WO2007063757A1 - 高品質芳香族ポリカーボネートの工業的製造方法 - Google Patents

高品質芳香族ポリカーボネートの工業的製造方法 Download PDF

Info

Publication number
WO2007063757A1
WO2007063757A1 PCT/JP2006/323321 JP2006323321W WO2007063757A1 WO 2007063757 A1 WO2007063757 A1 WO 2007063757A1 JP 2006323321 W JP2006323321 W JP 2006323321W WO 2007063757 A1 WO2007063757 A1 WO 2007063757A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
column
polymerization
carbonate
aromatic polycarbonate
Prior art date
Application number
PCT/JP2006/323321
Other languages
English (en)
French (fr)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to EP06833143A priority Critical patent/EP1956036A4/en
Priority to CN2006800451419A priority patent/CN101321805B/zh
Priority to EA200801493A priority patent/EA200801493A1/ru
Priority to US11/991,420 priority patent/US20090156759A1/en
Priority to BRPI0618746A priority patent/BRPI0618746A2/pt
Priority to JP2007547908A priority patent/JP5030788B2/ja
Publication of WO2007063757A1 publication Critical patent/WO2007063757A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to an industrial process for producing an aromatic polycarbonate.
  • the present invention provides a high-quality, high-performance aromatic polycarbonate that is superior in mechanical properties and has no coloration and is stable from a dialkyl carbonate and an aromatic dihydroxy compound. It relates to a manufacturing method.
  • Aromatic polycarbonate is widely used in many fields as engineering plastics having excellent heat resistance, impact resistance and transparency. Various studies have been conducted on the process for producing this aromatic polycarbonate, and among them, aromatic dihydroxy compounds such as 2,2-bis (4-hydroxyphenol) propane (hereinafter referred to as bisphenol A) are included.
  • bisphenol A 2,2-bis (4-hydroxyphenol) propane
  • the interfacial polycondensation process between phosgene and phosgene has been industrialized. However, in this interfacial polycondensation method, toxic phosgene must be used, and methylene chloride, which is a health and environmental problem, must be used in a large amount of 10 times or more per polycarbonate as a polymerization solvent.
  • the equipment is corroded by chlorine-containing compounds such as hydrogen chloride, sodium chloride, and chloromethylene, and it is difficult to separate chlorinated residual impurities such as sodium chloride and methylene chloride that adversely affect polymer properties.
  • chlorine-containing compounds such as hydrogen chloride, sodium chloride, and chloromethylene
  • chlorinated residual impurities such as sodium chloride and methylene chloride that adversely affect polymer properties.
  • problems such as the need to treat a large amount of process wastewater containing methylene and unreacted bisphenol A.
  • Various polymerizers are known as a polymerizer for producing an aromatic polycarbonate by a melting method.
  • a method using a vertical stirring tank type polymerizer equipped with a stirrer is generally well known.
  • the vertical stirring tank type polymerizer has the advantage that the volume efficiency is small and simple on a small scale, and the polymerization can proceed efficiently.
  • the polymerization progresses. It is difficult to efficiently extract phenol as a by-product out of the system, and the polymerization rate is extremely low.
  • a large-scale vertical stirred tank type polymerizer is usually larger than the case of the ratio of the liquid volume to the evaporation area and the so-called liquid depth is large.
  • Patent Document 1 a method using a screw-type polymerizer having a vent
  • Patent Document 2 a method using a combined twin-screw extruder
  • Patent Document 3 a method using a thin film evaporation reactor such as a screw evaporator or a centrifugal thin film evaporator
  • Patent Document 4 a centrifugal thin film evaporator and a horizontal twin-shaft agitator are used in combination.
  • Aromatic dihydroxy compounds such as high-purity bisphenol A, are produced in large quantities on an industrial scale and are easy to obtain, but high-purity diaryl carbonate is obtained in large quantities on an industrial scale. It is impossible to do. Therefore, it is necessary to manufacture this.
  • diaryl carbonate As a method for producing diaryl carbonate, an aromatic monohydroxy compound and phosgene are used. Reaction methods have been known for a long time, and various studies have been made recently. However, in this method, in addition to the problem of using phosgene, the diaryl carbonate produced by this method contains chlorine-based impurities that are difficult to separate, and cannot be used as a raw material for aromatic polycarbonate as it is. This is because this chlorine-based impurity significantly inhibits the polymerization reaction of the transesterification aromatic polycarbonate carried out in the presence of a very small amount of a basic catalyst. Can't progress.
  • reaction systems are basically batch system force switching systems.
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, and continuously react in the column in the presence of a catalyst to produce by-produced alcohol.
  • Reactive distillation method Patent Document 16 that continuously extracts low-boiling components containing nitrogen by distillation, and also extracts components containing the generated alkylaryl carbonate from the bottom of the column, and continuously supplies alkylaryl carbonate to the multistage distillation column. Then, the reaction is continuously carried out in the column where the catalyst is present, and low-boiling components including dialkyl carbonate as a by-product are continuously extracted by distillation, and the components including diaryl carbonate formed are extracted from the bottom of the column.
  • Reactive distillation these reactions are carried out using two continuous multistage distillation columns to efficiently recycle dialkyl carbonate as a by-product.
  • Reactive distillation method for continuously producing diaryl carbonate while being charged (Patent Document 18), liquid in which dialkyl carbonate and aromatic hydroxy compound are continuously supplied to a multistage distillation column, and flow down in the column Is extracted from the middle extraction stage of the distillation column and the side extraction opening provided at the Z or lowest stage, introduced into the reactor provided outside the distillation tower and reacted, and then from the stage with the extraction opening.
  • transesterification reactions such as a reactive distillation method (Patent Document 19), in which the reaction is carried out both in the reactor and in the distillation column by being introduced into a circulation inlet provided in the upper stage, are performed in a continuous multistage manner.
  • a reactive distillation method that simultaneously performs reaction and distillation separation in a distillation column, and disclosed for the first time in the world that a reactive distillation method is useful for these transesterification reactions.
  • the applicant of the present invention is a high-boiling point containing a catalyst component as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst.
  • a method of separating the substance after reacting with the active substance and recycling the catalyst component (Patent Document 27), or the weight ratio of the polyvalent aromatic hydroxy compound in the reaction system to the catalyst metal 2.
  • Patent Document 28 We proposed a method (Patent Document 28) that is performed while keeping the value below 0.
  • the present inventors also have a method of producing diphenyl carbonate by a reactive distillation method using 70 to 99% by mass of phenol by-produced in the polymerization process as a raw material, and using this as a polymerization raw material for aromatic polycarbonate. Proposed (Patent Document 29).
  • the production volume was only about 6.7kgZhr, which was not strong on an industrial scale.
  • Patent Document 1 Japanese Patent Publication No. 50-19600 (UK Patent No. 1007302)
  • Patent Document 3 Japanese Patent Publication No. 53-5718 (U.S. Pat. No. 3,888,826) Patent Document 4 JP-A-2-153923
  • Patent Document 5 Japanese Patent Laid-Open No. 8-225641
  • Patent Document 6 Japanese Patent Laid-Open No. 8-225643
  • Patent Document 7 JP-A-8-325373
  • Patent Document 8 WO 97--22650
  • Patent Document 9 Japanese Patent Laid-Open No. 10-81741
  • Patent Document 10 Japanese Patent Laid-Open No. 10-298279
  • Patent Document ll WO 99Z36457
  • Patent Document 12 Publication of WO 99Z64492
  • Patent Document 13 Japanese Patent Laid-Open No. 54-48732 (West German Patent Publication No. 736063, US Pat. No. 4,252,737)
  • Patent Document 14 Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464)
  • Patent Document 15 Japanese Patent Laid-Open No. 56-123948 (US Pat. No. 4,182,726)
  • Patent Document 16 Japanese Patent Laid-Open No. 3- No.291257
  • Patent Document 17 Japanese Patent Laid-Open No. 4 9358
  • Patent Document 18 Japanese Patent Application Laid-Open No. 4-211038 (WO 91/09832 Publication, European Patent 046 1274, US Patent 5210268)
  • Patent Document 19 JP-A-4 235951
  • Patent Document 20 JP-A-6-157424 (European Patent 0582931, US Patent) No. 5334742)
  • Patent Document 21 Japanese Patent Laid-Open No. 6-184058 (European Patent 0582930, US Patent 5344954)
  • Patent Document 22 JP-A-9-40616
  • Patent Document 23 JP-A-9 59225
  • Patent Document 24 Japanese Patent Laid-Open No. 9-176094
  • Patent Document 25 WO 00Z18720 Publication (US Pat. No. 6093842)
  • Patent Document 26 JP 2001-64235 A
  • Patent Document 27 WO 97Z11049 (European Patent 0855384, US Pat. No. 5,872275)
  • Patent Document 28 JP-A-11-92429 (European Patent No. 1016648, US Patent No. 6262210)
  • Patent Document 29 Japanese Patent Laid-Open No. 9-255772 (European Patent 0892001, US Patent 5747609)
  • the problem to be solved by the present invention is to industrially produce a high-quality, high-performance aromatic polycarbonate that is free from coloring and has excellent mechanical properties from a dialkyl carbonate and an aromatic dihydroxy compound.
  • a specific method capable of stably producing a large amount (for example, 1 ton or more per hour) for a long period (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more). is there.
  • Combined strength of dialkyl carbonate and aromatic dihydroxyl is an industrial process for producing high-quality aromatic polycarbonate by continuously producing aromatic polycarbonate, and (I) Dialkyl carbonate and aromatic monohydroxyl
  • the compound is used as a raw material, and this raw material is continuously fed into the first continuous multistage distillation column in which the catalyst exists, and the reaction and distillation are conducted in the first column.
  • the first column low boiling point reaction mixture containing alcohols produced at the same time is continuously withdrawn from the upper part of the first column in the form of a gas, and the first column high boiling point reaction mixture containing the resulting alkyl aryl carbonates is removed from the first column.
  • the liquid is continuously withdrawn from the lower part of the first column, and the high-boiling reaction mixture in the first column is continuously fed into the second continuous multistage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the second column.
  • the second tower low boiling point reaction mixture containing the dialkyl carbonates produced is continuously withdrawn in the form of a gas from the upper part of the second tower, and the second tower high boiling point reaction mixture containing the diaryl force-bonates is produced. Continuously withdrawing diaryl carbonate from the bottom of the two columns by continuously feeding the second column low boiling point reaction mixture containing dialkyl carbonates into the first continuous multistage distillation column.
  • step (III) The aromatic dihydroxy compound and the high-purity diaryl carbonate are reacted to produce an aromatic polycarbonate molten polymer, and the molten polymer is allowed to flow along the surface of the guide.
  • step (IV) Recycling step (IV) of the aromatic monohydroxy compound that circulates the aromatic monohydroxy compound produced as a by-product in step (III) to the diaryl carbonate production step (I), and Including
  • the first continuous multi-stage distillation column has a structure having a cylindrical body having a length L (cm) and an inner diameter D (cm), and having an internal number n. Gas outlet with inner diameter d (cm) at the top of the tower or near the top of the tower, inner diameter at the bottom of the tower or near the bottom of the tower
  • One or more first inlets in the section, and one or more second inlets in the middle of the column and Z or in the lower part above the liquid outlet, and L, D , L ZD, n, DZ d, D Zd force satisfy the equations (1) to (6) respectively.
  • the second continuous multistage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm);
  • L, D, L ZD, n, D Zd and D Zd of the first continuous multistage distillation column are
  • the first continuous multistage distillation column is a tray-type distillation column having a tray as the internal, and the second continuous multistage distillation column has both a packing and a tray as the internal.
  • each of the trays of the first continuous multi-stage distillation column and the second continuous multi-stage distillation column is a perforated plate tray having a multi-hole plate portion and a downcomer portion.
  • the regular packing of the second continuous multi-stage distillation column is at least one selected from the group force consisting of Melapack, Dimepack, Technoback, Flexipack, Sulza Packing, Good Roll Packing, and Glitch Grid.
  • the method according to item 12 characterized by:
  • One of the guide forces is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which the molten prepolymer is prevented from entering inside, and r satisfies the formula (25).
  • the two or more guide contact flow type polymerization reactors described in the preceding paragraph 18 are two polymerization vessels of a guide contact flow type first polymerization device and a guide contact flow type second polymerization device, and the degree of polymerization is determined in this order.
  • the external total surface area SI (m 2 ) of the entire guide of the first polymerization vessel and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel satisfy the formula (26).
  • the content power of alkali metals and Z or alkaline earth metal compounds is 0.1 to 0. Olppm in terms of these metal elements, and the halogen content power is lppb or less.
  • Aromatic polycarbonate partially branched from the main chain via a heterogeneous bond such as an ester bond or an ether bond, and the content of the heterogeneous bond is 0. Item 25 or 21 above, characterized in that it is from 05 to 0.5 mol%.
  • High quality aromatic polycarbonate
  • an aromatic polycarbonate such as a dialkyl carbonate and an aromatic dihydroxy compound
  • a process for producing diaryl carbonate using two reactive distillation columns having a specific structure ( I) a step of refining this to obtain a high-purity diaryl carbonate (ii), and then a molten prepolymer obtained from the aromatic dihydroxy compound and the high-purity diaryl carbonate is converted into a guide contact flow-down type having a specific structure.
  • High quality with no mechanical coloring and excellent mechanical properties High-performance aromatic polycarbonates with a high polymerization rate of 1 ton or more per hour It has been found that can be of production on an industrial scale. It has also been found that high-quality aromatic polycarbonates can be produced stably for a long period of time with little variation in molecular weight, such as 2000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more. Therefore, the present invention is an extremely effective method as an industrial production method for high-quality aromatic polycarbonate.
  • step (I) for continuously producing diaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound on an industrial scale is performed.
  • the dialkyl carbonate used in the step (I) is represented by the general formula (27).
  • R a represents an alkyl group having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, and an aralkyl group having 6 to 10 carbon atoms.
  • Examples of such Ra include methyl, ethyl, propyl (each isomer), aryl, butyl (each isomer), butenyl (each isomer), pentyl (each isomer), hexyl (each Isomers), heptyl (each isomer), octyl (each isomer), nonyl (each isomer), decyl (each isomer), an alkyl group such as cyclohexylmethyl; Cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and other alicyclic groups; benzyl, phenethyl (each isomer), phenylpropyl (each isomer
  • alkyl groups, alicyclic groups, and aralkyl groups may be substituted with other substituents such as a lower alkyl group, a lower alkoxy group, a cyano group, a halogen, etc. Have it.
  • dialkyl carbonates having Ra examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diallyl carbonate, dibutenyl carbonate (each isomer), dibutyl Carbonate (each isomer), dipentyl carbonate (each isomer), dihexyl carbonate (each isomer), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), dinonyl carbonate (Each isomer), didecyl carbonate (each isomer), dicyclopentyl carbonate, dicyclohexenole carbonate, dicycloheptinole carbonate, dibenzino carbonate, diphenethyl carbonate (each isomer), Di (phenol) carbonate (each isomer), Di (phenol) Butyl) carbonate (each isomer) di (black benzyl) carbonate (each isomer),
  • the one preferably used in the present invention is a dialkyl carbonate in which R a is an alkyl group containing 4 or less carbon atoms and does not contain a halogen. Particularly preferred! / Is dimethyl carbonate. . Further, among the preferred dialkyl carbonates, more preferred are dialkyl carbonates produced in a state that is substantially free of halogens, for example, alkylene carbonates substantially free of halogens. Alcohol power substantially free of halogen is also produced.
  • the aromatic monohydroxy compound used in the step (I) is represented by the following general formula (28), and is one in which a hydroxyl group is directly bonded to an aromatic group. As long as it is anything.
  • Ar 3 represents an aromatic group having 5 to 30 carbon atoms.
  • aromatic monohydroxy compounds having Ar 3 include phenol, talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), propylphenol (each isomer), butylphenol (each isomer), jetylphenol (each isomer), methylethylphenol (each isomer), methylpropylphenol (Each isomer), dipropylphenol (each isomer), methylbutanol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer) Various alkylphenols such as methoxyphenol (each isomer), ethoxyphenol (each isomer), etc.
  • Aryl alkylphenols such as phenol-propylphenol (each isomer); naphthol (each isomer) and various substituted naphthols; hydroxypyridine (each isomer), hydroxycoumarin (each isomer), Heteroaromatic monohydroxy compounds such as hydroxyquinoline (each isomer) are used.
  • aromatic monohydroxy compounds can be used as a mixture of one or more kinds.
  • aromatic monohydroxy compounds those that are preferably used in the present invention are aromatic monohydroxy compounds in which Ar 3 also has an aromatic group having 6 to 10 carbon atoms. Preference is given to phenol.
  • aromatic monohydroxy compounds those that are preferably used in the present invention are those that do not substantially contain halogen. Therefore, the diaryl carbonate referred to in the present invention is generally represented by the following formula (1).
  • Ar 3 and Ar 4 each represent a monovalent aromatic group.
  • Ar 3 and Ar 4 each represent a monovalent carbocyclic or heterocyclic aromatic group.
  • one or more hydrogen atoms are other groups that do not adversely affect the reaction.
  • Substituents such as halogen atoms, alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and phenyl It may be substituted with a group, a phenoxy group, a bur group, a cyano group, an ester group, an amide group, a nitro group or the like.
  • Ar 3 and Ar 4 may be the same or different.
  • Ar 3 and Ar 4 include a phenyl group, a naphthyl group, a biphenyl group, and a pyridyl group. These may be substituted with one or more substituents as described above.
  • Preferable Ar 3 and Ar 4 include, for example, those shown in the following chemical formula 2.
  • a particularly preferred diaryl carbonate is a substituted or unsubstituted diphenyl carbonate represented by the following chemical formula 3.
  • R 9 and R 1C> are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cyclohexane having 5 to 10 carbon atoms in the ring structure.
  • p and q are integers of 1 to 5, and when p is 2 or more, each R 9 may be different, or when q is 2 or more
  • Each R 1G may be different.
  • diaryl carbonates such as unsubstituted diphenyl carbonate, ditolyl carbonate, and dibutyl butyl carbonate.
  • Symmetric diaryl carbonates such as phenyl carbonate are preferred, but diphenyl carbonate having the simplest structure is particularly preferred.
  • These dial carbonates can be used alone or in combination of two or more.
  • the molar ratio of the dialkyl carbonate used as a raw material in the step (I) to the aromatic monohydroxy compound is preferably 0.1 to 10 in terms of molar ratio. Outside this range, the amount of unreacted raw material that remains is increased with respect to the desired production amount of diaryl carbonate, which is not efficient, and a large amount of energy is required to recover them. In this sense, the molar ratio is more preferably 0.5-5, more preferably 0.8-3, and most preferably 1-2.
  • the minimum amount of aromatic monohydroxy compound continuously fed is usually 15 P ton Zhr relative to the amount of aromatic polycarbonate to be produced (P ton Zhr). Yes, preferably 13 P ton Zhr, more preferably 1 OP ton Zhr. More preferably, it can be less than 8P ton Zhr.
  • the dialkyl carbonate and aromatic monohydroxy compound used as raw materials in step (I) each have a high purity, but contain other compounds.
  • it may contain a compound or reaction byproduct produced in the first continuous multistage distillation column and Z or the second continuous multistage distillation column.
  • the first continuous multistage distillation column and the Z or second continuous multistage distillation column are used as these raw materials.
  • the top component which is a low boiling point reaction mixture in the second continuous multistage distillation column, is supplied to the first continuous multistage distillation column.
  • the second column low boiling point reaction mixture may be supplied as it is to the first continuous multistage distillation column, or may be supplied after a part of the components is separated.
  • the raw materials supplied to the first continuous multi-stage distillation column include alcohols, alkylaryl carbonate, and dialle carbonate.
  • products containing alkylate, alkyl ether and the like are preferred.
  • the product is a small amount of high-boiling by-products such as the fleece transfer product of alkylaryl carbonate or diaryl carbonate and its derivatives. Even if it is a thing, it is used preferably.
  • the reaction product in the raw material is methyl.
  • step (I) most of the aromatic monohydroxy compounds used in step (I) also have the ability to produce aromatic monohydroxy compounds as a by-product in step (i) of the present invention. And This by-product aromatic monohydroxy compound must be recycled to step (I) by step (IV).
  • the diaryl carbonate produced in the step (I) is obtained by the transesterification reaction between the dialkyl carbonate and the aromatic monohydroxy compound.
  • the disproportionation is a reaction in which one or two alkoxy groups of a carbonate are exchanged with an aryloxy group of an aromatic monohydroxy compound to remove alcohols, and a transesterification reaction between two alkylalkylene carbonates produced. It includes a reaction that can be converted to diaryl carbonate and dialkyl carbonate by the conversion reaction.
  • alkylaryl carbonate is mainly obtained
  • the disproportionation reaction of this alkylaryl carbonate is used to produce diaryl.
  • the diaryl carbonate obtained in step (I) contains no halogen at all, and is therefore important as a raw material for industrial production of the aromatic polycarbonate of the present invention. This is because, if a halogen is present in the polymerization raw material even in an amount of less than 1 ppm, for example, the aromatic polycarbonate inhibits the polymerization reaction, inhibits the stable production of the aromatic polycarbonate, and generates a strong force. It is a force that causes deterioration of physical properties and coloring.
  • Catalyst used in the first continuous multistage distillation column and the Z or second continuous multistage distillation column in step (I) For example, the following compound power is selected:
  • Lead oxides such as PbO, PbO, PbO;
  • Lead sulfides such as PbS and Pb S;
  • Lead hydroxides such as Pb (OH) and Pb 2 O (OH);
  • Lead salts such as 2 3 2 2 4 2 3 2 6 4 4 2 4;
  • Lead carbonates such as PbCO, 2PbCO 2 -Pb (OH) and their basic salts;
  • Organic lead compounds such as O (Bu represents a butyl group, Ph represents a phenyl group);
  • Alkoxyleads such as Pb (OCH), (CH0) Pb (OPh), Pb (OPh), aryloxy
  • Lead alloys such as Pb—Na, Pb—Ca, Pb—Ba, Pb—Sn, Pb—Sb;
  • alkali metals such as Li (acac), LiN (C H);
  • Zinc complexes such as Zn (acac);
  • Cadmium complexes such as Cd (acac); ⁇ Compounds of iron group metals>
  • a metal-containing compound such as is used as a catalyst may be solid catalysts fixed in a multistage distillation column, or may be soluble catalysts that dissolve in the reaction system.
  • organic compounds in which these catalyst components are present in the reaction system for example, aliphatic alcohols, aromatic monohydroxy compounds, alkylaryl carbonates, diaryl carbonates, dialkyl carbonates, etc. It may be one that has reacted, or it may have been heat-treated with raw materials or products prior to the reaction.
  • catalysts When the step (I) is carried out with a soluble catalyst that dissolves in the reaction system, these catalysts preferably have high solubility in the reaction solution under the reaction conditions.
  • Preferred catalysts in this sense include, for example, PbO, Pb (OH), Pb (OPh); TiCl, Ti (OMe), (M
  • the first continuous multi-stage distillation column used in step (I) is a structure having a cylindrical body having a length L (cm) and an inner diameter D (cm) and having an internal number n.
  • the top of the tower or near the top of the tower is a gas outlet with an inner diameter d (cm), the bottom of the tower or
  • L, D, L ZD, n, D Zd, D Zd forces satisfy the formulas (1) to (6), respectively.
  • the second continuous multi-stage distillation column used in step (I) is a length L (cm), an inner diameter D
  • (cm) has a cylindrical body and has an internal structure with n steps inside.
  • gas outlet at the bottom of the tower or near the bottom of the tower is a liquid outlet with an inner diameter d (cm), below the gas outlet.
  • a dialkyl carbonate and an aromatic monohydroxy compound can be used.
  • the conditions of the formulas (1) to (12) are It is presumed to be due to the combined effect that is brought about when combined.
  • the preferred range of each factor constituting the continuous multistage distillation column used in step (I) is shown below.
  • L (cm) and L (cm) are 2000 ⁇ L ⁇ 6000 and 20 respectively.
  • D (cm) and D (cm) are each less than 100, the target production volume can be achieved.
  • the inner diameters may be the same, or the inner diameters may be partially different.
  • the inner diameter of the upper part of the column is smaller than the inner diameter of the lower part of the column, and is large.
  • the ranges of / ⁇ are 3 ⁇ L ZD ⁇ 30 and 3 ⁇ L / ⁇ ⁇ 30, respectively.
  • 5 ⁇ L / ⁇ 15 and 5 ⁇ L / ⁇ 15 Preferably, 5 ⁇ L / ⁇ 15 and 5 ⁇ L / ⁇ 15.
  • n is less than 20, the reaction rate decreases, so the target production amount in the first continuous multistage distillation column cannot be achieved, and the equipment cost is reduced while ensuring the reaction rate that can achieve the target production amount.
  • n In order to lower it, n must be 120 or less.
  • the pressure is larger than n force, the pressure difference between the top and bottom of the column becomes too large, so that the long-term stable operation of the first continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. The reaction tends to occur and the selectivity is lowered.
  • a more preferable range of n is 30 ⁇ n ⁇ 100, and more preferably 40 ⁇ n ⁇ 90.
  • reaction rate decreases when n is less than 10, it is the target in the second continuous multistage distillation column.
  • n In order to reduce equipment costs while securing a reaction rate that can achieve the target production volume, n must be 80 or less. If n is greater than 80
  • n 15 ⁇ n ⁇ 6
  • the range of Zd is 7 ⁇ D Zd ⁇ 25, more preferably 9 ⁇ D Zd ⁇ 20
  • step (I) the d and the d satisfy the formula (18), and the d and the d satisfy the formula (19).
  • the long-term stable operation is 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more, and there is no flooding, piping clogging or erosion, etc. This means that a predetermined amount of diaryl carbonate can be produced while maintaining high selectivity while maintaining operation in a steady state.
  • the step (I) is characterized in that the gear reel carbonate is stably produced for a long period of time with a high productivity at a high productivity of preferably 1 ton or more per hour, but more preferably It is to produce diaryl carbonate of 2 tons or more per hour, more preferably 3 tons or more per hour.
  • the L, D, L ZD, n, D Zd, and D Zd forces of the first continuous multistage distillation column are 2000 ⁇ L ⁇ 6000, 150 ⁇ D ⁇ 1000, 3
  • step (I) the first continuous multi-stage distillation column! ⁇ , L ⁇ D ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ / d force, 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, 5 ⁇ L / ⁇ ⁇ 15, 40
  • Towers L, D, L ZD, n, D Zd, D Zd are 2500 ⁇ L ⁇ 5000, 2
  • diallyl carbonate of 4 tons or more per hour.
  • the selectivity of diaryl carbonate refers to the reacted aromatic monohydroxy compound, and in the step (I), the selectivity is usually high as 95% or more. A high selectivity of preferably 97% or more, more preferably 98% or more can be achieved.
  • the first continuous multistage distillation column and the second continuous multistage distillation column used in step (I) are preferably distillation columns having trays and Z or packing as internal.
  • “internal” means a portion of the distillation column that is actually brought into contact with gas and liquid.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counter-flow tray, a super flack tray, a max flack tray, etc. are preferred fillings such as a Raschig ring, a lessing ring, a pole ring, Irregular packing such as Berle saddle, Interlocks saddle, Dickson packing, McMahon packing, Helipac etc.
  • a multi-stage distillation column having both a tray part and a packed part can also be used.
  • “the number n of internal stages” means the number of trays in the case of trays, and the theoretical number of stages in the case of packing. Therefore, in the case of a multi-stage distillation column having both a tray part and a packed part, n is the sum of the number of trays and the number of theoretical plates.
  • step (I) a reaction for mainly producing an alkylaryl carbonate from a dialkyl carbonate and an aromatic monohydroxyl compound is performed, and this reaction has an equilibrium constant. Since the reaction speed is too slow, It was found that the first continuous multi-stage distillation column used for distillation is more preferable than a plate-type distillation column whose internal is a tray. Further, in the second continuous multi-stage distillation column, mainly the force that causes the reaction to disproportionate the alkylaryl carbonate. This reaction also has a small equilibrium constant and a slow reaction rate.
  • the second continuous multi-stage distillation column used for reactive distillation an internal distillation column having both a packing and a tray is more preferable. Furthermore, it was found that the second continuous multi-stage distillation column is preferably one having a packing at the top and a tray at the bottom. It has also been found that the packing of the second continuous multistage distillation column is particularly preferred among the ordered packings that are preferred for ordered packings.
  • the tray installed in each of the first continuous multi-stage distillation column and the second continuous multi-stage distillation column has a perforated plate tray having a perforated plate portion and a downcomer portion.
  • the perforated plate tray has 100-: LOOO holes per area lm 2 of the perforated plate portion. More preferred! /
  • the number of fistulas is 120-900 per lm 2 , more preferably 150-800.
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and even more preferably 0.9 to 3 cm 2 . Furthermore, particularly when the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion and the cross-sectional area per hole is 0.5 to 5 cm 2. It has been found preferable. It has been found that the object of the present invention can be achieved more easily by adding the above conditions to a continuous multistage distillation column.
  • step (I) When step (I) is carried out, the raw material dialkyl carbonate and aromatic monohydroxy compound are continuously fed into the first continuous multistage distillation column in which the catalyst is present, and the reaction is carried out in the first column.
  • the first column low-boiling point reaction mixture containing the generated alcohols is continuously withdrawn in the form of a gas from the upper portion of the first column, and the resulting alkyl aryl carbonates are produced.
  • a one-column high boiling point reaction mixture is continuously withdrawn in liquid form from the lower part of the first column, and the first column high boiling point reaction mixture is continuously supplied into a second continuous multistage distillation column in which a catalyst is present.
  • reaction and distillation are simultaneously performed in the two towers, and the second tower low boiling point reaction mixture containing the dialkyl carbonate to be produced is continuously withdrawn from the upper part of the second tower in the form of gas.
  • the second column high boiling point reaction mixture containing diaryl carbonates is continuously withdrawn in liquid form from the bottom of the second column, while the second column low boiling point reaction mixture containing dialkyl carbonates is extracted in the first continuous multistage distillation.
  • the gear reel carbonate is continuously produced.
  • This raw material contains reaction by-products such as alcohols, alkylaryl carbonates, diallyl carbonates, alkylaryl ethers and high-boiling compounds, which are reaction products. It is as follows. Considering the equipment and cost for separation and purification in other steps, in the case of the present invention which is actually carried out industrially, it is preferable to contain a small amount of these compounds.
  • step (I) in order to continuously supply the dialkyl carbonate and aromatic monohydroxy compound as raw materials into the first continuous multi-stage distillation column, the upper part of the first distillation column is used. From one or several inlets installed in the upper part or middle part of the tower, but may be supplied in liquid and Z or gaseous form. A raw material containing a large amount of the compound is supplied in liquid form from an inlet at the top of the first distillation column, and a raw material containing a large amount of dialkyl strength-bonate is provided above the liquid outlet at the lower part of the first distillation column. It is also preferable to supply the inlet port installed at the bottom in the form of gas.
  • step (I) the first high boiling point reaction mixture containing alkylaryl carbonates continuously extracted from the lower part of the first continuous multistage distillation column is continuously supplied to the second continuous multistage distillation column.
  • the supply position is lower than the gas outlet at the upper part of the second distillation column, the liquid and Z are introduced from one or several inlets installed at the upper or middle part of the column. Or it is preferable to supply in gaseous form.
  • at least one of the introduction ports includes a packed portion and a tray portion. It is preferable to be installed between.
  • the packing is composed of a plurality of regular packings of two or more, it is also preferable to install introduction ports at intervals constituting the plurality of regular packings.
  • step (I) the components extracted from the top gas of the first continuous multistage distillation column and the second continuous multistage distillation column are condensed and then returned to the upper part of each distillation column.
  • Performing the flow operation is also a preferred method.
  • the reflux of the first continuous multistage distillation column The ratio is from 0 to 10
  • the reflux ratio of the second continuous multistage distillation column is from 0.01 to: LO, preferably from 0.08 to 5, more preferably from 0.1 to 2.
  • no reflux operation is performed, and a reflux ratio of 0 is also preferred.
  • any method may be used for allowing the catalyst to be present in the first continuous multistage distillation column.
  • the catalyst is in a solid state insoluble in the reaction solution, It is preferable to fix in the tower by a method of installing in a stage in a single continuous multi-stage distillation column or a method of installing in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced by an inlet force different from that of the raw material.
  • the amount of catalyst used in the first continuous multistage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. expressed as a percentage of normally from 0.0001 to 30 mass 0/0, preferably ⁇ is 0.0005 to 10 mass 0/0, more preferably ⁇ are used in 0.00 1 to 1 mass%.
  • any method may be used for allowing the catalyst to be present in the second continuous multistage distillation column.
  • the second continuous multi-stage distillation column is preferably fixed in the column by a method of being installed in a stage or a method of being installed in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or this catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the second continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, the reaction temperature and the reaction pressure, but the total amount of raw materials. expressed as a percentage of mass, usually from 0.0001 to 30 mass 0/0, preferably from 0.0005 to 10 mass 0/0, more preferably in a 001-1 mass% 0.1.
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same type or different types.
  • it is preferable to use the same type of catalyst. Even more preferred is the same type
  • it is a catalyst that can be dissolved in both reaction solutions.
  • the catalyst is usually extracted in the state of being dissolved in the high boiling point reaction mixture of the first continuous multistage distillation column together with the alkylaryl force-bonate and the like, and the lower force of the first distillation column is extracted as it is. This is a preferred embodiment because it is supplied to the distillation column. If necessary, a new catalyst can be added to the second continuous multistage distillation column.
  • the reaction time of the transesterification reaction performed in step (I) is considered to correspond to the average residence time of each reaction solution in the first continuous multistage distillation column and the second continuous multistage distillation column. This differs depending on the internal shape and number of stages of each distillation column, the amount of raw material supply, the type and amount of catalyst, reaction conditions, etc., but in each of the first continuous multistage distillation column and the second continuous multistage distillation column.
  • the reaction time is usually 0.01 to 10 hours, preferably 0.05 to 5 hours, and more preferably 0.1 to 3 hours.
  • the reaction temperature of the first continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are liable to occur. For example, by-products such as alkylaryl ethers are increased, which is preferable. In this sense, the preferred reaction temperature in the first continuous multistage distillation column is 130 to 280 ° C, more preferably 150 to 260. C, more preferably 180-250. C range.
  • the reaction temperature of the second continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are likely to occur. For example, alkyl aryl ethers and alkyl aryl carbonates that are raw materials and products are used. This is not preferable because by-products such as the product of fries rearrangement of diols and carbonates and their derivatives increase. In this sense, the preferred reaction temperature in the second continuous multistage distillation column is 130 to 280. C, more preferably 150-260. C, more preferably 180-250. C range.
  • the reaction pressure of the first continuous multistage distillation column varies depending on the type and composition of the raw materials used, the reaction temperature, and the like.
  • the column top pressure is 0.1 to 2 X 10 7 Pa, preferably 10 5 to 10 7 Pa, more preferably Performed in the range of 2 X 10 5 to 5 X 10 6 .
  • the reaction pressure of the second continuous multistage distillation column varies depending on the type and composition of the raw material compound used, the reaction temperature, etc. It is performed in the range of 1 to 2 ⁇ 10 7 Pa, preferably 10 3 to 10 6 Pa, more preferably 5 ⁇ 10 3 to 10 5 .
  • two or more distillation columns can be used as the first continuous multistage distillation column in step (I).
  • two or more distillation columns can be connected in series, connected in parallel, or combined in series and parallel.
  • two or more distillation towers can be used as the second continuous multistage distillation tower in the step (I). In this case, it is possible to connect two or more distillation columns in series, connect them in parallel, or connect a combination of series and parallel.
  • the materials constituting the first continuous multistage distillation column and the second continuous multistage distillation column used in the step (I) are mainly metallic materials such as carbon steel and stainless steel. From the viewpoint of quality, stainless steel is preferable.
  • the second column high boiling point reaction mixture continuously extracted in liquid form from the bottom of the second continuous multistage distillation column in step (I) is a force mainly composed of diaryl carbonate. It contains alkyl reel carbonate, a small amount of unreacted raw material, a small amount of high-boiling by-products, etc., and when a homogeneous catalyst is used, this catalyst component is also included. Therefore, it is necessary to carry out a purification step (II) for obtaining high-purity diaryl carbonate from the second tower high boiling point reaction mixture.
  • Step (ii) may be any method as long as it is a method capable of obtaining high-purity diaryl carbonate from the second tower high boiling point reaction mixture. For example, distillation and Z or recrystallization. Among these, it has been found that in the present invention, it is particularly preferable to perform the step (ii) by a distillation method.
  • the high boiling point material separation tower is obtained by using two distillation columns (high boiling point material separation tower, diaryl carbonate purification tower having a side cut outlet) in the step (ii).
  • a tower top component mainly composed of unreacted alkylaryl carbonate, a small amount of unreacted raw material and diaryl carbonate, and a bottom component mainly composed of a small amount of high-boiling by-products and Z or a catalyst component.
  • the components are continuously supplied to the diaryl carbonate purification tower, and in the diaryl carbonate purification tower, the top cut component, the side cut component, and the bottom component are continuously separated into the side cut component.
  • a distillation separation method for obtaining high-purity diaryl carbonate.
  • the whole or a part of the bottom component of the high-boiling-point substance separation tower is circulated to the first continuous multistage distillation tower and the Z or second continuous multistage distillation tower as the catalyst component in step (I). Reuse is preferred.
  • this tower top component is left as it is or a low boiling point component contained in the tower top component is separated.
  • all or part of the bottom component of the distillation column is returned to the high boiling point substance separation column and the Z or diaryl carbonate purification column to obtain high purity diaryl carbonate. Recovering is also a preferred method.
  • high-purity diaryl carbonate is usually obtained at 99.9% or more, preferably 99.99% or more.
  • the content of high-boiling by-products is usually 10 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less.
  • the halogen content of the obtained high-purity diaryl carbonate is 0.1 lppm or less, preferably lOppb or less, and more preferably Is less than lppb.
  • step (III) is performed. That is, an aromatic dihydroxy compound and the high-purity diaryl carbonate are reacted to produce an aromatic polycarbonate melt prepolymer, and the melt prepolymer is allowed to flow along the surface of the guide, and the melt prepolymer is flown into the flow.
  • This is a process for producing an aromatic polycarbonate using a guided contact flow type polymerization reactor for polymerizing the polymer.
  • step (III) the aromatic dihydroxy compound used is a compound represented by the general formula (29).
  • Ar represents a divalent aromatic group.
  • the divalent aromatic group Ar is preferably one represented by, for example, the general formula (30).
  • Ar 1 — Y— Ar Formula (30)
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or bicyclic aromatic group having 5 to 70 carbon atoms, and Y is a divalent having 1 to 30 carbon atoms. Represents an alkane group of
  • one or more hydrogen atoms are not substituted with other substituents that do not adversely influence the reaction, for example, halogen atoms, carbon atoms having 1 to: LO alkyl group, carbon It may be substituted with an alkoxy group, a phenol group, a phenoxy group, a bur group, a cyano group, an ester group, an amide group, a nitro group, etc.
  • substituents for example, halogen atoms, carbon atoms having 1 to: LO alkyl group, carbon It may be substituted with an alkoxy group, a phenol group, a phenoxy group, a bur group, a cyano group, an ester group, an amide group, a nitro group, etc.
  • the heterocyclic aromatic group include aromatic groups having one or more ring-forming nitrogen atoms, oxygen atoms or sulfur atoms.
  • the divalent aromatic groups Ar 1 and Ar 2 represent groups such as substituted or unsubstituted furylene, substituted or unsubstituted bifurylene, substituted or unsubstituted pyridylene, and the like.
  • the substituents here are as described above.
  • the divalent alkane group Y is, for example, an organic group represented by the following formula.
  • RR 2 , R 3 and R 4 are each independently hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a cycloalkyl having 5 to 10 carbon atoms in the ring structure
  • k represents an integer of 3 to 11
  • R 5 and R 6 are each Each independently selected for X, independently of each other, represents hydrogen or an alkyl group having 1 to 6 carbon atoms, X represents carbon,
  • R 2 , R 3 , R 4 , R 5 , R 6 other substituents, for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, as long as one or more hydrogen atoms do not adversely affect the reaction, It may be substituted with an alkoxy group having 1 to 10
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae: [0088] [Chemical 5]
  • R 7 and R 8 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, or a ring-constituting carbon atom having 5 to 10 carbon atoms.
  • divalent aromatic group Ar may be represented by the following formula.
  • Z is a single bond or —O—, —CO—, —S—, —SO—, —SO—, —COO—, —CON (R 1 ) Represents a divalent group such as —, where R 1 is the previous
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae:
  • divalent aromatic group Ar examples include substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted pyridylene, and the like.
  • the aromatic dihydroxy compound used in the present invention may be a single type or two or more types.
  • a typical example of an aromatic dihydroxy compound is bisphenol A.
  • a trivalent aromatic trihydroxy compound for introducing a branched structure may be used in combination as long as the object of the present invention is not impaired.
  • the aromatic dihydroxy compound and high-purity diaryl carbonate in step (III) The usage ratio (feeding ratio) varies depending on the type of aromatic dihydroxy compound and diaryl carbonate used, the polymerization temperature, and other polymerization conditions, but diaryl carbonate is an aromatic dihydroxy compound 1 It is used in a ratio of usually 0.9 to 2.5 mol, preferably 0.95 to 2.0 mol, more preferably 0.98 to L 5 mol, per mol.
  • a molten prepolymer produced from an aromatic dihydroxy compound and diaryl carbonate is an aromatic dihydroxy compound and diaryl carbonate.
  • Such a molten prepolymer used in step (ii) may be obtained by any known method.
  • a molten mixture of a predetermined amount of an aromatic dihydroxy compound and diaryl carbonate is usually used in a temperature range of about 120 ° C. to about 280 ° C. using one or more vertical stirring tanks.
  • It can be produced by removing the aromatic monohydroxy compound by-produced by the reaction while stirring under pressure and Z or reduced pressure.
  • a method of continuously producing a molten prepolymer having a necessary degree of polymerization by sequentially increasing the degree of polymerization using two or more vertical stirring tanks connected in series is particularly preferable.
  • the molten prepolymer is continuously supplied to the guide contact flow type polymerization apparatus to continuously produce an aromatic polycarbonate having a desired degree of polymerization.
  • This guide contact flow type polymerizer is a polymerizer in which a polymer is melted and flowed along a guide, and can produce an aromatic polycarbonate of 1 ton or more per hour.
  • the guide contact flow type polymerization reactor comprises:
  • High quality ⁇ High-performance aromatic polycarbonate satisfies various conditions for stable production over a long period of time with an industrial scale production of over 1 ton per hour and no molecular weight variation. Therefore, the present invention has been made to find these conditions.
  • “there is no variation in molecular weight” means a variation in number average molecular weight of 200 or less.
  • an aromatic polycarbonate having a number average molecular weight variation of preferably 150 or less, more preferably 100 or less, can be produced stably for a long time.
  • A is less than 0.7 m 2 , the target production volume cannot be achieved, and in order to reduce the equipment cost and achieve this production volume, A should be 300 m 2 or less. It is necessary.
  • the ratio of the between A (m 2), the internal cross-sectional area in the horizontal plane of the aromatic polycarbonate discharge port 7 (b-b 'surface) B (m 2) is, satisfies the equation (14) Is also necessary.
  • AZB is represented by the formula ( 14) Satisfied! / I must speak! / ⁇ .
  • a tapered bottom casing 11 constituting the bottom of the polymerization reaction zone 5 is provided at an angle C degree with respect to the upper side casing 10 at an angle C degree. It is also necessary to satisfy (15).
  • the large variation in the degree of polymerization means a variation in which there is a difference of about 200 or more, for example, expressed in number average molecular weight.
  • the total external surface area S (m 2 ) of the guide 4 needs to satisfy the formula (16). If S is less than 2m 2, to not achieve the production of interest, while reducing equipment cost to achieve this production volume, and to eliminate variation in properties, S be the 50000 m 2 or less is required.
  • step (III) is a guide contact flow type polymerization reactor satisfying the equations (13), (14), (15), (16) and (17). Therefore, the facility cost can be reduced as an industrial production facility.
  • a more preferable range of the internal cross-sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone is 0.8 ⁇ A ⁇ 250, more preferably 1 ⁇ A ⁇ 200.
  • a more preferable range of the ratio to (m 2 ) is 25 ⁇ AZB ⁇ 900, and more preferably 30 ⁇ A / B ⁇ 800.
  • the tapered bottom case of the bottom of the polymerization reaction zone A more preferable range of the angle C degree formed inside the side casing is 1 25 ⁇ C ⁇ 160, and more preferably 135 ⁇ C ⁇ 165.
  • the corresponding angles are Cl, C2, C3, ⁇ ", C1 ⁇ C2 ⁇ C3 ⁇ ⁇ ⁇ ⁇ ⁇ Is preferred.
  • the required length h (cm) of the guide is a factor of the polymerization degree, polymerization temperature, pressure of the raw material prepolymer, the polymerization degree of the aromatic polycarbonate or prepolymer to be produced in the polymerization vessel, and the production amount. More preferable range depending on difference is 200 ⁇ h ⁇ 3000, more preferably 250 ⁇ h ⁇ 2500. This is particularly preferred when the h-force equation (24) is satisfied.
  • the total external surface area S (m 2 ) of the entire required guide varies depending on the same factors as above, but a more preferable range is 4 ⁇ S ⁇ 40000, more preferably 10 ⁇ S ⁇ 30000. 15 ⁇ S ⁇ 20000, especially in the preferred range.
  • the external total surface area of the entire guide referred to in the present invention means the entire surface area of the guide that flows down in contact with the molten polymer.
  • a guide such as a pipe
  • it means the outer surface area.
  • the surface area of the inner surface of the pipe that does not allow the prebolimer to flow down is not included.
  • the shape of the internal cross section of the side casing of the side surface of the polymerization reaction zone in the horizontal plane of the polymerization reaction zone is any shape such as a polygon, an ellipse, or a circle over the guide contact flow type polymerization reactor used in step (III). May be. Since the polymerization reaction zone is usually operated under reduced pressure, it can be anything that can withstand it, but it is preferably in the form of a circle or a shape close thereto. Therefore, the side casing of the polymerization reaction zone of the present invention is preferably cylindrical.
  • a tapered bottom casing is connected to the lower part of the cylindrical side casing, and a cylindrical aromatic polycarbonate discharge port is provided at the lowermost part of the bottom casing.
  • the inner diameter of the cylindrical portion of the side casing is D (cm)
  • the length is L (cm)
  • the inner diameter of the discharge port is d (cm), D, L, and d ), (21), (22) and (23) are preferably satisfied.
  • a more preferable range of D (cm) is 150 ⁇ D ⁇ 1500, and further preferably 200 ⁇ D ⁇ 1200.
  • the more preferable range of DZd is 6 ⁇ DZd ⁇ 45, and more preferably 7 ⁇ D / d ⁇ 40.
  • a more preferable range of LZD is 0.6 ⁇ L / D ⁇ 25, and more preferably 0.7 ⁇ L / D ⁇ 20.
  • a more preferable range of L (cm) is h—10 ⁇ L ⁇ h + 250, and more preferably h ⁇ L ⁇ h + 200.
  • the molten prepolymers are effectively agitated and renewed while flowing down along the guide, and the extraction of funols and the like is effectively performed, so that the polymerization proceeds at a high speed.
  • the melt viscosity increases, so that the adhesive strength to the guide increases, and the amount of the melt sticking to the guide increases as it goes to the bottom of the guide.
  • the residence time of the molten prepolymer on the guide that is, the polymerization reaction time is increased.
  • the melted prepolymer that is flowing down under its own weight while being supported by the guide has a very large surface area per weight and its surface is renewed efficiently. A high molecular weight in the latter half of the polymerization, which was impossible, can be easily achieved. This is one of the excellent features of the polymerization vessel used in step (III).
  • aromatic polycarbonate having almost the same polymerization degree produced while flowing down the guide is accumulated, and aromatic polycarbonate having no variation in molecular weight can be continuously produced. become.
  • the aromatic polycarbonate accumulated at the bottom of the casing is continuously extracted by a discharge pump 8 through a discharge port 7, and is usually continuously pelletized through an extruder.
  • additives such as stabilizers and weathering agents can be added by an extruder.
  • the perforated plate constituting the guide contact flow type polymerization reactor used in the step (III) is usually selected from a force such as a flat plate, a corrugated plate, a plate with a thick central portion, and the shape of the perforated plate is usually A shape force such as circular, oval, triangular or polygonal is selected.
  • the holes of the perforated plate are usually selected from shapes such as a circle, an ellipse, a triangle, a slit, a polygon, and a star.
  • the cross-sectional area of the holes is usually from 0.01 to 100 cm 2 , preferably from 0.05 to 10 cm 2 , more preferably from 0.1 to 5 cm 2 .
  • the distance between the holes is usually 1 to 500 mm, preferably 25 to LOOmm, as the distance between the centers of the holes.
  • the hole in the perforated plate may be a hole penetrating the perforated plate or may be a case where a tube is attached to the perforated plate. It may also be tapered.
  • the guide constituting the guide contact flow type polymerization vessel used in the step (III) has a very high ratio of the length in the vertical direction to the average length of the outer periphery of the horizontal cross section. It represents a large material.
  • the ratio is usually in the range of 10 to: L, 000,000, and preferably in the range of 50 to: L00,000.
  • the shape of the cross section in the horizontal direction is usually selected from shapes such as a circle, an ellipse, a triangle, a quadrangle, a polygon, and a star.
  • the shape of the cross section may be the same or different in the length direction.
  • the guide may be hollow.
  • the guide may be a single piece such as a wire-like one, a thin rod-like one, or a thin, pipe-like one that prevents molten prepolymers from entering inside, but it may be twisted. It may be a combination of two or more. In addition, net-like ones and punching plate-like ones It may be.
  • the surface of the guide may be smooth or uneven, or may have a projection or the like partially.
  • Preferable guides are a cylindrical shape such as a wire shape or a thin rod shape, a thin pipe shape, a net shape, or a punching plate shape.
  • This guide itself has a heat source such as an electric heater inside the heating medium! / ⁇ ! / ⁇
  • the guide without a heating source is a thermal denaturation of prepolymers and aromatic polycarbonates on its surface. U, especially, because there is no concern.
  • the guided contact flow type polymerizer of the present invention that enables the production of high-quality aromatic polycarbonate on an industrial scale (production amount, long-term stable production, etc.), it is particularly preferable to use a plurality of wires.
  • It is a guide of the type in which the guides are joined at appropriate intervals in the vertical direction using the support material in the horizontal direction from the top to the bottom of the pipe-like guides in the shape of a rod or rod .
  • a plurality of wire-like or thin bar-like or wire net-like shapes fixed at appropriate intervals above and below, for example, lcm to 200 cm, using a horizontal support material from the top to the bottom of the thin pipe-shaped guide.
  • a guide a three-dimensional guide in which a plurality of wire mesh guides are arranged at the front and back, and they are combined at an appropriate vertical distance, for example, a distance of lcm to 200 cm, using a lateral support material, or a plurality of wire shapes Or a thin, tangled or three-dimensional guide that is fixed to the front and back, left and right of the thin pipe-shaped guide using a horizontal support material at an appropriate vertical distance, for example, 1 cm to 200 cm. is there .
  • the support material in the lateral direction not only helps to keep the distance between the guides substantially the same, but also helps to strengthen the strength of the guides that are flat or curved as a whole, or three-dimensional guides. These supporting materials may be the same material as the guide, or may be different.
  • r is given by the formula ( 25) Satisfied with it, is preferred.
  • This guide advances the polymerization reaction while allowing the molten prepolymer to flow down, but also has a function of holding the molten prepolymer for a certain period of time.
  • This retention time is determined by polymerization reaction. As described above, the retention time and the retention amount increase as the melt viscosity increases as the polymerization proceeds.
  • the amount that the guide retains the melted prepolymer varies depending on the external surface area of the guide, that is, the outer diameter of the guide in the form of a cylinder or pipe, even if the melt viscosity is the same.
  • the guide installed in the polymerization vessel of the present invention needs to be strong enough to hold and support the weight of the molten prepolymer.
  • the thickness of the guide is important. In the case of a cylindrical shape or a pipe shape, it is preferable that the formula (25) is satisfied. If r is smaller than 0.1, it will be difficult to perform stable operation for a long time in terms of strength. If r is greater than 1, the guide itself becomes very heavy, for example, the perforated plates must be made very thick to hold them in the combiner. There will be an increase in the number of parts that hold too much, resulting in inconveniences such as large variations in molecular weight. In this sense, the more preferred range of r is 0.15 ⁇ r ⁇ 0.8, and even more preferred is 0.2 ⁇ r ⁇ 0.6.
  • Preference for such guides! / ⁇ materials are stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, aluminum and other alloys such as metals and high heat resistant polymer materials. Power is chosen. Particularly preferred is stainless steel.
  • the surface of the guide may be subjected to various treatments such as plating, lining, passivation treatment, acid cleaning, phenol cleaning, etc. as required! /.
  • the positional relationship between the guide and the perforated plate and the positional relationship between the guide and the hole in the perforated plate are not particularly limited as long as the prepolymer guide contact flow is possible.
  • the guide and the perforated plate may or may not be in contact with each other.
  • the present invention is not limited to this. Because it is designed so that the molten prebolimer falling from the perforated plate contacts the guide at an appropriate position.
  • a method of flowing the molten prepolymer through the perforated plate along the guide a method of flowing down with a liquid head or its own weight, or pressurizing with a pump or the like to push out the molten plate force molten prepolymer And the like.
  • a predetermined amount of the raw molten polymer is supplied to the supply zone of the polymerization vessel under pressure using a supply pump, and the molten polymer delivered to the guide through the perforated plate flows down along the guide under its own weight. It is a way to go.
  • the molten prepolymer is usually continuously supplied to the guide contact flow type polymerization reactor while being heated to a predetermined polymerization temperature. Therefore, it is preferable that a jacket or the like is usually installed on the outer wall surface of the guide contact flow-down type polymerizer. It is preferable to heat the jacket to a predetermined temperature through a heating medium or the like.
  • an aromatic polycarbonate is produced by polymerizing a molten polymer obtained from an aromatic dihydroxy compound and diaryl carbonate in a guide contact flow type polymerization reactor.
  • the reaction temperature is usually in the range of 80 to 350 ° C.
  • efficient surface renewal with internal stirring is performed, so that the polymerization reaction can proceed at a relatively low temperature. Therefore, the preferred reaction temperature is 100 to 290 ° C, and more preferred is 150 to 270 ° C.
  • the polymerizer of the present invention does not have mechanical stirring, there is no seal portion of the stirrer, so that leakage of air or the like is very small.
  • the polymerization can proceed sufficiently at a temperature as low as about 20 to 50 ° C. as compared with the conventional reactor for a horizontal biaxial stirring type ultra-high viscosity polymer. This is also a major cause of the ability to produce a high-quality aromatic polycarbonate without coloring or deterioration of physical properties in the present invention.
  • the reaction rate can be increased by removing the force generated by the aromatic monohydroxy compound as the polymerization reaction proceeds.
  • an inert gas such as nitrogen, argon, helium, carbon dioxide or lower hydrocarbon gas that does not adversely influence the reaction is introduced into the polymerization reactor, and the resulting aromatic monohydroxy compound is converted into these.
  • a method of removing by entraining with gas or a method of performing reaction under reduced pressure is preferably used.
  • a method in which these are used in combination is also a force that can be preferably used. In these cases, it is not necessary to introduce a large amount of inert gas into the polymerization vessel, and the inside may be maintained in an inert gas atmosphere.
  • the preferable reaction pressure in the polymerization vessel in the step (ii) varies depending on the type, molecular weight, polymerization temperature, etc. of the aromatic polycarbonate to be produced.
  • the molten polymer strength from bisphenol A and diphenol carbonate Aromatic when the number average molecular weight is in the range of 5,000 or less, the range of 400 to 3, OOOPa is preferable.
  • the number average molecular weight is 5,000 to 10,000, the range of 50 to 500 Pa is used. preferable.
  • the number average molecular weight is 10,000 or more, 300 Pa or less is preferable, and the range of 20 to 250 Pa is particularly preferably used.
  • step (III) it is possible to produce an aromatic polycarbonate having the desired degree of polymerization with only one guided contact flow type polymerizer, but the molten prepolymer used as a raw material.
  • guides and reaction conditions suitable for the polymerization degree of the prepolymer or aromatic polycarbonate to be produced can be separately adopted in each polymerization vessel.
  • a guide contact flow type first polymerizer For example, use a guide contact flow type first polymerizer, a guide contact flow type second polymerizer, a guide contact flow type third polymerizer, and a guide contact flow type fourth polymerizer. If the total external surface area of the entire guide with each polymerizer force is Sl, S2, S3, S4 '"', then S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ '"' . Further, the polymerization temperature may be the same in each polymerization vessel, or may be raised in order. The polymerization pressure can also be lowered in each polymerization vessel in turn.
  • a guide is used in which the total external surface area SI (m 2 ) of the entire guide of the first polymerization vessel and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel satisfy equation (26). I prefer that.
  • S1ZS2 is less than 1, there will be inconveniences such as large variations in molecular weight, making stable production difficult for a long period of time, and difficulty in obtaining a predetermined production amount. If S1ZS2 is greater than 20, As a result, the flow rate of the molten polymer that flows down the guide in the polymerization vessel increases, and as a result, the residence time of the molten polymer decreases and the required molecular weight of the aromatic polycarbonate can be obtained. come. In this sense, a more preferable range is 1.5 ⁇ S1 / S2 ⁇ 15.
  • step (III) 1 ton or more of aromatic polycarbonate is produced per hour, but the aromatic monohydroxy compound produced as a by-product of the polymerization reaction is discharged out of the system. More than 1 ton of molten prepolymer polymerizer must be fed per hour. Therefore, the amount of molten polymer to be supplied varies depending on the degree of polymerization and the degree of polymerization of the aromatic polycarbonate to be produced, but usually 10 to 500 kgZhr more per ton Zhr of aromatic polycarbonate production. 01 ⁇ : L 5 tons Zhr range.
  • Aromatic compound from aromatic dihydroxy compound and diaryl carbonate in step (III) can be carried out without adding a catalyst, but is carried out in the presence of a catalyst as necessary in order to increase the polymerization rate.
  • the catalyst is not particularly limited as long as it is used in this field, but it is not limited to alkali metals and alkaline earth metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and calcium hydroxide.
  • Alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of boron and aluminum hydrides such as lithium aluminum hydride, sodium borohydride, tetramethylammonium borohydride ;
  • Alkali metal and alkaline earth metal hydrides such as lithium hydride, sodium hydride, and hydrogenating power;
  • Alkali metal and alkaline earth metal alkoxides such as lithium methoxide, sodium ethoxide and calcium methoxide Lithium phenoxide, sodium phenoxide, magnesium phenoxide
  • Alkali metal and alkaline earth metal alkoxides such as LiO—Ar—OLi and NaO—Ar—ONa (Ar is aryl); alkali metals and alkalis such as lithium acetate, calcium acetate, sodium benzoate
  • Organic acid salts of earth metals such as acid zinc, zinc acetate, zinc phenoxide; acid boron, boric acid, sodium
  • these catalysts may be used alone or in combination of two or more.
  • the amount of these catalysts, the aromatic dihydroxy I spoon compounds of the raw materials usually 10 _1 to 1 wt%, preferably from 10 one 9 ⁇ 10 1 wt%, rather more preferably 10 _8 ⁇ 10_ selected in the range of 2 wt%.
  • the polymerization catalyst used is the force remaining in the aromatic polycarbonate of the product.
  • These polymerization catalysts usually have an adverse effect on the physical properties of the polymer. Therefore, it is preferable to reduce the amount of catalyst used as much as possible. In the method of the present invention, since the polymerization can be performed efficiently, the amount of catalyst used can be reduced. This is one of the features of the present invention that can produce high-quality aromatic polycarbonate.
  • step (III) There are no particular restrictions on the material of the guide contact flow type polymerization reactor and piping used in step (III). Usually, stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, and others Medium strength such as metals such as alloys and polymer materials with high heat resistance are also selected. In addition, the surface of these materials may be subjected to various treatments such as plating, lining, passivation treatment, acid washing, and phenol washing as necessary. Particularly preferred are stainless steel, nickel, glass lining and the like.
  • step (III) During the preparation of the prepolymer in step (III) and during the polymerization in the guide contact flow type polymerization apparatus, a large amount of the aromatic monohydroxy compound by-produced by the reaction is usually continuously extracted in the form of a gas, It is condensed into a liquid and recovered.
  • the aromatic monohydroxy compound mixed in the step (III) is recycled to the diaryl carbonate production step (I), and the aromatic monohydroxy compound compound is recycled (IV). It is necessary.
  • the by-product aromatic monohydroxy compound produced as a by-product in the step (III) of the present invention usually contains a portion of diaryl carbonate. It can be recycled and reused in the manufacturing process (I). In the case where a small amount of aromatic dihydroxy compound or a small amount of oligomer is mixed in the recovered aromatic monohydroxy compound. Further, after removing these high-boiling substances by further distillation, it is preferable to circulate and reuse in the diaryl carbonate production step (I).
  • the aromatic polycarbonate produced by carrying out the system of the present invention has a repeating unit represented by the following chemical formula 7.
  • aromatic polycarbonate containing 85 mol% or more of a repeating unit represented by the following chemical formula 8 among all repeating units.
  • the terminal group of the aromatic polycarbonate produced by carrying out the method of the present invention usually has a hydroxy group or an aryl carbonate basic force represented by the following chemical formula (9).
  • Ar 5 is the same as Ar 3 and Ar 4 described above.
  • the ratio of the hydroxy group and the aryl carbonate group is not particularly limited, but is usually in the range of 95: 5 to 5:95, preferably in the range of 90:10 to: LO: 90, and more preferably in the range of 80:20. It is in the range of ⁇ 20: 80.
  • Particularly preferred are aromatic polycarbonates in which the proportion of phenolic carbonate groups in the terminal groups is 60 mol% or more.
  • the aromatic polycarbonate produced by carrying out the method of the present invention may be partially branched from the main chain via a hetero bond such as an ester bond or an ether bond.
  • the amount of the heterologous binding to carbonate bonds is usually 0.005 to 2 mol%, good Mashiku is 0.01 to 1 Monore 0/0, a, more preferred, 0.1 05 ⁇ 0.5 Monore is 0/0.
  • This amount of heterogeneous bonds improves flow properties during melt molding without compromising other polymer properties, making it suitable for precision molding and molding even at relatively low temperatures, providing excellent performance. Can be produced.
  • the molding cycle can be shortened, contributing to energy saving during molding.
  • the aromatic polycarbonate produced by carrying out the method of the present invention contains almost no impurities, but 0.001 to lppm of alkali metal and Z or alkaline earth metal as their metal elements.
  • the containing aromatic polycarbonate can be manufactured.
  • the content strength is preferably 0.005 to 0.5 ppm, more preferably 0.1 to 0.1 ppm.
  • a metal element is 1 ppm or less, preferably 0.5 ppm or less, more preferably 0.1 ppm, it does not affect the physical properties of the product aromatic polycarbonate, so the aromatic polycarbonate produced in the present invention. Is high quality.
  • aromatic polycarbonates produced by carrying out the method of the present invention those produced by using an aromatic dihydroxy compound and diaryl carbonate which do not contain halogen are particularly preferred.
  • the halogen content is usually less than or equal to lOppb.
  • a halogen content of 5 ppb or less can be produced, and more preferably, an aromatic polycarbonate having a halogen content of 1 ppb or less can be produced. Will be obtained.
  • the method of the present invention can stably produce an aromatic polycarbonate having no molecular weight fluctuation for a long time because a specific polymerization vessel is used.
  • Mn Number average molecular weight
  • M is the molecular weight of the aromatic polycarbonate and M is the molecular weight of polystyrene.
  • Diphenyl carbonate was produced by performing reactive distillation using an apparatus in which the first continuous multistage distillation column 101 and the second continuous multistage distillation column 201 were connected as shown in FIG.
  • the catalyst is Pb (OPh)
  • the reaction solution was about lOOppm.
  • the reactive distillation was continuously performed under the conditions that the temperature at the bottom of the column was 225 ° C, the pressure at the top of the column was S7 X 10 5 Pa, and the reflux ratio was 0.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of a gas from the top 13 of the first tower, passed through the heat exchanger 14, and 3-4 tons from the outlet 16 Extracted at a Zhr flow rate.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenol carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the second column low boiling point reaction mixture containing 35% by mass of dimethyl carbonate and 56% by mass of phenol was continuously extracted from the top 23 of the second column, and the flow rate at the extraction port 26 was 55.6 tons Zhr. from the second column bottoms 2 7 Mechirufue - Le carbonate 38.4 weight 0/0, Jifue - Le carbonate 55.6 quality
  • the second tower high boiling point reaction mixture containing% by weight was continuously withdrawn.
  • the second column low boiling point reaction mixture was continuously supplied from the inlet 11 to the first continuous multistage distillation column 101.
  • the amount of dimethyl carbonate and phenol to be newly supplied is adjusted so as to maintain the composition and amount of raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture. did.
  • Diphenyl carbonate production was found to be 5.74 tons per hour.
  • the selectivity for diphenol carbonate with respect to the reacted phenol was 98%.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours, the production amount of diphenyl carbonate (excluding diphenyl carbonate contained in the raw material) is 5.74 tons per hour. 5.75 tons, 5.74 tons, 5.74 tons, 5.75 tons, the selectivity is 98%, 98%, 98%, 98%, 98%, and was very stable .
  • the produced aromatic carbonate contained substantially no halogen (lppb or less).
  • the second column high boiling point reaction mixture extracted is continuously supplied to a high boiling point material separation column (length 1700 cm, inner diameter 340 cm, 30 plates), Distillation was continuously performed at a temperature of 206 ° C, a pressure at the top of the column of 3800 Pa, and a reflux ratio of 0.6.
  • the high-boiling-point material separation tower has a top-side component that has been continuously withdrawn from the top, and a diaryl carbonate purification tower having a side-cut outlet (length: 2200 cm, inner diameter: 280 cm, the upper part from the inlet is 12 stages, 18 stages between the inlet and the side cut installed at the bottom, and 5 stages below the side cut.
  • Aromatic polycarbonate was produced using a guide contact flow type polymerizer as shown in FIG.
  • the material of this polymerization vessel is all stainless steel.
  • the molten polymer supplied from the supply port 1 is uniformly distributed to each guide 4 by the perforated plate 2.
  • An inert gas supply port 9 is provided at the lower part of the polymerization vessel, and a vacuum vent port 6 is provided at the upper part.
  • the outside of the polymerization vessel is a jacket, heated by a heat medium
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the extraction port 50 after 50 hours from the start of operation was 10,500, which was a good color (b * value 3.2). .
  • the tensile elongation was 98%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after starting operation
  • the Mn values of the extracted aromatic polycarbonates are 10, 500, 10, 550, 10, 500, 10, 550, 10, 500, 10, 500, 10, 550, and 10, 500, respectively. there were.
  • the aromatic polycarbonate produced in this way has an alkali metal and Z or alkali earth metal compound content of 0.04 to 0.05 ppm in terms of these metal elements, and a chlorine content.
  • lppb lower the detection limit
  • containing Yuryou heterologous binding was 0.12 to 0.15 mol 0/0.
  • step (III) Phenolic solution power containing bisphenol A
  • a phenol purification tower (length 1500 cm, inner diameter 270 cm, 9 stages) was continuously fed. Distillation was continuously carried out at a column bottom temperature of 185 ° C., a column top pressure of 2000 Pa and a reflux ratio of 0.9.
  • the phenol recovered from the top of the column was once stored in a tank and then recycled to step (I).
  • the difluorocarbonate recovered from the side cut part was supplied to the high boiling point substance separation tower in the step (ii) and recovered as high purity diphenyl carbonate.
  • the catalyst is Pb (OPh)
  • the reaction solution was about 250 ppm.
  • the reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 235 ° C, the pressure at the top of the column was S9 X 10 5 Pa, and the reflux ratio was 0.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of a gas from the top 13 of the first tower, passed through the heat exchanger 14, and from the outlet 16 to 43 tons. Extracted at a Zhr flow rate.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenol carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the second continuous multi-stage distillation column 201 reactive distillation was continuously performed under the conditions that the temperature at the bottom of the column was 205 ° C, the pressure at the top of the column was 2 ⁇ 10 4 Pa, and the reflux ratio was 0.5. After 24 hours, stable steady operation was achieved.
  • the second tower low boiling point reaction mixture was continuously withdrawn from the second tower top 23, and from the second tower bottom 27, 36.2% by weight of methylphenol carbonate and 60.8% by weight of diphenyl carbonate were obtained.
  • the second tower containing high boiling point reaction mixture was continuously withdrawn.
  • the second column low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11.
  • the amount of dimethyl carbonate and phenol to be newly supplied should be such that the composition and amount of the above raw material 1 and raw material 2 are maintained in consideration of the composition and amount of the second tower low boiling point reaction mixture. It was adjusted. Production of diphenyl carbonate was found to be 4.03 tonnes per hour. The selectivity for diphenol carbonate was 97% with respect to the reacted phenol.
  • Mn of discharged aromatic polycarbonate was 7,600, 7,600, 7, 6 50 7,600, 7,650, 7,650, 7,600, 7,600, respectively, and was stable .
  • the aromatic polycarbonate produced in this way has an alkali metal and z or alkali earth metal compound content of 0.03 to 0.04 ppm in terms of these metal elements, and a chlorine content of Was less than lppb (below the detection limit).
  • the content of heterogeneous bonds was 0.08 to 0.1 mol%.
  • Reactive distillation was performed under the following conditions using the same apparatus as in Example 1 except that the cross-sectional area per hole of the perforated plate tray in the second continuous multistage distillation column 201 was about 1.8 cm 2 .
  • the catalyst is Pb (OPh)
  • the reaction solution was about 150 ppm.
  • the reaction distillation was continuously performed under the conditions that the temperature at the bottom of the column was 220 ° C, the pressure at the top of the column was S8 X 10 5 Pa, and the reflux ratio was 0.
  • First column low-boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of gas from the top 13 of the first column, passed through the heat exchanger 14, and from the outlet 16 to 8 2 tons. Extracted at a Zhr flow rate.
  • the first tower high boiling point reaction mixture containing methyl phenol carbonate, dimethyl carbonate, phenol, diphenol carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the raw material installed between the melapack and the perforated plate tray of the second continuous multi-stage distillation column 201 was introduced as it was. It was continuously supplied from the port 21 at a flow rate of 94 tons Zhr.
  • the supplied liquid is Mechirufue - Le carbonate 16.0 weight 0/0, Jifue - Rukabo titanate was contained 5% by weight 0.5.
  • the reaction distillation is continuously performed under the conditions that the temperature at the bottom of the column is 215 ° C, the pressure at the top of the column is 2.5 X 10 4 Pa, and the reflux ratio is 0.4. It was broken.
  • Aromatic polycarbonate was produced using a polymerization apparatus in which two guided contact flow type polymerizers as shown in Fig. 5 were arranged in series.
  • the material of these polymerization vessels is all stainless steel.
  • the second polymerization vessel is the same as that used in Example 1.
  • Bisphenol A and high-purity diphenyl carbonate produced in steps (I) and (II) (molar ratio of bisphenol A to 1.06) and force Limer (number average molecular weight Mn is 2,500) was continuously fed to feed zone 3 from feed port 1 of the first polymerization vessel by a feed pump.
  • the molten polymer which was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the first polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4.
  • the polymerization reaction zone of the first polymerization vessel is maintained at a pressure of 800 Pa through the vacuum vent port 6.
  • the aromatic polycarbonate melted polymer (number average molecular weight Mn is 5,500) that has entered the bottom 11 of the polymerization vessel from the bottom of the guide 4 so that the residence amount at the bottom is almost constant. Then, it was continuously extracted from the discharge port 7 by the discharge pump 8 at a constant flow rate.
  • This molten prepolymer was continuously fed to feed zone 3 from feed port 1 of the second polymerization vessel by a feed pump.
  • the molten polymer which was continuously supplied to the polymerization reaction zone through the multi-hole plate 2 in the second polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4.
  • the polymerization reaction zone of the second polymerization vessel is maintained at a pressure of 50 Pa through the vacuum vent port 6.
  • the generated aromatic polycarbonate that has entered the bottom 11 of the second polymerizer at the bottom force of the guide 4 is also discharged from the discharge port 7 at a flow rate of 6 tons Zhr by the discharge pump 8 so that the amount of residence at the bottom is almost constant. It was extracted continuously.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the outlet 12 of the second polymerization vessel after 50 hours from the start of operation was 11,500, indicating good color (b * value 3.2).
  • Met The tensile elongation was 99%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation
  • the extracted aromatic polycarbonate Mn is 11, 500, 11, 550, 11, 500, 11, 550, 11, 500, 11, 500, 11, 550, 11, 500, and is stable. Met.
  • the aromatic polycarbonate thus produced has a content of alkali metal and Z or alkali earth metal compound of 0.03 to 0.05 ppm in terms of these metal elements, and a chlorine content.
  • a content of alkali metal and Z or alkali earth metal compound of 0.03 to 0.05 ppm in terms of these metal elements, and a chlorine content.
  • lppb lower the detection limit
  • the content of heterogeneous bonds was 0.11 to 0.16 mol%.
  • FIG. 1 is a schematic view of a first continuous reaction distillation column preferable for carrying out the present invention.
  • An internal is installed inside the torso.
  • FIG. 2 is a schematic view of a second continuous reaction distillation column preferable for carrying out the present invention. Inside the barrel, there is an internal packing with regular packing at the top and a perforated plate tray at the bottom.
  • FIG. 3 is a schematic view of an apparatus in which a first continuous reaction distillation column and a second continuous reaction distillation column are connected, which is preferable for carrying out the present invention.
  • FIG. 4 is a schematic view of a guide contact flow type polymerization reactor preferable for carrying out the present invention.
  • FIG. 5 is a schematic view of a guide contact flow type polymerization reactor having a cylindrical side casing and a tapered bottom casing that are preferable for carrying out the present invention.
  • the symbols used in each figure are as follows: (Figs. 1, 2 and 3) 1: Gas outlet; 2: Liquid outlet; 3: Inlet; 4: Inlet 5: End plate; L, L: trunk
  • D inner diameter of liquid outlet (cm); 101: first continuous multi-stage distillation column; 201: second continuous multi-stage steam

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

 本発明が解決しようとする課題は、ジアルキルカーボネートと芳香族ジヒドロキシ化合物から、着色がなく機械的物性に優れた高品質・高性能の芳香族ポリカーボネートを、工業的に大量(例えば、1時間あたり1トン以上)に長期間(例えば、1000時間以上、好ましくは3000時間以上、より好ましくは5000時間以上)、安定的に製造できる具体的な方法を提供することにある。ジアルキルカーボネートと芳香族ジヒドロキシ化合物から芳香族ポリカーボネートを製造するにあたり、特定の構造を有する2基の反応蒸留塔を用いてジアリールカーボネートを製造する工程(I)、これを精製して高純度ジアリールカーボネートを取得する工程(II)、次いで、芳香族ジヒドロキシ化合物と該高純度ジアリールカーボネートとから得られる溶融プレポリマーを、特定の構造を有するガイド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程(III)、副生する芳香族モノヒドロキシ化合物を工程(I)にリサイクルする工程(IV)を含む本発明の方法を実施することによって、上記課題が達成できる。  

Description

明 細 書
高品質芳香族ポリカーボネートの工業的製造方法
技術分野
[0001] 本発明は、芳香族ポリカーボネートの工業的製造法に関する。更に詳しくは、本発 明は、ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物から、着色がなく機械的 物性に優れた高品質 ·高性能の芳香族ポリカーボネートを、工業的に大量に長期間 安定的に製造する方法に関する。
背景技術
[0002] 芳香族ポリカーボネートは、耐熱性、耐衝撃性、透明性などに優れたエンジニアリ ングプラスチックスとして、多くの分野において幅広く用いられている。この芳香族ポリ カーボネートの製造方法については、従来種々の研究が行われ、その中で、芳香族 ジヒドロキシ化合物、例えば、 2, 2—ビス(4ーヒドロキシフエ-ル)プロパン(以下、ビ スフエノール Aという)とホスゲンとの界面重縮合法が工業ィ匕されている。しかしながら 、この界面重縮合法においては、有毒なホスゲンを用いなければならないこと、健康 や環境に問題のある塩化メチレンを重合溶媒としてポリカーボネートあたり 10倍以上 もの大量使用しなければならないこと、副生する塩化水素や塩化ナトリウム、及び塩 ィ匕メチレンなどの含塩素化合物により装置が腐食すること、ポリマー物性に悪影響を 及ぼす塩ィ匕ナトリウム、塩化メチレンなどの塩素系残留不純物の分離が困難なこと、 塩化メチレンや未反応ビスフエノール Aなどを含む大量のプロセス廃水の処理が必 要なこと等、多くの課題がある。
[0003] 一方、芳香族ジヒドロキシィ匕合物とジァリールカーボネートとから、芳香族ポリカー ボネートを製造する方法としては、例えば、ビスフエノール Aとジフエ-ルカーボネート を溶融状態でエステル交換し、副生するフエノールを抜き出しながら重合する溶融法 が以前力も知られて 、る。このエステル交換反応は平衡反応であってし力もその平 衡定数が小さいので、フ ノールを溶融物の表面力 効率的に抜き出さない限り重 合が進行しない。溶融法は、界面重縮合法と異なり、溶媒を使用しないなどの利点が ある一方、重合がある程度進行するとポリマーの粘度が急上昇し、副生するフエノー ルなどを効率よく反応系外に抜き出す事が困難になり、実質的に重合度を上げること ができなくなるという芳香族ポリカーボネートそのものに基づく本質的な問題があった 。すなわち、芳香族ポリカーボネートの場合、ポリアミドやポリエステルなど他の縮合 系ポリマーの溶融重縮合の場合と異なり、低分子量状態、例えば重合度 (n)が 15— 20程度であっても、その溶融粘度が極端に高くなり、通常の攪拌では表面更新が非 常に困難になる。そして、ポリマー表面力ものフ ノールの抜出しが実質的に起こら なくなり、製品として必要な重合度 (n= 35— 65程度)のポリマーを製造することがで きない。このことは、当業界ではよく知られていることである。
[0004] 芳香族ポリカーボネートを溶融法で製造するための重合器としては、種々の重合器 が知られて ヽる。攪拌機を備えた縦型の攪拌槽型重合器を用いる方法は一般に広く 知られている。しかしながら、縦型の撹拌槽型重合器は小スケールでは容積効率が 高ぐシンプルであるという利点を有し、効率的に重合を進められるが、工業的規模 では、上述したように重合の進行と共に副生するフエノールを効率的に系外に抜き出 す事が困難となり重合速度が極めて低くなるという問題を有している。さらに、大スケ 一ルの縦型の撹拌槽型重合器は、通常、蒸発面積に対する液容量の比率力 ヽスケ ールの場合に比べて大きくなり、いわゆる液深が大きな状態となる。このため、重合 度を高めるために真空度を高めていっても、撹拌槽の下部は液深があるために、上 部の空間部よりも液深に相当する高い圧力で重合されることになり、フ ノール等は 効率的に抜き出すことが困難になってしまう。したがって、大スケールの縦型の撹拌 槽型重合器は、プレボリマーを製造する場合のみにし力使用することができない。必 要な重合度を達成するためには、このプレボリマーからさらに重縮合反応を進行させ るための重合器が必須である。
[0005] この問題を解決しょうと、高粘度状態のポリマーからフ ノール等を効率的に抜き出 すための種々の工夫がなされている。これらの工夫の大部分は、機械的攪拌の改良 に関するものであり、例えば、ベント部を有するスクリュー型重合器を用いる方法 (特 許文献 1)、嚙合型 2軸押出機を用いる方法 (特許文献 2)、また、薄膜蒸発型反応器 、例えばスクリュー蒸発器や遠心薄膜蒸発器等を用いる方法 (特許文献 3)が記載さ れている。さらに、遠心薄膜型蒸発装置と横型 2軸撹拌式重合器を組み合わせて用 いる方法 (特許文献 4)も具体的に開示されている。これらの方法は、いずれも機械的 攪拌を行うことを技術の根幹としているため、自ずと限界があり、この問題を解決する には至っていない。
[0006] すなわち、超高溶融粘度に対応できる機械的攪拌そのものに限界があるため、芳 香族ポリカーボネートの超高溶融粘度にかかわる種々の問題を解決することができ ないままである。これらの方法では、温度を上げその溶融粘度を少しでも下げること で解決していこうとしている。すなわち、 300°C近くの高温、高真空下で溶融プレポリ マーを機械的攪拌で表面更新を図りながら重合を行うのがこれらの方法であるが、こ の温度でもなおその溶融粘度が非常に高いため、その表面更新の程度を高くするこ とができない。したがって、これらの方法では製造できるポリカーボネートの重合度に 制限があり、高分子量グレードの製品を製造することは困難である。さらに、これらの 方法では 300°C近くの高温で反応させるため、得られるポリマーの着色や物性低下 が起こり易 、ことに加え、攪拌装置の真空シール部からの空気や異物の漏れこみな どによるポリマーの着色や物性低下も起こり易いことなど、高品質のポリカーボネート を長期間安定的に製造するためには、なお多くの解決すべき多くの課題がある。
[0007] 本発明者らは、機械的攪拌を行わな!/、で、溶融プレボリマーをワイヤーなどのガイ ドに沿わせて自重で落下させながら重合させるガイド接触流下式重合器を用いる方 法を開発することによってこれらの課題を完全に解決できることを見出し、先に出願し た (例えば、特許文献 5〜12)。し力しながら、これらの方法には、芳香族ポリカーボ ネートを 1時間あたり 1トン以上生産できるような工業的製造法に関する具体的な方法 の開示や示唆はなされて ヽなかった。
[0008] さらに、エステル交換反応による芳香族ポリカーボネートを工業的規模で製造する ためには、高純度ジァリールカーボネートを工業的規模で大量に入手することが必 要である。芳香族ジヒドロキシィ匕合物、例えば、高純度ビスフエノール Aは、工業的に 大量に製造されており、これを入手することは容易であるが、高純度ジァリールカー ボネートを工業的規模で大量に入手することは、不可能である。したがって、これを 製造する必要がある。
[0009] ジァリールカーボネートの製法としては、芳香族モノヒドロキシ化合物とホスゲンとの 反応による方法が古くから知られており、最近も種々検討されている。しかしながら、 この方法はホスゲン使用の問題に加え、この方法によって製造されたジァリールカー ボネートには分離が困難な塩素系不純物が存在しており、そのままでは芳香族ポリ カーボネートの原料として用いることはできない。なぜならば、この塩素系不純物は、 極微量の塩基性触媒の存在下で行うエステル交換法芳香族ポリカーボネートの重合 反応を著しく阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど 重合を進行させることができない。そのため、エステル交換法芳香族ポリカーボネート の原料とするには、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留など の多段階の面倒な分離'精製工程が必要であり、さらにこのような分離'精製工程で の加水分解ロスや蒸留ロスのため収率が低下するなど、この方法を経済的に見合つ た工業的規模で実施するには多くの課題がある。
[0010] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力しながら、これらのエステ ル交換反応は全て平衡反応であって、しカゝもその平衡が原系に極端に偏って ヽるこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難を伴っていた。
[0011] これを改良するためにいくつかの提案がなされているが、その大部分は、反応速度 を高めるための触媒開発に関するものである。このタイプのエステル交換反応用触媒 として数多くの金属化合物が提案されている。し力しながら、触媒開発だけでは、不 利な平衡の問題を解決できないので、大量生産を目的とする工業的製造法にするた めには、反応方式の検討を含め、非常に多くの検討課題がある。
[0012] 一方、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香 族カーボネート類の収率を向上させる試みもなされている。例えば、ジメチルカーボ ネートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共 沸によって留去する方法 (特許文献 13)、副生してくるメタノールをモレキュラーシー ブで吸着させて除去する方法 (特許文献 14)が提案されている。また、反応器の上部 に蒸留塔を設けた装置によって、反応で副生してくるアルコール類を反応混合物か ら分離させながら同時に蒸発してくる未反応原料との蒸留分離を行う方法も提案され ている(特許文献 15)。
[0013] し力しながら、これらの反応方式は基本的にはバッチ方式力 切り替え方式である。
触媒開発による反応速度の改良もこれらのエステル交換反応に対しては限度があり 、反応速度が遅いことから、連続方式よりもバッチ方式の方が好ましいと考えられてい たからである。これらのなかには、連続方式として蒸留塔を反応器の上部に備えた連 続攪拌槽型反応器 (CSTR)方式も提案されて!ヽるが、反応速度が遅!ヽことや反応 器の気液界面が液容量に対して小さいことから反応率を高くできないなどの問題が ある。したがって、これらの方法で芳香族カーボネートを連続的に大量に、長期間安 定的に製造するという目的を達成することは困難であり、経済的に見合う工業的実施 に至るには、なお多くの解決すべき課題が残されている。
[0014] 本発明者等は、ジアルキルカーボネートと芳香族ヒドロキシィ匕合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 16)、ァ ルキルァリールカーボネートを連続的に多段蒸留塔に供給し、触媒を存在させた該 塔内で連続的に反応させ、副生するジアルキルカーボネートを含む低沸成分を蒸留 によって連続的に抜き出すと共に、生成したジァリールカーボネートを含む成分を塔 下部より抜き出す反応蒸留法 (特許文献 17)、これらの反応を 2基の連続多段蒸留 塔を用いて行 、、副生するジアルキルカーボネートを効率的にリサイクルさせながら ジァリールカーボネートを連続的に製造する反応蒸留法 (特許文献 18)、ジアルキル カーボネートと芳香族ヒドロキシィ匕合物等を連続的に多段蒸留塔に供給し、塔内を 流下する液を蒸留塔の途中段及び Z又は最下段に設けられたサイド抜き出し口より 抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させた後に、該抜き出 し口のある段よりも上部の段に設けられた循環用導入口へ導入することによって、該 反応器内と該蒸留塔内の両方で反応を行う反応蒸留法 (特許文献 19)等、これらの エステル交換反応を連続多段蒸留塔内で反応と蒸留分離とを同時に行う反応蒸留 法を開発し、これらのエステル交換反応に対して反応蒸留方式が有用であることを世 界で初めて開示した。 [0015] 本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ連続的に製造することを可能とする初めてのものであり、その後これらの開示に 基づ 、て、 2基の連続多段蒸留塔を用いてジアルキルカーボネートからジァリール力 ーボネートを製造する方法が提案されて!ヽる (特許文献 20〜26)。
[0016] また、本出願人は、反応蒸留方式にお!、て、多量の触媒を必要とせずに高純度芳 香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸点 物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法 (特許文献 27)や、反応系内の多価芳香族ヒドロキシィ匕合物を触媒金属に対して重量比で 2. 0 以下に保ちながら行う方法 (特許文献 28)を提案した。さらに、本発明者等は、重合 工程で副生するフエノールの 70〜99質量%を原料として用いて、反応蒸留法でジフ ェニルカーボネートを製造しこれを芳香族ポリカーボネートの重合原料とする方法を も提案した (特許文献 29)。
[0017] し力しながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産 (例えば、 1時間あたり 1トン)を可能とす る具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。例えば 、ジメチルカーボネートとフエノールから主としてジフエ-ルカーボネート(DPC)を製 造するために開示された 2基の反応蒸留塔の高さ (H及び H : cm)、直径 (D及び
1 2 1
D : cm)、段数 (n及び n )と反応原料液導入量 (Q及び Q : kgZhr)に関する記述
2 1 2 1 2
は、表 1のとおりである。
[0018] [表 1]
Hi Di Qi H2 D2 π2 Q2 特許 文献
600 25 20 66 600 25 20 23 18
350 2. 8 一 0. 2 305 5-10 15+ 0. 6 21
充填物
500 5 50 0. 6 400 8 50 0. 6 22
100 4 - 1. 4 200 4 - 0. 8 23
300 5 40 1. 5 - 5 25 0. 7 24
1200 20 40 86 600 25 20 31 27
28
600 - 20 66 600 - 20 22 29 [0019] すなわち、この反応を反応蒸留方式で実施するにあたり用いられた 2基の連続多段 蒸留塔の最大のものは、本出願人が特許文献 27、 28において開示したものである。 このようにこの反応用に開示されて!、る連続多段蒸留塔における各条件の最大値は 、 H = 1200cm, H = 600cm, D = 20cm、 D = 25cm、 n =n = 50 (この条件の
1 2 1 2 1 2
み特許文献 22)、 Q = 86kgZhr、 Q = 31kgZhrであり、ジフエ-ルカーボネート
1 2
の生産量は約 6. 7kgZhrに過ぎず、工業的規模の生産量ではな力つた。
[0020] 特許文献 1 特公昭 50 - 19600号公報 (英国特許第 1007302号明細書)
特許文献 2特公昭 52 — 36159号公報
特許文献 3特公昭 53 - 5718号公報 (米国特許第 3, 888, 826号明細書) 特許文献 4特開平 2— 153923号公報
特許文献 5特開平 8— 225641号公報
特許文献 6特開平 8— 225643号公報
特許文献 7特開平 8— 325373号公報
特許文献 8 WO 97- - 22650号公報
特許文献 9特開平 10 —81741号
特許文献 10:特開平 10— 298279号公報
特許文献 ll :WO 99Z36457号公報
特許文献 12 : WO 99Z64492号広報
特許文献 13 :特開昭 54— 48732号公報 (西独特許公開公報第 736063号明細書、 米国特許第 4252737号明細書)
特許文献 14:特開昭 58— 185536号公報 (米国特許第 410464号明細書) 特許文献 15:特開昭 56— 123948号公報 (米国特許第 4182726号明細書) 特許文献 16 :特開平 3— 291257号公報
特許文献 17:特開平 4 9358号公報
特許文献 18 :特開平 4— 211038号公報 (WO 91/09832号公報、欧州特許 046 1274号明細書、米国特許第 5210268号明細書)
特許文献 19 :特開平 4 235951号公報
特許文献 20 :特開平 6— 157424号公報 (欧州特許 0582931号明細書、米国特許 第 5334742号明細書)
特許文献 21 :特開平 6— 184058号公報 (欧州特許 0582930号明細書、米国特許 第 5344954号明細書)
特許文献 22 :特開平 9— 40616号公報
特許文献 23:特開平 9 59225号公報
特許文献 24:特開平 9 - 176094号公報
特許文献 25: WO 00Z18720公報 (米国特許第 6093842号明細書)
特許文献 26:特開 2001— 64235号公報
特許文献 27 :WO 97Z11049公報 (欧州特許 0855384号明細書、米国特許第 5 872275号明細書)
特許文献 28:特開平 11— 92429号公報 (欧州特許 1016648号明細書、米国特許 第 6262210号明細書)
特許文献 29:特開平 9— 255772号公報 (欧州特許 0892001号明細書、米国特許 第 5747609号明細書)
発明の開示
発明が解決しょうとする課題
[0021] 本発明が解決しょうとする課題は、ジアルキルカーボネートと芳香族ジヒドロキシィ匕 合物から、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネー トを、工業的に大量 (例えば、 1時間あたり 1トン以上)に長期間 (例えば、 1000時間 以上、好ましくは 3000時間以上、より好ましくは 5000時間以上)、安定的に製造で きる具体的な方法を提供することにある。
課題を解決するための手段
[0022] 本発明者等は、上記の課題を達成できる具体的な方法を見出すべき検討を重ねた 結果、本発明に到達した。すなわち、本発明は、
1. ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物力も芳香族ポリカーボネー トを連続的に製造し、高品質芳香族ポリカーボネートの工業的製造方法であって、 (I)ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とを原料とし、この原料を触 媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を 同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部 よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート類を含む第 1 塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反 応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内 で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸 点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジァリール力 ーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜 出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続 多段蒸留塔内に連続的に供給することによって、ジァリールカーボネートを連続的に 製造する工程 (I)と、
(II)該ジァリールカーボネートを精製し、高純度ジァリールカーボネートを取得する 精製工程 (Π)と、
(III)該芳香族ジヒドロキシィ匕合物と該高純度ジァリールカーボネートとを反応させて 芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイドの 表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガイ ド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (III)と、
(IV)工程 (III)で副生する芳香族モノヒドロキシィ匕合物をジァリールカーボネート製 造工程 (I)に循環する芳香族モノヒドロキシィ匕合物のリサイクル工程 (IV)と、 を含み、
(a)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、 内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径
11
d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部及び
2 Z又は中間
1
部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L ZD、 n、 D Z d 、D Zd 力 それぞれ式(1)〜(6)を満足するものであり、
11 1 12
1500 ≤ L ≤ 8000 式(1)
100 ≤ D ≤ 2000 式(2) 2 L /D ≤ 40 式 (3)
1 1
20 n ≤ 120 式 (4)
1
5 ≤ 30 式 (5)
3 ≤ 20 式 (6)
(b)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、
2 2
内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い
2
塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径
21
d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間
22
部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 4の導入口を有するものであって、 L
2、 D
2、 L ZD
2 2、 n
2、 D Z 2 d 、D Zd 力 それぞれ式(7)〜(12)を満足するものであり、
1500 ≤ L ≤ 8000 式(7)
2
100 ≤ D ≤ 2000 式(8)
2
2 ≤ L /Ό ≤ 40 式(9)
2 2
10 ≤ n ≤ 80 式(10)
2
2 ≤ D /d ≤ 15 式(11)
2 21
5 ≤ D /d ≤ 30 式(12)
2 22
(c)該ガイド接触流下式重合器が、
(1)溶融プレボリマー受給口、多孔板、該溶融プレボリマーを多孔板を通して重合反 応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面ケ 一シングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方に延 びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた真 空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリカーボ ネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプを有 するものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式( 13)を満足するものであって、
0. 7 ≤ A ≤ 300 式(13) (3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(14)を満足するものであって、
20 ≤ A/B ≤ 1000 式(14)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式( 15)を満足するものであって、
120 ≤ C ≤ 165 式(15)
(5)該ガイドの長さ h (cm)力 式(16)を満足するものであって、
150 ≤ h ≤ 5000 式(16)
(6)該ガイド全体の外部総表面積 S (m2)が式(17)を満足するものである、
2 ≤ S ≤ 50000 式(17)
ことを特徴とする高品質芳香族ポリカーボネートの工業的製造方法、
2. 製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴と する前項 1に記載の方法、
3. 該 d と該 d が式(18)を満足し、且つ該 d と該 d が式(19)を満足することを
11 12 21 22
特徴とする前項 1又は 2に記載の方法、
1 ≤ d /d ≤ 5 式(18)
12 11
1 ≤ d /d ≤ 6 式(19)、
21 22
4. 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd
1 1 1 1 1 1 11 1 12 がそれぞれ
、 2000≤L ≤6000、 150≤D ≤1000、 3≤L /Ό ≤30、 30≤n ≤100、 8≤D /d ≤25、 5≤D /d ≤ 18であり、且つ、該第 2連続多段蒸留塔の L、D
1 11 1 12 2
、 L ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2000≤L ≤6000、 150≤D ≤
2 2 2 2 2 21 2 22 2 2
1000、 3≤L ZD ≤30、 15≤n ≤60、 2. 5≤D /d ≤12、 7≤D /d
2 2 2 2 21 2 22
≤ 25であることを特徴とする前項 1ないし 3のうち何れか一項に記載の方法、
5. 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ
1 1 1 1 1 1 11 1 12
, 2500≤L ≤5000, 200≤D ≤800, 5≤L /Ό ≤15, 40≤n ≤90, 10 ≤D /d ≤25、 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、D
1 11 1 12 2 2
、 L ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2500≤L ≤5000、 200≤D ≤8
2 2 2 2 21 2 22 2 2 00、 5≤L ZD≤15、 20≤n≤50、 3≤D /d ≤10、 9≤D /d ≤20で
2 2 2 2 21 2 22 あることを特徴とする前項 1ないし 4のうち何れか一項に記載の方法、
6. 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔が、それぞれ、該インターナ ルとしてトレイ及び Z又は充填物を有する蒸留塔であることを特徴とする前項 1ないし
5のうち何れか一項に記載の方法、
7. 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔で あり、該第 2連続多段蒸留塔が、該インターナルとして充填物及びトレイの両方を有 する蒸留塔であることを特徴とする前項 6記載の方法、
8. 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔の該トレイのそれぞれが、多 孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする前項 6又は 7記 載の方法、
9. 該多孔板トレイが、該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するも のであることを特徴とする前項 8記載の方法、
10. 該多孔板トレイの孔 1個あたりの断面積力 0. 5〜5cm2であることを特徴とす る前項 8又は 9記載の方法、
11. 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下 部に有する蒸留塔であることを特徴とする前項 6又は 7に記載の方法、
12. 該第 2連続多段蒸留塔の該インターナルの該充填物が、 1基又は 2基以上の 規則充填物であることを特徴とする前項 6ないし 11のうち何れか一項に記載の方法、
13. 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジヱムパック、テクノバ ック、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドか らなる群力も選ばれた少なくとも一種であることを特徴とする前項 12に記載の方法、
14. ジァリールカーボネート精製工程 (II)が、蒸留であることを特徴とする前項 1な いし 13のうち何れか一項に記載の方法、
15. 重合反応ゾーンの側面ケーシンダカ 内径 D (cm)、長さ L (cm)の円筒形であ つて、その下部に接続された底部ケーシングがテーパー形であり、該テーパー形の ケーシングの最下部の排出口が内径 d (cm)の円筒形であって、 D、 L、 d 力 式(20 )、 (21)、 (22)及び (23)を満足する、 100 ≤ D ≤ 1800 式(20)
5 ≤ D/d ≤ 50 式(21)
0. 5 ≤ L/D ≤ 30 式(22) h- 20 ≤ L ≤ h+ 300 式(23) ことを特徴とする前項 1ないし 14のうち何れか一項に記載の方法、
16. 該 hが式 (24)を満足する、
400 < h ≤ 2500 式(24)
ことを特徴とする前項 1ないし 15のうち何れか一項に記載の方法、
17. 1つの該ガイド力 外径 r (cm)の円柱状又は内側に溶融プレボリマーが入ら ないようにしたパイプ状のものであって、 r が式(25)を満足する、
0. 1 ≤ r ≤ 1 式(25)
ことを特徴とする前項 1ないし 16のうち何れか一項に記載の方法、
18. 該ガイド接触流下式重合器 2基以上を連結して重合を行うこと特徴とする前項 1ないし 17のうち何れか一項に記載の方法、
19. 前項 18記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1 重合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を 上げていく方法において、該第 1重合器のガイド全体の外部総表面積 SI (m2)と該 第 2重合器のガイド全体の外部総表面積 S2 (m2)とが式 (26)を満足する、
1 ≤ S1/S2 ≤ 20 式(26)
ことを特徴とする前項 1ないし 18のうち何れか一項に記載の方法、
20. 前項 1〜19のいずれかの方法によって 1時間あたり 1トン以上製造された高品 質芳香族ポリカーボネート、
21. アルカリ金属及び Z又はアルカリ土類金属化合物の含有量力 をこれらの金 属元素に換算して、 0. 1〜0. Olppmであり、且つ、ハロゲン含有量力 lppb以下 であることを特徴とする前項 20記載の高品質芳香族ポリカーボネート、
22. 主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に 分岐している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネー ト結合に対して、 0. 05〜0. 5モル%であることを特徴とする前項 20又は 21記載の 高品質芳香族ポリカーボネート、
を提供する。
発明の効果
[0023] 本発明によれば、ジアルキルカーボネートと芳香族ジヒドロキシ化合物カゝら芳香族 ポリカーボネートを製造するにあたり、特定の構造を有する 2基の反応蒸留塔を用い てジァリールカーボネートを製造する工程 (I)、これを精製して高純度ジァリールカー ボネートを取得する工程 (Π)、次いで、芳香族ジヒドロキシ化合物と該高純度ジァリー ルカーボネートとから得られる溶融プレボリマーを、特定の構造を有するガイド接触 流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (III)、副生する芳香 族モノヒドロキシィ匕合物を工程 (I)にリサイクルする工程 (IV)を含む本発明の方法を 実施することによって、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリ カーボネートが、高い重合速度で、 1時間当り 1トン以上の工業的規模で製造できる ことが見出された。し力も分子量のバラツキが少なぐ長期間、たとえば 2000時間以 上、好ましくは 3000時間以上、さらに好ましくは 5000時間以上、安定的に高品質芳 香族ポリカーボネートが製造できることも見出された。従って、本発明は高品質芳香 族ポリカーボネートの工業的製造方法として極めて優れた効果のある方法である。 発明を実施するための最良の形態
[0024] 以下、本発明について具体的に説明する。
本発明では、先ず、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物からジァ リールカーボネートを工業的規模で連続的に製造する工程 (I)が行われる。
工程 (I)で用いられるジアルキルカーボネートとは、一般式(27)で表されるものであ る。
RaOCOORa 式(27)
[0025] ここで、 Raは、炭素数 1〜10のアルキル基、炭素数 3〜10の脂環族基、炭素数 6〜 10のアラールキル基を表す。このような Raとしては、例えば、メチル、ェチル、プロピ ル (各異性体)、ァリル、ブチル (各異性体)、ブテニル (各異性体)、ペンチル (各異 性体)、へキシル (各異性体)、ヘプチル (各異性体)、ォクチル (各異性体)、ノニル ( 各異性体)、デシル(各異性体)、シクロへキシルメチル等のアルキル基;シクロプロピ ル、シクロブチル、シクロペンチル、シクロへキシル、シクロへプチル等の脂環族基; ベンジル、フ ネチル(各異性体)、フ ニルプロピル(各異性体)、フ 二ルブチル( 各異性体)、メチルベンジル (各異性体)等のアラールキル基が挙げられる。なお、こ れらのアルキル基、脂環族基、アラールキル基において、他の置換基、例えば低級 アルキル基、低級アルコキシ基、シァノ基、ハロゲン等で置換されていてもよいし、不 飽和結合を有して 、てもよ 、。
[0026] このような Raを有するジアルキルカーボネートとしては、例えば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテニルカーボネート(各異性体)、ジブチルカーボネート (各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート (各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート (各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチルカーボネート(各異性体)、ジ(フエ-ルプロピル)カーボネート(各 異性体)、ジ(フエ-ルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボネ ート(各異性体)、ジ (メトキシベンジル)カーボネート(各異性体)、ジ (メトキシメチル) カーボネート、ジ (メトキシェチル)カーボネート(各異性体)、ジ (クロロェチル)カーボ ネート (各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。
[0027] これらの中で、本発明において好ましく用いられるのは、 Raがハロゲンを含まない炭 素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好まし!/、のは ジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さらに 好ま 、のは、ハロゲンを実質的に含まな!/、状態で製造されたジアルキルカーボネ ートであって、例えばハロゲンを実質的に含まないアルキレンカーボネートとハロゲン を実質的に含まないアルコール力も製造されたものである。
[0028] 工程 (I)で用いられる芳香族モノヒドロキシィ匕合物とは、下記一般式(28)で表され るものであり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様な ものであってもよい。
Ar3OH 式(28) ここで Ar3は炭素数 5〜30の芳香族基を表す。このような Ar3を有する芳香族モノヒ ドロキシ化合物としては、例えば、フエノール、タレゾール (各異性体)、キシレノール( 各異性体)、トリメチルフ ノール (各異性体)、テトラメチルフ ノール (各異性体)、ェ チルフ ノール(各異性体)、プロピルフ ノール(各異性体)、ブチルフ ノール(各 異性体)、ジェチルフヱノール (各異性体)、メチルェチルフエノール (各異性体)、メ チルプロピルフエノール(各異性体)、ジプロピルフエノール(各異性体)、メチルブチ ルフ ノール(各異性体)、ペンチルフ ノール(各異性体)、へキシルフ ノール(各 異性体)、シクロへキシルフェノール (各異性体)等の各種アルキルフエノール類;メト キシフヱノール (各異性体)、エトキシフヱノール (各異性体)等の各種アルコキシフエ ノール類;フエ-ルプロピルフエノール(各異性体)等のァリールアルキルフエノール 類;ナフトール (各異性体)及び各種置換ナフトール類;ヒドロキシピリジン (各異性体) 、ヒドロキシクマリン (各異性体)、ヒドロキシキノリン (各異性体)等のへテロ芳香族モノ ヒドロキシィ匕合物類等が用いられる。
[0029] これらの芳香族モノヒドロキシィ匕合物は、 1種又はそれ以上の混合物として用いるこ とができる。これらの芳香族モノヒドロキシィ匕合物の中で、本発明において好ましく用 いられるのは、 Ar3が炭素数 6から 10の芳香族基力もなる芳香族モノヒドロキシィ匕合 物であり、特に好ましいのはフエノールである。また、これらの芳香族モノヒドロキシィ匕 合物の中で、本発明において好ましく用いられるのは、ハロゲンを実質的に含まない ものである。したがって、本発明でいうジァリールカーボネートとは、一般的には下記 ィ匕 1で表されるものである。
[0030] [化 1] ίί .
A r' -'OCO-A r'
[0031] (式中、 Ar3、 Ar4はそれぞれ 1価の芳香族基を表す。 )
Ar3及び Ar4は、 1価の炭素環式又は複素環式芳香族基を表すが、この Ar3、 Ar4に おいて、 1つ以上の水素原子が、反応に悪影響を及ぼさない他の置換基、例えば、 ハロゲン原子、炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基、フエ-ル 基、フエノキシ基、ビュル基、シァノ基、エステル基、アミド基、ニトロ基などによって置 換されたものであってもよい。 Ar3、 Ar4は同じものであってもよいし、異なるものであつ てもよい。 1価の芳香族基 Ar3及び Ar4の代表例としては、フエニル基、ナフチル基、 ビフエ-ル基、ピリジル基を挙げことができる。これらは、上述の 1種以上の置換基で 置換されたものでもよい。好ましい Ar3及び Ar4としては、それぞれ例えば、下記化 2 に示されるものなどが挙げられる。
[0032] [化 2]
Figure imgf000019_0001
[0033] 特に好ましいジァリールカーボネートは、下記化 3で示される置換又は非置換のジ フエ-ルカーボネートである。
[0034] [化 3]
Figure imgf000019_0002
[0035] (式中、 R9及び R1C>は、各々独立に水素原子、炭素数 1〜10を有するアルキル基、炭 素数 1〜10を有するアルコキシ基、環構成炭素数 5〜 10のシクロアルキル基又はフ ェニル基を示し、 p及び qは 1〜5の整数で、 pが 2以上の場合には、各 R9はそれぞれ 異なるものであってもよいし、 qが 2以上の場合には、各 R1Gは、それぞれ異なるもので あってもよい。 )
このジァリールカーボネート類の中でも、非置換のジフエ-ルカーボネートや、ジトリ ルカーボネート、ジー t ブチルフエ-ルカーボネートのような低級アルキル置換ジフ ェニルカーボネートなどの対称型ジァリールカーボネートが好まし 、が、特に好まし いのは、もっとも簡単な構造のジフエ-ルカーボネートが好適である。これらのジァリ ールカーボネート類は単独で用いてもょ 、し、 2種以上を組み合わせて用いてもょ ヽ
[0036] 工程 (I)で原料として用いられるジアルキルカーボネートの芳香族モノヒドロキシ化 合物に対する量比はモル比で、 0. 1〜10であることが好ましい。この範囲外では、 目 的とするのジァリールカーボネートの所定生産量に対して、残存する未反応の原料 が多くなり、効率的でないし、またそれらを回収するために多くのエネルギーを要する 。この意味で、このモル比は、 0. 5〜5がより好ましぐさらに好ましくは 0. 8〜3であり 、最も好ましくは、 1〜2である。
[0037] 本発明においては、 1時間あたり 1トン以上の芳香族ポリカーボネートを連続的に製 造するのである力 そのためには 1時間あたり約 0. 85トン以上の高純度ジァリール力 ーボネートを連続的に製造する必要がある。したがって、工程 (I)において、連続的 に供給される芳香族モノヒドロキシィ匕合物の最低量は、製造すべき芳香族ポリカーボ ネートの量(Pトン Zhr)に対して、通常 15Pトン Zhrであり、好ましくは 13Pトン Zhr、 より好ましくは 1 OPトン Zhrである。さらに好ましくは 8Pトン Zhrよりも少なくできる。
[0038] なお、工程 (I)にお 、て原料として用いられるジアルキルカーボネートと芳香族モノ ヒドロキシィ匕合物はそれぞれ純度の高 、ものであっても 、が、他の化合物を含むも のであってもよぐ例えば、第 1連続多段蒸留塔及び Z又は第 2連続多段蒸留塔で 生成する化合物や反応副生物を含むものであってもよい。工業的に実施する場合、 これらの原料として、新規に反応系に導入されるジアルキルカーボネートと芳香族モ ノヒドロキシィ匕合物に加え、第 1連続多段蒸留塔及び Z又は第 2連続多段蒸留塔か ら回収されたものをも使用することが好ましい。本発明の方法では、第 2連続多段蒸 留塔での低沸点反応混合物である塔頂成分が第 1連続多段蒸留塔に供給される。 この場合、第 2塔低沸点反応混合物はそのままで第 1連続多段蒸留塔に供給しても よいし、成分の一部を分離した後に供給してもよい。
[0039] したがって、工業的に実施する本発明においては、第 1連続多段蒸留塔に供給さ れる原料中には、アルコール類、アルキルァリールカーボネート、ジァリールカーボネ ート、アルキルァリールエーテルなどが含まれているものが好ましぐさらには生成物 であるアルキルァリールカーボネートゃジァリールカーボネートのフリース転移生成 物やその誘導体などの高沸点副生物を少量含むものであっても好ましく用いられる。 本発明において、例えば、ジアルキルカーボネートとしてジメチルカーボネートを、芳 香族モノヒドロキシ化合物としてフエノールを原料にして、メチルフエ-ルカーボネート 及びジフエ二ルカーボネートを製造する場合、その原料中に反応生成物であるメチ ルアルコールや、メチルフエ-ルカーボネート及びジフエ-ルカーボネートを含んで いることが好ましぐさらには反応副生物であるァニソールゃサリチル酸フエニル、サリ チル酸メチルやこれら力 誘導される高沸点副生物を少量含んで 、てもよ 、。
[0040] さら〖こ、工程 (I)で使用される芳香族モノヒドロキシィ匕合物の大部分は、本発明のェ 程 (ΠΙ)で副生する芳香族モノヒドロキシィ匕合物力も成って 、る。この副生芳香族モノ ヒドロキシィ匕合物は工程 (IV)によって、工程 (I)に循環されることが必要である。
[0041] 工程 (I)にお!/、て製造されるジァリールカーボネートは、ジアルキルカーボネートと 芳香族モノヒドロキシィ匕合物とのエステル交換反応によって得られる力 このエステル 交換反応には、ジアルキルカーボネートの 1つ又は 2つのアルコキシ基が芳香族モノ ヒドロキシィ匕合物のァリーロキシ基と交換されアルコール類を離脱する反応と、生成し たアルキルァリールカーボネート 2分子間のエステル交換反応である不均化反応に よってジァリールカーボネートとジアルキルカーボネートに変換される反応が含まれ ている。工程 (I)の第 1連続多段蒸留塔においては、主としてアルキルァリールカー ボネートが得られ、第 2連続多段蒸留塔においては、主としてこのアルキルァリール カーボネートの不均化反応よつて、ジァリールカーボネートとジアルキルカーボネート が得られる。工程 (I)で得られたジァリールカーボネートは、ハロゲンを全く含まない ため、本発明の芳香族ポリカーボネートを工業的に製造するときの原料として重要で ある。なぜならば、重合原料中にハロゲンがたとえば lppmよりも少ない量であっても 存在しておれば、重合反応を阻害するし、芳香族ポリカーボネートの安定製造を阻 害するし、し力も生成した芳香族ポリカーボネートの物性低下や、着色の原因となる 力 である。
[0042] 工程 (I)の第 1連続多段蒸留塔及び Z又は第 2連続多段蒸留塔で使用される触媒 としては、例えば下記の化合物力 選択される;
<鉛化合物 >
PbO、 PbO、 Pb O等の酸化鉛類;
2 3 4
PbS、Pb S等の硫化鉛類;
2
Pb(OH)、 Pb O (OH)等の水酸化鉛類;
2 2 2 2
Na PbO、 K PbO、 NaHPbO、 KHPbO等の亜ナマリ酸塩類;
2 2 2 2 2 2
Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、 Ca PbO、 CaPbO
2 3 2 2 4 2 3 2 6 4 4 2 4 等の鉛酸塩類;
PbCO、 2PbCO -Pb(OH)等の鉛の炭酸塩及びその塩基性塩類;
3 3 2
Pb(OCOCH) 、Pb(OCOCH) 、Pb(OCOCH) -PbO'3H O等の有機酸の
3 2 3 4 3 2 2 鉛塩及びその炭酸塩や塩基性塩類;
Bu Pb、 Ph Pb、 Bu PbCl、 Ph PbBr、 Ph Pb (又は Ph Pb ) , Bu PbOH、 Ph Pb
4 4 3 3 3 6 2 3 3
O等の有機鉛ィ匕合物類 (Buはブチル基、 Phはフエ二ル基を示す。 );
Pb(OCH) 、(CH 0)Pb(OPh)、 Pb(OPh)等のアルコキシ鉛類、ァリールォキ
3 2 3 2
シ鉛類;
Pb— Na、 Pb— Ca、 Pb— Ba、 Pb— Sn、 Pb— Sb等の鉛の合金類;
ホウェン鉱、センァェン鉱等の鈴鉱物類、及びこれらの鉛ィ匕合物の水和物;
<銅族金属の化合物 >
CuCl、 CuCl、 CuBr, CuBr、 Cul、 Cul、 Cu(OAc)、 Cu(acac)、ォレイン酸
2 2 2 2 2
銅、 Bu Cu、 (CH O) Cu、 AgNO、 AgBr、ピクリン酸銀、 AgC H CIO、 [AuC≡
2 3 2 3 6 6 4
C-C(CH) ]n、 [Cu(CH )C1]等の銅族金属の塩及び錯体(acacはァセチルァ
3 3 7 8 4
セトンキレート配位子を表す。 );
<アルカリ金属の錯体 >
Li(acac)、 LiN(C H )等のアルカリ金属の錯体;
4 9 2
<亜鉛の錯体 >
Zn(acac)等の亜鉛の錯体;
2
<カドミウムの錯体 >
Cd(acac)等のカドミウムの錯体; <鉄族金属の化合物 >
Fe (C H ) (CO)、 Fe (CO) 、 Fe (C H ) (CO) 、 Co (メシチレン) (PEt Ph) 、 C
10 8 5 5 4 6 3 2 2 2 oC F (CO) 、 Ni- π -C H NO、フエ口セン等の鉄族金属の錯体;
5 5 7 5 5
<ジルコニウム錯体 >
Zr (acac) ,ジルコノセン等のジルコニウムの錯体;
4
<ルイス酸類化合物 >
A1X、 TiX , TiX、 VOX、 VX、 ZnX、 FeX、 SnX (ここで Xはハロゲン、ァセト
3 3 4 3 5 2 3 4
キシ基、アルコキシ基、ァリールォキシ基である。)等のルイス酸及びルイス酸を発生 する遷移金属化合物;
<有機スズ化合物 >
(CH ) SnOCOCH、(C H ) SnOCOC H、 Bu SnOCOCH、 Ph SnOCOC
3 3 3 2 5 3 6 5 3 3 3
H、 Bu Sn (OCOCH ) 、 Bu Sn (OCOC H ) 、 Ph SnOCH、(C H ) SnOPh
3 2 3 2 2 11 23 2 3 3 2 5 3
、 Bu Sn (OCH )、 Bu Sn (OC H ) , Bu Sn (OPh) 、 Ph Sn (OCH ) 、(C H ) S
2 3 2 2 2 5 2 2 2 2 3 2 2 5 3 nOH、 Ph SnOH、 Bu SnO、 (C H ) SnO、 Bu SnCl、 BuSnO (OH)等の有機
3 2 8 17 2 2 2
スズ化合物;
等の金属含有化合物が触媒として用いられる。これらの触媒は多段蒸留塔内に固定 された固体触媒であっても ヽし、反応系に溶解する可溶性触媒であってもよ 、。
[0043] もちろん、これらの触媒成分が反応系中に存在する有機化合物、例えば、脂肪族 アルコール類、芳香族モノヒドロキシ化合物類、アルキルァリールカーボネート類、ジ ァリールカーボネート類、ジアルキルカーボネート類等と反応したものであってもよ!/ヽ し、反応に先立って原料や生成物で加熱処理されたものであってもよい。
[0044] 工程 (I)を反応系に溶解する可溶性触媒で実施する場合は、これらの触媒は、反 応条件にお 、て反応液への溶解度の高!、ものであることが好ま 、。この意味で好 ましい触媒としては、例えば、 PbO、 Pb (OH)、 Pb (OPh) ; TiCl、 Ti(OMe) 、(M
2 2 4 4 eO)Ti (OPh) 、(MeO) Ti (OPh) 、(MeO) Ti(OPh)、 Ti(OPh) ; SnCl、Sn(
3 2 2 3 4 4
OPh)、 Bu SnO、 Bu Sn (OPh) ; FeCl、 Fe (OH)、 Fe (OPh)等、又はこれらを
4 2 2 2 3 3 3 フエノール又は反応液等で処理したもの等が挙げられる。第 1連続多段蒸留塔で用 いられる触媒と第 2連続多段蒸留塔で用いられる触媒は同じ種類であっても、異なる 種類のものであってもよ 、。
工程 (I)において用いられる該第 1連続多段蒸留塔とは、長さ L (cm)、内径 D (c m)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をしてお り、塔頂部又はそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそ
11
れに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって
12
塔の上部及び Z又は中間部に 1つ以上の第 1の導入口、該液抜出し口より上部であ つて塔の中間部及び Z又は下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L ZD、 n、 D Zd 、 D Zd 力 それぞれ、式(1)〜(6)を満足するも
1 1 1 1 1 1 11 1 12
のであることが必要である;
1500 < L ≤ 8000
1 式 (1)
100 < D ≤ 2000 式 (2)
1
2 < L /Ό ≤ 40 式 (3)
1 1
20 < n ≤ 120 式 (4)
1
5 < D /ά ≤ 30 式 (5)
1 11
3 < D /ά ≤ 20 式 (6)。
1 12
また、工程 (I)において用いられる第 2連続多段蒸留塔とは、長さ L (cm) ,内径 D
2 2
(cm)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をして
2
おり、塔頂部又はそれに近い塔の上部に内径 d (cm)
21 のガス抜出し口、塔底部又は それに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であつ
22
て塔の上部及び Z又は中間部に 1つ以上の第 3の導入口、該液抜出し口より上部で あって塔の中間部及び Z又は下部に 1つ以上の第 4の導入口を有するものであって 、L、D、L ZD、n、D Zd 、 D Zd 力 それぞれ式(7)〜(12)を満足するも のであることが必要である;
1500 ≤ L ≤ 8000 式(7)
2
100 ≤ D ≤ 2000 式(8)
2
2 ≤ L /Ό ≤ 40 式(9)
2 2
10 ≤ n ≤ 80 式(10)
2
2 ≤ Ό /d ≤ 15 式(11) 5 ≤ D /d ≤ 30 式(12)。
2 22
[0047] 式(1)〜(12)の全てを同時に満足する第 1連続多段蒸留塔及び第 2連続多段蒸 留塔を用いることによって、ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物と から、ジァリールカーボネートを 1時間あたり約 0. 85トン以上、好ましくは 1トン以上の 工業的規模で、高選択率'高生産性で、例えば 2000時間以上、好ましくは 3000時 間以上、より好ましくは 5000時間以上の長期間、安定的に製造できることが見出さ れたのである。本発明の方法を実施することによって、このような優れた効果を有する 工業的規模での芳香族カーボネートの製造が可能になった理由は明らかではない 力 式(1)〜(12)の条件が組み合わさった時にもたらされる複合効果のためであると 推定される。なお、工程 (I)で用いる連続多段蒸留塔を構成する各々の要因の好まし い範囲は下記に示される。
[0048] L (cm)及び L (cm)がそれぞれ 1500より小さいと、反応率が低下するため目的と
1 2
する生産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備 費を低下させるには、 L及び Lを、それぞれ、 8000以下にすることが必要である。よ
1 2
り好ましい L (cm)及び L (cm)の範囲は、それぞれ、 2000≤L ≤6000 及び 20
1 2 1
00≤L ≤6000 であり、さらに好ましくは、 2500≤L ≤5000 及び 2500≤L ≤5
2 1 2
000 である。
[0049] D (cm)及び D (cm)がそれぞれ 100よりも小さいと、目的とする生産量を達成でき
I 2
ないし、目的の生産量を達成しつつ設備費を低下させるには、 D
1及び D
2をそれぞれ
2000以下にすることが必要である。より好ましい D (cm)及び D (cm)の範囲は、そ
1 2
れぞれ 150≤D ≤1000 及び 150≤D ≤1000 であり、さらに好ましくは、それぞ
1 2
れ 200≤D ≤800 及び 200≤D ≤ 800である。なお、第 1連続多段蒸留塔及び第
1 2
2連続多段蒸留塔において、 D及び Dが上記の範囲にある限り、塔の上部から下部
1 2
までそれぞれ同じ内径であってもよいし、部分的に内径が異なっていてもよい。例え ば、これらの連続多段蒸留塔において、塔上部の内径が塔下部の内径よりも小さくて ちょいし、大さくてちょい。
[0050] L /Ό 及び L ZD 力 それぞれ 2より小さい時や 40より大きい時は安定運転
I I 2 2
が困難となり、特に 40より大きいと塔の上下における圧力差が大きくなりすぎるため、 長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないた め、副反応が起こりやすくなり選択率の低下をもたらす。より好ましい L ZD 及び L
1 1 2
/Ό の範囲はそれぞれ、 3≤L ZD ≤30 及び 3≤L /Ό ≤30 であり、さらに
2 1 1 2 2
好ましくは、 5≤L /Ό ≤15 及び 5≤L /Ό ≤ 15である。
1 1 2 2
[0051] nが 20より小さいと反応率が低下するため第 1連続多段蒸留塔での目的とする生 産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備費を低 下させるには、 nを 120以下にすることが必要である。さらに n力 よりも大きいと 塔の上下における圧力差が大きくなりすぎるため、第 1連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 30≤n≤1 00 であり、さらに好ましくは、 40≤n≤90 である。
[0052] また、 nが 10より小さいと反応率が低下するため第 2連続多段蒸留塔での目的とす
2
る生産量を達成できないし、目的の生産量を達成できる反応率を確保しつつ設備費 を低下させるには、 nを 80以下にすることが必要である。さらに nが 80よりも大きいと
2 2
塔の上下における圧力差が大きくなりすぎるため、第 2連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 15≤n≤6
2 2
0 であり、さらに好ましくは、 20≤n≤50 である。
2
[0053] D /ά 力 より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく大量の
1 11
ガス成分が系外に出やすくなるため、第 1連続多段蒸留塔の安定運転が困難になり 、 30よりも大きいとガス成分の抜出し量が相対的に小さくなり、安定運転が困難にな るだけでなぐ反応率の低下をもたらす。より好ましい D /ά の範囲は、 8≤D /ά
1 11 1
≤25 であり、さらに好ましくは、 10≤D Zd ≤20 である。また、 D Zd 力 ¾より
11 1 11 2 21 小さいと第 2連続多段蒸留塔の設備費が高くなるだけでなく大量のガス成分が系外 に出やすくなるため、第 2連続多段蒸留塔の安定運転が困難になり、 15よりも大きい とガス成分の抜出し量が相対的に小さくなり、安定運転が困難になるだけでなぐ反 応率の低下をもたらす。より好ましい D Zd の範囲は、 5≤D Zd ≤12 であり、
2 21 2 21
さらに好ましくは、 3≤D Zd ≤10 である。 [0054] D /ά 力^より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく液抜出
1 12
し量が相対的に多くなり、第 1連続多段蒸留塔の安定運転が困難になり、 20よりも大 きいと液抜出し口や配管での流速が急激に速くなりエロージョンを起こしやすくなり装 置の腐食をもたらす。より好ましい D ≤D Zd ≤18 であり、さら
1 Zd の範囲は、 5
12 1 12
に好ましくは、 7≤D Zd ≤15 である。また、 D Zd 力 より小さいと第
1 12 2 22 2連続多 段蒸留塔の設備費が高くなるだけでなく液抜出し量が相対的に多くなり、第 2連続多 段蒸留塔の安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が 急激に速くなりエロ—ジョンを起こしやすくなり装置の腐食をもたらす。より好ましい D
2
Zd の範囲は、 7≤D Zd ≤25 であり、さらに好ましくは、 9≤D Zd ≤20 で
22 2 22 2 22 ある。
[0055] さらに、工程 (I)では、該 d と該 d が式(18)を満足し、且つ該 d と該 d が式(19
11 12 21 22
)を満足する場合、さらに好ましいことがわ力つた。
l≤d /ά ≤5 式(18)
12 11
l≤d /ά ≤6 式(19)
21 22
[0056] 工程 (I)で 、う長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、より 好ましくは 5000時間以上、フラッデイングや、配管のつまりやエロージョンなどがなく 、運転条件に基づいた定常状態で運転が継続でき、高選択率を維持しながら、所定 量のジァリールカーボネートが製造されていることを意味する。
[0057] 工程 (I)では、 1時間あたり好ましくは 1トン以上の高生産性でジァリールカーボネー トを高選択率で長期間安定的に生産することを特徴としているが、より好ましくは 1時 間あたり 2トン以上、さらに好ましくは 1時間あたり 3トン以上のジァリールカーボネート を生産することにある。また、工程 (I)では、第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd 力 それぞれ、 2000≤L ≤6000、 150≤D ≤1000、 3
1 1 11 1 12 1 1
≤L ZD ≤30、 30≤n≤100、 8≤D /ά ≤25、 5≤D /d ≤18であって
1 1 1 1 11 1 12
、第 2連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd 1S それぞれ、 20
2 2 2 2 2 2 21 2 22
00≤L ≤6000、 150≤D ≤1000、 3≤L /Ό ≤30、 15≤n≤60、 2. 5
2 2 2 2 2
≤D /d ≤12、 7≤D /d ≤ 25の場合は、 1時間あたり 2トン以上、好ましくは 1時
2 21 2 22
間あたり 2. 5トン以上、より好ましくは 1時間あたり 3トン以上のジァリールカーボネート を製造することを特徴とするものである。
[0058] さらに、工程 (I)では、第 1連続多段蒸留塔の! ^、 L^D^ ι Ό ά^ Ό / d 力それぞれ、 2500≤L ≤ 5000、 200≤D ≤800, 5≤L /Ό ≤15, 40
12 1 1 1 1
≤n ≤90、 10≤D /d ≤25、 7≤D /d ≤ 15であって、第 2連続多段蒸留
1 1 11 1 12
塔の L 、 D 、 L ZD 、 n 、 D Zd 、 D Zd がそれぞれ、 2500≤L ≤5000、 2
2 2 2 2 2 2 21 2 22 2
00≤D ≤800、 5≤L /Ό ≤10、 20≤n ≤50、 3≤D /d ≤10、 9≤D
2 2 2 2 2 21 2
Zd ≤20の場合は、 1時間あたり 3トン以上、好ましくは 1時間あたり 3. 5トン以上、
22
より好ましくは 1時間あたり 4トン以上のジァリールカーボネートを製造することを特徴 とするちのである。
[0059] 工程 (I)で 、うジァリールカーボネートの選択率とは、反応した芳香族モノヒドロキシ 化合物に対するものであって、工程 (I)では通常 95%以上の高選択率であり、好まし くは 97%以上、より好ましくは 98%以上の高選択率を達成することができる。
[0060] 工程 (I)で用いられる第 1連続多段蒸留塔及び第 2連続多段蒸留塔は、インターナ ルとしてトレイ及び Z又は充填物を有する蒸留塔であることが好まし 、。本発明で 、う インターナルとは、蒸留塔において実際に気液の接触を行わせる部分のことを意味 する。このようなトレイとしては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流ト レイ、スーパーフラックトレイ、マックスフラックトレイ等が好ましぐ充填物としては、ラ シヒリング、レッシングリング、ポールリング、ベルルサドル、インタロックスサドル、ディ クソンパッキング、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、 ジェムパック、テクノバック、フレキシパック、スノレザーパッキング、グッドロールパツキ ング、グリッチグリッド等の規則充填物が好ましい。トレイ部と充填物の充填された部 分とを合わせ持つ多段蒸留塔も用いることができる。なお、本発明でいう「インターナ ルの段数 n」とは、トレイの場合はトレイの数を意味し、充填物の場合は、理論段数を 意味する。したがって、トレイ部と充填物の充填された部分とを合わせてもつ多段蒸 留塔の場合、 nはトレイの数と理論段数の合計である。
[0061] 工程 (I)の第 1連続多段蒸留塔においては、主としてジアルキルカーボネートと芳 香族モノヒドロキシィ匕合物からアルキルァリールカーボネートを生成させる反応が行 われるが、この反応は平衡定数が極端に小さぐし力も反応速度が遅いので、反応蒸 留に用いる第 1連続多段蒸留塔としては、インターナルがトレイである棚段式蒸留塔 力 り好ましいことが見出された。また、第 2連続多段蒸留塔においては主として、該 アルキルァリールカーボネートを不均化させる反応が行われる力 この反応も平衡定 数が小さぐしかも反応速度が遅い。しかしながら、反応蒸留に用いる第 2連続多段 蒸留塔としては、インターナルが充填物及びトレイの両方を有する蒸留塔がより好ま しいことが見出された。さらに、第 2連続多段蒸留塔としては、上部に充填物、下部に トレィを設置したものが好ましいことも見出された。第 2連続多段蒸留塔の該充填物 は規則充填物が好ましぐ規則充填物のなかでもメラパックが特に好ましいことも見出 された。
[0062] さらに、第 1連続多段蒸留塔及び第 2連続多段蒸留塔に、それぞれ設置される該ト レイが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費との関係で特 に優れていることが見出された。そして、該多孔板トレイが該多孔板部の面積 lm2あ たり 100〜: LOOO個の孔を有して 、ることが好ま 、ことも見出された。より好まし!/ヽ孔 数は該面積 lm2あたり 120〜900個であり、さらに好ましくは、 150〜800個である。 また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいこと も見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好ま しくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜1000個の孔を有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2である 場合、特に好ましいことが見出された。連続多段蒸留塔に上記の条件を付加すること によって、本発明の課題が、より容易に達成されることが判明したのである。
[0063] 工程 (I)を実施する場合、原料であるジアルキルカーボネートと芳香族モノヒドロキ シ化合物とを触媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内 で反応と蒸留を同時に行!、、生成するアルコール類を含む第 1塔低沸点反応混合 物を該第 1塔上部よりガス状で連続的に抜出し、生成するアルキルァリールカーボネ 一ト類を含む第 1塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、 該第 1塔高沸点反応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供 給し、該第 2塔内で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を 含む第 2塔低沸点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成す るジァリールカーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状 で連続的に抜出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合 物を第 1連続多段蒸留塔内に連続的に供給することによって、ジァリールカーボネー トが連続的に製造される。この原料中には、反応生成物であるアルコール類、アルキ ルァリールカーボネート、ジァリールカーボネートやアルキルァリールエーテルや高 沸点化合物などの反応副生物が含まれて 、ても 、 、ことは前述のとおりである。他の 工程での分離'精製にカゝかる設備、費用のことを考慮すれば、実際に工業的に実施 する本発明の場合は、これらの化合物を少量含んでいることが好ましい。
[0064] 工程 (I)にお!/、て、原料であるジアルキルカーボネートと芳香族モノヒドロキシ化合 物を第 1連続多段蒸留塔内に連続的に供給するには、該第 1蒸留塔の上部のガス 抜出し口よりも下部であるが塔の上部又は中間部に設置された 1箇所又は数箇所の 導入口から、液状及び Z又はガス状で供給してもよいし、芳香族モノヒドロキシィ匕合 物を多く含む原料を該第 1蒸留塔の上部の導入口から液状で供給し、ジアルキル力 ーボネートを多く含む原料を該第 1蒸留塔の下部の液抜出し口よりも上部であって塔 の下部に設置された導入口力もガス状で供給することも好まし 、方法である。
[0065] また、工程 (I)においては、第 1連続多段蒸留塔下部より連続的に抜き出されるァ ルキルァリールカーボネート類を含む第 1塔高沸点反応混合物が第 2連続多段蒸留 塔に連続的に供給されるが、その供給位置は第 2蒸留塔の上部のガス抜出し口より も下部であるが塔の上部又は中間部に設置された 1箇所又は数箇所の導入口から、 液状及び Z又はガス状で供給することが好ましい。また、本発明の好ましい実施態 様では、第 2蒸留塔として、上部に充填物部、下部にトレィ部を有する蒸留塔を用い る場合、導入口の少なくとも 1箇所は充填物部とトレィ部との間に設置されることが好 ましい。さらに、充填物が 2基以上の複数の規則充填物からなっている場合は、これ らの複数の規則充填物を構成する間隔に導入口を設置することも好まし ヽ方法であ る。
[0066] また、工程 (I)にお 、て第 1連続多段蒸留塔及び第 2連続多段蒸留塔の塔頂ガス 抜き出し成分をそれぞれ凝縮した後、その一部をそれぞれの蒸留塔上部にもどす還 流操作を実施することも好ましい方法である。この場合、第 1連続多段蒸留塔の還流 比は 0〜10、であり、第 2連続多段蒸留塔の還流比は 0. 01〜: LOの範囲、好ましくは 0. 08〜5、より好ましくは、 0. 1から 2の範囲である。第 1連続多段蒸留塔では還流 操作をしな 、還流比 0も好まし 、実施態様である。
[0067] 工程 (I)において、第 1連続多段蒸留塔内に触媒を存在させる方法はどのようなも のであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 1連続多段蒸 留塔内の段に設置する方法や、充填物状にして設置する方法などによって塔内に固 定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該第 1蒸留 塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場合、原料 又は反応液に溶解させた触媒液を原料と一緒に導入してもよ 、し、原料とは別の導 入口力もこの触媒液を導入してもよい。本発明の第 1連続多段蒸留塔で用いる触媒 の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに反応圧力 などの反応条件の違いによっても異なるが、原料の合計質量に対する割合で表して 、通常 0. 0001〜30質量0 /0、好まし <は 0. 0005〜10質量0 /0、より好まし <は 0. 00 1〜1質量%で使用される。
[0068] また、工程 (I)において、第 2連続多段蒸留塔内に触媒を存在させる方法はどのよ うなものであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 2連続 多段蒸留塔内の段に設置する方法や、充填物状にして設置する方法などによって 塔内に固定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該 第 2蒸留塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場 合、原料又は反応液に溶解させた触媒液を原料と一緒に導入してもよいし、原料と は別の導入口カゝらこの触媒液を導入してもよ ヽ。本発明の第 2連続多段蒸留塔で用 いる触媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに 反応圧力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合 で表して、通常 0. 0001〜30質量0 /0、好ましくは 0. 0005〜10質量0 /0、より好ましく は 0. 001〜1質量%で使用される。
[0069] 工程 (I)においては、第 1連続多段蒸留塔で用いる触媒と第 2連続多段蒸留塔で 用いる触媒は、同じ種類のものであってもよいし、異なる種類のものであってもよいが 、好ましくは、同じ種類の触媒を用いることである。さらに好ましいのは、同じ種類であ つて、両方の反応液に溶解することのできる触媒である。この場合、触媒は、通常、 第 1連続多段蒸留塔の高沸点反応混合物中に溶解した状態で、アルキルァリール力 ーボネート等とともに該第 1蒸留塔の下部力 抜き出され、そのまま第 2連続多段蒸 留塔に供給されるので、好ましい実施態様である。なお、必要に応じて第 2連続多段 蒸留塔に新たに触媒を追加することも可能である。
[0070] 工程 (I)で行われるエステル交換反応の反応時間は第 1連続多段蒸留塔内及び第 2連続多段蒸留塔内でのそれぞれの反応液の平均滞留時間に相当すると考えられ るが、これはそれぞれの該蒸留塔のインターナルの形状や段数、原料供給量、触媒 の種類や量、反応条件などによって異なるが、第 1連続多段蒸留塔内及び第 2連続 多段蒸留塔内のそれぞれにおいて、通常 0. 01〜10時間、好ましくは 0. 05〜5時 間、より好ましくは 0. 1〜3時間である。
[0071] 第 1連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常、 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルァリールエーテルなどの副生が増えるので好ましくな 、。このような意味 で、第 1連続多段蒸留塔での好ましい反応温度は 130〜280°C、より好ましくは 150 〜260。C、さらに好ましくは、 180〜250。Cの範囲である。
[0072] 第 2連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルァリールエーテルや、原料や生成物であるアルキルァリールカーボネ ートゃジァリールカーボネートのフリース転移反応生成物やその誘導体などの副生 が増えるので好ましくない。このような意味で、第 2連続多段蒸留塔での好ましい反 応温度は 130〜280。C、より好ましくは 150〜260。C、さらに好ましくは 180〜250。C の範囲である。
[0073] また、第 1連続多段蒸留塔の反応圧力は、用いる原料ィ匕合物の種類や組成、反応 温度などにより異なるが、第 1連続多段蒸留塔では減圧、常圧、加圧のいずれであつ てもよく、通常塔頂圧力が 0. 1〜2 X 107Pa、好ましくは 105〜107Pa、より好ましくは 2 X 105〜5 X 106の範囲で行われる。
[0074] 第 2連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応温度 などにより異なる力 減圧、常圧、加圧のいずれであってもよぐ通常塔頂圧力が 0. 1 〜2 X 107Pa、好ましくは、 103〜106Pa、より好ましくは 5 X 103〜105の範囲で行わ れる。
[0075] なお、工程 (I)における第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いること もできる。この場合、 2基以上の蒸留塔を直列に連結することも、並列に連結すること も、さらに直列と並列を組み合わせて連結することも可能である。また、工程 (I)にお ける第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることもできる。この場合、 2 基以上の蒸留塔を直列に連結することも、並列に連結することも、さらに直列と並列 を組み合わせて連結することも可能である。
[0076] 工程 (I)で用いられる第 1連続多段蒸留塔及び第 2連続多段蒸留塔を構成する材 料は、主に炭素鋼、ステンレススチールなどの金属材料である力 製造する芳香族力 ーボネートの品質の面からは、ステンレススチールが好ましい。
[0077] 工程 (I)の第 2連続多段蒸留塔の塔下部より液状で連続的に抜出された第 2塔高 沸点反応混合物は、ジァリールカーボネートが主成分である力 通常、未反応アルキ ルァリールカーボネート、少量の未反応原料、少量の高沸点副生物等を含んでおり 、均一系触媒を用いた場合は、この触媒成分も含まれている。従って、第 2塔高沸点 反応混合物から、高純度ジァリールカーボネートを取得するための精製工程 (II)を 実施することが必要である。工程 (Π)は、第 2塔高沸点反応混合物から高純度ジァリ ールカーボネートが取得できる方法であれば、どのような方法でもよい。たとえば、蒸 留及び Z又は再結晶などの方法である。このなかで、本発明では、工程 (Π)を蒸留 法で行うことが特に好ましいことが見出された。
[0078] さらに、本発明では、工程 (Π)を 2基の蒸留塔 (高沸点物質分離塔、サイドカット抜 き出し口を有するジァリールカーボネート精製塔)を用い、該高沸点物質分離塔にお いて、未反応アルキルァリールカーボネート、少量の未反応原料、ジァリールカーボ ネートを主成分とする塔頂成分と、少量の高沸点副生物等及び Z又は触媒成分を 主成分とする塔底成分とに連続的に分離するとともに、該高沸点物質分離塔の塔頂 成分をジァリールカーボネート精製塔に連続的に供給し、該ジァリールカーボネート 精製塔において、塔頂成分、サイドカット成分、及び塔底成分の 3つの成分に連続的 に分離し、サイドカット成分として高純度ジァリールカーボネートを取得する蒸留分離 法を採用することが、さらに好ましいことが見出された。
[0079] なお、該該高沸点物質分離塔の塔底成分の全量又は一部は、工程 (I)の触媒成 分として、第 1連続多段蒸留塔及び Z又は第 2連続多段蒸留塔に循環再使用するこ とは好ましい。また、該ジァリールカーボネート精製塔の塔頂成分には、通常、少量 のジァリールカーボネートが含まれるので、この塔頂成分をそのままで、又はその塔 頂成分に含まれる低沸点成分を別の蒸留塔で分離を行なった後その蒸留塔の塔底 成分の全部又は一部を、高沸点物質分離塔及び Z又はジァリールカーボネート精 製塔に戻すことによって、高純度ジァリールカーボネートとして回収することも好まし い方法である。
[0080] 工程 (Π)においては、通常 99. 9%以上、好ましくは 99. 99%以上の高純度ジァリ ールカーボネートが取得される。そして、高沸点副生物の含有量は、通常 lOOppm 以下であり、好ましくは 50ppm以下、より好ましくは lOppm以下である。また、本発明 では、通常、ハロゲンを含まない原料と触媒を使用するので、取得される高純度ジァ リールカーボネートのハロゲン含有量は 0. lppm以下であり、好ましくは lOppb以下 であり、さらに好ましくは lppb以下である。
[0081] 続いて、工程 (III)が実施される。すなわち、芳香族ジヒドロキシ化合物と該高純度 ジァリールカーボネートとを反応させて芳香族ポリカーボネートの溶融プレボリマーを 製造し、該溶融プレボリマーをガイドの表面に沿って流下せしめ、その流下中に該溶 融プレポリマーの重合を行わせるガイド接触流下式重合器を用いて芳香族ポリカー ボネートを製造する工程である。
[0082] 工程 (III)にお 、て、用いられる芳香族ジヒドロキシィ匕合物とは、一般式(29)で示さ れる化合物である。
HO-Ar-OH 式(29)
(式中、 Arは 2価の芳香族基を表す。 )
2価の芳香族基 Arは、好ましくは例えば、一般式(30)式で示されるものである。 Ar1— Y— Ar: 式(30)
(式中、 Ar1及び Ar2は、各々独立に、炭素数 5〜70を有する 2価の炭素環式又は複 素環式芳香族基を表し、 Yは炭素数 1〜30を有する 2価のアルカン基を表す。 )
[0083] 2価の芳香族基 ΑιΛ Ar2において、 1つ以上の水素原子が、反応に悪影響を及ぼ さない他の置換基、例えば、ハロゲン原子、炭素数 1〜: LOのアルキル基、炭素数 1〜 10のアルコキシ基、フエ-ル基、フエノキシ基、ビュル基、シァノ基、エステル基、アミ ド基、ニトロ基などによって置換されたものであってもよい。複素環式芳香族基の好ま しい具体例としては、 1ないし複数の環形成窒素原子、酸素原子又は硫黄原子を有 する芳香族基を挙げることができる。 2価の芳香族基 Ar1, Ar2は、例えば、置換又は 非置換のフ 二レン、置換又は非置換のビフ 二レン、置換又は非置換のピリジレン などの基を表す。ここでの置換基は前述のとおりである。
[0084] 2価のアルカン基 Yは、例えば、下記式で示される有機基である。
[0085] [化 4]
Figure imgf000035_0001
[0086] (式中、 R R2、 R3、 R4は、各々独立に水素、炭素数 1〜10のアルキル基、炭素数 1 〜 10のアルコキシ基、環構成炭素数 5〜 10のシクロアルキル基、環構成炭素数 5〜 10の炭素環式芳香族基、炭素数 6〜10の炭素環式ァラルキル基を表す。 kは 3〜1 1の整数を表し、 R5及び R6は、各 Xについて個々に選択され、お互いに独立に、水 素又は炭素数 1〜6のアルキル基を表し、 Xは炭素を表す。また、
Figure imgf000035_0002
R2、 R3、 R4、 R5 、 R6において、一つ以上の水素原子が反応に悪影響を及ぼさない範囲で他の置換 基、例えば、ハロゲン原子、炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ 基、フエ-ル基、フエノキシ基、ビュル基、シァノ基、エステル基、アミド基、ニトロ基等 によって置換されたものであってもよい。 )
[0087] このような 2価の芳香族基 Arとしては、例えば、下記式で示されるものが挙げられる [0088] [化 5]
Figure imgf000036_0001
C H
Figure imgf000036_0002
Figure imgf000036_0003
[0089] (式中、 R7、 R8は、各々独立に、水素原子、ハロゲン原子、炭素数 1〜10のアルキル 基、炭素数 1〜10のアルコキシ基、環構成炭素数 5〜 10のシクロアルキル基又はフ ェ-ル基であって、 m及び nは 1〜4の整数で、 mが 2〜4の場合には各 R7は、それぞ れ同一でも異なるものであってもよいし、 nが 2〜4の場合には R8は、それぞれ同一で も異なるものであってもよい。 )
[0090] さらに、 2価の芳香族基 Arは、次式で示されるものであってもよい。
— Ar1— Z— Ar2
(式中、 Ar1及び Ar2は前述の通りで、 Zは単結合又は—O—、—CO—、—S—、—S O―、— SO—、— COO—、— CON (R1)—などの 2価の基を表す。ただし、 R1は前
2
述のとおりである。 )
[0091] このような 2価の芳香族基 Arとしては、例えば、下記式に示されるものが挙げられる
[0092] [ィ匕 6]
Figure imgf000038_0001
Figure imgf000038_0002
Figure imgf000038_0003
Figure imgf000038_0004
Figure imgf000038_0005
[0093] (式中、 R7、 R8、 m及び nは、前述のとおりである。 )
[0094] さらに、 2価の芳香族基 Arの具体例としては、置換又は非置換のフエ-レン、置換 又は非置換のナフチレン、置換又は非置換のピリジレン等が挙げられる。
[0095] 本発明で用いられる芳香族ジヒドロキシ化合物は、単一種類でも 2種類以上でも構 わない。芳香族ジヒドロキシィヒ合物の代表的な例としては、ビスフエノール Aが挙げら れる。また、本発明においては、本発明の目的を損なわない範囲で、分岐構造を導 入するための 3価の芳香族トリヒドロキシィ匕合物を併用してもよい。
[0096] 工程 (III)における芳香族ジヒドロキシィ匕合物と高純度ジァリールカーボネートとの 使用割合 (仕込み比率)は、用いられる芳香族ジヒドロキシィ匕合物とジァリールカーボ ネートの種類や、重合温度その他の重合条件によって異なるが、ジァリールカーボネ ートは芳香族ジヒドロキシィ匕合物 1モルに対して、通常 0. 9〜2. 5モル、好ましくは 0 . 95〜2. 0モル、より好ましくは 0. 98〜: L 5モルの割合で用いられる。
[0097] 工程 (III)における、芳香族ジヒドロキシ化合物とジァリールカーボネートとから製造 された溶融状態のプレボリマー(以下、溶融プレボリマーと表す)とは、芳香族ジヒドロ キシィ匕合物とジァリールカーボネートから製造される、 目的とする重合度を有する芳 香族ポリカーボネートより重合度の低い重合途中の溶融物を意味しており、もちろん オリゴマーであってもよい。工程 (ΠΙ)で用いられるこのような溶融プレボリマーは、公 知のいかなる方法によって得られたものでよい。たとえば、所定量の芳香族ジヒドロキ シ化合物とジァリールカーボネートとからなる溶融混合物を 1基又はそれ以上の縦型 撹拌槽を用いて、約 120°C〜約 280°Cの温度範囲で、常圧及び Z又は減圧下に撹 拌しながら、反応によって副生する芳香族モノヒドロキシ化合物を除去することによつ て、製造することができる。直列に連結された 2基以上の縦型撹拌槽を用いて、順に 重合度を上げていく必要な重合度を有する溶融プレボリマーを連続的に製造する方 法が特に好ましい。
[0098] 工程 (III)では、この溶融プレボリマーが、ガイド接触流下式重合器に連続的に供 給され、 目的の重合度を有する芳香族ポリカーボネートを連続的に製造する。このガ イド接触流下式重合器とは、ガイドに沿ってプレボリマーを溶融流下せしめて重合を させる重合器であって、 1時間あたり 1トン以上の芳香族ポリカーボネートを生産でき るものである。
[0099] 該ガイド接触流下式重合器は、
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して重合反応ゾーンの該ガイド に該溶融プレボリマーを供給するための溶融プレボリマー供給ゾーン、該多孔板と 側面ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下 方に延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けら れた真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリ カーボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ボン プを有するタイプのものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式( 13)を満足するものであって、
0. 7≤A≤300 式(13)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(14)を満足するものであって、
20≤A/B≤1000 式(14)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式( 15)を満足するものであって、
120≤C≤165 式(15)
(5)該ガイドの長さ h (cm)力 式(16)を満足するものであって、
150≤h≤5000 式(16)
(6)該ガイド全体の外部総表面積 S (m2)が式(17)を満足するものである、
2≤S≤ 50000 式(17)
ことが必要である。
[0100] 高品質 ·高性能の芳香族ポリカーボネートを 1時間あたり 1トン以上の工業的規模の 生産量で、分子量のバラツキなどがなぐ長期間安定的に製造するためには、種々 の条件を満足させる重合器であることが必要であり、本発明はこれらの条件を見出し たものである。なお、本発明においては、分子量のバラツキがないとは、数平均分子 量で 200以下のバラツキの場合を意味している。本発明では、数平均分子量のバラ ツキが好ましくは 150以下であり、より好ましくは 100以下の芳香族ポリカーボネート が長時間安定的に製造できる。
[0101] より具体的には、概念図(図 4)に示されるような、重合反応ゾーン 5の側面ケーシン グ 10の水平面 (a— a'面)における内部断面積 A (m2)が、式(13)を満足するもので あることが必要である。
[0102] Aが 0. 7m2よりも小さ 、と、目的とする生産量を達成できな 、し、設備費を低下させ つっこの生産量を達成するためには、 Aは 300m2以下にすることが必要である。 [0103] さらに、該 A (m2)と、芳香族ポリカーボネート排出口 7の水平面 (b— b'面)における 内部断面積 B (m2)との比が、式(14)を満足することも必要である。
[0104] 製造された芳香族ポリカーボネート又は重合度の高められた芳香族ポリカーボネー トプレポリマーの品質を低下させることなく溶融粘度の高いこれらの溶融物を排出す るためには、 AZBは式(14)を満足して!/ヽなければならな!/ヽ。
[0105] さらに、該重合反応ゾーン 5の底部を構成するテーパー形の底部ケーシング 11が、 上部の側面ケーシング 10に対してその内部において、角度 C度で設けられており、 該角度 C度が式(15)を満足することも必要である。
[0106] 設備費を低下させるためには、 Cはできるだけ 90度に近い方がいいのである力 ガ イド 4の下端力 落下してくる芳香族ポリカーボネート又は重合度の高められた芳香 族ポリカーボネートプレボリマーの品質を低下させることなく溶融粘度の高いこれらの 溶融物を排出口 7に移動させるためには、 Cは式(15)を満足していなければならな い。
[0107] さらに、該ガイドの長さ Mem)が、式(16)を満足することも必要である。
hが 150cmより短い場合、溶融プレポリマーの重合度を高めることはできる力 その 程度が十分ではなぐまた、重合度のバラツキが数平均分子量で約 200以上大きく なり、好ましくない。 hが 5000cmより長い場合、ガイド 4の上部と下部での溶融プレボ リマーの溶融粘度の違いが大きくなりすぎるため、重合度のバラツキが数平均分子量 で約 300以上 (場合によっては、約 500以上)大きくなり、得られる芳香族ポリカーボ ネートの物性にバラツキがでるので好ましくない。なお、本発明において重合度のバ ラツキが大きいとは、例えば数平均分子量で表して、約 200以上の差があるバラツキ の場合を意味している。
[0108] さらに、該ガイド 4の外部総表面積 S (m2)が式(16)を満足する必要がある。 Sが 2m 2よりも小さいと、目的とする生産量を達成できないし、設備費を低下させつつこの生 産量を達成し、且つ物性にバラツキをなくすためには、 Sは 50000m2以下にすること が必要である。
[0109] 式(13)、(14)、(15)、(16)及び(17)を同時に満足するガイド接触流下式重合器 を用いることによって、驚くべきことに、着色がなく機械的物性に優れた高品質 ·高性 能の芳香族ポリカーボネートを、 1時間あたり 1トン以上の生産量でし力も、数 1, 000 時間以上、たとえば 5, 000時間以上の長期間、分子量のバラツキなどなく安定的に 製造できることが見出された。これらの条件を同時に満足していない場合には、目的 とする生産量が得られな!/、、分子量のバラツキが数平均分子量で表して約 200以上 の差があるバラツキがでる、安定製造が 1, 000時間もできない、着色がしゃすくなる などの不都合が起こる。
[0110] 工程 (ΠΙ)において、このような優れた効果を有する工業的規模での芳香族ポリ力 ーボネートの製造が可能となった理由は明らかではないが、上述の理由にカ卩えて、 それらの条件が組み合わさった時にもたらされる複合効果が現れたためであると推定 される。例えば、式(16)及び(17)を満足する高表面積のガイドを用いると、溶融プ レポリマーを比較的低温度で重合させることができ、目的とする分子量を有する大量 の高品質の芳香族ポリカーボネートを製造できる。また、式(15)を満足するテーパー 形の底部ケーシングは、ガイドから落下してくるこの大量の高品質の生成芳香族ポリ カーボネートが排出口に達する時間を短縮でき、その結果、生成芳香族ポリカーボ ネートの熱履歴を減らせるためと推定される。
[0111] なお、このような工業的規模での製造技術は、大規模な製造設備を用いる長時間 運転によって初めて確立できるものであるが、その際の製造設備費は考慮すべき重 要な因子であることは、論を待たない。本発明の別な効果は、工程 (III)で用いる重 合器を式(13)、(14)、(15)、(16)及び(17)を満足するガイド接触流下式重合器と することによって、工業的製造設備として設備費を低下させることができることにある。
[0112] 工程 (III)において用いられるガイド接触流下式重合器における寸法 ·角度等に要 求される範囲は、上記のとおりである力 さらに好ましい範囲は次のとおりである。重 合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)のより好ましい 範囲は、 0. 8≤A≤250 であり、さらに好ましくは、 1≤A≤ 200 である。
[0113] また、該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B
(m2)との比のより好ましい範囲は、 25≤AZB≤900 であり、さらに好ましくは、 30 ≤A/B≤800 である。
[0114] さらに、重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部 の側面ケーシングに対してその内部においてなす角度 C度のより好ましい範囲は、 1 25≤C≤160 であり、さらに好ましくは、 135≤C≤165 である。なお、複数のガイ ド接触流下式重合器を用いて順に重合度を上げていく場合には、それぞれに対応 する角度を、 Cl、 C2、 C3、 · "とすれば、 C1≤C2≤C3≤ · · · とすることが好まし い。
[0115] また、ガイドの必要な長さ h (cm)は、原料プレボリマーの重合度、重合温度、圧力、 その重合器で製造すべき芳香族ポリカーボネート又はプレボリマーの重合度、生産 量等の要因の違いによって異なる力 より好ましい範囲は、 200≤h≤3000 であり 、さらに好ましくは、 250≤h≤2500 である。 h力 式(24)を満足する場合、特に好 ましい。
400<h≤2500 式(24)
[0116] 必要なガイド全体の外部総表面積 S (m2)も、上記と同様の要因の違いによって異 なるが、そのより好ましい範囲は、 4≤S≤40000 であり、さらに好ましくは、 10≤S ≤ 30000 である。 15≤S≤ 20000 〖ま、特【こ好まし ヽ範囲である。本発明で言う ガイド全体の外部総表面積とは、溶融プレボリマーが接触して流下するガイドの表面 積全体を意味しており、例えばパイプなどのガイドの場合、外側の表面積を意味して おり、溶融プレボリマーを流下させないパイプ内側の面の表面積は含めない。
[0117] 工程 (III)で用いられるガイド接触流下式重合器にぉ ヽて、重合反応ゾーンの側面 ケーシングの水平面における内部断面の形状は多角形、楕円形、円形等、どのよう な形状であってもよい。重合反応ゾーンは、通常減圧下で操作されるため、それに耐 えるものであればどのようなものでもよいが、好ましくはそれが円形又はそれに近い形 状の場合である。従って、本発明の重合反応ゾーンの側面ケーシングは、円筒形で あることが好ましい。この場合、円筒形の側面ケーシングの下部にテーパー形の底部 ケーシングが接続され、該底部ケーシングの最下部に円筒形の芳香族ポリカーボネ ート排出口が設けられることが好ましい。そして、該側面ケーシングの円筒形部の内 径を D (cm)、長さを L (cm)とし、該排出口の内径を d (cm)とした時、 D、 L、 d が式( 20)、(21)、(22)及び(23)を満足していることが好ましい。
100≤D≤1800 式(20) 5≤D/d≤50 式(21)
0. 5≤L/D ≤30 式(22)
h- 20≤L≤h+ 300 式(23)
[0118] 該ガイド接触流下式重合器において、 D (cm)のより好ましい範囲は、 150≤D ≤ 1500 であり、さらに好ましくは、 200≤D≤1200 である。また、 DZd のより好ま しい範囲は、 6≤DZd≤45 であり、さらに好ましくは、 7≤ D/d≤40 である。 また、 LZDのより好ましい範囲は、 0. 6≤L/D≤25 であり、さらに好ましくは、 0. 7≤L/D≤20 である。また、 L (cm)のより好ましい範囲は、 h— 10≤L≤h+ 250 であり、さらに好ましくは、 h≤L≤h+ 200 である。
[0119] 工程 (ΠΙ)において、速い重合速度で、着色が無く機械的物性に優れた高品質 ·高 性能の芳香族ポリカーボネートが、工業的規模で長期間分子量のバラツキがなく安 定的に製造できる正確な理由は明らかではないが、以下のことが考えられる。すなわ ち、工程 (III)のガイド接触流下式重合法においては、原料の溶融プレボリマーは受 給口 1から、供給ゾーン 3及び多孔板 2を経由して、ガイド 4に導かれ、ガイドに沿って 流下しながら重合度が上昇していく。この場合、溶融プレボリマーはガイドに沿って 流下しながら効果的な内部攪拌と表面更新が行われ、フ ノール等の抜出しが効果 的に行われるため、速い速度で重合が進行する。重合の進行とともにその溶融粘度 が高くなつてくるために、ガイドに対する粘着力が増大し、ガイドに粘着する溶融物の 量はガイドの下部に行くに従って増えてくる。このことは、溶融プレボリマーのガイド上 での滞留時間、すなわち重合反応時間が増えることを意味している。し力も、ガイドに 支えられながら自重で流下している溶融プレボリマーは、重量当たりの表面積が非常 に広く、その表面更新が効率的に行われているので、これまでの機械的攪拌重合器 ではどうしても不可能であった重合後半の高分子量ィヒが容易に達成できるのである 。これが工程 (III)で用いられる重合器の持つ、優れた特徴の 1つである。
[0120] ガイドの中間部より下部の重合の後半では、ガイドに粘着する溶融物の量が増えて くるが、その溶融粘度に見合った粘着保持力し力ないので、複数のガイドの同じ高さ においては、ほぼ同じ溶融粘度をもつほぼ同じ量の溶融物が、それぞれのガイドに 支えられていることになる。一方、ガイドには上部力 溶融物が連続的に供給されて いるので、ほぼ同じ溶融粘度をもつ重合度の高められた溶融物力 ガイドの下端から テーパー形のケーシングの底部に連続的に落下して行くことになる。すなわち、テー パー形のケーシングの底部では、ガイドを流下しながら生成したほぼ同じ重合度の 芳香族ポリカーボネートが溜まってくることになり、分子量のバラツキのない芳香族ポ リカーボネートが連続的に製造できることになる。このことは本発明の重合器の持つ 他の優れた特徴の 1つである。ケーシングの底部に溜まった芳香族ポリカーボネート は、排出口 7を経て、排出ポンプ 8によって連続的に抜き出され、通常は押出し機を 経て連続的にペレツトイ匕される。この場合、押出し機で、安定剤、耐候剤等の添加剤 を添加することも可能である。
[0121] 工程 (III)で用いられるガイド接触流下式重合器を構成する多孔板は、通常、平板 、波板、中心部が厚くなつた板など力 選ばれ、多孔板の形状についは、通常、円状 、長円状、三角形状、多角形状などの形状力 選ばれる。多孔板の孔は、通常、円 状、長円状、三角形状、スリット状、多角形状、星形状などの形状から選ばれる。孔の 断面積は、通常、 0. 01〜100cm2であり、好ましくは 0. 05〜10cm2であり、より好ま しくは 0. l〜5cm2の範囲である。孔と孔との間隔は、孔の中心と中心の距離で通常 、 l〜500mmであり、好ましくは 25〜: LOOmmである。多孔板の孔は、多孔板を貫通 させた孔であっても、多孔板に管を取り付けた場合でもよい。また、テーパー状にな つていてもよい。
[0122] また、工程 (III)で用いられるガイド接触流下式重合器を構成するガイドとは、水平 方向断面の外周の平均長さに対して該断面と垂直方向の長さの比率が非常に大き い材料を表すものである。該比率は、通常、 10〜: L, 000, 000の範囲であり、好まし くは 50〜: L00, 000の範囲である。水平方向の断面の形状は、通常、円状、長円状 、三角形状、四角形状、多角形状、星形状などの形状から選ばれる。該断面の形状 は長さ方向に同一でもよいし異なっていてもよい。また、ガイドは中空状のものでもよ い。
[0123] ガイドは、針金状のものや細い棒状のものや内側に溶融プレボリマーが入らないよ うにした細 、パイプ状のもの等の単一なものでもよ 、が、捩り合わせる等の方法によ つて複数組み合わせたものでもよい。また、網状のものや、パンチングプレート状のも のであってもよい。ガイドの表面は平滑であっても凹凸があるものであってもよぐ部 分的に突起等を有するものでもよい。好ましいガイドは、針金状や細い棒状等の円柱 状のもの、前記の細いパイプ状のもの、網状のもの、パンチングプレート状のものであ る。
[0124] このガイドはそれ自身内部に熱媒ゃ電気ヒーターなどの加熱源をもって!/ヽてもよ!/ヽ 力 加熱源を持たないガイドは、その表面におけるプレボリマーや芳香族ポリカーボ ネートの熱変性の懸念がな 、ので、特に好ま U、。
[0125] 工業的規模 (生産量、長期安定製造等)での高品質の芳香族ポリカーボネートの製 造を可能とする本発明のガイド接触流下式重合器において、特に好ましいのは、複 数の針金状又は細 、棒状又は前記の細 、パイプ状のガイドの上部から下部までに ぉ 、て横方向の支持材を用いて上下の適当な間隔で各々のガイド間を結合したタイ プのガイドである。例えば、複数の針金状又は細い棒状又は前記の細いパイプ状の ガイドの上部から下部までにおいて横方向の支持材を用いて上下の適当な間隔、た とえば lcm〜200cmの間隔で固定した金網状ガイド、複数の金網状のガイドを前後 に配置しそれらを横方向の支持材を用いて上下の適当な間隔、たとえば lcm〜200 cmの間隔で結合させた立体的なガイド、又は複数の針金状又は細!、棒状又は前記 の細いパイプ状のガイドの前後左右を横方向の支持材を用いて上下の適当な間隔、 たとえば 1 cm〜 200cmの間隔で固定したジャングルジム状の立体的なガイドである 。横方向の支持材は各ガイド間の間隔をほぼ同じに保っために役立つだけでなぐ 全体として平面状や曲面状になるガイド、あるいは立体的になるガイドの強度の強化 に役立っている。これらの支持材はガイドと同じ素材であってもよいし、異なるもので あってもよい。
[0126] ガイド接触流下式重合器にぉ ヽて、 1つのガイドが外径 r (cm)の円柱状又は内側 に溶融プレボリマーがはいらないようにしたパイプ状のものである場合、 r が式(25) を満足して 、ることが好まし 、。
0. l≤r≤l 式(25)
[0127] このガイドは、溶融プレボリマーを流下させながら、重合反応を進めるものであるが 、溶融プレボリマーをある時間保持する機能も有している。この保持時間は、重合反 応時間に関連するものであり、重合の進行とともにその溶融粘度が上昇していくため に、その保持時間及び保持量は増加していくことは前記のとおりである。ガイドが溶 融プレポリマーを保持する量は、同じ溶融粘度であってもガイドの外部表面積、即ち 、円柱状又はパイプ状の場合、その外径によって異なってくる。
[0128] また、本発明の重合器に設置されたガイドは、ガイド自身の重量に加え、保持して V、る溶融プレボリマーの重量をも支えるだけの強度が必要である。このような意味に おいて、ガイドの太さは重要であり、円柱状又はパイプ状の場合、式(25)を満足して いることが好ましい。 rが 0. 1より小さいと、強度的な面で長時間の安定運転ができに くくなつてくる。 rが 1よりも大きいと、ガイド自身が非常に重くなり、たとえばそれらを重 合器に保持するために多孔板の厚みを非常に厚くしなければならないなどの不都合 力 Sあるだけでなぐ溶融プレボリマーを保持する量が多くなりすぎる部分が増え、分子 量のバラツキが大きくなるなどの不都合が起こってくる。このような意味で、より好まし い rの範囲は、 0. 15≤r≤0. 8 であり、さらに好ましいのは、 0. 2≤r≤0. 6 である
[0129] このようなガイドの好まし!/ヽ材質は、ステンレススチール、カーボンスチール、ハステ ロイ、ニッケル、チタン、クロム、アルミニウム及びその他の合金等の金属や、耐熱性 の高いポリマー材料等の中力 選ばれる。特に好ましいのはステンレススチールであ る。また、ガイドの表面は、メツキ、ライニング、不働態処理、酸洗浄、フエノール洗浄 等必要に応じて種々の処理がなされてもよ!/、。
[0130] ガイドと多孔板との位置関係及びガイドと多孔板の孔との位置関係については、プ レポリマーのガイド接触流下が可能である限り特に限定されない。ガイドと多孔板は 互いに接触していてもよいし、接触していなくてもよい。ガイドを多孔板の孔に対応さ せて設置するのが好ましいがこれに限定されない。なぜならば、多孔板から落下する 溶融プレボリマーが適当な位置でガイドに接触するように設計されて 、ても ヽから である。ガイドを多孔板の孔に対応させて設置する好ましい具体例としては、(1)ガイ ドの上端を重合器の上部内壁面などに固定して、ガイドが多孔板の孔の中心部付近 を貫通した状態でガイドを設ける方法や、 (2)ガイドの上端を多孔板の孔の上端の周 縁部に固定して、ガイドが多孔板の孔を貫通した状態でガイドを設ける方法や、(3) ガイドの上端を多孔板の下側面に固定する方法、などが挙げられる。
[0131] この多孔板を通じて溶融プレボリマーをガイドに沿わせて流下させる方法としては、 液ヘッド又は自重で流下させる方法、又はポンプなどを使って加圧にすることにより、 多孔板力 溶融プレボリマーを押し出す等の方法が挙げられる。好ましいのは、供給 ポンプを用いて加圧下、所定量の原料溶融プレボリマーを重合器の供給ゾーンに供 給し、多孔板を経てガイドに導かれた溶融プレボリマーが自重でガイドに沿って流下 していく方式である。該溶融プレボリマーは、通常、所定の重合温度に加熱された状 態で、ガイド接触流下式重合器に連続的に供給される。したがって、このガイド接触 流下式重合器の外壁面には、通常ジャケット等が設置されていることが好ましぐこの ジャケットに熱媒等を通じて所定の温度に加熱することが好まし 、。このことによって
、溶融プレボリマー、及びプレボリマー供給ゾーンや多孔板の加熱及び保温と、重合 反応ゾーンや側面ケーシング及びテーパー形の底部ケーシングの保温を行うことが 好ましい。
[0132] 工程 (III)にお 、て、芳香族ジヒドロキシィ匕合物とジァリールカーボネートとから得ら れる溶融プレボリマーをガイド接触流下式重合器で重合させて芳香族ポリカーボネ ートを製造する反応の温度は、通常 80〜350°Cの範囲である。し力しながら、本発明 の重合器では内部攪拌を伴う効率的な表面更新が行われて 、るので、比較的低温 で重合反応を進行させることができる。したがって、好ましい反応温度は、 100〜290 °Cであり、さらに好ましいのは、 150〜270°Cである。従来の重合器である横型 2軸撹 拌式超高粘度ポリマー用リアクターでは、通常 300°C以上の高温下で、 133Pa以下 の高真空下で長時間撹拌する必要があった。しかも撹拌軸シール部力もの空気の漏 れこみによる黄変や、異物の混入がさけられなカゝつた。本発明の重合器は機械的攪 拌がないので、攪拌機のシール部もないので空気等の漏れこみが非常に少ない。し 力も、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターの場合よりも約 20〜50 °Cも低温で十分に重合を進めることができるの力 本発明の特徴である。このことも、 本発明にお 、て、着色や物性低下のな!、高品質の芳香族ポリカーボネートを製造す ることができる大きな原因である。
[0133] また、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターを用いても、中粘度グ レード以上の芳香族ポリカーボネートを製造することは、その超高粘性のため、不可 能であるが、本発明のガイド接触流下式重合器では、高粘度グレードの芳香族ポリ力 ーボネートも容易に製造することができる。すなわち、本発明のガイド接触流下式重 合器では、分子量の比較的低いディスクグレードから、高粘度グレードまでの全ての グレードの芳香族ポリカーボネートを製造することができる。このことも本発明の大き な特徴である。
[0134] 工程 (III)では、重合反応の進行にともなって、芳香族モノヒドロキシィ匕合物が生成 してくる力 これを反応系外へ除去する事によって反応速度が高められる。従って、 窒素、アルゴン、ヘリウム、二酸化炭素や低級炭化水素ガスなど反応に悪影響を及 ぼさな 、不活性なガスを重合器に導入して、生成してくる芳香族モノヒドロキシ化合 物をこれらのガスに同伴させて除去する方法や、減圧下に反応を行う方法などが好 ましく用いられる。あるいはこれらを併用した方法も好ましく用いられる力 これらの場 合も重合器に大量の不活性ガスを導入する必要はなぐ内部を不活性ガス雰囲気に 保持する程度でもよい。
[0135] なお、溶融プレボリマーをガイド接触流下式重合器に供給するに先立って、前記不 活性ガスを吸収させ、次 ヽで該不活性ガス吸収溶融プレボリマーを重合させることも 好ましい方法である。
[0136] 工程 (ΠΙ)の重合器内の好ましい反応圧力は、製造する芳香族ポリカーボネートの 種類や分子量、重合温度等によっても異なる力 例えばビスフエノール Aとジフエ- ルカーボネートからの溶融プレボリマー力 芳香族ポリカーボネートを製造する場合 、数平均分子量が 5, 000以下の範囲では、 400〜3, OOOPa範囲が好ましぐ数平 均分子量が 5, 000〜10, 000の場合は、 50〜500Paの範囲が好ましい。数平均分 子量が 10, 000以上の場合は、 300Pa以下が好ましぐ特に 20〜250Paの範囲が 好ましく用いられる。
[0137] 工程 (III)を実施するにあたり、ガイド接触流下式重合器 1基だけで、目的とする重 合度を有する芳香族ポリカーボネートを製造することも可能であるが、原料とする溶 融プレポリマーの重合度や芳香族ポリカーボネートの生産量などに応じて、 2基以上 の複数のガイド接触流下式重合器を連結して、順に重合度を上げて ヽく方式も好ま しい。この場合、それぞれの重合器において、製造すべきプレボリマー又は芳香族ポ リカーボネートの重合度に適したガイドや反応条件を別々に採用することができるの で、好ましい方式である。例えば、ガイド接触流下式第 1重合器、ガイド接触流下式 第 2重合器、ガイド接触流下式第 3重合器、ガイド接触流下式第 4重合器 · · · ·を用い 、この順に重合度を上げていく方式の場合、それぞれの重合器力もつガイド全体の 外部総表面積を Sl、 S2、 S3、 S4 ' " 'とすれば、 S1≥S2≥S3≥S4≥' " 'とするこ とができる。また、重合温度も、それぞれの重合器において同じ温度でもよいし、順に 上げていくことも可能である。重合圧力も、それぞれの重合器で、順に下げていくこと も可能である。
[0138] このような意味にぉ ヽて、例えば、ガイド接触流下式第 1重合器、ガイド接触流下式 第 2重合器の 2基の重合器を用いてこの順に重合度を上げていく場合、該第 1重合 器のガイド全体の外部総表面積 SI (m2)と該第 2重合器のガイド全体の外部総表面 積 S2 (m2)とが式(26)を満足するようなガイドを用いることが好ま 、。
1≤S1/S2≤20 式(26)
[0139] S1ZS2が 1よりも小さいと、分子量のバラツキが大きくなり長期間安定製造が困難 になる、所定の生産量が得にくい、などの不都合が起こり、 S1ZS2が 20よりも大きい と、第 2重合器でのガイドを流下する溶融プレボリマーの流量が多くなり、その結果、 溶融プレボリマーの滞留時間が少なくなり必要とする分子量の芳香族ポリカーボネー トが得られに《なる、などの不都合が生じてくる。このような意味でさらに好ましい範 囲は、 1. 5≤S1/S2≤15 である。
[0140] 工程 (III)においては、 1時間当り 1トン以上の芳香族ポリカーボネートが製造する のであるが、重合反応によって副生した芳香族モノヒドロキシィ匕合物は系外に排出さ れるので、 1時間当り 1トンよりも多量の溶融プレボリマー力 重合器に供給される必 要がある。したがって、供給される溶融プレボリマーの量は、その重合度及び製造す べき芳香族ポリカーボネートの重合度によって変化するが、通常、芳香族ポリカーボ ネートの生産量 1トン Zhr当り、 10〜500kgZhr多い、 1. 01〜: L 5トン Zhrの範囲 である。
[0141] 工程 (III)における芳香族ジヒドロキシィ匕合物とジァリールカーボネートから芳香族 ポリカーボネートを製造する反応は触媒を加えずに実施することができるが、重合速 度を高めるため、必要に応じて触媒の存在下で行われる。触媒としては、この分野で 用いられているものであれば特に制限はないが、水酸化リチウム、水酸化ナトリウム、 水酸ィ匕カリウム、水酸ィ匕カルシウムなどのアルカリ金属及びアルカリ土類金属の水酸 化物類;水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素テトラメ チルアンモ -ゥムなどのホウ素やアルミニウムの水素化物のアルカリ金属塩、アルカリ 土類金属塩、第四級アンモ-ゥム塩類;水素化リチウム、水素化ナトリウム、水素化力 ルシゥムなどのアルカリ金属及びアルカリ土類金属の水素化合物類;リチウムメトキシ ド、ナトリウムエトキシド、カルシウムメトキシドなどのアルカリ金属及びアルカリ土類金 属のアルコキシド類;リチウムフエノキシド、ナトリウムフエノキシド、マグネシウムフエノ キシド、 LiO— Ar— OLi、 NaO— Ar— ONa (Arはァリール基)などのアルカリ金属 及びアルカリ土類金属のァリ一口キシド類;酢酸リチウム、酢酸カルシウム、安息香酸 ナトリウムなどのアルカリ金属及びアルカリ土類金属の有機酸塩類;酸ィ匕亜鉛、酢酸 亜鉛、亜鉛フエノキシドなどの亜鉛ィ匕合物類;酸ィ匕ホウ素、ホウ酸、ホウ酸ナトリウム、 ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフエ-ル、 O O 又は( で表されるアンモ-ゥムボレート類又はホスホ-ゥ ムボレート類 、 、 は前記化 の説明通りである。)などのホウ素の化合物 類;酸ィ匕ケィ素、ケィ酸ナトリウム、テトラアルキルケィ素、テトラァリールケィ素、ジフエ 二ルーェチルーエトキシケィ素などのケィ素の化合物類;酸化ゲルマニウム、四塩化 ゲルマニウム、ゲルマニウムエトキシド、ゲルマニウムフエノキシドなどのゲルマニウム の化合物類;酸化スズ、ジアルキルスズォキシド、ジアルキルスズカルボキシレート、 酢酸スズ、ェチルスズトリブトキシドなどのアルコキシ基又はァリーロキシ基と結合した スズィ匕合物、有機スズィ匕合物などのスズの化合物類;酸ィ匕鉛、酢酸鉛、炭酸鉛、塩 基性炭酸塩、鉛及び有機鉛のアルコキシド又はァリ一口キシドなどの鉛の化合物;第 四級アンモ-ゥム塩、第四級ホスホ-ゥム塩、第四級アルソ-ゥム塩などのォ-ゥム 化合物類;酸化アンチモン、酢酸アンチモンなどのアンチモンの化合物類;酢酸マン ガン、炭酸マンガン、ホウ酸マンガンなどのマンガンの化合物類;酸化チタン、チタン のアルコキシド又はァリ一口キシドなどのチタンの化合物類;酢酸ジルコニウム、酸化 ジルコニウム、ジルコニウムのアルコキシド又はァリーロキシド、ジルコニウムァセチル アセトンなどのジルコニウムの化合物類などの触媒を挙げることができる。
[0142] 触媒を用いる場合、これらの触媒は 1種だけで用いてもよいし、 2種以上を組み合 わせて用いてもよい。また、これらの触媒の使用量は、原料の芳香族ジヒドロキシィ匕 合物に対して、通常 10_1〜1質量%、好ましくは 10一9〜 10—1質量%、さらに好まし くは 10_8〜10_2質量%の範囲で選ばれる。溶融エステル交換法の場合、使用した 重合触媒は、製品の芳香族ポリカーボネート中に残存している力 これらの重合触媒 は通常ポリマー物性に悪影響を及ぼすものが多い。したがって、触媒の使用量はで きるだけ、下げることが好ましい。本発明の方法では、重合が効率的に行えるので触 媒の使用量を少なくできる。このことも高品質の芳香族ポリカーボネートを製造できる 本発明の特徴の 1つである。
[0143] 工程 (III)で用いられるガイド接触流下式重合器や配管の材質に特に制限はなぐ 通常、ステンレススチール製、カーボンスチール製、ハステロィ製、ニッケル製、チタ ン製、クロム製、及びその他の合金製等の金属や、耐熱性の高いポリマー材料等の 中力も選ばれる。また、これらの材質の表面は、メツキ、ライニング、不働態処理、酸 洗浄、フエノール洗浄等必要に応じて種々の処理がなされてもよい。特に好ましいの は、ステンレススチールやニッケル、グラスライニング等である。
[0144] 工程 (III)のプレボリマー製造時と、ガイド接触流下式重合器での重合時、反応に よって副生する大量の芳香族モノヒドロキシ化合物は通常、ガス状で連続的に抜き出 され、液状に凝縮されて回収される。本発明においては、工程 (III)で副生する芳香 族モノヒドロキシィ匕合物をジァリールカーボネート製造工程 (I)に循環する芳香族モノ ヒドロキシィ匕合物のリサイクル工程 (IV)を行うことが必要である。工業的製造方法に おいては、副生する芳香族モノヒドロキシィ匕合物を全量、又はできるだけロスを少なく して回収し、これを循環 ·再使用することが重要である。本発明の工程 (III)で副生し 、回収された副生芳香族モノヒドロキシィ匕合物には、通常ジァリールカーボネートが 一部含まれる力 純度が高いのでそのままで、ジァリールカーボネート製造工程 (I) に循環、再使用することも可能である。なお、回収された該芳香族モノヒドロキシィ匕合 物中に少量の芳香族ジヒドロキシィ匕合物や、微量のオリゴマーが混在する場合には 、さらに蒸留を行ってこれらの高沸点物質を除去した後に、ジァリールカーボネート 製造工程 (I)に循環、再使用することが好ましい。
[0145] 本発明のシステムを実施することによって製造される芳香族ポリカーボネートは、下 記化 7で示される繰り返し単位を有する。
[0146] [化 7]
- 0 C Ο A r
[0147] (Arは前述と同じである。 )
特に好ましいのは、全繰り返し単位中、下記化 8で示される繰り返し単位が 85モル %以上含まれる芳香族ポリカーボネートである。
[0148] [化 8]
Figure imgf000053_0001
[0149] また、本発明の方法を実施して製造される芳香族ポリカーボネートの末端基は、通 常、ヒドロキシ基又は下記化 9で示されるァリールカーボネート基力もなつている。
[0150] [化 9]
一 O C 0 A r s
(Ar5は、前述の Ar3、 Ar4と同じである。 )
ヒドロキシ基とァリールカーボネート基の比率に特に制限はないが、通常 95 : 5〜5: 95の範囲であり、好ましくは 90 : 10〜: LO : 90の範囲であり、さらに好ましくは 80 : 20 〜20 : 80の範囲である。特に好ましいのは、末端基中のフエ-ルカーボネート基の 占める割合が 60モル%以上の芳香族ポリカーボネートである。 [0152] 本発明の方法を実施して製造される芳香族ポリカーボネートは、主鎖に対してエス テル結合やエーテル結合等の異種結合を介して部分的に分岐したものであってもよ い。該異種結合の量はカーボネート結合に対して、通常 0. 005〜2モル%であり、好 ましくは、 0. 01〜1モノレ0 /0、であり、さらに好ましいのは、 0. 05〜0. 5モノレ0 /0である 。このような量の異種結合は、他のポリマー物性を悪ィ匕させることなぐ溶融成形時の 流れ特性を向上させるので、精密成形に適しているし、比較的低温でも成形でき、性 能の優れた成形物を製造することができる。成形サイクルを短縮することもでき成形 時の省エネルギーにも貢献できる。
[0153] 本発明の方法を実施して製造される芳香族ポリカーボネート中には、不純物は殆ど 含まれないが、アルカリ金属及び Z又はアルカリ土類金属をそれらの金属元素として 、 0. 001〜lppm含有する芳香族ポリカーボネートを製造することができる。好ましく ίま、この含有量力 ^0. 005〜0. 5ppm、より好ましく ίま、 0. 01〜0. lppmである。この ような金属元素が lppm以下、好ましくは、 0. 5ppm以下、より好ましくは、 0. lppm である場合、製品芳香族ポリカーボネートの物性に影響を与えないので、本発明で 製造される芳香族ポリカーボネートは高品質である。
[0154] 本発明の方法を実施して製造される芳香族ポリカーボネートの中で特に好ましいの は、ハロゲンを含まな 、芳香族ジヒドロキシィ匕合物とジァリールカーボネートを用いる ことにより製造されたものであって、ハロゲン含有量が通常、 lOppb以下である。本発 明の方法では、ハロゲン含有量が 5ppb以下のものも製造できるし、さらに好ましくは ノ、ロゲン含有量が lppb以下の芳香族ポリカーボネートを製造することができるので、 非常に高品質の製品が得られることになる。
[0155] 本発明の方法で、分子量のノ ラツキのない芳香族ポリカーボネートを長時間安定 的に製造できるのは、特定の重合器を用いているためであることは、実施例によって 明らかである。
実施例
[0156] 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例 に限定されるものではない。
'数平均分子量 (Mn):テトラヒドロフランを搬送溶媒として用い、ゲルパーミエーショ ンクロマトグラフィー(GPC)法で測定し、標準単分散ポリスチレンを用いて得た下式 による換算分子量較正曲線を用いて数平均分子量 (Mn)を求めた。
M =0. 3591M 1 0388
PC PS
(式中、 M は芳香族ポリカーボネートの分子量、 M はポリスチレンの分子量を示
PC PS
す。)
'カラー:射出成形機を用い、芳香族ポリカーボネートをシリンダー温度 290°C、金型 温度 90°Cで、縦 50mm X横 50mm X厚さ 3. 2mmの試験片を連続成形した。得ら れた試験片の色調は CIELAB法(Commission Internationale de l 'Eclairag e 1976 L*a*b* Diagram)により測定し、黄色度を b*値で示した。
•引張伸度:射出成形機を用い、芳香族ポリカーボネートをシリンダー温度 290°C、 金型温度 90°Cで射出成形した。得られた厚み 3. 2mmの試験片の引張伸度(%)は 、 ASTM D638に準じて測定した。
•異種結合の量は、 W097Z32916号公報記載の方法で測定され、アルカリ金属 Z アルカリ土類金属は ICP法により、ハロゲンはイオンクロマト法でそれぞれ測定された [実施例 1]
(1)ジフ ニルカーボネートを連続的に製造する工程 (I)
<第 1連続多段蒸留塔 101 >
図 1に示されるような L = 3300cm, D = 500cm, L /Ό = 6. 6、 η = 80、 D Ζ d = 17, D /d = 9 である連続多段蒸留塔を用いた。なお、この実施例では、ィ
11 1 12
ンターナルとして、孔 1個あたりの断面積 =約 1. 5cm2,孔数 =約 250個 Zm2を有 する多孔板トレイを用いた。
<第 2連続多段蒸留塔 201 >
図 2に示されるような L = 3100cm, D = 500cm, L /Ό = 6. 2、 η = 30、 D /
2 2 2 2 2 2 d = 3. 85、D Zd = 11. 1 である連続多段蒸留塔を用いた。なお、この実施例
21 2 22
では、インターナルとして、上部にメラパック 2基 (合計理論段数 11段)を設置し、下 部に孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 250個 Zm2を有する多孔板トレ ィを用いた。 [0158] <反応蒸留 >
図 3に示されるような第 1連続多段蒸留塔 101と第 2連続多段蒸留塔 201が接続さ れた装置を用いて反応蒸留を行 、、ジフエニルカーボネートを製造した。
フエノール Zジメチルカーボネート = 1. 9 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 50トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 6 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 50トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 35であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 lOOppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 225°Cで、塔頂部の圧力 力 S7 X 105Pa、還流比が 0の条件下で連続的に反応蒸留が行われた。メチルアルコ ール、ジメチルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔 の塔頂部 13よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 3 4トン Zhrの流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネ ート、フエノール、ジフヱ-ルカーボネート、触媒等を含む第 1塔高沸点反応混合物 を第 1塔底部 17より液状で連続的に抜き出した。
[0159] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 66トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 18. 2質量0 /0、ジフエ-ルカーボ ネートが 0. 8質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 10°Cで、塔頂部の圧力が 3 X 104Pa、還流比が 0. 3の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から ジメチルカーボネート 35質量%、フ ノール 56質量%を含む第 2塔低沸点反応混合 物が連続的に抜き出され、抜出し口 26での流量は 55. 6トン Zhrで、第 2塔塔底部 2 7からはメチルフエ-ルカーボネート 38. 4質量0 /0、ジフエ-ルカーボネート 55. 6質 量%を含む第 2塔高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混 合物は、導入口 11から第 1連続多段蒸留塔 101に連続的に供給された。この際、新 規に供給されるジメチルカーボネートとフエノールの量は、第 2塔低沸点反応混合物 の組成、量を勘案した上で、上記原料 1及び原料 2の組成、量を維持するように調整 した。ジフエ-ルカーボネートの生産量は 1時間あたり 5. 74トンであることがわかった 。反応したフエノールに対して、ジフエ-ルカーボネートの選択率は 98%であった。
[0160] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエ-ルカーボネートの生産量 (原料中に含まれ るジフエ-ルカーボネートを除く)は、 1時間あたり 5. 74トン、 5. 75トン、 5. 74トン、 5 . 74トン、 5. 75トンであり、選択率は 98%、 98%、 98%、 98%、 98%、であり、非常 に安定していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含 まれて 、なかった(lppb以下)。
[0161] (2)高純度ジフ 二ルカーボネートを取得する工程 (Π)
該第 2連続多段蒸留塔の塔底部力 抜き出された第 2塔高沸点反応混合物を高沸 点物質分離塔 (長さ 1700cm、内径 340cm、 30段)に連続的に供給し、塔底部の温 度 206°C、塔頂部の圧力 3800Pa、還流比 0. 6で連続的に蒸留を行った。該高沸点 物質分離塔の塔頂部力も連続的に抜き出された塔頂成分をそのまま、サイドカット抜 き出し口を有するジァリールカーボネート精製塔 (長さ 2200cm、内径 280cm、導入 口より上部が 12段、導入口とその下部に設置されたサイドカット口との間が 18段、サ イドカット口より下部が 5段)の導入口に連続的に供給された。該ジァリールカーボネ ート精製塔では、塔底部の温度 213°C、塔頂部の圧力 5000Pa、還流比 1. 5で連続 的に蒸留が行われた。サイドカット抜き出しロカも連続的に抜き出されたジフエニル カーボネートの純度は 99. 999%以上で、ハロゲン含有量は lppb以下であった。 このようにして取得された高純度ジフエ-ルカーボネートは、ー且貯蔵タンクに溶融 状態で貯蔵された。
[0162] (3)高品質ポリカーボネートを製造する工程 (III)
図 5に示すようなガイド接触流下式重合器を用いて芳香族ポリカーボネートの製造 を行なった。この重合器の材質は、すべてステンレススチールである。この重合器は 円筒形の側面ケーシングとテーパー形の底部ケーシングを有するものであって、 L = 1, OOOcm、 h= 900cm、 D= 500cm、 d=40cm、 C= 155度 、 S = 250m2 であ る。供給口 1から供給された溶融ポリマーは多孔板 2により各ガイド 4に均一に分配さ れる。重合器下部には不活性ガス供給口 9が備えられており、上部には真空ベント口 6が備えられている。重合器の外側はジャケットになっており、熱媒で加温されている
[0163] ビスフ ノール Aと工程 (I)、 (II)で製造された該高純度ジフエ-ルカーボネート (対 ビスフエノール Aモル比 1. 05)と力も製造され、 260°Cに保たれた芳香族ポリカーボ ネートの溶融プレポリマー(数平均分子量 Mnは 4, 000)力 供給ポンプによって供 給口 1より供給ゾーン 3に連続的に供給された。重合器内の多孔板 2を通して重合反 応ゾーン 5に連続的に供給された、溶融プレボリマーは、ガイド 4に沿って流下しなが ら重合反応が進められた。重合反応ゾーン 5は真空ベント口 6を通して 80Paに保持 されて 、る。ガイド 4の下部力も重合器の底部 11に入ってきた生成芳香族ポリカーボ ネートは、該底部での滞留量がほぼ一定となるように排出ポンプ 8によって排出口 7 力も 5. 5トン Zhrの流量で連続的に抜き出された。
[0164] 運転を開始してから 50時間後に抜き出し口 12から抜き出された芳香族ポリカーボ ネートの数平均分子量 Mnは 10, 500であり、良好なカラー(b*値 3. 2)であった。ま た、引張伸度は 98%であった。運転開始から、 60時間後、 100時間後、 500時間後 、 1, 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後 に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それぞれ、 10, 500、 10, 550、 10, 500、 10, 550、 10, 500、 10, 500、 10, 550、 10, 500であ り、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属及び Z又はアル カリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 04〜0. 05ppm であり、塩素の含有量は lppb以下 (検出限界以下)であった。また、異種結合の含 有量は 0. 12〜0. 15モル0 /0であった。
[0165] (4)芳香族モノヒドロキシィ匕合物のリサイクル工程 (IV)
工程 (III)で副生し、液状で回収された約 10%のジフエ-ルカーボネートと微量の ビスフエノール Aを含むフエノール溶液力 フエノール精製塔(長さ 1500cm、内径 2 70cm, 9段)に連続的に供給された。塔底部の温度 185°C、塔頂部の圧力 2000Pa 、還流比 0. 9で連続的に蒸留が行われた。塔頂部から回収されたフエノールは、一 且、タンクに貯蔵された後、工程 (I)にリサイクルされた。サイドカット部から回収され たジフ -ルカーボネートは、工程 (Π)の高沸点物質分離塔に供給され、高純度ジ フエニルカーボネートとして回収された。
[0166] [実施例 2]
(1)ジフ ニルカーボネートを連続的に製造する工程 (I)
実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。
フエノール Zジメチルカーボネート = 1. 1 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 40トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 9 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 43トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 87であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 250ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 235°Cで、塔頂部の圧力 力 S9 X 105Pa、還流比が 0の条件下で連続的に反応蒸留が行われた。メチルアルコ ール、ジメチルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔 の塔頂部 13よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 4 3トン Zhrの流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネ ート、フエノール、ジフヱ-ルカーボネート、触媒等を含む第 1塔高沸点反応混合物 を第 1塔底部 17より液状で連続的に抜き出した。
[0167] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 40トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 20. 7質量0 /0、ジフエ-ルカーボ ネートが 1. 0質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 05°Cで、塔頂部の圧力が 2 X 104Pa、還流比が 0. 5の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から 第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフ -ルカーボネート 36. 2質量%、ジフエ-ルカーボネート 60. 8質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1及び原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 4. 03トンであることがわかった。反応したフエノー ルに対して、ジフエ-ルカーボネートの選択率は 97%であった。
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネー卜の 1時間あたりの生産量は 4. 03卜ン、 4. 03卜ン、 4. 04卜ン であり、反応したフエノールに対して選択率は 97%、 97%、 97%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。
(2)高純度ジフ 二ルカーボネートを取得する工程 (Π)
実施例 1と同様な方法で行われた。
(3)高品質ポリカーボネートを製造する工程 (III)
実施例 1と同じ重合器に、ビスフエノール Aと工程 (1)、 (Π)で製造された高純度ジフ ェ-ルカーボネート(対ビスフエノール Aモル比 1. 05)とから製造された芳香族ポリ力 ーボネートの溶融プレポリマー(数平均分子量 Mnは 3, 500)力 供給ポンプによつ て供給口 1より供給ゾーン 3に連続的に供給された。重合反応ゾーンの圧力が 100P aに保持されている以外は実施例 1と同様な方法により重合させて芳香族ポリカーボ ネートを製造した。運転開始から、 50時間後、 100時間後、 500時間後、 1, 000時 間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後に排出口 12 力も排出された芳香族ポリカーボネートの Mnは、それぞれ、 7, 600、 7, 600、 7, 6 50 7, 600、 7, 650、 7, 650、 7, 600、 7, 600であり、安定であった。 このようにして製造された芳香族ポリカーボネートは、アルカリ金属及び z又はアル カリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03から 0. 04ppm であり、塩素の含有量は lppb以下 (検出限界以下)であった。また、異種結合の含 有量は 0. 08〜0. 1モル%であった。
(4)芳香族モノヒドロキシィ匕合物のリサイクル工程 (IV)
実施例 1と同様な方法で行われた。
[0169] [実施例 3]
(1)ジフ ニルカーボネートを連続的に製造する工程 (I)
第 2連続多段蒸留塔 201における多孔板トレイの孔 1個あたりの断面積 =約 1. 8c m2とする以外は実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。 フエノール Zジメチルカーボネート = 1. 7 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 86トン Zhrの流量で連続的に導入した。一 方、ジメチルカーボネート Zフエノール = 3. 5 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 90トン Zhrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート Zフ ェノール = 1. 44であった。この原料にはハロゲンは実質的に含まれていなかった (ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反
2 応液中に約 150ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 220°Cで、塔頂部の圧力 力 S8 X 105Pa、還流比が 0の条件下で連続的に反応蒸留が行われた。メチルアルコ ール、ジメチルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔 の塔頂部 13よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 8 2トン Zhrの流量で抜出した。一方、メチルフエ-ルカーボネート、ジメチルカーボネ ート、フエノール、ジフヱ-ルカーボネート、触媒等を含む第 1塔高沸点反応混合物 を第 1塔底部 17より液状で連続的に抜き出した。
[0170] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 94トン Zhrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエ-ルカーボネートが 16. 0質量0 /0、ジフエ-ルカーボ ネートが 0. 5質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 15°Cで、塔頂部の圧力が 2. 5 X 104Pa、還流比が 0. 4の条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23か ら第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフ ェ-ルカーボネート 35. 5質量0 /0、ジフエ-ルカーボネート 59. 5質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1及び原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 7. 28トンであることがわかった。反応したフエノー ルに対して、ジフエ-ルカーボネートの選択率は 98%であった。
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ-ルカーボネー卜の 1時間あたりの生産量は 7. 28卜ン、 7. 29卜ン、 7. 29卜ン であり、反応したフエノールに対して選択率は 98%、 98%、 98%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。
(2)高純度ジフ 二ルカーボネートを取得する工程 (Π)
実施例 1と同様な方法で行われた。
(3)高品質ポリカーボネートを製造する工程 (III)
図 5に示すようなガイド接触流下式重合器 2基を直列に配置した重合装置を用いて 芳香族ポリカーボネートの製造をおこなった。これらの重合器の材質は、すべてステ ンレススチールである。ガイド接触流下式第 1重合器は円筒形側面ケーシングとテ一 パー形の底部ケーシングを有するものであって、 L = 950cm、 h=850cm、 D=400 cm、 d= 20cm、 C= 150度 、 S = 750m2 である。第 2重合器は実施例 1で用いた ものと同じちのである。
ビスフエノール Aと工程 (I)、 (II)で製造された高純度ジフヱ-ルカーボネート (対ビ スフェノール Aモル比 1. 06)と力 製造された芳香族ポリカーボネートの溶融プレボ リマー (数平均分子量 Mnは 2, 500)が、供給ポンプによって第 1重合器の供給口 1 より供給ゾーン 3に連続的に供給された。第 1重合器内の多孔板 2を通して重合反応 ゾーンに連続的に供給された、該溶融プレボリマーは、ガイド 4に沿って流下しながら 重合反応が進められた。第 1重合器の重合反応ゾーンは真空ベント口 6を通して 800 Paの圧力に保持されて 、る。ガイド 4の下部から重合器の底部 11に入ってきた重合 度の高められた芳香族ポリカーボネートの溶融プレボリマー (数平均分子量 Mnは 5, 500)は、該底部での滞留量がほぼ一定となるように排出ポンプ 8によって排出口 7か ら一定の流量で連続的に抜き出された。この溶融プレボリマーが、供給ポンプによつ て第 2重合器の供給口 1より供給ゾーン 3に連続的に供給された。第 2重合器内の多 孔板 2を通して重合反応ゾーンに連続的に供給された、該溶融プレボリマーは、ガイ ド 4に沿って流下しながら重合反応が進められた。第 2重合器の重合反応ゾーンは真 空ベント口 6を通して 50Paの圧力に保持されて 、る。ガイド 4の下部力も第 2重合器 の底部 11に入ってきた生成芳香族ポリカーボネートは、該底部での滞留量がほぼ一 定となるように排出ポンプ 8によって排出口 7から 6トン Zhrの流量で連続的に抜き出 された。
[0172] 運転を開始してから 50時間後に第 2重合器の抜き出し口 12から抜き出された芳香 族ポリカーボネートの数平均分子量 Mnは 11, 500であり、良好なカラー(b*値 3. 2) であった。また、引張伸度は 99%であった。運転開始から、 60時間後、 100時間後、 500時間後、 1, 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 0 00時間後に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それ ぞれ、 11, 500、 11, 550、 11, 500、 11, 550、 11, 500、 11, 500、 11, 550、 11 , 500であり、安定であった。
このようにして製造された芳香族ポリカーボネートは、アルカリ金属及び Z又はアル カリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03から 0. 05ppm であり、塩素の含有量は lppb以下 (検出限界以下)であった。また、異種結合の含 有量は 0. 11〜0. 16モル%であった。
[0173] (4)芳香族モノヒドロキシィ匕合物のリサイクル工程 (IV)
実施例 1と同様な方法で行われた。 産業上の利用可能性
[0174] 本発明によれば、ジアルキルカーボネートと芳香族ジヒドロキシ化合物から、着色が なく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートを、工業的に大 量 (例えば、 1時間あたり 1トン以上)に長期間(例えば、 1000時間以上、好ましくは 3 000時間以上、より好ましくは 5000時間以上)、安定的に製造できる製造方法が提 供される。
図面の簡単な説明
[0175] [図 1]本発明を実施するのに好ましい第 1連続反応蒸留塔の概略図である。胴部内 部にはインターナルが設置されている。
[図 2]本発明を実施するのに好ましい第 2連続反応蒸留塔の概略図である。胴部内 部には上部に規則充填物、下部に多孔板トレイカ なるインターナルが設置されて いる。
[図 3]本発明を実施するのに好ましい、第 1連続反応蒸留塔と第 2連続反応蒸留塔と を連結した装置の概略図である。
[図 4]本発明を実施するのに好ましいガイド接触流下式重合器の概略図である。
[図 5]本発明を実施するのに好ましい円筒形の側面ケーシングとテーパー形の底部 ケーシングを有するガイド接触流下式重合器の概略図である。 なお、各図にて使用 した符号の説明は、以下のとおりである;(図 1、図 2及び図 3) 1 : ガス抜出し口; 2 : 液抜出し口; 3 : 導入口; 4 : 導入口; 5 : 鏡板部; L 、L :胴部
1 2 長さ(cm) ; D 、D :胴部内径 (cm) ; d 、d :ガス抜出し口内径 (cm); d
1 2 11 21 12
、d :液抜出し口内径 (cm) ; 101 :第 1連続多段蒸留塔; 201 :第 2連続多段蒸
22
留塔; 11、 12、 21 :導入口; 13、 23 :塔頂ガス抜出し口; 14、 24、 18, 28 :熱交 換器; 17、 27 :塔底液抜出し口; 16、 26 :塔頂成分抜出し口; 31 : 第 2連続 多段蒸留塔塔底成分抜出し口;(図 4及び図 5) 1 : 溶融プレボリマー受給口; 2 : 多孔板; 3 : 溶融プレボリマー供給ゾーン; 4 : ガイド; 5 : 重合反応ゾ ーン; 6 : 真空ベント口; 7 : 芳香族ポリカーボネート排出口; 8 : 芳香族ポ リカーボネート排出ポンプ; 9 : 所望により使用される不活性ガス供給口; 10 : 重合反応ゾーンの側面ケーシング; 11 : 重合反応ゾーンの底部ケーシング; 12 : 芳香族ポリカーボネートの抜き出し口。

Claims

請求の範囲 ジアルキルカーボネートと芳香族ジヒドロキシィ匕合物から芳香族ポリカーボネートを 連続的に製造し、高品質芳香族ポリカーボネートの工業的製造方法であって、(I)ジアルキルカーボネートと芳香族モノヒドロキシィ匕合物とを原料とし、この原料を触 媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と蒸留を 同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1塔上部 よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート類を含む第 1 塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高沸点反 応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内 で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔低沸 点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジァリール力 ーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的に抜 出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連続 多段蒸留塔内に連続的に供給することによって、ジァリールカーボネートを連続的に 製造する工程 (I)と、 (II)該ジァリールカーボネートを精製し、高純度ジァリールカーボネートを取得する 精製工程 (Π)と、 (III)該芳香族ジヒドロキシィ匕合物と該高純度ジァリールカーボネートとを反応させて 芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイドの 表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガイ ド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (III)と、(IV)工程 (III)で副生する芳香族モノヒドロキシィ匕合物をジァリールカーボネート製 造工程 (I)に循環する芳香族モノヒドロキシィ匕合物のリサイクル工程 (IV)と、 を含み、 (a)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、 内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 11 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間 部に lつ以上の第 lの導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 2の導入口を有するものであって、 L、 D、 L ZD、 n、 D Z d 、D Zd 力 それぞれ式(1)〜(6)を満足するものであり、 1500 < L ≤ 8000 式 (1) 1 100 < D ≤ 2000 式 (2) 1 2 < L /Ό ≤ 40 式 (3) 1 1 20 < n ≤ 120 式 (4) 1 5 < D /ά ≤ 30 式 (5) 1 11 3 < D /ά ≤ 20 式 (6) 1 12 (b)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、 2 2 内部に段数 nをもつインターナルを有する構造をしており、塔頂部又はそれに近い 2 塔の上部に内径 d (cm)のガス抜出し口、塔底部又はそれに近い塔の下部に内径 21 d (cm) 22 の液抜出し口、該ガス抜出し口より下部であって塔の上部及び Z又は中間 部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部及び Z又 は下部に 1つ以上の第 4の導入口を有するものであって、 L 2、 D 2、 L ZD 2 2、 n 2、 D Z 2 d 、D Zd 力 それぞれ式(7)〜(12)を満足するものであり、 1500 ≤ L ≤ 8000 式(7) 2 100 ≤ D ≤ 2000 式(8) 2 2 ≤ L /Ό ≤ 40 式(9) 2 2 10 ≤ n ≤ 80 式(10) 2 2 ≤ D /d ≤ 15 式(11) 2 21 5 ≤ D /d ≤ 30 式(12) 2 22 (c)該ガイド接触流下式重合器が、
(1)溶融プレボリマー受給口、多孔板、該溶融プレボリマーを多孔板を通して重合反 応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面ケ 一シングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方に延 びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた真 空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリカーボ ネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプを有 するものであって、
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式( 13)を満足するものであって、
0. 7 ≤ A ≤ 300 式(13)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(14)を満足するものであって、
20 ≤ A/B ≤ 1000 式(14)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式( 15)を満足するものであって、
120 ≤ C ≤ 165 式(15)
(5)該ガイドの長さ h (cm)力 式(16)を満足するものであって、
150 ≤ h ≤ 5000 式(16)
(6)該ガイド全体の外部総表面積 S (m2)が式(17)を満足するものである、
2 ≤ S ≤ 50000 式(17)
ことを特徴とする高品質芳香族ポリカーボネートの工業的製造方法。
[2] 製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴とする 請求項 1に記載の方法。
[3] 該 d と該 d が式(18)を満足し、且つ該 d と該 d が式(19)を満足することを特徴
11 12 21 22
とする請求項 1又は 2に記載の方法、
1 ≤ d /d ≤ 5 式(18)
12 11
1 ≤ d /d ≤ 6 式(19)。
21 22
[4] 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、 2
1 1 1 1 1 1 11 1 12
000≤L ≤6000, 150≤D ≤1000, 3≤L /Ό ≤30, 30≤n≤100, 8 ≤D /d ≤25、 5≤D /d ≤ 18であり、且つ、該第 2連続多段蒸留塔の L、D
1 11 1 12 2 2
、 L ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2000≤L ≤6000、 150≤D ≤1
2 2 2 2 21 2 22 2 2
000、 3≤L ZD ≤30、 15≤n ≤60、 2. 5≤D /d ≤12、 7≤D /d ≤ 25であることを特徴とする請求項 1ないし 3のうち何れか一項に記載の方法。
[5] 該第 1連続多段蒸留塔の L、 D、 L ZD、 n、 D Zd 、 D Zd がそれぞれ、 2
1 1 1 1 1 1 11 1 12
500≤L ≤5000, 200≤D ≤800, 5≤L /Ό ≤15, 40≤n≤90, 10≤ D /d ≤25、 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、D、L
1 11 1 12 2 2
ZD、 n、 D Zd 、 D Zd 力 sそれぞれ、 2500≤L ≤5000、 200≤D ≤800
2 2 2 2 21 2 22 2 2
、 5≤L /Ό ≤15, 20≤n ≤50, 3≤D /d ≤10、 9≤D /d ≤20であ
2 2 2 2 21 2 22 ることを特徴とする請求項 1ないし 4のうち何れか一項に記載の方法。
[6] 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔が、それぞれ、該インターナル としてトレイ及び Z又は充填物を有する蒸留塔であることを特徴とする請求項 1ないし
5のうち何れか一項に記載の方法。
[7] 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であ り、該第 2連続多段蒸留塔が、該インターナルとして充填物及びトレイの両方を有す る蒸留塔であることを特徴とする請求項 6記載の方法。
[8] 該第 1連続多段蒸留塔及び該第 2連続多段蒸留塔の該トレイのそれぞれが、多孔 板部とダウンカマー部を有する多孔板トレイであることを特徴とする請求項 6又は 7記 載の方法。
[9] 該多孔板トレイが、該多孔板部の面積 lm2あたり 100〜: L000個の孔を有するもの であることを特徴とする請求項 8記載の方法。
[10] 該多孔板トレイの孔 1個あたりの断面積が、 0. 5〜5cm2であることを特徴とする請 求項 8又は 9記載の方法。
[11] 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部に 有する蒸留塔であることを特徴とする請求項 6又は 7に記載の方法。
[12] 該第 2連続多段蒸留塔の該インターナルの該充填物が、 1基又は 2基以上の規則 充填物であることを特徴とする請求項 6ないし 11のうち何れか一項に記載の方法。
[13] 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバック、 フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドからな る群力も選ばれた少なくとも一種であることを特徴とする請求項 12に記載の方法。
[14] ジァリールカーボネート精製工程 (Π)が、蒸留であることを特徴とする請求項 1ない し 13のうち何れか一項に記載の方法。
[15] 重合反応ゾーンの側面ケーシンダカ 内径 D (cm)、長さ L (cm)の円筒形であって 、その下部に接続された底部ケーシングがテーパー形であり、該テーパー形のケー シングの最下部の排出口が内径 d (cm)の円筒形であって、 D、L、d 力 式(20)、 ( 21)、(22)及び (23)を満足する、
100 ≤ D ≤ 1800 式(20)
5 ≤ D/d ≤ 50 式(21)
0. 5 ≤ L/D ≤ 30 式(22)
h- 20 ≤ L ≤ h+ 300 式(23)
ことを特徴とする請求項 1ないし 14のうち何れか一項に記載の方法。
[16] 該 hが式 (24)を満足する、
400 < h ≤ 2500 式(24)
ことを特徴とする請求項 1ないし 15のうち何れか一項に記載の方法。
[17] 1つの該ガイド力 外径 r (cm)の円柱状又は内側に溶融プレボリマーが入らない ようにしたパイプ状のものであって、 r が式(25)を満足する、
0. 1 ≤ r ≤ 1 式(25) ことを特徴とする請求項 1ないし 16のうち何れか一項に記載の方法。
[18] 該ガイド接触流下式重合器 2基以上を連結して重合を行うこと特徴とする請求項 1 ないし 17のうち何れか一項に記載の方法。
[19] 請求項 18記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1重 合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を上げ ていく方法において、該第 1重合器のガイド全体の外部総表面積 SI (m2)と該第 2重 合器のガイド全体の外部総表面積 S2 (m2)とが式 (26)を満足する、
1 ≤ S1/S2 ≤ 20 式(26) ことを特徴とする請求項 1ないし 18のうち何れか一項に記載の方法。
[20] 請求項 1〜19のいずれかの方法によって 1時間あたり 1トン以上製造された高品質 芳香族ポリカーボネート。
[21] アルカリ金属及び Z又はアルカリ土類金属化合物の含有量力 をこれらの金属元 素に換算して、 0. 1〜0. Olppmであり、且つ、ハロゲン含有量力 lppb以下である ことを特徴とする請求項 20記載の高品質芳香族ポリカーボネート。
主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に分岐 している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネート結 合に対して、 0. 05〜0. 5モル%であることを特徴とする請求項 20又は 21記載の高 品質芳香族ポリカーボネート。
PCT/JP2006/323321 2005-11-30 2006-11-22 高品質芳香族ポリカーボネートの工業的製造方法 WO2007063757A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06833143A EP1956036A4 (en) 2005-11-30 2006-11-22 INDUSTRIAL MANUFACTURING METHOD FOR HIGHLY QUALITATIVE, AROMATIC POLYCARBONATE
CN2006800451419A CN101321805B (zh) 2005-11-30 2006-11-22 高品质芳香族聚碳酸酯的工业制备方法
EA200801493A EA200801493A1 (ru) 2005-11-30 2006-11-22 Промышленный способ получения ароматического поликарбоната высокого качества
US11/991,420 US20090156759A1 (en) 2005-11-30 2006-11-22 Industrial process for production of high-quality aromatic polycarbonate
BRPI0618746A BRPI0618746A2 (pt) 2005-11-30 2006-11-22 processo industrial para a produção de um policarbonato aromático de qualidade elevada, e, policarbonato aromático de qualidade elevada
JP2007547908A JP5030788B2 (ja) 2005-11-30 2006-11-22 高品質芳香族ポリカーボネートの工業的製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005346770 2005-11-30
JP2005-346770 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007063757A1 true WO2007063757A1 (ja) 2007-06-07

Family

ID=38092092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323321 WO2007063757A1 (ja) 2005-11-30 2006-11-22 高品質芳香族ポリカーボネートの工業的製造方法

Country Status (9)

Country Link
US (1) US20090156759A1 (ja)
EP (1) EP1956036A4 (ja)
JP (1) JP5030788B2 (ja)
KR (1) KR20080064189A (ja)
CN (1) CN101321805B (ja)
BR (1) BRPI0618746A2 (ja)
EA (1) EA200801493A1 (ja)
TW (1) TW200738780A (ja)
WO (1) WO2007063757A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012056903A1 (ja) * 2010-10-29 2012-05-03 旭化成ケミカルズ株式会社 縮重合反応性ポリマーの製造方法、並びに重合器
JP4936555B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 高純度ジアリールカーボネートの工業的製造法
JP4936556B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 芳香族カーボネートの工業的製造法
CN104379552A (zh) * 2012-06-29 2015-02-25 沙特基础创新塑料Ip私人有限责任公司 用于分离碳酸二烷基酯、水和烷醇的方法和装置
WO2015141501A1 (ja) * 2014-03-19 2015-09-24 旭化成ケミカルズ株式会社 縮重合反応性ポリマー及びその製造装置
WO2022202026A1 (ja) * 2021-03-25 2022-09-29 旭化成株式会社 芳香族分岐ポリカーボネート、その製造方法、及び芳香族分岐ポリカーボネートの製造装置
CN115845857A (zh) * 2023-01-03 2023-03-28 山东德普新材料科技有限公司 一种用于尿素醇解法制备碳酸二甲酯的复合催化剂的制备工艺
WO2023058681A1 (ja) * 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7225621B2 (en) * 2005-03-01 2007-06-05 Ormat Technologies, Inc. Organic working fluids
WO2017089441A1 (en) * 2015-11-26 2017-06-01 Shell Internationale Research Maatschappij B.V. Process for preparing a diaryl carbonate
CN105542824B (zh) * 2016-02-14 2018-01-09 黑龙江科技大学 一种脱除煤焦油中喹啉不溶物的装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (ja) * 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
JPH09255772A (ja) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
JP2002226573A (ja) * 2001-01-05 2002-08-14 Bayer Ag ポリカーボネートを製造する方法
JP2004211107A (ja) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp 芳香族ポリカーボネートを製造するためのシステム
JP2005146050A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888826A (en) * 1972-07-10 1975-06-10 Mitsubishi Gas Chemical Co Process for preparing aromatic polycarbonates
US4182726A (en) * 1974-06-25 1980-01-08 Snamprogetti, S.P.A. Process for the preparation of aromatic carbonates
DE2736063A1 (de) * 1977-08-10 1979-02-22 Bayer Ag Verfahren zur herstellung aromatischer kohlensaeureester
DE3146142A1 (de) * 1981-11-21 1983-06-01 Henkel KGaA, 4000 Düsseldorf Reaktionskolonne und dessen verwendung
US4410464A (en) * 1982-03-15 1983-10-18 General Electric Company Diaryl carbonate process
FR2611704B1 (fr) * 1987-02-23 1989-06-09 Bp Chimie Sa Procede de fabrication en continu d'acetates
NL9000653A (nl) * 1990-03-21 1991-10-16 Kessels Gerard Werkwijze voor de bereiding van d-(-)-4-hydroxyfenylglycine en l-(+)-4-hydroxyfenylglycine, uitgaande van d.l.-4-hydroxyfenylglycine.
DE4226755A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Diarylcarbonaten aus Dialkylcarbonaten
DE4226756A1 (de) * 1992-08-13 1994-02-17 Bayer Ag Verfahren zur Herstellung von Dicarbonaten
WO1997011049A1 (fr) * 1995-09-22 1997-03-27 Asahi Kasei Kogyo Kabushiki Kaisha Procede de preparation de carbonate aromatique
ES2213785T5 (es) * 1995-12-15 2008-03-01 Asahi Kasei Kabushiki Kaisha Metodo para producir un policarbonato aromatico.
US5747609A (en) * 1996-01-17 1998-05-05 Asahi Kasei Kogyo Kabushiki Kaisha Method for producing an aromatic polycarbonate having improved melt stability
MY117361A (en) * 1996-03-05 2004-06-30 Asahi Chemical Ind Polycarbonate having heterounits and method for producing the same
CN1083852C (zh) * 1997-07-16 2002-05-01 旭化成株式会社 生产改进了熔融稳定性的芳族聚碳酸酯的方法
JP4112048B2 (ja) * 1997-09-16 2008-07-02 旭化成ケミカルズ株式会社 芳香族カーボネート類の製法
ES2249880T3 (es) * 1998-01-14 2006-04-01 Asahi Kasei Chemicals Corporation Metodo y aparato polimerizador para producir un policarbonato aromatico.
KR100420017B1 (ko) * 1998-06-05 2004-02-25 아사히 가세이 가부시키가이샤 방향족 폴리카르보네이트의 제조 방법
AU4166999A (en) * 1998-06-16 2000-01-05 Asahi Kasei Kogyo Kabushiki Kaisha System and process for producing polycondensation polymer
US6093842A (en) * 1998-09-25 2000-07-25 General Electric Company Process for continuous production of carbonate esters
CN1243715C (zh) * 2000-08-04 2006-03-01 宇部兴产株式会社 碳酸二芳基酯产物和聚碳酸酯的制备
US20040104108A1 (en) * 2002-12-03 2004-06-03 Mason Robert Michael High capacity purification of thermally unstable compounds
EP1657272B2 (en) * 2003-08-21 2020-04-08 Mitsubishi Chemical Corporation Process for producing aromatic polycarbonate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (ja) * 1995-12-15 1997-06-24 Jiemu P C Kk ポリカーボネートの製造方法
JPH09255772A (ja) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd 芳香族ポリカーボネートの製造方法
JP2004211107A (ja) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp 芳香族ポリカーボネートを製造するためのシステム
JP2002226573A (ja) * 2001-01-05 2002-08-14 Bayer Ag ポリカーボネートを製造する方法
JP2005146050A (ja) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp 芳香族ポリカーボネートの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1956036A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936555B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 高純度ジアリールカーボネートの工業的製造法
JP4936556B2 (ja) * 2005-12-16 2012-05-23 旭化成ケミカルズ株式会社 芳香族カーボネートの工業的製造法
US9321884B2 (en) 2010-10-29 2016-04-26 Asahi Kasei Chemicals Corporation Process for producing polycondensation polymer, and polymerizer
KR101418692B1 (ko) 2010-10-29 2014-07-10 아사히 가세이 케미칼즈 가부시키가이샤 축중합 반응성 중합체의 제조 방법 및 중합기
WO2012056903A1 (ja) * 2010-10-29 2012-05-03 旭化成ケミカルズ株式会社 縮重合反応性ポリマーの製造方法、並びに重合器
JP5680662B2 (ja) * 2010-10-29 2015-03-04 旭化成ケミカルズ株式会社 芳香族ポリカーボネートの製造方法、並びに重合器
EA024379B1 (ru) * 2010-10-29 2016-09-30 Асахи Касеи Кемикалз Корпорейшн Способ получения ароматического поликарбоната реакцией поликонденсации и реактор полимеризации
CN104379552A (zh) * 2012-06-29 2015-02-25 沙特基础创新塑料Ip私人有限责任公司 用于分离碳酸二烷基酯、水和烷醇的方法和装置
WO2015141501A1 (ja) * 2014-03-19 2015-09-24 旭化成ケミカルズ株式会社 縮重合反応性ポリマー及びその製造装置
JPWO2015141501A1 (ja) * 2014-03-19 2017-04-06 旭化成株式会社 縮重合反応性ポリマー及びその製造装置
KR101861938B1 (ko) * 2014-03-19 2018-05-28 아사히 가세이 가부시키가이샤 축중합 반응성 중합체 및 그의 제조 장치
EA032233B1 (ru) * 2014-03-19 2019-04-30 Асахи Касеи Кабусики Кайся Поликонденсационный полимер и установка для его получения
EA037043B1 (ru) * 2014-03-19 2021-01-29 Асахи Касеи Кабусики Кайся Поликонденсационный полимер и установка для его получения
WO2022202026A1 (ja) * 2021-03-25 2022-09-29 旭化成株式会社 芳香族分岐ポリカーボネート、その製造方法、及び芳香族分岐ポリカーボネートの製造装置
WO2023058681A1 (ja) * 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法
CN115845857A (zh) * 2023-01-03 2023-03-28 山东德普新材料科技有限公司 一种用于尿素醇解法制备碳酸二甲酯的复合催化剂的制备工艺
CN115845857B (zh) * 2023-01-03 2024-05-07 山东德普新材料科技有限公司 一种用于尿素醇解法制备碳酸二甲酯的复合催化剂的制备工艺

Also Published As

Publication number Publication date
EP1956036A4 (en) 2009-01-07
KR20080064189A (ko) 2008-07-08
CN101321805A (zh) 2008-12-10
BRPI0618746A2 (pt) 2016-08-30
TW200738780A (en) 2007-10-16
JP5030788B2 (ja) 2012-09-19
JPWO2007063757A1 (ja) 2009-05-07
EP1956036A1 (en) 2008-08-13
CN101321805B (zh) 2012-03-28
US20090156759A1 (en) 2009-06-18
EA200801493A1 (ru) 2009-02-27

Similar Documents

Publication Publication Date Title
WO2007063757A1 (ja) 高品質芳香族ポリカーボネートの工業的製造方法
KR100887941B1 (ko) 고순도 디아릴카보네이트의 제조 방법
RU2622641C2 (ru) Способ и установка для получения поликарбоната
WO2006006568A1 (ja) 芳香族カーボネート類を工業的に製造する方法
WO2006006588A1 (ja) 芳香族カーボネート類を工業的に製造する方法
JP5030231B2 (ja) 高品質芳香族ポリカーボネートを工業的に製造する方法
WO2006006566A1 (ja) 芳香族カーボネート類の工業的製造法
JP5362223B2 (ja) 高純度ジフェニルカーボネートを工業的規模で製造する方法
JP4181601B2 (ja) 芳香族ポリカーボネートを効率的に製造する方法
JP4152419B2 (ja) 芳香族ポリカーボネートを製造するための重合装置
JP4181600B2 (ja) 芳香族ポリカーボネートの改良された製造方法
JP3724905B2 (ja) 芳香族ポリカーボネートの製造方法
KR100799034B1 (ko) 올리고카르보네이트의 제조 방법
JP5344927B2 (ja) 高品質芳香族ポリカーボネートを工業的規模で製造する方法
CN108586254B (zh) 碳酸二芳基酯的制造方法和芳香族聚碳酸酯的制造方法
JP5320071B2 (ja) 高品質芳香族ポリカーボネートの工業的製造法
JPH10251396A (ja) 芳香族ポリカーボネートの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680045141.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007547908

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006833143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 908/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087012807

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200801493

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11991420

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0618746

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080516