WO2023244075A1 - 강판 및 그 제조방법 - Google Patents

강판 및 그 제조방법 Download PDF

Info

Publication number
WO2023244075A1
WO2023244075A1 PCT/KR2023/008374 KR2023008374W WO2023244075A1 WO 2023244075 A1 WO2023244075 A1 WO 2023244075A1 KR 2023008374 W KR2023008374 W KR 2023008374W WO 2023244075 A1 WO2023244075 A1 WO 2023244075A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
plating
less
plating layer
steel
Prior art date
Application number
PCT/KR2023/008374
Other languages
English (en)
French (fr)
Inventor
이강민
황현석
오꽃님
이세웅
오지은
조용균
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230076799A external-priority patent/KR20230174175A/ko
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2023244075A1 publication Critical patent/WO2023244075A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils

Definitions

  • the present invention relates to a steel sheet that can be used in automobiles, etc., and to a steel sheet capable of securing improved plating characteristics and a method of manufacturing the same.
  • the hot press forming method is a method of processing steel at a high temperature (over 800°C), which is suitable for processing steel, and then rapidly cooling it to a low temperature to form low-temperature structures such as martensite within the steel, thereby increasing the strength of the final product.
  • This hot press forming method can minimize workability problems when manufacturing members with high strength.
  • various alloying elements are added to improve hardenability so that martensite can be easily generated when cooled.
  • elements with a higher oxidation tendency compared to Fe such as Mn, Si, Al, Cr, and B, can be added.
  • various types of plating are sometimes applied to the surface of the steel material.
  • methods of plating the surface of steel materials by hot-dip plating such as hot-dip galvanizing or hot-dip aluminum plating, are widely used.
  • the hot dip plating is generally annealed before plating, but the plating property is reduced due to surface oxides formed during annealing resulting from alloying elements such as Mn, Si, Al, Cr, and B contained in the steel.
  • alloying elements such as Mn, Si, Al, Cr, and B contained in the steel.
  • the alloy elements diffuse to the surface of the steel material and react with trace amounts of oxygen or water vapor present in the annealing furnace to form single or complex oxides of the elements. These oxides may interfere with plating wettability during plating, resulting in non-plating or delamination of plating, thereby deteriorating plating quality.
  • Patent Document 1 controls the air-fuel ratio of air and fuel to 0.80 to 0.95 during the annealing process, thereby manufacturing the steel sheet in a direct flame furnace in an oxidizing atmosphere. After oxidation, iron oxide containing Si, Mn, or Al alone or complex oxides is formed to a certain depth inside the steel sheet, and then the iron oxide is reduced and annealed in a reducing atmosphere and then hot-dip galvanized to provide excellent plating quality.
  • a technology for providing alloyed hot-dip galvanized steel sheets is presented.
  • Patent Document 2 states that the dew point in the annealing furnace is maintained high and alloy components such as Mn, Si, and Al, which are easily oxidized, are internally oxidized inside the steel.
  • a method to improve plating properties by reducing external oxides on the surface of a steel sheet after annealing has been proposed.
  • the method according to Patent Document 2 can solve the plating problem caused by the external oxidation of Si, which is easy to internally oxidize, but when a large amount of Mn, which is relatively difficult to internally oxidize, is added, the effect is minimal. .
  • linear non-plating may occur due to surface oxide formed unevenly on the surface, or when hot-dip galvannealed steel sheet (GA steel sheet) is manufactured through alloying heat treatment after plating. Problems such as linear defects due to non-uniform alloying may occur on the surface of the hot-dip galvannealed steel sheet.
  • Patent Document 1 Korean Patent Publication No. 2010-0030627
  • Patent Document 2 Korean Patent Publication No. 2009-0006881
  • One aspect of the present invention is to provide a steel sheet with excellent plating characteristics and a method of manufacturing the same by suppressing un-plated or plated layer peeling during plating.
  • An example of the present invention is a steel plate containing one or two types of Mn and Si,
  • the content of one or two components of Mn and Si up to 1 ⁇ m from the surface of the steel sheet is equal to the content of the base material. This applies to steel plates with two or more ribs less than 60%.
  • Another example of the present invention includes preparing a base steel plate containing one or two types of Mn and Si among steels;
  • Forming an Fe plating layer by performing Fe pre-plating on the surface of the base steel sheet to a thickness of more than 0.5 g/m 2 to 3 g/m 2 or less;
  • It relates to a method of manufacturing a steel sheet including the step of annealing the base steel sheet on which the Fe plating layer is formed at a temperature of 600 to 950° C. in an atmosphere with a dew point temperature of 10° C. or lower.
  • the present invention uses a method different from the conventional method to suppress the formation of oxides such as Mn and Si on the surface of the steel material, thereby suppressing non-plating or peeling during hot dip plating, thereby providing a steel sheet with excellent plating characteristics.
  • Figure 1 is a schematic diagram of the GDS (Glow discharge optical emission spectrometer) profile of the Mn content measured in the depth direction on the steel surfaces of Comparative Example 1 and Inventive Example 6 according to an embodiment of the present invention.
  • GDS Low discharge optical emission spectrometer
  • Figure 2 is a schematic diagram of the GDS (Glow discharge optical emission spectrometer) profile of the Si content measured in the longitudinal direction on the steel surfaces of Comparative Example 1 and Inventive Example 6 according to an embodiment of the present invention.
  • GDS Low discharge optical emission spectrometer
  • the steel sheet contains oxide forming elements such as Mn and Si.
  • the Mn, Si, etc. may form oxides on the surface of the steel sheet during the annealing process before plating, thereby deteriorating the plating characteristics.
  • the steel sheet may have the following characteristics in the GDS concentration profile of Mn and Si, which are oxidizing elements that form oxides on the surface and deteriorate plating characteristics.
  • the GDS concentration profile refers to the concentration and concentration profile measured using a glow discharge optical emission spectrometer.
  • Figures 1 and 2 show the concentration profiles of Mn and Si measured in the depth direction from the surface of the steel sheets of Comparative Example 1 and Inventive Example 6 in the examples described later.
  • the concentration profile measured from the surface shows a valley where the content decreases. You can see that a rising mountain appears.
  • the content of one or two components of Mn and Si up to 1 ⁇ m from the surface of the steel sheet is There may be two or more valleys with less than 60% of the base material content.
  • the base material content can be said to be the average content of the corresponding component in the steel sheet manufactured by adjusting it during the steelmaking process, typically at 1/4 of the thickness (t, unit mm) of the steel sheet (1/4*t). Measured ones can be used.
  • valleys If the number of valleys is less than two, surface enrichment of Mn and Si elements may occur, resulting in poor plating properties. However, when there are two or more valleys, a deficient layer of the corresponding element is formed to suppress surface thickening, thereby improving plating properties.
  • the content of one or two types of Mn and Si contained within or at grain boundaries of grains within 1 ⁇ m from the surface in the thickness direction is 1/4 of the thickness (t, unit mm) of the steel sheet. It is effective to have at least 40% of the ingredient content measured at (1/4*t).
  • the diffusion of an element within a cavity is a function of concentration and time. In order to minimize the diffusion of elements forming surface oxides to the surface, it is desirable to anneale and roll the steel sheet at the fastest possible speed.
  • the present invention is not particularly limited with respect to the alloy composition of the steel sheet containing Mn, Si, etc. among the above steels, and any composition that a person skilled in the art can recognize that can be used in the technical field to which the present invention pertains is sufficient.
  • the steel sheet has, in weight percent, C: 0.02-0.6%, Si: 0.001-2%, Al: 0.001-1%, Mn: 0.1-4%, P: 0.05% or less, S: 0.02% or less, Cr: 1% or less, N: 0.02% or less, Ti: 0 ⁇ 0.1%, B: 0.0001 ⁇ 0.01%, Cu: 0 ⁇ 1.00%, Mo: 0 ⁇ 1.00%, Cr: 0 ⁇ 1.00%, Ni: 0 ⁇ 1.00%, V: 0 ⁇ 1.00%, Ca: 0 ⁇ 0.01%, Nb:0 ⁇ 0.1%, Sn:0 ⁇ 1%, W: 0 ⁇ 1%, Sb:0 ⁇ 1%, Mg: 0 ⁇ 0.1%, Co: 0 ⁇ 1%, As: 0 ⁇ 1%, Zr: 0 ⁇ 1%, Bi: 0 ⁇ 1%, REM: 0 ⁇ 0.3%, the remainder may contain Fe and inevitable impurities.
  • the steel sheet may contain an oxide made of one or two or more of Mn, Si, Al, Cr, and B at a grain boundary from the surface to 10 ⁇ m in the depth direction.
  • oxidation-friendly elements in the steel such as Mn, Si, Al, Cr, B, etc., mainly diffuse to the grain boundaries of the base iron and move to the surface layer, and at the same time, oxygen contained in the Fe plating layer diffuses into the steel and combines with the corresponding oxidation-friendly elements.
  • an oxide can be formed.
  • the depth at which the oxide is formed may be proportional to the absolute amount of oxygen contained in the Fe plating layer. As described later, oxygen in the Fe plating layer may be included in an amount of 5 to 50% by weight. Accordingly, the thickness of the oxide after annealing is 1 ⁇ m or more to 10 ⁇ m or less. If it is less than 1 ⁇ m, the level of suppression of surface thickening is insufficient and the plating property is not improved. If it exceeds 10 ⁇ m, an additional electroplating cell must be installed. This is undesirable from an economic standpoint because it causes a decrease in production speed.
  • the surface of the steel sheet may include a plating layer such as a hot-dip zinc plating layer or a hot-dip aluminum plating layer.
  • a plating layer such as a hot-dip zinc plating layer or a hot-dip aluminum plating layer.
  • the type or method of the plating layer is not particularly limited, and may include any type or method that can be performed in the technical field to which the present invention pertains.
  • any base steel sheet having the above-described alloy composition can be applied without limitation as a base steel sheet for plating or hot-dip galvanized steel sheet according to the present invention, so the method of manufacturing the base steel sheet may not be specifically limited.
  • the steel sheet has, in weight percent, C: 0.02-0.6%, Si: 0.001-2%, Al: 0.001-1%, Mn: 0.1-4%, P: 0.05% or less, S: 0.02% or less, Cr: 1% or less, N: 0.02% or less, Ti: 0 ⁇ 0.1%, B: 0.0001 ⁇ 0.01%, Cu: 0 ⁇ 1.00%, Mo: 0 ⁇ 1.00%, Cr: 0 ⁇ 1.00%, Ni: 0 ⁇ 1.00%, V: 0 ⁇ 1.00%, Ca: 0 ⁇ 0.01%, Nb:0 ⁇ 0.1%, Sn:0 ⁇ 1%, W: 0 ⁇ 1%, Sb:0 ⁇ 1%, Mg: 0 ⁇ 0.1%, Co: 0 ⁇ 1%, As: 0 ⁇ 1%, Z
  • the base steel plate according to an embodiment of the present invention can be manufactured by reheating, hot rolling, coiling, and cold rolling a steel slab that satisfies the above-described alloy composition.
  • Steel slabs satisfying the alloy composition of the present invention can be reheated to a temperature range of 1200°C or higher. In order to re-dissolve most of the precipitates present in the steel, it can be reheated to a temperature of 1200°C or higher. In one embodiment of the present invention, the reheating temperature may be 1250°C or higher.
  • the reheated steel slab can be hot rolled at a finish rolling temperature of Ar3 to 1000°C.
  • a finish rolling temperature of Ar3 to 1000°C.
  • the finish rolling temperature is lower than Ar3 ( ⁇ ⁇ ⁇ transformation temperature when cooled)
  • abnormal rolling is likely to occur, resulting in mixed structures in the surface layer, and there may be difficulties in controlling the shape of the hot rolled steel sheet.
  • the finish rolling temperature exceeds 1000°C, there is a problem in that uniform hot rolling is not performed throughout the thickness, resulting in insufficient grain refinement.
  • the hot-rolled steel sheet can be wound in a temperature range of more than Ms (martensite phase transformation initiation temperature) and less than 750°C.
  • Ms martensite phase transformation initiation temperature
  • 750°C the strength of the hot-rolled steel sheet becomes too high, which reduces cold rolling properties.
  • the coiling temperature exceeds 750°C, the thickness of the oxide layer increases and surface grain boundaries are oxidized, which not only deteriorates pickling properties, but also causes the surface grain boundaries to fall off during annealing in a continuous annealing furnace.
  • the cooling conditions up to the coiling temperature after hot rolling are not particularly limited, and cooling can be performed under normal conditions applied in the same technical field. In one embodiment of the present invention, air cooling can be performed.
  • the hot-rolled steel sheet that has gone through the above-described process can be subjected to pickling treatment by placing it in a hydrochloric acid bath to remove hot-rolled scale.
  • the hydrochloric acid concentration of the hydrochloric acid bath is in the range of 10 to 30%, and the pickling speed is 100 to 250 mpm. If the pickling speed exceeds 250 mpm, the surface scale of the hot rolled steel sheet may not be completely removed, and if the pickling speed is lower than 100 mpm, the surface layer of the base iron may be corroded by hydrochloric acid, so it can be performed at 180 mpm or higher.
  • a cold rolled steel sheet can be obtained by cold rolling the coiled steel sheet at a cumulative reduction rate of 30 to 90%. If the reduction ratio is less than 30%, twisting of the plate may occur due to inaccurate rolling roll and tension control, and recrystallization may not occur sufficiently during annealing, which may increase anisotropy of the material even after hot forming. On the other hand, if the reduction ratio exceeds 90%, production of the product may not be possible due to the load on the cold rolling roll during rolling.
  • Fe pre-plating is performed on the surface of the base steel sheet before annealing to form an Fe plating layer.
  • the method of forming the Fe plating layer is not particularly limited, but electroplating method or the like may be used.
  • the plating adhesion amount of the Fe pre-plating is greater than 0.5 g/m 2 and less than 3 g/m 2 .
  • the plating amount of the Fe plating layer In order to ensure the quality of hot dip plating of steel sheets containing Mn and Si, it is preferable to treat the plating amount of the Fe plating layer to be from more than 0.5 g/m 2 to 3.0 g/m 2 or less based on iron concentration.
  • the upper limit of the Fe plating amount is not particularly limited, but if it exceeds 3.0 g/m 2 in a continuous plating process, it is not economical because multiple plating cells are required or the production speed is reduced.
  • the amount of Fe plating is large, the Fe electroplating solution is rapidly denatured in a continuous process, causing a drop in pH and a significant decrease in plating efficiency, making solution management difficult.
  • the Fe plating amount is the iron concentration contained in the plating layer, and when the Fe plating layer is completely reduced during annealing, it has a thickness of about 0.05 to 0.4 ⁇ m.
  • the Fe plating layer can be formed on the surface of the base iron through electroplating, and the oxygen concentration of the formed Fe plating layer can be controlled by appropriately controlling the conditions of the electroplating solution and plating conditions.
  • iron ions including ferrous ions and ferric ions; complexing agent; and inevitable impurities, and the concentration of ferric ions among the iron ions is 5 to 60% by weight.
  • the electroplating solution includes ferrous ions and ferric ions.
  • ferrous ions In order to obtain high plating efficiency, it may be advantageous to include only ferrous ions. However, if only ferrous ions are included, the solution deteriorates and plating efficiency drastically decreases, which may cause quality deviation in the continuous electroplating process. , may further include the ferric ion.
  • the concentration of the ferric ions is preferably 5 to 60% by weight, more preferably 5 to 40% by weight, of the total of ferrous and ferric ions.
  • the rate at which ferric iron is reduced to ferrous iron at the cathode is less than the rate at which ferrous iron is oxidized to ferric iron at the anode, so the ferric iron concentration rises rapidly and the pH drops rapidly, reducing plating efficiency. continues to deteriorate.
  • the concentration of ferric ions exceeds 60%, the reaction amount for reducing ferric iron to ferrous iron at the cathode is greater than the reaction amount for reducing ferrous iron and precipitating it into metallic iron, so plating efficiency greatly decreases. And the plating quality deteriorates.
  • the concentration of ferric ions among the iron ions is 5 to 60% by weight. It is desirable to ensure that .
  • the concentration of iron ions is preferably 1 to 80 g per 1 L of the electroplating solution, and more preferably 10 to 50 g per 1 L. If it is less than 1g/L, there is a problem that plating efficiency and plating quality deteriorate rapidly. On the other hand, if it exceeds 80g/L, the solubility may be exceeded and precipitation may occur, and loss of raw materials due to loss of solution during the continuous plating process may occur. As it increases, it is not economical.
  • the electroplating solution of the present invention contains a complexing agent.
  • a complexing agent In order to maintain high plating efficiency without generating sludge while containing a large amount of ferric iron, it is preferable to use an amino acid or an amino acid polymer as a complexing agent.
  • amino acid refers to an organic molecule in which a carboxyl group (-COOH) and an amine group (-NH2) are combined
  • amino acid polymer refers to an organic molecule formed by polymerizing two or more amino acids.
  • An amino acid polymer has complexing agent properties similar to amino acids. represents. Therefore, in the following description, amino acids and amino acid polymers are collectively referred to as amino acids.
  • ferric iron Precipitation due to ions can be prevented.
  • ferric ions can maintain positive ions even if they are complexed, ferric ions can easily be transferred to the cathode and reduced to ferrous ions to participate in the plating reaction, while transfer to the anode is suppressed and ferric ions are converted to ferric ions.
  • the rate of ion generation is slowed, the ferric ion concentration is maintained at a constant level even if continuous plating is performed for a long period of time, plating efficiency is maintained constant, and there is no need to replace the electrolyte solution.
  • sludge can be prevented by using an amino acid as a complexing agent, and not only ferrous ions but also ferric ions can be used as plating raw materials, and when a mixture of ferrous and ferric ions is used, the solution Since the pH change can be slowed and the accumulation of ferric ions can be easily prevented, electroplating efficiency and plating quality can be maintained consistently in a continuous electroplating process.
  • the complexing agent is preferably added in an amount such that the molar concentration ratio between the iron ion and the complexing agent is 1:0.05 to 2.0, and more preferably 1:0.5 to 1.0. If it is less than 0.05, it does not prevent excessively contained ferric ions from combining with hydroxide ions or oxygen to form sludge, and even if ferric iron is not included, plating efficiency is greatly reduced and further causes burning, which reduces plating quality. It gets worse.
  • the complexing agent is preferably at least one selected from amino acids or amino acid polymers.
  • it may be at least one selected from alanine, glycine, serine, threonine, arginine, glutamine, glutamic acid, and glycylglycine.
  • the temperature of the Fe electroplating solution does not significantly affect the quality of the Fe plating layer, but when it exceeds 80°C, evaporation of the solution becomes extreme and the concentration of the solution continuously changes, making uniform electroplating difficult.
  • the pH of the Fe electroplating solution is less than 2.0, the electroplating efficiency decreases, making it unsuitable for the continuous plating process. If the pH exceeds 5.0, the plating efficiency increases, but sludge in which iron hydroxide precipitates is generated during continuous electroplating. This causes problems with pipe blockage, rolls, and equipment contamination.
  • the current density is less than 3A/dm 2 , the plating overvoltage of the cathode decreases and Fe electroplating efficiency decreases, making it unsuitable for the continuous plating process. If the current density exceeds 120A/dm 2 , burning occurs on the plating surface and electricity is lost. The problem occurs that the plating layer is uneven and the Fe plating layer easily falls off.
  • the present invention preferably contains 5 to 50% by weight of oxygen in the Fe plating layer.
  • the causes of oxygen mixing in the Fe plating layer are as follows. In the process of iron precipitating on the surface of the steel sheet to which the cathode is applied, hydrogen ions are simultaneously reduced to hydrogen gas, causing the pH to rise. Therefore, both ferrous and ferric ions are temporarily combined with OH- ions and can be incorporated together when the Fe plating layer is formed.
  • an anionic complexing agent such as acetic acid, lactic acid, citric acid, or EDTA
  • the iron ion combined with the OH- ion of the complexing agent will have a negative charge on average, and if a cathode is applied for electroplating, an electrically repulsive force will occur. This prevents incorporation into the Fe plating layer.
  • amino acids are electrically neutral at pH 2.0 to 5.0, and become positive ions in strong acids below pH 2.0. Even if 1 to 2 OH- are bonded to the iron ion bound to the amino acid, they become positive ions, so they are used as cathodes for electroplating. Excessive electrical attraction occurs and a large amount of oxygen is mixed.
  • amino acids are used as complexing agents so that the molar concentration ratio of iron ions and amino acids is 1:0.05 to 1:2.0, and Fe electroplating is performed while maintaining pH 2.0 to 5.0, plating efficiency is high and sludge generation is suppressed.
  • the base steel sheet on which the Fe plating layer is formed is annealed.
  • the annealing can be performed by maintaining the dew point temperature at +10°C or lower and maintaining the temperature at 600 to 950°C for 1 to 1000 seconds.
  • the lower limit of the dew point temperature can be set to -50°C, and preferably -10°C.
  • the annealing can be heat treated in a temperature range of 600 to 950°C. If the heat treatment temperature is less than 600°C, it is difficult for the rolled structure created by cold rolling to recover and recrystallize, and it is difficult to secure sufficient tensile properties. On the other hand, if the heat treatment temperature exceeds 950°C, excessive decarburization occurs and fatigue properties are inferior. , there is a risk that a large amount of B oxide may be formed, which may reduce plating adhesion during plating, and may cause deterioration of plating equipment, which may be a factor in increasing process costs due to frequent replacement of equipment.
  • the annealing time may be 1 to 1000 seconds. If the annealing time is less than 1 second, it is difficult to secure the annealing effect, and if the annealing time exceeds 1000 seconds, the production line may decrease.
  • moist nitrogen may be added to the heating section, preferably when the temperature is raised to 700°C or higher. This is to induce internal oxidation of oxidizing elements, and moist nitrogen can be injected at a flow rate of 50 to 200 Nm 3 /h (on the other hand, the amount of moisture in the 50 to 200 Nm 3 /h section of moist nitrogen is 5 to 40 L/ h).
  • the amount of moist nitrogen is less than 50 Nm 3 /h, the dew point raising effect is insufficient and the formation of an internal oxidation layer is weak, and if it exceeds 200 Nm 3 /h, the dew point exceeds +10°C and becomes excessively high, causing base iron There is a problem with it being oxidized.
  • the annealed steel sheet After the annealing step, the annealed steel sheet can be cooled. Since the cooling conditions in the cooling step after the annealing step do not significantly affect the surface quality of the final product, that is, the plating quality, there is no need to specifically limit the cooling conditions in the present invention. However, in order to prevent oxidation of iron components during the cooling process, an atmosphere that is at least reductive to iron may be applied.
  • Plating may be additionally performed on the manufactured steel sheet.
  • the plating is not particularly limited, and for example, an annealed steel sheet may be immersed in a hot-dip galvanizing bath or a molten aluminum plating bath to form a hot-dip plating layer or an alloyed hot-dip plating layer.
  • the hot-dip plating layer may be a hot-dip aluminum plating layer, a hot-dip Al-Si plating layer, a hot-dip Al-Si-Mg plating layer, a hot-dip zinc plating layer, a hot-dip Zn-Mg plating layer, etc.
  • the alloyed hot-dip plating layer may be an alloyed hot-dip aluminum plating layer or an alloyed hot-dip plating layer. It may be a hot-dip Al-Si plating layer, an alloyed hot-dip Al-Si-Mg plating layer, an alloyed hot-dip zinc plating layer, or an alloyed hot-dip Zn-Mg plating
  • the plating layer may contain Mn, Cr, Cu, Mo, Ni, Sb, Sn, Ti, Ca, Sr, Mg, etc.
  • the adhesion amount of the plating layer is not particularly limited, and is, for example, set to an adhesion amount within a general range. Similar to a steel plate, a plating layer or an alloyed plating layer may be provided on the steel member after heat treatment.
  • the Fe plating layer was electroplated with Fe by immersing the cold rolled steel sheet in the Fe plating solution and applying a current density of 20 A/dm 2 , and the amount of adhesion was controlled by controlling the plating time. (At this time, the temperature of the solution was maintained at 50°C.)
  • the plating time according to the target adhesion amount is calculated by dissolving the Fe plating layer with a 5 to 10% by weight hydrochloric acid solution after performing Fe electroplating with the same solution using a copper plate in advance. The total amount of Fe was measured to calculate the electroplating adhesion amount and plating efficiency, and the calculation was made based on this.
  • the steel sheet manufactured as above was subjected to GDS (Glow Discharge optical emission Spectrometer) analysis to measure the content profile of Mn and Si in the depth direction from the surface of the steel sheet, Comparative Example 1 and Invention Example
  • GDS Gas Discharge optical emission Spectrometer
  • the GDS profile of 6 is shown in Figures 1 and 2 below.
  • the GDS analysis of the present invention used LECO's GDS850A equipment and was measured in RF mode at intervals of 0.01 to 0.03 ⁇ m from the surface to 2 ⁇ m in the depth direction.
  • the number of valleys in which the content of each element is less than 60% of the base material content from the surface to 1 ⁇ m in the thickness direction is A
  • the content of the deepest valley is B (unit, wt.%) ) and are shown in Table 1 below.
  • the trough does not mean the lowest point in GDS, but rather represents a trend observed on the profile.
  • the number of valleys in Comparative Example 1 for Mn was 1 and the number of valleys in Invention Example 6 was 2, and in FIG. 2, the number of valleys in Comparative Example 1 for Si was not observed, but One was observed in Honor 6.
  • the plating properties of each steel sheet were evaluated and the results are shown in Table 1 below.
  • the plating properties were evaluated by plating adhesion. This was evaluated using structural adhesive SA-1607E from Bogwangsa. First, adhesive was applied to a 30x80 mm 2 plated steel plate using a Teflon jig in the form of a rectangular parallelepiped of 10x50x10 mm 3 in width x length x height, and then baking was performed at a firing temperature of 170°C for 20 minutes. After baking was completed and stored at room temperature for a day, the adhesive and plated steel plate were fixed, and the steel plate was bent at 90° to forcibly separate the adhesive and plated steel plate.
  • peeling occurred inside the adhesive it was judged as normal, and if separation occurred between the plating layer and the adhesive, it was judged as peeling. Specifically, if the peeled area occurred in an area with a diameter of 3 mm or more, it was judged as peeling. If peeling occurred, but the peeled area occurred in a very small area with a diameter of 3 mm or less, a re-determination was conducted through a re-test. Samples that were performed 5 times and peeling occurred more than 3 times were graded as '
  • Inventive Examples 1 to 4 had an Fe plating layer of 1000 to 3000 mg/m 2 or less.
  • an Fe plating layer of 1000 to 3000 mg/m 2 or less was attached to a steel sheet, annealed while maintaining the dew point in an annealing furnace at 3 to 7° C., and then hot-dip galvanizing was performed.
  • the internal oxidation effect due to the oxygen contained in the Fe plating layer and the moisture in the annealing furnace is aggravated, which can dramatically improve plating adhesion.
  • Comparative Example 1 In contrast, in Comparative Example 1, annealing and molten aluminum plating were performed on base iron without an Fe plating layer under the same conditions as described above. As a result of the GDS measurement, the concentration of Mn and Si on the surface was high, and it was judged that the plating properties were poor due to the formation of surface layer oxide. In Comparative Example 2, 500 mg/m 2 of Fe plating layer was attached, but it was insufficient to ensure stable plating adhesion.
  • Comparative Example 3 attempted to suppress surface layer thickening by forming oxidizing-friendly elements into internal oxides by raising the dew point of the annealing furnace to 5°C, but the effect was insufficient and plating adhesion was poor.
  • Comparative Example 4 500 mg/m 2 of Fe plating layer was attached before annealing to a dew point of 4°C, but plating adhesion was only slightly improved, which is believed to be because the level of surface suppression of Mn and Si was still insufficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

본 발명은 자동차 등에 사용될 수 있는 강판에 관한 것으로서, 개선된 도금특성을 확보할 수 있는 강판과 이를 제조하는 방법에 관한 것이다.

Description

강판 및 그 제조방법
본 발명은 자동차 등에 사용될 수 있는 강판에 관한 것으로서, 개선된 도금특성을 확보할 수 있는 강판과 이를 제조하는 방법에 관한 것이다.
최근 에너지 절감, 배출가스 감소, 충돌 안정성, 내구성 향상 등의 이슈가 자동차 제조업체들이 해결해야 하는 중요한 이슈이다. 에너지 절감과 배출가스 감소를 위해 자동차의 경량화를 중시하고 있다. 한편, 자동차의 경량화와 동시에 충돌 안정성과 내구성 향상을 위해 강재의 고강도화가 필요하고, 우수한 성형성도 요구되고 있다.
강재의 강도를 향상시키기 위해서, 다양한 합금원소를 포함하여 경화능을 높일 수 있으나, 이 경우 스프링백 현상과 같이 가공성이 불량해지는 문제가 있다.
이러한 문제를 해결하기 위하여 열간 성형법(열간 프레스 성형법)이 제안되고 있다. 열간 프레스 성형법은 강재를 가공하기 좋은 고온(800℃ 이상)에서 가공한 후, 이를 낮은 온도로 급속 냉각함으로써 강재 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이러한 열간 프레스 성형법은 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화할 수 있다.
열간 프레스 성형용 강재는 냉각시 마르텐사이트를 용이하게 생성할 수 있도록 경화능을 향상시키기 위해서, 다양한 합금원소를 첨가한다. 특히, Mn, Si, Al, Cr, B 등의 Fe 대비 산화 경향이 높은 원소를 첨가할 수 있다.
한편, 열간 프레스 성형시 강판의 탈탄이나 산화를 방지하거나, 부품의 내식성을 확보하기 위해서 강재의 표면에 다양한 종류의 도금을 실시하는 경우가 있다. 그 중에서도 용융아연도금이나 용융알루미늄 도금과 같은 용융도금에 의하여 강재 표면을 도금하는 방법이 많이 사용되고 있다.
상기 용융도금은 도금이 실시되기 전에 소둔(annealing)을 행하는 것이 일반 적이나, 상기 강재에 포함된 Mn, Si, Al, Cr, B 등의 합금원소들로부터 기인하는 소둔 중 형성된 표면산화물로 인해 도금성이 악화되는 문제가 있다. 즉, 상기 소둔 과정에서 상기 합금원소들이 강재의 표면 측으로 확산하고, 소둔로 중에 존재하는 미량의 산소 또는 수증기와 반응하여 상기 원소들의 단독 또는 복합 산화물을 형성할 수 있다. 이들 산화물은 상기 도금 시 도금 젖음성을 방해하여 미도금을 야기하거나 도금 박리를 유발시켜 도금 품질을 저하시킬 수 있다.
도금 품질을 향상하기 위해 여러 가지 기술이 제안되었고, 그 중 특허문헌 1은 소둔과정에서 공기와 연료의 공연비를 0.80~0.95로 제어하여, 산화성 분위기의 직접 화염로(Direct Flame Furnace)내에서 강판을 산화시켜, 강판 내부 일정한 깊이까지 Si, Mn 또는 Al 단독 혹은 복합산화물을 포함한 철 산화물을 형성시킨 다음, 환원성 분위기에서 철 산화물을 환원소둔시킨 후 용융아연도금을 실시하여 도금품질이 우수한 용융아연도금 또는 합금화 용융아연도금 강판을 제공하는 기술을 제시하고 있다.
특허문헌 1 과 같이 소둔공정에서 산화 후 환원하는 방법을 사용하면, 강판 표층에서부터 일정 깊이에 Si, Mn, Al 등 산소와 친화력이 큰 성분들이 내부산화되어 표층으로 확산이 억제되므로, 상대적으로 표층에는 Si, Mn 또는 Al 단독 혹은 복합산화물이 줄어들게 되어 아연과의 젖음성이 개선되어 미도금을 감소시킬 수 있다. 하지만 Si 이 첨가된 강종의 경우, 환원공정 중에 Si 이 산화철 직하에 농화되어 띠 형태의 Si 산화물을 형성하게 되고, 이로 인해 도금층을 포함한 표층부에서 박리, 즉 환원된 철과 그 아래의 소지철 사이의 계면에서 박리가 발생하여 도금층의 밀착성 확보가 어려운 문제가 있다.
한편 용융도금강판의 도금성 향상을 위한 또 다른 방법으로 특허문헌 2 에는 소둔로내의 이슬점(Dew Point)을 높게 유지하여 산화가 용이한 Mn, Si, Al 등의 합금성분을 강 내부에 내부산화시킴으로써 소둔 후 강판 표면에 외부산화되는 산화물을 감소시켜 도금성을 향상시키는 방법이 제시되어 있다. 하지만 특허문헌 2에 의한 방법으로는 내부산화가 용이한 Si의 외부산화에 의한 도금성 문제는 해결이 가능하지만, 내부산화가 상대적으로 어려운 Mn 이 다량 첨가되어 있는 경우는 그 효과가 미미한 문제가 있다.
또한, 내부산화에 의해 도금성을 향상시킨다고 하더라도, 표면에 불균일하게 형성된 표면산화물로 인해 선형의 미도금이 발생하거나, 도금 이후에 합금화 열처리를 통하여 합금화용융아연도금강판(GA 강판)을 제조하는 경우에는 합금화용융아연도금강판의 표면에 불균일 합금화에 따른 선형 결함이 발생하는 등의 문제가 발생할 수 있다.
(특허문헌 1) 한국 특허공개공보 제2010-0030627호
(특허문헌 2) 한국 특허공개공보 제2009-0006881호
본 발명의 일측면은 도금 시 미도금 또는 도금층 박리를 억제하여, 우수한 도금특성을 갖는 강판과 이를 제조하는 방법을 제공하고자 하는 것이다.
본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일예는 강 중 Mn 및 Si 중 1종 또는 2종을 포함하는 강판이고,
상기 강판 표면으로부터 깊이 방향으로 Mn 및 Si 중 1종 또는 2종의 성분을 관찰한 GDS 프로파일에서, 상기 강판의 표면으로부터 1㎛까지 상기 Mn 및 Si 중 1종 또는 2종의 성분 함량이 모재 함량의 60 % 이하인 골이 2개 이상인 강판에 대한 것이다.
본 발명의 다른 일예는 강 중 Mn 및 Si 중 1종 또는 2종을 포함하는 소지강판을 준비하는 단계;
상기 소지강판 표면에 0.5g/m2 초과 ~ 3g/m2 이하의 두께로 Fe 선도금을 행하여 Fe 도금층을 형성하는 단계; 및
상기 Fe 도금층이 형성된 소지강판을 이슬점 온도가 10℃ 이하의 분위기에서 600~950℃ 온도로 소둔하는 단계를 포함하는 강판의 제조방법에 대한 것이다.
본 발명은 종래와 다른 방식을 이용하여, 강재 표면에 Mn, Si 등의 산화물 형성을 억제하여, 용융도금시 미도금 또는 도금박리를 억제하여 우수한 도금특성을 갖는 강판을 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명 실시예에 따른, 비교예 1과 발명예 6의 강재 표면에서 깊이방향으로 측정한 Mn 함량의 GDS(글로우 방전 분광기, Glow discharge optical emission spectrometer) 프로파일 개략도이다.
도 2는 본 발명 실시예에 따른, 비교예 1과 발명예 6의 강재 표면에서 길이방향으로 측정한 Si 함량의 GDS(글로우 방전 분광기, Glow discharge optical emission spectrometer) 프로파일 개략도이다.
본 명세서에서 사용되는 용어는 본 발명을 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다.
명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것은 아니다.
달리 정의하지 않는 한, 본 명세서에서 사용되는 기술 용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지도록 해석된다.
이하, 본 발명에 대해 구체적으로 상세히 설명한다.
먼저 본 발명의 일태양인 강판에 대해 상세히 설명한다.
상기 강판은 강 중 Mn, Si 등의 산화물 형성원소를 포함한다. 상기 Mn, Si 등은 도금 전 소둔과정에서 강판 표면에 산화물을 형성하여, 도금특성을 저하시킬 수 있다.
상기 강판은 표면에 산화물을 형성하여, 도금특성을 저하시키는 산화성 원소인 Mn, Si 등의 GDS 농도 프로파일이 다음과 같은 특징을 가질 수 있다. 상기 GDS 농도 프로파일이라 함은 글로우 방전 분광기(Glow discharge optical emission spectrometer)를 이용하여 측정된 농도 및 농도 프로파일을 의미한다.
도 1 및 2는 후술하는 실시예에서, 비교예 1과 발명예 6의 강판 표면으로부터 깊이 방향으로 측정된 Mn 및 Si의 농도 프로파일을 도시한 것으로서, 표면부터 측정된 농도 프로파일은 함량이 낮아지는 골과 높아지는 산이 나타나는 것을 알 수 있다.
본 발명의 강판은 표면으로부터 깊이 방향으로 Mn 및 Si 중 1종 또는 2종의 성분을 관찰한 GDS 프로파일에서, 상기 강판의 표면으로부터 1㎛까지 상기 Mn 및 Si 중 1종 또는 2종의 성분 함량이 모재 함량의 60 % 이하인 골이 2개 이상일 수 있다.
여기서, 모재 함량이라 함은 제강과정에서 조절되어 제조된 강판에서의 해당 성분의 평균 함량이라고 할 수 있으며, 대표적으로 강판의 두께(t, 단위 mm) 1/4 지점(1/4*t)에서 측정된 것을 사용할 수 있다.
상기 골이 2개 미만인 경우에는 Mn 및 Si 원소의 표면 농화가 발생하여 도금성을 열위시킬 수 있다. 그러나, 상기 골이 2개 이상인 경우에는 해당 원소의 결핍층이 형성되여 표면 농화를 억제할 수 있으므로, 도금성을 개선시킬 수 있다.
한편, 상기 강판은 표면으로부터 두께방향 1㎛ 이내의 결정립(grain)의 입내 또는 입계에 포함된 Mn 및 Si 중 1종 또는 2종의 함량이, 강판의 두께(t, 단위 mm) 1/4 지점(1/4*t)에서 측정된 성분 함량의 40% 이상인 것이 효과적이다. 일반적으로, 강내 원소의 확산은 농도와 시간의 함수이다. 표면 산화물을 형성하는 원소가 표면으로 확산하는 것을 최소화시키기 위해, 최대한 빠른 속도로 강판을 소둔 및 통판시키는 것이 바람직하다. 그러나 기계적 물성을 만족시키기 위해서는 소둔로의 구간별 타겟 온도 및 시간이 있으며, 소둔로 및 도금욕 등 다양한 설비들을 연속적으로 통과하는 강판의 산업적 생산환경을 고려할 때, 상기 성분 함량의 40% 이상일 때 도금 특성과 제조 효율 측면에서 최적의 효과를 가질 수 있다.
상기 강 중 Mn, Si 등을 포함하는 강판의 합금 조성에 대해 본 발명은 특별히 한정하지 않으며, 본 발명이 속하는 기술분야에서 사용될 수 있다고 통상의 기술자가 인지할 수 있는 것이면 충분하다.
일예로서, 상기 강판은 중량%로, C: 0.02~0.6%, Si: 0.001~2%, Al: 0.001~1%, Mn: 0.1~4%, P: 0.05% 이하, S: 0.02% 이하, Cr: 1% 이하, N:0.02% 이하, Ti: 0~0.1%, B: 0.0001~0.01%, Cu: 0~1.00%, Mo: 0~1.00%, Cr:0~1.00%, Ni: 0~1.00%, V: 0~1.00%, Ca: 0~0.01%, Nb:0~0.1%, Sn:0~1%, W: 0~1%, Sb:0~1%, Mg: 0~0.1%, Co: 0~1%, As: 0~1%, Zr: 0~1%, Bi:0~1%, REM: 0~0.3%, 나머지 Fe 및 불가피한 불순물을 포함할 수 있다.
한편, 상기 강판은 표면으로부터 깊이 방향 10㎛까지의 결정립계(grain boundary)에 Mn, Si, Al, Cr 및 B 중 1종 또는 2종 이상으로 이루어진 산화물을 포함할 수 있다. 소둔 중 상기 Mn, Si, Al, Cr, B 등과 같은 강내 친산화성 원소는 주로 소지철 결정립계로 확산하여 표층으로 이동하고, 동시에 Fe 도금층 내 함유된 산소는 강 내부로 확산 및 해당 친산화성 원소와 결합하여 산화물을 형성할 수 있다.
상기 산화물이 형성된 깊이는 Fe도금층 내 함유된 산소의 절대량에 비례할 수 있다. 후술하는 바와 같이, 상기 Fe도금층 내 산소는 5~50 중량% 포함될 수 있다. 이에 따른 소둔 후 산화물의 두께는 1㎛ 이상 내지 10㎛ 이하이며, 1㎛ 미만일 경우 표면농화 억제 수준이 미비하여 도금성이 개선되지 않으며, 10㎛ 초과하는 경우에는, 전기 도금 셀을 추가로 설치하여야 하며, 생산속도 저하를 일으키므로 경제적인 관점에서 바람직하지 못하다.
상기 강판의 표면에는 용융아연도금층, 용융알루미늄도금층 등의 도금층을 포함할 수 있다. 상기 도금층은 그 종류나 방법을 특별히 한정하지 않으며, 본 발명이 속하는 기술분야에서 행해질 수 있는 종류나 방법을 모두 포함할 수 있다.
다음으로, 본 발명의 다른 일태양인 강판의 제조방법에 대해 상세히 설명한다.
먼저, 강 중 Mn 및 Si 중 1종 또는 2종을 포함하는 소지강판을 준비한다.
본 발명에서는 전술한 합금조성을 가지는 소지강판이라면 본 발명에 따른 도금용 강판 또는 용융도금강판의 소지강판으로서 제한 없이 적용 가능하므로 소지강판을 제조하는 방법에 대해서는 구체적으로 한정하지 않을 수 있다. 일예로서, 상기 강판은 중량%로, C: 0.02~0.6%, Si: 0.001~2%, Al: 0.001~1%, Mn: 0.1~4%, P: 0.05% 이하, S: 0.02% 이하, Cr: 1% 이하, N:0.02% 이하, Ti: 0~0.1%, B: 0.0001~0.01%, Cu: 0~1.00%, Mo: 0~1.00%, Cr:0~1.00%, Ni: 0~1.00%, V: 0~1.00%, Ca: 0~0.01%, Nb:0~0.1%, Sn:0~1%, W: 0~1%, Sb:0~1%, Mg: 0~0.1%, Co: 0~1%, As: 0~1%, Zr: 0~1%, Bi:0~1%, REM: 0~0.3%, 나머지 Fe 및 불가피한 불순물을 포함할 수 있다.
상기 소지강판 제조방법의 일예에 대해 상세히 설명한다.
본 발명의 일실시예에 따르는 소지강판은 상술한 합금조성을 만족하는 강 슬라브를 재가열, 열간압연, 권취, 냉간압연하여 제조될 수 있다.
재가열
본 발명의 합금조성을 만족하는 강 슬라브를 1200℃ 이상의 온도범위로 재가열할 수 있다. 강 중에 존재하는 석출물을 대부분 재고용하기 위하여 1200℃ 이상의 온도로 재가열할 수 있다. 본 발명의 일실시예로는 재가열 온도가 1250℃ 이상일 수 있다.
열간압연
상기 재가열된 강 슬라브를 Ar3~1000℃의 마무리 압연 온도로 열간압연할 수 있다. 열간압연 시, 마무리 압연 온도가 Ar3 (냉각시 γ→α변태 온도) 온도 미만인 경우에는 이상역 압연이 되기 쉬어 표층에 혼립 조직이 발생하고, 열연강판의 형상 제어에 어려움이 있을 수 있다. 반면, 마무리 압연 온도가 1000℃를 초과하면 두께 전반에 걸쳐 균일한 열간압연이 이루어지지 않아 결정립 미세화가 불충분하게 되는 문제가 있다.
권취
상기 열간압연된 강판을 Ms (마르텐사이트상 변태개시 온도) 초과 750℃ 이하의 온도범위에서 권취할 수 있다. 권취온도가 Ms 이하인 경우에는 열연강판의 강도가 너무 높게 되어 냉간압연성을 저하시킨다. 권취 온도가 750℃ 초과인 경우에는 산화층의 두께 증가 및 표층 입계산화를 야기시켜 산세성이 열위해질 뿐만 아니라 연속소둔로에서 소둔 시 표층 입계가 탈락되는 문제점이 발생할 수 있다.
본 발명에서는 열간압연 후 권취온도까지 냉각조건은 특별히 한정하지 않으며, 동일 기술분야에서 적용되는 통상의 조건으로 냉각할 수 있다. 본 발명의 일실시예로는 공냉을 행할 수 있다.
산세
상술한 과정을 거친 열연 강판에 대하여 열연 스케일을 제거하기 위해 염산욕에 투입하여 산세처리를 실시할 수 있다. 산세 시 염산욕의 염산농도는 10~30% 범위에서 실시하고, 산세 통판 속도는 100~250mpm으로 실시한다. 산세 속도가 250mpm을 초과하는 경우는 열연 강판 표면 스케일이 완전히 제거되지 않을 수 있고, 산세 속도가 100mpm보다 낮은 경우 소지철 표층부가 염산에 의해 부식될 수 때문에 180mpm 이상에서 실시할 수 있다.
냉간압연
상기 권취된 강판을 30~90%의 누적 압하율로 냉간압연하여 냉연강판을 얻을 수 있다. 압하율이 30% 미만이면 압연롤과 텐션 제어가 부정확하여 판의 꼬임이 발생할 수 있으며, 소둔시 재결정이 충분히 이루어지지 못해 열간성형 후에도 재료의 이방성이 커질 수 있다. 반면, 압하율이 90%를 초과하면 압연시 냉간 압연롤의 부하로 제품의 생산이 불가할 수 있다.
상기 소지강판 표면에 소둔 전(前) Fe 선도금을 행하여 Fe 도금층을 형성한다.
상기 Fe 도금층을 형성하는 방식은 특별히 제한되지 않으나, 전기도금 방식 등이 사용될 수 있다.
상기 Fe 선도금의 도금 부착량은 0.5g/m2 초과 ~ 3g/m2 이하인 것이 효과적이다.
Mn, Si를 함유한 강판의 용융도금 품질을 확보하기 위해서는 Fe 도금층의 도금량을 철 농도를 기준으로 0.5g/m2 초과 내지 3.0 g/m2 이하로 처리하는 것이 바람직하다. Fe 도금량의 상한은 특별히 한정하지 않지만, 연속 도금공정에서 3.0g/m2을 초과하게 되면, 복수개의 도금셀이 소요되거나, 생산속도가 저하되므로 경제적이지 못하다. 뿐만 아니라, Fe 도금량이 많으면 연속 공정에서 Fe 전기 도금 용액이 급격하게 변성되어 pH가 하락하고 도금 효율이 크게 저하되어 용액 관리가 어려워지는 문제가 있다. 반면, Fe 도금량이 0.5g/m2 이하가 되면, Fe 도금층 내에 포함된 산소가 빠르게 환원되어 제거되므로, 소지철로부터 Mn, Si이 확산되어 표면 산화물이 형성되는 것을 효과적으로 억제하지 못하게 되어 용융도금 품질이 저하되는 문제가 있다. 상기 Fe 도금량은 도금층 내 함유된 철 농도로 Fe 도금층이 소둔 중 완전하게 환원되면 약 0.05 내지 0.4㎛의 두께를 가진다.
본 발명의 한가지 구현례에서 Fe 도금층은 전기도금방식을 통하여 소지철의 표면에 형성될 수 있으며, 전기도금용액의 조건과 도금조건을 적절하게 제어함으로써 형성되는 Fe 도금층 산소농도를 제어할 수 있다.
즉, 본 발명에서 Fe 도금층을 형성하기 위해서는 제1철 이온 및 제2철 이온을 포함하는 철 이온; 착화제; 및 불가피한 불순물을 포함하며, 상기 철 이온 중 제2철 이온의 농도는 5 내지 60 중량%인 전기도금용액을 사용할 수 있다.
본 발명의 한가지 구현례에 따르면, 전기도금용액은 제1철 이온 및 제2철 이온을 포함한다. 높은 도금 효율을 얻기 위해서는 제1철 이온만 포함되는 것이 유리할 수 있으나, 제1철 이온만 포함하는 경우, 용액이 변질되어 도금 효율이 급격하게 하락하므로, 연속 전기도금 공정에서 품질 편차를 유발할 수 있으므로, 상기 제2철 이온을 더 포함할 수 있다. 이때, 상기 제2철 이온의 농도는 제1철과 제2철 이온 총합의 5 내지 60 중량%인 것이 바람직하며, 5 내지 40중량%인 것이 보다 바람직하다. 5% 미만인 경우, 음극에서 제2철이 제1철로 환원되는 속도가 양극에서 제1철이 제2철로 산화되는 속도보다 작아, 제2철 농도가 급격하게 상승하고, pH가 급격하게 하락하면서 도금 효율이 지속적으로 저하된다. 반면, 제2철의 이온의 농도가 60%를 초과하게 되면, 음극에서 제2철이 제1철로 환원되는 반응량이 제1철이 환원되어 금속 철로 석출되는 반응량보다 크게 증가하게 되므로 도금 효율이 크게 하락하며 도금 품질이 저하된다. 따라서, 도금량, 작업 전류밀도, 용액 보급량, 스트립에 묻어 유실되는 용액량, 증발에 의한 농도 변화 속도 등 설비 및 공정 특성을 고려하여, 상기 철 이온 중 제2철 이온의 농도를 5 내지 60 중량%가 되도록 하는 것이 바람직하다.
상기 철 이온의 농도는 상기 전기도금용액 1L당 1 내지 80g인 것이 바람직하며, 1L당 10 내지 50g인 것이 보다 바람직하다. 1g/L 미만인 경우, 도금 효율과 도금 품질이 급격하게 저하되는 문제가 있고 반면, 80g/L를 초과하면 용해도를 초과하게 되어 침전이 발생될 수 있으며, 연속 도금 공정에서 용액 유실에 의한 원료 손실이 증가하므로 경제적이지 못하다.
본 발명의 전기도금용액은 착화제를 포함하는데, 제2철을 다량 함유하면서도 슬러지가 발생하지 않고, 높은 도금 효율을 유지하기 위해 아미노산 또는 아미노산 중합체를 착화제로 사용하는 것이 바람직하다.
아미노산은 카르복실기(-COOH)와 아민기(-NH2)가 결합되어 있는 유기 분자를 지칭하고, 아미노산 중합체는 2개 이상의 아미노산이 중합되어 형성된 유기 분자를 의미하며, 아미노산 중합체는 아미노산과 유사한 착화제 특성을 나타낸다. 따라서, 이하 설명에서 아미노산과 아미노산 중합체를 통칭하여 아미노산이라고 표기한다.
아미노산은 중성의 물에 용해하게 되면, 아민은 수소 이온과 결합하여 양전하를 갖게 되고, 카르복실기는 수소 이온이 해리되어 음전하를 가지므로, 아미노산 분자는 전하 중성을 유지하게 된다. 한편, 용액이 산성화되면, 카르복실기는 수소 이온과 재결합하여 전하 중성이 되고, 아민은 양전하를 가지므로, 아미노산 분자는 양이온을 형성하게 된다. 즉, 아미노산은 약산성의 수용액 내에서 전하 중성 또는 양이온을 형성하게 된다.
철 이온이 함유된 산성의 전해액에 아미노산을 투입하면, 제1철 이온 및 제2철 이온과 착화되는데, 아미노산과 착화된 철 이온은 착화된 상태에서도 양이온 상태를 유지하게 된다. 따라서, 복수의 카르복실기를 갖는 통상의 착화제가 약산성의 수용액에서 음전하를 띄는 것과 전기적으로 반대의 특성을 나타낸다.
또한, 아미노산은 구연산, EDTA 등의 복수의 카르복실기를 포함하는 착화제에 비해 철 이온과 형성하는 결합수가 적고 결합력은 약하지만, 슬러지를 발생시키는 제2철 이온과의 결합력은 충분히 강하기 때문에 제2철 이온에 의한 침전을 방지할 수 있다. 뿐만 아니라, 제2철 이온이 착화되더라도 양이온을 유지할 수 있기 때문에 제2철 이온이 음극에 쉽게 전달되어 제1철 이온으로 환원되어 도금 반응에 참여할 수 있는 반면, 양극으로 이동이 억제되어 제2철 이온의 생성 속도가 둔화되므로, 장기간 연속 도금을 실시하더라도 제2철 이온 농도가 일정 수준을 유지하게 되고 도금 효율이 일정하게 유지되며, 전해액을 교체할 필요가 없어진다.
한편, 연속 전기도금 공정에서 도금에 의해 용액 내 철 이온이 소진되면 용액은 산성화되는데, 동일한 양의 철 이온이 석출되더라도 제1철 이온만 함유된 용액보다 제2철 이온이 함께 포함된 용액은 pH 변화가 감소하게 된다. pH가 높아지면 일부 제2철 이온이 수산 이온과 결합하고, pH가 감소하면 수산 이온이 분리되어 중화되기 때문에 제2철 이온을 포함한 용액은 별도의 pH 완충제가 없어도 pH 변화가 둔화되어 pH 완충제 역할을 하게 되므로, 연속 전기도금 공정에서 전기 도금 효율을 일정하게 유지할 수 있다.
따라서, 아미노산을 착화제로 사용하여, 슬러지를 방지할 수 있고, 제1철 이온뿐만 아니라 제2철 이온도 도금 원료로 사용할 수 있으며, 제1철 이온과 제2철 이온을 혼합하여 사용하게 되면 용액의 pH 변화를 둔화시키고, 제2철 이온의 축적을 용이하게 방지할 수 있기 때문에 연속 전기도금 공정에서 전기 도금 효율과 도금 품질을 일정하게 유지할 수 있다.
한편, 상기 착화제는 상기 철 이온과 착화제의 몰 농도비가 1: 0.05 내지 2.0이 되는 양으로 투입되는 것이 바람직하며, 1: 0.5 내지 1.0이 되는 양으로 투입되는 것이 보다 바람직하다. 0.05 미만인 경우, 과량으로 함유된 제2철 이온이 수산 이온 또는 산소와 결합하여 슬러지를 형성하는 것을 억제하지 못하고, 제2철이 포함되지 않더라도 도금 효율이 매우 저하되며, 나아가 버닝을 유발하게 되어 도금 품질이 나빠진다. 반면, 2.0을 초과하더라도 슬러지 억제 효과와 도금 품질은 유지되나, 과전압이 상승하여 도금 효율이 저하되며, 황산철 등 철 이온을 함유한 원료 대비 상대적으로 고가인 아미노산을 불필요하게 과잉으로 포함하게 되므로 원료 비용이 상승하게 되어 경제적이지 못하다.
상기 착화제는 아미노산 또는 아미노산 중합체 중에서 선택된 1종 이상인 것이 바람직하며, 예를 들어, 알라닌, 글리신, 세린, 트레오닌, 아르기닌, 글루타민, 글루탐산 및 글리실글리신 중에서 선택된 1종 이상일 수 있다.
상기 아미노산을 착화제로 사용하고, 용액 온도 80℃이하, pH 2.0 내지 5.0으로 유지하면서, 전류 밀도 3 내지 120A/dm2로 전기 도금을 실시하면, 도금 효율이 높고, 산소 농도가 높은 Fe 도금층을 얻을 수 있다.
Fe 전기도금 용액의 온도는 Fe 도금층의 품질에는 크게 영향을 미치지 않으나, 80℃를 초과하게 되면, 용액의 증발이 극심해져서 용액의 농도가 지속적으로 변하게 되어 균일한 전기도금이 어려워진다.
Fe 전기도금 용액의 pH가 2.0 미만이 되면, 전기도금 효율이 저하되어 연속도금공정에 적합하지 못하며, pH가 5.0을 초과하게 되면 도금 효율은 증가하나 연속전기도금 중 철 수산화물이 침전되는 슬러지가 발생되어 배관 막힘, 롤 및 설비 오염의 문제가 발생하게 된다.
전류 밀도는 3A/dm2 미만이 되면, 음극의 도금 과전압이 하락하여 Fe 전기도금 효율이 하락하므로 연속도금공정에 적합하지 않고, 120A/dm2를 초과하게 되면, 도금 표면에 버닝이 발생하여 전기도금층이 불균일하고, Fe 도금층이 쉽게 탈락하는 문제가 발생한다.
본 발명은 상술한 바와 같이, Fe 도금층에 5 내지 50 중량%의 산소를 함유하는 것이 좋다. Fe 도금층에 산소가 혼입되는 원인은 다음과 같다. 음극을 인가한 강판 표면에 철이 석출되는 과정에서 동시에 수소 이온이 수소 기체로 환원되면서 pH가 상승하게 된다. 따라서, 제1철 및 제2철 이온은 모두 일시적으로 OH- 이온과 결합하게 되고, Fe 도금층이 형성될 때 함께 혼입될 수 있다. 만약, 아세트산, 유산, 구연산, EDTA 등 음이온성 착화제를 사용하게 되면, 착화제가 OH- 이온과 결합된 철 이온이 평균적으로 음전하를 띄게 되며, 전기도금을 위해 음극을 인가하면, 전기적으로 반발력이 발생하여 Fe 도금층으로 혼입이 억제된다. 반면, 아미노산은 pH 2.0 내지 5.0에서 전기적으로 중성이며, pH 2.0미만의 강산에서는 양이온을 띄게 되는데, 아미노산과 결합한 철 이온에 1~2개의 OH-가 결합하더라도 양이온을 띄게 되므로 전기 도금을 실시하는 음극과 전기적 인력이 발생하여 산소를 다량 혼입하게 된다. 따라서, 철 이온과 아미노산의 몰 농도비를 1:0.05 내지 1:2.0이 되도록 아미노산을 착화제로 사용하고, pH 2.0 내지 5.0을 유지하여 Fe 전기도금을 실시하게 되면, 도금 효율이 높고, 슬러지 발생이 억제되면서도 산소를 5 내지 50중량%로 함유하는 Fe 도금층을 얻을 수 있다.
다음으로, 상기 Fe 도금층이 형성된 소지강판을 소둔한다.
상기 소둔은 이슬점 온도가 +10℃ 이하이고, 600~950℃로 1~1000초 동안 유지하여 소둔할 수 있다.
상기 소둔 열처리시 이슬점 온도가 +10℃를 초과하게 되면 소지강판 자체가 산화될 우려가 있다. 다만, 이슬점 온도가 과도하게 낮으면 도금 성능이 열화되는 문제가 있으므로, 이를 고려하여 상기 이슬점 온도의 하한을 -50℃로 할 수 있고, 바람직하게는 -10℃로 할 수 있다.
상기 소둔은 600~950℃의 온도범위에서 열처리할 수 있다. 상기 열처리 온도가 600℃ 미만이면 냉간압연에 의해 생성된 압연 조직이 회복 및 재결정이 일어나지 어려우며, 충분한 인장 물성을 확보하기 어려운 반면, 950℃를 초과하게 되면 탈탄이 과도하게 이루어져 피로 특성이 열위할 되고, B 산화물을 다량 형성하여 도금시 도금 밀착성을 저하시킬 수 우려가 있으며, 소순 설비를 열화시켜 설비의 잦은 교체 등으로 공정비용이 상승하는 요인이 될 수 있다.
또한, 상기 소둔 시간은 1~1000초일 수 있다. 소둔시간이 1초 미만인 경우에는 소둔 효과를 확보하기 어렵고, 1000초를 초과하는 경우에는 생산선이 저하될 수 있다.
한편, 상기 소둔 열처리를 위한 가열시, 가열구간, 바람직하게는 700℃ 이상으로 승온되었을 때, 함습 질소를 투입할 수 있다. 이는 산화성 원소들의 내부 산화를 유도하기 위함으로, 함습 질소는 50~200 Nm3/h 유량으로 투입할 수 있다(한편, 함습 질소 50~200 Nm3/h 구간 내 수분의 양은 5~40 L/h로 산출할 수 있다). 상기 함습질소의 양이 50 Nm3/h 미만이면 이슬점 상승 효과가 불충분하여 내부 산화층의 형성이 미약하며, 200 Nm3/h를 초과하게 되면 이슬점이 +10℃를 초과하고, 과도하게 높아져 소지철 자체가 산화되는 문제가 있다.
상기 소둔 단계 이후 소둔한 강판을 냉각할 수 있다. 소둔 단계 이후 냉각 단계에서의 냉각 조건은 최종 제품의 표면 품질, 즉 도금 품질에 큰 영향을 주지 않기 때문에 본 발명에서 냉각 조건을 특별히 제한할 필요는 없다. 다만, 냉각 과정에서 철 성분의 산화를 방지하기 위하여 최소한 철에 대해서는 환원성인 분위기가 적용될 수 있다.
상기 제조된 강판에 대해, 추가적으로 도금을 행할 수 있다. 상기 도금은 특별히 한정하지 않으며, 일예로 소둔된 강판을 용융아연도금욕 또는 용융알루미늄도금욕에 침지하여 용융 도금층이나 합금화 용융 도금층을 형성할 수 있다. 상기 용융 도금층으로는 용융 알루미늄 도금층, 용융 Al-Si 도금층, 용융 Al-Si-Mg 도금층, 용융 아연 도금층, 용융 Zn-Mg 도금층 등이 될 수 있고, 상기 합금화 용융 도금층으로는 합금화 용융 알루미늄 도금층, 합금화 용융 Al-Si 도금층, 합금화 용융 Al-Si-Mg 도금층, 합금화 용융 아연 도금층, 합금화 용융 Zn-Mg 도금층 등이 될 수 있다.
도금층에는 Mn, Cr, Cu, Mo, Ni, Sb, Sn, Ti, Ca, Sr, Mg 등이 포함되는 경우도 있다. 도금층의 부착량은 특별히 제한되지 않고, 예를 들어 일반적인 범위 내의 부착량으로 한다. 강판과 마찬가지로, 열처리 후의 강 부재에 도금층이나 합금화 도금층이 마련되어 있어도 된다.
이하, 본 발명의 실시예에 대해 설명한다. 하기 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 하기 실시예는 본 발명의 이해를 위한 것으로서, 본 발명의 권리범위는 하기 실시예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.
(실시예)
중량%로, C: 0.22%, Si: 0.28%, Al: 0.036%, Mn: 1.2%, P: 0.009%, S: 0.0006%, N: 0.0039%, B: 0.0031%, Ti: 0.03%, Cr: 0.21%, 나머지는 Fe와 불가피한 불순물을 포함하는 냉연강판을 준비한 후, 하기 표 1의 Fe 부착량으로 Fe 도금층을 형성한 후, 하기 표 1의 이슬점 및 온도 조건으로 소둔을 실시하였다. 한편, 소둔 후 냉연강판을 Si 9wt.%를 포함하는 Al 도금욕에 침지하여 알루미늄 도금을 실시하였다.
상기 Fe 도금층은 냉연강판을 상기 Fe 도금용액 내 침지 및 전류밀도를 20 A/dm2 인가하여 Fe 전기도금을 실시하였으며, 도금 시간을 제어하여 부착량을 제어하였다. (이 때 용액의 온도는 50℃로 유지하였다.) 목표 부착량에 따른 도금시간은, 사전에 구리판을 이용하여 동일 용액으로 Fe 전기도금을 실시한 후 5~10중량%의 염산 용액으로 Fe 도금층 용해 및 Fe 총량을 측정하여 전기도금 부착량 및 도금 효율을 계산하였으며, 이를 토대로 산출하였다.
상기와 같이 제조된 강판에 대해, 글로우 방전 분광기(GDS, Glow Discharge optical emission Spectrometer) 분석을 행하여, 강판 표면으로부터 깊이방향으로 Mn 및 Si의 함량 프로파일(profile)을 측정하였고, 비교예 1 및 발명예 6의 GDS 프로파일을 하기 도 1 및 2에 도시하였다.
본 발명의 GDS 분석은 LECO사(社)의 GDS850A 장비를 사용하였으며 RF 모드로 표층부터 깊이 방향으로 2 ㎛까지 0.01 내지 0.03㎛ 간격으로 측정하였다.
상기 각 강판에 대해 분석한 GDS 분석결과에서, 표면에서 두께방향으로 1㎛까지 각 원소의 함량이 모재 함량의 60% 이하인 골의 개수를 A, 가장 깊은 골의 함량을 B (단위, wt.%)로 구분하여, 하기 표 1에 나타내었다. 상기 골은 GDS에서 최저치의 지점을 의미하는 것이 아니라, 프로파일 상으로 관찰되는 경향으로 나타낸 것을 의미한다. 상기 도 1에서 Mn에 대한 비교예 1의 골의 개수는 1개이고, 발명예 6의 골의 개수는 2개가 관찰되었고, 도 2에서 Si에 대한 비교예 1의 골의 개수는 관찰되지 않으나, 발명예 6에는 1개가 관찰되었다.
한편, 각 강판에 대한 도금성을 평가하여 그 결과를 하기 표 1에 함께 나타내었다. 상기 도금성은 도금밀착성으로 평가하였다. 이는, 보광사(社)의 구조용 접착제 SA-1607E를 사용하여 평가하였다. 먼저 30x80 mm2 크기의 도금강판 위에 테프론 지그를 이용하여 가로x세로x높이 각각 10x50x10 mm3 직육면체 형태로 접착제를 도포 후 소성온도 170℃에서 20분 동안 베이킹을 실시하였다. 베이킹이 완료된 후 실온에서 하루 보관한 뒤에 접착제와 도금강판을 고정시킨 후 강판을 90˚로 구부려 강제로 접착제와 도금강판을 분리하였다. 이때 접착제 내부에서 박리가 발생하면 정상으로 판정하였고 도금층과 접착제 사이에서 분리가 일어나면 박리로 판정하였다. 구체적으로 박리된 면적이 3mm이상의 직경을 가진 넓이가 발생했을 경우 박리로 판정하였고, 박리가 발생하였으나 박리 면적이 직경 3mm이하의 매우 작은 영역에서 발생하였을 시에는 재실험을 통해 재판정을 실시하였다. 5회 실시하여 박리가 3회 이상 발생한 샘플을 ‘X’, 2회 이하 1회 이상을 ‘△’, 박리없음을 ‘○’등급으로 표기하였다.
번호 Fe 부착량
(mg/m2)
소둔 온도(℃) 소둔로 이슬점(℃) 도금성 Mn Si 구분
A(개) B
(wt.%)
A(개) B
(wt.%)
1 0 781 -50 X 1 0.635 0 - 비교예 1
2 500 785 -49 X 1 0.523 0 - 비교예 2
3 1000 754 -45 2 0.559 0 - 발명예 1
4 1500 783 -41 2 0.579 0 - 발명예 2
5 2000 782 -45 2 0.532 0 - 발명예 3
6 0 782 5 1 0.600 0 - 비교예 3
7 500 781 4 1 0.622 0 - 비교예 4
8 1000 780 3 1 0.665 1 0.163 발명예 4
9 1500 788 6 1 0.639 1 0.079 발명예 5
10 2000 780 7 2 0.460 1 0.064 발명예 6
11 3000 789 -49 2 0.517 0 - 발명예 7
12 3500 - - Fe 도금층 박리로 소둔 및 도금불가 비교예 5
13 4000 - - Fe 도금층 박리로 소둔 및 도금불가 비교예 6
14 3000 777 6 2 0.249 1 0.044 발명예 8
발명예 1 내지 4는 Fe 도금층을 1000 내지 3000 mg/m2 이하로 부착하였다. 이후 소둔 및 도금된 소재의 GDS 분석 결과, Mn의 극소점은 2개 형성되었으며 이는 극표층에 Mn이 결핍된 구간이 형성된 것을 의미한다. 따라서 표층 Mn 산화물이 저감되었으므로 도금밀착성은 양호한 것으로 판단된다. 발명예 5 내지 8은 Fe 도금층을 1000 내지 3000 mg/m2 이하로 강판에 부착 후 소둔로 내 이슬점을 3 내지 7℃로 유지하면서 소둔한 후 용융아연도금을 실시하였다. Fe 도금층에 포함된 산소 및 소둔로 내 수분에 따른 내부산화 효과가 가중되어 도금밀착성을 획기적으로 개선시킬 수 있다.
이에 비해, 비교예 1은 Fe 도금층을 형성하지 않은 소지철을 상술한 조건과 동일하게 소둔 및 용융알루미늄 도금을 실시하였다. GDS 측정 결과 표면의 Mn, Si농도가 높은 것으로 보아 표층산화물 형성으로 도금성이 열위한 것으로 판단된다. 비교예 2의 경우 Fe 도금층을 500 mg/m2 부착하였으나 도금밀착성을 안정적으로 확보하기에는 미비하였다.
비교예 3은 소둔로 이슬점 5℃로 상승함으로써 친산화성 원소들을 내부산화물로 형성시켜 표층 농화의 억제를 꾀했으나 그 효과가 미비하여 도금밀착성이 열위하였다. 비교예 4는 이슬점 4℃로 소둔하기 전에 Fe 도금층 500 mg/m2을 부착하였으나 도금 밀착성은 소폭 개선됨에 그쳤으며 여전히 Mn 및 Si의 표면억제 수준이 미비하였기 때문으로 판단된다.
비교예 5 및 6은 3000 mg/m2 이상 Fe 도금층을 강판 위에 형성하였으나 전기도금이후 샘플 관찰시 도금층내 박리 및 이로 인한 분진이 발생하여 이후 소둔 및 도금 과정 진행이 불가능하였다.

Claims (12)

  1. 강 중 Mn 및 Si 중 1종 또는 2종을 포함하는 강판이고,
    상기 강판 표면으로부터 깊이 방향으로 Mn 및 Si 중 1종 또는 2종의 성분을 관찰한 GDS 프로파일에서, 상기 강판의 표면으로부터 1㎛까지 상기 Mn 및 Si 중 1종 또는 2종의 성분 함량이 모재 함량의 60 % 이하인 골이 2개 이상인 강판.
  2. 청구항 1에 있어서,
    상기 강판은 표면으로부터 깊이 방향 1㎛이내의 결정립(grain)의 입내 또는 입계에 포함된 Mn 및 Si 중 1종 또는 2종의 함량이, 모재에서의 각 성분 함량의 40% 이상인 강판.
  3. 청구항 1에 있어서,
    상기 강판은, 표면으로부터 깊이 방향 10㎛까지의 결정립계에 Mn, Si, Al, Cr 및 B 중 1종 또는 2종 이상으로 이루어진 산화물이 포함된 강판.
  4. 청구항 1에 있어서,
    상기 강판은 중량%로, C: 0.02~0.6%, Si: 0.001~2%, Al: 0.001~1%, Mn: 0.1~4%, P: 0.05% 이하, S: 0.02% 이하, Cr: 1% 이하, N:0.02% 이하, Ti: 0~0.1%, B: 0.0001~0.01%, Cu: 0~1.00%, Mo: 0~1.00%, Cr:0~1.00%, Ni: 0~1.00%, V: 0~1.00%, Ca: 0~0.01%, Nb:0~0.1%, Sn:0~1%, W: 0~1%, Sb:0~1%, Mg: 0~0.1%, Co: 0~1%, As: 0~1%, Zr: 0~1%, Bi:0~1%, REM: 0~0.3%, 나머지 Fe 및 불가피한 불순물을 포함하는 강판.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서
    상기 강판은 표면에 형성된 용융아연도금층 또는 용융알루미늄도금층을 포함하는 강판.
  6. 강 중 Mn 및 Si 중 1종 또는 2종을 포함하는 소지강판을 준비하는 단계;
    상기 소지강판 표면에 0.5 g/m2 초과 ~ 3g/m2 이하의 두께로 Fe 선도금을 행하여 Fe 도금층을 형성하는 단계; 및
    상기 Fe 도금층이 형성된 소지강판을 이슬점 온도가 10℃ 이하의 분위기에서 600~950℃ 온도로 소둔하는 단계
    를 포함하는 강판의 제조방법.
  7. 청구항 6에 있어서,
    상기 Fe 선도금은 전기도금으로 행하는 강판의 제조방법.
  8. 청구항 6에 있어서,
    상기 소둔 시간은 1~1000초인 강판의 제조방법.
  9. 청구항 6에 있어서,
    상기 소둔을 위한 가열시 함습 질소를 50~200 Nm3/h 유량으로 투입하는 강판의 제조방법.
  10. 청구항 6에 있어서,
    상기 소지강판은 중량%로, C: 0.02~0.6%, Si: 0.001~2%, Al: 0.001~1%, Mn: 0.1~4%, P: 0.05% 이하, S: 0.02% 이하, Cr: 1% 이하, N:0.02% 이하, Ti: 0~0.1%, B: 0.0001~0.01%, Cu: 0~1.00%, Mo: 0~1.00%, Cr:0~1.00%, Ni: 0~1.00%, V: 0~1.00%, Ca: 0~0.01%, Nb:0~0.1%, Sn:0~1%, W: 0~1%, Sb:0~1%, Mg: 0~0.1%, Co: 0~1%, As: 0~1%, Zr: 0~1%, Bi:0~1%, REM: 0~0.3%, 나머지 Fe 및 불가피한 불순물을 포함하는 강판의 제조방법.
  11. 청구항 6에 있어서,
    상기 소지강판은 강 슬라브를 1200℃ 이상의 온도범위로 재가열하는 단계;
    상기 재가열 후 Ar3~1000℃의 마무리 압연 온도로 열간압연하는 단계;
    Ms (마르텐사이트상 변태개시 온도) 초과 750℃ 이하의 온도범위에서 권취하는 단계; 및
    30~90%의 누적 압하율로 냉간압연하는 단계
    를 포함하여 제조되는 것인 강판의 제조방법.
  12. 청구항 6 내지 11 중 어느 한 항에 있어서,
    상기 소둔 후 용융아연도금욕 또는 용융알루미늄도금욕에 침지하여 도금층을 형성하는 단계를 더 포함하는 강판의 제조방법.
PCT/KR2023/008374 2022-06-17 2023-06-16 강판 및 그 제조방법 WO2023244075A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220074352 2022-06-17
KR10-2022-0074352 2022-06-17
KR10-2023-0076799 2023-06-15
KR1020230076799A KR20230174175A (ko) 2022-06-17 2023-06-15 강판 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023244075A1 true WO2023244075A1 (ko) 2023-12-21

Family

ID=89191682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008374 WO2023244075A1 (ko) 2022-06-17 2023-06-16 강판 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2023244075A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447802A (en) * 1992-03-30 1995-09-05 Kawasaki Steel Corporation Surface treated steel strip with minimal plating defects and method for making
US20100304183A1 (en) * 2006-01-30 2010-12-02 Nippon Steel Corporation High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability and methods of production and apparatuses for production of the same
KR20130077907A (ko) * 2011-12-28 2013-07-09 주식회사 포스코 도금표면 품질 및 도금밀착성이 우수한 용융아연도금강판 및 그 제조방법
KR101647223B1 (ko) * 2014-12-23 2016-08-10 주식회사 포스코 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR102010076B1 (ko) * 2017-12-24 2019-08-12 주식회사 포스코 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447802A (en) * 1992-03-30 1995-09-05 Kawasaki Steel Corporation Surface treated steel strip with minimal plating defects and method for making
US20100304183A1 (en) * 2006-01-30 2010-12-02 Nippon Steel Corporation High strength hot dip galvanized steel sheet and high strength galvannealed steel sheet excellent in shapeability and plateability and methods of production and apparatuses for production of the same
KR20130077907A (ko) * 2011-12-28 2013-07-09 주식회사 포스코 도금표면 품질 및 도금밀착성이 우수한 용융아연도금강판 및 그 제조방법
KR101647223B1 (ko) * 2014-12-23 2016-08-10 주식회사 포스코 표면품질 및 도금밀착성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR102010076B1 (ko) * 2017-12-24 2019-08-12 주식회사 포스코 도금성이 우수한 고강도 용융아연도금강판 및 그 제조방법

Similar Documents

Publication Publication Date Title
WO2020130631A1 (ko) 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법
WO2020130602A2 (ko) 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2015099455A1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
WO2019132337A1 (ko) 표면품질 및 내식성이 우수한 아연합금도금강재 및 그 제조방법
WO2012091385A2 (en) High corrosion resistant hot dip zn alloy plated steel sheet and method of manufacturing the same
WO2019132336A1 (ko) 가공 후 내식성 우수한 아연합금도금강재 및 그 제조방법
WO2018117714A1 (ko) 용접성 및 프레스 가공성이 우수한 용융 아연계 도금강재 및 그 제조방법
WO2021125885A1 (ko) 표면품질과 전기저항 점 용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
WO2020130666A1 (ko) 열간성형 후 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2022139367A1 (ko) 실러 접착성이 우수한 도금 강판 및 이의 제조방법
WO2021125696A2 (ko) 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법
WO2021112584A1 (ko) 표면품질과 점 용접성이 우수한 아연도금강판 및 그 제조방법
WO2013100610A1 (ko) 고망간 열연 아연도금강판 및 그 제조방법
WO2021125630A1 (ko) 가공부 내식성이 우수한 Zn-Al-Mg계 용융합금도금 강재 및 그 제조방법
WO2016105157A1 (ko) 인산염 처리성과 스폿 용접성이 우수한 아연합금도금강판 및 그 제조방법
WO2022124825A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
WO2022124826A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법
WO2023244075A1 (ko) 강판 및 그 제조방법
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
WO2022131863A1 (ko) 표면품질과 전기저항 점용접성이 우수한 고강도 용융아연도금 강판 및 그 제조방법
WO2019132288A1 (ko) 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
WO2023239211A1 (ko) 도금품질이 우수한 강판 및 그 제조방법
WO2023239207A1 (ko) 도금품질이 우수한 열간 프레스 성형용 도금강판, 강판 및 이들의 제조방법
WO2023239209A1 (ko) 도금품질이 우수한 열간 프레스 성형용 도금강판, 강판 및 이들의 제조방법
WO2023239206A1 (ko) 도금품질이 우수한 고강도 용융아연도금강판, 도금용 강판 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824288

Country of ref document: EP

Kind code of ref document: A1