WO2019132288A1 - 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법 - Google Patents

점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법 Download PDF

Info

Publication number
WO2019132288A1
WO2019132288A1 PCT/KR2018/015336 KR2018015336W WO2019132288A1 WO 2019132288 A1 WO2019132288 A1 WO 2019132288A1 KR 2018015336 W KR2018015336 W KR 2018015336W WO 2019132288 A1 WO2019132288 A1 WO 2019132288A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
hot
rolled
rolled steel
cold
Prior art date
Application number
PCT/KR2018/015336
Other languages
English (en)
French (fr)
Inventor
김영하
한태교
조원태
김성규
김명수
최대곤
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2019132288A1 publication Critical patent/WO2019132288A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/36Pretreatment of metallic surfaces to be electroplated of iron or steel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles

Definitions

  • the present invention relates to an ultra-high strength high-manganese galvanized steel sheet excellent in spot weldability and a method for producing the same.
  • Patent Document 1 discloses a steel sheet comprising 0.5 to 1.5% of C, 0.01 to 0.1% of Si, 10 to 25% of Mn, 0.1 to 25% of P, 0.1 to 5% of Mn, %, S: not more than 0.05%, Al: 0.01 to 0.1%, Ni: 3.0 to 8.0%, Mo: 0.01 to 0.1%, N: 0.01% or less and the balance Fe and unavoidable impurities.
  • Patent Document 2 discloses a high strength steel sheet having a ductility and a tensile strength of 700 to 900 MPa.
  • the steel sheet contains C: not more than 1.00%, Mn: 7.00 to 30.00%, Al: 1.00 to 10.00% 8.00%, Al + Si: 3.50 to 12.00%, B: 0.00 to 0.01%, Fe, and unavoidable impurities.
  • steel sheets for automobiles are exposed to the corrosive environment in the course of use, and therefore, they are required to have excellent corrosion resistance, so that a plating layer is generally formed on the surfaces thereof and used in the form of a galvanized steel sheet.
  • the parts are processed by press working and assembled by spot welding or arc welding.
  • HZ Heat Affected Zone
  • the tensile force acts on the heat affected portion in such a state, the molten zinc in the liquid phase penetrates into the crystal grain boundaries of the surface of the welded heat affected portion to generate cracks, thereby causing a liquefied metal embrittlement Quot; LME ").
  • durability and fatigue life are deteriorated, which can act as a risk factor not only for automobile body but also for human life.
  • Patent Document 1 International Patent Publication No. WO2011-122237
  • Patent Document 2 International Patent Publication No. WO2002-101109
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a galvanized steel sheet excellent in spot weldability and a method of manufacturing the same.
  • the present invention relates to a high manganese zinc-plated steel sheet having a zinc plated layer formed on the surface of a steel sheet, wherein the steel sheet comprises 0.3 to 0.9% of C, 10 to 25% of Mn, 0.01 to 0.5% of Ti, Mo ⁇ 0.6%, (Mn + 10 ⁇ C) ⁇ V ⁇ 12, and the balance Fe and unavoidable impurities.
  • an austenite structure fraction of 95% or more is applied around the nugget portion boundary, and an average hardness value measured by applying a load of 10 mN using an indenter is in a range of 250 to 350 HV Can be satisfied.
  • the present invention also relates to a welding structure including the ultra-high strength high-manganese galvanized steel sheet and a dissimilar metal material spot-welded to the galvanized steel sheet.
  • the austenite structure fraction is 95% or more around the nugget portion boundary of the spot welded portion, and the average hardness value measured by applying a load of 10 mN using the indenter can satisfy the range of 250 to 350 HV.
  • the dissimilar metal material may be DP steel or TRIP steel.
  • the method comprising after the cold-rolled steel sheet was heated at a rate of hydrogen (H 2) and the balance nitrogen (N 2) under the gas atmosphere is a reducing atmosphere, 2.0 °C / sec or more in 3 to 20% by volume up to 500 ⁇ 750 °C, maintained;
  • the present invention also relates to a method for producing an ultra-high strength high-manganese galvanized steel sheet excellent in spot weldability.
  • the present invention having the above-described constitution has an advantage that it can secure excellent spot weldability at the time of spot welding with a heterogeneous material by using a high manganese galvanized steel sheet containing a large amount of Mn.
  • Fig. 1 is a photograph of a section of a galvanized steel sheet according to the embodiment of the present invention obtained by spot welding with a DP material as a dissimilar material and observed by an optical microscope (OM, Optical Microscope)
  • Fig. 1 (b) is a photograph shown in Comparative Example 1.
  • an element such as C or Mn which is an austenite stabilizing element, is added to the steel, so that even when the component dilution occurs with the dissimilar material, the martensite structure in which the microstructure around the nugget portion is brittle is not formed and the austenite structure is stable So that it is possible to secure an excellent welding strength at the time of the weld portion fracture test.
  • the ultra high strength high manganese galvanized steel sheet according to the present invention comprises 0.3 to 0.9% of C, 10 to 25% of Mn, 0.01 to 0.5% of Ti, 0.6% of V + Mo, 0.6% of Mn, ) X V? 12, and the balance of Fe and inevitable impurities.
  • the alloy component and the preferable content range of the base steel sheet will be described in detail.
  • the content of each component is expressed in terms of% by weight unless otherwise specified.
  • Carbon contributes to the stabilization of the austenite structure. As the content of carbon increases, it is advantageous to secure the austenite structure. Carbon also increases the energy of lamination defects in the steel, thereby increasing the tensile strength and elongation at the same time. If the carbon content is less than 0.3%, there arises a problem that the ⁇ '(alpha re-) martensite structure is formed due to decarburization at the time of high-temperature processing of the steel sheet, so that it is vulnerable to delayed fracture. there is a problem. On the other hand, if the content exceeds 0.9%, the electrical resistivity increases and the weldability may deteriorate. Therefore, in the present invention, the carbon content is preferably limited to 0.3 to 0.9%.
  • Manganese is an element that stabilizes austenite with carbon. If the content is less than 10%, it is difficult to secure a stable austenite structure due to the formation of ⁇ '(alpha alumite) -martensite structure during deformation, whereas if the content exceeds 25% Saturated, and the production cost rises. Therefore, in the present invention, the manganese content is preferably limited to 10 to 25%.
  • Titanium reacts with nitrogen in the steel to form nitrides, thereby improving the formability of the steel and reacting with carbon in the steel to form carbides, thereby improving the strength of the steel.
  • the content of titanium is preferably 0.01% or more.
  • Vanadium is an element which reacts with carbon and / or nitrogen to form a precipitate.
  • the present invention plays an important role in increasing the yield strength of a steel by forming fine precipitates at low temperatures.
  • Molybdenum is an element which improves the high temperature strength, and in particular, it plays a role in increasing the yield strength of steel.
  • the sum of the contents of vanadium and molybdenum is preferably 0.6% or more.
  • C can not be added indefinitely in steel
  • the Mn or V content may be stabilized by adding at least a proper amount according to the above-mentioned relation, for reasons of cost rise, materials, slab quality inferiority and the like. In order to obtain this effect in the present invention, it is preferable that the relation (Mn + 10 x C) x V? 12 is satisfied.
  • impurities that are not intended from the raw material or the surrounding environment may be inevitably incorporated in a conventional manufacturing process, and thus it can not be excluded.
  • impurities are not specifically referred to in this specification, as they are known to one of ordinary skill in the art.
  • the austenite structure fraction is 95% or more around the nugget portion boundary, and the average hardness value measured by applying a load of 10 mN to the indenter is 250 ⁇ 350HV.
  • austenite structure fraction should be 95% or more is that when an abnormal structure other than the austenite phase exists, for example, when the brittle martensite structure is present in excess of 5%, cracks are broken along the brittle martensite, So that sufficient welding strength can not be ensured. If an average hardness value of 250 ⁇ 350HV is measured using an indenter with a load of 10 mN, an aberrant structure is formed in addition to the austenite structure, so that a sufficient fracture path is formed and sufficient welding strength can not be ensured.
  • the present invention also provides a welding structure including the ultra-high strength high-manganese galvanized steel sheet and a dissimilar metal material spot welded to the steel plate.
  • the austenite structure fraction is 95% or more around the nugget part boundary of the spot welded part, and the average hardness value measured by applying a load of 10 mN using the indenter can satisfy the range of 250 to 350 HV.
  • the dissimilar metal material may be DP steel or TRIP steel.
  • the method for manufacturing a galvanized steel sheet according to the present invention comprises the steps of reheating a steel slab having the composition as described above to 1050 to 1200 ° C; Finishing the reheated slab to 800 to 1000 ⁇ ⁇ to produce a hot-rolled steel sheet; Winding the hot-rolled steel sheet at a temperature of 500 ° C or lower after cooling; Rolling the rolled hot-rolled steel sheet at a reduction ratio of 30 to 60% to produce a cold-rolled steel sheet; The method comprising after the cold-rolled steel sheet was heated at a rate of hydrogen (H 2) and the balance nitrogen (N 2) under the gas atmosphere is a reducing atmosphere, 2.0 °C / sec or more in 3 to 20% by volume up to 500 ⁇ 750 °C, maintained; And a step of preparing a galvanized steel sheet by melting or electroplating the heated and held cold rolled steel sheet.
  • H 2 hydrogen
  • N 2 balance nitrogen
  • the steel slab having the above-described alloy composition is reheated.
  • the reheating temperature may be 1050 to 1200 ° C during reheating of the steel slab. If the reheating temperature is lower than 1050 DEG C, carbonitride precipitates are formed to deteriorate the hot-rolling property and the quality of the hot-rolled steel sheet. On the other hand, when the temperature exceeds 1200 DEG C, the austenite grains are coarsened, .
  • the finishing rolling temperature in the finish rolling may be 800 to 1000 ° C. If the finish rolling temperature is lower than 800 ° C, a blast texture is generated and adversely affects the mechanical properties such as hardness and elongation. On the other hand, if the finish rolling temperature exceeds 1000 ° C, the austenite grains are coarsened, .
  • the produced hot-rolled steel sheet is cooled and then wound.
  • control of the coiling temperature is very important because it can suppress Si, Mn and Al inner oxide formation as much as possible by controlling the coiling temperature.
  • the coiling temperature is controlled to 500 ° C or less. If the coiling temperature exceeds 500 ° C, the formation of the internal oxide accelerates.
  • the internal oxide acts as a resistor, Which is a cause of the local temperature rise in the weld metal, thereby deteriorating the spot weldability.
  • the cold rolled steel sheet is manufactured by cold rolling the rolled hot rolled steel sheet.
  • the cold rolling reduction rate during the cold rolling may be 30 to 60%. If the cold rolling reduction rate is less than 30%, it is difficult to secure the strength because the deformation amount is too small to induce grain refinement during recovery and recrystallization. On the other hand, when the cold rolling reduction rate exceeds 60% There is a risk of damage.
  • the cold-rolled steel sheet is heated and held in a reducing atmosphere.
  • the heating temperature of the cold-rolled steel sheet is preferably 500 to 750 ° C. If the heating temperature is less than 500 ° C, the steel sheet temperature may become lower than the plating bath temperature during the cooling process, resulting in poor plating and adherence. On the other hand, if the heating temperature exceeds 750 ° C, And the Si, Mn, and Al oxide layers are thickly formed on the surface of the steel sheet, which may lead to occurrence of unplated and plating detachment due to the annealed oxides existing in the interface between the steel sheet and the plated layer after galvanization.
  • the heating rate is directly related to the line speed, that is, the productivity, on the operation line, so that it is better if the quality is not adversely affected.
  • the heating rate is too low, thickening of the Si, Mn and Al on the surface of the steel sheet is severe, and a thick oxide layer is formed, which may lead to occurrence of unplated and plating peeling. Therefore, the heating rate in the heating zone has a significant influence on the thickness of the annealed oxide layer, and is an important variable for determining the plating ability and the plating detachment in the process of zinc plating.
  • the line speed is increased excessively to increase the heating rate, there is a possibility that the welding portion breaks with the leading coil and the occurrence of meandering of the steel sheet to one side increases, so that the heating rate can not be increased indefinitely.
  • the heating rate is controlled to 2.0 ⁇ ⁇ / sec or more at the time of heating the cold-rolled steel sheet. If the heating rate is less than 2.0 DEG C / s, the productivity of the steel sheet is lowered, and the concentration of Si, Mn and Al increases on the surface of the steel sheet during heating, May be formed thick to cause occurrence of non-plating and detachment of plating
  • the reducing atmosphere may be an atmosphere of hydrogen (H 2 ) and a residual nitrogen (N 2 ) gas of 3 to 20% by volume. If the content of hydrogen is less than 3 vol%, reduction of the iron oxide film inevitably formed on the surface of the steel sheet does not occur sufficiently, which may cause peeling of the plating layer by the residual oxide layer. However, when the hydrogen content is excessively high, not only the cost increases but also the explosion risk is increased with the increase of the hydrogen content, it is preferable to limit the content to 20% by volume or less.
  • the dew point temperature it is preferable to control the dew point temperature to -30 ⁇ or less during heating and holding of the cold-rolled steel sheet to suppress the concentration of Si, Mn and Al oxides on the steel sheet as much as possible. If the dew point temperature exceeds -30 ° C, Mn in the steel reacts with oxygen to form a thick Mn oxide on the surface layer of the steel sheet, which may result in deterioration of zinc plating ability.
  • the heated and held cold-rolled steel sheet is plated to obtain a zinc-plated steel sheet.
  • a specific method for producing a zinc-plated steel sheet is not particularly limited, and for example, a zinc-based galvanized steel sheet can be manufactured by using an electro-galvanizing method or a molten zinc-based alloy plating method.
  • the plating bath temperature it is preferable to control the plating bath temperature to 440 to 460 ⁇ . If the temperature of the zinc-based plating bath is lower than 440 DEG C, the viscosity of the plating bath excessively increases and the mobility of rolls rolling the steel sheet is reduced, thereby causing a slip between the steel sheet and the roll, There is a risk of causing defects. On the other hand, when the temperature of the zinc-based plating bath exceeds 460 ° C, the dissolution of the steel sheet is accelerated to accelerate the generation of Fe-Al compound-type dross, thereby causing plating.
  • the galvanized steel sheet may be subjected to an alloying heat treatment at a temperature of 480 to 600 ° C to produce an alloyed zinc plated steel sheet.
  • an alloying heat treatment temperature to 480 DEG C or more, a sufficient Fe content in the zinc based plating layer can be secured.
  • the temperature to 600 DEG C or less the Fe content in the plating layer is excessively controlled, thereby preventing the powdering phenomenon .
  • the TWIP steel sheet having the composition shown in the following Table 1 was hot rolled and cold rolled, and subjected to a degreasing and pickling process to clean the surface of the steel sheet. Then, nitrogen gas containing 5 vol% of hydrogen was blown from the reduction furnace, Annealing was performed at a temperature of 40 seconds. Next, the cold rolled steel sheet subjected to the annealing step was cooled, immersed in a hot dip galvanizing bath for 5 seconds, and then the amount of coating adhesion was adjusted to 60 g / m 2 by air wiping.
  • the maximum value of 10 hardness values measured by applying a load of 10 mN by using an indenter is measured as the nugget hardness value (HV) of the specimen as shown in Table 1 below.
  • the mechanical properties such as yield strength, tensile strength, and TEI were plotted on a strain-stress curve obtained by uniaxially pulling the specimens cut into 30 mm * 200 mm pieces with the upper and lower grips.
  • the maximum strength value as the tensile strength, and the maximum strain as Tel.
  • the austenite texture fraction was calculated by averaging the area fraction of austenite at 10X magnification with an optical microscope at the periphery of the weld nugget at 500X magnification.
  • Comparative Example 1-3 when the content of steel (Mn + 10 x C) x V was out of the range of the present invention, the hardness value in the nugget portion boundary region was measured as 477HV or 450HV, It can be seen that one martensite phase is locally formed and a sufficient heterogeneous welding strength is not obtained.
  • FIG. 1 is a photograph of a section of a galvanized steel sheet according to the present embodiment, which is cut by spot welding with a DP material of a different material, and observed with an optical microscope (OM)
  • Fig. 1 (b) is a photograph shown in Comparative Example 1.
  • Fig. 1 (ab) in the case of Inventive Example 1, the hardness value in the nugget portion boundary region was measured as 261HV, 259HV, or 279HV in the case of the two-point welding, and the brittle martensite phase was locally And it can be seen that sufficient heterogeneous welding strength can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법이 제공된다. 본 발명은, 소지강판 표면에 아연도금층이 형성되어 있는 고망간 아연도금강판에 있어서, 상기 소지강판은, 중량%로, C: 0.3~0.9%, Mn: 10 ~ 25%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함하는 점용접성이 우수한 초고강도 고망간 아연도금강판에 관한 것이다.

Description

점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
본 발명은 점용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법에 관한 것이다.
최근 들어, 자동차의 안전규제가 강화되고, 온실가스의 배출을 저감하기 위한 친환경적인 노력의 일환으로 자동차용 강판의 고강도 및 경량화에 대한 요구가 증가하고 있다. 이를 위해 Si, Mn 또는 Al과 같은 난도금성 원소들을 다량 함유한 DP(Dual Phase)강, TRIP(Transformation Induced Plasticity)강, TWIP(Twinning Induced Plasticity)강 등의 고 강도강에 대한 연구가 활발히 진행 중에 있다.
성형성 및 기계적 성질이 우수한 강을 제공하기 위한 다양한 시도 중의 대표적인 예로, 특허문헌 1에는 중량%로, C: 0.5~1.5%, Si: 0.01~0.1%, Mn: 10~25%, P: 0.1% 이하, S: 0.05% 이하, Al: 0.01~0.1%, Ni: 3.0~8.0%, Mo: 0.01~0.1%, N: 0.01% 이하, 잔부 Fe 및 불가피한 불순물을 함유하는 강판으로서, 높은 수준의 연성과 700 내지 900MPa의 인장 강도를 가지는 고장력 강판이 개시되어 있으며, 특허문헌 2에는 중량%로, C: 1.00% 이하, Mn: 7.00~30.00%, Al: 1.00%~10.00%, Si: 2.50~8.00%, Al+Si: 3.50~12.00%, B: 0.00% ~ 0.01%, Fe 및 불가피한 불순물을 함유하는 강판이 개시되어 있다.
한편, 자동차용 강판은 사용 과정에서 부식 환경에 왕왕 노출되게 되는바, 우수한 내부식성을 가질 것이 요구되며, 이에 따라 일반적으로 그 표면에 도금층을 형성하여 아연도금강판의 형태로 사용된다.
고 망간강 아연도금강판을 자동차용 강판으로 사용하는 경우, 프레스 가공에 의해 부품을 가공한 후 점 용접 또는 아크 용접 등으로 용접하여 조립하게 되는데, 이때 고 망간강 아연 도금강판을 점 용접하게 되면 용접 열영향부(Heat Affected Zone; HAZ)는 용접(입)열에 의해 용해되어 액상의 용융 아연으로 잔류하게 되고, 소지 조직은 고 망간강의 높은 저항값에 의해 타 강종 대비 고온이 되며, 높은 열팽창 계수에 의한 입계 확장이 일어나게 된다. 이러한 상태로 열영향부에 인장력이 작용하게 되면, 용접 열영향부 조직에서는 액상의 용융 아연이 소지 표면의 결정 입계에 침투하여 균열을 발생시켜 취성 파괴인 용접 액상금속취화(Liquid Metal Embrittlement, 이하, 'LME'이라 함)를 일으키게 된다. 이로 인해 내구성 및 피로 수명 저하를 유발함으로써 자동차 차체뿐만 아니라 인간의 생명을 위협할 수 있는 위험 요소로 작용할 수 있다.
또한 고 망간강을 차체 부품 조립하는 과정에서 이종 소재와 점 용접하게 될 경우, 고 망간강 중 다량 함유된 C, Mn 등은 희석되어 희석율에 기반하여 너겟부 주변에 미세 조직을 형성하게 된다. 경우에 따라서는 너겟부 주변 조직 내 국부적으로 brittle한 마르텐사이트가 형성되어 용접부 취성을 증가시켜, 십자인장 모드로 용접강도 측정 시 interfacial 파단 모드를 보이며 열위한 용접 강도를 보이게 된다. 즉, 점용접 시 너겟부 주변에 형성된 미세조직의 종류 및 경도에 따라 용접 강도 및 크랙 전파 경로가 정해지며, 성형성이 우수한 고망간강을 자동차용 강판에 사용하기 위해서는 우수한 이종 용접강도를 가진 고망간강 도금강판 개발이 시급한 실정이다.
이러한 문제점을 해결하기 위해, 고망간강 중 성분을 개선하여 고 망간강의 점용접성을 향상시키는 연구들이 진행되어 왔다. 하지만 이들 성분의 대부분은 점 용접성 이외에 기계적 성질, 도금성, LME 민감도 등을 열위하게 하는 등의 문제점들이 있다.
따라서 초고강도 고망간 아연도금강판의 이종 간 점 용접성을 우수하게 확보할 수 있는 기술에 대한 요구가 매우 절실한 시점이다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 국제 공개특허공보 WO2011-122237호
(특허문헌 2) 국제 공개특허공보 WO2002-101109호
따라서 본 발명은 상기 종래기술을 감안하여 안출된 것으로서, 점 용접성이 우수한 아연도금강판 및 그의 제조하는 방법을 제공함을 목적으로 한다.
또한 본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들에 한정되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명은,
소지강판 표면에 아연도금층이 형성되어 있는 고망간 아연도금강판에 있어서, 상기 소지강판은, 중량%로, C: 0.3~0.9%, Mn: 10 ~ 25%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함하는 점용접성이 우수한 초고강도 고망간 아연도금강판에 관한 것이다.
본 발명에서 상기 아연도금강판을 이종금속 소재와 점 용접 시, 너겟부 경계 주변에 오스테나이트 조직 분율이 95% 이상이고, 압자를 활용하여 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV 범위를 만족할 수 있다.
또한 본 발명은 상기 초고강도 고망간 아연도금강판과, 상기 도금강판에 점 용접되어 있는 이종금속 소재를 포함하는 용접구조물에 관한 것이다.
본 발명에서는 상기 점 용접 부의 너겟부 경계 주변에 오스테나이트 조직 분율이 95%이상이고, 압자를 활용하여 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV 범위를 만족할 수 있다.
또한 상기 이종금속 소재는 DP강 또는 TRIP강일 수 있다.
또한 본 발명은,
중량%로, C: 0.3~0.9%, Mn: 10~25%, Ti: 0.01~0.5%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1200℃로 재가열하는 단계;
상기 재가열된 상기 슬라브를 800~1000℃로 마무리 압연하여 열연강판을 제조하는 단계;
상기 열연강판을 냉각 후, 500℃ 이하의 온도에서 권취하는 단계;
상기 권취된 열연강판을 30~60%의 압하율로 냉간압연함으로써 냉연강판을 제조하는 단계;
상기 냉연강판을 3~20부피%의 수소(H2) 및 잔부 질소(N2) 가스 분위기인 환원 분위기 하에서 2.0℃/sec 이상의 속도로 500~750℃까지 가열한 후, 유지하는 단계; 및
상기 가열 및 유지된 냉연강판을 용융 또는 전기도금함으로써 아연도금강판을 제조하는 단계;를 포함하는 점 용접성이 우수한 초고강도 고망간 아연도금강판의 제조방법에 관한 것이다.
상술한 바와 같은 구성의 본 발명은, 다량의 Mn이 함유된 고망간 아연도금강판을 이용하여 이종 소재와 점 용접 시 우수한 점 용접성을 확보할 수 있다는 장점이 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 쉽게 이해될 수 있을 것이다.
도 1은 본 실시예에서의 아연도금강판을 이종 소재인 DP소재와 점용접한 후 절단한 단면을 광학현미경(OM, Optical Microscope)으로 관찰한 사진으로서, 도 1(a)는 발명예 1을, 그리고 도 1(b)는 비교예 1에 나타내는 사진이다.
이하, 본 발명을 상세히 설명한다.
본 발명에서는 강 중에 오스테나이트 안정화 원소인 C, Mn 등의 원소를 첨가하여 이종 소재와 점 용접 시 성분 희석이 일어나더라도 너겟부 주변 미세조직이 brittle한 마르텐사이트 조직이 형성되지 않고 오스테나이트 조직이 안정하게 형성되어 유지되도록 제어함으로써 용접부 파단 시험 시 우수한 용접 강도를 확보할 수 있게 된다.
본 발명의 초고강도 고망간 아연도금강판은, 중량%로, C: 0.3~0.9%, Mn: 10 ~ 25%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함한다.
먼저, 소지강판의 합금 성분 및 바람직한 함량 범위에 대해 상세히 설명하며, 이하, 각 성분의 함량은 특별히 언급하지 않는 한 모두 중량%이다.
·C: 0.3~0.9%
탄소는 오스테나이트 조직의 안정화에 기여하는 원소로서, 그 함량이 증가할 수 록 오스테나이트 조직을 확보하는데 유리한 측면이 있다. 또한 탄소는 강의 적층결함에너지를 증가시켜 인장 강도 및 연신율을 동시에 증가시키는 역할을 한다. 만일 탄소 함량이 0.3% 미만이면, 강판의 고온 가공 시 탈탄에 의해 α'(알파다시)-마르텐사이트 조직이 형성되어 지연 파괴에 취약하게 되는 문제가 있으며, 또한 목표하는 인장강도 및 연신율 확보가 어려운 문제가 있다. 반면, 그 함량이 0.9%를 초과할 경우 전기 비저항이 증가하여 용접성이 열화될 수 있다. 따라서 본 발명에서는 탄소 함량을 0.3~0.9%로 한정함이 바람직하다.
·망간(Mn): 10~25%
망간은 탄소와 함께 오스테나이트 조직을 안정화시키는 원소이다. 만약, 그 함량이 10% 미만이며, 변형 중 α'(알파다시)-마르텐사이트 조직이 형성되어 안정한 오스테나이트 조직을 확보하기 어려우며, 반면, 그 함량이 25%를 초과할 경우 강도 향상의 효과는 포화하고, 제조 원가가 상승하는 단점이 있다. 따라서, 본 발명에서는 망간 함량을 10~25%로 한정함이 바람직하다.
·티타늄(Ti): 0.01~0.5%
티타늄은 강 중 질소와 반응하여 질화물을 형성함으로써 강의 성형성을 향상시키며, 강 중 탄소와 반응하여 탄화물을 형성함으로써 강의 강도를 향상시킨다. 본 발명에서 이러한 효과를 얻기 위해서는 티타늄 함량이 0.01% 이상인 것이 바람직하다. 다만 그 함량이 0.5%를 초과할 경우 석출물이 과도하게 형성되어 강의 피로 특성을 열화시키는 문제가 있다. 따라서 본 발명에서는 티타늄 함량을 0.01~0.5%로 한정함이 바람직하다.
·바나듐(V) + 몰리브덴(Mo)≥ 0.6%
바나듐은 탄소 및/또는 질소와 반응하여 석출물을 형성하는 원소로써, 특히 본 발명에서는 저온에서 미세 석출물을 형성시켜 강의 항복강도를 증가시키는 중요한 역할을 한다. 몰리브덴은 고온강도를 향상시키는 역할을 하는 원소로써, 특히 본 발명에서는 강의 항복강도를 증가시키는 역할을 한다.
본 발명에서 이러한 효과를 얻기 위해서는 바나듐과 몰리브덴의 함량 합이 0.6% 이상인 것이 바람직하다.
·(Mn + 10×C)×V ≥ 12
C, Mn 및 V은 오스테나이트 조직 안정화 측면에서 강중 함유량이 많을수록 오스테나이트 조직이 안정화되고 brittle 한 마르텐사이트 형성이 억제될 수 있다. 다만, C을 강중에 무한정 첨가할 수 없는 이유는 탄화물 석출에 의해 압연성 확보가 어려워지기 때문에 적정 함량을 첨가할 수밖에 없다. 그리고 Mn 또는 V 함량도 원가 상승 및 재질, 슬라브 품질 열위 등의 이유로 상기 관계식에 따라 적정량 이상 첨가되어야 오스테나이트 조직이 안정해질 수 있다. 본 발명에서 이러한 효과를 얻기 위해서 (Mn + 10×C)×V ≥ 12 관계식을 만족하는 것이 바람직하다.
한편 본 발명에서는 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 본 기술분야에서 통상의 지식을 가진 자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 본 명세서에서 특별히 언급하지는 않는다.
상술한 바와 같은 소지강판 조성 성분을 갖는 아연도금강판을 이종 소재와 점 용접 시, 너겟부 경계 주변에 오스테나이트 조직 분율이 95% 이상이고, 압자를 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV이다.
이러한 오스테나이트 조직 분율이 95% 이상이어야 하는 이유는 오스테나이트 상 외에 이상조직 가령, brittle한 마르텐사이트조직이 5%를 초과하여 존재할 경우, brittle한 마르텐사이트를 따라 크랙의 파단 경로가 형성됨에 따라 파단이 쉽게 일어나 충분한 용접강도를 확보할 수 없게 된다. 압자를 활용하여 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV 범위를 만족하지 못하게 되면 오스테나이트 조직 외에 이상 조직이 형성되어 크랙의 파단 경로가 형성됨에 따라 충분한 용접 강도를 확보하지 못하게 된다.
또한 본 발명은 상기 초고강도 고망간 아연도금강판과, 상기 도금강판에 점 용접되어 있는 이종금속 소재를 포함하는 용접구조물을 제공한다. 이때, 본 발명에서는 상기 점 용접 부의 너겟부 경계 주변에 오스테나이트 조직 분율이 95%이상이고, 압자를 활용하여 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV 범위를 만족할 수 있다.
또한 상기 이종금속 소재는 DP강 또는 TRIP강일 수 있다.
다음으로, 본 발명의 점용접성이 우수한 아연도금강판의 제조방법을 상세히 설명한다.
본 발명의 아연도금강판 제조방법은, 상술한 바와 같은 조성을 갖는 강 슬라브를 1050~1200℃로 재가열하는 단계; 상기 재가열된 상기 슬라브를 800~1000℃로 마무리 압연하여 열연강판을 제조하는 단계; 상기 열연강판을 냉각 후, 500℃ 이하의 온도에서 권취하는 단계; 상기 권취된 열연강판을 30~60%의 압하율로 냉간압연함으로써 냉연강판을 제조하는 단계; 상기 냉연강판을 3~20부피%의 수소(H2) 및 잔부 질소(N2) 가스 분위기인 환원 분위기 하에서 2.0℃/sec 이상의 속도로 500~750℃까지 가열한 후, 유지하는 단계; 및 상기 가열 및 유지된 냉연강판을 용융 또는 전기도금함으로써 아연도금강판을 제조하는 단계;를 포함한다.
먼저, 본 발명에서는 상술한 바와 같은 합금 조성을 갖는 강 슬라브를 재가열한다. 일실시예에 따르면, 상기 강 슬라브의 재가열 시, 재가열 온도는 1050~1200℃일 수 있다. 만일 재가열 온도가 1050℃ 미만이면 탄질화물 석출물이 생성되어 열간 압연성 및 열연강판 품질이 나빠질 우려가 있으며, 반면, 1200℃를 초과하면 오스테나이트 결정립이 조대화되어 강도확보가 어렵게 되며 표면 흠이 다량 발생하게 된다.
다음으로, 상기 재가열된 강 슬라브를 마무리 압연하여 열연강판을 제조한다. 일실시예에 따르면, 상기 마무리 압연 시 마무리 압연 온도는 800~1000℃일 수 있다. 만일 마무리 압연 온도가 800℃ 미만이면, 혼립 조직이 발생하여 경도, 연신율 등의 기계적 성질에 악영향을 미치게 되며, 반면, 마무리 압연 온도가 1000℃를 초과하면 오스테나이트 결정립이 조대화되어 강도확보가 어려울 수 있다.
이어, 본 발명에서는 상기 제조된 열연강판을 냉각 후, 권취한다. 이때, 권취 온도의 제어가 매우 중요한데, 이는 권취 온도를 제어함으로써 Si, Mn 및 Al 내부 산화물 형성을 최대한 억제할 수 있기 때문이다.
본 발명에서는 상기 권취 온도를 500℃ 이하로 제어함을 특징으로 하며, 만약, 권취 온도가 500℃를 초과할 경우, 내부 산화물의 형성이 가속화되며, 이러한 내부 산화물은 저항체 역할을 하여 점 용접시 용접부에서의 국부적인 온도 상승의 원인으로 작용하여 점 용접성이 나빠지게 된다.
그리고 본 발명에서는 상기 권취된 열연강판을 냉간압연함으로써 냉연강판을 제조한다.
일실시예에 따르면, 상기 냉간 압연 시, 냉간 압하율은 30~60%일 수 있다. 만일 냉간 압하율이 30% 미만이면 변형량이 적어 회복 및 재결정시 결정립 미세화를 유도할 수 없어 강도확보가 어려울 수 있으며, 반면, 냉간 압하율이 60%를 초과하면 압연롤에 부하를 일으켜 안전 및 설비 손상의 우려가 있다.
이어, 본 발명에서 상기 냉연강판을 환원 분위기 하에서 가열한 후, 유지한다. 이때, 냉연강판의 가열 온도는 500~750℃인 것이 바람직하다. 만일 상기 가열 온도가 500℃ 미만이면 냉각과정에서 강판온도가 도금욕 온도보다 낮아져 도금성 및 밀착성 열위를 초래할 수 있으며, 반면, 가열 온도가 750℃를 초과하면 2차 재결정에 의해 강의 인장 강도 또는 연신율 등이 저하되며, 강판 표면에 Si, Mn 및 Al 산화물층이 두껍게 형성되어 아연 도금 이후 도금층과 강판 계면에 존재하는 소둔 산화물에 의해 미도금 발생 및 도금 박리 현상을 유발할 수 있다.
한편, 냉연강판의 가열시, 가열 속도는 조업 라인에서 라인 스피드(line speed), 즉 생산성과 직결되기 때문에 강판의 품질에 악영향을 미치지 않는 범위 내에서는 빠를수록 좋다. 특히, 가열 속도가 지나치게 낮을 경우, 강판 표면에 Si, Mn 및 Al의 농화가 심해 두꺼운 산화물층을 형성함으로써 미도금 발생 및 도금 박리 현상을 유발할 수 있다. 따라서 가열 구간에서의 가열 속도는 소둔 산화물층 두께에 중대한 영향을 미쳐, 이후 아연 도금을 하는 과정에서 도금성 및 도금 박리 여부를 결정짓는 중요한 변수가 된다. 다만 가열 속도를 증가시키기 위해 라인 스피드를 무리하게 증가시킬 경우, 선행 코일과의 용접부 파단의 발생 및 강판이 한쪽으로 쏠리는 사행 발생 우려가 가중되기 때문에 가열 속도를 무한정 높일 수는 없다.
이에, 본 발명에서는 냉연강판의 가열 시, 가열 속도를 2.0℃/sec 이상으로 제어한다. 만일 상기 가열 속도가 2.0℃/s 미만이면, 강판의 생산성이 저하되는 단점과 더불어, 가열 중 강판의 표면에 Si, Mn 및 Al의 농화가 증가하여 띠 형태의 Si, Mn 및 Al의 복합 산화물층이 두껍게 형성되어 미도금 발생 및 도금 박리 현상을 유발할 수 있다
또한 본 발명에서는 상기 환원 분위기는 3~20부피%의 수소(H2) 및 잔부 질소(N2) 가스 분위기일 수 있다. 만약, 수소의 함량이 3 부피% 미만이면 강판 표면에 불가피하게 형성된 철 산화 피막의 환원이 충분히 일어나지 않아 잔류 산화층에 의한 도금층의 박리를 초래할 우려가 있다. 다만 수소 함량이 과도하게 높을 경우 수소 함량 증가에 따라 비용이 증가할 뿐만 아니라, 폭발 위험이 증대되는바, 그 함량을 20 부피%이하로 한정함이 바람직하다.
그리고 일실시예에 따르면, 상기 냉연강판의 가열 및 유지시 이슬점 온도는 -30℃ 이하로 제어하는 것이 바람직하며, 이는 강판 표면에 Si, Mn 및 Al 산화물의 농화를 최대한 억제하기 위함이다. 만일 이슬점 온도가 -30℃를 초과할 경우 강 중 Mn이 산소와 반응하여 Mn 산화물을 강판 표층에 띠 형태로 두껍게 형성시킴에 따라 아연의 도금성이 나빠지게 될 우려가 있다.
이후, 상기 가열 및 유지된 냉연강판을 도금하여 아연계 도금강판을 얻는다.
이때, 본 발명에서는 아연계 도금강판을 제조하기 위한 구체적인 방법에 대해서는 특별히 한정하지 않으며, 예를 들어, 전기 아연계 도금법이나 용융 아연계 합금 도금법을 이용하여 아연계 도금강판을 제조할 수 있다.
만일 용융 아연계 도금에 의해 아연계 도금강판을 제조할 경우, 도금욕 온도는 440~460℃로 제어하는 것이 바람직하다. 만일 아연계 도금욕의 온도가 440℃ 미만이면 도금욕의 점도가 과도하게 상승하여 강판을 감는 롤(roll)의 이동도가 감소되며, 이로 인해 강판과 롤 간의 슬립(slip)을 유발시켜 강판 표면 결함을 야기할 우려가 있다. 반면, 아연계 도금욕의 온도가 460℃를 초과할 경우 강판의 용해를 촉진시켜 Fe-Al 화합물 형태의 드로스 발생을 가속화시키며, 이에 따라 미도금을 야기할 수 있다.
이때, 본 발명에서는 필요에 따라, 상기 용융 아연도금 후, 아연계 도금강판을 480~600℃의 온도에서 합금화 열처리함으로써 합금화 아연계 도금강판을 제조할 수 있다. 합금화 열처리 온도를 480℃ 이상으로 제어함으로써 아연계 도금층 내 충분한 Fe 함량을 확보할 수 있으며, 600℃ 이하로 제어함으로써 도금층 중 Fe 함량이 과도하여 가공 중 도금층이 탈락하는 파우더링 현상을 방지할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.
(실시예)
하기 표 1의 강 조성성분을 갖는 TWIP 강판을 열간 및 냉간 압연하고, 탈지 및 산세공정을 거쳐 강판 표면을 청정화한 후, 환원로에서 5 체적%의 수소를 포함하는 질소가스를 불어 주며 740℃의 온도에서 40초 동안 소둔 공정을 실시하였다. 다음으로, 소둔 공정을 거친 냉연 강판을 냉각하고, 용융 아연 도금욕에 5초 동안 침지한 후, 에어 와이핑(Air wipping)을 통해 도금 부착량을 60g/m2 수준을 조절하였다.
상기 강판이 아연 도금욕에 침지되면, 강판으로부터 Fe 및 Mn이 도금층으로 확산하게 되는데 도금욕 온도 또는 강판 인입온도가 너무 높으면 도금층 내 Fe 상기 도금욕 온도보다 약 20℃ 높게 설정하여 용융 도금욕에 침지하여 도금하였다.
이후, 제조된 용융 도금강판의 이종 용접성을 평가하기 위해 용융도금된 DP 소재 1.4mmt와 용융도금된 TWIP 소재 1.2mmt를 50mm*150mm 크기로 각각 절단하여 십자 형태로 겹친 후 5.5mm 전극경을 가진 전극을 사용하여 spatter가 발생하는 expulsion 전류보다 0.2kA 낮은 용접 전류에서 가압력 4kN, single pulse로 320ms동안 용접한 후 200ms동안 유지하며 점 용접을 실시하였다. 상하부 grip에 980DP소재와 TWIP소재를 각각 물려 일축으로 인장하여 인장 강도를 측정하여 하기 표 1에 나타내었으며, 이를 이종 용접강도(Cross Tension Strength, CTS)라고 한다. 그리고 용접부 단면 미세조직 상에서 너겟부 경계 영역을 압자를 활용하여 10mN의 load를 가하여 10회 측정한 경도값 중 최대값을 하기 표 1에 나타내었으며, 해당 시편의 너겟부 경도값(HV)으로 한다. 한편 항복강도, 인장강도, TEI 등의 기계적 물성은 30mm*200mm 크기로 절단된 시편을 상하부 grip에 물려 일축 인장시켜 strain-stress curve를 도식화할 경우, strain 0.2% 지점에서 slop에 평행한 선을 그었을 때의 교차점을 항복강도로 하고, 최대 강도값을 인장강도로 하며 최대 변형률을 Tel로 하여 표 1에 기재하였다. 그리고 오스테나이트 조직 분율은 용접부 너겟 주변에 대해 광학현미경으로 500X 배율로 오스테나이트 조직의 면적분율을 10군데 측정하여 평균값을 산출하였다.
소지강판 조성성분(중량%) 소둔온도(℃) YS(MPa) TS(MPa) TEI(%) 너겟 경계부 경도(HV) 오스테나이트 조직 분율(%) 이종 용접강도(kN)
C Mn Ti Mo+V (Mn+10*C)*V
발명예1 0.66 20.4 0.06 0.70 13.5 700 887 1223 36 259 100 4.65
발명예2 0.5 20.5 0.05 0.80 12.75 745 802 1184 41 310 96 4.37
발명예3 0.7 19.6 0.06 0.97 13.3 650 944 1246 32 290 97 4.42
발명예4 0.4 22.1 0.07 0.65 13.05 720 728 1157 41 279 100 4.61
비교예1 0.44 19.2 0.05 0.02 11.8 745 536 966 62 477 91 3.86
비교예2 0.35 18.8 0.04 0.01 11.15 780 553 951 44 450 85 3.27
비교예3 0.66 17.1 0.06 0.059 11.85 770 526 996 52 460 83 3.18
비교예4 0.39 22.8 0.05 0.62 13.9 800 614 1078 55.1 320 95 4.28
상기 표 1에 나타낸 바와 같이, 소지 강판의 조성 성분이 본 발명의 범위를 만족하는 발명예 1 내지 4의 경우, 우수한 기계적 성질(기준, YS≥700MPa, TS≥1150MPa, TEl ≥30%)을 나타냄을 알 수 있으며, 이종 용접강도(기준 ≥4.2kN)가 모두 두께별 기준을 상회하는 것으로 나타나 기계적 성질뿐만 아니라 점용접성이 매우 우수한 것을 알 수 있다.
이에 반하여, 비교예 1-3는 강중 (Mn + 10×C)×V 함량이 본 발명의 범위를 벗어난 경우로서, 이종 점용접 시 너겟부 경계 영역에서의 경도값이 477HV 또는 450HV으로 측정되어 brittle한 마르텐사이트상이 국부적으로 형성되어 충분한 이종 용접강도를 얻지 못함을 알 수 있다.
또한 비교예 2-3은 강 중 (Mn + 10×C)×V 함량이 본 발명의 범위를 벗어남과 동시에 제조공정상 소둔온도가 본 발명의 범위를 벗어나, 석출물 형성 및 결정립 미세화가 효과적으로 일어나지 않아 YS≥700MPa, TS≥1150MPa, TEl≥30%의 우수한 기계적 성질을 얻기 어려웠다.
마지막으로, 비교예 4는 강 중 Mo와 V 함량의 합이 본 발명의 범위를 만족함에도, 제조공정상의 소둔 온도가 본 발명의 범위를 벗어나 석출물 형성 및 결정립 미세화가 효과적으로 일어나지 않아 YS≥700MPa, TS≥1180MPa, TEl≥30%의 기계적 성질을 확보하기 얻기 어려웠다.
한편 도 1은 본 실시예에서의 아연도금강판을 이종 소재인 DP소재와 점용접한 후 절단한 단면을 광학현미경(OM, Optical Microscope)으로 관찰한 사진으로서, 도 1(a)는 발명예 1을, 그리고 도 1(b)는 비교예 1에 나타내는 사진이다. 도 1(a-b)에 나타난 바와 같이, 본 발명예 1의 경우가 비교예 1에 비하여 이종 점용접 시 너겟부 경계 영역에서의 경도값이 261HV, 259HV 또는 279HV등으로 측정되어 brittle한 마르텐사이트상이 국부적으로 형성되어 않음을 알 수 있으며, 이에 따라 충분한 이종 용접강도를 얻을 수 있음을 보여주고 있다.
이상에서 본 명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (9)

  1. 소지강판 표면에 아연도금층이 형성되어 있는 고망간 아연도금강판에 있어서, 상기 소지강판은, 중량%로, C: 0.3~0.9%, Mn: 10 ~ 25%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함하는 점용접성이 우수한 초고강도 고망간 아연도금강판.
  2. 제 1항에 있어서, 상기 아연도금강판을 이종금속 소재와 점 용접 시, 너겟부 경계 주변에 오스테나이트 조직 분율이 95%이상이고, 압자를 활용하여 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV 범위를 만족하는 것을 특징으로 하는 점용접성이 우수한 초고강도 고망간 아연도금강판.
  3. 제 1항에 있어서, 상기 아연도금강판은 전기 아연 도금강판, 용융아연 도금강판 및 합금화 용융아연 도금강판 중 하나인 것을 특징으로 하는 점용접성이 우수한 초고강도 고망간 아연도금강판.
  4. 제 1항의 초고강도 고망간 아연도금강판과, 상기 도금강판에 점 용접되어 있는 이종금속 소재를 포함하는 용접구조물.
  5. 제 4항에 있어서, 상기 점 용접 부의 너겟부 경계 주변에 오스테나이트 조직 분율이 95%이상이고, 압자를 활용하여 10mN의 load를 가하며 측정한 평균 경도값이 250~350HV 범위를 만족하는 것을 특징으로 하는 용접구조물.
  6. 제 3항에 있어서, 상기 이종금속 소재는 DP강 또는 TRIP강인 것을 특징으로 하는 용접구조물.
  7. 중량%로, C: 0.3~0.9%, Mn: 10~25%, Ti: 0.01~0.5%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1200℃로 재가열하는 단계;
    상기 재가열된 상기 슬라브를 800~1000℃로 마무리 압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 냉각 후, 500℃ 이하의 온도에서 권취하는 단계;
    상기 권취된 열연강판을 30~60%의 압하율로 냉간압연함으로써 냉연강판을 제조하는 단계;
    상기 냉연강판을 3~20부피%의 수소(H2) 및 잔부 질소(N2) 가스 분위기인 환원 분위기 하에서 2.0℃/sec 이상의 속도로 500~750℃까지 가열한 후, 유지하는 단계; 및
    상기 가열 및 유지된 냉연강판을 전기도금함으로써 아연도금강판을 제조하는 단계;를 포함하는 점 용접성이 우수한 초고강도 고망간 아연도금강판의 제조방법.
  8. 중량%로, C: 0.3~0.9%, Mn: 10~25%, Ti: 0.01~0.5%, Ti: 0.01~0.5%, V + Mo≥ 0.6%, (Mn + 10×C)×V ≥ 12를 만족하고, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1200℃로 재가열하는 단계;
    상기 재가열된 상기 슬라브를 800~1000℃로 마무리 압연하여 열연강판을 제조하는 단계;
    상기 열연강판을 냉각 후, 500℃ 이하의 온도에서 권취하는 단계;
    상기 권취된 열연강판을 30~60%의 압하율로 냉간압연함으로써 냉연강판을 제조하는 단계;
    상기 냉연강판을 3~20부피%의 수소(H2) 및 잔부 질소(N2) 가스 분위기인 환원 분위기 하에서 2.0℃/sec 이상의 속도로 500~750℃까지 가열한 후, 유지하는 단계; 및
    상기 가열 및 유지된 냉연강판을 용융 아연 도금함으로써 아연도금강판을 제조하는 단계;를 포함하는 점 용접성이 우수한 초고강도 고망간 아연도금강판의 제조방법.
  9. 제 8항에 있어서, 상기 용융 아연 도금 후, 480~600℃에서 합금화 열처리하는 단계;를 추가로 포함하는 점용접성이 우수한 초고강도 고망간 아연도금강판의 제조방법.
PCT/KR2018/015336 2017-12-26 2018-12-05 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법 WO2019132288A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170180335A KR102065230B1 (ko) 2017-12-26 2017-12-26 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
KR10-2017-0180335 2017-12-26

Publications (1)

Publication Number Publication Date
WO2019132288A1 true WO2019132288A1 (ko) 2019-07-04

Family

ID=67064118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015336 WO2019132288A1 (ko) 2017-12-26 2018-12-05 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법

Country Status (2)

Country Link
KR (1) KR102065230B1 (ko)
WO (1) WO2019132288A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867886A (zh) * 2019-12-20 2022-08-05 Posco公司 表面质量和电阻点焊性优异的高强度热浸镀锌钢板及其制造方法
WO2024002314A1 (zh) * 2022-06-30 2024-01-04 宝山钢铁股份有限公司 一种120公斤级超高强度镀锌钢板及其制造方法
US12000008B2 (en) 2019-12-20 2024-06-04 Posco Advanced high strength zinc plated steel sheet having excellent surface quality and electrical resistance spot weldability

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742833B1 (ko) * 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
KR100985286B1 (ko) * 2007-12-28 2010-10-04 주식회사 포스코 내지연파괴 특성이 우수한 고강도 고망간강 및 제조방법
KR101630957B1 (ko) * 2014-11-05 2016-06-16 주식회사 포스코 점용접성 및 도금성이 우수한 고망간강 합금아연도금강판 및 이의 제조방법
KR101630960B1 (ko) * 2014-11-14 2016-06-16 주식회사 포스코 가공성 및 점용접성이 우수한 합금화 용융아연도금강판 및 그 제조방법
KR20160078840A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 항복 강도 및 성형성이 우수한 고강도 고망간강 및 그 제조방법
KR101736640B1 (ko) * 2015-12-24 2017-05-17 주식회사 포스코 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128544C2 (de) 2001-06-13 2003-06-05 Thyssenkrupp Stahl Ag Höherfestes, kaltumformbares Stahlblech, Verfahren zu seiner Herstellung und Verwendung eines solchen Blechs
JP5003785B2 (ja) 2010-03-30 2012-08-15 Jfeスチール株式会社 延性に優れた高張力鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100742833B1 (ko) * 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
KR100985286B1 (ko) * 2007-12-28 2010-10-04 주식회사 포스코 내지연파괴 특성이 우수한 고강도 고망간강 및 제조방법
KR101630957B1 (ko) * 2014-11-05 2016-06-16 주식회사 포스코 점용접성 및 도금성이 우수한 고망간강 합금아연도금강판 및 이의 제조방법
KR101630960B1 (ko) * 2014-11-14 2016-06-16 주식회사 포스코 가공성 및 점용접성이 우수한 합금화 용융아연도금강판 및 그 제조방법
KR20160078840A (ko) * 2014-12-24 2016-07-05 주식회사 포스코 항복 강도 및 성형성이 우수한 고강도 고망간강 및 그 제조방법
KR101736640B1 (ko) * 2015-12-24 2017-05-17 주식회사 포스코 도금성 및 점용접성이 우수한 아연계 도금강판 및 그 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114867886A (zh) * 2019-12-20 2022-08-05 Posco公司 表面质量和电阻点焊性优异的高强度热浸镀锌钢板及其制造方法
US12000008B2 (en) 2019-12-20 2024-06-04 Posco Advanced high strength zinc plated steel sheet having excellent surface quality and electrical resistance spot weldability
WO2024002314A1 (zh) * 2022-06-30 2024-01-04 宝山钢铁股份有限公司 一种120公斤级超高强度镀锌钢板及其制造方法

Also Published As

Publication number Publication date
KR20190078437A (ko) 2019-07-04
KR102065230B1 (ko) 2020-01-10

Similar Documents

Publication Publication Date Title
KR101431317B1 (ko) 고강도 용융 아연 도금 강판 및 그 제조 방법
CA2648429C (en) Method of production of hot dip galvannealed steel sheet with excellent workability, powderability, and slidability
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
WO2020130631A1 (ko) 전기 저항 점용접성이 우수한 고강도 아연도금강판 및 그 제조방법
US10138530B2 (en) Method for producing high-strength galvannealed steel sheets
KR101864655B1 (ko) 고강도 용융 아연 도금 강판의 제조 방법
WO2016105115A1 (ko) 표면품질, 도금밀착성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
JP5552859B2 (ja) 高強度溶融亜鉛めっき鋼板およびその製造方法
JP2013142198A (ja) めっき濡れ性及び耐ピックアップ性に優れる溶融亜鉛めっき鋼板の製造方法
JP2014015675A (ja) 高強度溶融亜鉛めっき鋼板の製造方法および高強度溶融亜鉛めっき鋼板
WO2019004662A1 (ko) 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
WO2017111491A1 (ko) 도금성 및 용접성이 우수한 오스테나이트계 용융 알루미늄 도금강판 및 그 제조방법
WO2019132288A1 (ko) 점 용접성이 우수한 초고강도 고망간 아연도금강판 및 그의 제조방법
WO2004061137A1 (ja) 加工性の優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法
WO2019132289A1 (ko) 점용접성이 우수한 고강도 고망간 도금강판 용접 구조물 및 그의 제조방법
KR20160077571A (ko) 표면품질 및 내파우더링성이 우수한 고강도 합금화용융아연도금강판 및 그 제조방법
JP2011256406A (ja) 高張力溶融亜鉛めっき鋼板の製造方法
KR100833050B1 (ko) 내열성이 우수한 알루미늄 도금용 고강도 강판 및 내열성이우수한 알루미늄 도금강판
WO2018139191A1 (ja) めっき密着性に優れた高強度溶融めっき鋼板およびその製造方法
KR102451003B1 (ko) 도금밀착성 및 점용접성이 우수한 고강도 용융아연도금강판 및 그 제조방법
WO2022131635A1 (ko) 강도, 성형성 및 표면 품질이 우수한 도금강판 및 이의 제조방법
EP4265772A1 (en) High strength hot-dip galvanized steel sheet having excellent plating adhesion and weldability and method of manufacturing same
WO2023224200A1 (ko) 용접성이 우수한 초고강도 아연도금강판 및 그 제조방법
WO2022139251A1 (ko) 폭방향을 따라 우수한 점 용접성이 균등하게 구현되는 고강도 용융아연도금 강판 및 그 제조방법
JP2023507960A (ja) 表面品質と電気抵抗スポット溶接性に優れた高強度溶融亜鉛めっき鋼板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895868

Country of ref document: EP

Kind code of ref document: A1