WO2007040042A1 - 放射線用シンチレータプレート及び放射線画像検出器 - Google Patents

放射線用シンチレータプレート及び放射線画像検出器 Download PDF

Info

Publication number
WO2007040042A1
WO2007040042A1 PCT/JP2006/318559 JP2006318559W WO2007040042A1 WO 2007040042 A1 WO2007040042 A1 WO 2007040042A1 JP 2006318559 W JP2006318559 W JP 2006318559W WO 2007040042 A1 WO2007040042 A1 WO 2007040042A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
csf
scintillator plate
csl
crystal
Prior art date
Application number
PCT/JP2006/318559
Other languages
English (en)
French (fr)
Inventor
Takehiko Shoji
Mika Sakai
Yasushi Nakano
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2007538687A priority Critical patent/JP4710907B2/ja
Publication of WO2007040042A1 publication Critical patent/WO2007040042A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • the present invention relates to a radiation scintillator plate and a radiation image detector, and more particularly to a radiation scintillator plate and a radiation image detector provided with a phosphor layer using Cs as a base.
  • radiographic images such as X-ray images have been widely used for diagnosis of medical conditions in the medical field.
  • radiographic images using intensifying screen-film systems have been developed as an imaging system that combines high reliability and excellent cost performance as a result of high sensitivity and high image quality in the long history. Used in medical settings around the world.
  • CR is currently accepted in the medical field as one of the digital technologies for X-ray images.
  • a scintillator plate made using an X-ray phosphor that emits light by radiation is used to convert the radiation into visible light. Power is improved in low-dose imaging Therefore, it is necessary to use a scintillator plate with high luminous efficiency.
  • the luminous efficiency of the scintillator plate is determined by the thickness of the phosphor layer and the X-ray absorption coefficient of the phosphor. The thicker the phosphor layer, the more the light emitted from the phosphor layer scatters and becomes sharper. It will reduce the sex. Therefore, the sharpness required for the image quality was determined and the film thickness was determined.
  • Csl cesium iodide
  • Patent Document 1 since Csl alone has low luminous efficiency, for example, in Patent Document 1, a mixture of Csl and sodium iodide (Nal) at an arbitrary molar ratio is deposited as an activator raw material. A technique is disclosed in which visible conversion efficiency is improved by depositing sodium-activated cesium iodide (Csl: Na) on a substrate and annealing as a post-process to use as an X-ray phosphor.
  • Csl cesium iodide
  • Patent Document 2 Csl is vapor-deposited to form indium (In), thallium (T 1), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), etc.
  • T 1 lithium
  • K lithium
  • Rb rubidium
  • Na sodium
  • Disclosed is a technology for producing X-ray phosphors by forming the active material with a spatter! Speak.
  • Patent Document 1 Japanese Patent Publication No. 54-35060
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2001-59899
  • An object of the present invention is to provide a scintillator plate that can improve the light emission efficiency of light emission by radiation irradiation.
  • One aspect of the present invention for achieving the above object is a radiation scintillator plate in which a phosphor layer that emits light when irradiated with radiation is formed on a substrate. It is in a scintillating tabule for radiation, characterized in that the body layer contains CsF crystals.
  • FIG. 1 is a cross-sectional view of a radiation scintillator plate.
  • FIG. 2 is an enlarged cross-sectional view of the phosphor layer surface when CsF is present as a mixed crystal of the phosphor.
  • FIG. 3 is an enlarged sectional view of the phosphor layer surface when CsF crystals are formed on the phosphor layer surface.
  • FIG. 4 is a configuration diagram of a radiation image detector.
  • FIG. 5 is a cross-sectional view of the imaging panel constituting FIG.
  • FIG. 6 is a schematic configuration diagram of a vapor deposition apparatus used in Examples.
  • the scintillator plate for radiation according to (3) After adding Csl and CsF to make a Csl-CsF mixture, The scintillator plate for radiation according to (3), wherein the scintillator plate for radiation according to (3) is formed through a vapor deposition step of performing vapor deposition on the substrate using the CsI-CsF mixture and an activator raw material as a supply source.
  • the phosphor layer is a phosphor columnar crystal formed on the substrate with Csl and an activator raw material as main components,
  • the radiation scintillator plate according to (6) wherein the scintillator plate for radiation according to (6) is formed through a heating step of heating in an atmosphere of a fluorine-based solvent gas after the vapor deposition step.
  • the activator raw material is a compound containing any one selected from indium, thallium, potassium, rubidium, sodium, and europium, according to (1) to (7), A scintillator plate for radiation according to any one of the above.
  • the fluorinated solvent gas is a vaporized fluorinated solvent
  • “A” is an integer of 1 to 3
  • “R1” and “R2” are groups selected from the group consisting of an alkyl group and an aryl group, and at least one of “R1” and “R2” On the other hand, it contains at least one fluorine atom and one hydrogen atom.
  • a radiation image detector that detects radiation and acquires radiation image information, the radiation scintillator plate according to any one of (1) to (10), and the radiation Replace the light emitted by the scintillator plate with an electrical signal
  • a radiation image detector comprising an output substrate.
  • a scintillator plate capable of improving the light emission efficiency of radiation by irradiation by modifying the surface of a Csl crystal while using Csl, which is an excellent material as a scintillator material, as a base. Can be provided.
  • a radiation scintillator plate 10 comprises a phosphor layer 2 on a substrate 1 as shown in FIG. 1, and when the phosphor layer 2 is irradiated with radiation, the phosphor Layer 2 absorbs the energy of the incident radiation and emits an electromagnetic wave with a wavelength force of S300 nm force of 800 nm, that is, an electromagnetic wave (light) ranging from ultraviolet light to infrared light centering on visible light. .
  • the substrate 1 is capable of transmitting radiation such as X-rays, and a resin, a glass substrate, a metal plate, or the like is used. Therefore, it is preferable to use a resin such as an aluminum plate of lmm or less or a carbon fiber reinforced resin sheet.
  • the phosphor layer 2 is formed with crystals based on Cs. Examples thereof include CsBr and CsCl in addition to Csl.
  • a mixed crystal may be formed by using a plurality of raw materials constituting the phosphor layer 2 based on Cs described above at an arbitrary mixing ratio, and the mixed crystal may be used as a base.
  • the present inventors have found that the luminous efficiency of the phosphor layer 2 can be greatly improved by allowing a trace amount of CsF crystals to be present on the surface of the crystal constituting the phosphor layer 2. It was.
  • phosphor layer 2 is formed by mixing phosphor raw material with CsF, and CsF is present as a mixed crystal of the phosphor.
  • CsF Cs F crystal
  • a method of forming a crystal composed of CsF (Cs F crystal) on the surface of the phosphor layer 2 can be mentioned.
  • the scintillator plate 10 in which the phosphor layer 2 is formed by vapor deposition has a columnar crystal structure and can increase the area of the crystal surface serving as an interface with the outside world, so that the luminous efficiency can be increased.
  • a method of allowing CsF to exist on the surface of the phosphor layer 2 as a mixed crystal of the phosphor will be described.
  • Csl—CsF mixed crystal A Csl—CsF mixed crystal is prepared by adding Csl and CsF to form a mixture of Csl and CsF (hereinafter referred to as Csl—CsF mixture), and then adding the Csl—CsF mixture.
  • Vapor deposition is performed on the substrate 1 by a well-known vapor deposition method using the active material as a supply source (vapor deposition process).
  • a phosphor layer 2 composed of a Csl-CsF mixed crystal 2a formed in a columnar crystal structure is formed on the substrate 1, and light emission is caused by the presence of CsF on the crystal surface. Efficiency can be increased.
  • the amount of CsF is preferably 0. O3 mol% or more and 7. Omol% or less with respect to Csl as a base, and more preferably 0. O3 mol% or more and 5. Omol% or less. 0. If it is less than O3 mol%, the amount of CsF present on the crystal surface will decrease, and if it exceeds Omol%, the proportion of impurities that do not directly contribute to the emission of radiation itself will increase. It is presumed that the effect of enhancing cannot be sufficiently obtained.
  • the Csl-CsF mixed crystal 2a is obtained by preparing a Csl-CsF mixture, then placing the Csl-CsF mixture in an electric furnace and firing it at a temperature of 350 ° C or higher. The fired product is crushed. Then, it is possible to form the phosphor layer 2 by dispersing the powdered fired product in a known binder and coating it on the substrate 1, and CsF is formed on the surface of the phosphor layer 2.
  • the existing scintillator plate 10 can be used.
  • the binder suppresses the granularity of the radiation image by increasing the dispersibility of the phosphor and increasing the filling rate of the phosphor.
  • both the polyurethane and the vinyl chloride are used.
  • the mass content of the phosphor dispersed in the binder is preferably 90 to 99%.
  • the thickness of the scintillator plate 10 is determined from the balance between the granularity and sharpness of the radiographic image. That is, when the scintillator plate 10 is thick, the graininess becomes inconspicuous, but the sharpness tends to decrease. When the scintillator plate 10 is thin, the sharpness improves, but the graininess tends to become remarkable. Scintillator plate used in the present invention
  • 10 is 20 ⁇ m to 1 mm, preferably 50 ⁇ m to 600 ⁇ m, as a thickness that can express both the graininess and the sharpness in a balanced manner.
  • the activator material applicable to the present invention may be any well-known one. It can be arbitrarily selected according to required characteristics such as emission wavelength and moisture resistance. Specifically, indium (In), thallium (Tm), lithium (Li), potassium (K), rubidium (Rb), sodium (Na), europium (Eu), copper (Cu), cerium (Ce ), Zinc (Zn), titanium (Ti), gadolinium (Gd), terbium (Tb), and other compounds are not limited thereto.
  • vapor deposition is performed on the substrate 1 by a known vapor deposition method to form a phosphor layer 2 having a columnar crystal structure on the substrate 1.
  • vapor deposition is performed on the substrate 1 using Csl and an activator raw material as a supply source (deposition step).
  • the activator raw material used here the same material as described in the method of allowing CsF to be present on the surface of the phosphor layer 2 as the mixed crystal of the phosphor can be used.
  • CsF crystals are formed on the surface of the phosphor layer 2 (CsF crystal formation step).
  • the substrate 1 on which the phosphor layer 2 is formed is placed in a predetermined container into which a fluorinated solvent is introduced, and the inside of the container is heated to vaporize the fluorinated solvent. That is, after the vapor deposition step, the substrate 1 on which the phosphor layer 2 is formed is subjected to a heat treatment in a gas atmosphere in which the fluorinated solvent is vaporized (heating step).
  • the scintillator plate for radiation 10 in which the CsF crystal 2c is formed on the surface of each columnar crystal 2b that is the surface of 2 can be obtained.
  • CsF is absorbed on the surface of the columnar crystal 2b formed on the substrate 1.
  • the CsF abundance ratio on the surface of the phosphor layer 2 is more efficient than the method of using the mixed crystal of CsF described above to cause CsF to exist on the surface of the phosphor layer 2.
  • the effect of increasing the light emission efficiency by radiation irradiation can be improved.
  • the force capable of obtaining the effect of the present invention is preferably 20 ppm or more.
  • ppm represents molar ppm unless otherwise specified.
  • the total amount of CsF formed on the crystal surface can be arbitrarily adjusted according to the heating time and heating temperature, but the heating temperature is 80 ° C or higher, and 250 from the viewpoint of work safety. ° C or less is preferred.
  • the point to be subjected to heat treatment (characteristics such as having no flash point from the viewpoint of fire fighting law related to flammability and explosiveness, etc.) In view of the above), it is recommended to apply a non-flammable solvent that does not have a flash point.
  • HFE consists of carbon, fluorine, hydrogen, one or more ether oxygen atoms, and further includes one or more additional heteroatoms, such as sulfur or trivalent nitrogen atoms, incorporated into the carbon backbone. You may go out.
  • the HFE may have a straight chain shape, a branched shape, a ring shape, or a structure composed of a combination thereof. Alkyl alicyclic may also be used. However, it is preferred that HFE does not contain unsaturated bonds.
  • “a” is a number from 1 to 3
  • “R1” and “R2” are groups selected from the group consisting of an alkyl group and an aryl group, and are identical to each other. It may be different, different! / Also good.
  • At least one of “R1” and “R2” contains at least one fluorine atom and at least one hydrogen atom. Both HFEs may contain one or more heteroatoms in the chain. The total number of fluorine atoms in the HFE is preferably equal to or greater than the total number of hydrogen atoms.
  • “R1” and “R2” may be linear, branched, or cyclic, or more specifically, one or more unsaturated carbons. Although it may contain a bond, it is preferable that both “R1” and “R2” are atomic groups in which each element is saturatedly bonded.
  • HFE having such properties examples include Novec manufactured by Sumitomo 3EM Co., Ltd.
  • HFE-7100, 7100DL, 7200 and HFE-S7 (trade name) manufactured by Daikin Industries, Ltd. are available, and these commercially available HFEs are preferably used as halogenated solvents that can be used in the heating process. be able to.
  • CsF crystals are present on the surface of the phosphor layer 2, and the luminous efficiency of the electromagnetic wave can be increased, so that the luminous efficiency of the phosphor layer 2 can be greatly improved.
  • a trace amount of CsF crystal can be present on the surface of the crystal constituting the phosphor layer 2, so that when the radiation is irradiated, electromagnetic waves are generated.
  • the luminous efficiency of the phosphor layer 2 can be greatly improved.
  • the radiation image detector 100 includes an imaging panel 51, a control unit 52 that controls the operation of the radiation image detector 100, a rewritable dedicated memory (eg, flash memory), and the like.
  • a memory unit 53 that is a storage unit that stores the image signal output from the imaging panel 51
  • a power source unit 54 that is a power supply unit that supplies power necessary to obtain the image signal by driving the imaging panel 51.
  • Etc. are provided inside the case 55, and the case 5 5 includes a communication connector 56 for performing communication from the radiation image detector 100 to the outside as necessary, an operation unit 57 for switching the operation of the radiation image detector 100, and completion of preparation for radiographic imaging.
  • a display unit 58 indicating that a predetermined amount of the image signal has been written in the memory unit 53.
  • the radiation image detector 100 is provided with the power supply unit 54 and the memory unit 53 for storing the image signal of the radiation image, and the radiation image detector 100 is detachable via the connector 56, A portable structure in which the radiation image detector 100 can be carried can be provided.
  • the imaging panel 51 includes a radiation scintillator plate 10 and an output substrate 20 that absorbs electromagnetic waves from the radiation scintillator plate 10 and outputs an image signal. .
  • the radiation scintillator plate 10 is disposed on the radiation irradiation surface side, and is configured to emit electromagnetic waves according to the intensity of the incident radiation.
  • the output substrate 20 is provided on the surface opposite to the radiation irradiation surface of the radiation scintillator plate 10, and in order from the radiation scintillator plate 10 side, the diaphragm 20a, the photoelectric conversion element 20b, and the image signal output layer. 20c and a substrate 20d. The following will be explained in order
  • the diaphragm 20a is for separating the scintillator plate for radiation 10 from other layers, and for example, Oxi-nitride is used.
  • the photoelectric conversion element 20b includes a transparent electrode 21, a charge generation layer 22 that generates electric charges by being excited by electromagnetic waves that are transmitted through the transparent electrode 21, and is opposite to the transparent electrode 21.
  • the transparent electrode 21, the charge generation layer 22, and the counter electrode 23 are arranged in this order from the diaphragm 20a side.
  • the transparent electrode 21 is an electrode that transmits an electromagnetic wave to be photoelectrically converted, and is formed using a conductive transparent material such as indium tinoxide (ITO), SnO, or ZnO.
  • ITO indium tinoxide
  • SnO SnO
  • ZnO ZnO
  • the charge generation layer 22 is formed in a thin film on one side of the transparent electrode 21, and contains an organic compound that separates charges by light as a photoelectrically convertible compound, and can generate charges. Containing conductive compounds as electron donors and electron acceptors, respectively Yes.
  • the electron donor is excited to emit electrons, and the emitted electrons move to the electron acceptor, and charge, that is, in the charge generation layer 22. Hole and electron carriers are generated! /
  • the conductive compound as the electron donor includes a p-type conductive polymer compound
  • the p-type conductive polymer compound includes Compound 11 to Compound 18 as examples.
  • Preferred are those having the basic skeleton of the indicated polyphenylenevinylene, polythiophene, poly (thiophenvinylene), polyacetylene, polypyrrole, polyfluorene, poly (P-phenylene) or polyarine (compounds 11 to 11).
  • X is preferably an integer of 1 or more
  • Examples of the conductive compound as the electron acceptor include an n-type conductive polymer compound.
  • Examples of the n-type conductive polymer compound include compounds 2-1 to 2-2. Those having the basic skeleton of polypyridine shown above are preferred, and those having the basic skeleton of poly (P-pyridylbinylene) are particularly preferred (compound 2-1 to compound 2-2, where X is 1 or more Is an integer).
  • the film thickness of the charge generation layer 22 is 1 m or less from the viewpoint of ensuring the amount of light absorption, from the viewpoint that lOnm or more (especially lOOnm or more) is preferred and the electrical resistance does not become too large. (Especially 300nm or less) is preferred.
  • the counter electrode 23 is disposed on the opposite side of the surface of the charge generation layer 22 where the electromagnetic wave is incident.
  • the counter electrode 23 can be selected from, for example, a general metal electrode such as gold, silver, aluminum, and chromium, or the transparent electrode 21. It is preferred to use small (4.5 eV or less) metals, alloys, electrically conductive compounds and mixtures thereof as electrode materials!
  • the nofer layer is, for example, lithium fluoride and poly (3,4-ethylenedioxythiophene): poly (4 styrenesulfonate), 2,9-dimethinoleol 4,7 diphenyl [1,10] phenoline. Etc. are used to form.
  • the image signal output layer 20c performs accumulation of charges obtained by the photoelectric conversion element 20b and output of a signal based on the accumulated charges.
  • the charge generated by the photoelectric conversion element 20b is output for each pixel.
  • the capacitor 24 is a charge storage element that accumulates, and a transistor 25 is an image signal output element that outputs the accumulated charge as a signal.
  • a TFT Thin Film Transistor
  • This TFT may be an inorganic semiconductor type used in liquid crystal displays or the like or an organic semiconductor type, and is preferably a TFT formed on a plastic film.
  • TFT formed on plastic film amorphous silicon-based TFT is known.
  • FS A Fluid Self Assem bly
  • Embossed micro CMOS Nanoblocks
  • it is also possible to form TFTs on a flexible plastic film by arranging them on a plastic film.
  • it may be a TFT using an organic semiconductor as described in Science, 283, 822 (1999), Appl. Phys ⁇ ett, 771488 (1998), Nature, 403, 521 (2000), etc. ,.
  • the TFT manufactured using the FSA technique and the TFT using the organic semiconductor are preferable, and the TFT using the organic semiconductor is particularly preferable. If a TFT is configured using this organic semiconductor, equipment such as a vacuum evaporation system is not required as in the case where TFT is configured using silicon, and the TFT can be formed using printing technology and ink jet technology. , Manufacturing cost is low. Furthermore, since the processing temperature can be lowered, it can be formed on a plastic substrate that is vulnerable to heat.
  • the transistor 25 accumulates charges generated in the photoelectric conversion element 20b, and is electrically connected to a collection electrode (not shown) which is one electrode of the capacitor 24.
  • the capacitor 24 accumulates the charges generated by the photoelectric conversion element 20 b and reads the accumulated charges by driving the transistor 25. That is, by driving the transistor 25, a signal for each pixel of the radiation image can be output.
  • the substrate 20d functions as a support for the imaging panel 51, and can be made of the same material as the substrate 1.
  • the radiation incident on the radiation image detector 100 enters the radiation from the radiation scintillator plate 10 side of the imaging panel 51 toward the substrate 20d side.
  • the radiation incident on the radiation scintillator plate 10 is absorbed by the phosphor particles in the radiation scintillator plate 10, and an electromagnetic wave corresponding to the intensity is emitted.
  • the electromagnetic wave incident on the output substrate 20 passes through the diaphragm 20a and the transparent electrode 21 of the output substrate 20, and reaches the charge generation layer 22.
  • the electromagnetic wave is absorbed in the charge generation layer 22, and a hole-electron acceptance (charge separation state) is formed according to its intensity.
  • the generated charges are transported to different electrodes (transparent electrode film and conductive layer) by the internal electric field generated by the application of a bias voltage by the power supply unit 54, and light is emitted. Current flows.
  • the holes carried to the counter electrode 23 side are accumulated in the capacitor 24 of the image signal output layer 20c.
  • the accumulated holes output an image signal when the transistor 25 connected to the capacitor 24 is driven, and the output image signal is stored in the memory unit 53.
  • the radiation image detector 100 allows CsF crystals to be present on the surface of the phosphor layer 2 to greatly improve the light emission efficiency by radiation irradiation.
  • the scintillator plate 10 is provided, the photoelectric conversion efficiency can be increased, the S / N ratio at the time of low-dose radiographing can be improved, and the occurrence of image noise linear noise can be prevented. .
  • CsF and CsF and thallium iodide (T1I) as an activator raw material are mixed at a ratio of 0. Ol (mol%) and 0.3 (mol%), respectively. And then mixed. (Production of radiation image conversion panel)
  • the above-mentioned vapor deposition source material was vapor-deposited on one side of a support made of a carbon fiber reinforced resin sheet using a vapor deposition apparatus 61 shown in FIG. 3 to form a phosphor layer.
  • the phosphor raw material is filled in a resistance heating crucible 63 as a vapor deposition source as a vapor deposition material, and a support 67 is installed on a support holder 64 rotated by a rotation mechanism 65.
  • the distance between body 67 and resistance heating crucible 63 was adjusted to 400 mm.
  • the inside of the vapor deposition apparatus 61 is exhausted by the vacuum pump 66, Ar gas is introduced, the vacuum degree is adjusted to 0.1 lPa, and then the support 67 is supported by rotating the support 67 at a speed of lOrpm by the rotation mechanism 65.
  • the temperature of body 67 was maintained at 150 ° C.
  • the resistance heating crucible 63 is heated to deposit a phosphor, and when the phosphor layer thickness reaches 500 m, the deposition on the support 67 is terminated. As a result, the radiation image conversion panel of Example 1 was obtained. (Measurement of brightness)
  • the obtained radiation image conversion panel of Example 1 was set on a 10 cm X 10 cm CMOS flat panel (Radicon X-ray CMOS camera system ShadowBox4KEV).
  • the brightness was measured from the 12-bit output data, and the measured value was defined as “emission brightness (sensitivity)”.
  • the emission luminance of the radiation image conversion panel of Example 1 is 1.8, and the measurement results are shown in Table 1 below.
  • Table 1 the value indicating the emission luminance of the radiation image conversion panel used in each example is a relative value when the emission luminance of the radiation image conversion panel of Comparative Example 1 is 1.0.
  • a radiation image conversion panel was prepared in the same manner as in Example 1 except that CsF was not mixed in (Preparation of vapor deposition source material), and the obtained radiation image conversion panel was used as the radiation image conversion panel of Comparative Example 1. Thereafter, the luminance of the radiation image conversion panel of Comparative Example 1 was measured in the same manner as in Example 1.
  • the obtained radiation image conversion panel is treated with fluorine gas.
  • fluorine gas First, it was sealed in a sealed container with an internal volume of 6 L together with 20 cc of 3M fluorine solvent (HFE7100: Hyde mouth fluoro ether, CFOCH) and heat-treated at 70 ° C. Then the temperature
  • Example 9 The obtained radiographic image panel of Example 9 was subjected to luminance measurement in the same manner as in Example 1. As a result, the emission luminance of Example 9 was 1.2.
  • the measurement results are shown in Table 2 below. However, in Table 2 , the value indicating the emission luminance of each sample is a relative value when the emission luminance of the radiographic image panel of Comparative Example 2 is 1.0.
  • a radiation image conversion panel treated with fluorine-containing gas (Preparation of a radiation image conversion panel treated with fluorine-containing gas), except that the heating temperature was set to 100 ° C, a radiation image conversion panel treated with fluorine-containing gas was prepared and obtained in the same manner as in Example 9.
  • the radiation image conversion panel treated with the fluorine-containing gas was used as the radiation image conversion panel of Example 11, and the emission luminance and CsF formation amount were measured in the same manner as in Example 9.
  • the emission luminance of the radiation image conversion panel of Example 11 is 2.2, and CsF formation amount Showed 40ppm. Table 2 shows the measurement results.
  • a fluorine-containing gas-treated radiation image conversion panel was produced in the same manner as in Example 9 except that the heating temperature was 150 ° C.
  • the radiation image conversion panel treated with fluorine-containing gas was used as the radiation image conversion panel of Example 12, and the emission luminance and CsF formation amount were measured in the same manner as in Example 9.
  • the emission luminance of the radiation image conversion panel of Example 12 was 2.5, and the CsF formation amount was lOOppm. Table 2 shows the measurement results.
  • a fluorine-containing gas-treated radiation image conversion panel was produced in the same manner as in Example 9 except that the heating temperature was 200 ° C.
  • the radiation image conversion panel treated with the fluorine-containing gas was used as the radiation image conversion panel of Example 13, and the emission luminance and CsF formation amount were measured in the same manner as in Example 9.
  • the emission luminance of the radiation image conversion panel of Example 13 was 2.5, and the CsF formation amount was 156 ppm. Table 2 shows the measurement results.
  • a fluorine-containing gas-treated radiation image conversion panel was produced in the same manner as in Example 9 except that the heating temperature was 250 ° C.
  • the radiation image conversion panel treated with the fluorine-containing gas was used as the radiation image conversion panel of Example 14, and the emission luminance and CsF formation amount were measured in the same manner as in Example 9.
  • the emission luminance of the radiation image conversion panel of Example 14 was 2.6, and the CsF formation amount was 178 ppm. Table 2 shows the measurement results.
  • the obtained radiation image conversion panel was placed in a sealed container with an internal volume of 6L and heat-treated at 70 ° C. Then, while maintaining the temperature, the nozzle installed in the container was opened and exhausted, and then naturally cooled to obtain a radiographic image panel that had not been treated with fluorine-containing gas.
  • the obtained radiation image conversion panel with no fluorine-containing gas treated was compared with the radiation image conversion panel of Comparative Example 2.
  • the emission luminance and the amount of CsF formation were measured in the same manner as in Example 9.
  • the amount of CsF formed in the phosphor layer in the radiation image conversion panel of Comparative Example 2 was below the detection limit. Table 2 shows the measurement results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 基板上に、放射線が照射されることにより光を発する蛍光体層が形成された放射線用シンチレータプレートであって、前記蛍光体層がCsF結晶を含有することを特徴とする放射線用シンチレータプレート。

Description

明 細 書
放射線用シンチレータプレート及び放射線画像検出器
技術分野
[0001] 本発明は、放射線用シンチレータプレート及び放射線画像検出器に関し、特に、 C sをベースに用 、る蛍光体層を具備した放射線用シンチレータプレート及び放射線 画像検出器に関する。
背景技術
[0002] 従来から、 X線画像のような放射線画像は医療現場において病状の診断に広く用 いられている。特に、増感紙—フィルム系による放射線画像は、長い歴史のなかで高 感度化と高画質化が図られた結果、高い信頼性と優れたコストパフォーマンスを併せ 持った撮像システムとして、いまなお、世界中の医療現場で用いられている。
[0003] し力しながらこれら画像情報はいわゆるアナログ画像情報であって、近年発展を続 けているデジタル画像情報のような自由な画像処理や瞬時の画像転送を行うことが できない。
[0004] そして、近年ではコンビユーテッドラジオグラフィ(CR)やフラットパネル型の放射線 ディテクタ (FPD)等に代表されるデジタル方式の放射線画像検出装置が登場して ヽ る。これらは、デジタルの放射線画像が直接得られ、陰極管や液晶パネル等の画像 表示装置に画像を直接表示することが可能なので、必ずしも写真フィルム上への画 像形成が必要なものではない。その結果、これらのデジタル方式の X線画像検出装 置は、銀塩写真方式による画像形成の必要性を低減させ、病院や診療所での診断 作業の利便性を大幅に向上させて 、る。
[0005] X線画像のデジタル技術の一つとして CRが現在医療現場で受け入れられて ヽる。
しかしながら、鮮鋭性が十分でなぐ空間分解能も不十分であり、スクリーン 'フィルム システムの画質レベルには到達していない。そして、さらに新たなデジタル X線画像 技術として、例えば、雑誌 Physics Today, 1997年 11月号 24頁のジョン'ローランズ論 文 Amorphous semiconductor Usher in Digital X-ray Imaging ~ 、 l S PIEの 1997年 32卷 2頁のエル 'イ^ ~ ·アントヌクの論文" Development of a High Resolutio n, Active Matrix, Flat-Panel Imager with Enhanced Fill Factor,,等に ci載され た、薄膜トランジスタ (TFT)を用いた平板 X線検出装置 (FPD)が開発されている。こ こで、 FPDは CRより装置が小型化し、高線量における撮影の画質が優れているとい う特徴がある。しかし、一方では TFTや回路を具備することで派生する電気ノイズの ため、低線量での撮影において、 SN比が低下し、十分な画質レベルに到達させるこ とができな 、と!/、う問題を抱えて!/、た。
[0006] かかる FPDでは、放射線を可視光に変換するために放射線により発光する特性を 有する X線蛍光体を用いて作製されたシンチレータプレートが使用される力 低線量 での撮影において SN比を向上させるために発光効率の高いシンチレータプレートを 使用することが必要になってくる。一般にシンチレータプレートの発光効率は、蛍光 体層の厚さ、蛍光体の X線吸収係数により決まる力 蛍光体層の厚さを厚くするほど 、蛍光体層内において発光光の散乱が発生し、鮮鋭性を低下させてしまう。そのため 、画質に必要な鮮鋭性を決めて力 膜厚を決定させて 、た。
[0007] 特に、ヨウ化セシウム (Csl)は、 X線力も可視光に対する変更率が比較的高ぐ蒸着 によって容易に蛍光体を柱状結晶構造に形成できるため、光ガイド効果により結晶 内での発光光の散乱が抑えられ、蛍光体層の厚さを厚くすることが可能であった。
[0008] し力しながら、 Cslのみでは発光効率が低いために、例えば特許文献 1では、付活 剤原料として Cslとヨウ化ナトリウム (Nal)を任意のモル比で混合したものを蒸着させ て基板上にナトリウム付活ヨウ化セシウム (Csl : Na)として堆積させ、後工程としてァ ニールを行うことで可視変換効率を向上させ、 X線蛍光体として使用する技術が開示 されている。
[0009] また、最近では、例えば特許文献 2では、 Cslを蒸着で、インジウム (In)、タリウム (T 1)、リチウム (Li)、カリウム (K)、ルビジウム (Rb)、ナトリウム (Na)等の付活物質をス パッタで形成して X線蛍光体を作製する技術が開示されて!ヽる。
[0010] し力しながら、特許文献 1に記載の方法や、特許文献 2に記載の方法により X線蛍 光体を作製する技術をもってしても放射線照射による発光効率は未だ低いものであ り、さらなる改良が望まれていた。
特許文献 1:特公昭 54— 35060号公報 特許文献 2 :特開 2001— 59899号公報
発明の開示
[0011] 本発明の目的は放射線照射による発光の発光効率を向上させることができるシン チレータプレートを提供することをにある。
[0012] 上記目的を達成するための本発明の態様の一つは、基板上に、放射線が照射され ることにより光を発する蛍光体層が形成された放射線用シンチレータプレートであつ て、前記蛍光体層が CsF結晶を含有することを特徴とする放射線用シンチレ一タブ レートにある。
図面の簡単な説明
[0013] [図 1]放射線用シンチレータプレートの断面図である。
[図 2]CsFを蛍光体の混晶体として存在させた場合の蛍光体層表面の拡大断面図で ある。
[図 3]蛍光体層の表面に CsF結晶を形成させた場合の蛍光体層表面の拡大断面図 である。
[図 4]放射線画像検出器の構成図である。
[図 5]図 4を構成する撮像パネルの断面図である。
[図 6]実施例で使用した蒸着装置の概略構成図である。
発明を実施するための最良の形態
[0014] 本発明の上記目的は、以下の構成により達成される。
(1) 基板上に、放射線が照射されることにより光を発する蛍光体層が形成された放 射線用シンチレータプレートであって、前記蛍光体層が CsF結晶を含有することを特 徴とする放射線用シンチレータプレート。
(2) 前記蛍光体層の表面に CsF結晶が存在することを特徴とする前記(1)に記載 の放射線用シンチレータプレート。
(3) 前記蛍光体層が、 Csl— CsF混晶体であることを特徴とする前記(1)または(2) に記載の放射線用シンチレータプレート。
(4) 前記 Csl— CsF混晶体は、
Cslと、 CsFとを添加して Csl - CsF混合体を作製した後、 前記 CsI-CsF混合体と、付活剤原料とを供給源として、前記基板上に蒸着を行う 蒸着工程を経て形成されることを特徴とする前記(3)に記載の放射線用シンチレータ プレート。
(5) 前記蛍光体層が、 Cslと付活剤原料とを主成分として前記基板上に形成された 蛍光体の柱状結晶であり、
前記柱状結晶の表面に、 CsF結晶が形成されていることを特徴とする前記(1)また は(2)に記載の放射線用シンチレータプレート。
(6) Cslと付活剤原料とを主成分とする蛍光体を供給源として、前記基板上に蒸着 を行う蒸着工程の後に、前記 CsF結晶を形成する CsF結晶形成工程を経て形成さ れることを特徴とする前記(5)に記載の放射線用シンチレータプレート。
(7) 前記 CsF結晶は、
前記蒸着工程の後に、フッ素系溶剤ガスの雰囲気下で加熱する加熱工程を経て 形成されることを特徴とする前記(6)に記載の放射線用シンチレータプレート。
(8) 前記付活剤原料は、インジウム、タリウム、カリウム、ルビジウム、ナトリウム、ユー 口ピウムの中から選択されるいずれかを含む化合物であることを特徴とする前記(1) 〜(7)のいずれか一項に記載の放射線用シンチレータプレート。
(9) 前記フッ素系溶剤ガスは、フッ素系溶剤が気化したものであり、
前記フッ素系溶剤は、下記一般式(1)によって示される化合物であることを特徴と する前記(7)または(8)に記載の放射線用シンチレータプレート。
(Rl -O) -R2 (1)
a
「a」は、 1〜3の整数であり、「R1」及び「R2」は、アルキル基及びァリール基からなる 群より選択される基であるとともに、「R1」及び「R2」のうち少なくとも 1方に、少なくとも 1個のフッ素原子と、 1個の水素原子とを含むものである。
(10) 前記 Cslの代わりに CsBrを用いて前記蛍光体層を形成することを特徴とする 前記(3)〜(9)の 、ずれか一項に記載の放射線用シンチレータプレート。
(11) 照射された放射線を検出して放射線画像情報を取得する放射線画像検出器 であって、前記(1)〜(10)のいずれか一項に記載の放射線用シンチレータプレート と、前記放射線用シンチレータプレートにより放出された光を電気信号に読み替える 出力基板とを備えることを特徴とする放射線画像検出器。
[0015] 本発明によれば、シンチレータ材料として優れた物質である Cslをベースとしながら 、 Cslの結晶の表面を改質することにより、放射線照射による発光の発光効率を向上 させることができるシンチレータプレートを提供することができる。
[0016] 以下、図面を参照しながら本発明を実施するための最良の形態について説明する 。ただし、発明の範囲は図示例に限定されない。
[0017] 本発明に係る放射線用シンチレータプレート 10は、図 1に示すように基板 1上に蛍 光体層 2を備えるものであり、該蛍光体層 2に放射線が照射されると、蛍光体層 2は 入射した放射線のエネルギーを吸収して、波長力 S300nm力ら 800nmの電磁波、す なわち、可視光線を中心に紫外光力 赤外光にわたる電磁波 (光)を発光するように なっている。
[0018] ここで、基板 1としては、 X線等の放射線を透過させることが可能なものであり、榭脂 やガラス基板、金属板などが用いられるが、耐性の向上や軽量ィ匕といった観点から、 lmm以下のアルミ板や炭素繊維強化榭脂シートを始めとする榭脂を用いるのが好ま しい。
[0019] また、蛍光体層 2としては、 Csをベースとして結晶が形成されたものであり、例えば 、 Cslの他に、 CsBrや CsCl等が挙げられる。また、前述の Csをベースとする蛍光体 層 2を構成する複数の原料を任意の混合比率で用いて混晶体を形成し、当該混晶 体をベースとして用いても構わな 、。
[0020] 本発明者らは、鋭意検討した結果、蛍光体層 2を構成する結晶の表面に CsF結晶 を微量存在させることで、蛍光体層 2の発光効率を大きく向上させることができること を見出した。
[0021] ここで、蛍光体層 2の表面に CsF結晶を存在させる方法としては、蛍光体原料に Cs Fを混ぜて蛍光体層 2を形成し、 CsFを蛍光体の混晶体として存在させる方法や、蒸 着によって蛍光体層 2を形成した後に、該蛍光体層 2の表面に CsFからなる結晶(Cs F結晶)を形成する方法が挙げられる。蒸着によって蛍光体層 2が形成されたシンチ レータブレート 10では、柱状結晶構造を呈すとともに、外界との界面となる結晶表面 の面積を大きくすることができるため、発光効率を高めることができる。 [0022] 以下、 CsFを蛍光体の混晶体として蛍光体層 2の表面に存在させる方法について 説明する。
[0023] 例えば、蛍光体のベースとして Cslを用いた場合、まず始めに、 Cslと CsFの混晶体
(以下、 Csl— CsF混晶体と呼ぶ。)を作製するについて述べる。 Csl— CsF混晶体は 、 Cslと CsFとを添カ卩して Cslと CsFの混合体(以下、 Csl— CsF混合体と呼ぶ。)を作 製した後、当該 Csl— CsF混合体と、付活剤原料とを供給源として、基板 1上に周知 の気相堆積法で蒸着を行う (蒸着工程)。その結果、図 2に示すように、基板 1上に柱 状結晶構造に形成された Csl— CsF混晶体 2aからなる蛍光体層 2が形成され、結晶 表面部に CsFが存在することにより、発光効率を高めることができる。
[0024] ここで、 CsFの量は、ベースとなる Cslに対して 0. O3mol%以上 7. Omol%以下が 好ましぐさらに 0. O3mol%以上 5. Omol%以下がより好ましい。 0. O3mol%未満 であると、結晶表面に存在する CsFの量が少なくなり、また、 7. Omol%を超えると、 放射線による発光自体には直接寄与しない不純物の割合が増えるため、発光効率 を高める効果を十分に得ることができないと推測される。
[0025] あるいは、 Csl— CsF混晶体 2aは、 Csl— CsF混合体を作製した後、該 Csl— CsF 混合体を電気炉内に設置して 350°C以上の温度で焼成を行 、、得られた焼成物を 分砕する。そして、粉末状になった焼成物を公知の結合剤中に分散し、基板 1上に 塗設することで蛍光体層 2を形成することが可能であり、蛍光体層 2の表面に CsFが 存在するシンチレータプレート 10とすることができる。
[0026] なお、結合剤は、蛍光体の分散性を高め、蛍光体の充填率を高めることにより、放 射線画像の粒状性を抑制させるものであり、具体的には、ポリウレタン、塩化ビニル 共重合体、塩ィ匕ビュル—アクリロニトリル共重合体、ブタジエン—アクリロニトリル共重 合体、ポリアミド榭脂、ポリビュルブチラール、セルロース誘導体、スチレン ブタジ ェン共重合体、各種合成ゴム系榭脂、フエノール榭脂、エポキシ榭脂、尿素樹脂、メ ラニン榭脂、フヱノキシ榭脂、シリコン榭脂、アクリル系榭脂、尿素ホルムアミド榭脂等 が挙げられる。この中でもポリウレタン、ポリエステル、塩化ビニル系共重合体、ポリビ 二ルブチラール、ニトロセルロースが好ましく使用される。
[0027] 前記結合剤中に分散される蛍光体の質量含有率は 90〜99%が好ましい。また、 シンチレータプレート 10の厚さは、放射線画像の粒状性と鮮鋭性とのバランスから 決定される。すなわちシンチレータプレート 10が厚いと粒状性が目立たなくなる反面 、鮮鋭性が低下する傾向を有しシンチレータプレート 10を薄くすると鮮鋭性が向上す る反面、粒状性が顕著になる傾向がある。本発明に使用されるシンチレータプレート
10では、粒状性と鮮鋭性の双方の性能をバランスよく発現することが可能な厚さとし て、 20 μ m〜lmm、好ましくは、 50 μ m〜600 μ mである。
[0028] また、本発明に適用可能な付活剤原料としては、公知の 、かなるものでも構わな!/ヽ 力 発光波長や耐湿性などの要求特性に合わせて任意に選択できる。具体的には、 インジウム(In)、タリウム(Tm)、リチウム(Li)、カリウム(K)、ルビジウム (Rb)、ナトリ ゥム(Na)、ユーロピウム(Eu)、銅(Cu)、セリウム(Ce)、亜鉛(Zn)、チタン(Ti)、ガ ドリ-ゥム(Gd)、テルビウム (Tb)等の化合物が挙げられる力 これに限られるもので はない。
[0029] 次に、蒸着によって蛍光体層 2を形成した後に、該蛍光体層 2の表面に CsF結晶を 形成する方法にっ 、て説明する。
[0030] まず、周知の気相堆積法で基板 1上に蒸着を行い、基板 1上に柱状結晶構造から なる蛍光体層 2を形成させる。 Cslを蛍光体の主成分として用いた場合には、 Cslと付 活剤原料とを供給源として、基板 1上に蒸着を行う (蒸着工程)。ここで使用する付活 剤原料としては、前述の蛍光体の混晶体として CsFを蛍光体層 2の表面に存在させ る方法で説明したものと同様のものを用いることができる。そして、蒸着工程後、蛍光 体層 2の表面に CsF結晶の形成を行う(CsF結晶形成工程)。具体的には、蛍光体 層 2が形成された基板 1をフッ素系溶剤が導入された所定の容器内に設置して、該 容器内を加熱し、フッ素系溶剤を気化させる。つまり、蒸着工程後、蛍光体層 2が形 成された基板 1は、フッ素系溶剤が気化したガス雰囲気下で熱処理を行う (加熱工程
) o
[0031] その結果、図 3に示すように、基板 1上に、 Cslと付活剤原料とを主成分とする柱状 結晶 2bが形成された蛍光体層 2を形成するとともに、当該蛍光体層 2の表面である 各柱状結晶 2bの表面に CsF結晶 2cが形成された放射線用シンチレータプレート 10 とすることができる。その際、 CsFは、基板 1上に形成された柱状結晶 2bの表面に吸 着されて CsF結晶 2cを形成するため、前述の CsFの混晶体を用いて蛍光体層 2の 表面に CsFを存在させる方法に比べ、蛍光体層 2の表面における CsFの存在比を効 率よく高めることができ、放射線照射による発光効率を高める効果を特に向上させる ことができる。
[0032] ここで、結晶表面に形成される CsFの総量は、ベースとなる Cslに対して、 lOppm 以上であれば、本発明の効果が得られる力 好ましくは 20ppm以上である。なお、本 発明にお ヽては ppmは特に指定しない限り、モル ppmを表す。
[0033] また、結晶表面に形成される CsFの総量は、加熱時間や加熱温度によって任意に 調整が可能であるが、加熱温度に関しては 80°C以上、また作業上の安全性の観点 で 250°C以下が好ましい。
[0034] また、このときに使用されるフッ素系溶剤としては、(1)加熱処理に供される点(引火 性や爆発性等に関わる消防法的な観点から引火点を持たない等の特性が要求され る点)の観点から、引火点を持たない不燃性溶剤を適用するのがよい。
[0035] さらに上記(1)の観点を含めて、 (2)環境適性 (3)生体への有害性等の観点から、 昨今話題にのぼるフロン代替素材が有用であると考えられている。その中でも上記( 2)、 (3)に優れた最新のフロン代替素材である「HFE (ノヽイド口フルォロエーテル)」 を当該ハロゲンィ匕溶剤として好適に用いることができる。
[0036] HFEは、炭素、フッ素、水素、 1つ以上のエーテル酸素原子からなり、さらに炭素主 鎖中に組み込まれた 1つ以上のさらなるヘテロ原子、例えば、硫黄又は三価窒素原 子を含んでいてもよい。 HFEは直鎖状を呈していてもよいし、枝分かれ状を呈してい てもよいし、環状を呈していてもよいし、又はそれらの組み合わせで構成された構造 を有していてもよぐ例えば、アルキル脂環式であってもよい。ただし、 HFEは不飽和 結合を含まな 、ことが好ま 、。
[0037] 具体的な HFEとして、下記一般式(1)によって示される化合物をその一例として用 いることがでさる。
(Rl -O) -R2 … (1)
a
上記一般式(1)中、「a」は 1〜3の数であり、「R1」及び「R2」はアルキル基及びァリ ール基力 なる群より選択される基であり、互いに同一であってもよ 、し異なって!/、て もよい。「R1」及び「R2」のうち少なくとも 1つは、少なくとも 1個のフッ素原子と、少なく とも 1個の水素原子とを含むものであり、「R1」及び「R2」の!、ずれか一方又は両方が 1個以上の鎖中へテロ原子を含んでもよぐ HFEは当該 HFE中のフッ素原子の総数 が水素原子の総数以上であるのが好ましい。「R1」及び「R2」は直鎖状を呈していて もよいし、枝分かれ状を呈していてもよいし、環状を呈してもいてもよぐさらに言えば 1個以上の不飽和の炭素 炭素結合を含んでいてもよいが、「R1」及び「R2」が両方 とも各元素同士で飽和結合した原子団であるのが好ましい。
[0038] このような性質を有する HFEとしては、例えば住友スリーェム株式会社製のノベック
(登録商標) HFE— 7100, 7100DL, 7200やダイキン工業株式会社製の HFE— S 7 (商品名)等があり、これら市販の HFEを加熱工程に使用可能なハロゲン化溶剤と して好適に用いることができる。
[0039] 次に、放射線用シンチレータプレート 10の作用について説明する。
[0040] 放射線用シンチレータプレート 10に対し、蛍光体層 2側から基板 1側に向けて放射 線を入射すると、蛍光体層 2に入射された放射線は、蛍光体層 2中の蛍光体粒子が 放射線のエネルギーを吸収し、その強度に応じた電磁波が発光される。
[0041] このとき、蛍光体層 2の表面には、 CsF結晶が存在しており、電磁波の発光効率を 高めることができるので、蛍光体層 2の発光効率を大きく向上させることができる。
[0042] 以上のように、本発明に係る放射線用シンチレータプレート 10では、蛍光体層 2を 構成する結晶の表面に CsF結晶を微量存在させることができるので、放射線が照射 された際に、電磁波の発光効率を高めて、蛍光体層 2の発光効率を大きく向上させ ることがでさる。
[0043] 次に、前述の図 1に示す放射線用シンチレータプレート 10を用いて形成された放 射線画像検出器 100について図 4又は図 5を参照して説明する。
[0044] 図 4に示すように、放射線画像検出器 100には、撮像パネル 51、放射線画像検出 器 100の動作を制御する制御部 52、書き換え可能な専用メモリ(例えばフラッシュメ モリ)等を用いて撮像パネル 51から出力された画像信号を記憶する記憶手段である メモリ部 53、撮像パネル 51を駆動して画像信号を得るために必要とされる電力を供 給する電力供給手段である電源部 54、等が筐体 55の内部に設けられており、筐体 5 5には必要に応じて放射線画像検出器 100から外部に通信を行うための通信用のコ ネクタ 56、放射線画像検出器 100の動作を切り換えるための操作部 57、放射線画 像の撮影準備の完了やメモリ部 53に所定量の画像信号が書き込まれたことを示す 表示部 58、等が設けられている。
[0045] ここで、放射線画像検出器 100に電源部 54を設けるとともに放射線画像の画像信 号を記憶するメモリ部 53を設け、コネクタ 56を介して放射線画像検出器 100を着脱 自在にすれば、放射線画像検出器 100を持ち運びできる可搬構造とすることができ る。
[0046] 図 5に示すように、撮像パネル 51は、放射線用シンチレータプレート 10と、放射線 用シンチレータプレート 10からの電磁波を吸収して画像信号を出力する出力基板 2 0と、力 構成されている。
[0047] 放射線用シンチレータプレート 10は、放射線照射面側に配置されており、入射した 放射線の強度に応じた電磁波を発光するように構成されて ヽる。
[0048] 出力基板 20は、放射線用シンチレータプレート 10の放射線照射面と反対側の面 に設けられており、放射線用シンチレータプレート 10側から順に、隔膜 20a、光電変 換素子 20b、画像信号出力層 20c及び基板 20dを備えている。以下、順次説明する
[0049] 隔膜 20aは、放射線用シンチレータプレート 10と他の層を分離するためのものであ り、例えば Oxi- nitrideなどが用いられる。
[0050] 光電変換素子 20bは、透明電極 21と、透明電極 21を透過して入光した電磁波によ り励起されて電荷を発生する電荷発生層 22と、透明電極 21に対しての対極になる 対電極 23とから構成されており、隔膜 20a側カゝら順に透明電極 21、電荷発生層 22、 対電極 23が配置される。
[0051] 透明電極 21とは、光電変換される電磁波を透過させる電極であり、例えばインジゥ ムチンォキシド (ITO)、 SnO、 ZnOなどの導電性透明材料を用いて形成される。
2
[0052] 電荷発生層 22は、透明電極 21の一面側に薄膜状に形成されており、光電変換可 能な化合物として光によって電荷分離する有機化合物を含有するものであり、電荷を 発生し得る電子供与体及び電子受容体としての導電性化合物をそれぞれ含有して いる。電荷発生層 22では、電磁波が入射されると、電子供与体は励起されて電子を 放出し、放出された電子は電子受容体に移動して、電荷発生層 22内に電荷、すな わち、正孔と電子のキャリアが発生するようになって!/、る。
[0053] ここで、電子供与体としての導電性ィ匕合物としては、 p型導電性高分子化合物が挙 げられ、 p型導電性高分子化合物としては、化合物 1 1〜化合物 1 8に示したポリ フエ二レンビニレン、ポリチォフェン、ポリ(チォフェンビニレン)、ポリアセチレン、ポリ ピロール、ポリフルオレン、ポリ(P-フエ-レン)又はポリア-リンの基本骨格を持つも のが好ましい(化合物 1 1〜化合物 1 8で、 Xは 1以上の整数であることが好ましい
) o
[0054] [化 1]
化合物 1-2
Figure imgf000013_0001
ポリフエ二レンビニレン
化合物 f™3 化合物 1 -4
Figure imgf000013_0002
ポリ(チォフェンビニレン) ポリアセチレン
化合物 1 -5
Figure imgf000013_0003
ポリピロ一ル ポリフルオレン
化合物 - 化合物 1 -8
Figure imgf000013_0004
ホリ(p-フエ二レン) ポリア二リン
X≥ 1
[0055] また、電子受容体としての導電性ィ匕合物としては、 n型導電性高分子化合物が挙げ られ、 n型導電性高分子化合物としては、化合物 2— 1〜化合物 2— 2に示したポリピ リジンの基本骨格を持つものが好ましぐ特にポリ(P-ピリジルビ二レン)の基本骨格を 持つものが好ましい(ィ匕合物 2— 1〜化合物 2— 2で、 Xは 1以上の整数である)。
[0056] [化 2] 化合物 2-1 化合物 2-2
Figure imgf000014_0001
ポリピリジン ポリ(P-ピリジルビ二レン)
[0057] 電荷発生層 22の膜厚は、光吸収量を確保するといつた観点から、 lOnm以上 (特 に lOOnm以上)が好ましぐまた電気抵抗が大きくなりすぎないといった観点から、 1 m以下(特に 300nm以下)が好まし ヽ。
[0058] 対電極 23は、電荷発生層 22の電磁波が入光される側の面と反対側に配置されて いる。対電極 23は、例えば、金、銀、アルミニウム、クロムなどの一般の金属電極や、 透明電極 21の中から選択して用いることが可能であるが、良好な特性を得るために は仕事関数の小さい (4. 5eV以下)金属、合金、電気伝導性化合物及びこれらの混 合物を電極物質とするのが好まし!/、。
[0059] また、電荷発生層 22を挟む各電極 (透明電極 21及び対電極 23)との間には、電荷 発生層 22とこれら電極が反応しな ヽように緩衝地帯として作用させるためのバッファ 一層を設けてもよい。ノ ッファー層は、例えば、フッ化リチウム及びポリ (3, 4—ェチレ ンジォキシチォフェン):ポリ (4 スチレンスルホナート)、 2, 9ージメチノレー 4, 7 ジフ ェニル [1, 10]フエナント口リンなどを用 、て形成される。
[0060] 画像信号出力層 20cは、光電変換素子 20bで得られた電荷の蓄積および蓄積され た電荷に基づく信号の出力を行うものであり、光電変換素子 20bで生成された電荷 を画素毎に蓄積する電荷蓄積素子であるコンデンサ 24と、蓄積された電荷を信号と して出力する画像信号出力素子であるトランジスタ 25とを用いて構成されている。
[0061] トランジスタ 25は、例えば TFT (薄膜トランジスタ)を用いるものとする。この TFTは、 液晶ディスプレイ等に使用されている無機半導体系のものでも、有機半導体を用い たものでもよく、好ましくはプラスチックフィルム上に形成された TFTである。プラスチ ックフィルム上に形成された TFTとしては、アモルファスシリコン系のものが知られて いる力 その他、米国 Alien Technology社が開発している FS A (Fluidic Self Assem bly)技術、即ち、単結晶シリコンで作製した微小 CMOS (Nanoblocks)をエンボス加 ェしたプラスチックフィルム上に配列させることで、フレキシブルなプラスチックフィル ム上に TFTを形成するものとしても良い。さらに、 Science,283,822(1999)や Appl.Phys 丄 ett,771488(1998)、 Nature,403, 521(2000)等の文献に記載されているような有機半 導体を用いた TFTであってもよ 、。
[0062] このように、本発明に用いられるトランジスタ 25としては、上記 FSA技術で作製した TFT及び有機半導体を用いた TFTが好ましぐ特に好ま ヽものは有機半導体を用 いた TFTである。この有機半導体を用いて TFTを構成すれば、シリコンを用いて TF Tを構成する場合のように真空蒸着装置等の設備が不要となり、印刷技術やインクジ エツト技術を活用して TFTを形成できるので、製造コストが安価となる。さらに、加工 温度を低くできることから熱に弱いプラスチック基板上にも形成できる。
[0063] トランジスタ 25には、光電変換素子 20bで発生した電荷を蓄積するとともに、コンデ ンサ 24の一方の電極となる収集電極(図示せず)が電気的に接続されている。コンデ ンサ 24には光電変換素子 20bで生成された電荷が蓄積されるとともに、この蓄積さ れた電荷はトランジスタ 25を駆動することで読み出される。すなわちトランジスタ 25を 駆動させることで放射線画像の画素毎の信号を出力させることができる。
[0064] 基板 20dは、撮像パネル 51の支持体として機能するものであり、基板 1と同様の素 材で構成することが可能である。
[0065] 次に、放射線画像検出器 100の作用について説明する。
[0066] まず、放射線画像検出器 100に対し入射された放射線は、撮像パネル 51の放射 線用シンチレータプレート 10側から基板 20d側に向けて放射線を入射する。
[0067] すると、放射線用シンチレータプレート 10に入射された放射線は、放射線用シンチ レータプレート 10中の蛍光体粒子が放射線のエネルギーを吸収し、その強度に応じ た電磁波が発光される。発光された電磁波のうち、出力基板 20に入光される電磁波 は、出力基板 20の隔膜 20a、透明電極 21を貫通し、電荷発生層 22に到達する。そ して、電荷発生層 22において電磁波は吸収され、その強度に応じて正孔と電子のぺ 了 (電荷分離状態)が形成される。
[0068] その後、発生した電荷は、電源部 54によるバイアス電圧の印加により生じる内部電 界により正孔と電子はそれぞれ異なる電極 (透明電極膜及び導電層)へ運ばれ、光 電流が流れる。
[0069] その後、対電極 23側に運ばれた正孔は画像信号出力層 20cのコンデンサ 24に蓄 積される。蓄積された正孔はコンデンサ 24に接続されているトランジスタ 25を駆動さ せると、画像信号を出力すると共に、出力された画像信号はメモリ部 53に記憶される
[0070] 以上のように本実施形態によれば、放射線画像検出器 100は、蛍光体層 2の表面 に CsF結晶を存在させて、放射線照射による発光効率を飛躍的に向上させることが できる放射線用シンチレータプレート 10を備えているので、光電変換効率を高めるこ とができ、放射線画像における低線量撮影時の SN比を向上させるとともに、画像ム ラゃ線状ノイズの発生を防止することができる。
実施例
[0071] 以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれに 限定されるものではない。
[0072] 下記の方法にしたがって実施例 1〜実施例 14、比較例 1、比較例 2の放射線像変 換パネルを作製した。
[実施例 1] (蒸着源材料の作製)
Cslに対し、 CsFと、付活剤原料としてヨウ化タリウム (T1I)をそれぞれ 0. Ol (mol% )及び 0. 3 (mol%)の比率で混合し、乳鉢にてこれらが均一になるように粉砕し、混 合した。(放射線像変換パネルの作製)
炭素繊維強化榭脂シートからなる支持体の片面に上記蒸着源材料を、図 3に示す 蒸着装置 61を使用して蒸着させ蛍光体層を形成した。
[0073] すなわち、まず、上記蛍光体原料を蒸着材料として蒸着源である抵抗加熱ルツボ 6 3に充填するとともに、回転機構 65により回転される支持体ホルダ 64に支持体 67を 設置し、該支持体 67と抵抗加熱ルツボ 63との間隔を 400mmに調節した。続いて真 空ポンプ 66により蒸着装置 61内をー且排気し、 Arガスを導入して 0. lPaに真空度 を調整した後、回転機構 65により lOrpmの速度で支持体 67を回転させながら支持 体 67の温度を 150°Cに保持した。次いで、抵抗加熱ルツボ 63を加熱して蛍光体を 蒸着し、蛍光体層の膜厚が 500 mとなったところで支持体 67への蒸着を終了させ ると、実施例 1の放射線像変換パネルを得た。(輝度の測定)
得られた実施例 1の放射線画像変換パネルを、 10cm X 10cmの大きさの CMOS フラットパネル(ラドアイコン社製 X線 CMOSカメラシステム ShadowBox4KEV)にセ ットし、管電圧 80kVpの X線を各試料の裏面 (シンチレータ蛍光体層が形成されて!、 ない面)から照射し、 12bitの出力データより輝度を測定し、その測定値を「発光輝度 (感度)」とした。実施例 1の放射線画像変換パネルの発光輝度は 1. 8を示すとともに 、測定結果を下記表 1に示す。ただし、表 1中、各実施例で用いた放射線像変換パ ネルの発光輝度を示す値は、比較例 1の放射線像変換パネルの発光輝度を 1. 0と したときの相対値である。
[0074] [表 1]
Figure imgf000017_0001
[0075] [実施例 2]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 0. 03 (mol%)、0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 2の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 2の放射線画像変換パネルの発光輝度は 2. 2を示した。測定結果を下記表 1に示す
[実施例 3]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 0. l (mol%)、0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 3の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 3の放射線画像変換パネルの発光輝度は 2. 5を示した。測定結果を下記表 1に示す
[実施例 4]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 0. 5 (mol%)、0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 4の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 4の放射線画像変換パネルの発光輝度は 2. 7を示した。測定結果を下記表 1に示す
[実施例 5]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 1. O (mol%)、0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 5の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 5の放射線画像変換パネルの発光輝度は 2. 6を示した。測定結果を下記表 1に示す
[実施例 6]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 2. O (mol%)、 0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 6の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 6の放射線画像変換パネルの発光輝度は 2. 5を示した。測定結果を下記表 1に示す
[実施例 7]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 5. 0 (mol%)、 0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 7の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 7の放射線画像変換パネルの発光輝度は 2. 0を示した。測定結果を下記表 1に示す
[実施例 8]
(蒸着源材料の作製)で、 Csl〖こ対する CsFと、ヨウ化タリウム (T1I)の比率をそれぞ れ 7. O (mol%)、 0. 3 (mol%)で混合する以外は、実施例 1と同様にして放射線像 変換パネルを作製し、得られた放射線画像変換パネルを実施例 8の放射線画像変 換パネルとした。その後、実施例 1と同様にして輝度の測定を実施したところ、実施例 8の放射線画像変換パネルの発光輝度は 1. 5を示した。測定結果を下記表 1に示す
[比較例 1]
(蒸着源材料の作製)で、 CsFを混入しない以外は、実施例 1と同様にして放射線 像変換パネルを作製し、得られた放射線画像変換パネルを比較例 1の放射線画像 変換パネルとした。その後、実施例 1と同様にして比較例 1の放射線画像変換パネル の輝度の測定を実施した。
[実施例 9] (フッ素ガス処理済みの放射線像変換パネルの作製)
(蒸着源材料の作製)で、蒸着源材料に CsFを混入しない以外は、実施例 1と同様 にして放射線像変換パネルを作製した。
その後、得られた放射線画像変換パネルに対し、フッ素ガス処理を行う。まず、内 容量 6Lの密閉容器に、 3M社製のフッ素溶剤(HFE7100 :ハイド口フルォロエーテ ル、 C F OCH ) 20ccとともに封入密閉し、 70°Cで熱処理を行った。その後、温度を
4 9 3
保ったまま、容器に設置されたバルブを開けてフッ素を含有するガスを排気した。排 気後、自然冷却を行い、フッ素ガス処理済みの放射線画像パネルを得た。得られた フッ素ガス処理済みの放射線画像変換パネルを実施例 9の放射線画像変換パネル とした。(輝度の測定)
得られた実施例 9の放射線画像パネルを実施例 1と同様にして、輝度測定を実施し たところ、実施例 9の発光輝度は 1. 2を示した。測定結果を下記表 2に示す。ただし、 表2中、各試料の発光輝度を示す値は、比較例 2の放射線画像パネルの発光輝度 を 1. 0としたときの相対値である。
[0077] また、輝度測定後、実施例 9の放射線画像変換パネルの蛍光体層の CsF形成量を 、イオンクロマトグラフィーを用いて分析したところ、 l lppmを示した。なお、本発明に おいては ppmは特に指定しない限り、モル ppmを表す。 CsF形成量の測定結果に ついても併せて表 2に示した。
[0078] [表 2]
Figure imgf000020_0001
[0079] [実施例 10]
(フッ素含有ガス処理済みの放射線像変換パネルの作製)で、加熱温度を 80°Cと する以外は、実施例 9と同様にしてフッ素含有ガス処理済みの放射線像変換パネル を作製し、得られたフッ素含有ガス処理済みの放射線像変換パネルを実施例 10の 放射線像変換パネルとして、実施例 9と同様に発光輝度及び CsF形成量の測定を実 施した。実施例 10の放射線像変換パネルの発光輝度は、 1. 9を示し、 CsF形成量 は 20ppmを示した。これらの測定結果を表 2に示す。
[実施例 11]
(フッ素含有ガス処理済みの放射線像変換パネルの作製)で、加熱温度を 100°Cと する以外は、実施例 9と同様にしてフッ素含有ガス処理済みの放射線像変換パネル を作製し、得られたフッ素含有ガス処理済みの放射線像変換パネルを実施例 11の 放射線像変換パネルとして、実施例 9と同様に発光輝度及び CsF形成量の測定を実 施した。実施例 11の放射線像変換パネルの発光輝度は、 2. 2を示し、 CsF形成量 は 40ppmを示した。これらの測定結果を表 2に示す。
[実施例 12]
(フッ素含有ガス処理済みの放射線像変換パネルの作製)で、加熱温度を 150°Cと する以外は、実施例 9と同様にしてフッ素含有ガス処理済みの放射線像変換パネル を作製し、得られたフッ素含有ガス処理済みの放射線像変換パネルを実施例 12の 放射線像変換パネルとして、実施例 9と同様に発光輝度及び CsF形成量の測定を実 施した。実施例 12の放射線像変換パネルの発光輝度は、 2. 5を示し、 CsF形成量 は lOOppmを示した。これらの測定結果を表 2に示す。
[実施例 13]
(フッ素含有ガス処理済みの放射線像変換パネルの作製)で、加熱温度を 200°Cと する以外は、実施例 9と同様にしてフッ素含有ガス処理済みの放射線像変換パネル を作製し、得られたフッ素含有ガス処理済みの放射線像変換パネルを実施例 13の 放射線像変換パネルとして、実施例 9と同様に発光輝度及び CsF形成量の測定を実 施した。実施例 13の放射線像変換パネルの発光輝度は、 2. 5を示し、 CsF形成量 は 156ppmを示した。これらの測定結果を表 2に示す。
[実施例 14]
(フッ素含有ガス処理済みの放射線像変換パネルの作製)で、加熱温度を 250°Cと する以外は、実施例 9と同様にしてフッ素含有ガス処理済みの放射線像変換パネル を作製し、得られたフッ素含有ガス処理済みの放射線像変換パネルを実施例 14の 放射線像変換パネルとして、実施例 9と同様に発光輝度及び CsF形成量の測定を実 施した。実施例 14の放射線像変換パネルの発光輝度は、 2. 6を示し、 CsF形成量 は 178ppmを示した。これらの測定結果を表 2に示す。
[比較例 2] (蒸着源材料の作製)で、蒸着源材料に CsFを混入しない以外は、実施 例 1と同様にして放射線像変換パネルを作製した。
その後、得られた放射線画像変換パネルを内容量 6Lの密閉容器に設置し、 70°C で熱処理を行った。その後、温度を保ったまま、容器に設置されたノ レブを開けて排 気した後、自然冷却を行い、フッ素含有ガス未処理の放射線画像パネルを得た。得 られたフッ素含有ガス未処理の放射線画像変換パネルを比較例 2の放射線画像変 換パネルとして、実施例 9と同様に発光輝度及び CsF形成量の測定を実施した。比 較例 2の放射線像変換パネルにおける蛍光体層の CsF形成量は検出限界以下であ つた。測定結果を表 2に示す。

Claims

請求の範囲
[1] 基板上に蛍光体層が形成された放射線用シンチレータプレートであって、
前記蛍光体層が CsF結晶を含有することを特徴とする放射線用シンチレータプレー
[2] 前記蛍光体層の表面に CsF結晶が存在することを特徴とする請求の範囲第 1項に記 載の放射線用シンチレータプレート。
[3] 前記蛍光体層が、 Csl— CsF混晶体であることを特徴とする請求の範囲第 1または
2項に記載の放射線用シンチレータプレート。
[4] 前記 Csl— CsF混晶体は、
Cslと、 CsFとを添加して Csl - CsF混合体を作製した後、
前記 Csl -CsF混合体と、付活剤原料とを供給源として、前記基板上に蒸着を行う 蒸着工程を経て形成されることを特徴とする請求の範囲第 3項に記載の放射線用シ ンチレータプレート。
[5] 前記蛍光体層が、 Cslと付活剤原料とを主成分として前記基板上に形成された蛍 光体の柱状結晶であり、
前記柱状結晶の表面に、 CsF結晶が形成されていることを特徴とする請求の範囲 第 1または 2項に記載の放射線用シンチレータプレート。
[6] Cslと付活剤原料とを主成分とする蛍光体を供給源として、前記基板上に蒸着を行 う蒸着工程の後に、前記 CsF結晶を形成する CsF結晶形成工程を経て形成されるこ とを特徴とする請求の範囲第 5項に記載の放射線用シンチレータプレート。
[7] 前記 CsF結晶は、
前記蒸着工程の後に、フッ素系溶剤ガスの雰囲気下で加熱する加熱工程を経て 形成されることを特徴とする請求の範囲第 6項に記載の放射線用シンチレータプレー
[8] 前記付活剤原料は、インジウム、タリウム、カリウム、ルビジウム、ナトリウム、ユーロピ ゥムの中から選択されるいずれかを含む化合物であることを特徴とする請求の範囲第 1〜7項のいずれか一項に記載の放射線用シンチレータプレート。
[9] 前記フッ素系溶剤ガスは、フッ素系溶剤が気化したものであり、 前記フッ素系溶剤は、下記一般式(1)によって示される化合物であることを特徴と する請求の範囲第 7または 8項に記載の放射線用シンチレータプレート。
(Rl -O) -R2 (1)
a
「a」は、 1〜3の整数であり、「R1」及び「R2」は、アルキル基及びァリール基からなる 群より選択される基であるとともに、「R1」及び「R2」のうち少なくとも 1方に、少なくとも
1個のフッ素原子と、 1個の水素原子とを含むものである。
[10] 前記蛍光体層が、 CsBr— CsF混晶体であることを特徴とする請求の範囲第 1また は 2項に記載の放射線用シンチレータプレート。
[11] 照射された放射線を検出して放射線画像情報を取得する放射線画像検出器であ つて、
請求の範囲第 1〜10項のいずれか一項に記載の放射線用シンチレータプレートと 、前記放射線用シンチレータプレートにより放出された光を電気信号に読み替える出 力基板とを備えることを特徴とする放射線画像検出器。
PCT/JP2006/318559 2005-09-30 2006-09-20 放射線用シンチレータプレート及び放射線画像検出器 WO2007040042A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007538687A JP4710907B2 (ja) 2005-09-30 2006-09-20 放射線用シンチレータプレート及び放射線画像検出器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-287312 2005-09-30
JP2005287312 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007040042A1 true WO2007040042A1 (ja) 2007-04-12

Family

ID=37901004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318559 WO2007040042A1 (ja) 2005-09-30 2006-09-20 放射線用シンチレータプレート及び放射線画像検出器

Country Status (3)

Country Link
US (1) US7435975B2 (ja)
JP (1) JP4710907B2 (ja)
WO (1) WO2007040042A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013028671A (ja) * 2011-07-27 2013-02-07 Canon Inc 相分離構造を有するシンチレータ結晶体
JP2013036030A (ja) * 2011-07-12 2013-02-21 Canon Inc 相分離構造を有するシンチレータ及びそれを用いた放射線検出器
US8674309B2 (en) 2010-01-28 2014-03-18 Canon Kabushiki Kaisha Scintillator crystal body, method for manufacturing the same, and radiation detector
JP2017036430A (ja) * 2015-08-07 2017-02-16 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2021012114A (ja) * 2019-07-08 2021-02-04 浜松ホトニクス株式会社 シンチレータプレート、画像取得装置、及びシンチレータプレートの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2067841A1 (en) 2007-12-06 2009-06-10 Agfa HealthCare NV X-Ray imaging photostimulable phosphor screen or panel.
JP5121960B2 (ja) * 2011-03-30 2013-01-16 キヤノン株式会社 相分離構造を有するシンチレータ結晶体
JP2013024731A (ja) * 2011-07-21 2013-02-04 Canon Inc 放射線検出装置
JP5947499B2 (ja) * 2011-07-26 2016-07-06 キヤノン株式会社 放射線検出器
JP6066608B2 (ja) * 2011-07-27 2017-01-25 キヤノン株式会社 相分離構造を有するシンチレータおよびそれを用いた放射線検出器
US10087367B2 (en) 2013-01-21 2018-10-02 Siemens Medical Solutions Usa, Inc. Passivation of metal halide scintillators
US9328287B2 (en) * 2013-01-21 2016-05-03 Siemens Medical Solutions Usa, Inc. Passivation of metal halide scintillators
US11098248B2 (en) * 2013-01-21 2021-08-24 Siemens Medical Solutions Usa, Inc. Passivation of metal halide scintillators
US11597877B2 (en) 2013-01-21 2023-03-07 Siemens Medical Solutions Usa, Inc. Passivation of metal halide scintillators
JP7434198B2 (ja) * 2021-02-18 2024-02-20 株式会社東芝 シンチレータ及び放射線検出器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325185A (ja) * 1996-06-03 1997-12-16 Toshiba Fa Syst Eng Kk 放射線検出器とその製造方法と透視検査装置とctスキャナ
JP2004335870A (ja) * 2003-05-09 2004-11-25 Canon Inc 放射線検出装置
JP2005037363A (ja) * 2003-06-30 2005-02-10 Shimadzu Corp 放射線検出器およびその製造方法
JP2005227169A (ja) * 2004-02-13 2005-08-25 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4533489A (en) * 1983-12-07 1985-08-06 Harshaw/Filtrol Partnership Formable light reflective compositions
JP4298081B2 (ja) * 1999-09-01 2009-07-15 キヤノン株式会社 半導体装置及びそれを備えた放射線撮像システム
JP2003050280A (ja) * 2001-08-03 2003-02-21 Konica Corp 放射線画像検出器
EP1441019A1 (en) * 2002-12-25 2004-07-28 Konica Minolta Holdings, Inc. Radiographic image conversion panel
US7037640B2 (en) * 2003-07-04 2006-05-02 Agfa-Gevaert Image storage phosphor or scintillator panels coated onto flexible supports
US7180068B1 (en) * 2004-06-09 2007-02-20 Radiation Monitoring Devices, Inc. Scintillation materials with reduced afterglow and method of preparation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09325185A (ja) * 1996-06-03 1997-12-16 Toshiba Fa Syst Eng Kk 放射線検出器とその製造方法と透視検査装置とctスキャナ
JP2004335870A (ja) * 2003-05-09 2004-11-25 Canon Inc 放射線検出装置
JP2005037363A (ja) * 2003-06-30 2005-02-10 Shimadzu Corp 放射線検出器およびその製造方法
JP2005227169A (ja) * 2004-02-13 2005-08-25 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8674309B2 (en) 2010-01-28 2014-03-18 Canon Kabushiki Kaisha Scintillator crystal body, method for manufacturing the same, and radiation detector
JP2013036030A (ja) * 2011-07-12 2013-02-21 Canon Inc 相分離構造を有するシンチレータ及びそれを用いた放射線検出器
JP2013028671A (ja) * 2011-07-27 2013-02-07 Canon Inc 相分離構造を有するシンチレータ結晶体
JP2017036430A (ja) * 2015-08-07 2017-02-16 日亜化学工業株式会社 βサイアロン蛍光体の製造方法
JP2021012114A (ja) * 2019-07-08 2021-02-04 浜松ホトニクス株式会社 シンチレータプレート、画像取得装置、及びシンチレータプレートの製造方法
JP7344026B2 (ja) 2019-07-08 2023-09-13 浜松ホトニクス株式会社 シンチレータプレート、画像取得装置、及びシンチレータプレートの製造方法

Also Published As

Publication number Publication date
US7435975B2 (en) 2008-10-14
JPWO2007040042A1 (ja) 2009-04-16
JP4710907B2 (ja) 2011-06-29
US20070075254A1 (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4710907B2 (ja) 放射線用シンチレータプレート及び放射線画像検出器
JP5407140B2 (ja) 放射線用シンチレータプレート
JP5499706B2 (ja) シンチレータパネル
JP4725533B2 (ja) シンチレータパネル
JP2008139064A (ja) シンチレータパネルの製造方法、シンチレータパネル及び真空蒸着装置
JP4569529B2 (ja) 放射線用シンチレータプレートとその製造方法
JP4894453B2 (ja) 放射線画像検出器
JP2010025620A (ja) 放射線画像変換パネルとその製造方法
JP2009139972A (ja) カセッテ型放射線画像検出器及び放射線画像検出システム
JP2007212218A (ja) シンチレータプレート
JPWO2007060814A1 (ja) 放射線用シンチレータプレート
JP2010019620A (ja) シンチレータパネル、放射線検出装置および放射線検出装置の作製方法
JP2007205970A (ja) シンチレータプレート
JP2004179266A (ja) 放射線画像検出器
JP2007012982A (ja) 光電変換素子、放射線画像検出器及び放射線画像撮影システム
JP2008107279A (ja) シンチレータパネル
JP2009047577A (ja) シンチレータパネル及びその作製方法
JP2006208158A (ja) 放射線画像変換パネル、放射線画像検出器及び放射線画像撮影システム
US20080054222A1 (en) Scintillator and scintillator plate fitted with the same
JP2007211199A (ja) 放射線用シンチレータプレート及びその製造方法
JP5347967B2 (ja) シンチレータプレート
JP2010185882A (ja) 可搬型放射線画像検出器
JPWO2008015910A1 (ja) シンチレータプレートの製造方法及びシンチレータプレート
JP2004119722A (ja) 放射線画像検出器
WO2010010735A1 (ja) シンチレータパネルとそれを用いた放射線画像検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798120

Country of ref document: EP

Kind code of ref document: A1