WO2007083715A1 - 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物 - Google Patents

液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物 Download PDF

Info

Publication number
WO2007083715A1
WO2007083715A1 PCT/JP2007/050723 JP2007050723W WO2007083715A1 WO 2007083715 A1 WO2007083715 A1 WO 2007083715A1 JP 2007050723 W JP2007050723 W JP 2007050723W WO 2007083715 A1 WO2007083715 A1 WO 2007083715A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
area
content
formula
bisphenol
Prior art date
Application number
PCT/JP2007/050723
Other languages
English (en)
French (fr)
Inventor
Masataka Nakanishi
Katsuhiko Oshimi
Takao Sunaga
Original Assignee
Nippon Kayaku Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki Kaisha filed Critical Nippon Kayaku Kabushiki Kaisha
Priority to JP2007554956A priority Critical patent/JP5368707B2/ja
Publication of WO2007083715A1 publication Critical patent/WO2007083715A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds

Definitions

  • the present invention relates to a liquid epoxy resin having a low viscosity and low crystallinity and good handling properties, an epoxy resin composition containing the epoxy resin and a cured product thereof.
  • Epoxy resin is generally cured with various curing agents, resulting in a cured product having excellent mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, and the like. It is used in a wide range of fields such as laminates, molding materials, casting materials, and resists. In recent years, especially in the field of semiconductor-related materials, electronic devices such as mobile phones with cameras, ultra-thin liquid crystals and plasma TVs, and light-weight notebook computers are the keywords for light, thin, short and small. As a result, packaging materials represented by epoxy resin are required to have very high characteristics. In particular, the structure of the advanced package is complicated, and the number of things that are difficult to seal without liquid sealing increases. For example, those with a cavity down type structure such as EnhanchedBGA must be partially sealed and cannot be handled by transfer molding. For this reason, development of highly functional liquid epoxy resin has been demanded.
  • RTM has also been used as a composite material, car body and ship structural material due to its simplicity of manufacturing.
  • a low-viscosity epoxy resin is desired because it is easily impregnated into carbon fiber or the like.
  • Another approach is to epoxidize 4, 4 'bis (hydroxyphenol) methane whose structure is controlled in para orientation, but the viscosity is too low but the crystallinity is too high. Crystallization occurs during storage, which is difficult to maintain in a liquid state.
  • Patent Document 1 attempts have been made to lower the crystallinity by introducing a methyl group into the 4,4'-bis (hydroxyphenol) methane skeleton. There is a risk that the reactivity of greaves may decrease.
  • Patent Document 1 Japanese Patent Laid-Open No. 61-112066
  • An object of the present invention is to provide a low viscosity, low crystallinity bisphenol F type liquid epoxy resin.
  • the present inventors have intensively studied for liquid aromatic epoxy resin having high heat resistance and high mechanical strength and giving a cured product. As a result, the present inventors have a specific molecular structure. As a result, it was found that a low-viscosity, low-crystallinity bisphenol F-type liquid epoxy resin was obtained, and the present invention was completed.
  • the present invention relates to (1) Bisphenol F-type epoxy resin that remains liquid for more than 1 week at 5 ° C and has a viscosity of 500-2000mm 2 / s (Ubbelohde viscometer) at 25 ° C.
  • X represents a hydrogen atom or a glycidyl group.
  • the content of the epoxy resin of the skeleton represented by is more than 0 area% and not more than 20 area% when detected by gel permeation chromatography (GPC; UV 254 nm)
  • the content of diglycidyl ether is 95% by area or more as measured by gel permeation chromatography (GPC; detected by UV 254 nm), as described in (1) or (2) above Epoxy resin,
  • the epoxy resin of the present invention is a liquid resin having low viscosity and low crystallinity.
  • the epoxy resin of the present invention is very easy to handle and useful compared to the low-viscosity bisphenol F type epoxy resin, which has been complicated to handle.
  • the bisphenol F type epoxy resin of the present invention can be obtained by carrying out glycidyl etherification with a specific bisphenol F and epihalohydrin under basic conditions.
  • 500 ⁇ 2000mm 2 / s in epoxy ⁇ its viscosity 25 ° C of the force present invention will be described later method (Ubbelohde viscometer), preferably 750 ⁇ 1950mm 2 / s, more preferably 1,000-190 0 mm 2 /
  • the epoxy resin obtained just by s is refrigerated (for example, 5 ° C) or frozen (for example, For example, even if it is left at 5 ° C for 1 week, no crystal deposition is observed.
  • the present invention uses a specific bisphenol F as a raw material, and controls both a specific skeleton and a specific molecular weight distribution to achieve both low viscosity and low crystallization. Is.
  • n the number of repetitions.
  • n ⁇ l compound is 5 area% or less, preferably 2 area% or less, more preferably less than the detection limit (usually 1 area% or less) (GPC; detected at UV 254 nm, hereinafter Unless otherwise specified, area% is a value measured by GPC.)
  • the detection limit usually 1 area% or less
  • area% is a value measured by GPC.
  • bisphenol F is a compound of the formula (3) wherein n ⁇ 1 5 to 9.0% by area.
  • the epoxy resin of the present invention is also an epoxy resin characterized by satisfying the following specific conditions for the bonding position of the methylene group.
  • G represents a glycidyl group.
  • a large amount of the compound of formula B in the molecular skeleton contributes to a decrease in crystallinity.
  • the cured product has a large amount of the compound of the formula A for the heat resistance (maintaining the elastic modulus) .
  • the moisture resistance includes a certain amount of the compound of the formula C. It is preferable that For this reason, it is preferable to keep the balance of the content ratio of the A, B, and C structures within an appropriate range.
  • the content of the compound represented by the formula is reduced, preferably 0 to 5 area%, more preferably 0 to 2 area%, and even more preferably below the detection limit (usually 1 area% or less).
  • This content can also be measured by force high-performance liquid chromatography, which can usually be measured by gel permeation chromatography. Usually, the latter measurement value is about 0.5 to 3 compared to the former measurement value. Measured low points.
  • the content of the epoxy resin of the above formula (2) is relatively high, and it is preferable.
  • the epoxy resin of the present invention satisfies the relationship of the following formula (1) ( ⁇ -2). U), especially preferred to satisfy the relationship.
  • (1) and (2) are area% as measured by gel permeation chromatography (GPC; detected at UV 254 nm).
  • the crystallinity may increase or the viscosity may become too high.
  • the viscosity may become too high, and those satisfying the following formula ( ⁇ ′) are particularly preferred because they have a low viscosity.
  • a to C, (1) and (2) are area% as measured by high performance liquid chromatography (HPLC; detected at UV 274 nm).
  • the epoxy resin of the present invention has the formula (4) [0019] [Chemical 7]
  • X represents a hydrogen atom or a glycidyl group.
  • n represents the number of repetitions and represents a value of 1 to 5.
  • This content can be measured by high-performance liquid chromatography, which is usually measured by gel permeation chromatography. Usually, the latter measurement value is about 0.5 to 3 compared to the former measurement value. Measured low points.
  • the content of diglycidyl ether (that is, in the formula (4), all of X is a hydrogen atom and compound A, B, C) is 80 area% or more, preferably Those containing 90 area% or more, more preferably 95 area% or more are preferred.
  • X can be glycidyl group, and the alcoholic hydroxyl group of glycidyl ether can be glycidylated.
  • bisphenol F used as a raw material in the present invention has a low content of the oligophenol compound of the above formula (3). Therefore, when glycidyl alcohol is used with high purity, bis (glycidyloxyphenol) is used. ) Only methane, and like distillate, there may be problems with crystallinity. In such a case, the problem is to increase the content of the epoxy resin of formula (4). Can be solved.
  • the normal bisphenol F type epoxy resin has the oligophenol glycidyl resin of the above formula (3), so that the crystallinity is lowered but the viscosity is very high.
  • the epoxy resin of the present invention uses bisphenol F as described above and is glycidylated by reacting with epino and rhohydrin.
  • the amount of Epino, Rhohydrin, and alkali metal hydroxide is mainly the factor that determines the introduction rate of the structure of the above formula (4). That is, when the amount of epihalohydrin used is small relative to the hydroxyl group of bisphenol F, the content of the compound having a large n in formula (4) increases, and the amount of alkali metal hydroxide used is large. However, the content of compounds with large n increases.
  • raw material bisphenol F which is a raw material for the epoxy resin of the present invention, has a low content of the oligophenol compound of formula (3).
  • the acidity, temperature, etc. of the acid catalyst in preparing bisphenol F in general may be appropriately adjusted. That is, the higher the acidity, the stronger the para-orientation, and the weaker, the stronger the ortho-orientation. Become. Further, regarding the temperature, the reaction at a high temperature has a strong ortho-orientation, and the reaction at a low temperature has a strong para-orientation.
  • epichlorohydrin ⁇ -methyl epichlorohydrin, ⁇ -methyl epichlorohydrin, epip mouth hydrin, etc.
  • epichlorohydrin which is easily available industrially, is preferred.
  • the amount of epihalohydrin used is usually 2 to 20 mol, preferably 4 to 10 mol, per mol of the hydroxyl group of the raw material bisphenol F.
  • Examples of the alkali metal hydroxide that can be used in the above reaction include sodium hydroxide, potassium hydroxide, and the like, and a solid solution or an aqueous solution thereof may be used.
  • aqueous solution When an aqueous solution is used, the alkali metal hydroxide aqueous solution is continuously added to the reaction system, and water, epino, and rhohydrin are continuously distilled off under reduced pressure or normal pressure. Then, water may be removed, and epino and lohydrin may be continuously returned to the reaction system.
  • the amount of alkali metal hydroxide used is usually 0.3 to 2.5 mol, preferably 0.5 to 2.0 mol, more preferably 0, per mol of the hydroxyl group of the raw material bisphenol F. 8 to 1.3 moles.
  • quaternary ammonium salt such as tetramethylammonium chloride, tetramethylammonium bromide, trimethylbenzylammonium chloride as a catalyst.
  • the amount of the quaternary ammonium salt used is usually 0.1 to 15 g, preferably 0.2 to LOg per mol of the hydroxyl group of the raw material bisphenol F.
  • an alcohol such as methanol, ethanol or isopropyl alcohol
  • an aprotic polar solvent such as dimethyl sulfone, dimethyl sulfoxide, tetrahydrofuran or dioxane.
  • the amount used is usually 2 to 50% by weight, preferably 4 to 20% by weight, based on the amount of epihalohydrin used. Also use aprotic polar solvent In this case, it is usually 5 to LOO% by weight, preferably 10 to 80% by weight, based on the amount of Epino and Rhohydrin used.
  • the reaction temperature is usually 30 to 90 ° C, preferably 35 to 80 ° C.
  • the reaction time is usually 0.5 to 10 hours, preferably 1 to 8 hours.
  • the recovered epoxy resin is dissolved in a solvent such as toluene or methylisobutyl ketone, and alkali metal water such as sodium hydroxide or potassium hydroxide is dissolved. It is also possible to react with an aqueous solution of an acidic solution to ensure ring closure.
  • the amount of alkali metal hydroxide used is usually 0.01 to 0.3 mol, preferably 0.05 to 0.2 mol per mol of the hydroxyl group of the raw material bisphenol F used for epoxidation. It is.
  • the reaction temperature is usually 50 to 120 ° C, and the reaction time is usually 0.5 to 2 hours.
  • the formed salt is removed by filtration, washing with water, and the like, and the solvent is distilled off under heating and reduced pressure to obtain the epoxy resin of the present invention.
  • the obtained epoxy resin is further reacted with the raw material bisphenol F, or a small amount of the raw material bisphenol F is added in a small amount. It is also possible to use a method of adding epoxihalohydrin and forming a 1,3-dioxy-2-propanol bond in advance and then glycidylating according to the above formulation. Furthermore, the glycidyl cocoon ratio of the alcoholic hydroxyl group can be increased by glycidylating the alcoholic hydroxyl group-containing epoxy resin thus obtained again.
  • the obtained epoxy resin can be used as various resin materials. Examples include epoxy acrylate and derivatives thereof, oxazolidone compounds, and cyclic carbonate compounds.
  • the epoxy resin composition of the present invention contains the epoxy resin of the present invention and a curing agent as essential components.
  • the epoxy resin of the present invention can be used alone or in combination with other epoxy resins.
  • the proportion of the epoxy resin of the present invention in the total epoxy resin is preferably 30% by weight or more. In particular, 40% by weight or more is preferable.
  • the epoxy resin of the present invention is used as a modifier of the epoxy resin composition, it is added at a ratio of 1 to 30% by weight.
  • bisphenol A bisphenol S, thiodiphenol, fluorene bisphenol, terpene diphenol, 4, 4, -biphenol, 2, 2, -biphenol, 3, 3 ,, 5, 5, monotetramethyl [1, 1 'biphenyl] — 4, 4'—diol, hydroquinone, resorcin, naphthalenediol, tris (4 hydroxyphenyl) methane, 1, 1, 2, 2—tetrakis (4-hydroxy) Phenol), phenols (phenol, alkyl-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, dihydroxynaphthalene, etc.) and formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, o-hydroxybenzaldehyde, p Hydroxyacetophenone, o hydroxyacetophenone Dicyclopen
  • Examples of the curing agent contained in the epoxy resin composition of the present invention include amine compounds, acid anhydride compounds, amide compounds, phenol compounds, and carboxylic acid compounds.
  • Specific examples of hardeners that can be used include polyamides synthesized from diaminodiphenylmethane, diethylenetriamine, triethylenetetramine, diaminodiphenylsulfone, isophorone diamine, dicyandiamide, and linolenic acid dimer and ethylene diamine.
  • tetrabromobisphenol A examples include, but are not limited to, halogenated bisphenols, imidazoles, trifluoroborane monoamine complexes, guanidine derivatives, and condensates of terpenes and phenols. These may be used alone or in combination of two or more.
  • the amount of the curing agent used in the epoxy resin composition of the present invention is preferably 0.7 to 1.2 equivalents relative to 1 equivalent of epoxy group of the epoxy resin. If less than 0.7 equivalent or more than 1.2 equivalent to 1 equivalent of epoxy group, curing may be incomplete and good cured properties may not be obtained.
  • a curing catalyst may be used in combination with a curing agent.
  • curing catalysts include imidazoles such as 2-methylimidazole, 2-ethylimidazole, and 2-ethyl-4-methylimidazole, 2 (dimethylaminomethyl) phenol, 1,8 diazabicyclo (5, 4, 0) Tertiary amines such as undecene-7, phosphines such as triphenylphosphine, and metal compounds such as tin octylate.
  • a curing accelerator 0.1 to 5.0 parts by weight is used as needed with respect to 100 parts by weight of the epoxy resin.
  • the epoxy resin composition of the present invention contains a phosphorus-containing compound as a flame retardant component. It can also be made.
  • the phosphorus-containing compound may be a reactive type or an additive type. Specific examples of phosphorus-containing compounds include trimethyl phosphate, triethyl phosphate, tricresinorephosphate, trixylyleninorephosphate, cresyl diphenol-norephosphate, udderru 2,6 dixylylenyl phosphate, 1,3 phosphate- Phosphate esters such as lenbis (dixylylenyl phosphate), 1,4 phenylene bis (dixylylleninophosphate), 4,4'-biphenyl (dixylylenyl phosphate); 9, 10 dihydro-9 oxa — 10 phos Phosphenanthrene 10-oxide, 10 (2,5 dihydroxyphenol) 10H-9 oxa 10 phosphaphenanthrene 10 phos
  • esters, phosphanes or phosphorus-containing epoxy compounds are preferred 1,3 phenylene bis (dixylylenyl phosphate), 1,4 phenylene bis (dixylillenorephosphate), 4, 4'-biphenyl ( Dixylylene phosphate) or phosphorus-containing epoxy compounds are particularly preferred.
  • the epoxy resin composition of the present invention may contain a binder resin if necessary.
  • Noinder resins include petital resins, acetal resins, acrylic resins, epoxy nylon resins, NBR phenol resins, epoxy-NBR resins, polyamide resins, polyimide resins. Forces including, but not limited to, fats and silicone-based greaves It is preferable that the amount of the binder resin is in a range that does not impair the flame retardancy and heat resistance of the cured product. 0.05 to 20 parts by weight are used as needed.
  • An inorganic filler can be added to the epoxy resin composition of the present invention as necessary.
  • Inorganic fillers include crystalline silica, fused silica, alumina, zircon, calcium silicate, calcium carbonate, silicon carbide, silicon nitride, boron nitride, zircoure, fosterite, steatite, spinel, titer, talc. And the like, or a force obtained by spheroidizing these powders, but is not limited thereto. These may be used alone Two or more kinds may be used.
  • the content of these inorganic fillers is 0 to 95% by weight in the epoxy resin composition of the present invention.
  • the epoxy resin composition of the present invention includes a silane coupling agent, a release agent such as stearic acid, normitic acid, zinc stearate, calcium stearate, various compounding agents such as pigments, and various thermosetting resin. Can be accompanied.
  • the epoxy resin composition of the present invention can be obtained by uniformly mixing each component.
  • the epoxy resin composition of the present invention is conventionally known and can be easily made into a hardened product by a method similar to the above method.
  • the epoxy resin of the present invention, a curing agent, and if necessary, a curing catalyst, a phosphorus-containing compound, a binder resin, an inorganic filler, and a compounding agent are made uniform using an extruder, a kneader, a roll, or the like as necessary.
  • the cured product of the present invention can be obtained.
  • the epoxy resin composition of the present invention is dissolved in a solvent such as toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylbivinylidone, and the like.
  • the epoxy varnish of the present invention is formed by hot press molding a pre-predder obtained by impregnating a substrate such as glass fiber, force-bonn fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and drying by heating. It can be set as the hardened
  • the solvent is used in an amount of 10 to 70% by weight, preferably 15 to 70% by weight in the mixture of the epoxy resin composition of the present invention and the solvent.
  • cured material which contains a carbon fiber by a RTM system with a liquid composition can also be obtained.
  • the epoxy resin of the present invention can also be used as a modifier for a film-type composition. Specifically, it can be used to improve the flexibility of the B-stage.
  • the epoxy resin composition of the present invention is peeled off, the varnish is applied onto a film, the solvent is removed under heating, and B-stage cleaning is performed. Get an adhesive.
  • This sheet-like adhesive can be used as an interlayer insulating layer in a multilayer substrate or the like.
  • Examples of the adhesive include an adhesive for electronic materials in addition to an adhesive for civil engineering, construction, automobile, general office work, and medical use.
  • adhesives for electronic materials include interlayer adhesives for multilayer substrates such as build-up substrates, die bonding agents, semiconductor adhesives such as underfills, BGA reinforcing underfills, anisotropic conductive films ( ACF), anisotropic conductive paste (ACP), and other mounting adhesives.
  • sealant capacitors, transistors, diodes, light emitting diodes, ICs, pottings for LSIs, dating, transfer mold sealings, potting sealings for ICs, LSIs such as COB, COF, TAB, flip chip
  • underfill and sealing (including reinforcing underfill) when mounting IC packages such as QFP, BGA, and CSP.
  • MobilPhaseA Acetet to Trill (AN)
  • Table 2 below shows the results of evaluation of the storage stability (crystallinity) of the examples, comparative examples and mixtures thereof, and molecular distillates of bisphenol F-type epoxy resin. Show.
  • Table 3 shows epoxy resins EP1 and EP4 obtained in Example 1 and Comparative Example 2 as epoxy resins, and KAYAHARD A_A (PT) (Nippon Kayaku Bis (3-ethyl-4-aminophenyl) methane) as a curing agent. It mix
  • PT Nippon Kayaku Bis (3-ethyl-4-aminophenyl) methane
  • Example 4 resin molded bodies were prepared by a casting method, and the mixture was heated at 120 ° C for 2 hours.
  • Table 4 shows the results of measuring the physical properties of the cured product thus obtained.
  • the physical property values were measured by the following methods.
  • TMA Glass transition temperature
  • Heating rate 2 ° C / min. (Value: Rounded to the nearest 1)
  • the cured product of the present invention has excellent physical properties in toughness (IZOD) without impairing its heat resistance as compared with a comparative cured product.
  • the epoxy resin composition of the present invention containing the epoxy resin of the present invention is used for a wide range of applications such as electric / electronic materials, molding materials, casting materials, laminated materials, paints, adhesives, resists, optical materials and the like. It is extremely useful in the way.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)

Abstract

【課題】 本発明は低粘度、低結晶性のビスフェノールF型液状エポキシ樹脂及びエポキシ樹脂組成物を提供することを目的とする。 【解決手段】 ビスフェノールF型のエポキシ樹脂であって、5°Cの温度条件下1週間以上液状を保ち、かつ、その粘度が25°Cにおいて500~2000mm2/s(ウベローデ粘度計)であることを特徴とするエポキシ樹脂。本発明のエポキシ樹脂は、ビスフェノールF型樹脂であって、下記式(3) 【化1】 (式中、nは繰り返し数を示す。) においてn≧1の化合物の量が5面積%以下、好ましくは2面積%以下にした化合物をエピハロヒドリンと反応させ得られる。

Description

明 細 書
液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物
技術分野
[0001] 本発明は低粘度、低結晶性のハンドリング性の良好な液状エポキシ榭脂、該ェポ キシ榭脂を含有するエポキシ榭脂組成物及びその硬化物に関する。
背景技術
[0002] エポキシ榭脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水 性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層 板、成形材料、注型材料、レジストなどの幅広い分野に利用されている。近年、特に 半導体関連材料の分野にぉ 、てはカメラ付き携帯電話、超薄型の液晶やプラズマ T V、軽量ノート型パソコンなど軽 '薄 ·短 ·小がキーワードとなるような電子機器があふ れ、これによりエポキシ榭脂に代表されるパッケージ材料にも非常に高い特性が求め られてきている。特に先端パッケージはその構造が複雑になり、液状封止でなくては 封止が困難な物が増加して 、る。例えば EnhanchedBGAのようなキヤビティーダウ ンタイプの構造になっているものは部分封止を行う必要があり、トランスファー成型で は対応できない。このようなことから高機能な液状エポキシ榭脂の開発が求められて いる。
またコンポジット材、車の車体や船舶の構造材として、近年、その製造法の簡便さ 力も RTMが使用されている。このような組成物においてはカーボンファイバー等への 含浸のされやすさから低粘度のエポキシ榭脂が望まれている。
[0003] 従来、工業的に最も使用されている液状エポキシ榭脂としてはビスフエノール Aに ェピクロルヒドリンを反応させて得られる化合物が知られている。しかしながら、ビスフ ェノール A型エポキシ榭脂は物性的にバランスは取れているものの、粘度は高ぐそ の硬化物の耐熱性、機械強度などにおいて不十分である点が指摘されている。 一般的に知られて 、る液状エポキシ榭脂としてはもう一種、ビスフエノール Fにェピ クロルヒドリンを反応させて得られる化合物が知られている。従来、ビスフエノール F型 エポキシ榭脂は、ビスフエノール A型エポキシ榭脂に比べ粘度が低いため、低粘度 エポキシ榭脂が好適な分野においては重要な材料となっているが、未だその粘度は 満足のいくものではなぐさらに低粘度のエポキシ榭脂が望まれている。
[0004] このような要求に対応できうるエポキシ榭脂としてビスフエノール F型のエポキシ榭 脂の蒸留品がある。本ィ匕合物は分子蒸留により 2核体のみが取り出されるため、非常 に粘度が低 、。し力しながら現実的には分子量がそろ 、すぎて!/、るために結晶性が 高ぐ室温、冷蔵、いずれの条件においても結晶が析出し、結晶塊となってしまう。そ こで、ビスフエノール A型エポキシ榭脂を数重量%添加し、結晶性を低下させた化合 物も市販されているが、それでも結晶化を抑えることはできず、冷蔵 (例えば 5°C)で あっても、 1週間程度の保存で、結晶塊となってしまう。
別のアプローチとして、構造をパラ配向に制御した 4, 4' ビス(ヒドロキシフエ-ル )メタンをエポキシ化した物があるが、同様に粘度は低下するものの結晶性が高すぎ るため、性状を液状に保つことが難しぐ保存中に結晶化してしまう。
また、 4, 4'—ビス (ヒドロキシフエ-ル)メタン骨格にメチル基を導入することにより 結晶性を低下させることが試みられているが(特許文献 1)、このような場合、得られる エポキシ榭脂の反応性が低下する恐れがある。
このようなこと力も低粘度でかつ結晶性の低いビスフエノール F型エポキシ榭脂の開 発が望まれている。
特許文献 1:特開昭 61— 112066号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は低粘度、低結晶性のビスフエノール F型液状エポキシ榭脂を提供すること を目的とする。
課題を解決するための手段
[0006] 本発明者らは前記したような実状に鑑み、耐熱性、機械強度が高 、硬化物を与え る液状芳香族エポキシ榭脂を求めて鋭意検討した結果、特定の分子構造を含有す ることで低粘度、低結晶性のビスフエノール F型液状エポキシ榭脂が得られることを見 出し、本発明を完成させるに至った。
[0007] すなわち本発明は、 (1)ビスフエノール F型のエポキシ榭脂であって、 5°Cの温度条件下 1週間以上液状 を保ち、かつ、その粘度が 25°Cにおいて 500〜2000mm2/s (ウベローデ粘度計)で あることを特徴とするエポキシ榭脂、
(2)式 (1)
[化 1]
Figure imgf000004_0001
で表される骨格のエポキシ榭脂がゲルパーミエーシヨンクロマトグラフィー(GPC ;UV
254nmで検出したときの面積%)で 0〜5面積%であり、式(2)
[化 2]
Figure imgf000004_0002
(式中、 Xは水素原子またはグリシジル基を表す。 )
で表される骨格のエポキシ榭脂の含有量がゲルパーミエーシヨンクロマトグラフィー( GPC ;UV 254nm)で検出したときの面積%で 0面積%を越え、 20面積%以下で ある上記(1)に記載のエポキシ榭脂、
(3)ジグリシジルエーテルの含有量がゲルパーミエーシヨンクロマトグラフィー(GPC; UV 254nmで検出)で測定したときの面積%で95面積%以上である上記(1)また は(2)に記載のエポキシ榭脂、
(4)下記式
[化 3]
Figure imgf000004_0003
(A; pp1不) (B; op体) (C; 00体) (式中 Gはグリシジル基を示す。)
で表される化合物 A、 B、 Cの含有量(高速液体クロマトグラフィー(HPLC; UV 274 nmで検出)で測定したときの面積%)および前記式(1)、 (2)で表される化合物の含 有量 (前記 GPC条件で測定した面積%)が下記式( α )
5≤{ (2) - (l) } x {B/ (A+C) }≤15 · · · ( α )
Α ;化合物 Aの含有量
B ;化合物 Bの含有量
C ;化合物 Cの含有量
(1);式 (1)で表される化合物の含有量
(2);式 (2)で表される化合物の含有量
を満たす上記(1)に記載のエポキシ榭脂、
(5) 2官能体純度が 95面積% (GPC ;UV 254nmで検出)以上であることを特徴と するビスフエノール Fをグリシジル化して得られる上記(1)〜(4)の!、ずれか一項に記 載のエポキシ榭脂、
(6)上記(1)〜(5)の 、ずれか一項に記載のエポキシ榭脂及び硬化剤を含有するェ ポキシ榭脂組成物、および
(7)上記(6)に記載のエポキシ榭脂組成物を硬化してなる硬化物、
に関する。
発明の効果
[0008] 本発明のエポキシ榭脂は低粘度かつ低結晶性の液状榭脂である。本発明のェポ キシ榭脂は、従来取り扱いが煩雑であった低粘度ビスフエノール F型エポキシ榭脂に 較べ、非常に扱いやすく有用な榭脂である。
発明を実施するための最良の形態
[0009] 本発明のビスフエノール F型エポキシ榭脂は、特定のビスフエノール Fとェピハロヒド リンとを塩基性条件下、グリシジルエーテルィ匕を行うことで得られる。製法については 後述する力 本発明のエポキシ榭脂はその粘度が 25°Cにおいて 500〜2000mm2/ s (ウベローデ粘度計)、好ましくは 750〜1950mm2/s、更に好ましくは 1000〜190 0mm2/sであるだけでなぐ得られたエポキシ榭脂を冷蔵 (例えば 5°C)や冷凍 (例え ば 5°C)で 1週間も放置しても結晶の析出は見られな 、。
[0010] 本発明は、特定のビスフ ノール Fを原料として使用し、特定の骨格への制御、特 定の分子量分布を持たせるということを行うことで低粘度化、低結晶化を両立させた ものである。
[0011] 本発明にお 、て使用する特定のビスフエノール Fとは式(3)
[0012] [化 4]
Figure imgf000006_0001
(式中、 nは繰り返し数を示す。 )
において n≥lの化合物の量を 5面積%以下、好ましくは 2面積%以下、更に好ましく は検出限界以下 (通常 1面積%以下)にした化合物である(GPC ;UV 254nmで検 出、以下、特に指定の無い限り面積%は GPCでの測定値を示す。 ) 0通常市販され て 、るビスフ ノール Fは実質的に前記式(3)の構造式にお 、て n≥ 1の化合物を 5. 5〜9. 0面積%含有する。本発明においては式(3)の構造式において n≥lの化合 物の含有割合が 5面積%以下、好ましくは 2面積%以下、更に好ましくは検出限界以 下 (通常 1面積%以下)であるビスフエノール Fを使用し、グリシジル化することを特徴 とする。式(3)における n≥lの化合物の割合を少なくすることで、式(3)における n= 0の化合物の割合 (つまり、 2官能体純度)が高まり、結果として該 n=0の化合物のグ リシジルエーテル体の量が多くなる。
[0013] また、本発明のエポキシ榭脂は、そのメチレン基の結合位置について、下記のよう な特定の条件を満たすことを特徴とするエポキシ榭脂でもある。
すなわちエポキシ榭脂中の構造が、パラ配向性が強くても、オルト配向性が強くて も、その結晶性が強くなり、貯蔵安定性に悪影響を及ぼす。
例えば、本発明のエポキシ榭脂中に含まれる、下記式
[0014] [化 5]
Figure imgf000007_0001
(A; pp体) op体) (C; oo体)
(式中 Gはグリシジル基を示す。)
で表される化合物 A、 B及び Cの含有量 (高速液体クロマトグラフィー (HPLC ;UV 2 74nmで検出)で測定したときの面積%)にっき、本発明者らが得た知見は以下のと おりである。
分子骨格内に特に式 Bの化合物が多いことが結晶性の低下に寄与する。しかしな がらトータルの物性を考慮した場合、例えば硬化物の耐熱性 (弾性率の保持)は式 A の化合物が多いことが好ましぐまた、例えば耐湿性は、式 Cの化合物がある程度含 有されていることが好ましい。このようなことから A、 B、 Cの構造の含有割合のバラン スを適度な範囲に保つことが好まし 、。
[0015] また、前述のように式(3)において、 n≥lの化合物の含有量を低下させた (つまり、 2官能体純度を高めた)ビスフ ノール Fを使用する結果、得られるエポキシ榭脂は 下記式(1)
[0016] [化 6]
Figure imgf000007_0002
で表される化合物の含有量が低下し、好ましくは 0〜5面積%、より好ましくは 0〜2面 積%、さらに好ましくは検出限界以下 (通常は 1面積%以下)となる。この含有量は、 通常ゲルパーミエーシヨンクロマトグラフィーにて測定可能である力 高速液体クロマ トグラフィーでも測定可能で、通常、前者の測定値に対して、後者の測定値が約 0. 5 〜3ポイント低く測定される。また、結晶性の観点から上記式(2)のエポキシ榭脂の含 有量は比較的多 、方が好ま 、。 このように、メチレン基の結合位置と低分子量物の含有割合を考慮すると、本発明 のエポキシ榭脂は、両者が下記式(ひ 1)の関係を満たすものが好ましぐ式( α— 2)の関係を満たすものが特に好ま U、。
[0017] 5≤{(2)-(1)}Χ{Β/(Α+0}≤15··· 1)
5≤ { (2)—(1) } X {BZ (A+C) }≤ 10· · · - 1)
Α ;化合物 Aの含有量
B ;化合物 Bの含有量
C ;化合物 Cの含有量
(1);式 (1)で表される化合物の含有量
(2);式 (2)で表される化合物の含有量
*A〜Cは、高速液体クロマトグラフィー(HPLC;UV 274nmで検出)で測定したと きの面積0 /0
(1)及び(2)は、ゲルパーミエーシヨンクロマトグラフィー(GPC;UV 254nmで検出 )で測定したときの面積%。
例えば結晶性という観点力 見た場合、式 α—1の値が 5を下回ると結晶性が高く なったり、粘度が高くなりすぎたりする場合がある。また、 15を越えると粘度が高くなり すぎる場合があり、特に下記式(α ')を満たすものが低粘度であり好ましい。
5≤{(2)-(l)}x{B/(A+C)}≤10 ··· (α')
Α ;化合物 Aの含有量
B ;化合物 Bの含有量
C ;化合物 Cの含有量
(1);式 (1)で表される化合物の含有量
(2);式 (2)で表される化合物の含有量
*A〜C、(1)及び(2)は、高速液体クロマトグラフィー(HPLC;UV 274nmで検出 )で測定したときの面積%。
[0018] つぎに、本発明のエポキシ榭脂における、特定の骨格の分子量分布について説明 する。
本発明のエポキシ榭脂は、式 (4) [0019] [化 7]
Figure imgf000009_0001
(式中、 Xは水素原子またはグリシジル基を表す。また、 nは繰り返し数であり、 1〜5 の数値を表す。 )
に示される骨格のエポキシ榭脂を含有することを特徴とする。このうち本発明のェポ キシ榭脂では、 n= lの化合物(つまり、式 (2)のエポキシ榭脂)が 0面積%を超え、 2 0面積%以下含有されているもの、好ましくは 2〜20面積%、さらに好ましくは 8〜15 面積0 /0含有されているものが好ましい。この含有量は、通常ゲルパーミエーシヨンクロ マトグラフィ一にて測定可能である力 高速液体クロマトグラフィーでも測定可能で、 通常、前者の測定値に対して、後者の測定値が約 0. 5〜3ポイント低く測定される。 また、本発明のエポキシ榭脂において、前記式 (4)の成分中で n= l及び 2の化合物 が主成分であるものが好ましぐこのうち Xが水素原子であるジグリシジルエーテルが 主成分であるものが特に好ま 、。
本発明のエポキシ榭脂では、ジグリシジルエーテル(つまり式 (4)において、全ての Xが水素原子である化合物とィ匕合物 A、 B、 C)の含有量が 80面積%以上、好ましく は 90面積%以上、さらに好ましくは 95面積%以上含有しているものが好ましい。しか しながら、ジグリシジルエーテルよりも硬化性を向上させる目的には、 Xがグリシジル 基となるよう〖こ、グリシジルエーテル体のアルコール性水酸基をグリシジルイ匕すること もできる。また、式 (4)の n=0の化合物(つまり化合物 A、 B、 C)が高速液体クロマト グラフィ一による測定で、 85面積%以上、好ましくは 85〜95面積%である本発明の エポキシ榭脂は、粘度の点で特に好ま 、ものとなる。
[0020] 前述のように本発明で原料として使用するビスフエノール Fは前記式(3)のォリゴフ ェノール体の含有量が少な 、ため、高純度にグリシジルイ匕を行うとビス (グリシジルォ キシフエ-ル)メタンのみとなり、蒸留品同様、結晶性において問題が生じる場合があ る。このような場合、力かる問題を前記式 (4)のエポキシ榭脂の含有量を多くすること で解決できる。なお、通常のビスフエノール F型のエポキシ榭脂は前記式(3)のオリゴ フエノール体のグリシジルイ匕物も存在するため、結晶性は低下するものの、粘度が非 常に高くなる。
[0021] 以下に本発明のエポキシ榭脂の合成方法の一例を記載する。
本発明のエポキシ榭脂は前述のビスフエノール Fを使用し、ェピノ、ロヒドリンと反応 させることでグリシジルイ匕する。主にェピノ、ロヒドリンとアルカリ金属水酸ィ匕物の使用 量が前記式 (4)の構造の導入率を決めるファクタ一となる。すなわち、ビスフエノール Fの水酸基に対して、ェピハロヒドリンの使用量が少ないと、式 (4)において、 nが大き い化合物の含有量が高くなり、また、アルカリ金属水酸化物の使用量が多くても nが 大きい化合物の含有量が高くなる。また、ェピノ、ロヒドリンの使用量が少なすぎると反 応中の粘度上昇や暴走反応、ゲル化の恐れがある。アルカリ金属水酸化物の使用 量が多すぎると、硬化物性に悪影響を及ぼす場合がある。
[0022] 本発明のエポキシ榭脂の原料となるビスフ ノール F (以下、原料ビスフ ノール Fと いう)は、前記したとおり、式(3)のォリゴフヱノール体の含有量が少ないものであるが 、本発明のエポキシ榭脂のもう一方の側面である、式 A、 B、 Cの化合物が特定の範 囲にあるエポキシ榭脂を得るためには、下記式
[0023] [化 8]
Figure imgf000010_0001
(ィ; pp体) (口; op体 j (ハ; oo体) で表される化合物ィ、口及びノヽの含有量 (高速液体クロマトグラフィー (HPLC ;UV 254nmで検出)で測定したときの面積%)が特定の範囲にあるビスフエノール Fを使 用する。すなわち、異性体ィの含有量 +異性体ハの含有量が 2 X異性体口の含有量 以下となる原料を使用する。
このような範囲の異性体の含有割合とするには、公知の方法が適応でき、例えば一 般にビスフエノール Fを調製する際の酸触媒の酸性度、温度等を適宜調整すればよ い。すなわち、酸性度が高いほどパラ配向性が強くなり、弱いほどオルソ配向性が強 くなる。また、さらに温度に関して言えば高温での反応はオルソ配向性が強くなり、低 温での反応はパラ配向性が強くなる。
具体的には、例えば、特開 2005— 75938号公報に記載の方法や第 55回ネットヮ ークポリマー講演討論会 講演要旨集 p53— 56に記載の方法が適応可能である。 また、例えば、三井ファインケミカル株式会社製 BisF— ST、本州化学工業株式会 社製 BPF— D等の市販品も入手可能である。
[0024] 本発明のエポキシ榭脂を得る反応において、ェピハロヒドリンとしてはェピクロルヒド リン、 α -メチルェピクロルヒドリン、 γ -メチルェピクロルヒドリン、ェピブ口モヒドリン等 が使用でき、本発明にお 、ては工業的に入手が容易なェピクロルヒドリンが好ま ヽ 。ェピハロヒドリンの使用量は原料ビスフエノール Fの水酸基 1モルに対し通常 2〜20 モル、好ましくは 4〜 10モルである。
[0025] 上記反応において使用しうるアルカリ金属水酸ィ匕物としては水酸ィ匕ナトリウム、水酸 化カリウム等が挙げられ、固形物を利用してもよぐその水溶液を使用してもよい。水 溶液を使用する場合は該アルカリ金属水酸化物の水溶液を連続的に反応系内に添 加すると共に、減圧下または常圧下、連続的に水及びェピノ、ロヒドリンを留出させ、 更に分液して水を除去し、ェピノ、ロヒドリンを反応系内に連続的に戻す方法でもよい 。アルカリ金属水酸ィ匕物の使用量は原料ビスフエノール Fの水酸基 1モルに対して通 常 0. 3〜2. 5モルであり、好ましくは 0. 5〜2. 0モル、より好ましくは 0. 8〜1. 3モル である。
[0026] 反応を促進するためにテトラメチルアンモ -ゥムクロライド、テトラメチルアンモ -ゥム ブロマイド、トリメチルベンジルアンモ -ゥムクロライド等の 4級アンモ-ゥム塩を触媒と して添加することは好ま U、。 4級アンモ-ゥム塩の使用量としては原料ビスフエノー ル Fの水酸基 1モルに対し通常 0. l〜15gであり、好ましくは 0. 2〜: LOgである。
[0027] この際、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメ チルスルホン、ジメチルスルホキシド、テトラヒドロフラン、ジォキサン等の非プロトン性 極性溶媒などを添加して反応を行うことが反応進行上好ましい。
[0028] アルコール類を使用する場合、その使用量はェピハロヒドリンの使用量に対し通常 2〜50重量%、好ましくは 4〜20重量%である。また非プロトン性極性溶媒を用いる 場合はェピノ、ロヒドリンの使用量に対し通常 5〜: LOO重量%、好ましくは 10〜80重量 %である。
[0029] 反応温度は通常 30〜90°Cであり、好ましくは 35〜80°Cである。反応時間は通常 0 . 5〜10時間であり、好ましくは 1〜8時間である。これらのエポキシ化反応の反応物 を水洗後、または水洗無しに加熱減圧下でェピノ、ロヒドリンや溶媒等を除去する。ま た更に加水分解性ハロゲンの少な 、エポキシ榭脂とするために、回収したエポキシ 榭脂をトルエン、メチルイソプチルケトンなどの溶剤に溶解し、水酸化ナトリウム、水酸 化カリウムなどのアルカリ金属水酸ィ匕物の水溶液をカ卩えて反応を行い、閉環を確実 なもの〖こすることも出来る。この場合アルカリ金属水酸ィ匕物の使用量はエポキシ化に 使用した原料ビスフエノール Fの水酸基 1モルに対して通常 0. 01〜0. 3モル、好ま しくは 0. 05-0. 2モルである。反応温度は通常 50〜120°C、反応時間は通常 0. 5 〜2時間である。
[0030] 反応終了後、生成した塩を濾過、水洗などにより除去し、更に加熱減圧下にて溶剤 を留去することにより本発明のエポキシ榭脂が得られる。
[0031] また場合によっては前記式(2)の化合物量を調整するために、得られたエポキシ榭 脂に対し、原料ビスフ ノール Fをさらに反応させる、または過剰の原料ビスフエノー ル F中、少量のェピハロヒドリンを添カ卩し、 1、 3—ジォキシ— 2—プロパノール結合を 予め形成した後、前記処方によりグリシジルイ匕するという方法なども使用することがで きる。さら〖こはこのようにして得られたアルコール性水酸基含有エポキシ榭脂を再度 グリシジルイ匕することでアルコール性水酸基のグリシジルイ匕率を上げることもできる。
[0032] 得られたエポキシ榭脂は各種榭脂原料として使用できる。例えばエポキシアタリレ ートおよびその誘導体、ォキサゾリドン系化合物、環状カーボネート化合物等が挙げ られる。
[0033] 以下、本発明のエポキシ榭脂組成物について記載する。
本発明のエポキシ榭脂組成物は本発明のエポキシ榭脂及び、硬化剤を必須成分 として含有する。本発明のエポキシ榭脂組成物において、本発明のエポキシ榭脂は 単独でまたは他のエポキシ榭脂と併用して使用することが出来る。併用する場合、本 発明のエポキシ榭脂の全エポキシ榭脂中に占める割合は 30重量%以上が好ましぐ 特に 40重量%以上が好ましい。ただし、本発明のエポキシ榭脂をエポキシ榭脂組成 物の改質剤として使用する場合は、 1〜30重量%の割合で添加する。
[0034] 本発明のエポキシ榭脂と併用し得る他のエポキシ榭脂としては、ノボラック型ェポキ シ榭脂、ビスフエノール A型エポキシ榭脂、ビフエニル型エポキシ榭脂、トリフエニルメ タン型エポキシ榭脂、フエノールァラルキル型エポキシ榭脂などが挙げられる。具体 的には、ビスフエノール A、ビスフエノール S、チォジフエノール、フルオレンビスフエノ ール、テルペンジフエノール、 4, 4,ービフエノール、 2, 2,ービフエノール、 3, 3,, 5 , 5,一テトラメチル一 [1, 1 ' ビフエ-ル]— 4, 4'—ジオール、ハイドロキノン、レゾ ルシン、ナフタレンジオール、トリス一(4 ヒドロキシフエニル)メタン、 1, 1, 2, 2—テ トラキス(4—ヒドロキシフエ-ル)ェタン、フエノール類(フエノール、アルキル置換フエ ノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナ フタレン等)とホルムアルデヒド、ァセトアルデヒド、ベンズアルデヒド、 p ヒドロキシべ ンズアルデヒド、 o ヒドロキシベンズアルデヒド、 p ヒドロキシァセトフエノン、 o ヒド ロキシァセトフエノン、ジシクロペンタジェン、フルフラール、 4, 4'—ビス(クロルメチ ル)— 1, 1, ビフエ-ル、 4, 4,—ビス(メトキシメチル)— 1, 1, ビフエ-ル、 1, 4 ビス (クロロメチル)ベンゼン、 1, 4 ビス(メトキシメチル)ベンゼン等との重縮合物 及びこれらの変性物、テトラブロモビスフエノール A等のハロゲン化ビスフエノール類 、アルコール類力も誘導されるグリシジルエーテルィ匕物、脂環式エポキシ榭脂、ダリ シジノレアミン系エポキシ榭 S旨、グリシジノレエステノレ系エポキシ榭 S旨等の固形または液 状エポキシ榭脂が挙げられる力 これらに限定されるものではない。これらは単独で 用いてもよぐ 2種以上併用してもよい。
[0035] 本発明のエポキシ榭脂組成物が含有する硬化剤としては、例えば、アミン系化合物 、酸無水物系化合物、アミド系化合物、フ ノール系化合物、カルボン酸系化合物な どが挙げられる。用いうる硬ィ匕剤の具体例としては、ジアミノジフエ-ルメタン、ジェチ レントリアミン、トリエチレンテトラミン、ジアミノジフエニルスルホン、イソホロンジァミン、 ジシアンジアミド、リノレン酸の 2量体とエチレンジァミンより合成されるポリアミド榭脂、 無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無 水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、へキサヒドロ無 水フタル酸、メチルへキサヒドロ無水フタル酸、本発明のフエノール榭脂、ビスフエノ 一ル八、ビスフエノール F、ビスフエノール S、フルオレンビスフエノール、テルペンジフ エノーノレ、 4, 4,ービフエノーノレ、 2, 2,ービフエノーノレ、 3, 3' , 5, 5,ーテトラメチノレ - [1, 1,一ビフエ-ル]—4, 4,一ジオール、ハイドロキノン、レゾルシン、ナフタレン ジオール、トリス一(4 ヒドロキシフエ-ル)メタン、 1, 1, 2, 2—テトラキス(4 ヒドロ キシフエ-ル)ェタン、フエノール類(フエノール、アルキル置換フエノール、ナフトー ル、アルキル置換ナフトール、ジヒドロキシベンゼン、ジヒドロキシナフタレン等)とホル ムアルデヒド、ァセトアルデヒド、ベンズアルデヒド、 p ヒドロキシベンズアルデヒド、 o —ヒドロキシベンズアルデヒド、 p ヒドロキシァセトフエノン、 o ヒドロキシァセトフエノ ン、ジシクロペンタジェン、フルフラール、 4, 4'—ビス(クロロメチル) 1, 1 ' ビフエ -ル、 4, 4,—ビス(メトキシメチル)— 1, 1, ビフエ-ル、 1, 4,—ビス(クロロメチル) ベンゼン、 1, 4' ビス(メトキシメチル)ベンゼン等との重縮合物及びこれらの変性物 、テトラブロモビスフエノール A等のハロゲン化ビスフエノール類、イミダゾール、トリフ ルォロボラン一アミン錯体、グァ-ジン誘導体、テルペンとフエノール類の縮合物など が挙げられるが、これらに限定されるものではない。これらは単独で用いてもよぐ 2種 以上を用いてもよい。
[0036] 本発明のエポキシ榭脂組成物において硬化剤の使用量は、エポキシ榭脂のェポ キシ基 1当量に対して 0. 7〜1. 2当量が好ましい。エポキシ基 1当量に対して、 0. 7 当量に満たない場合、あるいは 1. 2当量を超える場合、いずれも硬化が不完全とな り良好な硬化物性が得られなヽ恐れがある。
[0037] 本発明のエポキシ榭脂組成物においては、硬化剤とともに硬化触媒を併用しても 差し支えない。用い得る硬化触媒の具体例としては、 2—メチルイミダゾール、 2—ェ チルイミダゾール、 2 ェチルー 4ーメチルイミダゾール等のイミダゾール類、 2 (ジ メチルアミノメチル)フエノール、 1, 8 ジァザービシクロ(5, 4, 0)ゥンデセンー7等 の第 3級ァミン類、トリフエ-ルホスフィン等のホスフィン類、ォクチル酸スズ等の金属 化合物等が挙げられる。硬化促進剤を用いる場合は、エポキシ榭脂 100重量部に対 して 0. 1〜5. 0重量部が必要に応じ用いられる。
[0038] 本発明のエポキシ榭脂組成物には、リン含有ィ匕合物を難燃性付与成分として含有 させることもできる。リン含有ィ匕合物としては反応型のものでも添加型のものでもよい。 リン含有ィ匕合物の具体例としては、トリメチルホスフェート、トリェチルホスフェート、トリ クレジノレホスフェート、トリキシリレニノレホスフェート、クレジルジフエ-ノレホスフェート、 クレジルー 2, 6 ジキシリレニルホスフェート、 1, 3 フエ-レンビス(ジキシリレニル ホスフェート)、 1, 4 フエ二レンビス(ジキシリレニノレホスフェート)、 4, 4'ービフエ二 ル(ジキシリレニルホスフェート)等のリン酸エステル類; 9, 10 ジヒドロー 9 ォキサ — 10 ホスファフェナントレン一 10—オキサイド、 10 (2, 5 ジヒドロキシフエ-ル) 10H— 9 ォキサ 10 ホスファフェナントレン 10 オキサイド等のホスファン 類;エポキシ榭脂と前記ホスファン類の活性水素とを反応させて得られるリン含有ェ ポキシ化合物、赤リン等が挙げられるが、リン酸エステル類、ホスファン類またはリン 含有エポキシ化合物が好ましぐ 1, 3 フエ-レンビス(ジキシリレニルホスフェート)、 1, 4 フエ二レンビス(ジキシリレニノレホスフェート)、 4, 4'ービフエ二ノレ(ジキシリレニ ルホスフェート)またはリン含有エポキシィ匕合物が特に好まし 、。リン含有化合物の含 有量はリン含有ィ匕合物/エポキシ榭脂 =0. 1〜0. 6 (重量比)が好ましい。 0. 1以 下では難燃性が不十分であり、 0. 6以上では硬化物の吸湿性、誘電特性に悪影響 を及ぼす懸念がある。
[0039] さらに本発明のエポキシ榭脂組成物には、必要に応じてバインダー榭脂を配合す ることも出来る。ノインダー榭脂としては、プチラール系榭脂、ァセタール系榭脂、ァ クリル系榭脂、エポキシ ナイロン系榭脂、 NBR フエノール系榭脂、エポキシ—N BR系榭脂、ポリアミド系榭脂、ポリイミド系榭脂、シリコーン系榭脂などが挙げられる 力 これらに限定されるものではない。バインダー榭脂の配合量は、硬化物の難燃性 、耐熱性を損なわない範囲であることが好ましぐ榭脂総重量 100重量部に対して通 常 0. 05〜50重量部、好ましくは 0. 05〜20重量部が必要に応じて用いられる。
[0040] 本発明のエポキシ榭脂組成物には、必要に応じて無機充填剤を添加することがで きる。無機充填剤としては、結晶シリカ、溶融シリカ、アルミナ、ジルコン、珪酸カルシ ゥム、炭酸カルシウム、炭化ケィ素、窒化ケィ素、窒化ホウ素、ジルコユア、フォステラ イト、ステアタイト、スピネル、チタ-ァ、タルク等の粉体またはこれらを球形ィ匕したビー ズ等が挙げられる力 これらに限定されるものではない。これらは単独で用いてもよく 、 2種以上を用いてもよい。これら無機充填剤の含有量は、本発明のエポキシ榭脂組 成物中において 0〜95重量%を占める量が用いられる。更に本発明のエポキシ榭脂 組成物には、シランカップリング剤、ステアリン酸、ノルミチン酸、ステアリン酸亜鉛、 ステアリン酸カルシウム等の離型剤、顔料等の種々の配合剤、各種熱硬化性榭脂を 添カロすることができる。
[0041] 本発明のエポキシ榭脂組成物は、各成分を均一に混合することにより得られる。本 発明のエポキシ榭脂組成物は従来知られて 、る方法と同様の方法で容易にその硬 化物とすることができる。例えば本発明のエポキシ榭脂と硬化剤並びに必要により硬 化触媒、リン含有化合物、バインダー榭脂、無機充填材及び配合剤とを必要に応じ て押出機、ニーダ、ロール等を用いて均一になるまで充分に混合してエポキシ榭脂 組成物を得、そのエポキシ榭脂組成物を溶融後注型あるいはトランスファー成型機 などを用いて成型し、さらに 80〜200°Cで 2〜10時間加熱することにより本発明の硬 化物を得ることができる。
[0042] また本発明のエポキシ榭脂組成物をトルエン、キシレン、アセトン、メチルェチルケト ン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルァセトアミド、 N—メチルビ 口リドン等の溶剤に溶解させ、エポキシ榭脂組成物ワニスとし、ガラス繊維、力—ボン 繊維、ポリエステル繊維、ポリアミド繊維、アルミナ繊維、紙などの基材に含浸させて 加熱乾燥して得たプリプレダを熱プレス成形することにより、本発明のエポキシ榭脂 組成物の硬化物とすることができる。この際の溶剤は、本発明のエポキシ榭脂組成物 と該溶剤の混合物中で通常 10〜70重量%、好ましくは 15〜70重量%を占める量を 用いる。また液状組成物のまま RTM方式でカーボン繊維を含有するエポキシ榭脂 硬化物を得ることもできる。
[0043] また本発明のエポキシ榭脂をフィルム型組成物の改質剤としても使用できる。具体 的には B—ステージにおけるフレキ性等を向上させる場合に用いることができる。この ようなフィルム型の榭脂組成物を得る場合は、本発明のエポキシ榭脂組成物を剥離 フィルム上に前記ワニスを塗布し加熱下で溶剤を除去、 Bステージィ匕を行うことにより シート状の接着剤を得る。このシート状接着剤は多層基板などにおける層間絶縁層 として使用することが出来る。 [0044] 更に、エポキシ榭脂等の熱硬化性榭脂が使用される一般の用途が挙げられ、例え ば、接着剤、塗料、コーティング剤、成形材料 (シート、フィルム、 FRP等を含む)、絶 縁材料 (プリント基板、電線被覆等を含む)、封止材の他、封止材、基板用のシァネ 一ト榭脂組成物や、レジスト用硬化剤としてアクリル酸エステル系榭脂等、他榭脂等 への添加剤等が挙げられる。
[0045] 接着剤としては、土木用、建築用、自動車用、一般事務用、医療用の接着剤の他、 電子材料用の接着剤が挙げられる。これらのうち電子材料用の接着剤としては、ビル ドアップ基板等の多層基板の層間接着剤、ダイボンディング剤、アンダーフィル等の 半導体用接着剤、 BGA補強用アンダーフィル、異方性導電性フィルム (ACF)、異 方性導電性ペースト (ACP)等の実装用接着剤等が挙げられる。
[0046] 封止剤としては、コンデンサ、トランジスタ、ダイオード、発光ダイオード、 IC、 LSI用 のポッティング、デイツビング、トランスファーモールド封止、 IC、 LSI類の COB、 COF 、 TAB用といったポッティング封止、フリップチップ用のアンダーフィル、 QFP、 BGA 、 CSPなどの ICパッケージ類実装時の封止 (補強用アンダーフィルを含む)などを挙 げることができる。
実施例
[0047] 次に本発明を実施例により更に具体的に説明する力 以下において「部」は特に断 わりのない限り重量部である。尚、本発明はこれら実施例に限定されるものではない 。また実施例において、軟化点、エポキシ当量、粘度、および面積%は以下の条件 で測定した。
.軟化点
JIS K— 7234に記載された方法で測定した。
•エポキシ当量
JIS K— 7236に記載された方法で測定し、単位は gZeqである。
,粘度
JIS K— 2283の記載に準じて測定した。
•面積%
(1)ゲルパーミエーシヨンクロマトグラフィー(測定結果データには面積% (G)で示す )
カラム: Shodex SYSTEM— 21カラム KF— 804L+KF— 803L ( X 2本) 40°C 連結溶離液:テトラヒドロフラン
FlowRate: lml/ min.
Detection :UV 254nm
検量線: Shodex製標準ポリスチレン使用
(2)高速液体クロマトグラフィー (測定結果データは面積% (H)で示す)
カラム: Intersil ODS— 2, 5 ^ m, 2. 1 X 250mm 40°C
MobilPhaseA:ァセトにトリル(AN)
MobilPhaseB :水(W)
TimeProgram:
0- 20min. AN/W= 50%/50%→90%/10%
20— 40min. AN/W= 90%/10%
FlowRate : 0. 2mL/ mm.
Detection :UV 254nm, TOF MS
実施例 1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビス フエノール F (三井ファインケミカル株式会社製 BisF— ST (ビス(ヒドロキシフエ-ル) メタン含有量 ≥99面積%(GPCにて測定)、異性体ィ; 28面積%、口; 51面積%、 ノ、; 19面積0 /0 (異性体ィ、口、ハ共に HPLCにて測定))) 100部、ェピクロロヒドリン 5 55部、メタノール 56部をカ卩え、撹拌下で溶解し、 70°Cにまで昇温した。次いでフレー ク状の水酸ィ匕ナトリウム 41部を 90分かけて分割添加した後、更に 70°Cで 1時間、反 応を行った。反応終了後、水 300部で水洗を行い、油層からロータリーエバポレータ 一を用いて 140°Cで減圧下、過剰のェピクロルヒドリン等の溶剤を留去した。残留物 にメチルイソプチルケトン 600部をカ卩ぇ溶解し、 70°Cにまで昇温した。撹拌下で 30重 量%の水酸ィ匕ナトリウム水溶液 10部を加え、 1時間反応を行った後、洗浄水が中性 になるまで水洗を行い、得られた溶液を、ロータリーエバポレーターを用いて 180°C で減圧下にメチルイソプチルケトン等を留去することで本発明のエポキシ榭脂 (EP1) 147部を得た。得られたエポキシ榭脂のエポキシ当量は 167g/eq.、 25°Cにおける 粘度は 1036mm2/s (ウベローデ粘度計 25。C)であった。
[0049] 実施例 2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビス フエノール F(BisF— ST) 100部、ェピクロロヒドリン 555部、ジメチルスルホキシド 14 0部を加え、撹拌下で溶解し、 40°Cにまで昇温した。次いでフレーク状の水酸化ナト リウム 41部を 90分かけて分割添加した後、 40°Cで 2時間、更に 70°Cで 1時間、反応 を行った。反応終了後、水 300部で水洗を行い、油層からロータリーエバポレーター を用いて 140°Cで減圧下、過剰のェピクロルヒドリン等の溶剤を留去した。残留物に メチルイソブチルケトン 600部を加え溶解し、 70°Cにまで昇温した。撹拌下で 48重量 %の水酸ィ匕ナトリウム水溶液 5部を加え、 1時間反応を行った後、洗浄水が中性にな るまで水洗を行い、得られた溶液を、ロータリーエバポレーターを用いて 180°Cで減 圧下にメチルイソプチルケトン等を留去することで本発明のエポキシ榭脂 (EP2) 140 部を得た。得られたエポキシ榭脂のエポキシ当量は 164gZeq.、 25°Cにおける粘 度は 1670mm2/s (ウベローデ粘度計 25°C)であった。
[0050] 実施例 3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビス フエノール F(BisF— ST) 100部、 t—ブタノール 100部、ェピクロロヒドリン 1部、 48重 量%水酸ィ匕ナトリウム水溶液 1部を加え、 80°Cで 1時間撹拌し、部分的に 1、 3—ジォ キシ— 2—プロパノール結合を形成させた。さらに 40°Cまで冷却後、ェピクロロヒドリ ン 925部をカ卩え、 70°Cにまで昇温した。次いでフレーク状の水酸ィ匕ナトリウム 40部を 90分かけて分割添加した後、更に 70°Cで 1時間、反応を行った。反応終了後、水 30 0部で水洗を行い、油層からロータリーエバポレーターを用いて 140°Cで減圧下、過 剰のェピクロルヒドリン等の溶剤を留去した。残留物にメチルイソプチルケトン 600部 を加え溶解し、 70°Cにまで昇温した。撹拌下で 48重量%の水酸ィ匕ナトリウム水溶液 5部を加え、 1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られた 溶液を、ロータリーエバポレーターを用いて 180°Cで減圧下にメチルイソブチルケト ン等を留去することで本発明のエポキシ榭脂 (EP3) 137部を得た。得られたェポキ シ榭脂のエポキシ当量は 168gZeq.、 25°Cにおける粘度は 1645mm2/s (ウベロー デ粘度計 25°C)であった。
[0051] 比較例 1
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビス フエノール F (ビス(ヒドロキシフエ-ル)メタン含有量 93面積0 /0 (GPCにて測定)) 10 0部、ェピクロロヒドリン 555部、ジメチルスルホキシド 140部を加え、撹拌下で溶解し 、 40°Cにまで昇温した。次いでフレーク状の水酸ィ匕ナトリウム 41部を 90分かけて分 割添加した後、 40°Cで 2時間、更に 70°Cで 1時間、反応を行った。反応終了後、水 3 00部で水洗を行い、油層からロータリーエバポレーターを用いて 140°Cで減圧下、 過剰のェピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチルケトン 600 部を加え溶解し、 70°Cにまで昇温した。撹拌下で 48重量%の水酸ィ匕ナトリウム水溶 液 5部を加え、 1時間反応を行った後、洗浄水が中性になるまで水洗を行い、得られ た溶液を、ロータリーエバポレーターを用いて 180°Cで減圧下にメチルイソブチルケ トン等を留去することで目的とするエポキシ榭脂 (EP4) 142部を得た。得られたェポ キシ榭脂のエポキシ当量は 170gZeq.、 25°Cにおける粘度は 4520mm2/s (ウベ口 ーデ粘度計 25°C)であった。
[0052] 比較例 2
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビス フエノール F (4、 4,—ビス(ヒドロキシフエ-ル)メタン 含有量 ≥99面積0 /0 (GPCに て測定)) 100部、ェピクロロヒドリン 555部、ジメチルスルホキシド 140部を加え、撹拌 下で溶解し、 40°Cにまで昇温した。次いでフレーク状の水酸ィ匕ナトリウム 41部を 90 分かけて分割添加した後、 40°Cで 2時間、更に 70°Cで 1時間、反応を行った。反応 終了後、水 300部で水洗を行い、油層からロータリーエバポレーターを用いて 140°C で減圧下、過剰のェピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチル ケトン 600部を加え溶解し、 70°Cにまで昇温した。撹拌下で 48重量%の水酸化ナト リウム水溶液 5部を加え、 1時間反応を行った後、洗浄水が中性になるまで水洗を行 い、得られた溶液を、ロータリーエバポレーターを用いて 180°Cで減圧下にメチルイ ソブチルケトン等を留去することで比較用のエポキシ榭脂 (EP5) 140部を得た。得ら れたエポキシ榭脂のエポキシ当量は 163gZeq.、 25°Cにおける粘度は測定中に結 晶化してしまったため正確には測定できなかった(ただし 500〜1000mm2/s)。
[0053] 比較例 3
撹拌機、還流冷却管、撹拌装置を備えたフラスコに、窒素パージを施しながらビス フエノール F (2、 2,一ビス(ヒドロキシフエ-ル)メタン 含有量 ≥99面積0 /0 (GPCに て測定)) 100部、ェピクロロヒドリン 555部、ジメチルスルホキシド 140部を加え、撹拌 下で溶解し、 40°Cにまで昇温した。次いでフレーク状の水酸ィ匕ナトリウム 41部を 90 分かけて分割添加した後、 40°Cで 2時間、更に 70°Cで 1時間、反応を行った。反応 終了後、水 300部で水洗を行い、油層からロータリーエバポレーターを用いて 140°C で減圧下、過剰のェピクロルヒドリン等の溶剤を留去した。残留物にメチルイソブチル ケトン 600部を加え溶解し、 70°Cにまで昇温した。撹拌下で 48重量%の水酸化ナト リウム水溶液 5部を加え、 1時間反応を行った後、洗浄水が中性になるまで水洗を行 Vヽ、得られた溶液をロータリ一エバポレーターを用いて 180°Cで減圧下にメチルイソ プチルケトン等を留去することで比較用のエポキシ榭脂 (EP6) 129部を得た。得られ たエポキシ榭脂のエポキシ当量は 166gZeq.、 25°Cにおける粘度は結晶化のため 測定できなかった。融点は 70°C (DSC法)であった。
[0054] 試験例 1〜10
前記、実施例、比較例およびその混合体、さらにビスフエノール F型エポキシ榭脂 の分子蒸留体にっ 、てその貯蔵安定性 (結晶性)につ 、て評価を行った結果を下記 表 2に示す。
[0055] [表 1]
. . 表 2
Figure imgf000022_0001
ビス (グリシジルォキシフエニル)メタン
*ポリグリシジルエーテル等の混合物ピークと重なリ実贫はもつと少ない, 前記式 (1)の化合物
前記式 (2)の化合物
ジグリシジルエーテル体 貯葳安定性は 5¾の冷 ffi保存した ¾合, 1週間の間、結晶の析出を確認し,結晶 ぱ (4)中 X=Hで示される化合物と化 が析出しなければ 0,析出が確認されれぱ とした。
合物ん B.Gの合 It)
[0056] 実施例 4、比較例 4
エポキシ樹脂として実施例 1、比較例 2で得られたエポキシ樹脂 EP1、 EP4、硬化 剤として KAYAHARD A_A(PT) (日本化薬製 ビス(3—ェチルー 4—ァミノフユ ニル)メタン)を表 3に示す割合 (重量部)で配合した。
[0057] [表 2]
表 3
実 ½例 4 比校例 4
エポキシ樹脂 E P 1 1 6 7
Έ'Ρ' 4 1 7 3
硬化剤 ' KAYAHA'R'D A- A (P ) 6 4 6 4
[0058] 実施例 4、比較例 4について注型法により樹脂成形体を調製し、 120°Cで 2時間、
更に 150°Cで 6時間かけて硬ィ匕させた。 :
[0059] このようにして得られた硬化物の物性を測定した結果を表 4に示す。
尚、物性値の測定は以下の方法で行った。
■ガラス転移温度 (TMA):真空理工 (株)製 TM— 7000
昇温速度 2°C/min. (値: 1の位を四捨五入)
'12〇0衝撃試験: 3 K— 6911に準拠。
羞替え ^紙(規則 26》 ' [0060] [表 3] 表 4
実施例 4 比較例 4
ガラス転移温度 (¾) 120 120
T ZOD (k J m) 19 10
[0061] 表 4より本発明の硬化物は、比較用の硬化物に比べその耐熱性を損なうことなぐ 靭性 (IZOD)にお 、て優れた物性を有することがわかる。
産業上の利用可能性
[0062] 本発明のエポキシ榭脂を含む本発明のエポキシ榭脂組成物は電気 ·電子材料、成 型材料、注型材料、積層材料、塗料、接着剤、レジスト、光学材料などの広範囲の用 途にきわめて有用である。

Claims

請求の範囲 [1] ビスフエノール F型のエポキシ榭脂であって、 5°Cの温度条件下 1週間以上液状を 保ち、かつ、その粘度が 25°Cにおいて 500〜2000mm2/s (ウベローデ粘度計)であ ることを特徴とするエポキシ榭脂。 [2] 式 (1)
[化 1]
Figure imgf000024_0001
で表される骨格のエポキシ榭脂がゲルパーミエーシヨンクロマトグラフィー(GPC ;UV
254nmで検出したときの面積%)で 0〜5面積%であり、式(2)
[化 2]
Figure imgf000024_0002
(式中、 Xは水素原子またはグリシジル基を表す。 )
で表される骨格のエポキシ榭脂の含有量がゲルパーミエーシヨンクロマトグラフィー( GPC ;UV 254nm)で検出したときの面積%で 0面積%を越え、 20面積%以下で ある請求項 1に記載のエポキシ榭脂。
[3] ジグリシジルエーテルの含有量がゲルパーミエーシヨンクロマトグラフィー(GPC ;U V 254nmで検出)で測定したときの面積%で95面積%以上である請求項 1または 2に記載のエポキシ榭脂。
[4] ビスフエノール F型エポキシ榭脂であって、下記式
[化 3]
Figure imgf000025_0001
(A; pp体) (B; op体) (C; 00体)
(式中 Gはグリシジル基を示す。)
で表される化合物 A、 B、 Cの含有量(高速液体クロマトグラフィー(HPLC; UV 274 nmで検出)で測定したときの面積%)および前記式(1)、 (2)で表される化合物の含 有量 (前記 GPC条件で測定した面積%)が下記式( α )
5≤{(2)-(l)}x{B/(A+C)}≤15 ··· (α)
Α ;化合物 Aの含有量
B ;化合物 Bの含有量
C ;化合物 Cの含有量
(1);式 (1)で表される化合物の含有量
(2);式 (2)で表される化合物の含有量
を満たす請求項 1に記載のエポキシ榭脂。
[5] 2官能体純度が 95面積% (GPC;UV 254nmで検出)以上であるビスフエノール
Fをグリシジルイ匕して得られる請求項 1〜4のいずれか一項に記載のエポキシ榭脂。
[6] 請求項 1〜5 、ずれか一項に記載のエポキシ榭脂及び硬化剤を含有するエポキシ 榭脂組成物。
[7] 請求項 6に記載のエポキシ榭脂組成物を硬化してなる硬化物。
PCT/JP2007/050723 2006-01-19 2007-01-18 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物 WO2007083715A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007554956A JP5368707B2 (ja) 2006-01-19 2007-01-18 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006011396 2006-01-19
JP2006-011396 2006-01-19

Publications (1)

Publication Number Publication Date
WO2007083715A1 true WO2007083715A1 (ja) 2007-07-26

Family

ID=38287667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050723 WO2007083715A1 (ja) 2006-01-19 2007-01-18 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物

Country Status (3)

Country Link
JP (1) JP5368707B2 (ja)
TW (1) TW200740872A (ja)
WO (1) WO2007083715A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020594A1 (fr) * 2006-08-17 2008-02-21 Nipponkayaku Kabushikikaisha Résine époxy liquide modifiée, composition de résine époxy contenant celle-ci et produit cuit dérivé
WO2017057689A1 (ja) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 硬化性エポキシ樹脂組成物、及びそれを用いた繊維強化複合材料
JP2017155080A (ja) * 2016-02-29 2017-09-07 新日鉄住金化学株式会社 ビスフェノールf型エポキシ樹脂及びその製造方法
KR101783746B1 (ko) 2015-12-01 2017-10-11 주식회사 케이씨씨 비스페놀 화합물 유래 고순도 액상 에폭시 수지의 제조 방법
WO2018123442A1 (ja) * 2016-12-27 2018-07-05 新日鉄住金化学株式会社 硬化性エポキシ樹脂組成物、それを用いた繊維強化複合材料及び成形体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259227A (ja) * 1997-03-19 1998-09-29 Dainippon Ink & Chem Inc 新規エポキシ樹脂及びエポキシ樹脂組成物
JP2001139660A (ja) * 1999-11-18 2001-05-22 Japan Epoxy Resin Kk 高分子エポキシ樹脂の製造方法及び塗料組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200415197A (en) * 2002-10-03 2004-08-16 Nippon Kayaku Kk Epoxy resin composition for optical semiconductor package
JP5156233B2 (ja) * 2004-07-20 2013-03-06 日本化薬株式会社 エポキシ樹脂、エポキシ樹脂組成物及びその硬化物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259227A (ja) * 1997-03-19 1998-09-29 Dainippon Ink & Chem Inc 新規エポキシ樹脂及びエポキシ樹脂組成物
JP2001139660A (ja) * 1999-11-18 2001-05-22 Japan Epoxy Resin Kk 高分子エポキシ樹脂の製造方法及び塗料組成物

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008020594A1 (fr) * 2006-08-17 2008-02-21 Nipponkayaku Kabushikikaisha Résine époxy liquide modifiée, composition de résine époxy contenant celle-ci et produit cuit dérivé
US8981160B2 (en) 2006-08-17 2015-03-17 Nipponkayaku Kabushikikaisha Modified liquid epoxy resin as well as epoxy resin composition using the same and cured product thereof
WO2017057689A1 (ja) * 2015-09-30 2017-04-06 新日鉄住金化学株式会社 硬化性エポキシ樹脂組成物、及びそれを用いた繊維強化複合材料
JPWO2017057689A1 (ja) * 2015-09-30 2018-09-06 新日鉄住金化学株式会社 硬化性エポキシ樹脂組成物、及びそれを用いた繊維強化複合材料
US10647826B2 (en) 2015-09-30 2020-05-12 Nippon Steel Chemical & Material Co., Ltd. Curable epoxy resin composition, and fiber-reinforced composite material obtained using same
KR101783746B1 (ko) 2015-12-01 2017-10-11 주식회사 케이씨씨 비스페놀 화합물 유래 고순도 액상 에폭시 수지의 제조 방법
JP2017155080A (ja) * 2016-02-29 2017-09-07 新日鉄住金化学株式会社 ビスフェノールf型エポキシ樹脂及びその製造方法
WO2018123442A1 (ja) * 2016-12-27 2018-07-05 新日鉄住金化学株式会社 硬化性エポキシ樹脂組成物、それを用いた繊維強化複合材料及び成形体
JPWO2018123442A1 (ja) * 2016-12-27 2019-10-31 日鉄ケミカル&マテリアル株式会社 硬化性エポキシ樹脂組成物、それを用いた繊維強化複合材料及び成形体
US11142610B2 (en) 2016-12-27 2021-10-12 Nippon Steel Chemical & Material Co., Ltd. Curable epoxy resin composition, fiber-reinforced composite material and molded body using same
JP7075351B2 (ja) 2016-12-27 2022-05-25 日鉄ケミカル&マテリアル株式会社 硬化性エポキシ樹脂組成物、それを用いた繊維強化複合材料及び成形体

Also Published As

Publication number Publication date
JPWO2007083715A1 (ja) 2009-06-11
JP5368707B2 (ja) 2013-12-18
TW200740872A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
JP2010001427A (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2001064340A (ja) 4,4’−ビフェニルジイルジメチレン−フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP5386352B2 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物
TWI438216B (zh) 變性液性環氧樹脂、以及使用該樹脂的環氧樹脂組成物及其硬化物
JP5127164B2 (ja) 変性エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
WO2007083715A1 (ja) 液状エポキシ樹脂、エポキシ樹脂組成物、および硬化物
JP5142180B2 (ja) エポキシ樹脂組成物、およびその硬化物
TWI414536B (zh) 環氧樹脂及其製造方法以及使用該樹脂的環氧樹脂組成物及其硬化物
JP5127160B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP5322143B2 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
TWI623566B (zh) 多羥基聚醚樹脂之製造方法,多羥基聚醚樹脂,其樹脂組成物及其硬化物
KR20010023189A (ko) 다가 페놀류 화합물, 에폭시 수지, 에폭시 수지 조성물 및그의 경화물
JP4259834B2 (ja) エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
JP4844796B2 (ja) 1液型エポキシ樹脂組成物及びその硬化物
JP7240989B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5220488B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
TW202006038A (zh) 反應性稀釋劑、組成物、密封材、硬化物、基板、電子零件、環氧化合物、及化合物之製造方法
JP2015203086A (ja) エポキシ樹脂、エポキシ樹脂組成物および硬化物
JP5131961B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP4942384B2 (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
JP7256160B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP4776446B2 (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2007045978A (ja) エポキシ樹脂、エポキシ樹脂組成物、およびその硬化物
JP2022147099A (ja) エポキシ樹脂、硬化性樹脂組成物、およびその硬化物
WO2015060307A1 (ja) フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物、プリプレグ、およびその硬化物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554956

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07707027

Country of ref document: EP

Kind code of ref document: A1