WO2007072748A1 - 熱可塑性ポリエステルエラストマー、熱可塑性ポリエステルエラストマー組成物、及び熱可塑性ポリエステルエラストマーの製造方法 - Google Patents

熱可塑性ポリエステルエラストマー、熱可塑性ポリエステルエラストマー組成物、及び熱可塑性ポリエステルエラストマーの製造方法 Download PDF

Info

Publication number
WO2007072748A1
WO2007072748A1 PCT/JP2006/325015 JP2006325015W WO2007072748A1 WO 2007072748 A1 WO2007072748 A1 WO 2007072748A1 JP 2006325015 W JP2006325015 W JP 2006325015W WO 2007072748 A1 WO2007072748 A1 WO 2007072748A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic polyester
polyester elastomer
molecular weight
aliphatic
diol
Prior art date
Application number
PCT/JP2006/325015
Other languages
English (en)
French (fr)
Inventor
Gaku Maruyama
Shoji Koketsu
Kenta Susuki
Katsuaki Kuze
Shigeo Ukyo
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to EP06834758A priority Critical patent/EP1964871B1/en
Priority to CN2006800480765A priority patent/CN101341186B/zh
Priority to JP2007551061A priority patent/JP4244067B2/ja
Priority to KR1020087013154A priority patent/KR101048774B1/ko
Priority to US12/158,231 priority patent/US7973124B2/en
Publication of WO2007072748A1 publication Critical patent/WO2007072748A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/914Polymers modified by chemical after-treatment derived from polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment

Definitions

  • thermoplastic polyester elastomer thermoplastic polyester elastomer composition, and method for producing thermoplastic polyester elastomer
  • the present invention relates to a thermoplastic polyester elastomer and a composition thereof, and a method for producing a thermoplastic polyester elastomer.
  • thermoplastic polyester elastomers with excellent heat resistance, light resistance, heat aging resistance, water resistance (also referred to as water aging resistance), low temperature characteristics, etc. and their compositions, especially various types including moldings such as fibers, films and sheets.
  • the present invention relates to a thermoplastic polyester elastomer that can be used as a material and a composition thereof. More specifically, it is suitable for molding materials such as elastic yarns and boots, gears, tubes, knocks, etc., for example, applications requiring heat aging resistance, water resistance, low temperature characteristics, heat resistance, etc.
  • the present invention relates to a thermoplastic polyester elastomer useful for joint boots, wire coating materials, and the like, and a composition thereof, and to a method for producing such a thermoplastic polyester elastomer.
  • thermoplastic polyester elastomer As a thermoplastic polyester elastomer, a crystalline polyester such as polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) has been used as a node segment, and polytetramethylene glycol (PTMG) has been used.
  • PBT polybutylene terephthalate
  • PBN polybutylene naphthalate
  • PTMG polytetramethylene glycol
  • Polyoxyalkylene glycols and polyesters such as Z or poly force prolatatone (PCL) and polybutylene adipate (PBA) are known and put into practical use (for example, Patent Document 1, 2).
  • Patent Document 1 Japanese Patent Laid-Open No. 10-17657
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-192778
  • polyester polyether type elastomers using polyoxyalkylene glycols in the soft segment are superior in water resistance and low-temperature properties, but are inferior in heat aging resistance, and polyester is used in the soft segment.
  • Polyester polyester elastomers have excellent heat aging resistance, but may have poor water resistance and low temperature properties.
  • Patent Document 3 For the purpose of solving the above drawbacks, a polyester polycarbonate type elastomer using polycarbonate as a soft segment has been proposed (for example, Patent Document 3).
  • Patent Document 3 Japanese Patent Publication No. 7-39480
  • Patent Document 4 Japanese Patent Laid-Open No. 5-295049
  • Patent Document 5 Japanese Patent Laid-Open No. 6-306202
  • Patent Document 6 Japanese Patent Laid-Open No. 10-182782
  • Patent Document 7 Japanese Patent Laid-Open No. 2001-206939
  • Patent Document 8 Japanese Unexamined Patent Publication No. 2001-240663
  • the polyester polycarbonate type elastomer disclosed in these patent documents is a polyester polycarbonate type elastomer obtained because the polycarbonate diol used as a raw material has a low molecular weight.
  • a low block property leads to a problem that the melting point of the polyester polycarbonate type elastomer is lowered.
  • the melting point can be increased by introducing a naphthalate skeleton as a polyester component.
  • the introduction of the naphthalate skeleton is expensive, it has an inexpensive terephthalate skeleton. It is desired to increase the melting point of the polyester component.
  • polyester polycarbonate type elastomers comprising a polyester component having a naphthalate skeleton, there is a demand for a higher melting point to meet the cost increase.
  • Patent Documents 7 and 8 above a polyester component that forms a hard segment and a polycarbonate diol component that forms a soft segment are reacted in a molten state to form a block polymer, and then a high molecular weight polymer is added using a chain extender.
  • a manufacturing method is disclosed.
  • the production method is an effective method for increasing the molecular weight of the block polymer.
  • the block property and block property retention are largely influenced by the reaction in the process of forming the block polymer. It is difficult to improve the block property and block property retention by a method of forming a block polymer and then increasing the molecular weight with a chain extender.
  • thermoplastic polyester elastomer having the above preferred characteristics has not been obtained. Therefore, establishment of a method for producing a polyester polycarbonate type elastomer that economically produces a thermoplastic polyester elastomer having the above-mentioned preferable characteristics is strongly desired.
  • FIG. 1 is a relationship between the hydroxyl end group concentration of the raw material polyester of the present invention and the molecular weight of an aliphatic polycarbonate diol suitable for the hydroxyl end group concentration.
  • FIG. 2 is a plot of the relationship between the hydroxyl end group concentration of PBT and the molecular weight of aliphatic polycarbonate diol for the thermoplastic elastomers obtained in Examples lb-12b and Comparative Examples lb-8b.
  • the present invention has excellent heat resistance, heat aging resistance, water resistance (also referred to as water aging resistance), light resistance, low temperature characteristics, and the like.
  • An object of the present invention is to provide a thermoplastic polyester elastomer excellent in blockability retention.
  • the present invention has excellent heat resistance, heat aging resistance, and water resistance, has excellent blockability during molding, and is difficult to draw down during extrusion molding and blow molding. It is an object of the present invention to provide an excellent thermoplastic polyester elastomer composition.
  • the present invention also provides an economical method for producing a thermoplastic polyester elastomer having excellent heat resistance, heat aging resistance, water resistance, light resistance, low temperature characteristics, etc., and excellent blockability retention. For the purpose.
  • the present invention for achieving the above object is as follows.
  • thermoplastic polyester elastomer comprising a hard segment having a polyester strength composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate.
  • the melting point difference (Tml—Tm3) between the melting point (Tml) obtained by the first measurement and the melting point (Tm3) obtained by the third measurement when the cycle of lowering to room temperature is repeated three times is 0 to 50 °
  • thermoplastic polyester elastomer according to the above [1], wherein the hard segment comprises a polybutylene terephthalate unit, and the thermoplastic polyester elastomer obtained has a melting point of 200 to 225 ° C.
  • thermoplastic polyester elastomer as described in any one of the above [1] to [4], wherein the thermoplastic polyester elastomer is produced by a process.
  • Polyester composed of an aromatic dicarboxylic acid and an aliphatic or cycloaliphatic diol is combined with a hard segment that also has strength and a soft segment composed of an aliphatic polycarbonate, and the rate of temperature rise using a differential scanning calorimeter In the first measurement, the temperature was increased from room temperature to 300 ° C at 20 ° CZ for 3 minutes after holding the temperature at 300 ° C for 3 minutes and then decreasing to 100 ° CZ for room temperature.
  • thermoplastic polyester elastomer composition comprising 0.01 to 20 parts by mass of a compound having at least one reactive group for the thermoplastic polyester elastomer with respect to 100 parts by mass of the thermoplastic polyester elastomer object.
  • thermoplastic polyester elastomer is composed of polybutylene terephthalate units, and the melting point of the thermoplastic polyester elastomer is 200 to 225 ° C.
  • a composition of a plastic polyester elastomer is 200 to 225 ° C.
  • thermoplastic as described in [6] above, wherein the hard segment of the thermoplastic polyester elastomer is composed of polybutylene naphthalate units, and the melting point of the thermoplastic polyester elastomer is 215 to 240 ° C. Polyester elastomer composition.
  • thermoplastic polyester elastomer is produced by reacting an aromatic dicarboxylic acid, an aliphatic or alicyclic diol, a force-constituting polyester and an aliphatic polycarbonate diol having a molecular weight of 5000 to 80000 in a molten state.
  • the thermoplastic polyester elastomer composition according to any one of the above [6] to [9], wherein [11] A molded article comprising the thermoplastic polyester elastomer composition according to any one of [6] to [10] above.
  • thermoplastic polyester elastomer comprising a hard segment comprising a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate.
  • a process for producing a thermoplastic polyester elastomer characterized in that an aliphatic polycarbonate diol obtained by preliminarily polymerizing with a chain extender is used.
  • thermoplastic polyester elastomer according to the above [12], wherein the aliphatic polycarbonate diol obtained by increasing the molecular weight has a number average molecular weight of 5,000 to 80,000.
  • thermoplastic polyester elastomer comprising a hard segment comprising a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate. It is produced by reacting a polyester composed of an aromatic dicarboxylic acid having a hydroxyl end group concentration of 0 to 55 eqZton and an aliphatic or alicyclic diol with an aliphatic polycarbonate diol having the following molecular weight range in a molten state.
  • a process for producing a thermoplastic polyester elastomer comprising a hard segment comprising a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate. It is produced by reacting a polyester composed of an aromatic dicarboxylic acid having a hydroxyl end group concentration of 0 to 55 eqZton and an
  • the lower limit of the molecular weight of the aliphatic polycarbonate diol is 3000 when the hydroxyl end group concentration of the polyester composed of aromatic dicarboxylic acid and aliphatic or alicyclic diol is Oeq Zton, and aromatic dicarboxylic acid and aliphatic or aliphatic When the hydroxyl terminal group concentration of the polyester composed of cyclic diol is 55 eqZton, the molecular weight is set to be equal to or higher than the molecular weight on the line connecting the straight lines, and the upper limit of the molecular weight is aromatic dicarboxylic acid and aliphatic or aliphatic. Hydroxyl end groups of polyesters composed of cyclic diols.
  • the point When the concentration is OeqZton, the point is 30000, and when the hydroxyl end group concentration of the polyester composed of aromatic dicarboxylic acid and aliphatic or alicyclic diol and mosquito is 55 eq / ton, the point is 70000.
  • the molecular weight When the molecular weight is below the elliptical line, the molecular weight is between the two straight lines.
  • thermoplastic polyester elastomer according to [15], wherein the aliphatic polycarbonate diol is previously polymerized with a chain extender to adjust the molecular weight.
  • thermoplastic polyester elastomer of the present invention and the composition thereof have the characteristics of a polyester polyester-bonate type elastomer that has good heat resistance and is excellent in heat aging resistance, water resistance, low temperature characteristics, etc. While maintaining, the block property and block property retention are improved. Due to the high block property, a decrease in heat resistance due to a decrease in melting point is suppressed, and mechanical properties such as hardness, tensile strength and elastic modulus are improved. In addition, the improvement in the blockiness retention prevents fluctuations in the blockiness during molding molding, thereby improving the uniformity of the quality of the molded product. In addition, recyclability is enhanced by this characteristic, which can lead to environmental load and cost reduction.
  • thermoplastic polyester elastomer of the present invention has the above-described excellent characteristics and advantages, and can be used for various molding materials such as fibers, films and sheets. It is also suitable for elastic yarns and molding materials such as boots, gears, tubes, knocks, etc., for example, applications such as automobiles and home appliance parts that require heat aging resistance, water resistance, and low temperature characteristics, It is useful for applications such as joint boots and wire coating materials. In particular, it can be suitably used as a material for parts that require high heat resistance, such as joint boots used around automobile engines and wire coating materials.
  • thermoplastic polyester elastomer of the present invention has the advantage that a high-quality thermoplastic polyester elastomer having the above properties can be produced economically and stably by a simple method. .
  • thermoplastic polyester elastomer of the present invention and the composition thereof will be described in detail. Explained.
  • the aromatic dicarboxylic acid constituting the hard segment polyester is widely used as an ordinary aromatic dicarboxylic acid, and is not particularly limited, but the main aromatic dicarboxylic acid is terephthalic acid. Alternatively, naphthalene dicarboxylic acid is desirable.
  • Other acid components include diphenyl dicarboxylic acid, isophthalic acid, aromatic dicarboxylic acids such as 5-sodium sulfoisophthalic acid, cyclohexane dicarboxylic acid, alicyclic dicarboxylic acids such as tetrahydrophthalic anhydride, and succinic acid.
  • aliphatic dicarboxylic acids such as acid, glutaric acid, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, dimer acid and hydrogenated dimer acid. These are used in a range that does not significantly decrease the melting point of ⁇ , the amount is less than 30 mol% of the total acid component, is preferred properly less than 20 mol 0/0.
  • thermoplastic polyester elastomer of the present invention as the aliphatic or alicyclic diol constituting the hard segment polyester, a general aliphatic or alicyclic diol is widely used.
  • the alkylene glycol mainly has 2 to 8 carbon atoms. Specific examples include ethylene glycol, 1,3 propylene diol, 1,4 butanediol, 1,6 hexanediol, and 1,4-cyclohexanedimethanol. 1,4 butanediol and 1,4-cyclohexanedimethanol are most preferred.
  • the component constituting the polyester of the hard segment those comprising a butylene terephthalate unit or a butylene naphthalate unit are preferable from the viewpoints of physical properties, moldability, and cost performance.
  • naphthalate units 2,6 are preferred.
  • an aromatic polyester suitable as a polyester constituting the hard segment in the thermoplastic polyester elastomer of the present invention can be easily obtained according to a normal polyester production method.
  • a strong polyester has a number average molecular weight of 1000 to 40,000!
  • the aliphatic polycarbonate constituting the soft segment in the thermoplastic polyester elastomer of the present invention mainly has an aliphatic diol residue having 2 to 12 carbon atoms and a carbonate binding force.
  • aliphatic diol residues include For example, ethylene glycol, 1,3 propylene glycol, 1,4 butanediol, 1,5 pentanediol, 1,6 hexanediol, 1,8 octanediol, 2,2 dimethyl-1,3 propanediol, 3-methyl- Examples include residues such as 1,5 pentanediol, 2,4 jetyl-1,5 pentanediol, 1,9-nonanediol, 2-methyl-1,8-octanediol.
  • aliphatic diol residues having 5 to 12 carbon atoms are preferred from the viewpoint of flexibility and low temperature characteristics of the obtained thermoplastic polyester elastomer. These components may be used alone or in combination of two or more as required, based on the cases described below.
  • the aliphatic polycarbonate diol having a low temperature characteristic and constituting the soft segment of the thermoplastic polyester elastomer in the present invention has a low melting point (for example, 70 ° C or less) and a low glass transition temperature. Is preferred. Generally, 1, 6 hexanediol used for forming soft segments of thermoplastic polyester elastomers Aliphatic polycarbonate diol with residual strength has a glass transition temperature of around 60 ° C and a melting point as low as 50 ° C. Since it is before and after, the low temperature characteristics are good.
  • the aliphatic polycarbonate diol obtained by copolymerizing an appropriate amount of, for example, 3-methyl-1,5-pentanediol with the above aliphatic polycarbonate diol has a glass transition relative to the original aliphatic polycarbonate diol. Although the point becomes slightly higher, the melting point decreases or becomes amorphous, so that it corresponds to an aliphatic polycarbonate diol with good low-temperature characteristics.
  • aliphatic polycarbonate diol, which also has 1,9-nonanediol and 2-methyl-1,8 octanediol has a melting point of about 30 ° C and a glass transition temperature of about 70 ° C. Corresponds to a good aliphatic polycarbonate diol.
  • the above-mentioned aliphatic polycarbonate diol is not necessarily composed of only the polycarbonate component, and may be obtained by copolymerizing a small amount of other Daricol, dicarboxylic acid, ester compound, ether compound and the like.
  • copolymer components include glycols such as dimer diols, hydrogenated dimer diols, and modified products thereof, dicarboxylic acids such as dimer acids and hydrogenated dimer acids, aliphatic, aromatic, and alicyclic dicarboxylic acids.
  • Polyester or oligoester that can also work with Daricol, ⁇ -force prolatatone, etc. Examples include powerful polyesters or oligoesters, polyalkylene glycols such as polytetramethylene glycol and polyoxyethylene glycol, or oligoalkylene glycols.
  • the copolymer component can be used to such an extent that the effect of the aliphatic polycarbonate segment is not substantially lost. Specifically, it is 40 parts by mass or less, preferably 30 parts by mass or less, more preferably 20 parts by mass or less with respect to 100 parts by mass of the aliphatic polycarbonate segment. When the amount of copolymerization is too large, the resulting thermoplastic polyester elastomer has poor heat aging resistance and water resistance.
  • thermoplastic polyester elastomer of the present invention is limited to such an extent that the effects of the invention are not lost, and as a soft segment, for example, polyalkylene glycol such as polyethylene glycol and polyoxytetramethylene glycol, poly-strength prolataton, polybutylene.
  • Copolymerization components such as polyester such as adipate have been introduced.
  • the content of the copolymerization component is usually 40 parts by mass or less, preferably 30 parts by mass or less, more preferably 20 parts by mass or less with respect to 100 parts by mass of the soft segment.
  • the thermoplastic polyester elastomer of the present invention includes a hard segment composed of a polyester card composed of the above aromatic dicarboxylic acid and an aliphatic or alicyclic diol, and a soft segment composed mainly of an aliphatic polycarbonate.
  • a thermoplastic polyester elastomer formed by bonding means that the hard segment and the soft segment are not directly bonded by a chain extender such as an isocyanate compound, but the units constituting the hard segment and the soft segment are directly bonded by an ester bond or a carbonate bond.
  • U who prefers the state.
  • the polyester constituting the hard segment, the polycarbonate constituting the soft segment, and if necessary, various copolymer components are melted and esterified for a certain period of time. It is preferable to obtain the reaction while repeating the conversion reaction and the depolymerization reaction (hereinafter sometimes referred to as blocking reaction).
  • the blocking reaction is preferably carried out at a temperature within the range of the melting point of the polyester constituting the hard segment to the melting point + 30 ° C.
  • the concentration of the active catalyst in the system is arbitrarily set according to the temperature at which the reaction is carried out. That is, at higher V and reaction temperature !, the transesterification and depolymerization proceed quickly, so it is desirable that the concentration of the active catalyst in the system is low. It is desirable that there is an active catalyst at a certain concentration.
  • the catalyst may be an ordinary catalyst, for example, a titanium compound such as titanium tetrabutoxide, potassium oxalate titanate, or a single compound such as dibutyltin oxide or monohydroxybutyltinoxide. Good.
  • the catalyst may be pre-existing in the polyester or polycarbonate, in which case no additional addition is required. Furthermore, the catalyst in the polyester or polycarbonate may be deactivated partially or substantially completely by any method.
  • titanium tetrabutoxide for example, phosphorous acid, phosphoric acid, triphenyl phosphate, tristriethylene glycol phosphate, orthophosphoric acid, carboxydimethyljetyl phosphonate, triphenyl phosphite, trimethyl phosphate, trimethyl phosphite, etc.
  • the deactivation is carried out by adding a phosphorous compound, but is not limited thereto.
  • reaction can be performed by arbitrarily determining a combination of reaction temperature, catalyst concentration, and reaction time.
  • the appropriate values of the reaction conditions vary depending on various factors such as the type and amount ratio of the hard segment and soft segment used, the shape of the apparatus used, and the stirring condition.
  • the optimum values of the above reaction conditions are, for example, when the melting point of the obtained polymer and the melting point of the polyester used as the segment are compared and the difference is 2 ° C to 60 ° C. If the difference in melting point is less than 2 ° C, both segments are not mixed or Z and reacted, and the resulting polymer exhibits poor elastic performance. On the other hand, when the difference in melting point exceeds 60 ° C., the block property of the obtained polymer is lowered due to the remarkable progress of the transesterification reaction, and the crystallinity and the freezing performance are lowered. [0028]
  • the residual catalyst in the molten mixture obtained by the above reaction is desirably deactivated as completely as possible by any method. If the catalyst remains more than necessary, it is considered that the transesterification further proceeds during compounding or molding, and the physical properties of the resulting polymer fluctuate.
  • the deactivation reaction may be performed, for example, in the above-described manner, that is, phosphorous acid, phosphoric acid, triphenyl phosphate, tris-triethylene glycol phosphate, orthophosphoric acid, carbethoxydimethyl jetyl phosphonate, triphenyl phosphite, trimethyl phosphate,
  • the force performed by adding a phosphorus compound such as trimethyl phosphite is not limited to this.
  • thermoplastic polyester elastomer of the present invention may contain a tri- or higher functional polycarboxylic acid or polyol only in a small amount.
  • a tri- or higher functional polycarboxylic acid or polyol for example, trimellitic anhydride, benzophenone tetraforce rubonic acid, trimethylolpropane, glycerin and the like can be used.
  • thermoplastic polyester elastomer of the present invention may be subjected to a solid phase polymerization reaction after a melt reaction in order to increase the degree of polymerization.
  • the thermoplastic polyester elastomer particles obtained above are usually replaced under an inert gas atmosphere such as nitrogen, carbon dioxide, argon, etc., and then the inert gas atmosphere or Z and By heating under a reduced pressure of absolute pressure 13333 to 13.3 Pa, immediately below the adhesion temperature of the resin to 70 ° C., while rolling or flowing so that the granules do not stick together.
  • the solid phase polymerization resin is applied.
  • the reaction temperature of the solid-phase polymerization is preferably 140 to 210 ° C, more preferably 150 to 190 ° C.
  • the reaction temperature is preferably 140 to 210 ° C, more preferably 150 to 190 ° C.
  • the solid phase polymerization reaction time is preferably 3 to 200 hours, more preferably 5 to 150 hours. If the solid-phase polymerization reaction time is less than the above range, the viscosity increase rate is too fast, making it difficult to manage the process, and the viscosity does not tend to increase sufficiently. There is a tendency that problems such as deterioration of color and bad color tone occur.
  • thermoplastic polyester elastomer of the present invention is heated from room temperature to 300 ° C at a heating rate of 20 ° CZ using the differential scanning calorimeter of the thermoplastic polyester elastomer.
  • the melting point (Tml) obtained by the first measurement and the melting point (Tm3) obtained by the third measurement when the temperature was lowered to room temperature at a rate of 100 ° CZ for 3 minutes after holding at ° C for 3 minutes. It is important that the melting point difference (Tml-Tm3) is 0-50 ° C.
  • the melting point difference is more preferably 0 to 40 ° C, and further preferably 0 to 30 ° C.
  • the melting point difference is a measure of the blockability retention of the thermoplastic polyester elastomer, and the smaller the temperature difference, the better the blockability retention.
  • the difference in melting point exceeds 50 ° C, the blockability is poor, the quality fluctuation during molding becomes large, and the uniformity of the quality of the molded product is poor, and the recyclability is poor. It leads to ⁇ .
  • thermoplastic polyester elastomer of the present invention By satisfying the above characteristics, the excellent blocking effect of the thermoplastic polyester elastomer of the present invention described later can be effectively utilized.
  • the hard segment is composed of polybutylene terephthalate units, and the melting point of the thermoplastic polyester elastomer to be obtained is 200 to 225 ° C! 205 ⁇ 225 o C force is preferable to S ⁇ .
  • the hard segment is composed of polybutylene naphthalate units, and the melting point of the obtained thermoplastic polyester elastomer is 215 to 240 ° C. 220-240 o C force S is preferred S.
  • the polybutylene terephthalate unit is a polybutylene naphthalate unit
  • the polybutylene terephthalate unit which is a commercially available polyester, is advantageous in terms of economy because the hard segment is a polybutylene naphthalate unit. It is.
  • thermoplastic polyester elastomer If the melting point of the thermoplastic polyester elastomer is less than the lower limit, the block property is lowered, and the heat resistance and mechanical properties of the thermoplastic polyester elastomer are deteriorated. On the other hand, when the above upper limit is exceeded, the compatibility between the hard segment and the soft segment is lowered, and the mechanical properties of the thermoplastic polyester elastomer are deteriorated.
  • thermoplastic polyester elastomer of the present invention has an average value of the number of repeats of repeating units constituting one homopolymer structural unit as a force having a polyester unit as a hard segment and an aliphatic polycarbonate unit as a soft segment.
  • chain length unless otherwise specified, the nuclear magnetic resonance (NMR) method is used. Indicates the calculated value.
  • the average chain length of the node segment calculated using the nuclear magnetic resonance method (NMR method) is x and the average chain length of the soft segment is y
  • the average chain length of the hard segment (X ) Is 5 to 20
  • the block property (B) calculated by the following formula (1) is preferably 0.11 to 0.45.
  • the average chain length of the polyester units as the hard segment constituents is preferably 5 to 20. More preferably, it is in the range of 7 to 18, more preferably 9 to 16.
  • the average chain length (X) of the polyester units of the hard segment is an important factor that determines the block property of the thermoplastic polyester elastomer. It greatly affects the melting point of the elastomer. Generally, as the average chain length (X) of polyester units increases, the melting point of the thermoplastic polyester elastomer increases. Furthermore, the average chain length (X) of the polyester units in this hard segment is a factor that affects the mechanical properties of the thermoplastic polyester elastomer.
  • the average chain length (X) of the polyester units in the hard segment is less than 5, it means that randomization has progressed, and the mechanical properties such as the decrease in heat resistance due to the decrease in melting point, hardness, tensile strength, elastic modulus, etc. Degradation of properties is large.
  • the average chain length of the polyester unit of the hard segment is greater than 20, the compatibility with the aliphatic carbonate diol constituting the soft segment is reduced, phase separation occurs, and the mechanical properties are greatly affected. Reduce strength and elongation.
  • the block property (B) is preferably from 0.11 to 0.45. 0.13 to 0.40 is more preferable, and 0.15 to 0.35 is even more preferable.
  • the block property decreases as the numerical value increases.
  • the block property exceeds 0.45, the polymer properties such as the melting point of the thermoplastic polyester elastomer being lowered due to the decrease in the block property are not preferable.
  • it is less than 0.11, the compatibility between the hard segment and the soft segment is lowered, and the mechanical elongation such as the bending resistance and the high elongation of the thermoplastic polyester elastomer is poor. This is preferable because it causes an increase.
  • the block property is calculated by the following equation (1).
  • the average chain length (y) of the soft segment is preferably 4 to 15.
  • the method for bringing the above-described blockability retention and blockability into the above ranges is not limited, but it is preferable to optimize the molecular weight of the polycarbonate diol as a raw material. That is, it is preferably produced by reacting the polyester constituting the hard segment in the above-described thermoplastic polyester elastomer of the present invention with an aliphatic polycarbonate diol having a molecular weight of 5000 to 80000 in a molten state. Aliphatic strength-The higher the molecular weight of the sulfonate diol, the higher the block retention and blockability.
  • the molecular weight of the polycarbonate diol is preferably 5000 or more in terms of number average molecular weight, more preferably 700 or more, and even more preferably 10,000 or more.
  • the upper limit of the molecular weight of the polycarbonate diol is preferably 80,000 or less, more preferably 70,000 or less, and more preferably 60,000 or less, from the viewpoint of compatibility between the hard segment and the soft segment. If the molecular weight of the polycarbonate diol is too large, the compatibility is lowered, phase separation occurs, the mechanical properties are greatly affected, and the strength and elongation are lowered.
  • the tensile strength at the time of cutting of the thermoplastic polyester elastomer of the present invention is 15: LOOM Pa, preferably 20-60 MPa.
  • the flexural modulus of the thermoplastic polyester elastomer is not more than lOOOMPa.
  • the flexural modulus is more preferably 800 MPa or less, and further preferably 600 MPa or less. If the flexural modulus exceeds lOOOMPa, the flexibility of the thermoplastic polyester elastomer is insufficient.
  • the lower limit is preferably 50 MPa or more, more preferably 80 MPa or more, more preferably lOOMPa or more. If it is below 50 MPa, the thermoplastic polyester elastomer is too soft to ensure the strength of the product.
  • thermoplastic polyester elastomer according to the present invention has a resistance after the heat aging test of the thermoplastic polyester elastomer composition evaluated by the method described in the measurement method section. It is preferable that the elongation retention ratio power at the time of cutting after the water aging test is 50% or more and 80% or more, respectively.
  • the method for optimizing the molecular weight of the polycarbonate diol is not limited.
  • the one with the optimal molecular weight may be purchased or prepared, or one having a molecular weight adjusted by increasing the molecular weight with a chain extender such as low molecular weight polycarbonate diol and diphenyl carbonate diisocyanate in advance.
  • a chain extender such as low molecular weight polycarbonate diol and diphenyl carbonate diisocyanate in advance.
  • a chain extender such as low molecular weight polycarbonate diol and diphenyl carbonate diisocyanate
  • the above-mentioned aliphatic diol and the following carbonate that is, dimethyl carbonate, jetino carbonate, dipropino carbonate, diisopropino carbonate, It can be obtained by reacting with dibutyl carbonate, dimethyl carbonate, diphenyl carbonate or the like.
  • thermoplastic polyester elastomer composition of the present invention comprises 0.01 to 20 parts by mass of a compound having one or more reactive groups for the thermoplastic polyester elastomer with respect to 100 parts by mass of the thermoplastic polyester elastomer. It is essential to contain.
  • the reactive group in the compound having at least one reactive group with respect to the thermoplastic polyester elastomer is an epoxy group, an isocyanate group, an oxazoline group, a carpositimide group, an acid anhydride group, a hydroxymethyl group, an amino group, or a cyclic imino group. And a group capable of reacting with a hydroxyl group or a carboxyl group of the thermoplastic polyester elastomer.
  • the compound having one or more reactive groups for the thermoplastic polyester elastomer in the present invention is an epoxy compound
  • the structure is not particularly limited, but the compound having one or more epoxy groups in the same core And a compound having 2 to 3 epoxy groups is preferred.
  • epoxy compounds such as bisphenol A, bisphenol F, and vinyl.
  • the amount of the epoxy compound having one or more reactive groups with respect to the thermoplastic polyester elastomer is the amount of the functional group present at the end of the thermoplastic polyester elastomer used, or finally obtained. It can vary depending on the required properties of the composition.
  • the amount is preferably 0.01 to 5 parts by mass, more preferably 0.05 to 4 parts by mass, and still more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the thermoplastic polyester elastomer. Less than 0.01 parts by mass, effects obtained by reacting such compounds
  • thermoplastic polyester elastomer composition of the present invention the reaction between the thermoplastic polyester and the epoxy compound having one or more reactive groups for the thermoplastic polyester elastomer can occur without using a catalyst.
  • a catalyst it is desirable to use a catalyst from the viewpoint of promoting the reaction or improving the affinity.
  • Catalysts generally include amines, imidazoles, phosphorus compounds, monocarboxylic acids having 10 or more carbon atoms and Z or dicarboxylic acids of la group or Ila group selected from the periodic table of elements. There may be mentioned metal salts and the like.
  • trivalent phosphorous compounds such as tributylphosphine and triphenylphosphine, metal salts of stearic acid such as calcium stearate and sodium stearate, 2-ethyl 4-methylimidazole, 2-phenolimidazole, 2-phenol- Imidazoles such as loumidazoline are preferred.
  • These catalysts can be used alone or in admixture of two or more. The same effect can be obtained by adding the catalyst all at once or dividedly, and the amount of the catalyst added is usually 2 parts by mass or less with respect to 100 parts by mass of the thermoplastic polyester elastomer. , Preferably 0.03 to 1 part by mass.
  • the isocyanate compound has one or more isocyanate groups in the same molecule. Force that can be used with any structure Any compound having two or more isocyanate groups in the same molecule must be used. Examples of such a compound include isocyanates generally used for urethane synthesis.
  • diphenylmethane diisocyanate (MDI), tolylene diisocyanate, polymeric MDI, dianisidine diisocyanate, diphenyl ether diisocyanate, orthotolidine diisocyanate, Naphthalene diisocyanate, triphenylmethane triisocyanate, triisocyanate phenol thiophosphate, hexamethylene diisocyanate, isophorone diisocyanate, lysine diisocyanate methyl ester, metaxylylene diisocyanate, 2 , 2, 4-Trimethylhexamethyylene diisocyanate, dimer acid diisocyanate, isofluoropyridenebis-4-cyclo Examples include dimers of hexyl isocyanate, dicyclohexylmethane diisocyanate, methylcyclohexane diisocyanate, and tolylene diisocyanate. Two or more isocyanates may be
  • the isocyanate compound is added in an amount of 0.5 to 2 times the sum of the total moles of terminal hydroxyl groups and terminal carboxyl groups in the hard segment and soft segment of the thermoplastic polyester elastomer, more preferably 0. It is preferably 5 to 1.0 times mole.
  • the isocyanate compound in the production of a thermoplastic polyester elastomer composition, can be added in a molten state and subjected to a reaction.
  • the melt kneading temperature (reaction temperature) of the isocyanate compound may be any temperature at which the hard component, the soft component, and the produced resin are actually melted. Usually performed at a temperature of 170-280 ° C.
  • reaction temperature When the reaction temperature is high, it is necessary to pay attention to the thermal decomposition of the hard component, soft component, and produced resin.
  • the reaction temperature When the reaction temperature is low, it is necessary to pay attention to crystallization and a decrease in the reaction rate.
  • the kneading time is about 1 to: LOO minutes, and is determined by conditions such as the mixing method, temperature, reaction of carboxylic acids described below. Preferably, set 2-60 minutes.
  • the reaction of such an isocyanate compound can be performed in the presence of a catalyst. Any of those used for the reaction of general isocyanates can be used, and examples thereof include amines and various organic metal compounds.
  • amines examples include monoamines such as triethylamine, N, N-dimethylcyclohexylamine, diamines such as N, N, ⁇ ', ⁇ , and tetramethylethylene diamine, ⁇ , ⁇ , ⁇ , , ⁇ ", ⁇ , triamines such as monopentamethyljetylenetriamine, triethylenediamine, cyclic amines having piperazine or imidazole skeleton in the molecule, other alcohol amines, ether amines, etc.
  • monoamines such as triethylamine, N, N-dimethylcyclohexylamine
  • diamines such as N, N, ⁇ ', ⁇ , and tetramethylethylene diamine, ⁇ , ⁇ , ⁇ , ⁇ ", ⁇ , triamines
  • monopentamethyljetylenetriamine triethylenediamine
  • organometallic compounds organotin compounds and their carboxylates and halides are mainly used, and specifically, stannous thioate, dibutinoletin diacetate, dibutinoletin dilaurate, dibutinoretin dimarker butide, Examples include dibutyltin thiocarboxylate, dibutyltin dimaleate, dioctyltin dimate, and two catalysts. It may be used in combination or more.
  • Such a catalyst may be added simultaneously with the isocyanate compound, or the isocyanate.
  • the compound may be added after being dispersed in the hard component and the soft component in a molten state in advance, or conversely, the catalyst may be dispersed by force.
  • the polycarposimide used in the present invention is prepared, for example, by a carbon dioxide reaction of a diisocyanate compound.
  • a diisocyanate compound As the diisocyanate that can be used, 4, 4-diphenyl is used. Methane diisocyanate, 4,4-diphenyldimethylmethane diisocyanate, 1,3 phenolic diisocyanate, 1,4 phenolic diisocyanate, 2,4 tolylene diisocyanate, 2,6 tolylene Isocyanate, 1,5 naphthylene diisocyanate, hexamethylene diisocyanate, dicyclohexylenomethane diisocyanate, cyclohexane 1,4-diisocyanate, xylylene diisocyanate, Isophorone diisocyanate, methylcyclohexane diisocyanate, tetramethylxylylene diisocyanate, 1, 3, 5 triisopropyl
  • terminal isocyanate can be used as it is, and the degree of polymerization may be controlled by reacting the terminal isocyanate, or a part of the terminal isocyanate may be blocked.
  • monoisocyanate compounds such as phenol isocyanate, tris isocyanate, dimethyl phenyl isocyanate, cyclohexenoisocyanate, butinoreisocyanate, naphthyl isocyanate, OH group, COOH group
  • monoisocyanate compounds such as phenol isocyanate, tris isocyanate, dimethyl phenyl isocyanate, cyclohexenoisocyanate, butinoreisocyanate, naphthyl isocyanate, OH group, COOH group
  • SH group an NH—R group (R is a hydrogen atom or an alkyl group), and the like.
  • alicyclic polycarbopositimides mainly composed of dicyclohexylmethane diisocyanate, cyclohexane 1,4-diisocyanate, isophorone diisocyanate, etc. Is preferred. It also has an isocyanate group at the end, An isocyanate group content of about 0.5 to 4% by mass is preferred from the standpoint of stability and handleability. The isocyanate group content is more preferably about 1 to 3% by mass.
  • polycarbodiimides derived from dicyclohexylmethane diisocyanate or isophorone diisocyanate having an isocyanate group content of 0.5 to 4% by mass are preferred, and an isocyanate group content of 1 is preferred. More preferred is ⁇ 3 mass%.
  • the isocyanate group content can be measured using a conventional method (a method in which a solution is dissolved in amine and back titrated with hydrochloric acid).
  • the number of carbopositimide groups in the polycarbopositimide molecule is preferably 2 to 50, more preferably 5 to 30 in terms of stability and handleability.
  • thermoplastic polyester elastomer if it is solid at room temperature, it is pulverized and has excellent workability when mixed with thermoplastic polyester elastomer, and also has excellent compatibility with thermoplastic polyester elastomer, uniform reactivity, It is also preferable in terms of bleed-out resistance.
  • thermoplastic polyester elastomer the reaction between the thermoplastic polyester elastomer and the polycarbopositimide can occur without using a catalyst, it is desirable to use a catalyst from the viewpoint of promoting the reaction.
  • a catalyst amines and imidazoles are generally preferred.
  • thermoplastic polyester elastomer of the present invention can be blended with various additives depending on the purpose to obtain a composition.
  • additives include known hindered phenols, sulfur-based, phosphorus-based, and amine-based acid / anti-oxidants, hindered amine-based, triazole-based, benzophenone-based, benzoate-based, nickel-based, and salicyl-based light stabilizers, Antistatic agents, lubricants, molecular regulators such as peroxides, epoxy compounds, isocyanate compounds, compounds having reactive groups such as carpositimide compounds, metal deactivators, organic and inorganic nuclei Agent, neutralizer, antacid, antibacterial agent, fluorescent brightener, filler, flame retardant, flame retardant aid Agents, organic and inorganic pigments and the like can be added.
  • sulfur-based antioxidation agent examples include dilauryl 3, 3, monothiodipropionate, dimyristyl 3, 3, monothiodiuropionate, distearyl-3, 3 , Monothiodipropionate, lauryl stearyl-3, 3, thiodipropionate, dilaurylthiodipropionate, dioctadecylsa Examples thereof include rufide, pentaerythritol-tetra (j8-lauryl-thiopropionate) ester, and the like.
  • the phosphorus-based anti-oxidation agent that can be incorporated in the present invention includes tris (mixed, mono and dinolyl phenol) phosphite, tris (2,3 di-tert-butyl phenol).
  • Phosphite 4, 4, -Butylidene-bis (3-methyl-6-t-butylphenol-di-tridecyl) phosphite, 1, 1, 3 Tris (2-methyl 4 di-tridecylphos) Fight 1 5-t butylphenol) butane, tris (2,4 di-t-butylphenol) phosphite, bis (2,4 ditert-butylphenol) pentaerythritol monodiphosphite, tetrakis ( 2, 4 di-t-butylphenol) 4, 4'-biphenol-lenphosphanite, bis (2, 6-di-tert-butyl-4-methylphenyl) pentaerythritol-di-phosphite, tetrakis (2 , 4 G t-butylphenol) 4, 4 ' Bibi-range phosphonite, triphenyl phosphite, diphenyl decyl phos, 1,
  • Examples of the amine-based antioxidation agent that can be incorporated in the present invention include N, N diphenylethylenediamine, N, N diphenylacetamidine, N, N diphenylflumamidine, N —Phenenolebiperidine, dibenzylethylenediamine, triethanolanolamine, phenothiazine, N, N'-di sec butyl-p-phenylenediamine, 4, 4'-tetramethyldiaminodiphenylmethane, P, P'-Dioctyldiphenylamine, N, N'-bis (1,4 dimethyl monopentyl) p-Phenoldiamine, Phenol a-Naphtylamine, Fe-Lu ⁇ -Naphthylamine, 4, Examples include amines such as 4, -bis (4- ⁇ , a-dimethyl-benzyl) diph-lamine and their derivatives, reaction products of
  • the hindered amine light stabilizer that can be blended in the present invention includes polycondensates of dimethyl oxalate-11- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine, poly [[6- (l, 1, 3, 3-tetrabutyl) imino 1, 3, 5 triazine 2, 4 diyl] hexamethylene [(2, 2, 6, 6-tetramethyl-4-piperidyl) imyl]], 2 — N-Butylmalonic acid bis (1, 2, 2, 6, 6 pentamethyl-4-piverige E) ester, tetrakis (2, 2, 6, 6-tetramethyl-4-piperidyl) -1, 2, 3, 4-butanetetracarboxylate, bis (2, 2, 6, 6-tetramethyl-4-piperidyl) sebacate N, ⁇ '-bis (2, 2, 6, 6-tetramethyl-4-piperidyl) hexamethylenediamine and 1,2 dibromoethane
  • the benzophenone-based, benzotriazole-based, triazole-based, nickel-based, and salicyl-based light stabilizers that can be incorporated in the present invention include 2, 2′-dihydroxy-4-methoxybenzophenone, 2 hydroxy-4 n —Otoxybenzophenone, p—t Butyl-Ferulyl salicylate, 2,4-G-tert-Butyl-Ferule 3,5 Di-tert-Butyl 4-hydroxybenzoate, 2— (2′-Hydroxy-5′-methylphenol) benzotriazo 2- (2, -hydroxy-3,5, -di-t-amylofol) benzotriazole, 2- [2,1, hydroxy-1,3,5,1bis ( ⁇ , a-dimethyl) Benzylphenol) benzotriazole, 2- (2, monohydroxy-1,3, t-butyl-5, monomethylphenol) 5 clonal benzoazolazole, 2- (2, monohydroxy-1,3,
  • Examples of the lubricant that can be blended in the present invention include hydrocarbon-based, fatty acid-based, fatty acid amide-based, ester-based, alcohol-based, metal stalagmite-based, natural wax-based, silicone-based, and fluorine-based compounds.
  • metal salt composed of a compound examples include metal stannic acid selected from (Li, Mg, Ca, Sr, Ba, Zn, Cd, Al, Sn, and Pb).
  • Fillers that can be blended in the present invention include magnesium oxide, acidic aluminum, silicon oxide, acidic calcium, acidic titanium (rutile type, anatase type). , Chromium oxide (trivalent), iron oxide, zinc oxide, silica, diatomaceous earth, alumina fiber, antimony oxide, oxides such as norrite ferrite, strontium ferrite, beryllium oxide, pumice and pumice balloon, and magnesium hydroxide, hydroxide Basic substances such as aluminum, basic magnesium carbonate or hydroxides, or carbonates such as magnesium carbonate, calcium carbonate, barium carbonate, ammonium carbonate, calcium sulfite, dolomite, dawsonite, or sulfuric acid (Sub-) such as calcium, barium sulfate, ammonium sulfate, calcium sulfite, basic magnesium sulfate Acid salts or silicates such as sodium silicate, magnesium silicate, aluminum silicate, potassium silicate, calcium silicate, talc, clay,
  • Flame retardant aids that can be blended in the present invention include antimony trioxide, antimony tetraoxide, antimony pentoxide, sodium pyroantimonate, tin dioxide, zinc metaborate, aluminum hydroxide, Examples thereof include magnesium hydroxide, zirconium oxide, molybdenum oxide, red phosphorus compound, ammonium polyphosphate, melamine cyanurate, and tetrafluoroethylene.
  • Examples of the compound having a triazine group and Z or a derivative thereof that can be blended in the present invention include melamine, melamine cyanurate, melamine phosphate, and guanidine sulfamate.
  • Examples of inorganic phosphorus compounds of phosphorus compounds that can be blended in the present invention include red phosphorus compounds and ammonium polyphosphate salts.
  • Examples of red phosphorus compounds include those in which red phosphorus is coated with a resin, and composite compounds with aluminum.
  • organic phosphorus compounds Examples thereof include phosphate esters and melamine phosphate.
  • Phosphate esters include phosphates, phosphonates, trimethyl phosphates of phosphinates, triethyl phosphate, tributyl phosphate, trioctyl phosphate, trioctyl phosphate, tribubutychetyl phosphate, octyl diphenyl phosphate, tricresyl phosphate , Cresyl diphenyl phosphate, triphenyl phosphate, trixylyl phosphate, tris' isopropyl phosphate, jetyl N, N-bis (2-hydroxyethyl) aminomethylphosphonate, bis (1 , 3-phenol-diphenyl) phosphate, aromatic condensed phosphate ester 1, 3-—bis (2,6-dimethylphenoxy) phosphoxy) benzene, 1,4--bis (2, 6— Dimethyl phenol ) Hosufue - favored like Le Okishi] benzene hydrolysis and
  • additives can be blended using a kneader such as a heating roll, an extruder, a Banbury mixer or the like. Further, it can be added and mixed in the oligomer before the transesterification reaction or before the polycondensation reaction when producing the thermoplastic polyester elastomer resin composition.
  • a kneader such as a heating roll, an extruder, a Banbury mixer or the like. Further, it can be added and mixed in the oligomer before the transesterification reaction or before the polycondensation reaction when producing the thermoplastic polyester elastomer resin composition.
  • thermoplastic polyester elastomer composition of the present invention is formed from a melt by ordinary molding techniques such as injection molding, flat film extrusion, extrusion blow molding, and coextrusion.
  • thermoplastic polyester elastomer A method for producing the thermoplastic polyester elastomer described above will be described in detail below.
  • thermoplastic polyester elastomer of the present invention it is important to use an aliphatic polycarbonate diol that has been previously polymerized with a chain extender. That is, before supplying the aliphatic polycarbonate diol used as a raw material to the blocking reaction, the molecular weight of the aliphatic polycarbonate diol is adjusted to be within the optimized range by increasing the molecular weight with a chain extender in advance. It is preferable to perform the blocking reaction by supplying it to the conversion reaction.
  • the polycarbonate diol which is a raw material, has a large molecular weight! However, if the molecular weight is too high, the compatibility between the hard segment and the soft segment is not preferable. Therefore, the molecular weight of the polycarbonate diol is Number average molecular weight 5000-80000 force S preferred ⁇ , 7000-70000 force S preferred ⁇ , 8000-60000 force S more preferred. If the molecular weight of the polycarbonate diol is less than 5,000, the block property and block property retention are deteriorated.
  • the molecular weight of the polycarbonate gel exceeds 80,000, the compatibility of the hard segment and the soft segment decreases, and the mechanical properties such as the strength and elongation of the resulting thermoplastic polyester elastomer are inferior. This is not preferable because the variation of the characteristics may increase.
  • the molecular weight of commercially available aliphatic polycarbonate diol is 3000 or less. Therefore, it is preferred to obtain the above-mentioned preferred range of aliphatic polycarbonate diols using the commercially available low molecular weight aliphatic polycarbonate diols.
  • the chain extender is not limited as long as it is a polyfunctional active compound containing two or more functional groups having reactivity with the terminal hydroxyl group of the aliphatic polycarbonate diol in one molecule.
  • the number of functional groups is not limited as long as it is 2 or more, but bifunctional ones are preferred. Examples include diphenyl carbonate, diisocyanate, and acid anhydrides of dicarboxylic acid. If the amount is small, a polyfunctional compound having at least three functionalities may be used.
  • carbonate compounds such as dimethylolate carbonate, jetinole carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, and dimethyl carbonate may be used. Further, it may be a cyclic carbonate such as ethylene carbonate or a dithiocarbonate compound. Further, instead of the phenoxy group of diphenyl carbonate, it may be a carbonyl compound of a nitrogen-containing compound residue such as imidazole ratatatam.
  • the low molecular weight aliphatic polycarbonate diol before the high molecular weight in the above method is preferably a commercially available product, but is not limited thereto.
  • a special copolymer is required as the aliphatic polycarbonate diol, a specially prepared one may be used.
  • the molecular weight of the resulting aliphatic polycarbonate diol is adjusted by changing the molecular weight of the starting aliphatic polycarbonate diol and the charge ratio of the aliphatic polycarbonate diol to the chain extender. Can do. Also, It can also be adjusted by the reaction time. The molecular weight of the resulting aliphatic polycarbonate diol increases as the molecular weight of the starting material increases and as the charge ratio of the chain extender decreases. What is necessary is just to set suitably according to the target molecular weight.
  • reaction temperature, reaction time, and stirring conditions can be determined by mixing an aliphatic polycarbonate diol having a molecular weight lower than the final molecular weight and a chain extender in a reactor.
  • the reaction conditions such as are not limited.
  • diphenyl carbonate is used as the chain extender, the following method is preferable.
  • a commercially available polycarbonate diol composed of 1,6-hexanediol (molecular weight 2000) and diphenol carbonate are charged under normal pressure to pressurized pressure, heated, and phenol generated by the reaction is added. It can be obtained by advancing the reaction in a molten state while removing.
  • the method for removing phenol is not limited. For example, a method of reducing the pressure with a vacuum pump ejector or a method of circulating an inert gas can be used.
  • the charged mole ratio of polycarbonate diol to diphenol carbonate in the above reaction is in the range of 0.5 to 1.5.
  • the force S is preferably S, and more preferably in the range of 0.6 to 1.4. If it is outside this range, it is difficult to ensure a desired molecular weight.
  • the temperature in the reaction vessel at the time of charging the raw materials is preferably 100 to 130 ° C. After the raw materials are charged, the temperature is raised to 150 to 250 ° C with stirring and the reaction proceeds. As the reaction temperature, 170 to 240 ° C is more preferable. 180 to 230 ° C force S is more preferable. When the temperature is lower than 150 ° C, the reaction rate is very slow and the desired molecular weight is not reached, and the reaction time becomes very long, resulting in high production costs. On the other hand, when the temperature is higher than 250 ° C., the decomposition reaction due to thermal deterioration increases and the reaction product is colored, which is not preferable.
  • a predetermined reaction temperature When a predetermined reaction temperature is reached, it is preferable to gradually reduce the pressure in the reaction vessel over 30 to 120 minutes from normal pressure to 530 Pa or less to remove phenol desorbed by the reaction.
  • the pressure is more preferably 400 Pa or less, and 270 Pa or less. Further preferred.
  • it is higher than 530 Pa the removal rate of phenol desorbed due to the progress of the reaction becomes very slow, resulting in a force that does not reach the desired molecular weight or a very long reaction time, resulting in an increase in production cost.
  • the shorter the time required for the reaction after reaching a predetermined degree of vacuum the better. 240 minutes or less is preferred 180 minutes or less is more preferred 120 minutes or less is even more preferred.
  • the molecular weight of the sulfonate diol is preferably controlled on the basis of the stirring power of the reactor.
  • the present invention is produced by reacting a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol with an aliphatic polycarbonate diol having a high molecular weight in a molten state.
  • a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol
  • an aliphatic polycarbonate diol having a high molecular weight in a molten state.
  • polybutylene terephthalate is used as a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol and the polybutylene terephthalate and 1,6-hexanediol having a high molecular weight are used.
  • a predetermined amount of the polycarbonate diol is charged into a reaction can at once, oxygen in the reaction can is removed with an inert gas, and then the pressure in the reaction can is reduced.
  • the pressure in the reaction vessel is preferably 400 Pa or less. 270 Pa or less is more preferable. 140 Pa or less is more preferable. While maintaining the degree of vacuum, the mixture is stirred and gradually heated, and the reaction proceeds at a temperature 5 to 40 ° C.
  • the temperature difference is more preferably 7 to 35 ° C higher, and more preferably 10 to 30 ° C higher.
  • the temperature difference is lower than 5 ° C., polybutylene terephthalate is solidified and cannot be mixed uniformly, so that the quality of the obtained thermoplastic polyester elastomer may vary.
  • the temperature is higher than 40 ° C, the reaction proceeds too quickly, and a randomized thermoplastic polyester elastomer having poor heat resistance can be produced.
  • the reaction time is preferably shorter than 360 minutes, preferably less than 300 minutes, more preferably shorter than 240 minutes. If the reaction time is too long, the production cycle will be extended and the production cost will increase.
  • thermoplastic polyester elastomer is taken out from the take-out port, cooled and solidified, and a thermoplastic polyester elastomer chip is obtained with a tip cutter such as a strand cutter.
  • the thermoplastic polyester elastomer is a polyester composed of an aromatic dicarboxylic acid and an aliphatic or alicyclic diol (hereinafter sometimes simply referred to as a polyester). It is important to prepare an aliphatic polycarbonate diol having a molecular weight suitable for the concentration of the hydroxyl end groups by reacting in a molten state. That is, it is preferably produced by reacting a polyester having a hydroxyl end group concentration of O to 55 eq / ton with an aliphatic polycarbonate diol having the following molecular weight range in a molten state.
  • the aliphatic polycarbonate in the above production method preferably has a molecular weight satisfying the following range.
  • the lower limit of the molecular weight of the aliphatic polycarbonate diol was connected by a straight line that is 3000 when the hydroxyl end group concentration of the polyester is Oeq / ton and 5000 when the hydroxyl end group concentration of the hard segment polyester is 55 eqZton.
  • the upper limit of the molecular weight is 30000 when the hydroxyl end group concentration of the polyester is Oeq / ton, and the upper limit of the molecular weight is 70000 when the hydroxyl end group concentration of the polyester is 55 eqZton.
  • the molecular weight is in a range between two straight lines.
  • the lower limit is more than the molecular weight on a straight line connecting the points where the hydroxyl end group concentration force of the polyester is 000 for SOeqZton and the hydrogen end group concentration of the hard segment polyester is 55 eqZton.
  • the upper limit is more preferably less than the molecular weight on the line connecting the points where the hydroxyl end group concentration of the polyester is 28000 when the hydroxyl end group concentration is Oeq Zton and the force is 65000 when the hydroxyl end group concentration of the polyester is 55 eq Zton.
  • Fig. 1 shows the relationship between the hydroxyl end group concentration of the polyester and the molecular weight preference of the aliphatic polycarbonate diol U and the molecular weight.
  • the composition and production method of the polyester are not limited as long as it has the above-described composition and molecular weight and has a hydroxyl end group concentration of ⁇ 55 eqZton.
  • the method for adjusting the hydroxyl end group concentration is not limited. For example, it is preferable to carry out by optimizing the production conditions of the polyester.
  • a decomposition method such as hydrolysis or thermal decomposition of polyester obtained by a conventional method, or a terminal group modification method using an acid anhydride or cyclic ether. Further, it may be carried out by the addition of glycol or dicarboxylic acid.
  • the method for adjusting the molecular weight of the aliphatic polycarbonate diol in the present invention is not limited.
  • the molecular weight of commercially available aliphatic polycarbonate diol is preferably in the range lower than the molecular weight range of the present invention.
  • a method of adjusting the molecular weight by increasing the molecular weight of the low-molecular-weight aliphatic polycarbonate diol that is sold and sold in advance with a chain extender is preferable.
  • the method using the above-mentioned commercially available low molecular weight product can easily produce an aliphatic polycarbonate diol having an arbitrary molecular weight, and the production of the thermoplastic polyester elastomer of the present invention can be carried out. Since it can be performed with an implant using a manufacturing apparatus, the economic effect is great.
  • the above method is a simple method by changing the charge ratio between the chain extender and the aliphatic polycarbonate diol. It is a simple method, and any desired one using a commercially available low molecular weight aliphatic polycarbonate diol. Has the advantage of being able to cope with molecular weight
  • the chain extender is not limited as long as it is a polyfunctional active compound containing two or more functional groups reactive with the terminal hydroxyl group of the aliphatic polycarbonate diol in one molecule.
  • the number of functional groups is not limited as long as it is 2 or more, but bifunctional ones are preferred. Examples include diphenyl carbonate, diisocyanate, and acid anhydrides of dicarboxylic acid. If the amount is small, a polyfunctional compound having at least three functionalities may be used.
  • carbonate compounds such as dimethylolate carbonate, jetinole carbonate, dipropyl carbonate, diisopropyl carbonate, dibutyl carbonate, and dimethyl carbonate may be used.
  • ethylene carbonate It may be a cyclic carbonate such as Toto, or a dithiocarbonate compound.
  • phenoxy group of diphenyl carbonate it may be a carbonyl compound of a nitrogen-containing compound residue such as imidazole ratatatam.
  • the low molecular weight aliphatic polycarbonate diol before high molecular weight in the above method it is preferable to use a commercially available product, but it is not limited.
  • a special copolymer is required as the aliphatic polycarbonate diol, a specially prepared one may be used.
  • the molecular weight of the resulting aliphatic polycarbonate diol is adjusted by changing the molecular weight of the starting aliphatic polycarbonate diol and the charge ratio of the aliphatic polycarbonate diol to the chain extender. Can do. It can also be adjusted by the reaction time. The molecular weight of the resulting aliphatic polycarbonate diol increases as the molecular weight of the starting material increases and as the charge ratio of the chain extender decreases. What is necessary is just to set suitably according to the target molecular weight.
  • reaction temperature, reaction time, and stirring conditions can be determined by mixing an aliphatic polycarbonate diol having a molecular weight lower than the final molecular weight and a chain extender in a reactor.
  • reaction conditions such as the above are not limited, for example, a method in which the molecular weight adjustment is performed in two or more stages is recommended.
  • the molecular weight of the obtained aliphatic polycarbonate diol is measured, and when the molecular weight is lower than the target molecular weight, an additional chain extender is added, On the other hand, when the molecular weight is too high, it is preferable to adjust the molecular weight by further adding the raw material aliphatic polycarbonate diol and continuing the reaction. By repeating this method, the adjustment accuracy of the molecular weight can be increased.
  • the terminal group may be a hydroxyl group or a chain extender residue.
  • Thermoplastic polyester elastomer dried under reduced pressure at 50 ° C for 15 hours was measured with DSC-50 (manufactured by Shimadzu Corporation) at room temperature force of 20 ° CZ and measured, and the endothermic peak temperature due to melting was measured. The melting point.
  • the measurement sample was weighed 10 mg in an aluminum pan (TA Instruments, product number 900793.901), sealed with an aluminum lid (TA Instruments, product number 900794.90 1), and then placed in an argon atmosphere. It was measured.
  • the tensile strength and elongation at the time of cutting of the thermoplastic polyester elastomer and its composition were measured according to JIS K 6251.
  • the test piece was injection molded into a flat plate of 100 mm X 100 mm X 2 mm using an injection molding machine (model SAV, manufactured by Yamashiro Seiki Co., Ltd.) at a cylinder temperature (Tm + 20 ° C) and a mold temperature of 30 ° C. Later, a dumbbell-shaped No. 3 specimen was punched from the flat plate.
  • thermoplastic polyester elastomer The flexural modulus of the thermoplastic polyester elastomer and its composition was measured according to ASTM D790.
  • thermoplastic polyester elastomer obtained in Examples 1 to 9, la to 7a, lb to 13b, Comparative Examples 1 to 5, la to 2a, and lb to 10b dried at 100 ° C. for 8 hours under reduced pressure 0.35 parts by mass of triglycidyl-tris (2-no-idochetyl) isosyanurate as a polyfunctional epoxy compound and 0.2 parts by mass of 2-methyl-4-ethylimidazole as a catalyst (Pentaerystole tetrakis [3-3, 5-diter-butyl-4-hydroxyphenolate pionate] 0.6 parts, N, N hexane 1,6 dirubis [3 , 5-Di-ter-butyl-4-hydroxyphenolpropionamide] 0.6 part) A total of 1.2 parts by weight was placed in a drum tumbler and mixed at room temperature for 30 minutes.
  • the mixture was melt-kneaded at a temperature of (Tm + 20 ° C.) using a 40 mm ⁇ same-direction twin screw extruder with a vent hole, extruded into a strand shape, and the strand was cut while being cooled with water and chipped.
  • the chip was dried under reduced pressure at 100 ° C. to obtain a chip of a thermoplastic polyester elastomer composition.
  • thermoplastic polyester elastomer with an injection molding machine (model-SAV, manufactured by Yamashiro Seiki Co., Ltd.), a cylinder temperature (Tm + 20 ° C), mold temperature 30 ° C, 100mm X 100mm X 2mm flat plate Thereafter, a dumbbell-shaped No. 3 test piece was punched from the flat plate.
  • thermoplastic polyester elastomer composition obtained by compounding in Examples 10 to 22 and Comparative Examples 6 to 8 were dried under reduced pressure at 100 ° C for 8 hours, and then an injection molding machine (manufactured by Yamashiro Seiki Co., Ltd., model — SAV) was used for injection molding into a 100mm x 100mm x 2mm flat plate at a cylinder temperature (Tm + 20 ° C) and a mold temperature of 30 ° C, and then a dumbbell-shaped No. 3 test piece was flattened from the flat plate. I also punched my strength.
  • an injection molding machine manufactured by Yamashiro Seiki Co., Ltd., model — SAV
  • test piece obtained by the above method was treated at 180 ° C. for 1000 hours in a gear type hot air dryer, and then the elongation at break was measured according to J IS K 6251.
  • the elongation at break was measured by the same method for the test piece not subjected to the dry heat treatment, and the retention ratio of the elongation at break after the dry heat treatment was calculated.
  • the specimen was treated in boiling water at 100 ° C for 2 weeks, and the elongation at break was measured according to JIS K 6251.
  • the elongation at break was measured in the same manner for the test piece, and the retention of elongation at break after boiling water treatment was calculated.
  • thermoplastic polyester elastomer composition pellets obtained by compounding in Examples 10 to 22 and Comparative Examples 6 to 8 were dried under reduced pressure at 100 ° C for 8 hours, and then an injection molding machine (manufactured by Yamashiro Seiki Co., Ltd., model- SAV). ) was injection molded into a 100 mm ⁇ 100 mm ⁇ 2 mm flat plate at a cylinder temperature (Tm + 20 ° C.) and a mold temperature of 30 ° C., and then a JIS-1 dumbbell piece was punched from the flat plate.
  • Apparatus Fourier transform nuclear magnetic resonance apparatus (AVANCE500 manufactured by BRUKER) Measuring solvent: Deuterated black mouth form
  • Aromatic dicarboxylic acid butanediol A-aromatic dicarboxylic acid butanediol Carbonate-chained butanediol of the butanediol of aromatic dicarboxylic acid chain is the H-NMR integrated value (unit is arbitrary) of the methylene peak adjacent to oxygen , V is near carbonic acid, and the H-NMR integrated value (in arbitrary units) of the methylene peak adjacent to oxygen is C.
  • Aromatic dicarboxylic acid Aliphatic diol of 5 to 12 carbon atoms H-NMR integral (unit is arbitrary) of the methylene peak adjacent to oxygen closer to the aromatic dicarboxylic acid of hexanediol in the carbonate chain To do.
  • Block property (B) was calculated by the following formula (1) from the values of X and y obtained by the above method. The value of B is smaller, and the block property is higher.
  • Thermoplastic polyester elastomer that has been dried under reduced pressure at 50 ° C for 15 hours is weighed into an aluminum pan (TA Instruments, part number 900793.901), lOmg, and then an anoleminium lid (TA Instruments part number 900794.901).
  • an aluminum pan TA Instruments, part number 900793.901
  • an anoleminium lid TA Instruments part number 900794.901
  • the temperature was raised from room temperature to 300 ° C at a temperature rising rate of 20 ° CZ in a nitrogen atmosphere.
  • the measurement sample pan was taken out, immersed in liquid nitrogen and rapidly cooled. Thereafter, the sample was taken out of liquid nitrogen and left at room temperature for 30 minutes.
  • the melting point difference (Tml—Tm3) between the melting point (Tml) obtained by the first measurement and the melting point (Tm3) obtained by the third measurement is obtained, and the melting point difference is determined as a block property. Retainability. The temperature difference is small, and the blockability is excellent.
  • the value was calculated according to the following formula using the value of reduced viscosity (7? SpZc) determined by the same method as that for measuring the reduced viscosity of the thermoplastic polyester elastomer.
  • thermoplastic polyester elastomer resin composition 0.5 g was dissolved in 100 ml of benzyl alcohol, black mouth form (50Z50 mass ratio), and titrated with an ethanol solution of KOH.
  • As the indicator phenol red was used. Expressed as equivalent weight (eqZton) in lton.
  • MFR Melt flow rate
  • the pellets of the thermoplastic polyester elastomer composition obtained in the Examples and Comparative Examples are based on the test method (Method A) described in JIS K7210 (ASTM D1238), 230. C. Melt flow rate (MFR: gZlO content) at 2160 g was measured. For the measurement, a composition having a moisture content of 0.1% by weight or less was used. However, for the thermoplastic polyester elastomer composition pellets obtained in Examples 15, 16, and 21, the melt flow rate was measured at a measurement temperature of 250 ° C. The melt flow rate is preferably 2 g / 10 min or less for blow molding, and 15 gZ10 min or less for extrusion molding.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexanediol type) 100 parts by mass and 8.6 parts by mass of diphenyl carbonate were charged, respectively, and reacted at a temperature of 205 ° C. and 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 10,000.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexanediol type) 100 parts by weight and diphenol carbonate 9.6 parts by weight, respectively, temperature 205 ° C , Reacted at 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 20000.
  • Aliphatic copolymer polycarbonate diol (Carbonate diol T5652, manufactured by Asahi Kasei Chemicals Co., Ltd., molecular weight 2000, copolymer of 1,6-hexanediol and 1,5-pentanediol, amorphous) 100 parts by mass and diphenol Dialkyl carbonate (8.6 parts by mass) was charged and reacted at a temperature of 205 ° C and 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 10,000.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexanediol type) and diphenyl carbonate were charged in 100 parts by mass and 10.7 parts by mass, respectively, at a temperature of 205 ° Polymerization proceeded at C and 130Pa. After 2 hours and 45 minutes, the contents were cooled and the polymer was removed. The molecular weight is 85000.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1, 6-hexanediol type) 100 parts by weight and diphenol carbonate 8.9 parts by weight, respectively, temperature 205 ° C , Reacted at 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 12000.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexanediol type) 100 parts by mass and diphenol Carbonate 10.0 parts by mass was charged and reacted at a temperature of 205 ° C and 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 33,000.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1, 6-hexanediol type) 100 parts by weight and diphenol carbonate 9.5 parts by weight, respectively, temperature 205 ° C , Reacted at 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 18000.
  • thermoplastic polyester elastomer of the present invention The following are examples and comparative examples relating to the thermoplastic polyester elastomer of the present invention.
  • polystyrene resin 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of a polycarbonate diol having a number average molecular weight of 20000 prepared by the above method were stirred at 230 to 245 ° C. and 130 Pa for 1.5 hours. After confirming that the resin was transparent, the contents were taken out and cooled to obtain polymer B (thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 1. Polymer B obtained in this example had the same quality as the thermoplastic polyester elastomer obtained in Example 1 and was of high quality.
  • PBT polybutylene terephthalate
  • the polymer C obtained in this example had the same quality as the thermoplastic polyester elastomer obtained in Example 1 and was of high quality. In addition, as a soft segment, it has excellent low-temperature characteristics compared to the case where polycarbonate diol having 1,6-hexanediol is used.
  • polystyrene resin 100 parts by weight of polybutylene naphthalate (PBN) having a number average molecular weight of 30000 and 43 parts by weight of a polycarbonate diol having a number average molecular weight of 10000 prepared by the above method were stirred at 245 to 260 ° C. and 130 Pa for 1 hour. After confirming that the fat became transparent, the contents were taken out and cooled to obtain polymer D (thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 1. Polymer D obtained in this example has the same block properties and block properties as those of the thermoplastic polyester elastomer obtained in Example 1. The thermoplastic resin had a retaining property and had a melting point higher than that of the thermoplastic polyester elastomer obtained in Example 1, and was of a higher quality.
  • PBN polybutylene naphthalate
  • PBT polybutylene terephthalate
  • carbonate diol T5 652 manufactured by Asahi Kasei Chemicals Corporation, molecular weight 2000, 1,6-hexanediol and 1,5-pentanediol (Ammonia copolymer, amorphous) 43 parts by mass at 230 to 245 ° C and 130 Pa for 10 minutes, confirming that the rosin became transparent, take out the contents, cool, and polymer G Got.
  • the physical properties of the obtained polymer were measured and the results are shown in Table 1.
  • the polymer G (thermoplastic polyester elastomer) obtained in this Comparative Example was inferior in block property and block property retention and was of lower quality than the thermoplastic polyester elastomer obtained in Example 3. Also, because of the low molecular weight, it was difficult to measure the flexural modulus.
  • the polymer obtained in this example was excellent in shear characteristics and high quality.
  • Example 1 Example 2 Example 3 Example 4
  • Blockiness (B) 0, 75 0. 06 0. 75 0. 1 6 0. 20
  • Block property (B) 0, 1 9 0, 28 0. 29 0. 45 0. 22
  • thermoplastic polyester elastomer composition of the present invention Water aging resistance (retention rate:%) 95 9 7 9 5 95 97 [0133]
  • thermoplastic polyester elastomer composition of the present invention are as follows.
  • Table 1 shows compounds having at least one reactive group for the thermoplastic polyester elastomer shown in Table 2 in 100 parts by mass of the thermoplastic polyester elastomer obtained in Examples 1, 2, 4, 5 and Comparative Example 1.
  • the antioxidants shown in Table 4 were blended according to Tables 4 and 5, and 0.2 parts by mass of 2-methyl-4-ethylimidazole was blended as a catalyst, placed in a drum tumbler, and mixed at room temperature for 30 minutes. The mixture was melt-kneaded at a temperature of (Tm + 20 ° C.) using a 40 mm ⁇ same-direction twin screw extruder with a vent hole and extruded into a strand, and the strand was cut with water-cooled force to form chips.
  • thermoplastic polyester elastomer composition of the present invention and a thermoplastic polyester elastomer composition chip of a comparative example.
  • the physical properties of the obtained compositions were measured, and the results are shown in Tables 4 and 5.
  • the melt flow rate values of the thermoplastic polyester elastomer compositions of Comparative Examples 6 to 8 are large for blow molding and extrusion molding. Too much value. (In the case of blow molding, 2 g Z10 min or less is preferred. In the case of extrusion molding, 15 gZl0 min or less is preferred.) Especially, it was too large for molding flexible boots using a press blow molding machine.
  • thermoplastic polyester elastomer compositions of Examples 10 to 22 are smaller than the residual strains of the thermoplastic polyester elastomer compositions of Comparative Examples 6 to 8, and this causes repeated bending fatigue. In contrast, a strong molding was obtained.
  • thermoplastic polyester elastomer of the present invention The following are examples and comparative examples relating to the method for producing the thermoplastic polyester elastomer of the present invention.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexane diol type) 100 parts by weight and diphenol carbonate 8.6 parts by weight were charged in a reaction vessel and gradually. The temperature was raised to 205 ° C. Thereafter, the pressure was gradually reduced and the reaction was carried out at 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 10,000.
  • thermoplastic polyester elastomer
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of a polycarbonate diol having a number average molecular weight of 10000 produced by the above method were charged into a reaction vessel and gradually heated while stirring. 245 ° C. The inside of the can was kept at 13 OPa, and after the internal temperature reached 245 ° C, it was confirmed that the grease was transparent in 1 hour. The product was taken out and cooled to obtain a polymer (a thermoplastic polyester elastomer). The physical properties of the obtained polymer were measured, and the results are shown in Table 6. The thermoplastic polyester elastomer obtained in this example had good properties and high quality.
  • PBT polybutylene terephthalate
  • Example la an aliphatic polycarbonate diol having a high molecular weight of 20000 was prepared in the same manner as in Example la, except that the amount of diphenyl carbonate was changed to 9.6 parts by mass. Obtained.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by weight of a polycarbonate diol having a number average molecular weight of 20000 prepared by the above method were charged into a reaction can and gradually heated while stirring. 245 ° C. The inside of the can is maintained at 13 OPa (after the internal temperature reaches 245 ° C, 1.5 hours after the resin is confirmed to be transparent, the contents are taken out, cooled, and the polymer (thermoplastic polyester elastomer The physical properties of the obtained polymer were measured, and the results are shown in Table 6.
  • the thermoplastic polyester elastomer obtained in this example was the thermoplastic polyester elastomer obtained in Example la. High quality with the same quality as
  • Example la In the method of Example la, the number average molecular weight was changed in the same manner as in Example la, except that the amount of diphenyl carbonate was changed to 10.5 parts by mass and the reaction time was changed to 1.5 hours. An aliphatic polycarbonate diol having a high molecular weight of 50000 was obtained.
  • thermoplastic polyester elastomer 100 parts by weight of polybutylene terephthalate (PBT) having a number average molecular weight of 20000 and 43 parts by weight of a polycarbonate diol having a number average molecular weight of 20000 prepared by the above method were charged into a reaction can and gradually heated while stirring. 245 ° C. The inside of the can was kept at 13 OPa, and after the internal temperature reached 245 ° C, it was confirmed that the resin became transparent in 1.5 hours, and the contents were taken out, cooled, and polymer (thermoplastic polyester elastomer) ) The physical properties of the obtained polymer were measured, and the results are shown in Table 6.
  • the thermoplastic polyester elastomer obtained in this example had the same quality as the thermoplastic polyester elastomer obtained in Example la, and was of high quality.
  • Example 4a In the method of Example la, as the aliphatic copolymer polycarbonate diol, an aliphatic copolymer polycarbonate diol (a carbonate diol T56 52 manufactured by Asahi Kasei Chemicals Co., Ltd., molecular weight 2000, copolymer of 1,6-hexanediol and force prolatatone, An aliphatic copolymer polycarbonate diol having a number average molecular weight of 10000 was obtained in the same manner as in Example la except that the material was changed to (amorphous).
  • an aliphatic copolymer polycarbonate diol a carbonate diol T56 52 manufactured by Asahi Kasei Chemicals Co., Ltd., molecular weight 2000, copolymer of 1,6-hexanediol and force prolatatone
  • An aliphatic copolymer polycarbonate diol having a number average molecular weight of 10000 was obtained in the
  • thermoplastic polyester elastomer obtained in this example had a quality equivalent to that of the thermoplastic polyester elastomer obtained in Example la and was high quality.
  • the soft segment has excellent low-temperature characteristics compared to the case where polycarbonate diol composed of 1,6-hexanediol is used.
  • a reaction vessel was charged with 100 parts by weight of polybutylene naphthalate having a number average molecular weight of 30000 (PBN: naphthalate parts 2,6) and 43 parts by weight of a polycarbonate diol having a number average molecular weight of 10,000 prepared in Example la. While stirring, the temperature was gradually raised to 265 ° C. The inside of the can was maintained at 130 Pa, and after the internal temperature reached 265 ° C, it was confirmed that the resin became transparent within 1 hour, and the contents were taken out and cooled to obtain a polymer (thermoplastic polyester elastomer). It was. The physical properties of the obtained polymer were measured, and the results are shown in Table 6.
  • thermoplastic polyester elastomer obtained in this example has the same blockability and blockability retention as the thermoplastic polyester elastomer obtained in Example la, and the heat obtained in Example la.
  • the melting point was higher than that of the plastic polyester elastomer.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexanediol type) 100 parts by mass and 4, 4, diphenylmethane diisocyanate 10.1 parts by mass Each was charged and reacted at a temperature of 180 ° C. under a nitrogen atmosphere. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 10 000.
  • thermoplastic polyester elastomer
  • thermoplastic polyester elastomer obtained in this example had a quality equivalent to that of the thermoplastic polyester elastomer obtained in Example la and was high quality.
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexanediol type) 100 parts by weight and pyromellitic dianhydride 8.7 parts by weight, respectively, temperature 205
  • the reaction was performed at ° C and 130 Pa. After 2 hours, the contents were cooled and the polymer was removed.
  • the molecular weight was 10,000.
  • thermoplastic polyester elastomer
  • thermoplastic polyester elastomer obtained in this example had a quality equivalent to that of the thermoplastic polyester elastomer obtained in Example la and was high quality.
  • a reactor is charged with 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and 43 parts by mass of polycarbonate diol C (carbonate diol UH—CARB200, molecular weight 2000, manufactured by Ube Industries) while stirring.
  • PBT polybutylene terephthalate
  • the temperature was gradually raised to 245.
  • the inside of the can was maintained at 130 Pa, and after the internal temperature reached 245 ° C, it was confirmed that the resin became transparent in 10 minutes, and the contents were taken out and cooled to obtain a polymer (thermoplastic polyester elastomer).
  • the physical properties of the obtained polymer were measured, and the results are shown in Table 6.
  • the thermoplastic polyester elastomer obtained in this Comparative Example was inferior in block property and block property retention. The low heat aging resistance was poor and the quality was low, and because the molecular weight was low, the flexural modulus could not be measured.
  • PBT polybutylene terephthalate
  • carbonate diol T5652 aliphatic copolymer polycarbonate diol
  • molecular weight 2000, 1,6-hexanediol and force prolatatone copolymer Amorphous 43 parts by mass were charged into a reactor and gradually heated to 245 ° C. with stirring.
  • the inside of the can was maintained at 130 Pa, and after the internal temperature reached 245 ° C, it was confirmed that the resin became transparent in 10 minutes, and the contents were taken out and cooled to obtain a polymer (a thermoplastic polyester elastomer).
  • the physical properties of the obtained polymer were measured, and the results are shown in Table 6.
  • thermoplastic polyester elastomer obtained in this comparative example was inferior in blockability and blockability retention, and was of lower quality than the thermoplastic polyester elastomer obtained in Example 4a. In addition, since the molecular weight was low, the bending elastic modulus could not be measured.
  • Blockability (B) 0. 22 0. 18 0. 19 0. 21 0. 33 0. 24 0. 22 0. 75 0. 75
  • Flexural modulus (M P a) 230 220 230 210 240 230 230--Heat aging resistance (retention rate:? ⁇ 60 55 55 60 60 55 60 0 0
  • Aliphatic polycarbonate diol (Ube Industries' carbonate diol UH—CA RB200, molecular weight 2000, 1,6-hexane diol type) 100 parts by weight and diphenol carbonate 8.6 parts by weight were charged in a reaction vessel and gradually. The temperature was raised to 205 ° C. Thereafter, the pressure was gradually reduced and the reaction was carried out at 130 Pa. After 2 hours, the contents were cooled and the polymer was removed. The molecular weight was 10,000.
  • thermoplastic polyester elastomer
  • a reactor is charged with 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 30000 and a hydroxyl end group concentration of OeqZton, and 43 parts by mass of a polycarbonate diol having a number average molecular weight of 10000 prepared by the above method.
  • PBT polybutylene terephthalate
  • the temperature was gradually raised to 245 ° C.
  • the inside of the can was maintained at 130 Pa, and after the internal temperature reached 245 ° C, it was confirmed that the resin was transparent in 1 hour, and the contents were taken out and cooled to obtain a polymer (thermoplastic polyester elastomer). It was.
  • the physical properties of the obtained polymer were measured and the results are shown in Table 7.
  • the thermoplastic polyester elastomer obtained in this example had good deviation characteristics and high quality.
  • Examples 2b and 3b In the method for adjusting the molecular weight of the aliphatic polycarbonate diol of Example lb, the amount of diphenyl carbonate was changed to 10.1 parts by mass and 6.4 parts by mass, and the number was measured in the same manner as in Example lb. Aliphatic polycarbonate diols with average molecular weights of 27000 and 5000 were obtained. The thermoplastic polyester elastomers of Examples 2b and 3b were obtained in the same manner as in Example lb, except that the aliphatic polycarbonate diol having the molecular weight was used. The results are shown in Table 7.
  • thermoplastic polyester elastomer obtained in this example had a quality equivalent to that of the thermoplastic polyester elastomer obtained in Example lb and was high quality.
  • Example lb In the same manner as in Example lb, the number average molecular weight was adjusted to 32000 by changing the charged amount of diphenol-carbonate to 3.7 parts by mass in accordance with the method for adjusting the molecular weight of the aliphatic polycarbonate diol of Example lb.
  • a thermoplastic polyester elastomer of Comparative Example lb was obtained in the same manner as Example lb, except that the aliphatic polycarbonate diol was used. The results are shown in Table 8.
  • thermoplastic polyester elastomer obtained in this comparative example had poor compatibility between the hard segment and the soft segment, so that the mechanical properties such as tensile strength were inferior, and the variation in the properties was large and the quality was low.
  • Example lb In the method of Example lb, a comparative example was prepared in the same manner as in Example lb, except that the aliphatic polycarbonate diol having a molecular weight of 2000 was changed to use a commercially available aliphatic polycarbonate diol without adjusting the molecular weight of the aliphatic polycarbonate diol. A 2b thermoplastic polyester elastomer was obtained. The results are shown in Table 8.
  • thermoplastic polyester elastomer obtained in this comparative example was inferior in block property and block property retention.
  • the reduced viscosity was poor
  • the heat aging resistance was poor
  • the quality was low.
  • the molecular weight was low, the bending elastic modulus could not be measured.
  • Examples 4b to 12b were prepared in the same manner as in Example lb, except that the hydroxyl end group concentration of PBT and the molecular weight of aliphatic polycarbonate diol were used as raw materials. A thermoplastic polyester elastomer was obtained. The results are shown in Table 7.
  • thermoplastic polyester elastomers obtained in these examples were of high quality with the same quality as the thermoplastic polyester elastomer obtained in Example lb.
  • thermoplastic polyester elastomers of Comparative Examples 3b to 8b were obtained in the same manner as in Example lb, except that the hydroxyl terminal group concentration of PBT and the molecular weight of the aliphatic polycarbonate diol were used as raw materials. The results are shown in Table 8.
  • thermoplastic polyester elastomers obtained in Comparative Examples 3b, 5b and 7b have a poor force, the compatibility between the hard segment and the soft segment is poor as in the thermoplastic polyester elastomer obtained in Comparative Example lb.
  • the mechanical properties such as bow I tension strength were inferior, and the variation in the properties was large and the quality was low.
  • thermoplastic polyester elastomers obtained in Comparative Examples 4b, 6b, and 8b were inferior in blockability and blockability retention as in the thermoplastic polyester elastomer obtained in Comparative Example 2b.
  • the reduced viscosity was poor, the heat aging resistance was poor, and the quality was low. Also, due to the low molecular weight, the bending modulus could not be measured.
  • the hydroxyl terminal group concentration of PBT used in Examples 4b to 12b and Comparative Examples 3b to 8b was adjusted by changing the production conditions of the PBT.
  • the molecular weight of the aliphatic polycarbonate diol was adjusted by optimizing the charging ratio of the raw aliphatic polycarbonate diol and the chain extender and the reaction conditions in the same manner as in Example lb. In this case, fine adjustment of the molecular weight was performed by dividing into two or more stages as required. That is, after reacting for a predetermined time at a predetermined amount of charging ratio, the molecular weight of the resulting aliphatic polycarbonate diol is measured. If the molecular weight is lower than the target molecular weight, an additional chain extender is added, and the reverse In addition, when the molecular weight was too high, the raw material aliphatic polycarbonate diol was additionally added to continue the reaction.
  • Polybutylene naphthalate with a number average molecular weight of 30000 and hydroxyl end group concentration of lOeqZton (PBN: 2,6 naphthalate parts) 43 parts by mass of polycarbonate diol having an average molecular weight of 10000 was charged into a reaction can and gradually heated to 265 ° C. while stirring. The inside of the can was maintained at 130 Pa, and after the internal temperature reached 265 ° C, it was confirmed that the resin became transparent in 1 hour, and the contents were taken out and cooled to obtain a polymer (thermoplastic polyester elastomer). It was. The physical properties of the obtained polymer were measured, and the results are shown in Table 9.
  • the thermoplastic polyester elastomer obtained in this example was excellent in the deviation characteristics and high quality.
  • thermoplastic polyester elastomers of Comparative Examples 9b and 10b were obtained in the same manner as in Example 13b, except that the molecular weight of the aliphatic polycarbonate diol was changed to that of 2000 and 40,000, respectively. It was.
  • the results are shown in Table 9.
  • the thermoplastic polyester elastomer obtained in Comparative Example 9b was inferior in block property and block property retention.
  • the reduced viscosity was inferior in heat aging resistance and the quality was low.
  • thermoplastic polyester elastomer obtained in Comparative Example 10b has poor compatibility between the hard segment and the soft segment, so that the mechanical properties such as tensile strength are inferior and the variation in the properties is large and the quality is low. there were.
  • thermoplastic elastomers obtained in Examples lb-12b and Comparative Examples lb-8b are plotted in the graph of PBT hydroxyl end group concentration and aliphatic polycarbonate diol molecular weight, and displayed as FIG. did.
  • a square mark (country) indicates that the hard segment and the soft segment are incompatible
  • a triangle mark ( ⁇ ) indicates that the blockability and blockability are inferior
  • a circle indicates that both characteristics are poor.
  • The straight line in the figure shows the preferred molecular weight range in the present invention. It can be understood that the use of an aliphatic polycarbonate diol having a molecular weight range suitable for the hydroxyl group end group of PBT, which is a hard segment component, is a critical factor in satisfying both of the above characteristics.
  • thermoplastic thermoplastic polyester elastomer, the composition thereof, and the production method thereof of the present invention have been described based on a plurality of examples. However, the present invention is limited to the configurations described in the above examples. However, the configurations described in the respective embodiments may be appropriately combined without departing from the spirit of the present invention, and the configurations can be changed as appropriate within the scope.
  • thermoplastic polyester elastomer of the present invention and the composition thereof have good heat resistance, and maintain the characteristics of the polyester polycarbonate type elastomer that are excellent in heat aging resistance, water resistance, low temperature characteristics, etc.
  • block property and block property retention are improved. Due to the high block property, a decrease in heat resistance due to a decrease in melting point is suppressed, and mechanical properties such as hardness, tensile strength and elastic modulus are improved.
  • the improvement of the block property retainability suppresses fluctuations in the block property at the time of molding, so that the uniformity of the quality of the molded product can be enhanced.
  • thermoplastic polyester elastomer of the present invention has the above-described excellent characteristics and advantages, it can be used for various molding materials including fibers, films and sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルからなるハードセグメント及び主として脂肪族ポリカーボネートからなるソフトセグメントが結合されてなる熱可塑性ポリエステルエラストマーであって、該熱可塑性ポリエステルエラストマーの示差走査熱量計を用いて昇温速度20°C/分で室温から300°Cに昇温し、300°Cで3分間保持した後に、降温速度100°C/分で室温まで降温するサイクルを3回繰り返した時の一回目の測定で得られる融点(Tm1)と3回目の測定で得られる融点(Tm3)との融点差(Tm1-Tm3)が0~50°Cであり、かつ切断時の引張強度が15~100MPaである熱可塑性ポリエステルエラストマーを用いることにより、優れた耐熱性、耐熱老化性、耐水性、耐光性及び低温特性等を兼備し、かつブロック性保持性に優れた熱可塑性ポリエステルエラストマーを提供することができる。

Description

明 細 書
熱可塑性ポリエステルエラストマ一、熱可塑性ポリエステルエラストマ一組 成物、及び熱可塑性ポリエステルエラストマ一の製造方法
技術分野
[0001] 本発明は熱可塑性ポリエステルエラストマ一及びその組成物、並びに熱可塑性ポリ エステルエラストマ一の製造方法に関する。詳しくは耐熱性、耐光性、耐熱老化性、 耐水性 (耐水老化性ともいう)、低温特性等に優れた熱可塑性ポリエステルエラストマ 一及びその組成物、特に繊維、フィルム、シートをはじめとする各種成形材料に用い ることのできる熱可塑性ポリエステルエラストマ一及びその組成物に関する。さらに詳 しくは、弾性糸及びブーツ、ギヤ、チューブ、ノ ッキンなどの成形材料に適し、例えば 自動車、家電部品などの耐熱老化性、耐水性、低温特性及び耐熱性等が要求され る用途、例えば、ジョイントブーツや、電線被覆材などに有用な熱可塑性ポリエステ ルエラストマー及びその組成物に関し、そのような熱可塑性ポリエステルエラストマ一 の製造方法に関する。
背景技術
[0002] 熱可塑性ポリエステルエラストマ一としては、以前よりポリブチレンテレフタレート(P BT)、ポリブチレンナフタレート(PBN)をはじめとする結晶性ポリエステルをノヽードセ グメントとし、ポリテトラメチレングリコール(PTMG)などのポリオキシアルキレングリコ ール類及び Z又はポリ力プロラタトン(PCL)、ポリブチレンアジペート (PBA)などの ポリエステルをソフトセグメントとするものなどが知られ、実用化されている(例えば、特 許文献 1、2)。
特許文献 1 :特開平 10— 17657号公報
特許文献 2 :特開 2003— 192778号公報
[0003] しかしながら、ソフトセグメントにポリオキシアルキレングリコール類を用いたポリエス テルポリエーテル型エラストマ一は、耐水性及び低温特性には優れるものの耐熱老 化性に劣ること力 またソフトセグメントにポリエステルを用いたポリエステルポリエステ ル型エラストマ一は、耐熱老化性に優れるものの、耐水性及び低温特性に劣ることが 知られている。
[0004] 上記欠点を解決することを目的として、ソフトセグメントにポリカーボネートを用いた ポリエステルポリカーボネート型エラストマ一が提案されている(例えば、特許文献 3
〜8参照)。
特許文献 3:特公平 7 - 39480号公報
特許文献 4:特開平 5— 295049号公報
特許文献 5:特開平 6 - 306202号公報
特許文献 6:特開平 10— 182782号公報
特許文献 7:特開 2001— 206939号公報
特許文献 8:特開 2001— 240663号公報
[0005] 上記の課題は解決される力 これらの特許文献において開示されているポリエステ ルポリカーボネート型エラストマ一は、原料に用いられるポリカーボネートジオールの 分子量が小さい等の理由で、得られるポリエステルポリカーボネート型エラストマ一は ブロック性ゃ該ポリエステルポリカーボネート型エラストマ一を溶融状態で保持したと きのブロック性の保持性 (以下、単にブロック性保持性と称することもある)が劣るとい う課題を有している。
[0006] 例えば、ブロック性が低いとポリエステルポリカーボネート型エラストマ一の融点が 低くなるという課題に繋がるので、例えば、上記したジョイントブーツや電線被覆材の 場合に、自動車のエンジン周り等の高温環境下で使用される用途においては耐熱 性の不足が問題となることがある。上記特許文献 4、 7及び 8においては、ポリエステ ル成分としてナフタレート骨格を導入することにより高融点化できることが開示されて いるが、ナフタレート骨格の導入は高価になるので、安価なテレフタレート骨格を有し たポリエステル成分での高融点化が望まれている。また、ナフタレート骨格を有したポ リエステル成分よりなるポリエステルポリカーボネート型エラストマ一については、コス ト上昇に見合うさらなる高融点化が求められている。
[0007] また、近年、環境負荷やコスト低減の観点より格外製品の再利用あるいは商品のリ サイクル使用が求められている。該要求を満たすには高いブロック性保持性が必要 である。これらの背景より、ブロック性が高ぐかつブロック性保持性の優れたポリエス テルポリカーボネート型エラストマ一の開発が強く嘱望されている。
[0008] 一方、上記特許文献 7および 8において、ハードセグメントを形成するポリエステル 成分とソフトセグメントを形成するポリカーボネートジオール成分とを溶融状態で反応 させてブロックポリマーを形成した後に鎖延長剤で高分子量ィヒする製造方法が開示 されて 、る。該製造方法はブロックポリマーの分子量を増大させる方法としては有効 な方法であるが、上記のブロック性やブロック性保持性は、主としてブロックポリマー を形成する過程の反応の支配を大きく受けるために、該ブロックポリマーを形成した 後に鎖延長剤で高分子量ィヒする方法ではブロック性やブロック性保持性を向上させ ることは困難である。従って、従来技術では、上記の好ましい特性を有した熱可塑性 ポリエステルエラストマ一が得られていなかった。そのために、上記の好ましい特性を 有した熱可塑性ポリエステルエラストマ一を経済的に製造するポリエステルポリカー ボネート型エラストマ一の製造方法の確立が強く嘱望されている。
図面の簡単な説明
[0009] [図 1]本発明の原料ポリエステルのヒドロキシル末端基濃度と該ヒドロキシル末端基濃 度に適した脂肪族ポリカーボネートジオールの分子量との関係である。
[図 2]実施例 lb〜 12bおよび比較例 lb〜8bで得られた熱可塑性エラストマ一に関し て、 PBTのヒドロキシル末端基濃度と脂肪族ポリカーボネートジオールの分子量との 関係図にプロットした図である。
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記従来の熱可塑性ポリエステルエラストマ一の有する問題点に鑑み、 優れた耐熱性、耐熱老化性、耐水性 (耐水老化性ともいう)、耐光性及び低温特性等 を兼備し、かつブロック性保持性の優れた熱可塑性ポリエステルエラストマ一を提供 することを目的とする。
また、本発明は、更に優れた耐熱性、耐熱老化性、耐水性を兼備し、かつ成形時 にブロック性保持性に優れ、押出成形性やブロー成形時にドローダウンしにく 、など 成形性に優れた熱可塑性ポリエステルエラストマ一組成物を提供することを目的とす る。 また、本発明は、優れた耐熱性、耐熱老化性、耐水性、耐光性及び低温特性等を 兼備し、かつブロック性保持性の優れた熱可塑性ポリエステルエラストマ一の経済的 な製造方法を提供することを目的とする。
課題を解決するための手段
上記目的を達成するための本発明は以下の通りである。
[1]芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステル 力もなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメ ントが結合されてなる熱可塑性ポリエステルエラストマ一であって、該熱可塑性ポリエ ステルエラストマーの示差走査熱量計を用いて昇温速度 20°CZ分で室温から 300 °Cに昇温し、 300°Cで 3分間保持した後に、降温速度 100°CZ分で室温まで降温す るサイクルを 3回繰り返した時の一回目の測定で得られる融点 (Tml)と 3回目の測定 で得られる融点(Tm3)との融点差 (Tml— Tm3)が 0〜50°Cであり、かつ切断時の 弓 I張強度が 15〜: LOOMPaであることを特徴とする熱可塑性ポリエステルエラストマ一
[2]ハードセグメントがポリブチレンテレフタレート単位よりなり、かつ得られる熱可塑 性ポリエステルエラストマ一の融点が 200〜225°Cであることを特徴とする上記 [1]に 記載の熱可塑性ポリエステルエラストマ一。
[3]ハードセグメントがポリブチレンナフタレート単位よりなり、かつ得られる熱可塑性 ポリエステルエラストマ一の融点が 215〜240°Cであることを特徴とする上記 [1]に記 載の熱可塑性ポリエステルエラストマ一。
[4]核磁気共鳴法 (NMR法)を用 Vヽて算出したハードセグメントの平均連鎖長を x、 及びソフトセグメントの平均連鎖長を yとした時に、ハードセグメントの平均連鎖長 (X) 力 〜 20であり、かつ下記(1)式で算出されるブロック性(B)が 0. 11〜0. 45である ことを特徴とする上記 [1]〜 [3]の 、ずれかに記載の熱可塑性ポリエステルエラスト マー。
B= l/x+ l/y (1)
[5]芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステル と分子量 5000〜80000の脂肪族ポリカーボネートジオールとを溶融状態で反応さ せて製造してなることを特徴とする上記 [1]〜 [4]の 、ずれかに記載の熱可塑性ポリ エステノレエラストマ一。
[6]芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステル 力もなるハードセグメント及び脂肪族ポリカーボネートからなるソフトセグメントが結合 されてなり、かつ示差走査熱量計を用いて昇温速度 20°CZ分で室温から 300°Cに 昇温し、 300°Cで 3分間保持した後に、降温速度 100°CZ分で室温まで降温するサ イタルを 3回繰り返した時の一回目の測定で得られる融点 (Tml)と 3回目の測定で 得られる融点(Tm3)との融点差 (Tml— Tm3)が 0〜50°Cであり、かつ切断時の引 張強度が 15〜: LOOMPaである熱可塑性ポリエステルエラストマ一 100質量部に対し 、該熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有する化合物 0 . 01〜20質量部を含有してなることを特徴とする熱可塑性ポリエステルエラストマ一 組成物。
[7]熱可塑性ポリエステルエラストマ一のハードセグメントがポリブチレンテレフタレー ト単位よりなり、かつ熱可塑性ポリエステルエラストマ一の融点が 200〜225°Cである ことを特徴とする上記 [6]に記載の熱可塑性ポリエステルエラストマ一組成物。
[8]熱可塑性ポリエステルエラストマ一のハードセグメントがポリブチレンナフタレート 単位よりなり、かつ熱可塑性ポリエステルエラストマ一の融点が 215〜240°Cであるこ とを特徴とする上記 [6]に記載の熱可塑性ポリエステルエラストマ一組成物。
[9]熱可塑性ポリエステルエラストマ一の、核磁気共鳴法 (NMR法)を用いて算出し たハードセグメントの平均連鎖長を χ、及びソフトセグメントの平均連鎖長を yとした時 に、ハードセグメントの平均連鎖長 (X)が 5〜20であり、かつ下記(1)式で算出される ブロック性(B)が 0. 11〜0. 45であることを特徴とする上記 [6]〜 [8]のいずれかに 記載の熱可塑性ポリエステルエラストマ一組成物。
B= l/x+ l/y (1)
[10]熱可塑性ポリエステルエラストマ一が、芳香族ジカルボン酸と脂肪族又は脂環 族ジオールと力 構成されたポリエステルと分子量 5000〜80000の脂肪族ポリカー ボネートジオールとを溶融状態で反応させて製造してなることを特徴とする上記 [6] 〜 [9]の 、ずれかに記載の熱可塑性ポリエステルエラストマ一組成物。 [ 11 ]上記 [6]〜 [ 10]の 、ずれかに記載の熱可塑性ポリエステルエラストマ一組成 物よりなる成形品。
[12]芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステ ルカもなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグ メントが結合されてなる熱可塑性ポリエステルエラストマ一の製造方法であって、予め 鎖延長剤で高分子量ィ匕してなる脂肪族ポリカーボネートジオールを用いることを特徴 とする熱可塑性ポリエステルエラストマ一の製造方法。
[13]上記高分子量化してなる脂肪族ポリカーボネートジオールの数平均分子量が 5 000〜80000であることを特徴とする上記 [12]に記載の熱可塑性ポリエステルエラ ストマーの製造方法。
[14]芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステ ルと上記高分子量ィヒしてなる脂肪族ポリカーボネートジオールを溶融状態で反応さ せて製造することを特徴とする上記 [ 12]または [ 13]に記載の熱可塑性ポリエステル エラストマ一の製造方法。
[15]芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステ ルカもなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグ メントが結合されてなる熱可塑性ポリエステルエラストマ一の製造方法であって、ヒド 口キシル末端基濃度が 0〜55eqZtonの芳香族ジカルボン酸と脂肪族又は脂環族 ジオールとから構成されたポリエステルと下記分子量範囲の脂肪族ポリカーボネート ジオールを溶融状態で反応させて製造することを特徴とする熱可塑性ポリエステル エラストマ一の製造方法。
〔脂肪族ポリカーボネートの分子量範囲〕
脂肪族ポリカーボネートジオールの分子量の下限を芳香族ジカルボン酸と脂肪族 又は脂環族ジオールとから構成されたポリエステルのヒドロキシル末端基濃度が Oeq Ztonの時が 3000で、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構 成されたポリエステルのヒドロキシル末端基濃度が 55eqZtonの時が 5000である点 を直線で結んだ線上の分子量以上とし、かつ該分子量の上限を芳香族ジカルボン 酸と脂肪族又は脂環族ジオールとから構成されたポリエステルのヒドロキシル末端基 濃度が OeqZtonの時が 30000で、芳香族ジカルボン酸と脂肪族又は脂環族ジォー ルとカも構成されたポリエステルのヒドロキシル末端基濃度が 55eq/tonの時が 700 00である点を直線で結んだ線上の分子量以下とした時に、 2本の直線で挟まれた範 囲の分子量とする。
[16]上記脂肪族ポリカーボネートジオールを予め鎖延長剤で高分子量化して分子 量調整することを特徴とする上記 [ 15]に記載の熱可塑性ポリエステルエラストマ一の 製造方法。
発明の効果
[0012] 本発明の熱可塑性ポリエステルエラストマ一及びその組成物は耐熱性が良好であ り、かつ耐熱老化性、耐水性及び低温特性等に優れているというポリエステルポリ力 ーボネート型エラストマ一の特徴を維持した上で、ブロック性及びブロック性保持性が 改善されている。ブロック性が高いことにより、融点低下による耐熱性の低下が抑制さ れ、硬度、引張強度、弾性率などの機械的性質が向上する。また、ブロッグ性保持性 の改善により、成型カ卩ェ時におけるブロック性の変動が抑制されるので成型製品の 品質の均一性を高めることができる。また、該特性により、リサイクル性が高められる ので環境負荷やコスト低減に繋げることができる。従って、このように、本発明の熱可 塑性ポリエステルエラストマ一は、上記した優れた特性及び利点を有するので、繊維 、フィルム、シートをはじめとする各種成形材料に用いることができる。また、弾性糸及 びブーツ、ギヤ、チューブ、ノ ッキンなどの成形材料にも適しており、例えば、耐熱老 化性、耐水性、低温特性が要求される自動車、家電部品などの用途、具体的には、 ジョイントブーツや、電線被覆材などの用途に有用である。特に、自動車のエンジン 周りに使用されるジョイントブーツや、電線被覆材などの高度な耐熱性が要求される 部品用の材料として好適に用いることができる。
また、本発明の熱可塑性ポリエステルエラストマ一の製造方法は、単純な方法で上 記特性を有した高品質な熱可塑性ポリエステルエラストマ一を経済的に、かつ安定し て製造できると 、う利点を有する。
発明を実施するための最良の形態
[0013] 以下、本発明の熱可塑性ポリエステルエラストマ一及びその組成物について詳細 に説明する。
本発明の熱可塑性ポリエステルエラストマ一において、ハードセグメントのポリエス テルを構成する芳香族ジカルボン酸は通常の芳香族ジカルボン酸が広く用いられ、 特に限定されな 、が、主たる芳香族ジカルボン酸としてはテレフタル酸又はナフタレ ンジカルボン酸であることが望ましい。その他の酸成分としては、ジフエ-ルジカルボ ン酸、イソフタル酸、 5—ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸、シ クロへキサンジカルボン酸、テトラヒドロ無水フタル酸などの脂環族ジカルボン酸、コ ハク酸、グルタル酸、アジピン酸、ァゼライン酸、セバシン酸、ドデカン二酸、ダイマー 酸、水添ダイマー酸などの脂肪族ジカルボン酸などが挙げられる。これらは榭脂の融 点を大きく低下させない範囲で用いられ、その量は全酸成分の 30モル%未満、好ま しくは 20モル0 /0未満である。
[0014] また、本発明の熱可塑性ポリエステルエラストマ一において、ハードセグメントのポリ エステルを構成する脂肪族又は脂環族ジオールは、一般の脂肪族又は脂環族ジォ ールが広く用いられ、特に限定されないが、主として炭素数 2〜8のアルキレングリコ ール類であることが望ましい。具体的にはエチレングリコール、 1, 3 プロピレンダリ コール、 1, 4 ブタンジオール、 1, 6 へキサンジオール、 1, 4ーシクロへキサンジ メタノールなどが挙げられる。 1, 4 ブタンジオール及び 1, 4ーシクロへキサンジメタ ノールが最も好ましい。
[0015] 上記のハードセグメントのポリエステルを構成する成分としては、ブチレンテレフタレ ート単位あるいはブチレンナフタレート単位よりなるものが物性、成形性、コストパフォ 一マンスの点より好ましい。なお、ナフタレート単位の場合は、 2, 6体が好ましい。
[0016] また、本発明の熱可塑性ポリエステルエラストマ一におけるハードセグメントを構成 するポリエステルとして好適な芳香族ポリエステルは、通常のポリエステルの製造法 に従って容易に得ることができる。また、力かるポリエステルは、数平均分子量 1000 0〜40000を有して!/、るものが望まし!/、。
[0017] また、本発明の熱可塑性ポリエステルエラストマ一におけるソフトセグメントを構成す る脂肪族ポリカーボネートは、主として炭素数 2〜 12の脂肪族ジオール残基とカーボ ネート結合力もなるものであることが好ま 、。これらの脂肪族ジオール残基としては 、例えば、エチレングリコール、 1, 3 プロピレングリコール、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 8 オクタンジオール、 2, 2 ジメチルー 1, 3 プロパンジオール、 3—メチルー 1, 5 ペンタンジオール、 2, 4 ジェチルー 1, 5 ペンタンジオール、 1, 9ーノナンジオール、 2—メチルー 1, 8— オクタンジオールなどの残基が挙げられる。特に、得られる熱可塑性ポリエステルェ ラストマーの柔軟性や低温特性の点より炭素数 5〜12の脂肪族ジオール残基が好ま しい。これらの成分は、以下に説明する事例に基づき、単独で用いてもよいし、必要 に応じて 2種以上を併用してもょ 、。
[0018] 本発明における熱可塑性ポリエステルエラストマ一のソフトセグメントを構成する、低 温特性が良好な脂肪族ポリカーボネートジオールとしては、融点が低く(例えば、 70 °C以下)かつ、ガラス転移温度が低いものが好ましい。一般に、熱可塑性ポリエステ ルエラストマーのソフトセグメントを形成するのに用いられる 1, 6 へキサンジオール 残基力もなる脂肪族ポリカーボネートジオールは、ガラス転移温度が— 60°C前後と 低ぐ融点も 50°C前後となるため、低温特性が良好なものとなる。その他にも、上記 脂肪族ポリカーボネートジオールに、例えば、 3—メチルー 1, 5 ペンタンジオール を適当量共重合して得られる脂肪族ポリカーボネートジオールは、元の脂肪族ポリ力 ーボネートジオールに対してガラス転移点が若干高くなるものの、融点が低下もしく は非晶性となるため、低温特性が良好な脂肪族ポリカーボネートジオールに相当す る。また、また、例えば、 1, 9ーノナンジオールと 2—メチルー 1, 8 オクタンジォー ルカもなる脂肪族ポリカーボネートジオールは融点が 30°C程度、ガラス転移温度が — 70°C前後と十分に低いため、低温特性が良好な脂肪族ポリカーボネートジオール に相当する。
[0019] 上記の脂肪族ポリカーボネートジオールは必ずしもポリカーボネート成分のみから 構成されるわけではなぐ他のダリコール、ジカルボン酸、エステル化合物やエーテ ルイ匕合物などを少量共重合したものでもよい。共重合成分の例として、例えばダイマ ージオール、水添ダイマージオール及びこれらの変性体などのグリコール、ダイマー 酸、水添ダイマー酸などのジカルボン酸、脂肪族、芳香族、又は脂環族のジカルボ ン酸とダリコールと力もなるポリエステル又はオリゴエステル、 ε—力プロラタトンなど 力 なるポリエステル又はオリゴエステル、ポリテトラメチレングリコール、ポリオキシェ チレングリコールなどのポリアルキレングリコール又はオリゴアルキレングリコールなど が挙げられる。
[0020] 上記共重合成分は、実質的に脂肪族ポリカーボネートセグメントの効果を消失させ ない程度用いることができる。具体的には脂肪族ポリカーボネートセグメント 100質量 部に対して 40質量部以下、好ましくは 30質量部以下、より好ましくは 20質量部以下 である。共重合量が多すぎる場合、得られた熱可塑性ポリエステルエラストマ一の耐 熱老化性、耐水性が劣ったものになる。
[0021] 本発明の熱可塑性ポリエステルエラストマ一は、発明の効果を消失しない程度に限 り、ソフトセグメントとして、例えばポリエチレングリコール、ポリオキシテトラメチレンダリ コールなどのポリアルキレングリコール、ポリ力プロラタトン、ポリブチレンアジペートな どのポリエステルなどの共重合成分が導入されて 、てもよ 、。共重合成分の含有量 はソフトセグメント 100質量部に対して通常 40質量部以下であり、好ましくは 30質量 部以下、より好ましくは 20質量部以下である。
[0022] 本発明の熱可塑性ポリエステルエラストマ一において、ハードセグメントを構成する ポリエステルとソフトセグメントを構成する脂肪族ポリカーボネート及び共重合体成分 との質量部比は、一般に、ハードセグメント:ソフトセグメント = 30 : 70〜95: 5であり、 好ましく ίま 40: 60〜90: 10、より好ましく ίま 45: 55〜87 : 13、最も好ましく ίま 50: 50 〜85 : 15の範囲である。
[0023] 本発明の熱可塑性ポリエステルエラストマ一は、上記のような芳香族ジカルボン酸 と脂肪族又は脂環族ジオールとから構成されたポリエステルカゝらなるハードセグメント 及び主として脂肪族ポリカーボネートからなるソフトセグメントが結合されてなる熱可 塑性ポリエステルエラストマ一である。ここで、結合されてなるとは、ハードセグメントと ソフトセグメントがイソシァネートイ匕合物などの鎖延長剤で結合されるのではなぐハ ードセグメントやソフトセグメントを構成する単位が直接エステル結合やカーボネート 結合で結合されて 、る状態が好ま U、。
たとえば、ハードセグメントを構成するポリエステル、ソフトセグメントを構成するポリ カーボネート及び必要であれば各種共重合成分を溶融下、一定時間のエステル交 換反応及び解重合反応を繰返しながら得ることが好ま ヽ(以下ブロック化反応と称 することちある)。
[0024] 上記、ブロック化反応は、好ましくはハードセグメントを構成するポリエステルの融点 ないし融点 + 30°Cの範囲内の温度において行われる。この反応において、系中の 活性触媒濃度は、反応の行われる温度に応じて任意に設定される。すなわち、より高 V、反応温度にお!、てはエステル交換反応及び解重合は速やかに進行するため、系 中の活性触媒濃度は低いことが望ましぐまた、より低い反応温度においてはある程 度の濃度の活性触媒が存在して ヽることが望ま 、。
[0025] 触媒は通常の触媒、例えばチタニウムテトラブトキシド、シユウ酸チタン酸カリウムな どのチタン化合物、ジブチルスズォキシド、モノヒドロキシブチルスズォキシドなどのス ズィ匕合物を 1種又は 2種以上用いてもよい。触媒はポリエステルもしくはポリカーボネ ート中にあら力じめ存在してもよぐその場合は新たに添加する必要はない。さらに、 ポリエステルもしくはポリカーボネート中の触媒はあら力じめ任意の方法によって部分 的又は実質的に完全に失活させておいてもよい。例えば触媒としてチタニウムテトラ ブトキシドを用いている場合、例えば亜燐酸、燐酸、燐酸トリフエニル、燐酸トリストリエ チレングリコール、オルト燐酸、ホスホン酸カルべトキジメチルジェチル、亜燐酸トリフ ェニル、燐酸トリメチル、亜燐酸トリメチルなどの燐ィ匕合物などを添加することによって 失活が行われるが、これに限られるわけではない。
[0026] 上記反応は、反応温度、触媒濃度、反応時間の組み合わせを任意に決定して行な うことができる。すなわち、反応条件は、用いるハードセグメント及びソフトセグメントの 種類及び量比、用いる装置の形状、攪拌状況などの種々の要因によってその適正 値が変化する。
[0027] 上記反応条件の最適値は、例えば得られるポリマーの融点及びノ、ードセグメントと して用いたポリエステルの融点を比較し、その差が 2°C〜60°Cとなる場合である。融 点差が 2°C未満の場合、両セグメントが混合又は Z及び反応しておらず、得られたポ リマーは劣った弾性性能を示す。一方、融点差が 60°Cを超える場合、エステル交換 反応の進行が著しいため得られたポリマーのブロック性が低下しており、結晶性、弹 性性能などが低下する。 [0028] 上記反応によって得られた溶融混合物中の残存触媒は、任意の方法によってでき る限り完全に失活しておくことが望ましい。触媒が必要以上に残存している場合、コ ンパウンド時、成形時などにエステル交換反応がさらに進行し、得られたポリマーの 物性が変動することが考えられる。
[0029] 本失活反応は、例えば前述の様式、すなわち亜燐酸、燐酸、燐酸トリフ ニル、燐 酸トリストリエチレングリコール、オルト燐酸、ホスホン酸カルべトキジメチルジェチル、 亜燐酸トリフエニル、燐酸トリメチル、亜燐酸トリメチルなどの燐ィ匕合物などを添加する ことによって行われる力 これに限られるわけではない。
[0030] 本発明の熱可塑性ポリエステルエラストマ一は、少量に限り三官能以上のポリカル ボン酸、ポリオールを含んでもよい。例えば無水トリメリット酸、ベンゾフエノンテトラ力 ルボン酸、トリメチロールプロパン、グリセリンなどを使用できる。
[0031] 本発明の熱可塑性ポリエステルエラストマ一は、重合度を上げるために溶融反応後 、固相重合反応を行っても良い。固相重合反応は、前記で得られた熱可塑性ポリエ ステルエラストマーの粒状体を、通常、窒素、二酸化炭素、アルゴン等の不活性ガス 雰囲気下で置換した後、不活性ガス雰囲気下、又は Z及び、絶対圧力 13333〜13 . 3Paの減圧下で、榭脂の粘着温度直下〜 70°C低い温度で、粒状体同士が膠着し な 、ように転動或 、は流動等させながら加熱することにより行 、、固相重合榭脂を実 施する。
[0032] 固相重合の反応温度は、 140〜210°Cとするのが好ましぐ 150〜190°Cとするの がより好ま 、。固相重合反応温度が前記範囲未満である場合は十分な重合速度 が得られない傾向となり、一方、前記範囲超過では、粒状榭脂同士の粘着、色調の 悪化等の問題が生じる傾向となる。
[0033] また、固相重合反応時間については、 3〜200時間が好ましぐ 5〜150時間がより 好ま 、。固相重合反応時間が前記範囲未満である場合は粘度上昇速度が速すぎ て、工程管理が難しくなる点や、充分に粘度が上がることが無い傾向となる一方、前 記範囲超過では、生産性の低下や色調の悪ィ匕等の問題が生じる傾向となる。
[0034] 本発明の熱可塑性ポリエステルエラストマ一は、該熱可塑性ポリエステルエラストマ 一の示差走査熱量計を用いて昇温速度 20°CZ分で室温から 300°Cに昇温し、 300 °Cで 3分間保持した後に、降温速度 100°CZ分で室温まで降温するサイクルを 3回 繰り返した時の一回目の測定で得られる融点 (Tml)と 3回目の測定で得られる融点 (Tm3)との融点差 (Tml— Tm3)が 0〜50°Cであることが重要である。該融点差は 0〜40°Cがより好ましぐ 0〜30°Cがさらに好ましい。該融点差は熱可塑性ポリエステ ルエラストマーのブロック性保持性の尺度であり、温度差が小さ 、程ブロック性保持 性に優れている。該融点差が 50°Cを超えた場合は、ブロック性保持性が悪ィ匕し、成 型加工時における品質変動が大きくなり成型製品の品質の均一性の悪ィ匕ゃリサイク ル性の悪ィ匕に繋がる。
上記特性を満たすことにより、後述の本発明熱可塑性ポリエステルエラストマ一の 有する優れたブロック性の効果を有効に活かすことができる。
[0035] 本発明においては、ハードセグメントがポリブチレンテレフタレート単位よりなり、力 つ得られる熱可塑性ポリエステルエラストマ一の融点が 200〜225°Cであることが好 まし!/ヽ。 205〜225oC力 Sより好まし ヽ。
また、本発明においては、ハードセグメントがポリブチレンナフタレート単位よりなり、 かつ得られる熱可塑性ポリエステルエラストマ一の融点が 215〜240°Cであることが 好まし ヽ。 220〜240oC力 Sより好まし ヽ。
[0036] ハードセグメントがポリブチレンテレフタレート単位ゃポリブチレンナフタレート単位 である場合は、巿販されて ヽるポリエステルであるポリブチレンテレフタレートゃポリブ チレンナフタレートを用いることができるので経済性の点で有利である。
[0037] また、熱可塑性ポリエステルエラストマ一の融点が上記下限未満では、ブロック性が 低くなり、熱可塑性ポリエステルエラストマ一の耐熱性や機械特性が悪ィ匕するので好 ましくない。逆に、上記上限を超えた場合は、ハードセグメントとソフトセグメントとの相 溶性が低下し熱可塑性ポリエステルエラストマ一の機械特性が悪ィ匕するので好ましく ない。
[0038] 本発明の熱可塑性ポリエステルエラストマ一は、ハードセグメントとしてポリエステル 単位及びソフトセグメントとして脂肪族ポリカーボネート単位を有する力 その 1つの 単独重合体構造単位を構成する繰返し単位の繰返し数の平均値を平均連鎖長とい い、本明細書においては、特に指示がない限り、核磁気共鳴法 (NMR法)を用いて 算出した値を示す。
[0039] 該核磁気共鳴法 (NMR法)を用いて算出したノヽードセグメントの平均連鎖長を x、 及びソフトセグメントの平均連鎖長を y、とした時に、ハードセグメントの平均連鎖長 (X )が 5〜20であり、かつ下記(1)式で算出されるブロック性(B)が 0. 11〜0. 45であ ることが好ましい。
B= l/x+ l/y (1)
[0040] 本発明の熱可塑性ポリエステルエラストマ一は、ハードセグメント構成成分であるポ リエステル単位の平均連鎖長が 5〜20が好ましい。より好ましくは 7〜18、さらに好ま しくは 9〜 16の範囲である。
[0041] 本発明の熱可塑性ポリエステルエラストマ一においては、ハードセグメントのポリエ ステル単位の平均連鎖長(X)は、該熱可塑性ポリエステルエラストマ一のブロック性 を決定する重要な因子であり、熱可塑性ポリエステルエラストマ一の融点に大きく影 響を及ぼす。一般にポリエステル単位の平均連鎖長 (X)が増加するにつれ熱可塑性 ポリエステルエラストマ一の融点も上昇する。さらに、このハードセグメントのポリエス テル単位の平均連鎖長 (X)は、熱可塑性ポリエステルエラストマ一の機械的性質にも 影響を与える因子である。ハードセグメントのポリエステル単位の平均連鎖長 (X)が 5 より小さい場合、ランダム化が進行していることを意味し、融点の低下による耐熱性の 低下、硬度、引張強度、弾性率などの機械的性質の低下が大きい。ハードセグメント のポリエステル単位の平均連鎖長 )が 20より大きい場合は、ソフトセグメントを構成 する脂肪族カーボネートジオールとの相溶性が低下し、相分離を起こし、機械的性 質に大きく影響を及ぼし、その強度、伸度を低下させる。
[0042] また、ブロック性(B)は、 0. 11〜0. 45であることが好ましい。 0. 13〜0. 40がより 好ましぐ 0. 15〜0. 35がさらに好ましい。該数値が大きくなる程ブロック性が低下す る。該ブロック性が 0. 45を超えた場合は、ブロック性の低下により熱可塑性ポリエス テルエラストマーの融点が低下する等のポリマー特性が低下するので好ましくない。 逆に、 0. 11未満では、ハードセグメントとソフトセグメントの相溶性が低下し、熱可塑 性ポリエステルエラストマ一の強伸度ゃ耐屈曲性等の機械的特性の悪ィ匕ゃ該特性 の変動の増大が引き起こされるので好ましくな 、。 なお、ここで、上記ブロック性は下記(1)式で算出される。
B= l/x+ l/y (1)
[0043] 上記関係より、ソフトセグメントの平均連鎖長 (y)は 4〜 15が好ましい。
上記のブロック性を満たすことにより初めて高度な耐熱性と機械的特性の両立を図 ることが可能となる。
[0044] 本発明においては、上記のブロック性保持性やブロック性を上記範囲にする方法 は限定されな 、が、原料であるポリカーボネートジオールの分子量を最適化するのが 好ましい。すなわち、前述の本発明の熱可塑性ポリエステルエラストマ一におけるハ ードセグメントを構成するポリエステルと分子量 5000〜80000の脂肪族ポリカーボネ ートジオールとを溶融状態で反応させて製造してなることが好まし 、。脂肪族ポリ力 ーボネートジオールの分子量が大き 、程、ブロック性保持性やブロック性が高くなる。 該ポリカーボネートジオールの分子量は数平均分子量で 5000以上が好ましぐ 700 0以上がより好ましぐ 10000以上がさらに好ましい。該ポリカーボネートジオールの 分子量の上限は、ハードセグメントとソフトセグメントの相溶性の観点より 80000以下 が好ましぐ 70000以下力 Sより好ましく、 60000以下がさらに好ましい。該ポリカーボ ネートジオールの分子量が大きすぎると相溶性が低下し、相分離を起こし、機械的性 質に大きく影響を及ぼし、その強度、伸度を低下させる。
本発明の熱可塑性ポリエステルエラストマ一の切断時の引張強度は、 15〜: LOOM Paであり、好ましくは 20〜60MPaである。
[0045] また、本発明の熱可塑性ポリエステルエラストマ一は、熱可塑性ポリエステルエラス トマ一の曲げ弾性率が lOOOMPa以下であることが好ま U、。曲げ弾性率は 800MP a以下がより好ましぐ 600MPa以下がさらに好ましい。曲げ弾性率は lOOOMPaを 超えた場合は、熱可塑性ポリエステルエラストマ一の柔軟性が不足するので好ましく ない。下限は、 50MPa以上が好ましぐ 80MPa以上がより好ましぐ lOOMPa以上 であることがさらに好ましい。 50MPaを下回る場合には、熱可塑性ポリエステルエラ ストマーが柔らかすぎて、製品の強度を確保することが出来ない。
[0046] また、本発明の熱可塑性ポリエステルエラストマ一は、測定方法の項で記述する方 法で評価される熱可塑性ポリエステルエラストマ一組成物の耐熱老化テスト後及び耐 水老化テスト後の切断時伸び保持率力 それぞれ 50%以上及び 80%以上であるこ とが好ましい。
[0047] 上記のポリカーボネートジオールの分子量を最適化する方法は限定されない。最 適な分子量のものを購入あるいは調製してもよいし、予め、低分子量のポリカーボネ ートジオールとジフヱ-ルカーボネートゃジイソシァネート等の鎖延長剤で高分子量 化することにより分子量の調整をしたものを用いてもょ 、。
[0048] 例えば、上記の高分子量脂肪族ポリカーボネートジオールを製造する方法としては 、前記した脂肪族ジオールと下記のカーボネート、すなわち、ジメチルカーボネート、 ジェチノレカーボネート、ジプロピノレカーボネート、ジイソプロピノレカーボネート、ジブチ ルカーボネート、ジメチルカーボネート、ジフエニルカーボネートなどとを反応させるこ とで得ることができる。
[0049] また、高分子量脂肪族ポリカーボネートジオールを製造する他の方法としては、低 分子量の脂肪族ポリカーボネートジオールとジメチルカーボネート、ジェチルカーボ ネート、ジプロピノレカーボネート、ジイソプロピルカーボネート、ジブチノレカーボネート 、ジメチルカーボネート、ジフエ-ルカーボネートなどとを反応させることによつても可 能である。
[0050] 本発明の熱可塑性ポリエステルエラストマ一組成物は、熱可塑性ポリエステルエラ ストマー 100質量部に対し、該熱可塑性ポリエステルエラストマ一に対する反応性基 を 1個以上有する化合物 0. 01〜20質量部を含有してなることが必須である。
熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有する化合物にお ける反応性基とは、エポキシ基、イソシァネート基、ォキサゾリン基、カルポジイミド基 、酸無水基、ヒドロキシメチル基、アミノ基、環状イミノ基など、熱可塑性ポリエステル エラストマ一が有する水酸基やカルボキシル基と反応することができる基である。
[0051] 本発明における熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有 する化合物がエポキシィ匕合物の場合は、構造は特に制限されないが、同一内子内 にエポキシ基を 1個以上有する化合物であり、エポキシ基を 2〜3個有する化合物が 好ましい。
具体例としては、エポキシ化合物としてはビスフエノール A、ビスフエノール F及びビ スフエノール sのジグリシジルエーテル、及びそれらのオリゴマー、水素化ビスフエノ 一ル八、水素化ビスフエノール F及び水素化ビスフエノール Sのジグリシジルエーテル 、及びそれらのオリゴマー、オルソフタル酸ジグリシジルエステル、イソフタル酸ジグリ シジルエステル、テレフタル酸ジグリシジルエステル、 p ォキシ安息香酸ジグリシジ ルエステル、テトラハイドロフタル酸ジグリシジルエステル、へキサハイド口フタル酸ジ グリシジルエステル、コハク酸ジグリシジルエステル、アジピン酸ジグリシジルエステル 、セバシン酸ジグリシジルエステル、エチレングリコールジグリシジルエーテル、プロピ レングリコールジグリシジルエーテル、 1, 4 ブタンジオールダリシジルエーテル、 1 , 6 へキサンジオールジグリシジルエーテル及びポリアルキレンダルコールジグリシ ジルエーテル類、トリメリット酸トリグリシジルエステル、トリグリシジルイソシァヌレート、 1, 4ージグリシジルォキシベンゼン、ジグリシジルプロピレン尿素、グリセロールトリグ リシジルエーテル、トリメチロールェタントリグリシジルエーテル、トリメチロールプロパ ントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、グルセロー ルアルキレンオキサイド付カ卩物のポリグリシジルエーテル、クレゾ一ルノボラック型グリ シジルエーテル、フエノールノボラック型グリシジルエーテルなどのグリシジルエーテ ノレ型エポキシ、 3, 4 エポキシシクロへキシノレメタアタリレート、シクロペンタジェンジ エポキシドなどの脂環エポキシ、オリゴマー型脂環エポキシ、トリグリシジノレイソシァヌ レートなどが挙げられ、これらは必要により適宜混合して使用してもよい。これらの中 で、結晶性で粉末ィ匕できるものが反応の均一化、ゲル発生防止の点で好ましぐ特 に好ましい例としてはトリグリシジルイソシァヌレートが挙げられ、平均粒径 100 μ m以 下の粉末のものが好ましい。
これら熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有するェポ キシィ匕合物の配合量は、用いられる熱可塑性ポリエステルエラストマ一の末端に存 在する官能基の量、あるいは最終的に得られる組成物の要求特性によって変わり得 る。好ましくは上記熱可塑性ポリエステルエラストマ一 100質量部に対して、 0. 01〜 5質量部、より好ましくは 0. 05〜4質量部、さらに好ましくは 0. 1〜3質量部である。 0 . 01質量部未満では、このような化合物を反応させることによって得られる作用効果
、例えば、増粘による成形性の向上効果、耐熱性及び耐加水分解性の向上効果が 有意に発揮されない。また 5質量部を超えると、未反応化合物が残存することによつ て、成形体の表面性状が粗雑になる、ゲル化物が発生する等、成形品の品質に悪 影響が現れてくる。
[0053] 本発明の熱可塑性ポリエステルエラストマ一組成物において、前記熱可塑性ポリエ ステルと熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有するェポ キシ化合物との反応は触媒を用いなくとも起こり得るが、反応の促進又は親和性の向 上の点から、触媒を用いることが望ましい。触媒としては、一般にアミン類、イミダゾー ル類、リンィ匕合物、炭素原子数が 10以上であるモノカルボン酸及び Z又はジカルボ ン酸類の、元素周期律表より選ばれた la族又は Ila族の金属塩類などが挙げられ得 る。なかでもトリブチルフォスフィン、トリフエ-ルフォスフィンなどの 3価のリン化合物、 ステアリン酸カルシウム、ステアリン酸ナトリウムなどのステアリン酸の金属塩類、 2— ェチルー 4ーメチルイミダゾール、 2—フエ-ルイミダゾール、 2—フエ-ルイミダゾリン などのイミダゾール類が好ましい。これらの触媒は、単独で又は 2種以上混合して用 いられ得る。また、上記触媒は一括して添加しても分割して添加しても、同様の効果 が得られ、触媒の添加量は、通常、上記熱可塑性ポリエステルエラストマ一 100質量 部に対して 2質量以下、好ましくは 0. 03〜1質量部である。
[0054] 本発明における熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有 する化合物がイソシァネートイ匕合物の場合、イソシァネートイ匕合物としては、同一分 子内に 1個以上のイソシァネート基を有するものであればいかなる構造を有していて も使用可能である力 同一分子内に 2個以上のイソシァネート基を有する化合物を必 ず用いなければならない。このような化合物としては、一般にウレタンの合成に用いら れるイソシァネート類が挙げられる。具体的にはジフエ-ルメタンジイソシァネート(M DI)、トリレンジイソシァネート、ポリメリック MDI、ジァニシジンジイソシァネート、ジフ ェ-ルエーテルジイソシァネート、オルソトリジンジイソシァネート、ナフタレンジイソシ ァネート、トリフエ-ルメタントリイソシァネート、トリイソシァネートフエ-ルチオフォスフ エート、へキサメチレンジイソシァネート、イソホロンジイソシァネート、リジンジイソシァ ネートメチルエステル、メタキシリレンジイソシァネート、 2, 2, 4—トリメチルへキサメチ レンジイソシァネート、ダイマー酸ジイソシァネート、イソフロピリデンビスー4ーシクロ へキシルイソシァネート、ジシクロへキシルメタンジイソシァネート、メチルシクロへキ サンジイソシァネート、トリレンジイソシァネートの 2量体等を挙げることができる。イソ シァネートは 2種以上を併用してもよい。
本発明におけるイソシァネートイ匕合物の添加量は、前記熱可塑性ポリエステルエラ ストマーのハードセグメントとソフトセグメントの末端水酸基総モルと末端カルボキシル 基総モルの和の 0. 5〜2倍モル、更に好ましくは 0. 5〜1. 0倍モルであることが好ま しい。
[0055] 熱可塑性ポリエステルエラストマ一組成物製造に際しイソシァネートイ匕合物は、溶 融状態で添加し反応に供することができる。イソシァネートイ匕合物の溶融混練温度( 反応温度)は、硬質成分、軟質成分、生成する榭脂が実際に溶融する温度であれば よい。通常 170〜280°Cの温度で行われる。反応温度が高い場合には硬質成分、軟 質成分、生成する榭脂の熱分解に注意する必要があり、反応温度が低い場合には 結晶化や反応速度の低下に注意する必要がある。混練時間は 1〜: LOO分程度であり 、混合方式や温度、後述するカルボン酸類の反応などの条件により決定される。好ま しくは 2〜60分で設定する。
[0056] このようなイソシァネートイ匕合物の反応は、触媒の存在下に行うことができる。一般 のイソシァネート類の反応に使用されるものはすべて使用でき、アミン類、種々の有 機金属化合物が挙げられる。
アミン類としては、トリエチルァミン、 N, N—ジメチルシクロへキシルァミン等のモノ アミン類、 N, N, Ν' , Ν,一テトラメチルエチレンジァミン等のジァミン類、 Ν, Ν, Ν, , Ν", Ν,,一ペンタメチルジェチレントリァミン等のトリアミン類、トリエチレンジァミン、 ピぺラジンやイミダゾール骨格を分子内に有する環状アミン類、その他のアルコール アミン類、エーテルアミン類等が用いられる。有機金属化合物としては主に有機錫系 の化合物及びそのカルボン酸塩、ハロゲンィ匕物が用いられ、具体的にはスタナスォ タトエート、ジブチノレ錫ジアセテート、ジブチノレ錫ジラウレート、ジブチノレ錫ジマーカ ブチド、ジブチル錫チォカルボキシレート、ジブチル錫ジマレート、ジォクチル錫ジマ 一カブチドが挙げられる。触媒は 2種以上併用してもよい。
このような触媒は、イソシァネートイ匕合物と同時に添加してもよいし、イソシァネート 化合物をあらかじめ溶融状態で硬質成分、軟質成分に分散させた後添加してもよ ヽ し、逆にあら力じめ触媒を分散させてもよい。
[0057] 本発明における熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有 する化合物として使用できるポリカルポジイミドとは、一分子内に N = C = N の構 造を 2つ以上有するポリカルポジイミドであり、脂肪族系ポリカルポジイミド、脂環族系 ポリカルポジイミド、芳香族系ポリカルポジイミドゃこれらの構造の共重合体を使用で きる。
[0058] 本発明に使用されるポリカルポジイミドは、例えば、ジイソシァネートイ匕合物の脱二 酸化炭素反応により作製されるが、使用できるジイソシァネートとしては、 4, 4—ジフ ェ-ルメタンジイソシァネート、 4, 4ージフエ-ルジメチルメタンジイソシァネート、 1, 3 フエ-レンジイソシァネート、 1, 4 フエ-レンジイソシァネート、 2, 4 トリレンジィ ソシァネート、 2, 6 トリレンジイソシァネート、 1, 5 ナフチレンジイソシァネート、へ キサメチレンジイソシァネート、ジシクロへキシノレメタンジイソシァネート、シクロへキサ ンー 1, 4ージイソシァネート、キシリレンジイソシァネート、イソホロンジイソシァネート 、メチルシクロへキサンジイソシァネート、テトラメチルキシリレンジイソシァネート、 1, 3, 5 トリイソプロピルフエ-レン一 2, 4 ジイソシァネートなどを単独又は二種以上 を共重合させ使用することが出来る。また、分岐構造を導入したり、カルポジイミド基 やイソシァネート基以外の官能基を共重合により導入したりしても良い。また、末端の イソシァネートはそのままでも使用可能である力 さらに末端のイソシァネートを反応 させることにより重合度を制御しても良いし、末端イソシァネートの一部を封鎖しても 良い。末端封鎖剤としては、フエ-ルイソシァネート、トリスイソシァネート、ジメチルフ ェニルイソシァネート、シクロへキシノレイソシァネート、ブチノレイソシァネート、ナフチ ルイソシァネートなどのモノイソシァネート化合物、 OH基、 COOH基、 SH基 、 一 NH— R基 (Rは水素原子又はアルキル基)などを有する化合物を用いることが出 来る。
[0059] これらのポリカルボジイミドの中で、ジシクロへキシルメタンジイソシァネート、シクロ へキサン 1, 4ージイソシァネート、イソホロンジイソシァネートなどを主原料とする脂 環族系ポリカルポジイミドが好ましい。また、末端にイソシァネート基を有し、イソシァ ネート基含有率が 0. 5〜4質量%程度のものが安定性と取り扱い性の点で好ましぐ イソシァネート基含有率は 1〜3質量%程度であることがより好ましい。
特に、ジシクロへキシルメタンジイソシァネートやイソホロンジイソシァネートに由来 するポリカルボジイミドであって、イソシァネート基含有率が 0. 5〜4質量%のものが 好ましぐさらにイソシァネート基含有率が 1〜3質量%のものがより好ましい。イソシ ァネート基含有率は常法 (ァミンで溶解して塩酸で逆滴定を行う方法)を用いて測定 できる。
[0060] また、本発明におけるポリカルポジイミド分子中のカルポジイミド基数は、 2〜50が 安定性と取り扱い性の点で好ましぐより好ましくは 5〜30である。
これらの重合度で、室温付近で固形であると、粉末化されて熱可塑性ポリエステル エラストマ一との混合時の作業性に優れ、さらに熱可塑性ポリエステルエラストマ一と の相溶性に優れ、均一反応性、耐ブリードアウト性の点でも好ましい。
[0061] ポリカルボジイミドの配合量は熱可塑性ポリエステルエラストマ一 100質量部に対し て 0. 05〜5質量部が好ましぐより好ましくは 0. 1〜4質量部、さらに好ましくは 0. 5 〜4質量部である。 5質量部を超えると、柔軟性が損なわれたり、機械的特性、耐熱 性、溶融粘度が低下することがある。また、 0. 05質量部未満であると、組成物中の N = C=N 量が少なくなり、耐水老化性向上効果、押出性向上効果に劣ることが ある。
熱可塑性ポリエステルエラストマ一とポリカルポジイミドとの反応は触媒を用いなくと も起こり得るが、反応の促進の点から、触媒を用いることが望ましい。触媒としては、 一般にアミン類、イミダゾール類、等が好ましい。
[0062] さらに、本発明の熱可塑性ポリエステルエラストマ一には、 目的に応じて種々の添 加剤を配合して組成物を得ることができる。添加剤としては、公知のヒンダードフエノ ール系、硫黄系、燐系、ァミン系の酸ィ匕防止剤、ヒンダードアミン系、トリァゾール系、 ベンゾフエノン系、ベンゾエート系、ニッケル系、サリチル系などの光安定剤、帯電防 止剤、滑剤、過酸ィ匕物などの分子調整剤、エポキシ系化合物、イソシァネート系化合 物、カルポジイミド系化合物などの反応基を有する化合物、金属不活性剤、有機及 び無機系の核剤、中和剤、制酸剤、防菌剤、蛍光増白剤、充填剤、難燃剤、難燃助 剤、有機及び無機系の顔料などを添加することができる。
[0063] 本発明において配合することができるヒンダードフエノール系酸ィ匕防止剤としては、
3, 5—ジ一 t—ブチル 4—ヒドロキシ一トルエン、 n—ォクタデシルー j8 (4,一ヒド ロキシー3,, 5,ージー t—ブチルフエ-ル)プロピオネート、テトラキス〔メチレンー3— (3' , 5,一ジ一 t—ブチル 4,一ヒドロキシフエ-ル)プロピオネート〕メタン、 1, 3, 5 —トリメチル 2, 4, 6,一トリス(3, 5 ジ一 t ブチル 4 ヒドロキシベンジル)ベン ゼン、カルシウム(3, 5—ジ— t—ブチル—4—ヒドロキシ—ベンジル—モノェチルー ホスフェート)、トリエチレングリコール ビス〔3—(3— t—ブチルー 5—メチルー 4ーヒ ドロキシフエ-ル)プロピオネート〕、ペンタエリスリチルーテトラキス〔3— (3, 5—ジ t —ブチルァ-リノ)— 1, 3, 5 トリアジン、 3, 9 ビス〔1, 1—ジメチル— 2— { j8— (3 — t ブチル 4 ヒドロキシ - 5 メチルフエ-ル)プロピオ二ルォキシ}ェチル〕 2,
4, 8, 10—テトラオキサスピロ〔5, 5〕ゥンデカン、ビス〔3, 3 ビス(4,ーヒドロキシー 3,一 t ブチルフエ-ル)酪酸〕グリコールエステル、トリフエノール、 2, 2,ーェチリデ ンビス(4, 6—ジ一 t—ブチノレフエノーノレ)、 N, N,一ビス〔3— (3, 5—ジ一 t—ブチノレ 4ーヒドロキシフエ-ル)プロピオ-ル〕ヒドラジン、 2, 2,ーォキサミドビス〔ェチルー 3— (3, 5 ジ— t—ブチル—4 ヒドロキシフエ-ル)プロピオネート〕、 1, 1, 3 トリ ス(3,, 5,一ジ一 t—ブチル 4,一ヒドロキシベンジル) S トリァジン一 2, 4, 6 (1 H, 3H, 5H)—トリオン、 1, 3, 5 トリス(4— t—ブチル 3 ヒドロキシ一 2, 6 ジ メチルベンジル)イソシァヌレート、 3, 5—ジ一 t—ブチル 4—ヒドロキシヒドロシンナ ミックァヒドトリエステルウイズ一 1, 3, 5 トリス(2 ヒドロキシェチル) S トリァジン —2, 4, 6 (1H, 3H, 5H)、N, N—へキサメチレンビス(3, 5 ジ一 t—ブチノレ一 4 —ヒドロキシ一ヒドロシンナアミド)、 3, 9 ビス〔2— {3— (3— t—ブチル 4 ヒドロ キシ 5 メチルフエ-ル)プロピオ-ルォキシ} 1, 1ージメチルェチル〕—2, 4, 8
, 10—テトラオキサスピロ〔5. 5〕ゥンデカンなどを挙げることができる。
[0064] 本発明において配合することができる硫黄系酸ィ匕防止剤としては、ジラウリル 3, 3,一チォジプロピオン酸エステル、ジミリスチルー 3, 3,一チォジゥロピオン酸エステ ル、ジステアリル—3, 3,一チォジプロピオン酸エステル、ラウリルステアリル—3, 3, チォジプロピオン酸エステル、ジラウリルチォジプロピオネート、ジォクタデシルサ ルファイド、ペンタエリストリール—テトラ(j8—ラウリル—チォプロピオネート)エステル などを挙げることができる。
[0065] 本発明にお 、て配合することができる燐系酸ィ匕防止剤としては、トリス (ミックスド、モ ノ及びジノリルフエ-ル)フォスファイト、トリス(2, 3 ジ一 t—ブチルフエ-ル)フォス ファイト、 4, 4,—ブチリデン—ビス(3—メチル—6— t—ブチルフエ-ル―ジ—トリデ シル)フォスファイト、 1 , 1, 3 トリス(2—メチル 4 ジ一トリデシルホスファイト一 5 —t ブチルフエ-ル)ブタン、トリス(2, 4 ジ— t—ブチルフエ-ル)フォスファイト、 ビス(2, 4 ジ一 t ブチルフエ-ル)ペンタエリスリトール一ジ一フォスファイト、テトラ キス(2, 4 ジ一 t—ブチルフエ-ル) 4, 4'—ビフエ-レンフォスファナイト、ビス(2 , 6—ジ— t ブチル— 4—メチルフエニル)ペンタエリストール—ジ—フォスファイト、 テトラキス(2, 4 ジー t ブチルフエ-ル) 4, 4'ービフエ-レンジホスフォナイト、トリ フエ-ルホスフアイト、ジフエ-ルデシルホスファイト、トリデシルホスフアイト、トリオクチ ルホスフアイト、トリドデシルホスフアイト、トリオクタデシルフォスファイト、トリノ-ルフエ -ルホスファイト、トリドデシルトリチォホスファイトなどを挙げることができる。
[0066] 本発明において配合することができるアミン系酸ィ匕防止剤としては、 N, N ジフエ -ルエチレンジァミン、 N, N ジフエニルァセトアミジン、 N, N ジフエ-ルフルムァ ミジン、 N—フエニノレビペリジン、ジベンジルエチレンジァミン、トリエタノーノレアミン、フ エノチアジン、 N, N'ージ sec ブチルー p—フエ二レンジァミン、 4, 4'ーテトラメ チルージァミノジフエ二ルメタン、 P, P'ージォクチルージフエニルァミン、 N, N'—ビ ス(1 , 4 ジメチル一ペンチル) p フエ-レンジァミン、フエニル一 a—ナフチル ァミン、フエ-ルー β—ナフチルァミン、 4, 4,—ビス(4— α , a—ジメチルーベンジ ル)ジフヱ-ルァミンなどのアミン類及びその誘導体ゃァミンとアルデヒドの反応生成 物、ァミンとケトンの反応生成物力も挙げることができる。
[0067] 本発明において配合することができるヒンダードアミン系光安定剤としては、琥珀酸 ジメチルー 1一(2 ヒドロキシェチル)ー4ーヒドロキシ 2, 2, 6, 6—テトラメチルピ ペリジンとの重縮合物、ポリ〔〔6—(l, 1, 3, 3—テトラブチル)イミノー 1, 3, 5 トリア ジン 2, 4 ジィル〕へキサメチレン〔(2, 2, 6, 6—テトラメチルー 4ーピペリジル)ィ ミル〕〕、 2— n—ブチルマロン酸のビス(1, 2, 2, 6, 6 ペンタメチルー 4ーピベリジ ル)エステル、テトラキス(2, 2, 6, 6—テトラメチル— 4 ピペリジル)—1, 2, 3, 4— ブタンテトラカルボキシレート、ビス(2, 2, 6, 6—テトラメチルー 4ーピペリジル)セバ ケート、 N, Ν'—ビス(2, 2, 6, 6—テトラメチル一 4 ピペリジル)へキサメチレンジァ ミンと 1, 2 ジブロモェタンとの重縮合物、ポリ〔(Ν, Ν,一ビス(2, 2, 6, 6—テトラメ チルー 4ーピペリジル)へキサメチレンジァミン)一(4一モノホリノ一 1, 3, 5 トリアジ ン一 2, 6 ジィル)一ビス(3, 3, 5, 5—テトラミチルピぺラジノン)〕、トリス(2, 2, 6, 6—テトラメチルー 4ーピペリジル)ードデシルー 1, 2, 3, 4 ブタンテトラカルボキシ レート、トリス(1, 2, 2, 6, 6 ペンタメチル— 4 ピペリジル)—ドデシル— 1, 2, 3, 4 ブタンテトラカルボキシレート、ビス(1 , 2, 2, 6, 6 ペンタメチルー 4ーピベリジ ル)セバケート、 1, 6, 11ートリス〔{4, 6 ビス(Ν ブチル Ν— (1, 2, 2, 6, 6— ペンタメチルピペリジン一 4—ィル)ァミノ一 1, 3, 5 トリァジン一 2—ィル)アミノ}ゥン デカン、 1ー〔2—(3, 5 ジ tーブチルー 4ーヒドロキシフエ-ル)プロピオ-ルォキ シ〕— 2, 2, 6, 6—テ卜ロメチルピぺジジン、 8 ベンジル— 7, 7, 9, 9—テ卜ラメチル —3—ォクチル一 1, 3, 8 トリァザスピロ〔4, 5〕ゥンデカン一 2, 4 ジオン、 4 ベ ンゾィルォキシ 2, 2, 6, 6—テトラメチルピペリジン、 N, N'—ビス(3 ァミノプロピ ル)エチレンジァミン一 2, 4 ビス〔N—ブチルー N— (1, 2, 2, 6, 6 ペンタメチル —4 ピベリジノレ)ァミノ〕一 6 クロ口一 1, 3, 5 トリアジン縮合物などを挙げることが できる。
本発明にお 、て配合することができるベンゾフヱノン系、ベンゾトリアゾール系、トリ ァゾール系、ニッケル系、サリチル系光安定剤としては、 2, 2'ージヒドロキシー4ーメ トキシベンゾフエノン、 2 ヒドロキシー4 n—オタトキシベンゾフエノン、 p—t ブチ ルフエ-ルサリシレート、 2, 4ージー t—ブチルフエ-ルー 3, 5 ジ—tーブチルー 4 ーヒドロキシベンゾエート、 2— (2'ーヒドロキシ 5 ' メチルフエ-ル)ベンゾトリァゾ ール、 2— (2,—ヒドロキシ— 3,, 5,—ジ— t—アミルーフエ-ル)ベンゾトリァゾール、 2—〔2,一ヒドロキシ一 3,、 5,一ビス( α , a—ジメチルベンジルフエ-ル)ベンゾトリ ァゾール、 2— (2,一ヒドロキシ一 3,一 t—ブチル 5,一メチルフエ-ル) 5 クロ口 ベンァゾトリァゾール、 2- (2,一ヒドロキシ一 3,, 5,一ジ一 t—ブチルフエ-ル) 5 クロ口べンゾチリァゾール、 2, 5 ビス一〔5 ' t—ブチルベンゾキサゾリルー(2)〕 —チォフェン、ビス(3, 5—ジ— t—ブチル—4—ヒドロキシベンジル燐酸モノェチル エステル)ニッケル塩、 2 エトキシ—5—t—ブチルー 2,一ェチルォキサリックァシッ ドービスーァニリド 85〜90%と 2 エトキシ—5—t—ブチルー 2,ーェチルー 4,—t —ブチルォキサリックアシッド—ビス—ァ -リド 10〜15%の混合物、 2—〔2 ヒドロキ シ— 3, 5 ビス( α , a -ジメチルベンジル)フエ-ル〕 2H ベンゾトリァゾール、 2 エトキシー2,一ェチルォキサザリックアシッドビスァ-リド、 2—〔2,ーヒドロォキシ 5,一メチル 3,一(3,,, 4" , 5 " , 6,,一テトラヒドロフタルイミド一メチル)フエニル 〕ベンゾトリァゾール、ビス(5 ベンゾィル 4 ヒドロキシ一 2—メトキシフエ-ル)メタ ン、 2— (2,一ヒドロキシ一 5,一t—ォクチルフエ-ル)ベンゾトリァゾール、 2 ヒドロキ シ一 4— i 才クトキシベンゾフエノン、 2 ヒドロキシ一 4 ドデシルォキシベンゾフエ ノン、 2 ヒドロキシー4ーォクタデシルォキシベンゾフエノン、サリチル酸フエ-ルなど の光安定剤を挙げることができる。
本発明において配合することができる滑剤として炭化水素系、脂肪酸系、脂肪酸ァ ミド系、エステル系、アルコール系、金属石鹼系、天然ワックス系、シリコーン系、フッ 素系などの化合物が挙げられる。具体的には、流動パラフィン、合成パラフィン、合 成硬質パラフィン、合成イソパラフィン石油炭化水素、塩素化パラフィン、パラフィンヮ ッタス、マイクロワックス、低重合ポリエチレン、フルォロカルボン油、炭素数 12以上の ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ァラキジン酸、ベへニン酸など の脂肪酸化合物、へキシルアミド、ォクチルアミド、ステアリルアミド、パルミチルアミド 、ォレイルアミド、エルシルアミド、エチレンビスステアリルアミド、ラウリルアミド、ベへ -ルアミド、メチレンビスステアリルアミド、リシノールアミドなどの炭素数 3〜30の飽和 或いは不飽和脂肪族アミド及びその誘導体、脂肪酸の低級アルコールエステル、脂 肪酸の多価アルコールエステル、脂肪酸のポリダリコールエステル、脂肪酸の脂肪ァ ルコールエステルであるブチルステアレート、硬化ヒマシ油、エチレングリコールモノ ステアレートなど、セチルアルコール、ステアリルアルコール、エチレングリコール、分 子量 200ないし 10000以上のポリエチレングリコール、ポリグリセロール、カルナゥバ ロウ、カンデリラロウ、モンタンロウ、ジメチルシリコーン、シリコンガム、四フッ化工チレ ンなどの滑剤が挙げられる。また、直鎖飽和脂肪酸、側鎖酸、シノール酸を有する化 合物からなる金属塩で金属が(Li, Mg, Ca, Sr, Ba, Zn, Cd, Al, Sn, Pb)から選 ばれた金属石酸ち挙げることができる。
[0070] 本発明にお 、て配合することができる充填剤としては、酸化マグネシウム、酸ィ匕ァ ルミ二ゥム、酸化珪素、酸ィ匕カルシウム、酸ィ匕チタン (ルチル型、アナターゼ型)、酸 化クロム (三価)、酸化鉄、酸化亜鉛、シリカ、珪藻土、アルミナ繊維、酸化アンチモン 、ノ リウムフェライト、ストロンチウムフェライト、酸化ベリリウム、軽石、軽石バルーンな どの酸化物や水酸化マウネシゥム、水酸ィ匕アルミニウム、塩基性炭酸マグネシウムな どの塩基性物又は水酸ィ匕物又は、炭酸マグネシウム、炭酸カルシゥゥム、炭酸バリゥ ム、炭酸アンモ-ゥム、亜硫酸カルシウム、ドロマイト、ドーソナイトなどの炭酸塩又は 、硫酸カルシウム、硫酸バリウム、硫酸アンモ-ゥム、亜硫酸カルシウム、塩基性硫酸 マグネシウムなどの(亜)硫酸塩又は、珪酸ナトリウム、珪酸マグネシウム、珪酸アルミ ユウム、珪酸カリウム、珪酸カルシウム、タルク、クレー、マイ力、アスベスト、ガラス繊 維、モンモリナイト、ガラスバルーン、ガラスビーズ、ベントナイトなどの珪酸塩又は、力 ォリン (陶土)、パーライト、鉄粉、銅粉、鉛粉、アルミニウム粉、タングステン粉、硫ィ匕 モリブデン、カーボンブラック、ボロン繊維、炭化珪素繊維、黄銅繊維、チタン酸カリ ゥム、チタン酸ジルコン酸鉛、硼酸亜鉛、硼酸アルミニウム、メタ硼酸バリウム、硼酸力 ルシゥム、硼酸ナトリウムなどを挙げることができる。
[0071] 本発明で配合することができる難燃助剤としては、三酸ィ匕アンチモン、四酸化アン チモン、五酸化アンチモン、ピロアンチモン酸ソーダ、二酸化錫、メタ硼酸亜鉛、水酸 化アルミニウム、水酸化マグネシウム、酸ィ匕ジルコニウム、酸化モリブデン、赤燐系化 合物、ポリリン酸アンモ-ゥム塩、メラミンシァヌレート、四フッ化工チレンなどが挙げら れる。
[0072] 本発明で配合することができるトリアジン基を有する化合物及び Z又はその誘導体 としては、メラミン、メラミンシァヌレート、燐酸メラメン、スルファミン酸グァ-ジンなどが 挙げられる。
[0073] 本発明で配合することができる燐ィ匕合物の無機系燐ィ匕合物としては、赤燐系化合 物、ポリリン酸アンモ-ゥム塩などが挙げられる。赤燐系化合物としては、赤燐に榭脂 をコートしたもの、アルミニウムとの複合ィ匕合物などが挙げられる。有機系燐化合物と しては、燐酸エステル、燐酸メラミンなどが挙げられる。燐酸エステルとしては、ホスフ エート類、ホスホネート類、ホスフィネート類のトリメチルホスフェート、トリェチルフォス フェート、トリブチルフォスフェート、トリオクチルホスフェート、トリオクチルフォスフィー ト、トリブトキシェチルフォスフェート、ォクチルジフエ-ルフォスフェート、トリクレジル ホスフェート、クレジルジフエ-ルフォスフェート、トリフエ-ルフォスフェート、トリキシレ -ルフォスフェート、トリス 'イソプロピルフエ-ルフォスフェート、ジェチル一 N, N—ビ ス(2—ヒドロキシェチル)アミノメチルホスホネート、ビス(1, 3—フエ-レンジフエ-ル )ホスフェート、芳香族縮合燐酸エステルの 1, 3—〔ビス(2, 6—ジメチルフエノキシ) ホスフエ-ルォキシ〕ベンゼン、 1, 4—〔ビス(2, 6—ジメチルフエノキシ)ホスフエ-ル ォキシ〕ベンゼンなどが耐加水分解や熱安定性、難燃性から好ま 、。
[0074] これらの添加物の配合方法としては、加熱ロール、押出機、バンバリミキサーなどの 混練機を用いて配合することができる。また、熱可塑性ポリエステルエラストマー榭脂 組成物を製造する際のエステル交換反応の前又は重縮合反応前のオリゴマー中に 、添加及び混合することができる。
[0075] 本発明の熱可塑性ポリエステルエラストマ一組成物は、溶融物から通常の成形技 術、例えば、射出成形、フラットフィルム押出、押出ブロー成形、共押出により成形さ れる。
[0076] 上記した熱可塑性ポリエステルエラストマ一の製造方法について、以下に詳しく説 明する。
本発明の熱可塑性ポリエステルエラストマ一の製造方法においては、予め鎖延長 剤で高分子量ィ匕してなる脂肪族ポリカーボネートジオールを用いることが重要である 。すなわち、原料として用いる脂肪族ポリカーボネートジオールをブロック化反応に供 給する前に、予め鎖延長剤で高分子量化して脂肪族ポリカーボネートジオールの分 子量を最適化範囲になるように調整して力 ブロック化反応に供給してブロック化反 応を行うのが好ましい。
[0077] 原料であるポリカーボネートジオールの分子量が大き!/、程ブロック性やブロック性 保持性が向上する。ただし分子量が高すぎるとハードセグメントとソフトセグメントの相 溶性が低下するので好ましくない。従って、該ポリカーボネートジオールの分子量は 数平均分子量で 5000〜80000力 S好まし <、 7000〜70000力 Sより好まし <、 8000〜 60000力 Sさらに好ましい。ポリカーボネートジオールの分子量が 5000未満ではブロ ック性やブロック性保持性が悪ィ匕するので好ましくない。逆に、ポリカーボネートジォ ールの分子量が 80000を超えた場合は、ハードセグメントとソフトセグメントの相溶性 が低下し、得られ熱可塑性ポリエステルエラストマ一の強伸度等の機械的特性が劣 るとともに、該特性の変動が大きくなることがあるので好ましくない。
[0078] 例えば、市販されている脂肪族ポリカーボネートジオールの分子量は 3000以下で ある。従って、該巿販されている低分子量の脂肪族ポリカーボネートジオールを用い て、上記の好ま 、範囲の脂肪族ポリカーボネートジオールを得るのが好ま 、実施 態様である。
[0079] 上記の鎖延長剤は、脂肪族ポリカーボネートジオールの末端ヒドロキシル基と反応 性を有する官能基を一分子中に 2個以上を含んだ多官能性の活性ィ匕合物であれば 限定されない。官能基数は 2個以上であれば限定されないが、 2官能性のものが好ま しい。例えば、ジフエニルカーボネート、ジイソシァネートおよびジカルボン酸の酸無 水物等が挙げられる。少量であれば 3官能性以上の多官能性ィ匕合物を用いてもよい 。ジフエ-ノレカーボネートに替えて、ジメチノレカーボネート、ジェチノレカーボネート、 ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジメチ ルカーボネートなどのカーボネート化合物を用いてもよい。また、エチレンカーボネー ト等の環状カーボネートやジチォカーボネートイ匕合物であってもよい。また、ジフエ- ルカーボネートのフエノキシ基に替えて、イミダゾールゃラタタム等の含窒素化合物 残基のカルボ-ル化合物であってもよ 、。
[0080] 上記方法における高分子量化する前の低分子量脂肪族ポリカーボネートジオール は市販品を利用するのが好ましいが限定されない。例えば、脂肪族ポリカーボネート ジオールとして特殊な共重合体を必要とする場合等においては特別に調製したもの を用いてもよい。
[0081] 上記方法において、得られる脂肪族ポリカーボネートジオールの分子量の調整は、 出発原料である脂肪族ポリカーボネートジオールの分子量および該脂肪族ポリカー ボネートジオールと鎖延長剤との仕込み比を変えることにより行うことができる。また、 反応時間によっても調整できる。得られる脂肪族ポリカーボネートジオールの分子量 は、出発原料の分子量が高い程、また、鎖延長剤の仕込み比が小さくなる程高くなる 。 目標とする分子量に合わせて適宜設定すればよい。
[0082] 上記方法で実施する場合の反応方法は、最終分子量より分子量の低い分子量の 脂肪族ポリカーボネートジオールと鎖延長剤とを反応器中で混合し行えば、反応温 度や反応時間、攪拌条件等の反応条件は限定されない。例えば、鎖延長剤としてジ フエ二ルカーボネートを用いた場合は、以下の方法で実施するのが好ましい。
[0083] 例えば、市販されている 1, 6—へキサンジオールからなるポリカーボネートジォー ル(分子量 2000)とジフエ-ルカーボネートとを常圧下〜加圧下において仕込み、加 熱し、反応により生じるフエノールを除去しながら、溶融状態で反応を進行させること で得ることが出来る。フエノールを除去する方法は限定されない。例えば、真空ボン プゃェジェクタ一などで減圧にする方法や不活性ガスを流通させる方法などが挙げ られる。
上記反応におけるポリカーボネートジオールとジフエ-ルカーボネートとの仕込モ ル比 [ジフエ-ルカーボネート Z1, 6—へキサンジオールからなるポリカーボネートジ 才ーノレ(分子量 2000)]は 0. 5〜1. 5の範囲内にすること力 S好ましく、 0. 6〜1. 4の 範囲内にすることがより好ましい。この範囲外であると、所望の分子量を確保すること が困難である。また、上記の原料の仕込みや反応時には、反応缶内を不活性ガスに より置換を行い、酸素を除去しておくことが好ましい。残存酸素量が多くなると、反応 生成物が着色する可能性があり好ましくない。上記原料の仕込み時の反応缶内温度 は 100〜130°Cが好ましい。原料を仕込んだ後に攪拌しながら 150〜250°Cに昇温 させて反応を進める。反応温度としては、 170〜240°Cがより好ましぐ 180〜230°C 力 Sさらに好ましい。温度が 150°Cより低い場合には反応速度が非常に遅ぐ所望の分 子量に到達しな力つたり、反応時間が非常に長くなつてしまい製造コストが高くなる。 逆に、 250°Cより高くなると熱劣化による分解反応が増大し、反応生成物の着色が見 られるため好ましくない。所定反応温度に到達したら、反応缶内の圧力を常圧から 3 0〜 120分かけて、徐々に減圧を行い、 530Pa以下として、反応で脱離したフエノー ルを除去するのが好ましい。該圧力は、 400Pa以下力より好ましく、 270Pa以下がさ らに好ましい。 530Paより高い場合には反応の進行により脱離するフエノールの除去 速度が非常に遅くなり、所望の分子量に到達しな力つたり、反応時間が非常に長くな つてしまい製造コストが高くなる。所定の真空度に到達後の反応に要する時間は短 いほど好ましい。 240分以下が好ましぐ 180分以下がより好ましぐ 120分以下がさ らに好ましい。目標分子量に到達した時点で攪拌を停止させ、窒素ガスで常圧に戻 し、シート状に取り出し、高分子量ィ匕されたポリカーボネートジオールを得る。ポリ力 ーボネートジオールの分子量は上記反応缶の撹拌動力を尺度として制御するのが 好ましい。
[0084] 本発明においては、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成 されたポリエステルと上記高分子量ィ匕してなる脂肪族ポリカーボネートジオールを溶 融状態で反応させて製造することが好ましい。該要件を満たせば、製造条件等は限 定されないが、例えば、以下の方法で実施するのが好ましい。
[0085] 例えば、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエ ステノレとして、ポリブチレンテレフタレートを用いて該ポリブチレンテレフタレートと高 分子量化された 1, 6—へキサンジオールからなるポリカーボネートジオールとを所定 量を一括して反応缶に仕込み、不活性ガスで反応缶内の酸素を除去した後、反応 缶内の圧力を減圧にする。該反応缶内の圧力は 400Pa以下が好ましい。 270Pa以 下がより好ましぐ 140Pa以下がさらに好ましい。減圧度を保ったまま、攪拌させ、徐 々に昇温させていき、反応物を溶解させながら、ポリブチレンテレフタレートの融点に 対して 5〜40°C高い温度で反応を進行させる。該温度差は、 7〜35°C高い温度がよ り好ましぐ 10〜30°C高い温度がさらに好ましい。該温度差が 5°Cより低いと、ポリブ チレンテレフタレートが固化し、均一混合ができないため、得られる熱可塑性ポリエス テル系エラストマ一の品質にバラツキが出てしまう可能性がある。また、 40°Cよりも高 い温度であると、反応の進行が早すぎるため、ランダム化され、耐熱性に乏しい熱可 塑性ポリエステル系エラストマ一ができてしまう。反応時間としては、 360分より短いこ と力 S好ましく、 300分より短いことがより好ましぐ 240分より短いことがさらに好ましい。 反応時間が長くなりすぎると、生産サイクルが伸び、製造コストが上がる要因となる。 それぞれの原料が均一になった時点で反応を終了させ、攪拌を停止し、反応缶下部 の取り出し口より溶融した熱可塑性ポリエステル系エラストマ一を取り出し、冷却固化 させて、ストランドカッターなどのチップカッターで熱可塑性ポリエステル系エラストマ 一のチップを得る。
[0086] 本発明にお 、ては、上記熱可塑性ポリエステルエラストマ一を、芳香族ジカルボン 酸と脂肪族又は脂環族ジオールとから構成されたとなるポリエステル (以下、単にポリ エステルと称することもある)のヒドロキシル末端基濃度に適した分子量の脂肪族ポリ カーボネートジオールを溶融状態で反応させて製造することが重要である。すなわち 、ヒドロキシル末端基濃度が O〜55eq/tonのポリエステルと下記分子量範囲の脂肪 族ポリカーボネートジオールを溶融状態で反応させて製造することが好ましい。
[0087] 上記製造方法における脂肪族ポリカーボネートの好ま 、分子量は以下の範囲を 満たすことが好ましい。すなわち、脂肪族ポリカーボネートジオールの分子量の下限 をポリエステルのヒドロキシル末端基濃度が Oeq/tonの時が 3000で、ハードセグメ ントポリエステルのヒドロキシル末端基濃度が 55eqZtonの時が 5000である点を直 線で結んだ線上の分子量以上とし、かつ該分子量の上限をポリエステルのヒドロキシ ル末端基濃度が Oeq/tonの時が 30000で、ポリエステルのヒドロキシル末端基濃度 が 55eqZtonの時が 70000である点を直線で結んだ線上の分子量以下とした時に 、 2本の直線で挟まれた範囲の分子量とすることが好ましい。下限はポリエステルのヒ ドロキシル末端基濃度力 SOeqZtonの時力 000で、ハードセグメントポリエステルのヒ ドロキシル末端基濃度が 55eqZtonの時が 6000である点を直線で結んだ線上の分 子量以上がより好ましい。一方、上限はポリエステルのヒドロキシル末端基濃度が Oeq Ztonの時が 28000で、ポリエステルのヒドロキシル末端基濃度が 55eqZtonの時 力 65000である点を直線で結んだ線上の分子量以下がより好ましい。
[0088] 上記上限範囲を超えた場合は、ハードセグメントとソフトセグメントの相溶性が低下 し、得られる熱可塑性ポリエステルエラストマ一の強伸度等の機械的特性が低下する とともに、該特性の変動が大きくなるので好ましくない。逆に、下限未満の範囲ではブ ロック性やブロック性保持性が悪ィ匕するので好ましくない。
[0089] 上記のポリエステルのヒドロキシル末端基濃度と脂肪族ポリカーボネートジオール の分子量の好ま U、分子量の関係を図 1に示す。 [0090] 上記ポリエステルは、前述した組成や分子量を有し、かつヒドロキシル末端基濃度 力^〜 55eqZtonであればその組成や製造方法は限定されない。また、ヒドロキシル 末端基濃度の調整方法も限定されない。例えば、該ポリエステルの製造条件の最適 化で行うのが好ましい。また、定法で得られたポリエステルの加水分解や熱分解等の 分解方法や酸無水物や環状エーテル等による末端基変性法等で行う方法が挙げら れる。また、加グリコールあるいは加ジカルボン酸分解で行ってもよい。
[0091] 本発明における脂肪族ポリカーボネートジオール分子量の調整方法は限定されな いが、例えば、市販されている脂肪族ポリカーボネートジオールの分子量は、本発明 の好ま 、分子量範囲よりも低 ヽ範囲であるので、該巿販されて!/ヽる低分子量の脂 肪族ポリカーボネートジオールを予め鎖延長剤で高分子量化して分子量を調整する 方法が好ましい。すなわち、予め鎖延長剤で高分子量ィ匕して脂肪族ポリカーボネー トジオールの分子量を上記最適化範囲になるように調整して力 ブロック化反応に供 給して反応を行うのが好まし ヽ。
[0092] 上記の市販されている低分子量品を用いる方法は、任意の分子量の脂肪族ポリ力 ーボネートジオールを容易に製造することができ、かつ該製造は本発明の熱可塑性 ポリエステルエラストマ一の製造装置を用いてインプラントで行うこともできるので、そ の経済的効果は大きい。また、上記方法は、鎖延長剤と脂肪族ポリカーボネートジォ ールの仕込み比を変えると!、う単純な方法で、市販品の低分子量の脂肪族ポリカー ボネートジオールを用いて嘱望される任意の分子量に対応できると 、う利点を有する
[0093] 上記の鎖延長剤は、脂肪族ポリカーボネートジオールの末端ヒドロキシル基と反応 性を有する官能基を一分子中に 2個以上を含んだ多官能性の活性ィ匕合物であれば 限定されない。官能基数は 2個以上であれば限定されないが、 2官能性のものが好ま しい。例えば、ジフエニルカーボネート、ジイソシァネートおよびジカルボン酸の酸無 水物等が挙げられる。少量であれば 3官能性以上の多官能性ィ匕合物を用いてもよい 。ジフエ-ノレカーボネートに替えて、ジメチノレカーボネート、ジェチノレカーボネート、 ジプロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジメチ ルカーボネートなどのカーボネート化合物を用いてもよい。また、エチレンカーボネー ト等の環状カーボネートやジチォカーボネートイ匕合物であってもよい。また、ジフエ- ルカーボネートのフエノキシ基に替えて、イミダゾールゃラタタム等の含窒素化合物 残基のカルボ-ル化合物であってもよ 、。
[0094] 上記方法における高分子量化する前の低分子量脂肪族ポリカーボネートジオール は市販品を利用するのが好ましいが限定されない。例えば、脂肪族ポリカーボネート ジオールとして特殊な共重合体を必要とする場合等においては特別に調製したもの を用いてもよい。
[0095] 上記方法において、得られる脂肪族ポリカーボネートジオールの分子量の調整は、 出発原料である脂肪族ポリカーボネートジオールの分子量および該脂肪族ポリカー ボネートジオールと鎖延長剤との仕込み比を変えることにより行うことができる。また、 反応時間によっても調整できる。得られる脂肪族ポリカーボネートジオールの分子量 は、出発原料の分子量が高い程、また、鎖延長剤の仕込み比が小さくなる程高くなる 。 目標とする分子量に合わせて適宜設定すればよい。
[0096] 上記方法で実施する場合の反応方法は、最終分子量より分子量の低い分子量の 脂肪族ポリカーボネートジオールと鎖延長剤とを反応器中で混合し行えば、反応温 度や反応時間、攪拌条件等の反応条件は限定されないが、例えば、該分子量調整 を 2段階以上の多段階に分割して行う方法が推奨される。すなわち、所定量の仕込 み比で所定時間反応させた後に、得られた脂肪族ポリカーボネートジオールの分子 量を測定して、該分子量が目的の分子量より低い場合は、鎖延長剤を追加添加し、 逆に、分子量が高すぎる時は原料の脂肪族ポリカーボネートジオールを追加添加し てさらに反応を続行することにより分子量調整するのが好ましい。該方法を繰り返す ことにより分子量の調整精度を高めることができる。
[0097] 上記脂肪族ポリカーボネートジオールは上記分子量範囲を満たせば、その末端基 は、ヒドロキシル基であっても鎖延長剤残基の 、ずれでも構わな 、。
実施例
[0098] 以下に実施例及び比較例を用いて、本発明を具体的に説明するがそれらに限定さ れるものではない。なお、本明細書において各測定は、以下の方法に従って行った (1)熱可塑性ポリエステルエラストマ一の還元粘度
熱可塑性ポリエステルエラストマ一 0. 05gを 25mLの混合溶媒(フエノール Zテトラ クロロェタン =60Z40)に溶かし、ォストワルド粘度計を用いて 30°Cで測定した。
[0099] (2)熱可塑性ポリエステルエラストマ一の融点(Tm)
50°Cで 15時間減圧乾燥した熱可塑性ポリエステルエラストマ一を示差走査熱量計 DSC— 50 (島津製作所製)を用いて室温力 20°CZ分で昇温し測定し、融解による 吸熱のピーク温度を融点とした。
なお、測定試料は、アルミニウム製パン (TA Instruments社製、品番 900793. 9 01)に 10mg計量し、アルミニウム製蓋 (TA Instruments社製、品番 900794. 90 1)で密封状態にして、アルゴン雰囲気で測定した。
[0100] (3)熱可塑性ポリエステルエラストマ一及びその組成物の切断時の引張強度及び伸 び
熱可塑性ポリエステルエラストマ一及びその組成物の切断時の引張強度及び伸び は、 JIS K 6251に準拠して測定した。テストピースは、射出成形機(山城精機社製 、 model— SAV)を用いて、シリンダー温度(Tm+ 20°C)、金型温度 30°Cで、 100 mm X 100mm X 2mmの平板に射出成形した後、ダンベル状 3号形の試験片を平 板から打ち抜いた。
[0101] (4)熱可塑性ポリエステルエラストマ一及びその組成物の曲げ弾性率
熱可塑性ポリエステルエラストマ一及びその組成物の曲げ弾性率は、 ASTM D7 90に準拠して測定した。
[0102] (5)耐熱老化性 (耐熱老化テスト後の切断時伸び保持率)
<試験片の作製 >
100°Cで 8時間減圧乾燥した実施例 1〜9、 la〜7a、 lb〜13b、比較例 1〜5、 la 〜2a、及び lb〜10bで得られた熱可塑性ポリエステルエラストマ一のペレット 100質 量部に多官能エポキシ化合物としてトリグリシジル—トリス(2—ノ、イド口キシェチル)ィ ソシァヌレートを 0. 35質量部、触媒として 2 メチル -4-ェチルイミダゾールを 0. 2質 量部、安定剤として(ペンタエリストールテトラキス [3— 3, 5—ジ ter—ブチルー 4 ヒドロキシフエ-ルポ口ピオネート]を 0. 6部、 N, N へキサン一 1, 6 ジィルビス [3 , 5—ジ— ter—ブチル—4—ヒドロキシフエ-ルプロピオンアミド] 0. 6部)計 1. 2質量 部をドラムタンブラ一に入れ、室温にて 30分間混合した。該混合物をベント孔付 40 mm φ同方向 2軸押出機を用いて (Tm+ 20°C)の温度で溶融混練してストランド状 に押出し、ストランドを水冷しながら切断してチップィ匕した。該チップを 100°Cにて減 圧乾燥して熱可塑性ポリエステルエラストマ一組成物のチップを得た。
上記熱可塑性ポリエステルエラストマ一を射出成形機(山城精機社製、 model— S AV)を用いて、シリンダー温度(Tm+ 20°C)、金型温度 30°Cで、 100mm X 100m m X 2mmの平板に射出成形した後、該平板よりダンベル状 3号形の試験片を打ち 抜いた。
実施例 10〜22、及び比較例 6〜8でコンパウンドして得られた熱可塑性ポリエステ ルエラストマー組成物のペレットを 100°Cで 8時間減圧乾燥後、射出成形機(山城精 機社製、 model— SAV)を用いて、シリンダー温度 (Tm+ 20°C)、金型温度 30°Cで 、 100mm X 100mm X 2mmの平板に射出成形した後、該平板よりダンベル状 3号 形のテストピースを平板力も打ち抜 、た。
<乾熱処理、切断時伸び保持率評価 >
上記方法で得た試験片をギヤ式熱風乾燥機中で 180°C、 1000時間処理した後、 J IS K 6251に準拠して切断時伸びを測定した。乾熱処理していない試験片につい ても同様の方法で切断時伸びを測定し、乾熱処理後の切断時伸びの保持率を計算 した。
[0103] (6)耐水老化性 (耐水老化テスト後の切断時伸び保持率)
<試験片の作製 >
上記の耐熱老化性測定方法で記述したと同じ方法で作製した。
<沸水処理、切断時伸び保持率評価 >
試験片を 100°Cの沸水中で、 2週間処理した後、 JIS K 6251に準拠して切断時 伸びを測定した。沸水中で処理して 、な 、試験片につ ヽても同様の方法で切断時 伸びを測定し、沸水処理後の切断時伸びの保持率を計算した。
[0104] (7)繰り返し引張試験残留歪
<テストピースの作製 > 実施例 10〜22、及び比較例 6〜8でコンパウンドして得られた熱可塑性ポリエステ ルエラストマー組成物ペレットを 100°Cで 8時間減圧乾燥後、射出成形機(山城精機 社製、 model— SAV)を用いて、シリンダー温度 (Tm+ 20°C)、金型温度 30°Cで、 1 00mm X 100mm X 2mmの平板に射出成形した後、該平板から JIS— 1号ダンベル 片を打ち抜いた。
<残留歪評価 >
上言 6JIS 1号ダンベル片を標線間 40mmでセットし、引張速度 = 50mmZ分で歪 = 30% (チャック間距離 =65mm)まで伸張した後、戻り速度 = 50mmZ分で戻した 。この戻りの際、引張応力 = 0MPaとなる歪量 (%)を残留歪とした。
[0105] (8)ハードセグメント、ソフトセグメントの平均連鎖長及びブロック性(ポリエステルのグ リコール成分がブタンジオールで脂肪族ポリカーボネートジオール中のグリコールが 炭素数 5〜 12の脂肪族ジオールの場合)
く NMR測定 >
装置 : フーリエ変換核磁気共鳴装置(BRUKER製 AVANCE500) 測定溶媒 : 重水素化クロ口ホルム
試料溶液濃度 : 3〜5vol%
共鳴周波数 : 500. 13MHz
検出パルスのフリップ角: 45°
データ取り込み時間: 4秒
遅延時間: 1秒
積算回数 : 50〜200回
測定温度 : 室温
[0106] <計算方法 >
芳香族ジカルボン酸 ブタンジオール 芳香族ジカルボン酸連鎖のブタンジォー ルの、酸素に隣接するメチレンのピークの H— NMR積分値 (単位は任意)を Aとする 芳香族ジカルボン酸 ブタンジオール 炭酸連鎖のブタンジオールの、炭酸に近 V、方の酸素に隣接するメチレンのピークの H - NMR積分値 (単位は任意)を Cとす る。
芳香族ジカルボン酸 炭素数 5〜 12の脂肪族ジオール 炭酸連鎖のへキサンジ オールの、芳香族ジカルボン酸に近い方の酸素に隣接するメチレンのピークの H— NMR積分値 (単位は任意)を Bとする。
炭酸 炭素数 5〜 12の脂肪族ジオール 炭酸連鎖の炭素数 5〜 12の脂肪族ジォ ールの、酸素に隣接するメチレンのピークの H— NMR積分値(単位は任意)を Dとす る。
ハードセグメント平均連鎖長 (X)は、
X = ( ( (A/4) + (C/2) ) / ( (B/2) + (C/2) ) ) X 20
ソフトセグメント平均連鎖長 (y)は、
y = ( ( (D/4) + (B/2) ) / ( (B/2) + (C/2) ) ) X 20
ブロック性 (B)は上記方法で求めた X及び yの値より下記(1)式で算出した。 Bの値 力 S小さ 、方がブロック性が高 、。
B= l/x+ l/y (1)
(9)ブロック性保持性
50°Cで 15時間減圧乾燥した熱可塑性ポリエステルエラストマ一を、アルミニウム製 パン (TA Instruments社製、品番 900793. 901)に lOmg計量し、ァノレミニゥム製 蓋 (TA Instruments社製、品番 900794. 901)で密封状態にして、測定試料を 調整した後、示差走査熱量計 DSC— 50 (島津製作所製)を用いて、窒素雰囲気のも と昇温速度 20°CZ分で室温から 300°Cに昇温し、 300°Cで 3分間保持した後に測定 試料パンを取出し、液体窒素中に漬け込み急冷させた。その後、液体窒素からサン プルを取出し、室温で 30分間放置した。測定試料パンを示差走査熱量計にセットし て室温で 30分間放置した後、再び昇温速度 20°CZ分で室温から 300°Cに昇温する 。このサイクルを 3回繰り返した時の一回目の測定で得られる融点 (Tml)と 3回目の 測定で得られる融点 (Tm3)との融点差 (Tml— Tm3)を求め、該融点差をブロック 性保持性とした。該温度差が小さ ヽ程ブロック性保持性に優れて!/ヽる。
上記方法で評価した融点差により、ブロック性保持性を下記基準で判定し表示した © :融点差0〜30で未満
〇:融点差30〜40で未満
:融点差40〜50で未満
X:融点差 50°C以上
[0108] (10)脂肪族ポリカーボネートジオールの分子量
重水素化クロ口ホルム(CDC1 )に脂肪族ポリカーボネートジオールサンプルを溶解
3
させ、上記(8)に記載したと同様の方法で H— NMRを測定することにより末端基を 算出し、下記式にて求めた。
分子量 = 1000000/ ( (末端基量(当量 Zトン) ) /2)
( 11)芳香族ポリエステルの数平均分子量 (Mn)
上記の熱可塑性ポリエステルエラストマ一の還元粘度測定方法と同様の方法で測 定して求めた還元粘度( 7? spZc)の値を用いて下記式に従って算出した。
7? sp/c = l . 019 X 10"4 X Μη°· 8929-0. 0167
[0109] (12)酸価
熱可塑性ポリエステルエラストマー榭脂組成物 0. 5gをべンジルアルコール Ζクロ口 ホルム(50Z50質量比) 100mlに溶解させ、 KOHのエタノール溶液で滴定した。指 示薬はフエノールレッドを用いた。榭脂 lton中の当量 (eqZton)として表した。
[0110] (13)メルトフローレート(略号: MFR、メルトフローインデックスとも言う)
実施例、比較例で得られた熱可塑性ポリエステルエラストマ一組成物のペレットを JI S K7210記載の試験法 (A法)に準拠し (ASTM D1238)、 230。C、 2160gでの メルトフローレート(MFR:gZlO分)を測定した。測定には水分率 0. 1重量%以下の 組成物を用いた。但し、実施例 15、 16、 21で得られた熱可塑性ポリエステルエラスト マー組成物のペレットについては、測定温度 250°Cでメルトフローレートを測定した。 なお、メルトフローレートは、ブロー成形の場合は 2g/10分以下が好ましぐ押出し 成形の場合は 15gZl0分以下が好ましい。
[0111] 〔脂肪族ポリカーボネートジオールの製造方法〕
脂肪族ポリカーボネートジオール (分子量 10000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 8. 6質量部とをそれぞれ仕込み、温度 205°C、 130Paで反応させた。 2時 間後、内容物を冷却し、ポリマーを取り出した。分子量 10000であった。
[0112] 脂肪族ポリカーボネートジオール (分子量 20000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 9. 6質量部とをそれぞれ仕込み、温度 205°C、 130Paで反応させた。 2時 間後、内容物を冷却し、ポリマーを取り出した。分子量は 20000であった。
[0113] 脂肪族共重合ポリカーボネートジオール (分子量 10000)の製造方法:
脂肪族共重合ポリカーボネートジオール (旭化成ケミカルズ社製カーボネートジォ ール T5652、分子量 2000、 1, 6—へキサンジオールと 1, 5—ペンタンジオールと の共重合体、非晶性) 100質量部とジフエ二ルカーボネート 8. 6質量部とをそれぞれ 仕込み、温度 205°C、 130Paで反応させた。 2時間後、内容物を冷却し、ポリマーを 取り出した。分子量は 10000であった。
[0114] 脂肪族ポリカーボネートジオール (分子量 85000)の製造方法
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ)とジフエニルカーボネートと をそれぞれ 100質量部及び 10. 7質量部を仕込み、温度 205°C、 130Paで重合を 進めた。 2時間 45分後、内容物を冷却し、ポリマーを取り出した。分子量は 85000で めつに。
[0115] 脂肪族ポリカーボネートジオール (分子量 12000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 8. 9質量部とをそれぞれ仕込み、温度 205°C、 130Paで反応させた。 2時 間後、内容物を冷却し、ポリマーを取り出した。分子量 12000であった。
[0116] 脂肪族ポリカーボネートジオール (分子量 33000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 10. 0質量部とをそれぞれ仕込み、温度 205°C、 130Paで反応させた。 2 時間後、内容物を冷却し、ポリマーを取り出した。分子量 33000であった。
[0117] 脂肪族ポリカーボネートジオール (分子量 18000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 9. 5質量部とをそれぞれ仕込み、温度 205°C、 130Paで反応させた。 2時 間後、内容物を冷却し、ポリマーを取り出した。分子量 18000であった。
[0118] 以下、本発明の熱可塑性ポリエステルエラストマ一に関する実施例と比較例である
〔実施例 1〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 10000を有するポリカーボネートジオール 43質量 部とを 230〜245°C、 130Pa下で 1時間攪拌し、榭脂が透明になったことを確認し、 内容物を取り出し、冷却し、ポリマー A (熱可塑性ポリエステルエラストマ一)を得た。 得られたポリマーの各物性を測定し、その結果を表 1に示す。本実施例で得られたポ リマー Aはいずれの特性も良好であり高品質であった。
[0119] 〔実施例 2〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 20000を有するポリカーボネートジオール 43質量 部とを 230〜245°C、 130Pa下で 1. 5時間攪拌し、榭脂が透明になったことを確認し 、内容物を取り出し、冷却し、ポリマー B (熱可塑性ポリエステルエラストマ一)を得た。 得られたポリマーの各物性を測定し、その結果を表 1に示す。本実施例で得られたポ リマー Bは実施例 1で得られた熱可塑性ポリエステルエラストマ一と同等の品質を有し ており高品質であった。
[0120] 〔実施例 3〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 10000を有する脂肪族共重合ポリカーボネートジ オール 43質量部とを 230〜245°C、 130Pa下で 1時間攪拌し、榭脂が透明になった ことを確認し、内容物を取り出し、冷却し、ポリマー C (熱可塑性ポリエステルエラスト マー)を得た。得られたポリマーの各物性を測定し、その結果を表 1に示す。
本実施例で得られたポリマー Cは実施例 1で得られた熱可塑性ポリエステルエラスト マーと同等の品質を有しており高品質であった。また、ソフトセグメントとして、 1, 6— へキサンジオール力もなるポリカーボネートジオールを使用した場合と比較すると低 温特性に優れている。
[0121] 〔実施例 4〕
数平均分子量 30000を有するポリブチレンナフタレート(PBN) 100質量部と上記 方法で調製した数平均分子量 10000を有するポリカーボネートジオール 43質量部 とを 245〜260°C、 130Pa下で 1時間攪拌し、榭脂が透明になったことを確認し、内 容物を取り出し、冷却し、ポリマー D (熱可塑性ポリエステルエラストマ一)を得た。得 られたポリマーの各物性を測定し、その結果を表 1に示す力 本実施例で得られたポ リマー Dは実施例 1で得られた熱可塑性ポリエステルエラストマ一と同等のブロック性 及びブロック性保持性を有しており、かつ実施例 1で得られた熱可塑性ポリエステル エラストマ一よりも融点が高ぐさらに高品質であった。
[0122] 〔比較例 1〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部とポリ カーボネートジオール C (宇部興産社製カーボネートジオール UH— CARB200、分 子量 2000) 43質量部とを230〜245で、 130Pa下で 10分攪拌し、榭脂が透明にな つたことを確認し、内容物を取り出し、冷却し、ポリマー E (熱可塑性ポリエステルエラ ストマー)を得た。得られたポリマーの各物性を測定し、その結果を表 1に示す。本比 較例で得られたポリマー Eはブロック性やブロック性保持性が劣っていた。さらに、還 元粘度が低ぐ耐熱老化性が劣っており低品質であった。また、分子量が低いために 、曲げ弾性率を測定できな力つた。
[0123] 〔比較例 2〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 85000を有するポリカーボネートジオール 43質量 部とを 230〜245°C、 130Pa下で 5時間攪拌した力 榭脂は白濁したままだった。内 容物を取り出し、冷却し、ポリマー Fを得た。得られたポリマー Fの各物性を測定し、 結果 1に示す。本比較例で得られたポリマー (熱可塑性ポリエステルエラストマ一)は ブロック性やブロック性保持性は優れているがハードセグメントとソフトセグメントとの 相溶性が悪いため、引張強度等の機械的特性が劣るとともに、該特性の変動が大き く低品質であった。
[0124] 〔比較例 3〕
数平均分子量 2000を有するポリブチレンテレフタレート (PBT) 100質量部と脂肪 族共重合ポリカーボネートジオール (旭化成ケミカルズ社製カーボネートジオール T5 652、分子量 2000、 1, 6—へキサンジオールと 1, 5—ペンタンジオールとの共重合 体、非晶性) 43質量部とを 230〜245°C、 130Pa下で 10分攪拌し、榭脂が透明にな つたことを確認し、内容物を取り出し、冷却し、ポリマー Gを得た。得られたポリマーの 各物性を測定し、その結果を表 1に示す。本比較例で得られたポリマー G (熱可塑性 ポリエステルエラストマ一)はブロック性やブロック性保持性が劣っており、実施例 3で 得られた熱可塑性ポリエステルエラストマ一に比べて低品質であった。また、分子量 が低 、ために、曲げ弾性率を測定できな力つた。
[0125] 〔比較例 4〕
ポリブチレンテレフタレートとポリオキシテトラメチレングリコール力もなる熱可塑性ポ リエステルエラストマ一(ポリブチレンテレフタレート単位 Zポリオキシテトラメチレング リコール単位 =63. 5/36. 5 (質量比))に関し、各物性を測定しその結果を表 1に 示すが、耐熱老化性が劣ることが明らかである。
[0126] 〔比較例 5〕
ポリブチレンテレフタレートとポリ力プロラタトン力 なる熱可塑性ポリエステルエラス トマ一(ポリブチレンテレフタレート単位 Zポリ力プロラタトン単位 = 70Z30 (質量比) )に関し、各種物性を測定しその結果を表 1に示すが、耐水性が劣ることが明らかで ある。また、再溶融した際に、わずかに異臭が感じられた。
[0127] 〔実施例 5〕
数平均分子量 38000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 12000を有するポリカーボネートジオール 43質量 部とを 230〜245°C、 130Pa下で 1時間攪拌し、榭脂が透明になったことを確認し、 内容物を取り出し、冷却し、ポリマー H (熱可塑性ポリエステルエラストマ一)を得た。 得られたポリマーの各物性を測定し、その結果を表 1に示す。
本実施例で得られたポリマーは ヽずれの特性も良好であり高品質であった。
[0128] 〔実施例 6〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 10000を有するポリカーボネートジオール 43質量 部とを 230〜245°C、 130Pa下で 1時間攪拌し、榭脂が透明になったことを確認し、 内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。得 られたポリマーを回分式乾燥装置に仕込み、窒素置換を実施し、 180°Cで 24時間、 130Paの減圧下で固相重合を進めた。その各物性を測定し、その結果を表 1に示す 。本実施例で得られたポリマーは 、ずれの特性も良好であり高品質であった。
[0129] 〔実施例 7〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 20000を有するポリカーボネートジオール 75質量 部とを 230〜240°C、 130Pa下で 1時間攪拌し、榭脂が透明になったことを確認し、 内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。そ の各物性を測定し、その結果を表 1に示す。本実施例で得られたポリマーはいずれ の特性も良好であり高品質であった。
[0130] 〔実施例 8〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 33000を有するポリカーボネートジオール 100質量 部とを 230〜240°C、 130Pa下で 1時間攪拌し、榭脂が透明になったことを確認し、 内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。そ の各物性を測定し、その結果を表 1に示す。本実施例で得られたポリマーはいずれ の特性も良好であり高品質であった。
[0131] 〔実施例 9〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 18000を有するポリカーボネートジオール 43質量 咅とトリメチローノレプロノ ン 0.0014質量咅をカロえ、 230〜245。C、 130Pa下で 1時 間攪拌し、榭脂が透明になったことを確認し、内容物を取り出し、冷却し、ポリマー( 熱可塑性ポリエステルエラストマ一)を得た。その各物性を測定し、その結果を表 1に 示す。本実施例で得られたポリマーは 、ずれの特性も良好であり高品質である。
[表 1]
実施例 1 実施例 2 実施例 3 実施例 4
還元粘度 (d 1 1 , 20 1 , 25 1 . 1 5 1 . 20
融点 (°C) 2 1 2 2 1 8 2 1 3 225
ハードセグメン卜の平均連鎖長( 1 1 1 5 1 2 8
ソフトセグメントの平均連鎖長(y) 8 9 8 5
プロック性 (巳) 0, 22 0, 1 8 0. 1 0. 33
融点差 (Tm 1 -Tm3) (°C) 20 1 5 1 8 35
ブロック性保持性 ◎ ◎ ◎ 〇
切断時の引張強度 (MP a) 32. 0 33. 0 3 1 , 0 34, 2
曲げ弾性率 (MP a) 230 220 1 0 240
耐熱老化性 (保持率:%) 60 55 55 50
耐水老化性 (保持率:%) 97 98 95 95
比較例 1 比較例 2 比較例 3 比較例 4 比較例 5
還元粘度 (d I 0, 50 0, 85 0. 45 1 . 79 1 . 40
融点 (c) 1 90 229 1 90 205 2 1 5
ハードセグメン卜の平均連鎖長( 4 35 4 1 4 1 3
ソフトセグメントの平均連鎖長(y) 2 28 2 1 1 8
ブロック性 (B) 0, 75 0. 06 0. 75 0. 1 6 0. 20
融点差 (Tm 1 -Tm3) (°C) 70 5 70 5 9
ブロック性保持性 ◎ ◎ ◎
切断時の引張強度 (MP a) 5 1 0 3 33, 2 35, 0
曲げ弾性率 (MP a) - 340 - 1 70 203
耐熱老化性 (保持率:%) 0 0 0 0 0
耐水老化性 (保持率:%) 75 70 70 98 5
実施例 5 実施例 6 実施例 7 実施例 5 実施例 9
還元粘度 (d I 1 , 2 1 1 , 35 1 . 20 1 . 25 1 . 22
融点 (°C) 2 1 6 2 1 0 206 202 2 1 2
ハードセグメン卜の平均連鎖長( 1 4 9 8 5 1 1
ソフトセグメントの平均連鎖長(y) 9 6 6 4 8
ブロック性 (B) 0, 1 9 0, 28 0. 29 0. 45 0. 22
融点差 (Tm 1 -Tm3) (°C) 8 1 7 25 3 1 20
ブロック性保持性 © © © 〇 ©
切断時の引張強度 (MP a) 33. 0 34. 0 2 9. 5 28. 1 3 1. 0
曲げ弾性率 (MP a) 220 2 1 0 10 5 75 220
耐熱老化性 (保持率:%) 92 70 6 0 6 5 90
耐水老化性 (保持率:%) 95 9 7 9 5 95 97 [0133] 以下、本発明の熱可塑性ポリエステルエラストマ一組成物に関する実施例と比較例 である。
〔実施例 10〜22、比較例 6〜8〕
実施例 1、 2、 4、 5及び比較例 1で得られた熱可塑性ポリエステルエラストマ一 100 質量部に表 2に示した熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以 上有する化合物と表 3に示した酸化防止剤を表 4、 5に従い配合し、更に触媒として、 2—メチルー 4 ェチルイミダゾール 0. 2質量部を配合してドラムタンブラ一に入れ、 室温にて 30分間混合した。該混合物をベント孔付 40mm φ同方向 2軸押出機を用 V、て (Tm+ 20°C)の温度で溶融混練してストランド状に押出し、ストランドを水冷しな 力 切断してチップィ匕した。該チップを 100°Cにて減圧乾燥して本発明の熱可塑性 ポリエステルエラストマ一組成物、及び比較例の熱可塑性ポリエステルエラストマ一 組成物のチップを得た。得られた組成物の物性を測定し、その結果を表 4、 5に示す 比較例 6〜8の熱可塑性ポリエステルエラストマ一組成物のメルトフローレートの値 は、ブロー成形や押出し成形するには大きすぎる値である。(ブロー成形の場合は 2g Z10分以下が好ましぐ押出し成形の場合は 15gZl0分以下が好ましい。)特にプ レスブロー成形機を使用してフレキシブルブーツを成形するには、大きすぎる値であ つた o
また、実施例 10〜22の熱可塑性ポリエステルエラストマ一組成物の残留歪みは、 比較例 6〜8の熱可塑性ポリエステルエラストマ一組成物の残留歪みに比べて小さい 値であり、繰り返しの屈曲疲労などに対して強い成形物が得られることを示した。
[0134] [表 2]
Figure imgf000046_0001
[0135] [表 3] 略号 種類 化合物
ペンタエリストールテトラキス [3— 3, 5_ジー t e「 —プチ
Y 1 ヒンダ一フエノール系
ルー 4—ヒ ドロキシフヱ二ルポ口ピオネー卜]
N, N -へキサン - 1 , 6 ジィルビス [3, 5 ジ— t e「―
Υ 2 ヒンダーフヱノール系
プチルー 4ーヒ ドロキシフ ニルプロピ才ンアミ ド]
Υ 3 硫黄系 2—ハイ ドロキシ— 4— π—才キシベンゾフ ノン
Υ 4 憐系 卜リス (2, 4ージー ブチルフエニル) フォスファイ ト
4, 4' —ビス (4_α. α_ジメチルーベンジル) ジフエニル
Υ 5 アミン系
ァミン
[表 4]
Figure imgf000047_0001
[表 5]
実施例 実施例 実施例 実施例 実施例 比較例 比較例 比較例 ポリエステルエラス 卜
マーの種類 (質量部) 〔
反応性基含有化合物:
組 :
成 :
: 〇 〇 〇 〇 〇 〇
質 :
里 酸化防止剤: 〇 〇 〇 〇 〇 部 : 〇 〇 〇 〇 〇
: 〇 〇
: 〇 〇
: 〇
組成物醆価 (
メルトフ口-インテ;ックス 分) 〇
ブ[コック性保持性 © © © © © 切断時の引張強度
曲げ弾性率 ( 〇 耐熱老化性 (保持率:%) 〇 フ 耐水老化性 (保持率:%) フ
残留歪 (%) 〇
[0138] 以下、本発明の熱可塑性ポリエステルエラストマ一の製造方法に関する実施例と比 較例である。
[0139] 実施例 la
〔高分子量脂肪族ポリカーボネートジオールの製造〕
脂肪族ポリカーボネートジオール (分子量 10000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 8. 6質量部とをそれぞれ反応缶に仕込み、徐々に昇温させて、温度 205 °Cに加熱した。その後、徐々に減圧させ、 130Paで反応させた。 2時間後、内容物を 冷却し、ポリマーを取り出した。分子量 10000であった。
〔熱可塑性ポリエステルエラストマ一の製造〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で製造した数平均分子量 10000を有するポリカーボネートジオール 43質量 部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cとした。缶内は 13 OPaを保ち、内温が 245°C到達後、 1時間で榭脂が透明になったことを確認し、内容 物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。得られ たポリマーの各物性を測定し、その結果を表 6に示す。本実施例で得られた熱可塑 性ポリエステルエラストマ一はいずれの特性も良好であり高品質であった。
[0140] 実施例 2a
実施例 laの方法において、ジフエ-ルカーボネートの仕込量を 9. 6質量部に変更 する以外は、実施例 laと同様の方法で、数平均分子量 20000に高分子量化した脂 肪族ポリカーボネートジオールを得た。
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 20000を有するポリカーボネートジオール 43質量 部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cとした。缶内は 13 OPa (を保ち、内温が 245°C到達後、 1. 5時間で榭脂が透明になったことを確認し、 内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。得 られたポリマーの各物性を測定し、その結果を表 6に示す。本実施例で得られた熱可 塑性ポリエステルエラストマ一は実施例 laで得られた熱可塑性ポリエステルエラスト マーと同等の品質を有しており高品質であった。
[0141] 実施例 3a
実施例 laの方法において、ジフエ-ルカーボネートの仕込量を 10. 5質量部に変 更し、反応時間を 1. 5時間に変更する以外は、実施例 laと同様の方法で、数平均 分子量 50000に高分子量ィ匕された脂肪族ポリカーボネートジオールを得た。
数平均分子量 20000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 20000を有するポリカーボネートジオール 43質量 部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cとした。缶内は 13 OPaを保ち、内温が 245°C到達後、 1. 5時間で榭脂が透明になったことを確認し、内 容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。得ら れたポリマーの各物性を測定し、その結果を表 6に示す。本実施例で得られた熱可 塑性ポリエステルエラストマ一は実施例 laで得られた熱可塑性ポリエステルエラスト マーと同等の品質を有しており高品質であった。
[0142] 実施例 4a 実施例 laの方法において、脂肪族共重合ポリカーボネートジオールとして、脂肪族 共重合ポリカーボネートジオール(旭化成ケミカルズ社製カーボネートジオール T56 52、分子量 2000、 1, 6—へキサンジオールと力プロラタトンとの共重合体、非晶性) に変更する以外は実施例 laと同様の方法で、数平均分子量 10000に高分子量化し た脂肪族共重合ポリカーボネートジオールを得た。
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で調製した数平均分子量 10000を有する脂肪族共重合ポリカーボネートジ オール 43質量部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cと した。缶内は 130Paを保ち、内温が 245°C到達後、 1. 5時間で榭脂が透明になった ことを確認し、内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ 一)を得た。得られたポリマーの各物性を測定し、その結果を表 6に示す。
本実施例で得られた熱可塑性ポリエステルエラストマ一は実施例 laで得られた熱 可塑性ポリエステルエラストマ一と同等の品質を有しており高品質であった。また、ソ フトセグメントとして、 1, 6—へキサンジオールからなるポリカーボネートジオールを使 用した場合と比較すると低温特性に優れている。
[0143] 実施例 5a
数平均分子量 30000を有するポリブチレンナフタレート(PBN:ナフタレート部は 2 , 6体) 100質量部と実施例 laで調製した数平均分子量 10000を有するポリカーボ ネートジオール 43質量部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 2 65°Cとした。缶内は 130Paを保ち、内温が 265°C到達後、 1時間で榭脂が透明にな つたことを確認し、内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラス トマ一)を得た。得られたポリマーの各物性を測定し、その結果を表 6に示す。
本実施例で得られた熱可塑性ポリエステルエラストマ一は実施例 laで得られた熱 可塑性ポリエステルエラストマ一と同等のブロック性およびブロック性保持性を有して おり、かつ実施例 laで得られた熱可塑性ポリエステルエラストマ一よりも融点が高ぐ さらに高品質であった。
[0144] 実施例 6a
〔高分子量脂肪族ポリカーボネートジオールの製造〕 脂肪族ポリカーボネートジオール (分子量 10000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部と 4, 4,—ジフ ェニルメタンジイソシァネート 10. 1質量部とをそれぞれ仕込み、温度 180°C、窒素雰 囲気下で反応させた。 2時間後、内容物を冷却し、ポリマーを取り出した。分子量 10 000であった。
〔熱可塑性ポリエステルエラストマ一の製造〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で製造した数平均分子量 10000を有するポリカーボネートジオール 43質量 部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cとした。缶内は 13 OPaを保ち、内温が 245°C到達後、 1. 5時間で榭脂が透明になったことを確認し、内 容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。得ら れたポリマーの各物性を測定し、その結果を表 6に示す。
本実施例で得られた熱可塑性ポリエステルエラストマ一は実施例 laで得られた熱 可塑性ポリエステルエラストマ一と同等の品質を有しており高品質であった。
実施例 7a
〔高分子量脂肪族ポリカーボネートジオールの製造〕
脂肪族ポリカーボネートジオール (分子量 10000)の製造方法:
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とピロメリット酸 二無水物 8. 7質量部とをそれぞれ仕込み、温度 205°C、 130Paで反応させた。 2時 間後、内容物を冷却し、ポリマーを取り出した。分子量 10000であった。
〔熱可塑性ポリエステルエラストマ一の製造〕
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と上 記方法で製造した数平均分子量 10000を有するポリカーボネートジオール 43質量 部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cとした。缶内は 13 OPaを保ち、内温が 245°C到達後、 1. 5時間で榭脂が透明になったことを確認し、内 容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラストマ一)を得た。得ら れたポリマーの各物性を測定し、その結果を表 6に示す。
本実施例で得られた熱可塑性ポリエステルエラストマ一は実施例 laで得られた熱 可塑性ポリエステルエラストマ一と同等の品質を有しており高品質であった。
[0146] 比較例 la
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部とポリ カーボネートジオール C (宇部興産社製カーボネートジオール UH— CARB200、分 子量 2000) 43質量部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245 でとした。缶内は 130Pa (を保ち、内温が 245°C到達後、 10分で樹脂が透明になつ たことを確認し、内容物を取り出し、冷却し、ポリマー (熱可塑性ポリエステルエラスト マー)を得た。得られたポリマーの各物性を測定し、その結果を表 6に示す。本比較 例で得られた熱可塑性ポリエステルエラストマ一はブロック性やブロック性保持性が 劣っていた。さらに、還元粘度が低ぐ耐熱老化性が劣っており低品質であった。ま た、分子量が低いために、曲げ弾性率を測定できな力つた。
[0147] 比較例 2a
数平均分子量 30000を有するポリブチレンテレフタレート(PBT) 100質量部と脂 肪族共重合ポリカーボネートジオール (旭化成ケミカルズ社製カーボネートジオール T5652、分子量 2000、 1, 6—へキサンジオールと力プロラタトンとの共重合体、非 晶性) 43質量部とを反応缶に仕込み、攪拌しながら、徐々に昇温させて、 245°Cとし た。缶内は 130Paを保ち、内温が 245°C到達後、 10分で樹脂が透明になったことを 確認し、内容物を取り出し、冷却し、ポリマー(熱可塑性ポリエステルエラストマ一)を 得た。得られたポリマーの各物性を測定し、その結果を表 6に示す。
本比較例で得られた熱可塑性ポリエステルエラストマ一はブロック性やブロック性保 持性が劣っており、実施例 4aで得られた熱可塑性ポリエステルエラストマ一に比べて 低品質であった。また、分子量が低いために、曲げ弾性率を測定できな力つた。
[0148] [表 6] 実施例 実施例 実施例 実施例 実施例 実施例 実施例 比較例 比較例
1 a 2 a 3 a 4 a 5 a 6 a 7 a 1 a 2 a
還元粘度 ( d 1 / g ) 1. 20 1. 25 1. 30 1. 15 1. 20 1. 21 1. 20 0. 50 0. 45
融点 (°C) 212 218 215 213 225 211 212 190 190
ドセグメン 卜の
11 15 13 12 8 10 11 4 4
平均連鎖長 (x )
ソフ トセグメン トの
8 9 9 8 5 7 8 2 2
平均連鎖長 (y )
プロック性 (B) 0. 22 0. 18 0. 19 0. 21 0. 33 0. 24 0. 22 0. 75 0. 75
プロック性保持性 ◎ ◎ © ◎ 〇 〇 ◎ X X
引張強度 (M P a ) 32. 0 33. 0 35. 0 31. 0 34. 2 32. 2 32. 1 5 3
曲げ弾性率 (M P a ) 230 220 230 210 240 230 230 - - 耐熱老化性(保持率:?《 60 55 55 60 60 55 60 0 0
耐水老化性(保持率:%) 97 98 97 95 95 90 92 75 70
[0149] 実施例 lb
〔脂肪族ポリカーボネートジオールの分子量調整〕
脂肪族ポリカーボネートジオール (宇部興産社製カーボネートジオール UH— CA RB200、分子量 2000、 1, 6—へキサンジオールタイプ) 100質量部とジフエ-ルカ ーボネート 8. 6質量部とをそれぞれ反応缶に仕込み、徐々に昇温させて、温度 205 °Cに加熱した。その後、徐々に減圧させ、 130Paで反応させた。 2時間後、内容物を 冷却し、ポリマーを取り出した。分子量 10000であった。
〔熱可塑性ポリエステルエラストマ一の製造〕
数平均分子量 30000で、ヒドロキシル末端基濃度が OeqZtonであるポリブチレン テレフタレート(PBT) 100質量部と上記方法で調製した数平均分子量 10000を有 するポリカーボネートジオール 43質量部とを反応缶に仕込み、攪拌しながら、徐々に 昇温させて、 245°Cとした。缶内は 130Paを保ち、内温が 245°Cに到達後、 1時間で 榭脂が透明なつたことを確認し、内容物を取り出し、冷却し、ポリマー (熱可塑性ポリ エステルエラストマ一)を得た。得られたポリマーの各物性を測定し、その結果を表 7 に示す。本実施例で得られた熱可塑性ポリエステルエラストマ一は 、ずれの特性も 良好であり高品質であった。
[0150] 実施例 2bおよび 3b 実施例 lbの脂肪族ポリカーボネートジオールの分子量調整方法にぉ 、て、ジフエ ニルカーボネーの仕込み量を 10. 1質量部および 6. 4質量部質量部に変更し、実 施例 lbと同様の方法で数平均分子量を 27000および 5000の脂肪族ポリカーボネ ートジオールを得た。該分子量の脂肪族ポリカーボネートジオール用いるように変更 する以外は、実施例 lbと同様の方法で実施例 2bおよび 3bの熱可塑性ポリエステル エラストマ一を得た。その結果を表 7に示す。
本実施例で得られた熱可塑性ポリエステルエラストマ一は実施例 lbで得られた熱 可塑性ポリエステルエラストマ一と同等の品質を有しており高品質であった。
[0151] 比較例 lb
実施例 lbの脂肪族ポリカーボネートジオールの分子量調整方法にぉ 、て、ジフエ -ルカーボネーの仕込み量を 3. 7質量部に変更し、実施例 lbと同様の方法で数平 均分子量を 32000に調整した脂肪族ポリカーボネートジオールを用いるように変更 する以外は、実施例 lbと同様の方法で比較例 lbの熱可塑性ポリエステルエラストマ 一を得た。その結果を表 8に示す。
本比較例で得られた熱可塑性ポリエステルエラストマ一はハードセグメントとソフトセ グメントとの相溶性が悪いため、引張強度等の機械的特性が劣るとともに、該特性の 変動が大きく低品質であった。
[0152] 比較例 2b
実施例 lbの方法にお 、て、脂肪族ポリカーボネートジオールの分子量調整を行わ ずに、分子量 2000の巿販脂肪族ポリカーボネートジオールを用いるように変更する 以外は、実施例 lbと同様の方法で比較例 2bの熱可塑性ポリエステルエラストマ一を 得た。その結果を表 8に示す。
本比較例で得られた熱可塑性ポリエステルエラストマ一はブロック性やブロック性保 持性が劣っていた。さらに、還元粘度が低ぐ耐熱老化性が劣っており低品質であつ た。また、分子量が低いために、曲げ弾性率を測定できな力つた。
[0153] 実施例 4b〜12b
PBTのヒドロキシル末端基濃度および脂肪族ポリカーボネートジオールの分子量を 表 7に記載したものを原料とする以外は、実施例 lbと同様の方法で実施例 4b〜 12b の熱可塑性ポリエステルエラストマ一を得た。その結果を表 7に示す。
これらの実施例で得られた熱可塑性ポリエステルエラストマ一は 、ずれも力 実施 例 lbで得られた熱可塑性ポリエステルエラストマ一と同等の品質を有しており高品質 であった。
[0154] 比較例 3b〜8b
PBTのヒドロキシル末端基濃度および脂肪族ポリカーボネートジオールの分子量を 表 8に記載したものを原料とする以外は、実施例 lbと同様の方法で比較例 3b〜8b の熱可塑性ポリエステルエラストマ一を得た。その結果を表 8に示す。
比較例 3b、 5bおよび 7bで得られた熱可塑性ポリエステルエラストマ一は 、ずれも 力 比較例 lbで得られた熱可塑性ポリエステルエラストマ一と同様にハードセグメント とソフトセグメントとの相溶性が悪 、ため、弓 I張強度等の機械的特性が劣るとともに、 該特性の変動が大きく低品質であった。また、比較例 4b、 6bおよび 8bで得られた熱 可塑性ポリエステルエラストマ一は 、ずれもが、比較例 2bで得られた熱可塑性ポリエ ステルエラストマーと同様にブロック性やブロック性保持性が劣っていた。さらに、還 元粘度が低ぐ耐熱老化性が劣っており低品質であった。また、分子量が低いために 、曲げ弾性率を測定できな力つた。
[0155] 上記実施例 4b〜12bおよび比較例 3b〜8bにおいて用いた PBTのヒドロキシル末 端基濃度の調整は該 PBTの製造条件の変更により行った。また、脂肪族ポリカーボ ネートジオールの分子量調整は実施例 lbと同様に原料脂肪族ポリカーボネートジォ 一ルと鎖延長剤の仕込み比や反応条件の最適化で実施した。この場合の分子量の 微調整は必要に応じて 2段階以上の多段階に分割して行った。すなわち、所定量の 仕込み比で所定時間反応させた後に、得られた脂肪族ポリカーボネートジオールの 分子量を測定して、該分子量が目的の分子量より低い場合は、鎖延長剤を追加添 加し、逆に、分子量が高すぎる時は原料の脂肪族ポリカーボネートジオールを追カロ 添加してさらに反応を続行することにより行った。
[0156] 実施例 13b
数平均分子量 30000で、ヒドロキシル末端基濃度が lOeqZtonであるポリブチレン ナフタレート(PBN:ナフタレート部は 2, 6体) 100質量部と上記方法で調製した数平 均分子量 10000を有するポリカーボネートジオール 43質量部とを反応缶に仕込み、 攪拌しながら、徐々に昇温させて、 265°Cとした。缶内は 130Paを保ち、内温が 265 °Cに到達後、 1時間で榭脂が透明になったことを確認し、内容物を取り出し、冷却し、 ポリマー(熱可塑性ポリエステルエラストマ一)を得た。得られたポリマーの各物性を 測定し、その結果を表 9に示す。本実施例で得られた熱可塑性ポリエステルエラスト マーは!、ずれの特性も良好であり高品質であった。
[0157] 比較例 9bおよび 10b
実施例 13bの方法にお 、て、それぞれ脂肪族ポリカーボネートジオールの分子量 を 2000および 40000のものに変更する以外は、実施例 13bと同様の方法で比較例 9bおよび 10bの熱可塑性ポリエステルエラストマ一を得た。その結果を表 9に示す。 比較例 9bで得られた熱可塑性ポリエステルエラストマ一はブロック性やブロック性 保持性が劣っていた。さらに、還元粘度が低ぐ耐熱老化性が劣っており低品質であ つた。また、比較例 10bで得られた熱可塑性ポリエステルエラストマ一はハードセグメ ントとソフトセグメントとの相溶性が悪いため、引張強度等の機械的特性が劣るととも に、該特性の変動が大きく低品質であった。
[0158] 上記実施例および比較例にお!、て用いた脂肪族ポリカーボネートジオールは!ヽず れもが末端基はその 85〜: L00%がヒドロキシル末端基であり、残り 0〜15%が鎖延 長剤残基よりなるものであった。
[0159] 実施例 lb〜 12bおよび比較例 lb〜8bで得られた熱可塑性エラストマ一の特性を PBTのヒドロキシル末端基濃度と脂肪族ポリカーボネートジオールの分子量との関係 図にプロットし、図 2として表示した。ハードセグメントとソフトセグメントとの相溶性が悪 いものを四角印(國)で、ブロック性やブロック性保持性が劣っているものを三角印( ▲)で、両方の特性を満たすものを丸印(〇)で表示した。なお、図中の直線は本発 明における好まし 、分子量範囲を示して 、る。ハードセグメント成分である PBTのヒド 口キシル末端基濃度に適した分子量範囲の脂肪族ポリカーボネートジオールを用い ることが上記特性の両方を満足させる点で臨界的な要因であることが理解できる。
[0160] [表 7] 実施例 実施例 実施例 実施例 実施例 実施例 1 b 2 b 3 b 4 b 5 b 6 b
P B Tのヒ ドロキシル末端基濃度 〇 〇 〇 2〇 2〇 2 〇
( e q / t o π )
脂肪族ポリカーボネー卜ジオールの 10000 27000 5000 10000 38000 6000 分子量
ポリエステルエラストマ一の特性
] 兀粘度 ( d 1 / g) 1 . 20 1 . 1 5 1 . 08 1 . 2 1 1 . 1 6 1 . 09 融点 (°C) 2 1 3 2 1 9 2 1 2 2 1 2 1 8 208 ハードセグメン トの平均連鎖長 ( 1 1 1 6 1 1 1 2 1 5 9 ソフトセグメン 卜の平均連鎖長 (y) 8 1 〇 8 9 9 6 プロック性 (B) 〇. 22 〇. 1 6 〇. 22 〇. 1 9 〇 . 1 8 〇. 28 プロック性保持性 © © O © © O 引張強度 (MP s) 32. 〇 3 1 . 0 30. 〇 33. 〇 3 1 . 5 30. 5 曲げ弾性率 (MP a) 23 0 2 1 〇 2 00 240 220 2 1 〇 耐熱老化性 (保持率: %) 6〇 6〇 55 6〇 6〇 5 〇 耐水老化性 (保持率: %) 9 7 95 94 96 95 9 〇 実施例 実施例 実施例 実施例 実施例 実施例 フ b 8 b 9 b 1 〇 b 1 1 b 1 2 b
P B Tのヒ ドロキシル末端基濃度 〇 〇 〇 55 55 5 5 k e q / t o n)
脂肪族ポリカーボネー卜ジオールの 10000 50000 6500 10000 63000 7000 分子量
ポリエステルエラス卜マーの特性
還元粘度 ( d 1 1 . 1 5 1 . 1 9 1 . 1 2 1 . 1 5 1 . 25 1 . 1 0 融点 2 1 1 2 1 6 2 07 2 1 〇 2 1 6 205 ハー ドセグメレ 卜の平均連鎖長 ( 1 〇 1 3 9 1 〇 1 3 フ ソフ卜セグメン トの平均連鎖長 (V) フ 9 5 フ 9 5 プロツク性 〇. 24 〇. 1 9 0. 3 1 〇. 2 4 〇 . 1 9 〇. 34 プロック性保持性 ©> ©> 〇 © © 〇 引張強度 (MP s) 3 1 . 0 32. 〇 3 1 . 0 3 1 . 5 3 3. 5 3 1 . 0 曲げ弾性率 (MP s) 22 0 2 30 2 1 〇 220 240 2 1 〇 耐熱老化性 (保持率: %) 55 6〇 5〇 55 6〇 5 〇 耐水老化性 (保持率: %) 96 98 9〇 95 9 7 9 〇 表 8]
比較例 比較例 比較例 比較例
1 b 2 b 3 b 4 b
P B Tのヒ ドロキシル末端基濃度 0 0 2 〇 2 〇 ( e t o n)
脂肪族ポリカーボネー 卜ジオールの分子量 32000 2000 50000 3000 ポリエステルエラス 卜マーの特性
還元粘度 d 1 / g) 0. 9 0 〇 . 5 0 〇. 8 5 〇 . 60 融点 c) 22 8 1 9 〇 2 2 9 1 8 5 ドセグメン トの平均連鎖長 3 〇 4 3 5 3. 5 ソフ トセグメン トの平均連鎖長 (y ) 2 3 2 2 8 1 . 5 プロック性 (B) 0. 08 〇 . 7 5 〇. 06 〇 . 95 プロック性保持性 ©
引張強度 (M P a) 1 〇 5 1 〇 6 曲げ弾性率 (M P a) 33 0 3 40
耐熱老化性 (保持率: %.) 〇 〇 〇 〇 耐水老化性 (保持率: %) 7 〇 7 5 7 〇 7 〇 比較例 比較例 比較例 比較例 5 b 6 b 7 b 8 b
P B Tのヒ ドロ丰シル末端基濃度 4〇 4〇 5 5 5 5 e q t o n
脂肪族ポリカーボネー 卜ジオールの分子量 64000 3000 72000 4000 ポリエステルエラス 卜マーの特性
還元粘度 d 1 / g) 0. 8 7 〇 . 5 5 〇. 8 2 〇 . 58 融点 c) 22フ 1 9 2 2 2 9 1 9 3 ドセグメン トの平均連鎖長 2 8 4 3 5 4. 5 ソフ トセグメン トの平均連鎖長 (y ) 2 1 2 2 8 2. 5 プロック性 (B) 0. 08 〇 . 7 5 〇. 06 〇 . 62 プロック性保持性 © ©
引張強度 (M P a) 〇 4 1 〇 6 曲げ弾性率 (M P a) 340 3 5 0
耐熱老化性 (保持率: %) 〇 〇 〇 〇 耐水老化性 (保持率: 7 〇 7 〇 6 8 7 〇 表 9]
実施例 1 3 b 比較例 9 b 比較例 1 0 b
P B Nのヒ ドロキシル末端基濃度 (e cjZt o n) 1 〇 1 〇 1 〇 脂肪族ポリカーボネー卜ジオールの分子量 10000 2000 40000 ポリエステルエラストマ一の特性
] ^占度 / g) 1 . 20 〇. 50 〇. 88 融点 (。c) 225 2 1 〇 243 ドセグメン卜の平均連鎖長 ( 8 4 34 ソフトセグメン 卜の平均連鎖長 (y) 5 2 26 ブロック性 〔巳) 0. 33 〇. 75 0. 07 プロック性保持性 O © 引張強度 (MP a) 34. 2 5 1 〇 曲げ弾性率 (MP a) 240 400 耐熱老化性 (保持率: %) 6〇 〇 〇 耐水老化性 (保持率: %) 95 7〇 7〇 [0163] 以上、本発明の熱可塑性熱可塑性ポリエステルエラストマ一及びその組成物、並 びに製造方法について、複数の実施例に基づいて説明したが、本発明は上記実施 例に記載した構成に限定されるものではなぐ各実施例に記載した構成を適宜組み 合わせるなど、その趣旨を逸脱しな!、範囲にぉ 、て適宜その構成を変更することが できるものである。
産業上の利用可能性
[0164] 本発明の本熱可塑性ポリエステルエラストマ一及びその組成物は耐熱性が良好で あり、かつ耐熱老化性、耐水性及び低温特性等に優れているというポリエステルポリ カーボネート型エラストマ一の特徴を維持した上で、ブロック性及びブロック性保持性 が改善されている。ブロック性が高いことにより、融点低下による耐熱性の低下が抑 制され、硬度、引張強度、弾性率などの機械的性質が向上する。また、ブロック性保 持性の改善により、成型カ卩ェ時におけるブロック性の変動が抑制されるので成型製 品の品質の均一性を高めることができる。また、反応性基を 1個以上有する化合物 0 . 01〜20質量部を含有させることで、耐熱老化性、耐水性、残留歪の向上効果ゃブ ロー成形、押出成形に適したメルトフローレートを得る事ができる。また、該特性により 、リサイクル性が高められるので環境負荷やコスト低減に繋げることができる。従って 、このように、本発明の熱可塑性ポリエステルエラストマ一は、上記した優れた特性及 び利点を有するので、繊維、フィルム、シートをはじめとする各種成形材料に用いるこ とができる。また、弾性糸及びブーツ、ギヤ、チューブ、ノ ッキンなどの成形材料にも 適しており、例えば、耐熱老化性、耐水性、低温特性が要求される自動車、家電部 品などの用途、具体的には、ジョイントブーツや、電線被覆材などの用途に有用であ る。特に、自動車のエンジン周りに使用されるジョイントブーツや、電線被覆材などの 高度な耐熱性が要求される部品用の材料として好適に用いることができるので、産業 界に寄与すること大である。

Claims

請求の範囲
[1] 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルか らなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメン トが結合されてなる熱可塑性ポリエステルエラストマ一であって、該熱可塑性ポリエス テルエラストマーの示差走査熱量計を用いて昇温速度 20°CZ分で室温から 300°C に昇温し、 300°Cで 3分間保持した後に、降温速度 100°CZ分で室温まで降温する サイクルを 3回繰り返した時の一回目の測定で得られる融点 (Tml)と 3回目の測定 で得られる融点(Tm3)との融点差 (Tml— Tm3)が 0〜50°Cであり、かつ切断時の 弓 I張強度が 15〜: LOOMPaであることを特徴とする熱可塑性ポリエステルエラストマ一
[2] ハードセグメントがポリブチレンテレフタレート単位よりなり、かつ得られる熱可塑性 ポリエステルエラストマ一の融点が 200〜225°Cであることを特徴とする請求項 1に記 載の熱可塑性ポリエステルエラストマ一。
[3] ハードセグメントがポリブチレンナフタレート単位よりなり、かつ得られる熱可塑性ポ リエステルエラストマ一の融点が 215〜240°Cであることを特徴とする請求項 1に記載 の熱可塑'性ポリエステノレエラストマ一。
[4] 核磁気共鳴法 (NMR法)を用いて算出したノヽードセグメントの平均連鎖長を x、及 びソフトセグメントの平均連鎖長を yとした時に、ハードセグメントの平均連鎖長 (X)が 5〜20であり、かつ下記(1)式で算出されるブロック性(B)が 0. 11〜0. 45であるこ とを特徴とする請求項 1〜3のいずれかに記載の熱可塑性ポリエステルエラストマ一。
B= l/x+ l/y (1)
[5] 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルと 分子量 5000〜80000の脂肪族ポリカーボネートジオールとを溶融状態で反応させ て製造してなることを特徴とする請求項 1〜4のいずれかに記載の熱可塑性ポリエス テノレエラストマー。
[6] 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルか らなるハードセグメント及び脂肪族ポリカーボネートからなるソフトセグメントが結合さ れてなり、かつ示差走査熱量計を用いて昇温速度 20°CZ分で室温から 300°Cに昇 温し、 300°Cで 3分間保持した後に、降温速度 100°CZ分で室温まで降温するサイ クルを 3回繰り返した時の一回目の測定で得られる融点 (Tml)と 3回目の測定で得 られる融点 (Tm3)との融点差 (Tml— Tm3)が 0〜50°Cであり、かつ切断時の引張 強度が 15〜 lOOMPaである熱可塑性ポリエステルエラストマ一 100質量部に対し、 該熱可塑性ポリエステルエラストマ一に対する反応性基を 1個以上有する化合物 0. 01〜20質量部を含有してなることを特徴とする熱可塑性ポリエステルエラストマ一組 成物。
[7] 熱可塑性ポリエステルエラストマ一のハードセグメントがポリブチレンテレフタレート 単位よりなり、かつ熱可塑性ポリエステルエラストマ一の融点が 200〜225°Cであるこ とを特徴とする請求項 6に記載の熱可塑性ポリエステルエラストマ一組成物。
[8] 熱可塑性ポリエステルエラストマ一のハードセグメントがポリブチレンナフタレート単 位よりなり、かつ熱可塑性ポリエステルエラストマ一の融点が 215〜240°Cであること を特徴とする請求項 6に記載の熱可塑性ポリエステルエラストマ一組成物。
[9] 熱可塑性ポリエステルエラストマ一の、核磁気共鳴法 (NMR法)を用いて算出した ハードセグメントの平均連鎖長を x、及びソフトセグメントの平均連鎖長を yとした時に 、ハードセグメントの平均連鎖長 (X)が 5〜20であり、かつ下記(1)式で算出されるブ ロック性 (B)が 0. 11〜0. 45であることを特徴とする請求項 6〜8のいずれかに記載 の熱可塑性ポリエステルエラストマ一組成物。
B= l/x+ l/y (1)
[10] 熱可塑性ポリエステルエラストマ一が、芳香族ジカルボン酸と脂肪族又は脂環族ジ オールとから構成されたポリエステルと分子量 5000〜80000の脂肪族ポリカーボネ ートジオールとを溶融状態で反応させて製造してなることを特徴とする請求項 6〜9の いずれか〖こ記載の熱可塑性ポリエステルエラストマ一組成物。
[11] 請求項 6〜10のいずれかに記載の熱可塑性ポリエステルエラストマ一組成物よりな る成形品。
[12] 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルか らなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメン トが結合されてなる熱可塑性ポリエステルエラストマ一の製造方法であって、予め鎖 延長剤で高分子量ィ匕してなる脂肪族ポリカーボネートジオールを用いることを特徴と する熱可塑性ポリエステルエラストマ一の製造方法。
[13] 上記高分子量化してなる脂肪族ポリカーボネートジオールの数平均分子量が 500 0〜80000であることを特徴とする請求項 12に記載の熱可塑性ポリエステルエラスト マーの製造方法。
[14] 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルと 上記高分子量ィ匕してなる脂肪族ポリカーボネートジオールを溶融状態で反応させて 製造することを特徴とする請求項 12または 13に記載の熱可塑性ポリエステルエラス トマ一の製造方法。
[15] 芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構成されたポリエステルか らなるハードセグメント、及び、主として脂肪族ポリカーボネートからなるソフトセグメン トが結合されてなる熱可塑性ポリエステルエラストマ一の製造方法であって、ヒドロキ シル末端基濃度が 0〜55eqZtonの芳香族ジカルボン酸と脂肪族又は脂環族ジォ ールとから構成されたポリエステルと下記分子量範囲の脂肪族ポリカーボネートジォ ールを溶融状態で反応させて製造することを特徴とする熱可塑性ポリエステルエラス トマ一の製造方法。
〔脂肪族ポリカーボネートの分子量範囲〕
脂肪族ポリカーボネートジオールの分子量の下限を芳香族ジカルボン酸と脂肪族 又は脂環族ジオールとから構成されたポリエステルのヒドロキシル末端基濃度が Oeq Ztonの時が 3000で、芳香族ジカルボン酸と脂肪族又は脂環族ジオールとから構 成されたポリエステルのヒドロキシル末端基濃度が 55eqZtonの時が 5000である点 を直線で結んだ線上の分子量以上とし、かつ該分子量の上限を芳香族ジカルボン 酸と脂肪族又は脂環族ジオールとから構成されたポリエステルのヒドロキシル末端基 濃度が OeqZtonの時が 30000で、芳香族ジカルボン酸と脂肪族又は脂環族ジォー ルとカも構成されたポリエステルのヒドロキシル末端基濃度が 55eq/tonの時が 700 00である点を直線で結んだ線上の分子量以下とした時に、 2本の直線で挟まれた範 囲の分子量とする。
[16] 上記脂肪族ポリカーボネートジオールを予め鎖延長剤で高分子量化して分子量調 整することを特徴とする請求項 15に記載の熱可塑性ポリエステルエラストマ一の製造 方法。
PCT/JP2006/325015 2005-12-19 2006-12-15 熱可塑性ポリエステルエラストマー、熱可塑性ポリエステルエラストマー組成物、及び熱可塑性ポリエステルエラストマーの製造方法 WO2007072748A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06834758A EP1964871B1 (en) 2005-12-19 2006-12-15 Thermoplastic polyester elastomer, thermoplastic polyester elastomer composition, and method for production of thermoplastic polyester elastomer
CN2006800480765A CN101341186B (zh) 2005-12-19 2006-12-15 热塑性聚酯弹性体、热塑性聚酯弹性体组合物以及热塑性聚酯弹性体的制造方法
JP2007551061A JP4244067B2 (ja) 2005-12-19 2006-12-15 熱可塑性ポリエステルエラストマー、熱可塑性ポリエステルエラストマー組成物、及び熱可塑性ポリエステルエラストマーの製造方法
KR1020087013154A KR101048774B1 (ko) 2005-12-19 2006-12-15 열가소성 폴리에스테르 엘라스토머, 열가소성 폴리에스테르엘라스토머 조성물 및 열가소성 폴리에스테르엘라스토머의 제조방법
US12/158,231 US7973124B2 (en) 2005-12-19 2006-12-15 Method for producing thermoplastic polyester elastomer, thermoplastic polyester elastomer composition, and thermoplastic polyester elastomer

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005364775 2005-12-19
JP2005-364775 2005-12-19
JP2006013807 2006-01-23
JP2006-013807 2006-01-23
JP2006-013806 2006-01-23
JP2006013806 2006-01-23
JP2006313804 2006-11-21
JP2006-313804 2006-11-21

Publications (1)

Publication Number Publication Date
WO2007072748A1 true WO2007072748A1 (ja) 2007-06-28

Family

ID=38188527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325015 WO2007072748A1 (ja) 2005-12-19 2006-12-15 熱可塑性ポリエステルエラストマー、熱可塑性ポリエステルエラストマー組成物、及び熱可塑性ポリエステルエラストマーの製造方法

Country Status (6)

Country Link
US (1) US7973124B2 (ja)
EP (1) EP1964871B1 (ja)
JP (1) JP4244067B2 (ja)
KR (1) KR101048774B1 (ja)
CN (1) CN101341186B (ja)
WO (1) WO2007072748A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155450A (ja) * 2006-12-22 2008-07-10 Toyobo Co Ltd ホース
JP2008163226A (ja) * 2006-12-28 2008-07-17 Toyobo Co Ltd パッキン材
WO2008093574A1 (ja) * 2007-01-29 2008-08-07 Toyo Boseki Kabushiki Kaisha ポリエステルポリカーボネート型熱可塑性ポリエステルエラストマーの製造方法およびポリエステルポリカーボネート型熱可塑性ポリエステルエラストマー
JP2009029895A (ja) * 2007-07-26 2009-02-12 Toyobo Co Ltd ポリエステルエラストマー樹脂組成物およびそれを用いた成形品
JP2010248405A (ja) * 2009-04-17 2010-11-04 Toyobo Co Ltd 難燃性ポリエステルエラストマー組成物
JP2011094000A (ja) * 2009-10-29 2011-05-12 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー組成物
US20110192459A1 (en) * 2008-10-08 2011-08-11 Skc Co., Ltd. Multilayered weatherable film for solar cell
CN102850729A (zh) * 2011-06-29 2013-01-02 合肥杰事杰新材料股份有限公司 一种热塑性聚酯弹性体材料及其制备方法
WO2019111984A1 (ja) 2017-12-08 2019-06-13 東洋紡株式会社 ポリエステルエラストマー樹脂組成物
WO2021246239A1 (ja) * 2020-06-05 2021-12-09 東洋紡株式会社 耐熱性フィルム
WO2022215408A1 (ja) * 2021-04-05 2022-10-13 東洋紡株式会社 難燃性熱可塑性ポリエステルエラストマー樹脂組成物、及びそれらから得られる成形品
US11623976B2 (en) 2016-06-27 2023-04-11 Dsm Ip Assets B.V. Process for the production of a thermoplastic elastomer and the thermoplastic elastomer
WO2023085175A1 (ja) * 2021-11-10 2023-05-19 東洋紡株式会社 耐熱性フィルム

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034870B2 (en) * 2003-12-17 2011-10-11 Sabic Innovative Plastics Ip B.V. Flame-retardant polyester composition
US8188172B2 (en) * 2003-12-17 2012-05-29 Sabic Innovative Plastics Ip B.V. Polyester compositions, method of manufacture, and uses thereof
CN102036819B (zh) * 2008-06-27 2013-12-04 尤尼吉可株式会社 易粘接性聚酯膜及使用其的包装材料
EP2334731A4 (en) * 2008-09-30 2013-05-22 Polyone Corp FLAME-RESISTANT AND THERMOPLASTIC ELASTOMERS
US7829614B2 (en) * 2008-12-30 2010-11-09 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, methods of manufacture, and articles thereof
US8138244B2 (en) * 2008-12-30 2012-03-20 Sabic Innovative Plastics Ip B.V. Reinforced polyester compositions, method of manufacture, and articles thereof
JP2012531482A (ja) * 2009-07-03 2012-12-10 ディーエスエム アイピー アセッツ ビー.ブイ. ポリマー組成物およびその組成物のケーブル被覆
EP2325257A1 (en) * 2009-11-19 2011-05-25 DSM IP Assets B.V. Process for producing a shaped article
WO2011131624A1 (en) 2010-04-20 2011-10-27 Dsm Ip Assets B.V. Polymer composition and a sealing body made of that composition
US8686072B2 (en) 2010-06-29 2014-04-01 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles therof
US8716378B2 (en) 2010-06-29 2014-05-06 Sabic Innovative Plastics Ip B.V. Flame resistant polyester compositions, method of manufacture, and articles thereof
CN102757622B (zh) * 2011-04-27 2015-02-25 合肥杰事杰新材料股份有限公司 一种低烟无卤阻燃热塑性聚酯弹性体及其制备方法
KR101917175B1 (ko) * 2012-01-17 2018-11-09 에스케이이노베이션 주식회사 내한성이 우수한 지방족 폴리카보네이트/폴리에스테르 고분자 수지 조성물
JP2015511661A (ja) 2012-04-02 2015-04-20 ディーエスエム アイピー アセッツ ビー.ブイ. ポリエステルおよび/またはポリウレタンのハードセグメントおよび脂肪族ポリカーボネートのソフトセグメントを含む、熱可塑性エラストマーを含有するポリマー組成物
US9005052B1 (en) * 2013-01-13 2015-04-14 Callaway Golf Company Thermoplastic polyester elastomer golf ball cores
JP5967023B2 (ja) 2013-06-19 2016-08-10 株式会社オートネットワーク技術研究所 電線被覆材用樹脂組成物および絶縁電線ならびにワイヤーハーネス
CN103483967A (zh) * 2013-09-03 2014-01-01 薛华琳 一种卷钢聚酯面漆
KR101396110B1 (ko) * 2013-10-30 2014-05-16 아주대학교산학협력단 장쇄 분지를 갖는 지방족 폴리카보네이트 및 이의 방향족 폴리에스터 공중합체
JP6582984B2 (ja) * 2014-06-19 2019-10-02 東洋紡株式会社 熱可塑性ポリエステルエラストマー組成物
WO2016150698A1 (en) 2015-03-23 2016-09-29 Dsm Ip Assets B.V. Flame retardant composition comprising a thermoplastic polyetherester elastomer
CA3030995A1 (en) 2016-07-21 2018-01-25 Dsm Ip Assets B.V. Process for preparing a fluid conduit
CN109715869B (zh) * 2016-10-25 2022-05-10 东丽株式会社 聚合物合金纤维及包含其的纤维结构体
KR102186776B1 (ko) 2016-11-07 2020-12-04 주식회사 엘지화학 열가소성 폴리에스테르 엘라스토머 수지, 이를 포함하는 열가소성 폴리에스테르 엘라스토머 수지 조성물 및 이의 제조방법
US11414579B2 (en) * 2017-06-09 2022-08-16 Toyobo Co., Ltd. Sealing resin composition
US11781008B2 (en) * 2018-03-30 2023-10-10 Toray Celanese Co., Ltd. Thermoplastic polyester elastomer resin composition for resin belt materials, and molded resin belt
KR102247363B1 (ko) * 2018-10-26 2021-05-04 주식회사 삼양사 그리스 내성과 내구성이 향상된 열가소성 엘라스토머 수지 조성물
CN114174376A (zh) 2019-07-31 2022-03-11 巴斯夫欧洲公司 新型嵌段共聚物
CN111440299A (zh) * 2020-04-27 2020-07-24 四川轻化工大学 聚碳酸酯二醇型共聚酯及其制备方法
CN111721624B (zh) * 2020-06-03 2023-06-16 中广核三角洲(太仓)检测技术有限公司 基于结晶度的核电用peek材料热老化机理评估方法
JPWO2022209605A1 (ja) 2021-03-30 2022-10-06
CN113490124B (zh) * 2021-05-26 2023-06-27 歌尔股份有限公司 一种可用于发声装置的振膜及其制备方法、发声装置
CN113490126B (zh) * 2021-05-26 2023-06-27 歌尔股份有限公司 一种可用于发声装置的振膜及其制备方法、发声装置
CN113490125B (zh) * 2021-05-31 2023-06-27 歌尔股份有限公司 一种可用于发声装置的振膜及发声装置
CN115340752B (zh) * 2022-08-23 2024-01-16 会通新材料(上海)有限公司 一种高熔点高熔体强度热塑性聚酯弹性体材料及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417657A (en) 1987-07-14 1989-01-20 Seishi Yoneda Method and sensor for controlling artificial respiration apparatus
JPH04222822A (ja) * 1990-12-21 1992-08-12 Sekisui Chem Co Ltd ポリエステルカーボネート共重合体
JPH05295094A (ja) 1992-04-16 1993-11-09 Teijin Ltd ポリカーボネートエステルブロック共重合体およびその製造法
JPH06306262A (ja) 1993-04-23 1994-11-01 Teijin Ltd ポリエステルエラストマー組成物
JPH0739480A (ja) 1993-07-29 1995-02-10 Sanyo Electric Co Ltd 電気掃除機
JPH08143656A (ja) * 1994-11-24 1996-06-04 Agency Of Ind Science & Technol 生分解性高分子量脂肪族ポリエステルカーボネート共重合体及びその製造方法
JPH08283553A (ja) * 1995-04-07 1996-10-29 Teijin Ltd ポリエステル/ポリカーボネート樹脂組成物
JPH10182782A (ja) 1996-12-06 1998-07-07 Dsm Nv コポリエステル エラストマー
JPH10195187A (ja) * 1996-12-30 1998-07-28 Daicel Chem Ind Ltd ポリエステルエラストマー
JP2001206939A (ja) 2000-01-24 2001-07-31 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー
JP2001240663A (ja) 2000-03-01 2001-09-04 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー
JP2003192778A (ja) 2001-12-28 2003-07-09 Daicel Chem Ind Ltd 高分子量ポリエステルエラストマーおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0739480B2 (ja) 1986-06-12 1995-05-01 東レ株式会社 ポリエステル・ポリカ−ボネ−ト系エラストマ−
US5235024A (en) * 1988-05-26 1993-08-10 Sekisui Kagaku Kogyo Kabushiki Kaisha Polyester and an article made of the same
AU619840B2 (en) * 1988-05-26 1992-02-06 Kabushiki Kaisha Sanko Kaihatsu Kagaku Kenkyusho A polyester and an article made of the same
EP0906935B1 (en) * 1992-12-10 2004-07-14 Daikin Industries, Limited Thermoplastic resin composition comprising fluoro resin and polyamide
EP0754714B1 (en) 1994-04-08 1999-11-03 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing hydroxyl-terminated polycarbonate
DE69731261T2 (de) * 1996-02-09 2006-02-23 The Yokohama Rubber Co., Ltd. Thermoplastische elastomerzusammensetzung, verfahren zu deren herstellung, schlauch aus dieser zusammensetzung und verfahren zur herstellung
JP3674934B2 (ja) 1996-07-05 2005-07-27 東洋紡績株式会社 弾性ポリエステル及びその製造方法
WO1998029470A1 (fr) 1996-12-30 1998-07-09 Daicel Chemical Industries, Ltd. Elastomeres polyesters, procedes de preparation et compositions de ces elastomeres

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417657A (en) 1987-07-14 1989-01-20 Seishi Yoneda Method and sensor for controlling artificial respiration apparatus
JPH04222822A (ja) * 1990-12-21 1992-08-12 Sekisui Chem Co Ltd ポリエステルカーボネート共重合体
JPH05295094A (ja) 1992-04-16 1993-11-09 Teijin Ltd ポリカーボネートエステルブロック共重合体およびその製造法
JPH06306262A (ja) 1993-04-23 1994-11-01 Teijin Ltd ポリエステルエラストマー組成物
JPH0739480A (ja) 1993-07-29 1995-02-10 Sanyo Electric Co Ltd 電気掃除機
JPH08143656A (ja) * 1994-11-24 1996-06-04 Agency Of Ind Science & Technol 生分解性高分子量脂肪族ポリエステルカーボネート共重合体及びその製造方法
JPH08283553A (ja) * 1995-04-07 1996-10-29 Teijin Ltd ポリエステル/ポリカーボネート樹脂組成物
JPH10182782A (ja) 1996-12-06 1998-07-07 Dsm Nv コポリエステル エラストマー
JPH10195187A (ja) * 1996-12-30 1998-07-28 Daicel Chem Ind Ltd ポリエステルエラストマー
JP2001206939A (ja) 2000-01-24 2001-07-31 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー
JP2001240663A (ja) 2000-03-01 2001-09-04 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー
JP2003192778A (ja) 2001-12-28 2003-07-09 Daicel Chem Ind Ltd 高分子量ポリエステルエラストマーおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1964871A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155450A (ja) * 2006-12-22 2008-07-10 Toyobo Co Ltd ホース
JP2008163226A (ja) * 2006-12-28 2008-07-17 Toyobo Co Ltd パッキン材
WO2008093574A1 (ja) * 2007-01-29 2008-08-07 Toyo Boseki Kabushiki Kaisha ポリエステルポリカーボネート型熱可塑性ポリエステルエラストマーの製造方法およびポリエステルポリカーボネート型熱可塑性ポリエステルエラストマー
US8030417B2 (en) 2007-01-29 2011-10-04 Toyo Boseki Kabushiki Kaisha Process for producing polyester-polycarbonate type thermoplastic polyester elastomer and polyester-polycarbonate type thermoplastic polyester elastomer
JP2009029895A (ja) * 2007-07-26 2009-02-12 Toyobo Co Ltd ポリエステルエラストマー樹脂組成物およびそれを用いた成形品
US9028952B2 (en) * 2008-10-08 2015-05-12 Skc Co., Ltd. Multilayered weatherable film for solar cell
US20110192459A1 (en) * 2008-10-08 2011-08-11 Skc Co., Ltd. Multilayered weatherable film for solar cell
JP2010248405A (ja) * 2009-04-17 2010-11-04 Toyobo Co Ltd 難燃性ポリエステルエラストマー組成物
JP2011094000A (ja) * 2009-10-29 2011-05-12 Toyobo Co Ltd 熱可塑性ポリエステルエラストマー組成物
CN102850729A (zh) * 2011-06-29 2013-01-02 合肥杰事杰新材料股份有限公司 一种热塑性聚酯弹性体材料及其制备方法
CN102850729B (zh) * 2011-06-29 2015-09-09 合肥杰事杰新材料股份有限公司 一种热塑性聚酯弹性体材料及其制备方法
US11623976B2 (en) 2016-06-27 2023-04-11 Dsm Ip Assets B.V. Process for the production of a thermoplastic elastomer and the thermoplastic elastomer
WO2019111984A1 (ja) 2017-12-08 2019-06-13 東洋紡株式会社 ポリエステルエラストマー樹脂組成物
WO2021246239A1 (ja) * 2020-06-05 2021-12-09 東洋紡株式会社 耐熱性フィルム
WO2022215408A1 (ja) * 2021-04-05 2022-10-13 東洋紡株式会社 難燃性熱可塑性ポリエステルエラストマー樹脂組成物、及びそれらから得られる成形品
WO2023085175A1 (ja) * 2021-11-10 2023-05-19 東洋紡株式会社 耐熱性フィルム

Also Published As

Publication number Publication date
KR20080075131A (ko) 2008-08-14
JPWO2007072748A1 (ja) 2009-05-28
KR101048774B1 (ko) 2011-07-15
CN101341186A (zh) 2009-01-07
CN101341186B (zh) 2011-07-20
JP4244067B2 (ja) 2009-03-25
US7973124B2 (en) 2011-07-05
EP1964871A1 (en) 2008-09-03
EP1964871B1 (en) 2013-03-27
EP1964871A4 (en) 2010-07-21
US20090203871A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
WO2007072748A1 (ja) 熱可塑性ポリエステルエラストマー、熱可塑性ポリエステルエラストマー組成物、及び熱可塑性ポリエステルエラストマーの製造方法
JP5257322B2 (ja) 熱可塑性ポリエステルエラストマー組成物
JP4465636B2 (ja) ポリエステルポリカーボネート型熱可塑性ポリエステルエラストマーの製造方法およびポリエステルポリカーボネート型熱可塑性ポリエステルエラストマー
KR20130124186A (ko) 열가소성 폴리에스테르 엘라스토머 수지 조성물 및 이를 포함하는 성형품
JP5130455B2 (ja) パッキン材
JP2012107155A (ja) ポリエステルエラストマー組成物及びそれからなる成形品
JP2009029895A (ja) ポリエステルエラストマー樹脂組成物およびそれを用いた成形品
JP4935347B2 (ja) 耐熱性コルゲートチューブ
JP2010248405A (ja) 難燃性ポリエステルエラストマー組成物
JP2007191664A (ja) 熱可塑性ポリエステルエラストマーの製造方法および熱可塑性ポリエステルエラストマー
JP2008165004A (ja) 光ファイバー
JP4930209B2 (ja) フレキシブルブーツ
JP5194577B2 (ja) 熱可塑性ポリエステルエラストマー
WO2009123287A1 (ja) 熱可塑性ポリエステルエラストマーの製造方法及びその原料ポリカーボネートオリゴマー組成物
JP5135789B2 (ja) 電線
JP2007191665A (ja) 熱可塑性ポリエステルエラストマーの製造方法および熱可塑性ポリエステルエラストマー
JP2007191666A (ja) 熱可塑性ポリエステルエラストマーの製造方法および熱可塑性ポリエステルエラストマー
JP4905116B2 (ja) ホース
JP2008308635A (ja) 難燃性エラストマー組成物
JP5126467B2 (ja) ダクト
JP5321398B2 (ja) 熱可塑性ポリエステルエラストマー組成物
KR101545772B1 (ko) 열가소성 수지 조성물 및 열가소성 수지의 제조방법
KR102541752B1 (ko) 트랜스미션 부품용 폴리에스테르 엘라스토머 수지 및 이의 제조 방법
EP4317317A1 (en) Thermoplastic polyester elastomer, resin composition containing said elastomer, and molded articles obtained from these
JP2008189713A (ja) 熱可塑性ポリエステルエラストマー樹脂組成物

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680048076.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007551061

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006834758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12158231

Country of ref document: US