WO2019123953A1 - 溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置 - Google Patents

溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置 Download PDF

Info

Publication number
WO2019123953A1
WO2019123953A1 PCT/JP2018/042900 JP2018042900W WO2019123953A1 WO 2019123953 A1 WO2019123953 A1 WO 2019123953A1 JP 2018042900 W JP2018042900 W JP 2018042900W WO 2019123953 A1 WO2019123953 A1 WO 2019123953A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
steel plate
hearth roll
gas supply
soaking
Prior art date
Application number
PCT/JP2018/042900
Other languages
English (en)
French (fr)
Inventor
玄太郎 武田
高橋 秀行
哲也 岩田
恒治 澤村
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020207020494A priority Critical patent/KR102378375B1/ko
Priority to CN201880081834.6A priority patent/CN111492086B/zh
Priority to JP2019546251A priority patent/JP6607339B1/ja
Priority to EP18889989.2A priority patent/EP3730662B1/en
Priority to MX2020006497A priority patent/MX2020006497A/es
Priority to US16/955,041 priority patent/US11718889B2/en
Publication of WO2019123953A1 publication Critical patent/WO2019123953A1/ja
Priority to US18/332,752 priority patent/US20230323501A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • C21D9/5737Rolls; Drums; Roll arrangements
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0034Details related to elements immersed in bath
    • C23C2/00342Moving elements, e.g. pumps or mixers
    • C23C2/00344Means for moving substrates, e.g. immersed rollers or immersed bearings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • C23C2/004Snouts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/60Continuous furnaces for strip or wire with induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention is a continuous galvanizing apparatus having a vertical annealing furnace in which a heating zone, a soaking zone and a cooling zone are juxtaposed in this order, and a galvanizing facility located downstream of the cooling zone, and the apparatus Manufacturing method of a hot-dip galvanized steel sheet using
  • the hot-dip galvanized steel sheet is manufactured by subjecting the steel sheet of the base material to heat annealing at a temperature of about 600 to 900 ° C. in a reducing atmosphere or a non-oxidizing atmosphere, and then subjecting the steel sheet to a galvanizing treatment. Furthermore, the galvanizing applied to the steel plate can be heat-alloyed to produce an alloyed galvanized steel sheet.
  • Si in steel is an oxidizable element, and is selectively oxidized even in a generally used reducing atmosphere or non-oxidizing atmosphere to be concentrated on the surface of a steel sheet to form an oxide.
  • This oxide reduces the wettability with molten zinc at the time of plating treatment to cause non-plating. Therefore, with the increase of the Si concentration in the steel, the wettability rapidly decreases and non-plating frequently occurs. Moreover, even when it does not lead to non-plating, there is a problem that it is inferior to plating adhesion.
  • Si in the steel is selectively oxidized and concentrated on the surface of the steel sheet, there is a problem that significant alloying delay occurs in the alloying process after hot-dip galvanizing, and the productivity is significantly impaired.
  • Patent Document 1 after the surface of a steel plate is once oxidized using a direct-fired heating furnace (DFF), Si is annealed by annealing the steel plate in a reducing atmosphere.
  • DFF direct-fired heating furnace
  • a method has been described which internally oxidizes and suppresses the concentration of Si on the surface of a steel sheet to improve the wettability and adhesion of hot-dip galvanizing. It is described that the reduction annealing after heating may be performed by a conventional method (dew point -30 to -40 ° C.).
  • Patent Document 2 describes a steel plate having a steel plate temperature of at least 300 ° C. or more in a continuous annealing hot-dip plating method using an annealing furnace having a heating zone front stage, a heating zone rear stage, a holding zone and a cooling zone and a hot dip plating bath.
  • Heating or heat retention is indirect heating, and the atmosphere in the furnace of each zone is an atmosphere consisting of 1 to 10% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, and the steel plate reaching temperature during heating at the former stage of the heating zone is 550 ° C. More than 750 ° C.
  • Dew points after the heating zone and the retentive zone following this are set at ⁇ 30 ° C. or more and 0 ° C. or less;
  • a technique is described which internally oxidizes Si by annealing under the conditions described above to suppress the concentration of Si on the surface of a steel sheet.
  • a mixed gas of nitrogen and hydrogen is humidified and introduced to the latter part of the heating zone and / or the holding zone.
  • Patent Document 3 a step of carrying a steel strip in the order of a heating zone, a soaking zone and a cooling zone inside an annealing furnace, and annealing the steel strip, and a steel strip discharged from the cooling zone And galvanizing, and heating and alloying the zinc plating, wherein the reducing gas or non-oxidizing gas supplied to the soaking zone is a mixture of a humidifying gas and a drying gas.
  • the mixed gas is supplied from the at least one gas supply port provided in the lower half area of the height direction of the soaking area into the soaking area, and the height of the soaking area is high.
  • Alloyed hot-dip galvanizing characterized in that the dew point measured in the upper 1 ⁇ 5 region in the longitudinal direction and the dew point measured in the lower 1 ⁇ 5 region are both ⁇ 20 ° C. and 0 ° C. A method of manufacturing a steel plate is described.
  • Patent Document 3 has the following problems because the humidified gas is supplied from the lower side than in the height direction 1/2 of the soaking area. That is, when the humidifying gas supply port is close to the descending path of the steel plate, the high dew point gas accompanies the steel plate and reaches the lower hearth roll of the soaking area, so that pickup defects occur in the lower hearth roll. On the other hand, in the area of the descending path of the steel plate in the upper part of the soaking zone, the humidifying gas does not reach and the dew point rise is not sufficient, so the Si internal oxidation amount is insufficient and the plating adhesion deteriorates.
  • the present invention is a hot-dip galvanized steel sheet which has high plating adhesion and can obtain a good plating appearance when hot-dip galvanizing is performed on a steel sheet having a Si content of 0.2% by mass or more.
  • An object of the present invention is to provide a manufacturing method and a continuous hot dip galvanizing apparatus.
  • the inventors of the present invention have obtained the idea that the humidified gas is uniformly diffused in the soaking zone using the steel plate associated gas flow generated by the conveyance of the steel plate, Attention was focused on the positional relationship between the transport direction and the humidifying gas supply port in the soaking zone. That is, the first humidifying gas supply port is provided so as to overlap the steel plate of the rising path when viewed from the side of the soaking zone, and in this case, if the first humidifying gas supply port is provided at the lower part of the soaking zone, The humidified gas supplied into the soaking area from the humidified gas supply port 1 spreads upward on the steel plate associated gas flow.
  • a second humidifying gas supply port is provided so as to overlap with the steel plate of the descending path when viewed from the side surface of the soaking area, and in this case, if the second humidifying gas supply port is provided in the upper part of the soaking area, The humidified gas supplied from the second humidified gas supply port into the soaking zone spreads downward on the steel plate associated gas flow.
  • the inventors of the present invention found that by arranging the humidifying gas supply port in this manner, the humidifying gas diffuses uniformly in the soaking area, so that the distribution of dew points in the soaking area can be made uniform.
  • a continuous galvanizing apparatus having a vertical annealing furnace in which a heating zone, a soaking zone, a cooling zone are juxtaposed in this order, and a galvanizing facility located downstream of the cooling zone
  • a method of producing a hot-dip galvanized steel sheet The steel sheet is conveyed inside the annealing furnace in the order of the heating zone, the soaking zone and the cooling zone, and annealing is performed on the steel sheet, wherein the steel sheet is disposed at the upper and lower portions of each band respectively.
  • the first humidifying gas supply port is provided at a position 2.0 m or more lower than the center of the upper hearth roll, and the second humidifying gas supply port is 2.0 m from the center of the lower hearth roll.
  • the cooling zone is provided with at least one cooling nozzle along the steel plate transport path, A humidifying gas is supplied into the cooling zone, and at that time, the humidifying gas is supplied from a third humidifying gas supply port provided at a position within 3.0 m on the upstream side of the steel plate conveyance path from the most upstream position of the cooling nozzle.
  • the dew point in the vicinity of the upper hearth roll and the lower hearth roll is -10 ° C. or lower, and the dew point at a distance of 1.0 m or more from the upper hearth roll and the lower hearth roll is The method for producing a galvanized steel sheet according to any one of the above (1) to (4), wherein the temperature is ⁇ 20 ° C. or more and 0 ° C. or less.
  • the continuous hot-dip galvanizing apparatus further includes an alloying facility located downstream of the hot-dip galvanizing facility, The method for producing a galvanized steel sheet according to any one of the above (1) to (5), further including the step of heating and alloying the zinc plating applied to the steel sheet using the alloying facility.
  • a continuous galvanizing apparatus comprising: a vertical annealing furnace in which a heating zone, a soaking zone, a cooling zone are juxtaposed in this order, and a galvanizing facility located downstream of the cooling zone.
  • An upper hearth roll provided one or more at each of upper and lower portions of the heating zone, the soaking zone and the cooling zone to convey a steel plate a plurality of times in the vertical direction inside each zone to form a plurality of passes.
  • Lower hearth roll In the pass where the steel plate moves upward in the soaking zone, at a position 1.0 m to 5.0 m higher than the center of the lower hearth roll and at a position overlapping the steel plate of the pass when viewed from the side of the soaking zone A first humidifying gas supply port provided; In the pass where the steel plate moves downward in the soaking zone, at a position 1.0 m to 5.0 m lower than the center of the upper hearth roll and at a position overlapping the steel plate of the pass when viewed from the side of the soaking zone A second humidifying gas supply port provided; A continuous hot-dip galvanizing apparatus characterized by having.
  • the first humidifying gas supply port is provided at a position 2.0 m or more lower than the center of the upper hearth roll, and the second humidifying gas supply port is 2.0 m from the center of the lower hearth roll.
  • FIG. 1 It is a schematic diagram which shows the structure of the continuous hot dip galvanization apparatus 100 used by one Embodiment of this invention. It is a schematic diagram which shows the supply system of humidification gas and dry gas to the soaking zone 12 in FIG. 1, and the supply system of humidification gas to the 1st cooling zone 14. As shown in FIG.
  • the continuous galvanizing apparatus 100 includes a vertical annealing furnace 20 in which a heating zone 10, a soaking zone 12 and cooling zones 14 and 16 are juxtaposed in this order, and hot-dip galvanizing positioned downstream of the cooling zone 16 in the steel sheet passing direction. It has a hot-dip galvanizing bath 22 as an installation, and an alloying installation 23 located downstream of the hot-dip galvanizing bath 22 in the steel sheet passing direction.
  • the cooling zone includes a first cooling zone 14 (quenching zone) and a second cooling zone 16 (cool cooling zone). The tip of the snout 18 connected to the second cooling zone 16 is immersed in the hot dip galvanizing bath 22, and the annealing furnace 20 and the hot dip galvanization bath 22 are connected.
  • Steel plate (steel strip) P is introduced into heating zone 10 from a steel plate inlet at the lower part of heating zone 10.
  • each band 10, 12, 14, 16 one or more hearth rolls are arranged at the top and bottom.
  • the steel plate P is conveyed a plurality of times in the vertical direction inside a predetermined band of the annealing furnace 20 to form a plurality of passes.
  • FIG. 1 shows an example of two passes in the heating zone 10, 10 passes in the soaking zone 12, two passes in the first cooling zone 14 and two passes in the second cooling zone 16, the number of passes is limited to this. Instead, it can be set appropriately according to the processing conditions.
  • the steel plate P is turned at a right angle without being folded back, and the steel plate P is moved to the next band. In this manner, the steel plate P can be conveyed in the order of the heating zone 10, the soaking zone 12, and the cooling zones 14 and 16 inside the annealing furnace 20, and the steel plate P can be annealed.
  • Each of the bands 10, 12, 14, 16 is a vertical furnace, and the height thereof is not particularly limited, but can be about 20 to 40 m.
  • the length of each band may be appropriately determined according to the number of passes in each band, and for example, in the case of a 2-pass heating zone 10, it is about 0.8 to 2 m.
  • 10 passes of soaking area 12 it can be about 10 to 20 m, and in the case of two passes of first cooling zone 14 and second cooling zone 16, it can be about 0.8 to 2 m each.
  • adjacent bands are in communication via a communicating portion that connects upper portions or lower portions of the respective bands.
  • the heating zone 10 and the soaking zone 12 communicate with each other via a throat (a throttling portion) 11 which connects lower portions of the respective zones.
  • the soaking area 12 and the first cooling zone 14 are in communication via the throat 13 connecting the lower portions of the respective zones.
  • the first cooling zone 14 and the second cooling zone 16 are in communication via the throat 15 connecting the lower portions of the respective zones.
  • the height of each throat may be set appropriately, but from the viewpoint of enhancing the independence of the atmosphere of each zone, it is preferable that the height of each throat be as low as possible.
  • the gas in the annealing furnace 20 flows from the downstream to the upstream of the furnace and is discharged from the steel plate inlet at the lower part of the heating zone 10.
  • the steel plate P in the heating zone 10, can be indirectly heated using a radiant tube (RT) or an electric heater.
  • the average temperature in the heating zone 10 is preferably 500 to 800.degree.
  • a reducing gas or a non-oxidizing gas is separately supplied.
  • a H 2 -N 2 mixed gas is usually used, and for example, a gas having a composition consisting of 1 to 20% by volume of H 2 , the balance being N 2 and unavoidable impurities (dew point: about -60 ° C.) Can be mentioned.
  • a gas (dew point: about ⁇ 60 ° C.) having a composition comprising N 2 and unavoidable impurities can be mentioned.
  • the gas supply to the heating zone 10 is not particularly limited, but it is preferable to supply gas from two or more places in the height direction and one or more places in the length direction so as to be uniformly introduced into the heating zone.
  • the flow rate of the gas supplied to the heating zone is measured by a gas flow meter (not shown) provided in the pipe, and is not particularly limited, but can be about 10 to 100 (Nm 3 / hr).
  • the steel plate P in the soaking zone 12, can be indirectly heated using a radiant tube (not shown) as the heating means.
  • the average temperature inside the soaking zone 12 is preferably 700 to 900 ° C.
  • the soaking area 12 is supplied with a reducing gas or a non-oxidizing gas.
  • a reducing gas a H 2 -N 2 mixed gas is usually used, and for example, a gas having a composition consisting of 1 to 20% by volume of H 2 , the balance being N 2 and unavoidable impurities (dew point: about -60 ° C.) Can be mentioned.
  • a gas dew point: about ⁇ 60 ° C.
  • a gas dew point: about ⁇ 60 ° C. having a composition comprising N 2 and unavoidable impurities can be mentioned.
  • the gas supplied to the soaking zone 12 is in the form of a humidified gas and a dry gas.
  • the “drying gas” is the above-mentioned reducing gas or non-oxidizing gas having a dew point of about ⁇ 60 ° C. to ⁇ 50 ° C. and is not humidified by a humidifier.
  • the “humidified gas” is a gas humidified to a dew point of 10 to 30 ° C. by a humidifier.
  • humidification gas is supplied to the soaking area 12 in addition to the drying gas in order to raise the dew point in the soaking area .
  • a steel plate having a Si content of less than 0.2 mass% for example, a normal steel plate having a tensile strength of about 270 MPa
  • only dry gas is supplied to the soaking zone 12 to avoid oxidation of the steel plate surface.
  • Mixed gas is not supplied.
  • FIG. 2 is a schematic view showing a supply system of humidified gas and dry gas to the soaking area 12.
  • the reducing gas or non-oxidizing gas (drying gas) is partially sent to the humidifying device 26 by the gas distribution device 24, and the remaining portion passes through the drying gas pipe 30 as the drying gas.
  • the drying gas is supplied into the soaking area 12 through the drying gas supply ports 32A, 32B, 32C provided in the upper part of the soaking area and the drying gas supply ports 34A, 34B, 34C provided in the lower part of the soaking area.
  • the dew point near the hearth roll can be made lower than the soaking center, and the occurrence of pickup defects can be suppressed.
  • the position and the number of the drying gas supply ports are not limited to the example shown in FIG. 2 and may be appropriately determined in consideration of various conditions. However, it is preferable that a plurality of drying gas supply ports be disposed at the same height position along the longitudinal direction of the soaking area, and it is preferable that the drying gas supply ports be disposed uniformly in the longitudinal direction of the soaking area.
  • the humidifier examples include a device that humidifies a dry gas by a humidification method such as a bubbling type, a membrane exchange type, or a high temperature steam addition type.
  • a humidification method such as a bubbling type, a membrane exchange type, or a high temperature steam addition type.
  • the membrane exchange type is desirable from the viewpoint of the dew point stability when the flow rate changes.
  • the humidifying device 26 shown in FIG. 2 there is a humidifying module having a fluorine-based or polyimide-based hollow fiber membrane or flat membrane, etc., a drying gas is flowed inside the membrane, and a circulating constant temperature water tank 28 outside the membrane. And circulate the pure water adjusted to the predetermined temperature.
  • the fluorine-based or polyimide-based hollow fiber membrane or flat membrane is a type of ion exchange membrane having an affinity for water molecules.
  • the drying gas temperature changes according to the season and the change in the temperature of the day.
  • the heat exchange can be performed by taking sufficient contact area between the gas and water through the water vapor permeable membrane, so the drying gas temperature Whether the temperature is higher or lower than the circulating water temperature, the dry gas becomes a gas humidified to the same dew point as the set water temperature, and highly accurate dew point control becomes possible.
  • the dew point of the humidified gas can be arbitrarily controlled in the range of 5 to 50.degree.
  • piping for humidified gas should be higher than the humidified gas dew point and higher than the outside temperature It is heated and kept warm.
  • the humidified gas is supplied in two systems of the first humidified gas supply ports 40A to 40E and the second humidified gas supply ports 42A to 42E.
  • the gas humidified by the humidifying device 26 is distributed to the above two systems by the humidified gas distribution device 36, and the first humidified gas supply ports 40A to 40E and the second It is supplied into the soaking area 12 through the humidified gas supply ports 42A to 42E.
  • symbol 48 is a flow meter for humidification gas
  • symbol 50 is a dew point meter for humidification gas.
  • the conveyance direction of the steel sheet P in the soaking area 12 and the soaking area The positional relationship with the humidification gas supply port in 12 is important.
  • the steel plate P includes five upper hearth rolls 52 installed at the same height above the soaking area 12 and five lower hearth rolls 54 installed at the same height below the soaking area 12. While passing, it is conveyed alternately 10 times in the vertical direction inside the soaking zone 12 to form 10 passes.
  • the diameter of the upper hearth roll 52 and the lower hearth roll 54 that is, the distance between adjacent passes is about 800 to 1000 mm, while the steel plate associated gas flow exists only about 30 mm from the steel sheet surface. Therefore, in the present embodiment, in a path (rise path) in which the steel plate P moves upward, a position 1.0 m to 5.0 m higher than the center of the lower hearth roll 54 (that is, upward from the center of the lower hearth roll 54) Through the first humidifying gas supply ports 40A to 40E provided at a position overlapping the steel plate of the path when viewed from the side surface of the soaking area 12). Supply.
  • a position 1.0 m to 5.0 m lower than the center of the upper hearth roll 52 (that is, 1.0 m downward from the center of the upper hearth roll 52)
  • the humidification gas is supplied from the second humidification gas supply ports 42A to 42E provided at a height of 5.0 m or less and at a position overlapping the steel plate of the path viewed from the side surface of the soaking area 12.
  • “side surface of soaking area” means the axial direction of upper hearth roll 52 and lower hearth roll 54 in the furnace wall constituting the soaking area that is a vertical furnace (ie, the sheet width direction of steel plate P Let us say a pair of faces perpendicular to FIG. 2 is a side view of the soaking zone 12.
  • the first humidifying gas supply ports 40A to 40E and the second humidifying gas supply ports 42A to 42E are provided on a pair of side faces of the soaking zone.
  • the humidified gas supplied from the first humidified gas supply ports 40A to 40E diffuses upward on the steel plate associated gas flow in the rising path, and the humidified gas supplied from the second humidified gas supply ports 42A to 42E Diffuses downward along the accompanying gas flow in the downward path.
  • the humidified gas diffuses uniformly in the soaking area, so that the distribution of dew points in the soaking area can be made uniform.
  • the first humidified gas supply ports 40A to 40E are at a height of less than 1.0 m from the center of the lower hearth roll 54, the humidified gas tends to stay in the vicinity of the lower hearth roll and pickup occurs in the lower hearth roll. .
  • the first humidifying gas supply ports 40A to 40E are at a height over 5.0 m from the center of the lower hearth roll 54, in the section from the lower hearth roll 54 to the first humidifying gas supply ports 40A to 40E. Since the humidified gas does not easily reach and the dew point does not rise, the Si internal oxidation becomes insufficient. Therefore, the first humidifying gas supply ports 40A to 40E are provided at a position 1.0 m to 5.0 m higher than the center of the lower hearth roll 54.
  • the second humidifying gas supply ports 42A to 42E are also provided at a position 1.0 m to 5.0 m lower than the center of the upper hearth roll 52 for the same reason.
  • the first humidified gas supply ports 40A to 40E are preferably provided at a position 2.0 m or more lower than the center of the upper hearth roll 52, and the second humidified gas supply ports 42A to 42E are the centers of the lower hearth roll 54. It is preferable to be provided at a position higher by 2.0 m or more. As a result, the humidified gas can be carried on the steel plate associated gas flow and can be more uniformly diffused in the soaking zone. In addition, the humidified gas supplied from the first humidified gas supply port 40A to E directly reaches the upper hearth roll 52, and the humidified gas supplied from the second humidified gas supply port 42A to 42E directly lowers the lower hearth Reaching the roll 54 can be avoided, and pickup can be avoided.
  • the flow rate of the humidified gas supplied into the soaking area 12 is not particularly limited, but is maintained in the range of about 100 to 400 (Nm 3 / hr). Further, the flow rate of the drying gas supplied into the soaking zone 12 is not particularly limited, but when passing a high-tensile steel plate having a component composition containing 0.2% by mass or more of Si, it is approximately 10 to 300 (Nm 3) Maintained in the range of / hr).
  • the steel plate P is cooled.
  • the steel plate P is cooled to about 480 to 530 ° C. in the first cooling zone 14 and to about 470 to 500 ° C. in the second cooling zone 16.
  • the above-described reducing gas or non-oxidizing gas is also supplied to the cooling zones 14 and 16, but here, a dry gas is supplied.
  • a dry gas is supplied.
  • the supply of the dry gas to the cooling zones 14 and 16 is not particularly limited, it is preferable to supply the drying gas from two or more places in the height direction and two or more places in the longitudinal direction so as to be uniformly introduced into the cooling zone. .
  • the total gas flow rate of the drying gas supplied to the cooling zones 14 and 16 is measured by a gas flow meter (not shown) provided in the piping, and is not particularly limited, but it is about 200 to 1000 (Nm 3 / hr). can do.
  • the cooling zone 14 is provided with at least one cooling nozzle 62 along the steel plate transport path.
  • the cooling nozzle 62 is a circular pipe longer than the steel plate width as described in, for example, JP-A-2010-185101, and is installed so that the extending direction of the circular pipe is parallel to the width direction of the steel plate .
  • a plurality of through holes are provided at predetermined intervals along the extending direction of the circular pipe at a portion facing the steel sheet, and water in the circular pipe is jetted from the through holes toward the steel sheet.
  • the cooling nozzles 62 are provided in a pair so as to face the front and back of the steel plate, and a plurality of pairs of cooling nozzles (for example, 5 to 10 pairs) are arranged at predetermined intervals along the steel plate conveyance path. Configure Then, it is preferable to arrange about three to six of the cooling zones along the steel plate conveyance path. In FIG. 2, six cooling zones are illustrated.
  • the cooling nozzle is provided at a position within 3.0 m upstream of the steel plate conveyance path from the most upstream position 62A of the cooling nozzle (that is, the nozzle closest to the soaking zone 12 among the plurality of cooling nozzles). It is desirable to supply the humidified gas also from the third humidified gas supply port 44. Furthermore, it is also desirable to supply a reducing or non-oxidizing humidified gas into the communicating section 13 from the fourth humidifying gas supply port 46 provided in the communicating section 13 between the soaking zone and the cooling zone. With regard to the range to be humidified in the soaking zone 12, it is most desirable from the viewpoint of Si internal oxidation formation to humidify in the area where the steel plate temperature is 600 to 900 ° C.
  • the gas supplied into the soaking zone 12 flows in the upstream direction of the line, ie, in the direction of the heating zone 10 side. That is, in the conventional method, only the dry gas flows from the vicinity of the soaking exit where the steel plate reaches the maximum temperature to the cooling start position by the cooling nozzle 62 of the cooling zone 14, the dew point does not rise, and the internal oxidation of Si is formed. Is a non-contributing area. Therefore, in the present embodiment, the humidified gas supply ports 44 and 46 are provided also in the vicinity of the communication portion 13 between the soaking area and the cooling zone and the inlet of the cooling zone 14 to supply the humidified gas from here. Thereby, the Si internal oxidation can be promoted.
  • the distance between the moistened gas supply ports 44 and 46 and the steel plate as viewed from the side of the cooling zone and the communication portion is preferably 50 mm or less.
  • the dew point measurement port 56A near the upper hearth roll of the soaking area, the dew point measurement port 56B near the lower hearth roll, and the dew point measurement port 56C at the soaking center It is preferable to provide a dew point meter.
  • the dew point (upper dew point and lower dew point) in the vicinity (less than 1.0 m) of upper hearth roll and lower hearth roll measured at dew point measurement ports 56A, 56B is -10 ° C or less It is preferable to maintain, for example, the dew point at a distance of 1.0 m or more from the upper hearth roll and the lower hearth roll measured at the dew point measurement port 56C (internal dew point) at -20.degree. C. or more and 0.degree.
  • Hot galvanization bath The steel sheet P discharged from the second cooling zone 16 can be subjected to hot dip galvanization using the hot dip galvanizing bath 22.
  • Hot dip galvanization may be performed according to a standard method. As described above, in the hot-dip galvanized steel sheet manufactured according to the present embodiment, the internal Si oxidation is sufficiently promoted to improve the plating adhesion, and the occurrence of the pickup defect is suppressed. Good plating appearance is obtained.
  • the galvanization applied to the steel plate P can be heat-alloyed using the alloying equipment 23.
  • the alloying treatment may be performed according to a standard method. According to the present embodiment, since the alloying temperature does not reach a high temperature, it is possible to suppress a decrease in tensile strength of the manufactured galvanized steel sheet.
  • the alloying facility 23 is an optional facility in the continuous galvanizing apparatus of the present invention, and the alloying process is an optional process in the method for producing a galvanized steel sheet of the present invention.
  • the steel sheet P to be subjected to annealing and hot dip galvanization is not particularly limited, but in the case of a steel sheet having a component composition containing 0.2% by mass or more of Si, ie, high tensile steel, the effects of the present invention can be advantageously obtained. it can.
  • the suitable component composition of a steel plate is demonstrated. All units shown by% in the following description are mass%.
  • C is preferably 0.025% or more in order to facilitate the processability by forming a retained austenite layer or a martensitic phase as a steel structure, but the lower limit is not particularly defined in the present invention. On the other hand, if the content exceeds 0.3%, the weldability is deteriorated, so the C content is preferably 0.3% or less.
  • Si is an effective element for strengthening steel and obtaining a good material
  • 0.2% or more is added to a high tensile steel plate. If Si is less than 0.2%, expensive alloying elements are required to obtain high strength. On the other hand, if it exceeds 2.5%, oxide film formation in the oxidation treatment is suppressed. In addition, since the alloying temperature is also increased, it becomes difficult to obtain desired mechanical properties. Therefore, the amount of Si is preferably 2.5% or less.
  • Mn is an element effective for strengthening the steel. In order to secure tensile strength of 590 MPa or more, it is preferable to contain 0.5% or more. On the other hand, if it exceeds 3.0%, it may be difficult to secure weldability, plating adhesion and strength and ductility balance. Therefore, the Mn content is preferably 0.5 to 3.0%. If the tensile strength is 270 to 440 MPa, add 1.5% or less as appropriate.
  • P is an element effective for increasing the strength of steel, but in order to delay the alloying reaction between zinc and steel, in the case of steel in which 0.2% or more of Si is added, the content should be 0.03% or less. Is preferably added, and others are appropriately added according to the strength.
  • S has little influence on the steel strength, it affects the formation of an oxide film at the time of hot rolling and cold rolling, so the content of S is preferably made 0.005% or less.
  • one or more of elements such as Cr, Mo, Ti, Nb, V, and B can be optionally added, and the remaining balance is Fe and unavoidable. Impurities.
  • the heating zone was an RT furnace with a volume of 200 m 3 .
  • the average temperature inside the heating zone was 700 to 800.degree.
  • a gas (dew point: ⁇ 50 ° C.) having a composition consisting of 15% by volume of H 2 and the balance of N 2 and unavoidable impurities was used as the drying gas.
  • the flow rate of the drying gas to the heating zone was 100 Nm 3 / hr.
  • the soaking area was an RT furnace with a volume of 700 m 3 , a distance of 20 m between the upper and lower hearth rolls, and a height of 24 m.
  • Table 2 shows the soaking area target steel sheet temperature and the actual measured steel sheet temperature.
  • a gas dew point: -50 ° C.
  • a part of the dry gas was humidified by a humidifier having a hollow fiber membrane humidifier to prepare a humidified gas.
  • the hollow fiber membrane type humidifying part consisted of 10 membrane modules, and circulating water of up to 100 L / min was allowed to flow.
  • the drying gas supply port and the humidification gas supply port were disposed at the positions shown in FIG.
  • the five first humidifying gas supply ports for the rising pass are located 1.5 to 4.0 m above the center of the lower hearth roll and 16.0 to 18.5 m below the center of the upper hearth roll, and descend
  • the five second humidifying gas supply ports for pass were provided at a position 2.0 to 4.5 m lower than the center of the upper hearth roll and 15.5 to 18.0 m higher than the center of the lower hearth roll.
  • the dry gas (dew point: ⁇ 50 ° C.) was supplied to the first cooling zone and the second cooling zone from the lowermost part of each zone at a flow rate shown in Table 2.
  • Table 2 in the invention example 2 (No. 5), the humidified gas is supplied from the fourth humidified gas supply port 46 of the communication part and the third humidified gas supply port 44 of the first cooling zone inlet. went.
  • the third humidification gas supply port 44 is located 1.5 m upstream of the steel plate conveyance path from the most upstream position of the cooling nozzle, and the fourth humidification gas supply port 46 is 2.8 m upstream It is in. In the invention example 1, the third and fourth humidifying gas supply ports 44 and 46 are not provided.
  • the plating bath temperature was adjusted to 450 ° C.
  • the Al concentration in the plating bath was 0.200%
  • the adhesion amount was adjusted to 60 g / m 2 per one side by gas wiping.
  • the plating bath temperature was 460 ° C.
  • the Al concentration in the plating bath was 0.130%
  • the adhesion amount was adjusted to 50 g / m 2 per one side by gas wiping.
  • alloying treatment was performed in an induction heating type alloying furnace such that the degree of film alloying (Fe content) became 10 to 13%.
  • the alloying temperature at that time is shown in Table 2.
  • the humidification gas supply port was provided in the soaking area upper part and the lower part. Five places were located 0.9 m from the lower hearth roll near the rising path, and five places were 3.5 m from the upper hearth roll near the falling path. The gas supply port overlaps the steel plate position of each pass when viewed from the soaking side.
  • the evaluation of the plating appearance is inspection with an optical surface defect meter (detection of non-plating defect of ⁇ 0.5 or more and wrinkles due to roll pickup), visual judgment of alloying unevenness (in the case of GA) or visual appearance judgment by visual inspection (In the case of GI) and. All items are good ⁇ , the inspection by surface defect meter is pass, and when there is slight alloying unevenness or appearance unevenness that does not cause quality problems, ⁇ , alloying unevenness or appearance to the extent that surface quality grade decreases If there is unevenness, it is ⁇ , and if there is a failure in the surface defect meter, it is x. The results are shown in Table 2.
  • the tensile strength of GI and GA manufactured on various conditions was measured.
  • the high tensile steel type A passed 780 MPa or more
  • the high tensile steel type B passed 1180 MPa or more
  • the high tensile steel type C passed 980 MPa or more. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本開示は、Si含有量が0.2質量%以上の鋼板に溶融亜鉛めっきを施した場合にめっき密着性が高く良好なめっき外観を得ることができる溶融亜鉛めっき鋼板の製造方法を提供する。鋼板Pを焼鈍炉の内部で、加熱帯、均熱帯及び冷却帯の順に搬送して、鋼板に対して焼鈍を行い、その後冷却帯から排出される鋼板に溶融亜鉛めっきを施す。加湿ガスを均熱帯12内に供給するにあたり、鋼板が上方に移動するパスにおいては、下部ハースロール54の中心から1.0m以上5.0m以下高い位置で、かつ均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第1の加湿ガス供給口40A~Eから加湿ガスを供給し、鋼板が下方に移動するパスにおいては、上部ハースロール52の中心から1.0m以上5.0m以下低い位置で、かつ均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第2の加湿ガス供給口42A~Eから、加湿ガスを供給する。

Description

溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置
 本発明は、加熱帯、均熱帯及び冷却帯がこの順に並置された縦型の焼鈍炉と、前記冷却帯の下流に位置する溶融亜鉛めっき設備と、を有する連続溶融亜鉛めっき装置と、該装置を用いた溶融亜鉛めっき鋼板の製造方法に関する。
 近年、自動車、家電、建材等の分野において、構造物の軽量化等に寄与する高張力鋼板(ハイテン鋼板)の需要が高まっている。ハイテン鋼材としては、例えば、鋼中にSiを含有することにより穴広げ性の良好な鋼板や、SiやAlを含有することにより残留γが形成しやすく延性の良好な鋼板が製造できることがわかっている。
 しかし、Siを多量に(特に0.2質量%以上)含有する高張力鋼板を母材として溶融亜鉛めっき鋼板を製造する場合、以下の問題がある。溶融亜鉛めっき鋼板は、還元雰囲気又は非酸化性雰囲気中で600~900℃程度の温度で母材の鋼板を加熱焼鈍した後に、該鋼板に溶融亜鉛めっき処理を行うことによって、製造される。さらに、鋼板に施された亜鉛めっきを加熱合金化して、合金化溶融亜鉛めっき鋼板を製造することもできる。
 ここで、鋼中のSiは易酸化性元素であり、一般的に用いられる還元雰囲気又は非酸化性雰囲気中でも選択酸化されて、鋼板の表面に濃化し、酸化物を形成する。この酸化物は、めっき処理時の溶融亜鉛との濡れ性を低下させて、不めっきを生じさせる。そのため、鋼中Si濃度の増加と共に、濡れ性が急激に低下して不めっきが多発する。また、不めっきに至らなかった場合でも、めっき密着性に劣るという問題がある。さらに、鋼中のSiが選択酸化されて鋼板の表面に濃化すると、溶融亜鉛めっき後の合金化過程において著しい合金化遅延が生じ、生産性を著しく阻害するという問題もある。
 このような問題に対して、例えば、特許文献1には、直火型加熱炉(DFF)を用いて、鋼板の表面を一旦酸化させた後、還元雰囲気下で鋼板を焼鈍することで、Siを内部酸化させ、鋼板の表面にSiが濃化するのを抑制し、溶融亜鉛めっきの濡れ性および密着性を向上させる方法が記載されている。加熱後の還元焼鈍については常法(露点-30~-40℃)でよいと記載されている。
 特許文献2には、順に加熱帯前段、加熱帯後段、保熱帯及び冷却帯を有する焼鈍炉と溶融めっき浴とを用いた連続焼鈍溶融めっき方法において、鋼板温度が少なくとも300℃以上の領域の鋼板の加熱または保熱を間接加熱とし、各帯の炉内雰囲気を水素1~10体積%、残部が窒素及び不可避的不純物よりなる雰囲気とし、前記加熱帯前段で加熱中の鋼板到達温度を550℃以上750℃以下とし、かつ、露点を-25℃未満とし、これに続く前記加熱帯後段及び前記保熱帯の露点を-30℃以上0℃以下とし、前記冷却帯の露点を-25℃未満とする条件で焼鈍を行うことにより、Siを内部酸化させ、鋼板の表面にSiが濃化するのを抑制する技術が記載されている。また、加熱帯後段及び/又は保熱帯に、窒素と水素の混合ガスを加湿して導入することも記載されている。
 特許文献3には、鋼帯を焼鈍炉の内部で、加熱帯、均熱帯及び冷却帯の順に搬送して、前記鋼帯に対して焼鈍を行う工程と、前記冷却帯から排出される鋼帯に溶融亜鉛めっきを施す工程と、亜鉛めっきを加熱合金化する工程と、を有し、前記均熱帯に供給される還元性ガス又は非酸化性ガスは、加湿ガスと乾燥ガスとを混合して得た混合ガスであり、前記均熱帯の高さ方向の下部1/2の領域に設けられた少なくとも1つのガス供給口から前記混合ガスを前記均熱帯内に供給して、前記均熱帯の高さ方向の上部1/5の領域で測定される露点と、下部1/5の領域で測定される露点とを、共に-20℃以上0℃以下とすることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法が記載されている。
特開2010-202959号公報 WO2007/043273号公報 特開2016-017193号公報
 しかし、特許文献1に記載の方法では、還元後のめっき密着性は良好であるものの、Siの内部酸化量が不足しやすく、鋼中のSiの影響で合金化温度が通常よりも30~50℃高温になってしまい、その結果鋼板の引張強度が低下する問題があった。十分な内部酸化量を確保するために酸化量を増加させると、焼鈍炉内のロールに酸化スケールが付着し鋼板に押し疵、いわゆるピックアップ欠陥が発生する。このため、酸化量を単に増加させる手段は取れない。
 特許文献2に記載の方法では、加熱帯前段、加熱帯後段、保熱帯の加熱・保温を間接加熱としているため、特許文献1の直火加熱の場合のような鋼板表面の酸化が起こりにくい。特許文献2に記載の鋼板温度域で、所定の露点範囲に制御できれば、めっき密着性や合金化温度抑制は可能となるが、実際にはハースロール近傍で0℃付近まで露点を上昇させると、鋼板表面皮膜とロール溶射皮膜が反応しピックアップ欠陥が発生することがわかった。また、焼鈍炉内のガスは、ライン下流側から上流側、すなわち冷却帯から加熱帯方向に流れる。冷却帯に乾燥ガスのみを供給すると、わずかな流量変化でもSi内部酸化反応が起こりやすい高温域のガス露点が低下し、Si内部酸化量が不足するため、めっき密着性が悪化して不めっき部が発生し、安定した製品を生産するのは困難であった。
 特許文献3に記載の方法には、均熱帯の高さ方向1/2より下部から加湿ガスを供給するため、以下のような問題があることがわかった。すなわち、加湿ガス供給口が鋼板の下降パスに近いと高露点ガスが鋼板に随伴して均熱帯の下部ハースロールに到達するため、当該下部ハースロールでピックアップ欠陥が発生する。一方で、均熱帯上部における鋼板の下降パスの領域では、加湿ガスが到達せずに露点上昇が十分でないため、Si内部酸化量が不足してめっき密着性が悪化する。
 そこで本発明は、上記課題に鑑み、Si含有量が0.2質量%以上の鋼板に溶融亜鉛めっきを施した場合にめっき密着性が高く良好なめっき外観を得ることができる溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置を提供することを目的とする。
 上記課題を解決すべく本発明者らは、鋼板の搬送によって生じる鋼板随伴ガス流を利用して加湿ガスを均熱帯内に均一に拡散させるとの着想を得て、均熱帯内での鋼板の搬送方向と、均熱帯内の加湿ガス供給口との位置関係に着目した。すなわち、均熱帯の側面から見て上昇パスの鋼板と重なるように第1の加湿ガス供給口を設け、その際、この第1の加湿ガス供給口は均熱帯の下部に設ければ、当該第1の加湿ガス供給口から均熱帯内に供給された加湿ガスは、鋼板随伴ガス流に乗って上方向に拡散する。同様に、均熱帯の側面から見て下降パスの鋼板と重なるように第2の加湿ガス供給口を設け、その際、この第2の加湿ガス供給口は均熱帯の上部に設ければ、当該第2の加湿ガス供給口から均熱帯内に供給された加湿ガスは、鋼板随伴ガス流に乗って下方向に拡散する。本発明者らは、加湿ガス供給口をこのように配置することで、加湿ガスが均一に均熱帯内に拡散するため、均熱帯内の露点の分布を均一にすることができることを見出した。つまり、均熱帯内で露点が十分に上昇しない領域、すなわちSi内部酸化が不十分となる領域が存在しないことから、めっき密着性が劣化することなく、良好なめっき外観を得ることができる。また、ハースロール近傍の露点が局所的に上昇することもないため、ピックアップ欠陥の発生も抑制でき、これも良好なめっき外観を得ることにつながる。
 上記知見に基づき完成された本発明の要旨構成は以下のとおりである。
 (1)加熱帯と、均熱帯と、冷却帯とがこの順に並置された縦型の焼鈍炉と、前記冷却帯の下流に位置する溶融亜鉛めっき設備と、を有する連続溶融亜鉛めっき装置を用いた溶融亜鉛めっき鋼板の製造方法であって、
 鋼板を前記焼鈍炉の内部で、前記加熱帯、前記均熱帯及び前記冷却帯の順に搬送して、前記鋼板に対して焼鈍を行い、その際、前記鋼板は、各帯の上部及び下部にそれぞれ1つ以上設けられた上部ハースロール及び下部ハースロールを通過しながら、各帯の内部で上下方向に複数回搬送されて複数パスを形成する工程と、
 前記溶融亜鉛めっき設備を用いて、前記冷却帯から排出される鋼板に溶融亜鉛めっきを施す工程と、
を有し、
 加湿ガスを前記均熱帯内に供給するにあたり、
 前記鋼板が上方に移動するパスにおいては、前記下部ハースロールの中心から1.0m以上5.0m以下高い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第1の加湿ガス供給口から、前記加湿ガスを供給し、
 前記鋼板が下方に移動するパスにおいては、前記上部ハースロールの中心から1.0m以上5.0m以下低い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第2の加湿ガス供給口から、前記加湿ガスを供給する
ことを特徴とする溶融亜鉛めっき鋼板の製造方法。
 (2)前記第1の加湿ガス供給口は、前記上部ハースロールの中心から2.0m以上低い位置に設けられ、前記第2の加湿ガス供給口は、前記下部ハースロールの中心から2.0m以上高い位置に設けられる、上記(1)に記載の溶融亜鉛めっき鋼板の製造方法。
 (3)前記冷却帯には、鋼板搬送路に沿って少なくとも1つの冷却ノズルが設けられ、
 前記冷却帯内に加湿ガスを供給し、その際、前記冷却ノズルの最上流位置から鋼板搬送路の上流側3.0m以内の位置に設けられた第3の加湿ガス供給口から、前記加湿ガスを供給する、上記(1)又は(2)に記載の溶融亜鉛めっき鋼板の製造方法。
 (4)前記均熱帯と前記冷却帯との連通部に設けられた第4の加湿ガス供給口から、該連通部内に加湿ガスを供給する、上記(1)~(3)のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 (5)前記均熱帯の内部において、前記上部ハースロール及び前記下部ハースロールの近傍の露点は-10℃以下とし、前記上部ハースロール及び前記下部ハースロールから1.0m以上離れた位置の露点は-20℃以上0℃以下とする、上記(1)~(4)のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 (6)前記連続溶融亜鉛めっき装置は、前記溶融亜鉛めっき設備の下流に位置する合金化設備をさらに有し、
 前記合金化設備を用いて、前記鋼板に施された亜鉛めっきを加熱合金化する工程をさらに有する、上記(1)~(5)のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 (7)前記均熱帯の高さが20m以上40m以下である、上記(1)~(6)のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
 (8)加熱帯と、均熱帯と、冷却帯とがこの順に並置された縦型の焼鈍炉と、前記冷却帯の下流に位置する溶融亜鉛めっき設備と、を有する連続溶融亜鉛めっき装置であって、
 前記加熱帯、前記均熱帯及び前記冷却帯の上部及び下部に、各帯の内部で鋼板を上下方向に複数回搬送して複数パスを形成するためにそれぞれ1つ以上設けられた上部ハースロール及び下部ハースロールと、
 前記均熱帯で前記鋼板が上方に移動するパスにおいて、前記下部ハースロールの中心から1.0m以上5.0m以下高い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第1の加湿ガス供給口と、
 前記均熱帯で前記鋼板が下方に移動するパスにおいて、前記上部ハースロールの中心から1.0m以上5.0m以下低い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第2の加湿ガス供給口と、
を有することを特徴とする連続溶融亜鉛めっき装置。
 (9)前記第1の加湿ガス供給口は、前記上部ハースロールの中心から2.0m以上低い位置に設けられ、前記第2の加湿ガス供給口は、前記下部ハースロールの中心から2.0m以上高い位置に設けられる、上記(8)に記載の連続溶融亜鉛めっき装置。
 (10)前記冷却帯に、鋼板搬送路に沿って設けられた少なくとも1つの冷却ノズルと、
 前記冷却ノズルの最上流位置から鋼板搬送路の上流側3.0m以内の位置に設けられた第3の加湿ガス供給口と、
をさらに有する、上記(8)又は(9)に記載の連続溶融亜鉛めっき装置。
 (11)前記均熱帯と前記冷却帯との連通部に設けられた第4の加湿ガス供給口をさらに有する、上記(8)~(10)のいずれか一項に記載の連続溶融亜鉛めっき装置。
 (12)前記溶融亜鉛めっき設備の下流に位置する合金化設備をさらに有する、上記(8)~(11)のいずれか一項に記載の連続溶融亜鉛めっき装置。
 (13)前記均熱帯の高さが20m以上40m以下である、上記(8)~(12)のいずれか一項に記載の連続溶融亜鉛めっき装置。
 本発明の溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置によれば、Si含有量が0.2質量%以上の鋼板に溶融亜鉛めっきを施した場合にめっき密着性が高く良好なめっき外観を得ることができる。
本発明の一実施形態で用いる連続溶融亜鉛めっき装置100の構成を示す模式図である。 図1における均熱帯12への加湿ガス及び乾燥ガスの供給系、並びに第1冷却帯14への加湿ガスの供給系を示す模式図である。
 まず、本発明の一実施形態による溶融亜鉛めっき鋼板の製造方法に用いる連続溶融亜鉛めっき装置100の構成を、図1を参照して説明する。連続溶融亜鉛めっき装置100は、加熱帯10、均熱帯12及び冷却帯14,16がこの順に並置された縦型の焼鈍炉20と、冷却帯16の鋼板通板方向下流に位置する溶融亜鉛めっき設備としての溶融亜鉛めっき浴22と、この溶融亜鉛めっき浴22の鋼板通板方向下流に位置する合金化設備23と、を有する。本実施形態において冷却帯は、第1冷却帯14(急冷帯)及び第2冷却帯16(除冷帯)を含む。第2冷却帯16と連結したスナウト18は、先端が溶融亜鉛めっき浴22に浸漬しており、焼鈍炉20と溶融亜鉛めっき浴22とが接続されている。
 鋼板(鋼帯)Pは、加熱帯10の下部の鋼板導入口から加熱帯10内に導入される。各帯10,12,14,16には、上部及び下部に1つ以上のハースロールが配置される。ハースロールを起点に鋼板Pが180度折り返される場合、鋼板Pは焼鈍炉20の所定の帯の内部で上下方向に複数回搬送されて、複数パスを形成する。図1においては、加熱帯10で2パス、均熱帯12で10パス、第1冷却帯14で2パス、第2冷却帯16で2パスの例を示したが、パス数はこれに限定されず、処理条件に応じて適宜設定可能である。また、一部のハースロールでは、鋼板Pを折り返すことなく直角に方向転換させて、鋼板Pを次の帯へと移動させる。このようにして、鋼板Pを焼鈍炉20の内部で、加熱帯10、均熱帯12及び冷却帯14,16の順に搬送して、鋼板Pに対して焼鈍を行うことができる。
 各帯10,12,14,16は、いずれも縦型炉であり、その高さは特に限定されないが20~40m程度とすることができる。また、各帯の長さ(図1中の左右方向)は、各帯内でのパス数に応じて適宜決定すればよく、例えば、2パスの加熱帯10であれば0.8~2m程度、10パスの均熱帯12であれば10~20m程度、2パスの第1冷却帯14及び第2冷却帯16であれば、各々0.8~2m程度とすることができる。
 焼鈍炉20において、隣り合う帯は、それぞれの帯の上部同士または下部同士を接続する連通部を介して連通している。本実施形態では、加熱帯10と均熱帯12とは、それぞれの帯の下部同士を接続するスロート(絞り部)11を介して連通する。均熱帯12と第1冷却帯14とは、それぞれの帯の下部同士を接続するスロート13を介して連通する。第1冷却帯14と第2冷却帯16とは、それぞれの帯の下部同士を接続するスロート15を介して連通する。各スロートの高さは適宜設定すればよいが、各帯の雰囲気の独立性を高める観点から、各スロートの高さはなるべく低いことが好ましい。焼鈍炉20内のガスは、炉の下流から上流に流れ、加熱帯10の下部の鋼板導入口から排出される。
 (加熱帯)
 本実施形態において、加熱帯10ではラジアントチューブ(RT)又は電気ヒーターを用いて、鋼板Pを間接加熱することができる。加熱帯10の内部の平均温度は500~800℃とすることが好ましい。加熱帯10には、均熱帯12からのガスが流れ込むと同時に、別途還元性ガス又は非酸化性ガスが供給される。還元性ガスとしては、通常H-N混合ガスが用いられ、例えばH:1~20体積%、残部がNおよび不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。また、非酸化性ガスとしては、Nおよび不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。加熱帯10へのガス供給は、特に限定されないが、加熱帯内に均等に投入されるように、高さ方向2ヶ所以上、長さ方向1ヶ所以上の投入口から供給することが好ましい。加熱帯に供給されるガスの流量は、配管に設けられたガス流量計(図示せず)により測定され、特に限定されないが、10~100(Nm/hr)程度とすることができる。
 (均熱帯)
 本実施形態において均熱帯12では、加熱手段としてラジアントチューブ(図示せず)を用いて、鋼板Pを間接加熱することができる。均熱帯12の内部の平均温度は700~900℃とすることが好ましい。
 均熱帯12には還元性ガス又は非酸化性ガスが供給される。還元性ガスとしては、通常H-N混合ガスが用いられ、例えばH:1~20体積%、残部がNおよび不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。また、非酸化性ガスとしては、Nおよび不可避的不純物からなる組成を有するガス(露点:-60℃程度)が挙げられる。
 本実施形態では、均熱帯12に供給されるガスは、加湿ガス及び乾燥ガスの二形態である。ここで、「乾燥ガス」とは、露点が-60℃~-50℃程度の上記還元性ガス又は非酸化性ガスであって、加湿装置により加湿されていないものである。一方、「加湿ガス」とは、加湿装置により露点が10~30℃に加湿されたガスである。
 ここで、Siを0.2質量%以上含有する成分組成を有する高張力鋼板の製造時には、均熱帯内の露点を上昇させるために、乾燥ガスに加えて、加湿ガスを均熱帯12に供給する。これに対し、Si含有量が0.2質量%未満の鋼板(例えば引張強度270MPa程度の普通鋼板)の製造時には、鋼板表面の酸化を回避するために、乾燥ガスのみを均熱帯12に供給し、混合ガスは供給しない。
 図2は、均熱帯12への加湿ガス及び乾燥ガスの供給系を示す模式図である。図2において、上記還元性ガス又は非酸化性ガス(乾燥ガス)は、ガス分配装置24によって、一部は加湿装置26へと送られ、残部は乾燥ガスのまま乾燥ガス用配管30を通過して、均熱帯上部に設けられた乾燥ガス供給口32A,32B,32Cと、均熱帯下部に設けられた乾燥ガス供給口34A,34B,34Cを介して、均熱帯12内に供給される。これによって、ハースロール近傍の露点を均熱帯中心部よりも低くすることができ、ピックアップ欠陥の発生を抑制することができる。
 乾燥ガス供給口の位置及び数は図2に示す例には限定されず、種々の条件を考慮して適宜決めればよい。しかし、乾燥ガス供給口は、均熱帯の長さ方向に沿って同じ高さ位置に複数配置されることが好ましく、かつ、均熱帯の長さ方向に均等に配置されることが好ましい。
 加湿装置としては、バブリング式、膜交換式、高温蒸気添加式などの加湿方法で乾燥ガスを加湿する装置が挙げられるが、流量変化時の露点安定性から、膜交換式が望ましい。図2に示す加湿装置26内には、フッ素系もしくはポリイミド系の中空糸膜又は平膜等を有する加湿モジュールがあり、膜の内側には乾燥ガスを流し、膜の外側には循環恒温水槽28で所定温度に調整された純水を循環させる。フッ素系もしくはポリイミド系の中空糸膜又は平膜とは、水分子との親和力を有するイオン交換膜の一種である。中空糸膜の内側と外側に水分濃度差が生じると、その濃度差を均等にしようとする力が発生し、水分はその力をドライビングフォースとして低い水分濃度の方へ膜を透過し移動する。乾燥ガス温度は、季節や1日の気温変化にしたがって変化するが、この加湿装置では、水蒸気透過膜を介したガスと水の接触面積を十分に取ることで熱交換も行えるため、乾燥ガス温度が循環水温より高くても低くても、乾燥ガスは設定水温と同じ露点まで加湿されたガスとなり、高精度な露点制御が可能となる。加湿ガスの露点は5~50℃の範囲で任意に制御可能である。加湿ガスの露点が配管温度よりも高いと配管内で結露してしまい、結露した水が直接炉内に浸入する可能性があるので、加湿ガス用の配管は加湿ガス露点以上かつ外気温以上に加熱・保熱されている。
 本実施形態において、加湿ガスは、第1の加湿ガス供給口40A~Eと、第2の加湿ガス供給口42A~Eの二系統で供給される。加湿装置26で加湿されたガスは、加湿ガス分配装置36で上記二系統に分配され、各々の加湿ガス用配管38を経由して、第1の加湿ガス供給口40A~Eと、第2の加湿ガス供給口42A~Eを介して均熱帯12内に供給される。なお、符号48は加湿ガス用流量計、符号50は加湿ガス用露点計である。
 本実施形態では、鋼板Pの搬送によって生じる鋼板随伴ガス流を利用して加湿ガスを均熱帯12内に均一に拡散させるという観点から、均熱帯12内での鋼板Pの搬送方向と、均熱帯12内の加湿ガス供給口との位置関係が肝要である。本実施形態において、鋼板Pは、均熱帯12の上部で同一高さに設置された5つの上部ハースロール52と、均熱帯12の下部で同一高さに設置された5つの下部ハースロール54を通過しながら、均熱帯12の内部で上下方向に交互に10回搬送されて、10パスを形成している。上部ハースロール52及び下部ハースロール54の直径、すなわち隣接するパス間の距離は、800~1000mm程度であるのに対し、鋼板随伴ガス流は鋼板表面から30mm程度までしか存在しない。そこで本実施形態では、鋼板Pが上方に移動するパス(上昇パス)においては、下部ハースロール54の中心から1.0m以上5.0m以下高い位置(すなわち、下部ハースロール54の中心から上方向に1.0m以上5.0m以下の高さ)で、かつ均熱帯12の側面から見て当該パスの鋼板と重なる位置に設けられた第1の加湿ガス供給口40A~Eから、加湿ガスを供給する。また、鋼板Pが下方に移動するパス(下降パス)においては、上部ハースロール52の中心から1.0m以上5.0m以下低い位置(すなわち、上部ハースロール52の中心から下方向に1.0m以上5.0m以下の高さ)で、かつ均熱帯12の側面から見て当該パスの鋼板と重なる位置に設けられた第2の加湿ガス供給口42A~Eから、加湿ガスを供給する。なお、本明細書において「均熱帯の側面」とは、縦型炉である均熱帯を構成する炉壁のうち、上部ハースロール52及び下部ハースロール54の軸方向(すなわち鋼板Pの板幅方向)に対して垂直な一対の面をいうものとする。図2は均熱帯12の側面から見た図であり、第1の加湿ガス供給口40A~E及び第2の加湿ガス供給口42A~Eは、均熱帯の一対の側面に設けられている。
 第1の加湿ガス供給口40A~Eから供給された加湿ガスは、上昇パスの鋼板随伴ガス流に乗って上方向に拡散し、第2の加湿ガス供給口42A~Eから供給された加湿ガスは、下降パスの随伴ガス流に乗って下方向に拡散する。これにより、加湿ガスが均一に均熱帯内に拡散するため、均熱帯内の露点の分布を均一にすることができる。その結果、均熱帯内でSi内部酸化を十分に促進しつつ、ピックアップ欠陥の発生も抑制できる。そのため、良好なめっき外観を得ることができる。
 第1の加湿ガス供給口40A~Eが下部ハースロール54の中心から1.0m未満の高さにあると、加湿ガスが下部ハースロール近傍に滞留しやすくなり、下部ハースロールでピックアップが発生する。一方、第1の加湿ガス供給口40A~Eが下部ハースロール54の中心から5.0m超えの高さにあると、下部ハースロール54から第1の加湿ガス供給口40A~Eまでの区間には加湿ガスが到達しにくく、露点が上昇しないため、Si内部酸化が不十分になる。よって、第1の加湿ガス供給口40A~Eは、下部ハースロール54の中心から1.0m以上5.0m以下高い位置に設ける。
 第2の加湿ガス供給口42A~Eについても、同様の理由で、上部ハースロール52の中心から1.0m以上5.0m以下低い位置に設ける。
 第1の加湿ガス供給口40A~Eは、上部ハースロール52の中心から2.0m以上低い位置に設けられることが好ましく、第2の加湿ガス供給口42A~Eは、下部ハースロール54の中心から2.0m以上高い位置に設けられることが好ましい。これにより、加湿ガスを鋼板随伴ガス流に乗せて均熱帯内に、より均一に拡散させることができる。また、第1の加湿ガス供給口40A~Eから供給された加湿ガスが直接上部ハースロール52に到達することや、第2の加湿ガス供給口42A~Eから供給された加湿ガスが直接下部ハースロール54に到達することが回避され、ピックアップが発生することを回避することができる。
 均熱帯12内に供給される加湿ガスの流量は、特に限定されないが、概ね100~400(Nm/hr)の範囲内に維持される。また、均熱帯12内に供給される乾燥ガスの流量は、特に限定されないが、Siを0.2質量%以上含有する成分組成を有する高張力鋼板の通板時には、概ね10~300(Nm/hr)の範囲内に維持される。
 (冷却帯)
 本実施形態において冷却帯14,16では、鋼板Pが冷却される。鋼板Pは、第1冷却帯14では480~530℃程度にまで冷却され、第2冷却帯16では470~500℃程度にまで冷却される。
 冷却帯14,16にも、上記還元性ガス又は非酸化性ガスが供給されるが、ここでは、乾燥ガスが供給される。冷却帯14,16への乾燥ガスの供給は特に限定されないが、冷却帯内に均等に投入されるように、高さ方向2ヶ所以上、長手方向2ヶ所以上の投入口から供給することが好ましい。冷却帯14,16に供給される乾燥ガスの合計ガス流量は、配管に設けられたガス流量計(図示せず)により測定され、特に限定されないが、200~1000(Nm/hr)程度とすることができる。
 冷却帯14には、鋼板搬送路に沿って少なくとも1つの冷却ノズル62が設けられる。冷却ノズル62は、例えば特開2010-185101号公報に記載されるような、鋼板幅よりも長い円管であり、円管の延在方向が鋼板の幅方向と平行になるように設置される。円管には、鋼板と対向する部位に、円管の延在方向に沿って所定の間隔で複数の貫通穴が設けられ、円管内の水が当該貫通穴から鋼板に向かって噴射される。冷却ノズル62は、鋼板の表裏に対向するように一対に設けられ、さらに一対の冷却ノズルが鋼板搬送路に沿って所定間隔で複数対(例えば5~10対)配置されて、1つの冷却ゾーンを構成する。そして、当該冷却ゾーンは鋼板搬送路に沿って3~6つ程度配置することが好ましい。なお、図2では6つの冷却ゾーンを図示している。
 本実施形態では、冷却ノズルの最上流位置62A(つまり、上記複数の冷却ノズル群の中で均熱帯12に一番近いノズル)から鋼板搬送路の上流側3.0m以内の位置に設けられた第3の加湿ガス供給口44からも加湿ガスを供給することが望ましい。さらに、均熱帯と冷却帯との連通部13に設けられた第4の加湿ガス供給口46から、連通部13内に還元性又は非酸化性の加湿ガスを供給することも望ましい。均熱帯12内で加湿する範囲に関しては、鋼板温度が600~900℃になる領域で加湿することがSi内部酸化形成の観点から最も望ましい。しかし、一般的に、均熱帯12内に供給されたガスは、ライン上流方向すなわち加熱帯10側の方向に流れる。つまり、鋼板が最高温度になる均熱帯出口付近から冷却帯14の冷却ノズル62による冷却開始位置までの間は、従来の方法では乾燥ガスのみが流れるため露点は上昇せず、Si内部酸化形成には寄与しない領域であった。そこで本実施形態では、均熱帯と冷却帯との連通部13や冷却帯14の入り口付近にも加湿ガス供給口44,46を設けて、ここから加湿ガスを供給する。これにより、Si内部酸化を促進することができる。また、合金化工程を行う場合には、合金化温度をより十分に下げて、引張強度をより高くすることができる。なお、冷却帯および連通部の側面から見たこれら加湿ガス供給口44,46の鋼板との距離は、50mm以下とすることが好ましい。
 均熱帯内部およびハースロール近傍の露点を管理するため、均熱帯の上部ハースロール近傍の露点測定口56A、下部ハースロール近傍の露点測定口56B、および均熱帯中心部の露点測定口56Cの位置に露点計を設けることが好ましい。そして、均熱帯12の内部において、例えば露点測定口56A,56Bで測定される上部ハースロール及び下部ハースロールの近傍(1.0m未満)の露点(上部露点及び下部露点)は-10℃以下を維持し、例えば露点測定口56Cで測定される上部ハースロール及び下部ハースロールから1.0m以上離れた位置の露点(内部露点)は-20℃以上0℃以下を維持することが好ましい。
 (溶融亜鉛めっき浴)
 溶融亜鉛めっき浴22を用いて、第2冷却帯16から排出される鋼板Pに溶融亜鉛めっきを施すことができる。溶融亜鉛めっきは定法に従って行えばよい。既述のとおり、本実施形態によって製造された溶融亜鉛めっき鋼板では、Si内部酸化が十分促進されめっき密着性が向上することと、ピックアップ欠陥の発生が抑制されていることとに起因して、良好なめっき外観が得られる。
 (合金化設備)
 合金化設備23を用いて、鋼板Pに施された亜鉛めっきを加熱合金化することができる。合金化処理は定法に従って行えばよい。本実施形態によれば、合金化温度が高温にならないため、製造された合金化溶融亜鉛めっき鋼板の引張強度の低下を抑制することができる。ただし、合金化設備23は、本発明の連続溶融亜鉛めっき装置における任意の設備であり、合金化工程は、本発明の溶融亜鉛めっき鋼板の製造方法における任意の工程である。
 (鋼板の成分組成)
 焼鈍及び溶融亜鉛めっき処理の対象とする鋼板Pは特に限定されないが、Siを0.2質量%以上含有する成分組成の鋼板、すなわち高張力鋼の場合、本発明の効果を有利に得ることができる。以下、鋼板の好適な成分組成について説明する。以下の説明において%で示す単位は全て質量%である。
 Cは、鋼組織として、残留オーステナイト層やマルテンサイト相などを形成させることで加工性を向上しやすくするため、0.025%以上が好ましいが、本発明では特に下限を規定するものではない。一方、0.3%を超えると溶接性が劣化するため、C量は0.3%以下とすることが好ましい。
 Siは鋼を強化して良好な材質を得るのに有効な元素であるため、高張力鋼板には0.2%以上添加する。Siが0.2%未満では高強度を得るために高価な合金元素が必要になる。一方、2.5%を超えると酸化処理での酸化皮膜形成が抑制されてしまう。また、合金化温度も高温化するために、所望の機械特性を得ることが困難になる。したがって、Si量は2.5%以下とすることが好ましい。
 Mnは鋼の高強度化に有効な元素である。590MPa以上の引張強度を確保するためには、0.5%以上含有させることが好ましい。一方、3.0%を超えると溶接性やめっき密着性、強度延性バランスの確保が困難になる場合がある。したがって、Mn量は0.5~3.0%とすることが好ましい。引張強度が270~440MPaの場合は、1.5%以下で適宜添加する。
 Pは鋼の高強度化には有効な元素であるが、亜鉛と鋼の合金化反応を遅延させるため、Siを0.2%以上添加する鋼の場合は、0.03%以下とすることが好ましく、その他は強度に応じて適宜添加する。
 Sは鋼強度への影響は少ないが、熱間圧延・冷間圧延時の酸化皮膜形成に影響するため、0.005%以下とすることが好ましい。
 なお、上記した元素に加えて、例えばCr、Mo、Ti、Nb、V、B等の元素のうち1種又は2種以上を任意に添加することもでき、それ以外の残部は、Fe及び不可避的不純物となる。
 (発明例1,2)
 図1及び図2に示す連続溶融亜鉛めっき装置を用いて、表1に示す成分組成の鋼板を表2に示す各種焼鈍条件で焼鈍し、その後溶融亜鉛めっきを施し、溶融亜鉛めっき鋼板(GI)を製造した。一部の例では、合金化工程も行い、合金化溶融亜鉛めっき鋼板(GA)を製造した。
 加熱帯は、容積が200mのRT炉とした。加熱帯の内部の平均温度は700~800℃とした。加熱帯には、乾燥ガスとして、15体積%のHで残部がNおよび不可避的不純物からなる組成を有するガス(露点:-50℃)を用いた。加熱帯への乾燥ガスの流量は、100Nm/hrとした。
 均熱帯は、容積が700m、上下部ハースロール間距離は20m、高さが24mのRT炉とした。均熱帯出側目標鋼板温度と、実際の出側測定鋼板温度は表2のとおりであった。乾燥ガスとしては、15体積%のHで残部がNおよび不可避的不純物からなる組成を有するガス(露点:-50℃)を用いた。この乾燥ガスの一部を、中空糸膜式加湿部を有する加湿装置により加湿して、加湿ガスを調製した。中空糸膜式加湿部は、10台の膜モジュールからなり、最大100L/minの循環水を流すようにした。
 乾燥ガス供給口及び加湿ガス供給口は、図2に示す位置に配置した。上昇パス用の5つの第1の加湿ガス供給口は、下部ハースロールの中心から1.5~4.0m高い位置かつ上部ハースロールの中心から16.0~18.5m低い位置に設け、下降パス用の5つの第2の加湿ガス供給口は、上部ハースロールの中心から2.0~4.5m低い位置かつ下部ハースロールの中心から15.5~18.0m高い位置に設けた。
 第1冷却帯及び第2冷却帯には、各帯の最下部から上記乾燥ガス(露点:-50℃)を表2に示す流量で供給した。また、表2に示すように、発明例2(No.5)では、連通部の第4の加湿ガス供給口46および第1冷却帯入口の第3の加湿ガス供給口44から加湿ガス供給を行った。なお、第3の加湿ガス供給口44は、冷却ノズルの最上流位置から鋼板搬送路の上流側1.5mの位置にあり、第4の加湿ガス供給口46は、上流側2.8mの位置にある。なお、発明例1では、第3及び第4の加湿ガス供給口44,46は設けなかった。
 溶融亜鉛めっき鋼板(GI)を製造した例では、めっき浴温は450℃、めっき浴中Al濃度0.200%、付着量はガスワイピングにより片面当り60g/mに調節した。
 合金化溶融亜鉛めっき鋼板(GA)を製造した例では、めっき浴温は460℃、めっき浴中Al濃度0.130%、付着量はガスワイピングにより片面当り50g/mに調節した。また、溶融亜鉛めっきを施した後に、皮膜合金化度(Fe含有率)が10~13%となるように、誘導加熱式合金化炉にて合金化処理を行った。その際の合金化温度は表2に示す。
 (比較例1~3)
 均熱帯内での加湿ガス供給口の位置を変更した以外は、上記発明例1と同様にして、GI及びGAの製造を行った。比較例1では、均熱帯下部にのみ加湿ガス供給口を設けた。上昇パス近傍には下部ハースロールから5.5mの位置に5か所、下降パス近傍では下部ハースロールから1.5mの位置に5か所とした。なお、これらの加湿ガス供給口は、均熱帯側面から見て各パスの鋼板位置と重なっている。
 比較例2では、均熱帯上部及び下部に加湿ガス供給口を設けた。上昇パス近傍には下部ハースロールから0.9mの位置に5か所、下降パス近傍では上部ハースロールから3.5mの位置に5か所とした。ガス供給口は均熱帯側面から見て各パスの鋼板位置と重なっている。
 比較例3では、加湿ガス供給口の均熱帯上下方向位置は発明例1と同じとして、ただし、パスとパスの中間位置に配置した。
 (評価方法)
 めっき外観の評価は、光学式の表面欠陥計による検査(φ0.5以上の不めっき欠陥やロールピックアップによる疵を検出)と、目視による合金化ムラ判定(GAの場合)または目視による外観模様判定(GIの場合)とを行った。全ての項目が良好で◎、表面欠陥計による検査は合格で、かつ品質上問題とならない軽度の合金化ムラまたは外観ムラがある場合は○、表面品質グレード低下となる程度の合金化ムラまたは外観ムラがある場合は△、表面欠陥計で不合格があれば×とした。結果を表2に示す。
 また、各種条件で製造したGIおよびGAの引張強度を測定した。高張力鋼の鋼種Aは780MPa以上、高張力鋼の鋼種Bは1180MPa以上、高張力鋼の鋼種Cは980MPa以上を合格とした。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (評価結果)
 表2における総合判定の欄は、めっき外観が○で引張強度も合格の場合に合格と表記し、それ以外の場合は不合格と表記した。発明例1,2においては、全体ガス流量が変化しても所定水分量を安定的に供給できたので、コイル全長全巾に亘って良好な表面外観となり、機械特性外れも発生しなかった。これに対して比較例1~3では、良好なめっき外観を得ることができなかった。
 本発明の溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置によれば、Si含有量が0.2質量%以上の鋼板に溶融亜鉛めっきを施した場合にめっき密着性が高く良好なめっき外観を得ることができる。
 100 連続溶融亜鉛めっき装置
 10 加熱帯
 12 均熱帯
 14 第1冷却帯(急冷帯)
 16 第2冷却帯(除冷帯)
 11,13,15 スロート
 18 スナウト
 20 焼鈍炉
 22 溶融亜鉛めっき浴
 23 合金化設備
 24 乾燥ガス分配装置
 26 加湿装置
 28 循環恒温水槽
 30 乾燥ガス用配管
 32A~C 乾燥ガス供給口
 34A~C 乾燥ガス供給口
 36 加湿ガス分配装置
 38 加湿ガス用配管
 40A~E 第1の加湿ガス供給口(上昇パス用)
 42A~E 第2の加湿ガス供給口(下降パス用)
 44 第3の加湿ガス供給口(冷却帯用)
 46 第4の加湿ガス供給口(連通部用)
 48 加湿ガス流量計
 50 加湿ガス露点計
 52 上部ハースロール
 54 下部ハースロール
 56A~C 露点測定口
 58 上部ハースロール
 60A,B 下部ハースロール
 62 冷却ノズル
 62A 冷却ノズルの最上流位置
 P 鋼板
 

Claims (13)

  1.  加熱帯と、均熱帯と、冷却帯とがこの順に並置された縦型の焼鈍炉と、前記冷却帯の下流に位置する溶融亜鉛めっき設備と、を有する連続溶融亜鉛めっき装置を用いた溶融亜鉛めっき鋼板の製造方法であって、
     鋼板を前記焼鈍炉の内部で、前記加熱帯、前記均熱帯及び前記冷却帯の順に搬送して、前記鋼板に対して焼鈍を行い、その際、前記鋼板は、各帯の上部及び下部にそれぞれ1つ以上設けられた上部ハースロール及び下部ハースロールを通過しながら、各帯の内部で上下方向に複数回搬送されて複数パスを形成する工程と、
     前記溶融亜鉛めっき設備を用いて、前記冷却帯から排出される鋼板に溶融亜鉛めっきを施す工程と、
    を有し、
     加湿ガスを前記均熱帯内に供給するにあたり、
     前記鋼板が上方に移動するパスにおいては、前記下部ハースロールの中心から1.0m以上5.0m以下高い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第1の加湿ガス供給口から、前記加湿ガスを供給し、
     前記鋼板が下方に移動するパスにおいては、前記上部ハースロールの中心から1.0m以上5.0m以下低い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第2の加湿ガス供給口から、前記加湿ガスを供給する
    ことを特徴とする溶融亜鉛めっき鋼板の製造方法。
  2.  前記第1の加湿ガス供給口は、前記上部ハースロールの中心から2.0m以上低い位置に設けられ、前記第2の加湿ガス供給口は、前記下部ハースロールの中心から2.0m以上高い位置に設けられる、請求項1に記載の溶融亜鉛めっき鋼板の製造方法。
  3.  前記冷却帯には、鋼板搬送路に沿って少なくとも1つの冷却ノズルが設けられ、
     前記冷却帯内に加湿ガスを供給し、その際、前記冷却ノズルの最上流位置から鋼板搬送路の上流側3.0m以内の位置に設けられた第3の加湿ガス供給口から、前記加湿ガスを供給する、請求項1又は2に記載の溶融亜鉛めっき鋼板の製造方法。
  4.  前記均熱帯と前記冷却帯との連通部に設けられた第4の加湿ガス供給口から、該連通部内に加湿ガスを供給する、請求項1~3のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  5.  前記均熱帯の内部において、前記上部ハースロール及び前記下部ハースロールの近傍の露点は-10℃以下とし、前記上部ハースロール及び前記下部ハースロールから1.0m以上離れた位置の露点は-20℃以上0℃以下とする、請求項1~4のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  6.  前記連続溶融亜鉛めっき装置は、前記溶融亜鉛めっき設備の下流に位置する合金化設備をさらに有し、
     前記合金化設備を用いて、前記鋼板に施された亜鉛めっきを加熱合金化する工程をさらに有する、請求項1~5のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  7.  前記均熱帯の高さが20m以上40m以下である、請求項1~6のいずれか一項に記載の溶融亜鉛めっき鋼板の製造方法。
  8.  加熱帯と、均熱帯と、冷却帯とがこの順に並置された縦型の焼鈍炉と、前記冷却帯の下流に位置する溶融亜鉛めっき設備と、を有する連続溶融亜鉛めっき装置であって、
     前記加熱帯、前記均熱帯及び前記冷却帯の上部及び下部に、各帯の内部で鋼板を上下方向に複数回搬送して複数パスを形成するためにそれぞれ1つ以上設けられた上部ハースロール及び下部ハースロールと、
     前記均熱帯で前記鋼板が上方に移動するパスにおいて、前記下部ハースロールの中心から1.0m以上5.0m以下高い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第1の加湿ガス供給口と、
     前記均熱帯で前記鋼板が下方に移動するパスにおいて、前記上部ハースロールの中心から1.0m以上5.0m以下低い位置で、かつ前記均熱帯の側面から見て当該パスの鋼板と重なる位置に設けられた第2の加湿ガス供給口と、
    を有することを特徴とする連続溶融亜鉛めっき装置。
  9.  前記第1の加湿ガス供給口は、前記上部ハースロールの中心から2.0m以上低い位置に設けられ、前記第2の加湿ガス供給口は、前記下部ハースロールの中心から2.0m以上高い位置に設けられる、請求項8に記載の連続溶融亜鉛めっき装置。
  10.  前記冷却帯に、鋼板搬送路に沿って設けられた少なくとも1つの冷却ノズルと、
     前記冷却ノズルの最上流位置から鋼板搬送路の上流側3.0m以内の位置に設けられた第3の加湿ガス供給口と、
    をさらに有する、請求項8又は9に記載の連続溶融亜鉛めっき装置。
  11.  前記均熱帯と前記冷却帯との連通部に設けられた第4の加湿ガス供給口をさらに有する、請求項8~10のいずれか一項に記載の連続溶融亜鉛めっき装置。
  12.  前記溶融亜鉛めっき設備の下流に位置する合金化設備をさらに有する、請求項8~11のいずれか一項に記載の連続溶融亜鉛めっき装置。
  13.  前記均熱帯の高さが20m以上40m以下である、請求項8~12のいずれか一項に記載の連続溶融亜鉛めっき装置。
     
PCT/JP2018/042900 2017-12-22 2018-11-20 溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置 WO2019123953A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020207020494A KR102378375B1 (ko) 2017-12-22 2018-11-20 용융 아연 도금 강판의 제조 방법 및 연속 용융 아연 도금 장치
CN201880081834.6A CN111492086B (zh) 2017-12-22 2018-11-20 熔融镀锌钢板的制造方法及连续熔融镀锌装置
JP2019546251A JP6607339B1 (ja) 2017-12-22 2018-11-20 溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置
EP18889989.2A EP3730662B1 (en) 2017-12-22 2018-11-20 Method for producing hot-dip galvanized steel sheet and continuous hot-dip galvanizing apparatus
MX2020006497A MX2020006497A (es) 2017-12-22 2018-11-20 Metodo para la produccion de lamina de acero galvanizada por inmersion en caliente y aparato de galvanizacion por inmersion en caliente continua.
US16/955,041 US11718889B2 (en) 2017-12-22 2018-11-20 Method for producing hot-dip galvanized steel sheet and continuous hot-dip galvanizing apparatus
US18/332,752 US20230323501A1 (en) 2017-12-22 2023-06-12 Continuous hot-dip galvanizing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017246959 2017-12-22
JP2017-246959 2017-12-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/955,041 A-371-Of-International US11718889B2 (en) 2017-12-22 2018-11-20 Method for producing hot-dip galvanized steel sheet and continuous hot-dip galvanizing apparatus
US18/332,752 Division US20230323501A1 (en) 2017-12-22 2023-06-12 Continuous hot-dip galvanizing apparatus

Publications (1)

Publication Number Publication Date
WO2019123953A1 true WO2019123953A1 (ja) 2019-06-27

Family

ID=66994707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/042900 WO2019123953A1 (ja) 2017-12-22 2018-11-20 溶融亜鉛めっき鋼板の製造方法及び連続溶融亜鉛めっき装置

Country Status (7)

Country Link
US (2) US11718889B2 (ja)
EP (1) EP3730662B1 (ja)
JP (1) JP6607339B1 (ja)
KR (1) KR102378375B1 (ja)
CN (1) CN111492086B (ja)
MX (1) MX2020006497A (ja)
WO (1) WO2019123953A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11384419B2 (en) * 2019-08-30 2022-07-12 Micromaierials Llc Apparatus and methods for depositing molten metal onto a foil substrate
JP7318816B2 (ja) 2021-06-25 2023-08-01 Jfeスチール株式会社 鋼板の不めっき欠陥予測方法、鋼板の欠陥低減方法、溶融亜鉛めっき鋼板の製造方法、及び鋼板の不めっき欠陥予測モデルの生成方法
CN116238190A (zh) * 2023-02-27 2023-06-09 海阳市瑞祎生物科技有限公司 一种生物降解薄膜加工用薄膜加湿炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043273A1 (ja) 2005-10-14 2007-04-19 Nippon Steel Corporation Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
JP2010185101A (ja) 2009-02-12 2010-08-26 Jfe Steel Corp 連続焼鈍炉のガスジェット冷却装置
JP2010202959A (ja) 2009-03-06 2010-09-16 Jfe Steel Corp 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法
WO2015068369A1 (ja) * 2013-11-07 2015-05-14 Jfeスチール株式会社 連続焼鈍設備および連続焼鈍方法
JP2016017193A (ja) 2014-07-07 2016-02-01 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP2016125131A (ja) * 2015-01-08 2016-07-11 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5916378A (en) * 1997-03-11 1999-06-29 Wj Semiconductor Equipment Group, Inc. Method of reducing metal contamination during semiconductor processing in a reactor having metal components
US6562473B1 (en) * 1999-12-03 2003-05-13 Kawasaki Steel Corporation Electrical steel sheet suitable for compact iron core and manufacturing method therefor
BE1015109A3 (fr) * 2002-09-13 2004-10-05 Drever Internat S A Procede de traitemant thermique de bande metallique.
JP5338087B2 (ja) * 2008-03-03 2013-11-13 Jfeスチール株式会社 めっき性に優れる溶融亜鉛めっき鋼板の製造方法および連続溶融亜鉛めっき設備
JP5071551B2 (ja) * 2010-12-17 2012-11-14 Jfeスチール株式会社 鋼帯の連続焼鈍方法、溶融亜鉛めっき方法
JP5505430B2 (ja) 2012-01-17 2014-05-28 Jfeスチール株式会社 鋼帯の連続焼鈍炉及び連続焼鈍方法
US9327249B2 (en) * 2012-04-17 2016-05-03 Air Products And Chemicals, Inc. Systems and methods for humidifying gas streams
JP5884748B2 (ja) 2013-02-25 2016-03-15 Jfeスチール株式会社 鋼帯の連続焼鈍装置および連続溶融亜鉛めっき装置
JP6052464B2 (ja) * 2014-02-25 2016-12-27 Jfeスチール株式会社 還元炉の露点制御方法および還元炉
WO2015185956A1 (en) * 2014-06-06 2015-12-10 ArcelorMittal Investigación y Desarrollo, S.L. High strength multiphase galvanized steel sheet, production method and use
JP6260513B2 (ja) * 2014-10-30 2018-01-17 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN105908089B (zh) * 2016-06-28 2019-11-22 宝山钢铁股份有限公司 一种热浸镀低密度钢及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043273A1 (ja) 2005-10-14 2007-04-19 Nippon Steel Corporation Siを含有する鋼板の連続焼鈍溶融めっき方法及び連続焼鈍溶融めっき装置
JP2010185101A (ja) 2009-02-12 2010-08-26 Jfe Steel Corp 連続焼鈍炉のガスジェット冷却装置
JP2010202959A (ja) 2009-03-06 2010-09-16 Jfe Steel Corp 連続溶融亜鉛めっき装置および溶融亜鉛めっき鋼板の製造方法
WO2015068369A1 (ja) * 2013-11-07 2015-05-14 Jfeスチール株式会社 連続焼鈍設備および連続焼鈍方法
JP2016017193A (ja) 2014-07-07 2016-02-01 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法
JP2016125131A (ja) * 2015-01-08 2016-07-11 Jfeスチール株式会社 合金化溶融亜鉛めっき鋼板の製造方法

Also Published As

Publication number Publication date
US11718889B2 (en) 2023-08-08
MX2020006497A (es) 2020-09-17
CN111492086A (zh) 2020-08-04
JP6607339B1 (ja) 2019-11-20
EP3730662A4 (en) 2020-12-16
EP3730662B1 (en) 2021-11-17
CN111492086B (zh) 2022-05-03
US20230323501A1 (en) 2023-10-12
JPWO2019123953A1 (ja) 2020-01-16
KR102378375B1 (ko) 2022-03-25
EP3730662A1 (en) 2020-10-28
US20200377964A1 (en) 2020-12-03
KR20200095563A (ko) 2020-08-10

Similar Documents

Publication Publication Date Title
JP6455544B2 (ja) 溶融亜鉛めっき鋼板の製造方法
JP6020605B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP6131919B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
US11649520B2 (en) Continuous hot dip galvanizing apparatus
US20230323501A1 (en) Continuous hot-dip galvanizing apparatus
WO2017072989A1 (ja) 溶融亜鉛めっき鋼板の製造方法
JP7111059B2 (ja) 還元性雰囲気炉の露点制御方法および還元性雰囲気炉、ならびに冷延鋼板の製造方法および溶融亜鉛めっき鋼板の製造方法
JP6128068B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207020494

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018889989

Country of ref document: EP

Effective date: 20200722