。また、溶融亜鉛めっきを施した後に、皮膜合金化度(Fe含有率)が10〜13%内となるように、誘導加熱式合金化炉にて合金化処理を行った。その際の合金化温度は表2に示す。
(評価方法)
めっき外観の評価は、光学式の表面欠陥計による検査(φ0.5以上の不めっき欠陥や過酸化性欠陥を検出)および目視による合金化ムラ判定を行い、全ての項目が合格で○、軽度の合金化ムラがある場合は△、一つでも不合格があれば×とした。また、コイル1000mあたりの合金化ムラの発生長さを測定した。結果を表2に示す。
また、各種条件で製造した合金化溶融亜鉛めっき鋼板の引張強度を測定した。鋼種Aは590MPa以上、鋼種Bは780MPa以上、鋼種Cは980MPa以上を合格とした。結果を表2に示す。
また、No.1〜10それぞれにおいて、ガス流量及び露点が安定したときの均熱帯内の露点を図2に示す位置で測定し、表2に示した。
(評価結果)
本発明例のNo.3、6、9では、混合ガスを供給し、均熱帯の上部では、露点の高い炉内ガスを適時排出し、露点の低い乾燥ガスを適時供給したため、均熱帯の全体にわたって露点を安定して−20〜0℃に制御できた。このため、めっき外観が良好であり、引張強度も高かった。これに対し、混合ガスを供給しなかったNo.1、4、7では、めっき外観も悪化し、合金化ムラが発生し、また、合金化温度の上昇によっていずれの鋼種においても引張強度が低下した。また、混合ガスは供給したが、炉上部でのガス制御を行わなかったNo.2、5、8では、均熱帯の最上部で露点が0℃を超えたために、ピックアップ欠陥が発生し、めっき外観を満足しなかった。
Figure 0006020605
Figure 0006020605
本発明の合金化溶融亜鉛めっき鋼板の製造方法によれば、Siを0.2質量%以上含む鋼帯に合金化溶融亜鉛めっきを施した場合でも、めっき密着性が高く良好なめっき外観を得ることができ、かつ、合金化温度を下げることで引張強度の低下を抑制することが可能である。
100 連続溶融亜鉛めっき装置
10 加熱帯
10A 第1加熱帯(前段)
10B 第2加熱帯(後段、直火型加熱炉)
12 均熱帯
14 第1冷却帯(急冷帯)
16 第2冷却帯(除冷帯)
18 スナウト
20 焼鈍炉
22 溶融亜鉛めっき浴
23 合金化設備
24 ガス分配装置
26 加湿装置
28 循環恒温水槽
30 ガス混合装置
32 混合ガス用露点計
34 混合ガス用配管
36A,36B,36C 混合ガス供給口(適時供給)
38A,38B,38C 混合ガス供給口(適時供給)
39A,39B,39C,39D 乾燥ガス供給口(常時供給)
40A,40B,40C 乾燥ガス供給口(適時供給)
42A,42B ガス排出口(適時排出)
44 リファイナ
46A,46B,46C 露点測定位置
48A 上部ハースロール
48B 下部ハースロール
P 鋼帯

Claims (6)

  1. 直火型加熱炉を含む加熱帯と、均熱帯と、冷却帯とがこの順に並置された焼鈍炉と、前記冷却帯に隣接した溶融亜鉛めっき設備と、該溶融亜鉛めっき設備に隣接した合金化設備と、を有する連続溶融亜鉛めっき装置を用いた合金化溶融亜鉛めっき鋼板の製造方法であって、
    鋼帯を前記焼鈍炉の内部で、前記加熱帯、前記均熱帯及び前記冷却帯の順に搬送して、前記鋼帯に対して焼鈍を行う工程と、
    前記溶融亜鉛めっき設備を用いて、前記冷却帯から排出される鋼帯に溶融亜鉛めっきを施す工程と、
    前記合金化設備を用いて、前記鋼帯に施された亜鉛めっきを加熱合金化する工程と、
    を有し、
    前記均熱帯に供給される還元性ガス又は非酸化性ガスは、加湿装置により加湿されたガスと、前記加湿装置により加湿されていないガスとを所定の混合比で混合して得た混合ガス、及び、前記加湿装置により加湿されていない乾燥ガスであり、
    前記混合ガスが、前記均熱帯の高さ方向の下部1/2の領域に設けられた少なくとも1つの混合ガス供給口から前記均熱帯内に適時供給される一方で、
    前記乾燥ガスが、前記均熱帯の上部ハースロール中心から、高さ方向の下部2mの範囲に設けられた少なくとも1つの乾燥ガス供給口から前記均熱帯内に適時供給されるとともに、前記上部ハースロールよりも上方に設けられた少なくとも1つのガス排出口を介して炉内ガスを前記均熱帯から適時排出することによって、前記均熱帯内の少なくとも最上部における露点を−20℃以上0℃以下に制御することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
  2. 前記ガス排出口を介して排出された炉内ガスを、脱酸素装置及び除湿装置を有するリファイナに導入して、該炉内ガス中の酸素及び水分を除去してその露点を低下させて乾燥ガスとし、この乾燥ガスを、前記乾燥ガス供給口から前記均熱帯内に適時供給する乾燥ガスとして用いる請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。
  3. 前記均熱帯の高さ方向の上部1/2の領域における露点と、最下部における露点とが、共に−20℃以上0℃以下となるように、前記混合ガスの供給を制御する請求項1又は2に記載の合金化溶融亜鉛めっき鋼板の製造方法。
  4. 前記ガス排出口及び/又は前記乾燥ガス供給口は、同じ高さ位置に複数配置される請求項1〜3のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
  5. 前記混合ガス供給口は、2つ以上の異なる高さ位置にそれぞれ複数配置される請求項1〜4のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
  6. 前記直火型加熱炉は、酸化用バーナと、該酸化用バーナより鋼板移動方向下流に位置する還元用バーナと、を有し、前記酸化用バーナの空気比を0.95以上1.5以下とし、前記還元用バーナの空気比を0.5以上0.95未満とする請求項1〜5のいずれか1項に記載の合金化溶融亜鉛めっき鋼板の製造方法。
JP2015002543A 2015-01-08 2015-01-08 合金化溶融亜鉛めっき鋼板の製造方法 Active JP6020605B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015002543A JP6020605B2 (ja) 2015-01-08 2015-01-08 合金化溶融亜鉛めっき鋼板の製造方法
EP15876790.5A EP3243924B1 (en) 2015-01-08 2015-12-18 Method of producing galvannealed steel sheet
PCT/JP2015/006328 WO2016110910A1 (ja) 2015-01-08 2015-12-18 合金化溶融亜鉛めっき鋼板の製造方法
US15/541,401 US20180051356A1 (en) 2015-01-08 2015-12-18 Method of producing galvannealed steel sheet
KR1020177018739A KR101949631B1 (ko) 2015-01-08 2015-12-18 합금화 용융 아연 도금 강판의 제조 방법
CN201580070798.XA CN107109609B (zh) 2015-01-08 2015-12-18 合金化热浸镀锌钢板的制造方法
MX2017008964A MX368095B (es) 2015-01-08 2015-12-18 Metodo de produccion de lamina de acero galvano-recocida.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002543A JP6020605B2 (ja) 2015-01-08 2015-01-08 合金化溶融亜鉛めっき鋼板の製造方法

Publications (2)

Publication Number Publication Date
JP2016125131A JP2016125131A (ja) 2016-07-11
JP6020605B2 true JP6020605B2 (ja) 2016-11-02

Family

ID=56355639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002543A Active JP6020605B2 (ja) 2015-01-08 2015-01-08 合金化溶融亜鉛めっき鋼板の製造方法

Country Status (7)

Country Link
US (1) US20180051356A1 (ja)
EP (1) EP3243924B1 (ja)
JP (1) JP6020605B2 (ja)
KR (1) KR101949631B1 (ja)
CN (1) CN107109609B (ja)
MX (1) MX368095B (ja)
WO (1) WO2016110910A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439654B2 (ja) * 2015-10-27 2018-12-19 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
WO2019092467A1 (en) 2017-11-08 2019-05-16 Arcelormittal A galvannealed steel sheet
WO2019123953A1 (ja) * 2017-12-22 2019-06-27 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置
US11208711B2 (en) * 2018-11-15 2021-12-28 Psitec Oy Method and an arrangement for manufacturing a hot dip galvanized rolled high strength steel product
MX2021007564A (es) * 2018-12-21 2021-08-24 Arcelormittal Horno de recocido de tiras de acero con dispositivo de control de humedad.
JP6908062B2 (ja) * 2019-01-31 2021-07-21 Jfeスチール株式会社 溶融亜鉛めっき鋼板の製造方法
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
JP7243668B2 (ja) * 2020-03-18 2023-03-22 Jfeスチール株式会社 冷延鋼板および溶融亜鉛めっき鋼板の製造方法
WO2021224662A1 (en) * 2020-05-07 2021-11-11 Arcelormittal Annealing method of steel
CN113063192B (zh) * 2021-04-06 2022-08-19 首钢京唐钢铁联合有限责任公司 一种加湿装置以及加湿方法
JP7334860B2 (ja) 2021-05-06 2023-08-29 Jfeスチール株式会社 連続焼鈍炉の露点制御方法、鋼板の連続焼鈍方法、鋼板の製造方法、連続焼鈍炉、連続溶融亜鉛めっき設備及び合金化溶融亜鉛めっき設備
CN113481455A (zh) * 2021-07-08 2021-10-08 攀钢集团攀枝花钢钒有限公司 利用空气气刀生产高表面质量锌铝镁镀层钢带/板的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674451B2 (ja) * 1983-04-27 1994-09-21 大同ほくさん株式会社 ガス調湿法
WO2007043273A1 (ja) 2005-10-14 2007-04-19 Nippon Steel Corporation Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
PL1980638T3 (pl) * 2006-01-30 2014-03-31 Nippon Steel & Sumitomo Metal Corp Wysokowytrzymała blacha cynkowana ogniowo o doskonałej podatności na formowanie i nadająca się do platerowania, wysokowytrzymała stopowa blacha cynkowana ogniowo oraz procesy i urządzenie do ich wytwarzania
JP5338087B2 (ja) 2008-03-03 2013-11-13 Jfeスチール株式会社 めっき性に優れる溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき設備
KR101079472B1 (ko) * 2008-12-23 2011-11-03 주식회사 포스코 도금표면품질이 우수한 고망간강의 용융아연도금강판의 제조방법
JP5720084B2 (ja) 2009-03-06 2015-05-20 Jfeスチール株式会社 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法
JP5779847B2 (ja) * 2009-07-29 2015-09-16 Jfeスチール株式会社 化成処理性に優れた高強度冷延鋼板の製造方法
JP5071551B2 (ja) * 2010-12-17 2012-11-14 Jfeスチール株式会社 鋼帯の連続焼鈍方法、溶融亜鉛めっき方法
KR20130076589A (ko) * 2011-12-28 2013-07-08 주식회사 포스코 도금표면 품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
US9327249B2 (en) * 2012-04-17 2016-05-03 Air Products And Chemicals, Inc. Systems and methods for humidifying gas streams
JP5510495B2 (ja) * 2012-05-24 2014-06-04 Jfeスチール株式会社 鋼帯の連続焼鈍炉、連続焼鈍方法、連続溶融亜鉛めっき設備及び溶融亜鉛めっき鋼帯の製造方法
JP5505461B2 (ja) 2012-05-24 2014-05-28 Jfeスチール株式会社 鋼帯の連続焼鈍炉、鋼帯の連続焼鈍方法、連続溶融亜鉛めっき設備及び溶融亜鉛めっき鋼帯の製造方法
EP2862946B1 (en) * 2012-06-13 2019-03-06 JFE Steel Corporation Method for continuously annealing steel strip, apparatus for continuously annealing steel strip, method for manufacturing hot-dip galvanized steel strip, and apparatus for manufacturing hot-dip galvanized steel strip
JP5978826B2 (ja) * 2012-07-23 2016-08-24 Jfeスチール株式会社 表面安定性に優れた高強度溶融亜鉛めっき鋼板の製造方法
JP5884748B2 (ja) * 2013-02-25 2016-03-15 Jfeスチール株式会社 鋼帯の連続焼鈍装置および連続溶融亜鉛めっき装置
KR101568547B1 (ko) * 2013-12-25 2015-11-11 주식회사 포스코 스트립의 연속소둔 장치 및 그 연속소둔 방법
EP3112493B1 (en) 2014-02-25 2022-12-14 JFE Steel Corporation Method for controlling dew point of reduction furnace, and reduction furnace
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
JP6131919B2 (ja) * 2014-07-07 2017-05-24 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Also Published As

Publication number Publication date
KR101949631B1 (ko) 2019-02-18
MX2017008964A (es) 2017-11-13
CN107109609B (zh) 2019-08-13
US20180051356A1 (en) 2018-02-22
MX368095B (es) 2019-09-19
CN107109609A (zh) 2017-08-29
WO2016110910A8 (ja) 2017-05-11
EP3243924A4 (en) 2017-11-15
EP3243924B1 (en) 2019-02-20
JP2016125131A (ja) 2016-07-11
KR20170093215A (ko) 2017-08-14
EP3243924A1 (en) 2017-11-15
WO2016110910A1 (ja) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6020605B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP6131919B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP6455544B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP6008007B2 (ja) 連続溶融亜鉛めっき装置及び溶融亜鉛めっき鋼板の製造方法
US20230323501A1 (en) Continuous hot-dip galvanizing apparatus
JP6566141B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置
JP6439654B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP5915569B2 (ja) 溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき装置
JP6128068B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP6269547B2 (ja) 連続溶融亜鉛めっき装置及び溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20160719

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20160805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160919

R150 Certificate of patent or registration of utility model

Ref document number: 6020605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250