WO2007034965A1 - 重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 - Google Patents
重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 Download PDFInfo
- Publication number
- WO2007034965A1 WO2007034965A1 PCT/JP2006/319080 JP2006319080W WO2007034965A1 WO 2007034965 A1 WO2007034965 A1 WO 2007034965A1 JP 2006319080 W JP2006319080 W JP 2006319080W WO 2007034965 A1 WO2007034965 A1 WO 2007034965A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- polymer
- chemical formula
- carbon atoms
- acid
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/26—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/2641—Polyacrylates; Polymethacrylates
- C04B24/2647—Polyacrylates; Polymethacrylates containing polyether side chains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/28—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C04B24/32—Polyethers, e.g. alkylphenol polyglycolether
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/40—Redox systems
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/02—Polyalkylene oxides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/40—Surface-active agents, dispersants
- C04B2103/408—Dispersants
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00034—Physico-chemical characteristics of the mixtures
- C04B2111/00198—Characterisation or quantities of the compositions or their ingredients expressed as mathematical formulae or equations
Definitions
- the present invention relates to a polymer, a method for producing the polymer, and a cement-mixing agent using the polymer.
- a polymer having a structural unit derived from a polyoxyalkylene chain is used as a dispersant for an inorganic powder such as cement, as disclosed in JP-A-986990 and JP-A-2001-220417. Widely used. However, conventional polymers have a wide molecular weight distribution and a high molecular weight part that aggregates the inorganic powder, and a low molecular weight part that does not contribute much to the dispersion performance.
- cement dispersant in general, in a building outer wall material, such as a building structure, mortar in which cement paste is mixed with water or fine paste sand is mixed with cement paste.
- the strength and durability of hardened cement products are increased by adding cement admixture to concrete that is made by mixing coarse aggregate stone with mortar.
- the above cement admixture is required to ensure sufficient dispersibility and fluidity even when the water content (reduced water) of the cement composition is lowered, while ensuring durability and strength by reducing water. . Therefore, a cement admixture having high water reduction performance with a small amount added is required.
- polycarboxylic acid type cement admixtures are preferably used because they can impart higher dispersibility to the cement composition than other cement admixtures such as naphthalene.
- JP-A-986990 discloses a cement admixture containing a copolymer composed of a specific unsaturated polyalkylene glycol ester monomer and a (meth) acrylic acid monomer.
- JP-A-2001-220417 discloses a specific unsaturated polyalkylene glycol ether monomer and (meth) acrylic acid monomer which is an unsaturated monocarboxylic acid and maleic acid which is an unsaturated dicarboxylic acid. Is it a monomer A cement admixture containing the copolymer is disclosed. However, even the above cement admixture was slightly insufficient in terms of water reduction.
- Living polymerization is known as a method of reducing a high molecular weight portion and a low molecular weight portion in a polymer, that is, a method of narrowing a molecular weight distribution.
- a method of synthesizing an acid-dissociable group-containing resin using a radical polymerization initiator and a tellurium compound has been disclosed (see Japanese Patent Laid-Open No. 2005-126459).
- a method for controlling the molecular weight distribution of a polymer there is disclosed a method for obtaining a polymer by polymerizing a bulu monomer in two stages using a azo polymerization initiator and a tellurium compound (Japanese Patent Laid-Open No. 2005-260867). 2004—see publication 323693).
- the above method has not been disclosed for polymers having a structural unit derived from a polyalkylene glycol chain, which is useful as a dispersant for inorganic powders.
- the problem to be solved by the present invention is a polymer having a polyalkylene glycol chain, but a specific parameter having a very narrow molecular weight distribution different from that of a conventional copolymer. It is an object of the present invention to provide a polymer having a value and a dispersant for inorganic powder, particularly a cement admixture, having excellent dispersion performance using the polymer.
- the present inventors have a conventional molecular weight distribution as described in JP-A-9-86990 and JP-A-2001-220417, and the polymer is relatively high!
- the high molecular weight part has the effect of agglomerating cement particles, thus hindering the cement dispersion performance
- the low molecular weight part has low cement particle dispersion performance and therefore does not contribute to the dispersion performance! I thought it. Therefore, if the polymer has a narrow molecular weight distribution with reduced high molecular weight part and low molecular weight part that do not contribute to the dispersion performance, a polymer with a narrow molecular weight part will be created by considering that the cement dispersion performance will be further improved. The performance was examined.
- the cement composition obtained using a cement admixture containing a polymer having a parameter value within a specific range has a very high dispersibility. I found out that it was excellent. At that time, it was found that a polymer satisfying the parameters can be easily produced by living polymerization of a monomer containing an unsaturated monomer having a polyoxyalkylene chain, and the present invention was completed.
- the present invention relates to a polymer comprising structural units derived from polyoxyalkylene chains.
- N represents the average number of moles of oxyalkylene group added to the polymer (P)
- Mw and Mn were measured by gel permeation chromatography (GPC) of the polymer (P), respectively.
- GPC gel permeation chromatography
- H (n) is the following formula 3:
- n represents the average number of moles of oxyalkylene groups added to the polymer (P)).
- AI alkyleneimine
- AO alkylene oxide
- AS alkylene sulfide
- X halogen
- a, b, c , D, e, and f represent a number of 0 or more independently of each other]
- a mixture of an organic halogen compound and an organic halogen compound a mixture of an organic halogen compound and an organic halogen compound.
- the present invention relates to a polymer (P) comprising a structural unit derived from a polyalkylene glycol chain, wherein the mixture is used to produce an unsaturated polyalkylene glycol monomer (IM).
- the present invention relates to a polymer (P) comprising a structural unit derived from a polyalkylene glycol chain,
- R a is an alkyl group having 1 to 8 carbon atoms, Ariru group, a substituted Ariru group or an aromatic heterocyclic group
- R b and R e is a hydrogen atom or 1 to 8 carbon atoms independently of one another
- R d represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an oxycarbonyl group, or a cyano group
- R f and independently represent an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group, or an aromatic heterocyclic group
- ⁇ V> The polymer described in the above ⁇ iii> and ⁇ iv> preferably satisfies the PD value range defined by the above mathematical formula 1 described in the above ⁇ i>.
- the polymer of the invention is a polymer containing a structural unit derived from the polyoxyalkylene chain.
- the union (P) includes a structural unit derived from a polyoxyalkylene chain and a structural unit having a site derived from a carboxyl group.
- the structural unit derived from the polyoxyalkylene chain of the polymer (P) is preferably the following chemical formula 5:
- R 1 and R 2 independently represent a hydrogen atom or a methyl group, and AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two or more (In the above case, it may be attached in blocks or randomly)
- X is an integer from 0 to 2
- y is 0 or 1
- n is o
- R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms].
- the structural unit having a moiety derived from a carboxyl group is preferably represented by the following chemical formula 6:
- R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2) zCO
- Z represents an integer of 0 to 2
- M 1 and M 2 are independently of each other a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, an ammonia Group or organic amine group]
- the structural unit (II) shown in ⁇ Ix> also relates to a method for producing a polymer (P) containing the structural unit derived from the polyoxyalkylene chain, wherein the unsaturated monomer (IM) having a polyoxyalkylene chain is prepared as follows.
- the unsaturated monomer (M) includes an unsaturated monomer () -M) having a carboxyl group-derived moiety.
- the unsaturated monomer (IM) having a polyoxyalkylene chain is preferably represented by the following chemical formula 7:
- R 1 and R 2 independently represent a hydrogen atom or a methyl group, and AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two or more (In the above case, it may be attached in blocks or randomly)
- X is an integer from 0 to 2
- y is 0 or 1
- n is o
- R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
- the unsaturated monomer ( ⁇ -M) having a moiety derived from a carboxyl group is preferably represented by the following chemical formula 8:
- R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2) zCO
- M 1 and M 2 are the same or different and are a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, an ammonium group or Represents an organic amine group, a silyl group having a hydrocarbon group having 3 to 18 carbon atoms].
- the present invention provides a cement blending agent containing any of the above polymers as an essential component.
- the present invention provides a cement admixture containing the polymer (P) produced by any one of the above production methods as an essential component.
- the polymer of the present invention reduces the polymer component on the high molecular weight side that aggregates the inorganic powder and the polymer component on the low molecular weight side that does not contribute much to the cement dispersibility, and has a molecular weight distribution. Therefore, the molecular weight distribution is very sharp, and the dispersion performance is improved by using the polymer of the present invention as a dispersant for inorganic powders. be able to. In particular, when cement is used as the inorganic powder, excellent dispersion performance can be exhibited.
- the polymer of the present invention is a polymer (P) containing a structural unit derived from a polyoxyalkylene chain, and the following formula 1:
- N represents the average number of moles of oxyalkylene group added to the polymer (P)
- Mw and Mn were measured by gel permeation chromatography (GPC) of the polymer (P), respectively.
- GPC gel permeation chromatography
- H (n) is the following formula 3:
- the MD value can be obtained by the following method.
- the weight average molecular weight (Mw) of the polymer (P) is measured by gel permeation chromatography (GPC).
- the MD value is a parameter representing the molecular weight distribution (dispersion degree) of the polymer (P). Less than,
- the PD value will be described.
- MwZMn is strongly correlated with Mw!
- the side chain length (n) also affects MwZMn.
- the composition of the polymer also affects the molecular weight distribution. Therefore, the molecular weight distribution of copolymers with long side chains is
- Mw / Mn F (Mw, n, yarn thread) (4) Can be expressed as a function of molecular weight, side chain size, and composition.
- Equation 4 above is an inherent equation under certain GPC conditions, and as a result of measuring various polymers under certain conditions, there should be no power contradiction. I have to do it.
- the derivation of Equation 4 under the GPC conditions described below was performed according to the following procedure.
- the polymer to be measured does not adsorb to the GPC column. It can be ignored and the molecular weight distribution parameter value (MD value) is
- MD G (n) XMw + H (n) (5)
- the first term on the right side mainly represents the effect of Mw on MwZMn
- the second term on the right side represents the effect of polyoxyalkylene chain length n on MwZMn.
- the range of the PD value of the polymer (P) of the present invention is 1 ⁇ PD and MD range using the molecular weight distribution parameter (dispersion degree) value (MD value) obtained from Equation 8 above. It is.
- a polymer having a weight average molecular weight of 30,000 and an average number of moles of attached oxyalkylene chain of 25 is a polymer having a PD value satisfying PD ⁇ 2.015.
- the molecular weight distribution parameter value is a parameter representing the degree of dispersion (MwZMn) of the polymer. If the value is large, the degree of dispersion is large and the molecular weight distribution of the polymer is wide. If the value is small, the degree of dispersion is small and the molecular weight distribution of the polymer is narrow.
- the polymer (P) of the present invention has a PD value range less than the above molecular weight distribution parameter value (MD value), which means that the molecular weight distribution is very narrow.
- the PD value is not particularly limited as long as 1 ⁇ PD ⁇ MD, but as the molecular weight distribution (dispersion degree) is narrower, the viewpoint power to improve the dispersion performance of the inorganic powder is PD MD-0.1, more preferably PD MD-0.15, more preferably PD MD-0.2, more preferably PD MD-0.25, more preferably PD MD-0.3, more preferably PD MD — 0.35.
- 1 ⁇ PD is preferred. More preferably, 1.05 ⁇ PD, more preferably 1.1 ⁇ PD, more preferably 1.15, more preferably 1.2 ⁇ PD, more preferably 1.25 ⁇ PD, more preferably 1.3 PD.
- polymer (P) containing the structural unit derived from the polyoxyalkylene chain of the present invention there is a polymer obtained by a specific polymerization method.
- a novel catalyst system a method of polymerizing a highly polar monomer in a Balta or a highly polar solvent, such as a (meth) acrylic monomer or a polymer having a polyalkylene alcohol side chain.
- a highly polar monomer such as a (meth) acrylic monomer or a polymer having a polyalkylene alcohol side chain.
- the new catalyst system has the following chemical formula 1:
- AI alkyleneimine
- AO alkylene oxide
- AS alkylene sulfide
- X halogen
- a, b, c , D, e and f each independently represents a number of 0 or more
- R 7 , R 8 , R 9 and R 1C independently represent a hydrogen atom, a hydrocarbon group or a halogen atom, but the hydrocarbon group contains one or more halogen atoms or hetero atoms. May be
- the catalyst system includes one or more compounds represented by the chemical formula 1 and the chemical It is composed of one or more compounds represented by formula 9.
- the polymer (p) containing the structural unit derived from the polyoxyalkylene chain of the present invention can be produced.
- polymer (P) containing the structural unit derived from the polyoxyalkylene chain of the present invention include the following chemical formula 3:
- R a is an alkyl group having 1 to 8 carbon atoms, represents a Ariru group, a substituted Ariru group or an aromatic heterocyclic group
- R b and R e is a hydrogen atom or 1 to 8 carbon atoms independently of one another
- R d represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an oxycarbonyl group or a cyano group
- R f and are independently of each other an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group or an aromatic heterocyclic group
- the polymer (P) containing a structural unit derived from a polyoxyalkylene chain of the present invention is not particularly limited as long as it contains a structural unit derived from a polyoxyalkylene chain in the polymer.
- the alkylene chain is preferably grafted to the polymer main chain.
- the structural unit derived from the polyoxyalkylene chain is preferably 2 to 98% by mass, more preferably 50% by mass or more, still more preferably 60% by mass or more, further preferably 65% by mass with respect to the total mass of the polymer. It is contained by mass% or more, more preferably 70% by mass or more.
- mass% when the structural unit of the polymer has a functional group capable of forming a salt such as an acid or a base, the mass is calculated without forming a salt (for example, for a carboxylic acid salt, (Converted to carboxylic acid, converted to amin for ammine salts), and so on.
- the type and average number of added moles of the oxyalkylene group constituting the oxyalkylene chain are not particularly limited, but are preferably oxyalkylene groups having 2 to 18 carbon atoms, more preferably It is an oxyalkylene group having 2 to 8 carbon atoms. Further, from the viewpoint of the dispersion performance of the inorganic powder using water as a medium, it is necessary to increase the hydrophilicity of the oxyalkylene group, and it is preferable that the oxyethylene group having 2 carbon atoms dominates.
- the ratio of the oxyethylene group to the total of the oxyalkylene group having 3 or more carbon atoms and the oxyethylene group is preferably 50 mol% or more, more preferably 60 mol% or more, still more preferably 70 mol% or more, More preferably, it is 90 mol% or more, more preferably 95 mol% or more, and still more preferably 100 mol%.
- the average addition mole number of the oxyalkylene chain is not particularly limited, but the average addition mole number of the oxyalkylene chain is preferably 1 to 300 mol. From the viewpoint of improving the dispersion performance, it is preferably 2 mol or more, more preferably 4 mol or more, more preferably 6 mol or more, further preferably 10 mol or more, more preferably 15 mol or more, more preferably 20 mol or more. . From the viewpoint of production of an oxyalkylene chain, the upper limit of the oxyalkylene chain is preferably 300 moles, more preferably 250 moles, still more preferably 200 monolayers, and even more preferably 150 monolayers.
- the polymer (P) preferably has a structural unit derived from a carboxyl group in addition to a structural unit derived from a polyoxyalkylene chain.
- the structural unit having a carboxyl group is preferably 2 to 90% by mass with respect to the total mass of the polymer. From the viewpoint of adsorption performance to inorganic powder, it is preferably 2% by mass or more, more preferably Is 5% by weight or more, more preferably 7.5% by weight or more, more preferably 10% by weight or more, and even more preferably. 12.5% by mass or more, more preferably 15% by mass or more, further preferably 20% by mass or more, and further preferably 25% by mass or more.
- the upper limit is preferably 90% by mass, more preferably 80% by mass. More preferably, it is 60% by mass, more preferably 50% by mass, still more preferably 40% by mass, still more preferably 35% by mass, and further preferably 30% by mass.
- the oxyalkylene chain has a function of dispersing an inorganic powder such as cement particles due to the steric repulsion effect, and preferably 2 to 98% by mass to sufficiently disperse the cement particles. it can.
- R 1 and R 2 independently represent a hydrogen atom or a methyl group
- AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two kinds).
- X represents an integer of 0 to 2
- y represents 0 or 1
- n represents an oxyalkylene group
- the average added mole number is a number of 1 to 300
- R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
- the structural unit (I) is preferably 2% by mass or more, more preferably 50% by mass or more, and still more preferably 60% in the polymer. It is contained in an amount of not less than mass%, more preferably not less than 65 mass%, more preferably not less than 70 mass%.
- the upper limit of the content is preferably 98% by mass, more preferably 95% by mass, still more preferably 90% by mass, and even more preferably.
- the amount is preferably 85% by mass, more preferably 80% by mass.
- the oxyalkylene group represented by AO is an oxyalkylene group from the viewpoint of improving the dispersibility of the inorganic powder using water, which is preferably a C2-18 oxyalkylene group. It is preferable to increase the hydrophilicity of the alkyne group, and it is preferable that the oxsethylene group which is an oxyalkylene group having 2 carbon atoms occupies the main component.
- the ratio of the oxyethylene group to the total of the oxyalkylene group having 3 or more carbon atoms and the oxyethylene group in the structural unit (I) is preferably 50 mol% or more, more preferably 60 mol%. % Or more, more preferably 70 mol% or more, more preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 100 mol%.
- the proportion of the oxyalkylene group having 3 or more carbon atoms in the structural unit (I) is preferably 1 mol% or more, more preferably 3 mol% or more, and even more preferably 5 mol% or more, from the viewpoint of imparting hydrophobicity. From the viewpoint of cement dispersion performance, it is preferably 50 mol% or less, more preferably 40 mol% or less, and still more preferably 30 mol% or less.
- the oxyalkylene group having 3 or more carbon atoms may be an oxyalkylene group having 3 to 8 carbon atoms or an oxypropylene group having 3 to 4 carbon atoms from the viewpoints of introduction and compatibility with cement.
- the oxybutylene group is preferred.
- the average added mole number of the oxyalkylene chain is preferably 1 to 300 moles. From the viewpoint of improving the dispersion performance of the inorganic powder, it is preferably 2 moles or more, more preferably 4 moles or more, and even more preferably. Is 6 mol or more, more preferably 10 mol or more, more preferably 15 mol or more, more preferably 20 mol or more. From the viewpoint of production of an oxyalkylene chain, the upper limit of the oxyalkylene chain is preferably 300 moles, more preferably 250 moles, still more preferably 200 monolayers, and even more preferably 150 monolayers.
- the terminal group R 3 of the oxyalkylene chain is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms [eg, an alkyl group having 1 to 20 carbon atoms (an aliphatic alkyl group or an alicyclic alkyl group), An alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, a phenyl group having 6 to 20 carbon atoms, an alkylphenyl group, an aromatic group having a benzene ring such as a naphthyl group, and the like.
- a hydrocarbon group having 1 to 20 carbon atoms eg, an alkyl group having 1 to 20 carbon atoms (an aliphatic alkyl group or an alicyclic alkyl group), An alkenyl group having 1 to 20 carbon atoms, an alkynyl group having 1 to 20 carbon atoms, a phenyl group having 6 to 20 carbon atoms,
- a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (for example, an alkyl group) that is preferably low in hydrophobicity from the viewpoint of dispersing an inorganic powder (such as a cement composition) in a water medium.
- Group, an alkyl group, an alkyl group, a phenol group, etc. a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms (for example, an alkyl group, an alkenyl group, an alkynyl group, And a hydrogen atom or carbon.
- a hydrocarbon group of 1 to 3 (for example, an alkyl group, an alkenyl group, an alkynyl group, etc.) is preferable.
- the structural unit (II) is preferably contained in an amount of 2 to 90% by mass.
- R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2 ) zCOOM 2 (— (CH 2 ) zCOOM 2 is —COOM 1 or other — ( CH
- zCOOM 2 may form an anhydride
- Z represents an integer from 0 to 2
- M 2 each independently represent a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, an ammonium group or an organic amine group.
- the structural unit ( ⁇ ) is a portion that exerts an adsorption action on inorganic powder such as cement.
- the polymer is preferably a two-component polymer. % By weight, more preferably 5% by weight or more, more preferably 7.5% by weight or more, even more preferably 10% by weight or more, more preferably 12.5% by weight or more, more preferably 15% by weight or more, More preferably, it is 20% by mass or more, more preferably 25% by mass or more.
- the upper limit of the content of the structural unit ( ⁇ ) is preferably 90% by mass, more preferably 80% by mass, still more preferably 60% by mass, further preferably 50% by mass, and further preferably 40% by mass. %, More preferably 35% by mass, more preferably 30% by mass.
- the polymer ( ⁇ ) is characterized by having the essential structural unit (repeating unit) and further having a structural unit (III) derived from a monomer ( ⁇ - ⁇ ) described later. You can! / Each of these structural units may be one kind or two or more kinds.
- the ratio of each constituent unit constituting the polymer ( ⁇ ) is a mass ratio, and the constituent unit (I) ⁇ constituent unit ( ⁇ ) ⁇ constituent unit ( ⁇ ) is preferably 2 to 98 mass% ⁇ 2 to 90% by mass ZO to 50% by mass, more preferably 50 to 95% by mass ⁇ 5 to 80% by mass ⁇ 0 to 40% by mass, more preferably 60 to 90% by mass ⁇ 7.5 to 60% by mass ZO to 30% by mass .
- Examples of the monomer that provides the structural unit (I) include the following chemical formula 7:
- R 1 and R 2 independently represent a hydrogen atom or a methyl group, and AO independently of each other represents one or a mixture of two or more oxyalkylene groups having 2 or more carbon atoms (two or more (In the above case, it may be attached in blocks or randomly)
- X is an integer from 0 to 2
- y is 0 or 1
- n is o
- R 3 represents a hydrogen atom or a hydrocarbon group of 1 to 20 carbon atoms
- an unsaturated monomer component hereinafter also referred to as “IM”).
- the unsaturated monomer component (IM) includes methanol, ethanol, 1 propanol, 2 propanol, 1-butanol, 2-butanol, 1 pentano, 1 hexanol, octanol, 2 —Ethyl- 1 1 hexanol, noral alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, etc., saturated aliphatic alcohols having 1 to 20 carbon atoms, allyl alcohol, methallyl alcohol, crotyl alcohol, oleinole alcohol C3-C20 unsaturated aliphatic alcohols such as cyclohexanol, C3-C20 alicyclic alcohols such as phenol, phenolmethanol (benzyl alcohol), methylphenol (Talesol), p Ethylphenol, dimethylphenol (xylenol), norphenol, Alkoxypolyalkylene glycols obtained by adding alkylene oxides having 2 to 18 carbon
- unsaturated monomers may be used alone or in combination of two or more.
- (meth) aryl alcohol is particularly preferably a compound obtained by adding 1 to 300 moles of alkylene oxide to 1-methyl 3-buteneol.
- the unsaturated esters and unsaturated ethers mentioned above are selected as alkylene oxides, for example, alkylene oxides having 2 to 18 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, and the like.
- alkylene oxides having 2 to 18 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, and the like.
- One or two or more alkyloxides may be added.
- any of random addition, block-attached calorie, and alternating-attached cover may be used.
- Examples of the monomer that provides the structural unit (II) include the following chemical formula 8: [0091] [Chemical 17]
- R 4 , R 5 and R 6 are each independently a hydrogen atom or a methyl group, — (CH 2) zCO
- M 1 and M 2 are independently of each other a hydrogen atom, an alkali metal atom, an alkaline earth metal atom, an ammonia A silyl group having a group or an organic amine group, a hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 3 to 18 carbon atoms]
- An unsaturated monomer component (hereinafter also referred to as “II M”) including the monomer represented by
- Examples of unsaturated monomers represented by II M include monocarboxylic acid monomers such as (meth) acrylic acid and crotonic acid, and dicarboxylic acid monomers such as maleic acid, itaconic acid and fumaric acid. And their anhydrides or their salts (for example, monovalent metals, divalent metals, trivalent metals, ammonium or organic amino acid salts), monocarboxylic acids such as (meth) acrylic acid, crotonic acid, etc.
- Dicarboxylic acid monomers such as esters of hydrocarbon groups having 1 to 20 carbon atoms, silyl esters having hydrocarbon groups of 3 to 18 carbon atoms, maleic acid, itaconic acid, fumaric acid, etc.
- mono or diesters of a hydrocarbon group having 1 to 20 carbon atoms and mono or disilyl esters having a hydrocarbon group having 3 to 18 carbon atoms are particularly preferred.
- acrylic acid, methacrylic acid, maleic acid, maleic anhydride (acrylic acid and methacrylic acid are particularly preferred) and their salts, acrylic acid or methacrylic acid having 1 to 6 carbon atoms
- Anolequinolestenole metalhinoreestenole, ethinoreestenole, propinoreestenole, butyl ester, etc.
- silyl esters having a C 3-16 hydrocarbon group trimethylsilyl ester, t -Butyl-dimethylsilyl ester, t-butyl-diphenylsilyl ester, etc.
- mono- or dialkyl esters of maleic acid having 1-6 carbon atoms such as methyl ester, ethyl ester, propyl ester, buty
- an unsaturated monomer which is a component different from IM and IIM and is copolymerizable with IM and IIM.
- Unsaturated monomers ⁇ —M includes unsaturated dicarboxylic acids such as maleic acid, fumaric acid, itaconic acid, citraconic acid, alkyl alcohols having 1 to 20 carbon atoms, glycols having 2 to 18 carbon atoms, or glycols thereof. 2 to 300 polyalkylene glycols and 1 to 20 alkyl alcohols with 2 to 18 alkylene oxides or alkylene oxides with 2 to 300 alkoxy polyalkylene oxides.
- Unsaturation such as (meth) acrylic acid, crotonic acid Nocarboxylic acids and alkyl alcohols having 1 to 20 carbon atoms, glycols having 2 to 18 carbon atoms or polyalkylene glycols having 2 to 300 moles of these glycols and alkyl alcohols having 1 to 20 carbon atoms and
- the use amount of the unsaturated monomer (IM) Z unsaturated monomer ( ⁇ -M) Z unsaturated monomer (III M) is preferably 2 to 98% by mass, with the total amount being 100% by mass Z2 ⁇ 90 wt% Z0 ⁇ 50 mass 0/0, more preferably 50 to 95 wt% Zeta5 ⁇ 80 wt% Zeta0 ⁇ 40 wt%, more preferably 60 to 90 wt% ⁇ 7. 5 ⁇ 60 mass 0 / OZO ⁇ 30% by mass.
- the weight average molecular weight Mw of the polymer ( ⁇ ) can be appropriately adjusted according to the purpose.
- the Mw of the polymer (P) may be appropriately adjusted depending on the type and particle size of the inorganic powder to be dispersed.
- the Mw of the polymer (P) is 1,000 from the viewpoint of sufficiently dispersing the cement particles by adsorbing the polymer (P) to the cement particles. More preferably, 5,000 or more force S, more preferably 10,000 or more force S, more preferably 15,000 or more force S, more preferably 20,000 or more, further preferably 25,000 or more.
- the Mw of the polymer (P) is 500,000 or less, preferably S, 200,000 or less is more preferred, 100,000 or less is more preferred, 80,000 or less Is more preferably 60,000 or less, more preferably 40,000 or less.
- the above Mw values are those measured under the GPC conditions described in this specification.
- the polymer (P) containing the structural unit derived from the polyoxyalkylene chain of the present invention has the above-mentioned specific PD value and has a particularly narrow molecular weight distribution! It is a polymer characterized by the above. Examples of the method for producing a polymer having a specific PD value described above include the following modes.
- GPC gelmerization chromatography
- a filtration membrane Separation by difference or dialysis.
- living polymerizations living radical polymerization is preferable. An example of a living radical polymerization method is shown below.
- TEMPO 2, 2, 6, 6, —Tetramethyl-l-piperidinyloxy
- ATRP Atom Transfer Radical Polymerization
- RAFT Reversible Addition-Fragmentation chain Transfer
- a polymerization method using a transition element catalyst is used as one form of the living radical polymerization method.
- a novel catalyst system in particular, a (meth) acrylic monomer or a monomer having a polyalkylene glycol side chain is used.
- a highly polar monomer is polymerized in Baltha or a highly polar solvent.
- the new catalyst system has the following chemical formula 1:
- AI alkyleneimine
- AS alkylene sulfide
- X halogen
- a, b, c , D, e and f each independently represents a number of 0 or more
- R 7 , R 8 , R 9 and R 1C independently represent a hydrogen atom, a hydrocarbon group or a halogen atom, but the hydrocarbon group contains one or more halogen atoms or hetero atoms. Please May be)
- the catalyst system is composed of one or more compounds represented by the above chemical formula 1 and one or more compounds represented by the above chemical formula 2.
- a compound having a heterocyclic ring or an aromatic ring such as a biviridine compound or a triphenyl phosphine compound is generally used, but the solubility in monomers and solvents is limited. In particular, there is a drawback that polymerization does not proceed when a highly polar solvent or a highly polar monomer is used.
- the compound represented by the above chemical formula 1 including the compound represented by the above chemical formula 2 contains a large number of nitrogen atoms, oxygen atoms, and sulfur atoms, which have a higher electronegativity compared to the carbon atom.
- the compound represented by Chemical Formula 1 may be used alone or in combination of two or more.
- the compound represented by the above chemical formula 1 preferably contains two or more different types of M, and more preferably contains two types of M having different positive charges.
- the molar ratio of M h + to M g + (M h + ZM g + ) is not particularly limited, but is preferably from the viewpoint of molecular weight distribution.
- the molar ratio of the total amount of M to the monomer depends on the required molecular weight of the polymer, but from the viewpoint of the polymerization rate, it is preferably 0. Olmol% or more, more preferably 0. Imo. 1% or more, more preferably 0.5 mol% or more, and further lmol or more, and from the viewpoint of molecular weight distribution, preferably 1, OOOmol% or less, more preferably 100mol% or less, and even more preferably 1Omol% or less. More preferably, it is 5 mol% or less.
- M may be one kind or a combination of two or more different charges and Z or different elements, but manganese, iron, cobalt, nickel, copper preferred by the transition element of the fourth period It is preferably used.
- the organic halogen compound represented by the chemical formula 9 must contain at least one halogen atom.
- the organic halogen compounds represented by the chemical formula 9 may be used alone or in combination of two or more.
- Examples of the organic halogen compound represented by the above chemical formula 9 include halogenated hydrocarbon compounds such as tetrachloromethane, polychloromethane, dichloromethane, monochloroethane, trichlorophenol, dichlorodiphenylmethane; 2, 2 ⁇ -halogeno-carbon compounds such as 2,2-trichlorodiethylacetone and 2,2-dichloroacetophenone; 2,2,2-trichlorodiethyl acetate, 2,2-dichlorodiethyl acetate, 2-chlorodiphenylpanic acid Methyl, 2-bromo-2-ethylpropanoate, 2-iodo-2-methylpropanoate, 2-bromopropanoate, 2-odopropenyl,
- organic halogen compounds may be used alone or in combination of two or more.
- Chi sac These organic Harogeni ⁇ product, alpha - Harogenokarubo - Le compounds and alpha - halogenocarboxylic acid esters are preferred, specifically, 2, 2-dichloro-acetophenone, 2 black port one 2, 4 , 4 Dimethyl trimethyldartrate, 2-bromo-2-ethylpropanoate, 2-odo-2-ethylpropanoate are preferred.
- the molar ratio of the organic halogen compound represented by the above chemical formula 9 to the monomer is preferably 0. Olmol% or more from the viewpoint of force polymerization rate depending on the required molecular weight of the polymer.
- it is 0.1 mol% or more, more preferably 0.5 mol% or more, more preferably 1 mol% or more, and from the viewpoint of molecular weight distribution, preferably 1, OOOmol% or less, More preferably, it is 100 mol% or less, More preferably, it is 10 mol% or less, More preferably, it is 5 mol% or less.
- the compounding molar ratio of the transition element contained in the compound represented by the above chemical formula 1 with respect to the organic halogen compound represented by the above chemical formula 9 is not particularly limited! /, But there are too few transition elements in the above chemical formula 1. Since the polymerization rate tends to be slow, it is preferably at least 1 mol%, more preferably at least 5 mol%, even more preferably at least 10 mol%. On the other hand, if the amount is too large, side reaction tends to occur, and the molecular weight distribution of the resulting polymer tends to be widened. Therefore, it is preferably 1, OOOmol% or less, more preferably 2OOmol% or less, and even more preferably 100mol%. It is as follows.
- the (co) polymer obtained by (co) polymerizing the compound represented by the above chemical formula 2, that is, alkyleneimine, alkylene oxide, alkylenesulfide may be used alone or in combination of two or more. May be.
- Each of AI, AO and AS may be used alone or in combination of two or more.
- d, e, and f represent the number of repeating units of AI, AO, and AS, respectively.
- d is preferably 1 or more, more preferably 2 or more, further preferably 4 or more, more preferably 6 or more, more preferably 10 or more, and further preferably 15 or more.
- e is preferably 1 or more, more preferably 2 or more, more preferably 3 or more, more preferably 7 or more, and still more preferably 10 or more.
- f is preferably 1 or more, more preferably 2 or more, further preferably 4 or more, more preferably 6 or more, further preferably 10 or more, and further preferably 15
- it is preferably 200 or less, more preferably 100 or less, still more preferably 50 or less, and still more preferably 20 or less.
- the compound represented by the chemical formula 2 preferably contains two or more of AI, AO, and AS in order to achieve both stability and solubility of the compound represented by the chemical formula 1. It is preferable to contain both AI and AO. It is even more preferable that only AI and AO can be used. Yes.
- the binding order of AI, AO, and AS may be a random structure or a block structure, but a block structure is preferable in order to reduce side reactions.
- the power of poly AI with active hydrogen added to AO is more preferable because the compound represented by the above chemical formula 1 is excellent in stability, solubility and reactivity.
- ethyleneimine is preferred from the viewpoint of reactivity and stability of the transition metal element.
- AO from the viewpoints of reactivity and solubility, alkylene oxides having 18 or less carbon atoms are preferred, alkylene oxides having 8 or less carbon atoms are more preferred, and alkylene oxides having 4 or less carbon atoms are more preferred. An alkylene oxide having 3 or less carbon atoms is more preferred. An alkylene oxide having 2 carbon atoms is more preferred.
- ethylene sulfide is preferred from the viewpoint of reactivity and stabilization of transition metal elements.
- R a is an alkyl group having 1 to 8 carbon atoms, represents a Ariru group, a substituted Ariru group or an aromatic heterocyclic group
- R b and R e is a hydrogen atom or 1 to 8 carbon atoms independently of one another
- R d represents an aryl group, a substituted aryl group, an aromatic heterocyclic group, an acyl group, an oxycarbonyl group or a cyano group
- R f and R g each independently represents an alkyl group having 1 to 8 carbon atoms, an aryl group, a substituted aryl group or an aromatic heterocyclic group
- alkyl group having 1 to 8 carbon atoms represented by Ra for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, sec 1 to 8 carbon atoms such as butyl, tert butyl, cyclobutyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, etc.
- a cyclic alkyl group for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a cyclopropyl group, an n-butyl group, sec 1 to 8 carbon atoms such as butyl, tert butyl, cyclobutyl, n-pentyl, n-hexyl, n-heptyl, n-octy
- alkyl groups a linear or branched alkyl group having 1 to 4 carbon atoms is preferred, and a methyl group, an ethyl group, and an n-butyl group are more preferred.
- the Ariru group represented by R a for example, Hue - group, and a naphthyl group.
- the substituent Ariru group represented by R a full alkenyl group having a substituent, a naphthyl group having a location substituent and the like.
- the aromatic heterocyclic group represented by Ra include a pyridyl group, a pyrrole group, a furyl group, and a chenyl group.
- substituent of the substituted aryl group examples include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carboro-containing group represented by COR h (where R h is a carbon number of 1 to 8).
- R h is a carbon number of 1 to 8.
- Preferred aryl groups include, for example, a phenyl group and a trifluoromethyl-substituted phenyl group.
- substituents are preferably para- or ortho-positioned with one or two substituents.
- the alkyl group having 1 to 8 carbon atoms represented by R b, or R e for example, a methyl group, Echiru group, n- propyl group, an isopropyl group, a cyclopropyl radical, n-butyl Group, sec butyl group, tert butyl group, cyclobutyl group, n pentyl group, n monohexyl group, n-heptyl group, n-octyl group, etc., linear, branched or cyclic having 1 to 8 carbon atoms Of the alkyl group.
- a straight chain or branched chain alkyl group having 1 to 4 carbon atoms is preferred, and a methyl group, an ethyl group, and an n-propyl group are more preferred.
- the aryl group, substituted aryl group, and aromatic heterocyclic group represented by R d include, for example, an aryl group, a substituted aryl group, and an aromatic heterocyclic group represented by Examples of the above-mentioned substituents are listed.
- an acyl group represented by R d For example, a formyl group, a acetyl group, a benzoyl group, etc. are mentioned.
- the carboxy group represented by R d a group represented by COORi (where Ri represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or an aryl group) is preferred.
- Carboxyl group methoxycarbon group, ethoxycarbonyl group, propoxycarbonyl group, n-butoxycarbonyl group, sec-butoxycarbonyl group, ter-butoxycarbonyl group, n-pentoxycarbonyl group, phenoxycarbon group, etc. Is mentioned.
- Preferable examples of the oxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.
- Preferred represented by R d U as a group, a Ariru group, a substituted Ariru group, O alkoxycarbonyl group or Shiano group.
- Preferred aryl groups include, for example, a phenyl group.
- Preferred examples of the substituted aryl group include a halogen atom-substituted phenyl group and a trifluoromethyl-substituted phenyl group.
- these substituents are preferably substituted by 1-5.
- an alkoxy group or a trifluoromethyl group one or two substitutions are preferred.
- the nora or ortho position is preferred.
- the meta position is preferred.
- Preferable examples of the oxycarbonyl group include a methoxycarbonyl group and an ethoxycarbonyl group.
- R a represents an alkyl Le group having 1 to 4 carbon atoms
- R b and R e represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R d is a compound representing an aryl group, a substituted aryl group or an oxycarbonyl group.
- Particularly preferred correct organic Terurui ⁇ product but represents an alkyl group having 1 to 4 carbon atoms
- R b and R e represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
- R d Hue - Le group A substituted phenyl group, a methoxycarbonyl group or an ethoxycarbonyl group.
- organic tellurium compound represented by the above chemical formula 3 include, for example, (methylterra diruomethyl) benzene, (1 methylterra-ruethyl) benzene, (2-methylterra-loop mouth pill) benzene, 1 chloro-4 ( Methyltera-Rumethyl) benzene, 1-Hydroxy-4 (Methyltera-Rumethyl) benzene, 1-Methoxy-4 (Methyltera-Rumethyl) benzene, 1 Amino-4-(Methyltera-Rumethyl) benzene, 1-Toro -4- (Methyltera-Rumethyl) benzene, 1-Cyano 4 (Methyltera-Rumethyl) benzene, 1 Methylcarbo-Luo4— (Methyltera-Rumethyl) benzene, 1 PhenolCarboluo 4 (Methyltera-Rumethyl) benzene,
- the methyl terranyl, 1-methyl teraryl, and 2 methyl terale moieties are respectively ethyl teral, 1 eth ter teryl, 2-ethyl terra teranyl, butyl ter tal, 1 butyl ter terale.
- organotellurium compounds (methyltera-rumethyl) benzene, (1methyltera-ruetil) benzene, (2-methyltera-ra-propyl) benzene, 1-chloro-agar 4- (1-methyltera-rueethyl) benzene, 1—Trifluoromethyl-4-1 (1 methylteraneruethyl) benzene, 2 Methylterranyl 2-Methylmethylpropionate, 2-Methylteranileu 2-methylethylpropionate, 2 -— (n-Butylterale) 2-methyl Ethyl propionate, 1 (1 methyl terra diruethyl) —3, 5 bis trifluoromethyl benzene, 1, 2, 3, 4, 5 pentafluoro 6— (1 methyl tera luruethyl) benzene, 2 methyl terar propio-tolyl , 2-methyl-2-methylterran
- the alkyl group having 1 to 8 carbon atoms represented by R f or R g for example, a methyl group, Echiru group, n- propyl group, an isopropyl group, a cyclopropyl radical, n-butyl Group, sec butyl group, tert butyl group, cyclobutyl group, n pentyl group, n monohexyl group, n-heptyl group, n-octyl group, etc., linear, branched or cyclic having 1 to 8 carbon atoms And the like.
- Preferable alkyl groups include, for example, linear or branched alkyl groups having 1 to 4 carbon atoms, and more preferable alkyl groups are a methyl group, an ethyl group, or a butyl group.
- Examples of the aryl group represented by R f or are a phenyl group and a naphthyl group.
- Examples of the substituted aryl group represented by R f or are a phenyl group having a substituent and a naphthyl group having a substituent.
- Examples of the aromatic heterocyclic group represented by R f or include a pyridyl group, a furyl group, and a chenyl group.
- substituent of the substituted aryl group examples include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carboro-containing group represented by —COR j (where R j is 1 to 8 represents an alkyl group, an aryl group, an alkoxy group having 1 to 8 carbon atoms or an aryloxy group), a sulfonyl group, a trifluoromethyl group, and the like.
- Preferred aryl groups include, for example, a phenyl group, a trifluoromethyl-substituted phenyl group, and the like.
- substituents are preferably in the normal or ortho position where one or two substituents are substituted.
- ditelluride compound represented by the above chemical formula 4 include, for example, dimethyl ditelluride, jetyl ditelluride, di-propyl ditelluride, diisopropyl ditelluride, dicyclopropyl ditelluride, di-ether.
- n butyl ditelluride, di sec butyl ditelluride, di tert-butyl ditelluride, dicyclobutyl ditelluride, diph-rudi telluride, bis- (p-methoxyphenol) ditelluride, bis- (p aminophenol) ditelluride, bis- (p ⁇ Trophole) ditelluride, bis- (p-canophenol) ditelluride, bis- (p-sulfolphenol) ditelluride, dinaphthylditelluride, dipyridylditelluride.
- the organic tellurium compound represented by the above chemical formula 3 and Z or the above chemical formula 4 When performing living radical polymerization using the ditelluride compound, a radical polymerization initiator is used.
- the radical polymerization initiator is not particularly limited as long as it is a radical polymerization initiator used in normal radical polymerization.
- the following chemical formula 10 the following chemical formula 10:
- R 11 and R 12 each independently have an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 4 carbon atoms substituted with a carboxyl group, or a substituent! / Represents a phenol group, and R 11 and R 12 bonded to the same carbon atom may form an aliphatic ring.
- R 13 is a cyano group, an acetoxyl group, a rubamoyl group, 1-4 represents an alkoxy) carbol group
- the azo compound shown by can be illustrated.
- the alkyl group having 1 to 10 carbon atoms represented by R 11 or R 12 for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, Examples include heptyl group, octyl group, nor group and decyl group.
- Examples of the alkyl group having 1 to 4 carbon atoms substituted with a carboxyl group represented by R 11 or R 12 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
- Examples of the aliphatic ring formed by R 11 and R 12 bonded to the same carbon atom include a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
- the phenyl group may be substituted with a substituent such as a hydroxyl group, a methyl group, an ethyl group, a methoxy group, an ethoxy group, a nitro group, an amino group, a acetyl group, and an acetylamino group.
- R 13 (alkoxy having 1 to 4 carbon atoms) carbo -
- the group for example, methoxycarbonyl - group, ethoxycarbonyl - group, propoxy carbo - group, isopropoxycarbonyl group, butoxycarbonyl Groups and the like.
- azo compound represented by the chemical formula 10 include, for example, 2, 2'-azobis (isobuty-mouth-trinole) (AIBN), 2, 2, -azobis (2-methinolevy-mouth-trinole) (AMBN).
- the polymer of the present invention is an organic tellurium compound represented by the above chemical formula 3 and Z or the above chemical formula 4.
- a radical polymerization initiator for example, it is produced as follows.
- an organic tellurium compound represented by Chemical Formula 3 and a ditelluride compound represented by Z or Chemical Formula 4 and a radical polymerization initiator are mixed and stirred.
- the reaction temperature and reaction time are not particularly limited as long as they are adjusted appropriately.
- a temperature of C 0.5 to: at LOO [3 ⁇ 4, preferably ⁇ , stir at a temperature of 60 to 120 ° C for 1 to 30 hours.
- the reaction is usually carried out under normal pressure, but may be carried out under pressure or under reduced pressure.
- the inert gas include nitrogen, argon, helium and the like. Of these inert gases, argon and nitrogen are preferable, and nitrogen is particularly preferable.
- the amount of the organic tellurium compound represented by the chemical formula 3 and the ditelluride compound represented by Z or the chemical formula 4 and the radical polymerization initiator is usually represented by the chemical formula 3 with respect to 1 mol of the radical polymerization initiator.
- the organic tellurium compound and Z or the ditelluride compound represented by the chemical formula 4 are 0.01 to: LOOmol, preferably 0.1 to LOLO, more preferably 0.1 to 5 mol.
- the reaction is usually carried out without a solvent, but an organic solvent or an aqueous solvent generally used in radical polymerization may be used.
- organic solvents include, for example, benzene, toluene, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, black mouth form, carbon tetrachloride, tetrahydrofuran (THF), ethyl acetate.
- THF tetrahydrofuran
- ethyl acetate ethyl acetate.
- trifluoromethylbenzene examples include water, methanol, ethanol, isopropanol, n-butanol, ethinoreserosonoleb, butinorecerosonolev.
- the amount of the solvent used is not particularly limited as long as it is appropriately adjusted, and is, for example, 0.01 to 50 mL, preferably 0.05 to 5 mL with respect to the unsaturated monomer lg.
- an unsaturated monomer is added to the mixture and stirred.
- the polymerization temperature and the polymerization time are not particularly limited as long as they are appropriately adjusted according to the molecular weight or molecular weight distribution of the resulting living radical polymer, but are usually 0.5 to 50 ° C. ⁇ : Stir for 1-30 hours at LOO time, preferably 60-120 ° C. In this case, the polymerization is usually performed under normal pressure, but may be performed under pressure or under reduced pressure.
- the amount of the unsaturated monomer used is not particularly limited as long as it is appropriately adjusted according to the molecular weight or molecular weight distribution of the resulting living radical polymer, but is usually a radical polymerization initiator. 5 to: LO, 000 moles, preferably 50 to 5,000 moles per mole
- the solvent and the remaining unsaturated monomer are removed under reduced pressure by a conventionally known method, and the target polymer is taken out, or the target polymer is not dissolved and the solvent is used. Then, the target polymer is isolated by reprecipitation.
- the post-reaction treatment any treatment method can be used as long as the target polymer is not affected.
- the living radical polymerization as described above can accurately perform molecular weight and molecular weight distribution under very mild conditions.
- the molecular weight of the living radical polymer obtained in the present invention can be adjusted by the reaction time and the amount of the tellurium compound.
- the number average molecular weight power 00 to: L, 000, 000, preferably ⁇ 1,000 Living radical polymers can be obtained that are ⁇ 300,000, more preferably ⁇ 3,000 to 150,000.
- the molecular weight distribution (MwZMn) of the polymer obtained in the present invention is preferably 1.01 to L60, more preferably 1.05 to 1.50, and still more preferably 1.05 to L40. More preferably, it can be controlled within the range of 1.05 to: L 30, more preferably 1. 05-1.
- the terminal group of the living radical polymer obtained in the present invention is an alkyl group, aryl group, substituted aryl group, aromatic heterocyclic group, oxycarbonyl group or cyano group derived from an organic telluride compound.
- the growth terminal is highly reactive tellurium. Therefore, organic tellurium compounds can be used in living radical polymerization. It is easier to convert terminal groups to other functional groups than living radical polymers obtained by conventional living radical polymerization. Accordingly, the living radical polymer obtained in the present invention can be used as a macro living radical polymerization initiator (a macro initiator).
- an AB diblock copolymer such as methoxypolyethyleneglycol methacrylate-methacrylic acid, methoxypolyethyleneglycol methacrylate-methacrylic acid-methoxypolymer, etc.
- the production method of ABA triblock copolymer such as reethylene glycol methacrylate and block copolymer is specifically as follows.
- an AB diblock copolymer for example, in the case of a methoxypolyethyleneglycol methacrylate-methacrylic acid copolymer, first, methoxypolyethyleneglycol in the same manner as in the method for producing the living radical polymer described above.
- a methacrylic acid ester is mixed with an organic tellurite compound represented by Chemical Formula 3 and a ditelluride compound represented by Z or Chemical Formula 4 with a radical polymerization initiator to produce a polymethoxypolyethylene glycol methacrylate ester, followed by And methacrylic acid is mixed to obtain a methoxypolyethylene glycol methacrylate-methacrylic acid copolymer.
- the monomer A or Examples of the method include mixing monomer C to obtain an A—B—A triblock copolymer or an A—B—C triblock copolymer.
- the reaction of the next block may be started as it is, or after the reaction is once completed, the reaction may be purified and the reaction of the next block may be started. Isolation of the block copolymer can be performed by a usual method.
- the polymer of the present invention is a polymer having a structural unit derived from a polyoxyalkylene chain obtained by the above method as an essential component.
- Examples of its use include dispersion of an aqueous slurry of an inorganic powder and a pigment.
- Agents, cement admixtures, scale inhibitors, polymer surfactants, milking agents, detergent builders, deinking agents, chelating agents, dye dispersants, coal dispersants, etc. I can get lost.
- the polymer of the present invention is a polymer having a structural unit derived from a polyoxyalkylene chain obtained by the above-mentioned method as an essential component.
- the polymer of the present invention is a polymer for cement admixture. When used as, the following forms are preferred.
- cement additives When used as a polymer for a cement admixture, the form of an aqueous solution is preferred for handling.
- Other additives may be contained in the cement admixture of the present invention, or the admixture. Can also be added when mixing with cement.
- known cement additives can be used, for example,
- (A) Water-soluble polymer materials polyacrylic acid (sodium), polymethacrylic acid (sodium), polymaleic acid (sodium), unsaturated carboxylic acid polymer such as sodium salt of acrylic acid / maleic acid copolymer; polyethylene Polymers of polyoxyethylene or polyoxypropylene such as glycol and polypropylene glycol, or copolymers thereof; methenoresenorelose, ethinoresenorelose, hydroxymethinoresenorelose, hydroxyethinoresenorelose, canoleboxoxymethinoresenorelose
- Nonionic cellulose ethers such as canoleboxi chinenorescenellose and hydroxypropylcellulose
- yeast glucan xanthan gum ⁇ -1,3 glucans (an example that can be either linear or branched) If you mention, power one Polysaccharides produced by microbial fermentation such as orchid, paramylon, bakiman, scleroglucan, laminaran
- (C) retarder darconic acid, darcoheptonic acid, arabonic acid, malic acid or citrate, and their inorganic salts such as sodium, potassium, calcium, magnesium, ammonium and triethanolamine Or oxycarboxylic acids such as organic salts and salts thereof; monosaccharides such as glucose, fructose, galactose, saccharose, xylose, apiose, ribose and isomeric sucrose; oligosaccharides such as disaccharides and trisaccharides; Oligosaccharides or polysaccharides such as dextran, sugars such as molasses containing these; sorbit Sugar alcohols such as alcohol; magnesium silicofluoride; phosphoric acid and its salts or borate esters; aminocarboxylic acids and their salts; alkali-soluble proteins; humic acid; tannic acid; phenol; Alcohol; aminotri (methylenephosphonic acid), 1-hydrochichylidene
- (D) Early strength agent Accelerator Soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, bromide power, calcium iodide, chlorides such as iron chloride and magnesium chloride; sulfuric acid Salt; potassium hydroxide; sodium hydroxide; carbonate; thiosulfate; formate such as formic acid and calcium formate; alkanolamine; alumina cement; calcium luminosilicate.
- Soluble calcium salts such as calcium chloride, calcium nitrite, calcium nitrate, bromide power, calcium iodide, chlorides such as iron chloride and magnesium chloride; sulfuric acid Salt; potassium hydroxide; sodium hydroxide; carbonate; thiosulfate; formate such as formic acid and calcium formate; alkanolamine; alumina cement; calcium luminosilicate.
- Oils and fats defoaming agents animal and vegetable oils, sesame oil, castor oil, and these alkylene oxide-containing products.
- Fatty acid ester antifoaming agent glycerin monoricinoleate, alkelluccinic acid derivative, sorbitol monolaurate, sorbitol trioleate, natural wax, and the like.
- Oxyalkylene-based antifoaming agent polyoxyalkylenes such as (poly) oxyethylene (poly) oxypropylene-containing carotenoids; diethylene glycol heptyl ether, polyoxyethylene glycol ether, polyoxypropylene butyl ether (Poly) oxyalkyl ethers such as polyoxyethylene, polyoxypropylene, 2-ethylhexyl ether, and carboxyethyleneoxypropylene-containing products to higher alcohols having 12 to 14 carbon atoms; polyoxypropylene phenyl (Poly) oxyalkylene (alkyl) aryl ethers such as ether, polyoxyethylene nonyl phenyl ether; 2, 4, 7, 9- tetramethyl-5 decyne-4, 7 diol, 2, 5 dimethyl- 3 Hexins—acetates such as 2,5 diol, 3 methyl 1 butyne 3 ol Acetylene ethers obtained by
- Alcohol-based antifoaming agent octyl alcohol, hexadecyl alcohol, acetylene alcohol, glycols and the like.
- Amide-based antifoaming agent attalylate polyamine and the like.
- Silicone antifoaming agent dimethyl silicone oil, silicone paste, silicone emulsion, organically modified polysiloxane (polyorganosiloxane such as dimethylpolysiloxane), fluorosilicone oil, and the like.
- (O) AE agent oleaginite, saturated or unsaturated fatty acid, sodium hydroxystearate, lauryl sulfate, ABS (alkyl benzene sulfonic acid), LAS (linear alkyl benzene sulfonic acid), alkane sulfonate, poly Oxyethylene alkyl (phenyl) ether, polyoxyethylene alkyl (phenyl) ether sulfate or its salt, polyoxyethylene alkyl (phenyl) ether phosphate or its salt, protein material, alkell Sulfosuccinic acid, a-olefin sulfonate, etc.
- (P) Other surfactants In the molecule such as octadecyl alcohol stearyl alcohol 6 to 30 in the molecule such as aliphatic monohydric alcohol having 6 to 30 carbon atoms, abiethyl alcohol etc. Monovalent mercaptans having 6 to 30 carbon atoms in the molecule, such as cycloaliphatic monohydric alcohols having 1 carbon atom, dodecyl mercaptan, etc.
- Alkylphenol having 6 to 30 carbon atoms in the molecule such as benzene, amine such as dodecylamine and 6-30 carbon atoms in the molecule such as lauric acid and stearic acid
- (Q) Waterproofing agent fatty acid (salt), fatty acid ester, fats and oils, silicone, paraffin, wax, wax, etc.
- Antifungal agents nitrite, phosphate, zinc oxide and the like.
- (S) Crack reducing agent polyoxyalkyl ethers; alkanediols such as 2-methyl-2,4-pentanediol.
- cement additives include cement wetting agents, thickeners, separation reducing agents, flocculants, drying shrinkage reducing agents, strength enhancers, self-leveling agents, antifungal agents, coloring agents, Examples include strength agents, blast furnace slag, fly ash, cinder ash, clinker ash, husk ash, silica fume, silica powder, and plaster. These known cement additives (materials) may be used alone or in combination of two or more.
- a known cement dispersant can be used in combination with the cement admixture of the present invention.
- the following can be used.
- component (a) a copolymer of a polyalkylene glycol mono (meth) acrylic acid ester compound and a (meth) acrylic acid compound and Z Or a salt thereof and, as the component (b), Copolymers of coal mono (meth) aryl ether compounds and maleic anhydride, Z or hydrolysates thereof, and Z or salts thereof, and polyalkylene glycol mono (meth) aryl ether as component (C)
- a cement dispersant comprising a copolymer of a polyalkylene glycol compound and a maleic ester of a polyalkylene glycol compound and Z or a salt thereof; as described in Japanese Patent No.
- component A (meth) acrylic acid A copolymer of a polyalkylene glycol ester of (meth) acrylic acid (salt), a specific polyethylene glycol polypropylene glycol compound as the B component, and a concrete admixture comprising a specific surfactant as the C component; (Meth) acrylic acid polyethylene (propylene) glycol as described in JP-A-62-216950 A copolymer comprising ester or polyethylene (propylene) glycol mono (meth) aryl ether, (meth) aryl sulfonic acid (salt), and (meth) acrylic acid (salt).
- a copolymer comprising (meth) acrylic acid polyethylene (propylene) glycol ester, (meth) arylsulfonic acid (salt), and (meth) acrylic acid (salt);
- polyethylene (propylene) glycol ester of (meth) acrylic acid, (meth) arylsulfonic acid (salt) or (meth) aryloxybenzenesulfonic acid (salt) and A copolymer of (meth) acrylic acid (salt); a copolymer of polyethylene glycol mono (meth) aryl ether and maleic acid (salt) as described in JP-A-4-149056; — Polyethylene glycol ester of (meth) acrylic acid, (meth) aryl sulfonic acid (salt), (meth) acrylic acid (salt), alkanedio, as described in publication 170501 A copolymer comprising
- Polyalkyl acids such as glazed ether ether monomers, unsaturated carboxylic acid monomers, copolymers consisting of monomers copolymerizable with these monomers, or salts thereof (salt). These cement dispersants may be used alone or in combination of two or more.
- cement additives include cement wetting agents, thickeners, separation reducing agents, flocculants, drying shrinkage reducing agents, strength enhancers, self-leveling agents, antifungal agents, and coloring. And fungicides. These known cement additives (materials) may be used alone or in combination of two or more.
- components other than cement and water include the following (1) to (7).
- a combination comprising two components of the cement admixture of the present invention and an oxyalkylene antifoaming agent.
- Polyoxyalkylene-based antifoaming agents such as polyoxyalkylenes, polyoxyalkylene alkyl ethers, polyoxyalkylene acetylene ethers, and polyoxyalkylene alkylene quinoleamines can be used. Xylanolylenealkylamines are particularly preferred.
- the blending mass ratio of the oxyalkylene antifoaming agent is preferably in the range of 0.01 to 20% by mass with respect to the cement admixture.
- oxyalkylene antifoaming agent The three components of the cement admixture of the present invention, oxyalkylene antifoaming agent and AE agent are required. Combinations to be used.
- oxyalkylene-based antifoaming agent polyoxyalkylenes, polyoxyalkylene alkyl ethers, polyoxyalkylene acetylene ethers, polyoxyalkylene alkylamines and the like can be used. Are particularly preferred.
- AE agent succinate stalagmite, alkyl sulfates, and alkyl phosphates are particularly suitable.
- the blending mass ratio of the oxyalkylene antifoaming agent to the cement admixture of the present invention is preferably in the range of 0.01 to 20% by mass with respect to the cement admixture of the present invention.
- the blending mass ratio of the AE agent is preferably in the range of 0.001 to 2% by mass with respect to the cement.
- the blending mass ratio between the cement admixture of the present invention and the copolymer is preferably in the range of 5Z95 to 95Z5, more preferably in the range of 10Z90 to 90Z10.
- the blending mass ratio of the oxyalkylene antifoaming agent is preferably in the range of 0.01 to 20% by mass with respect to the total amount of the cement admixture of the present invention and the copolymer.
- a combination comprising two components of the cement admixture of the present invention and a retarder.
- retarders oxycarboxylic acids such as darconic acid (salt) and citrate (salt), sugars such as glucose, sugar alcohols such as sorbitol, phosphonic acids such as aminotri (methylenephosphonic acid), etc. can be used. It is.
- the blending ratio of the cement admixture of the present invention to the retarder is a mass ratio of the copolymer ( ⁇ ) and cocoon or copolymer ( ⁇ ) to the retarder, and preferably 50 to 50-99.9 / Within the range of 0.1, more preferably within the range of 70Z30 to 99Zl.
- a combination comprising two components of the cement admixture of the present invention and an accelerator.
- Accelerators include soluble calcium salts such as calcium chloride, calcium nitrite and calcium nitrate, chlorides such as iron chloride and magnesium chloride, thiosulfate, formic acid and calcium formate. Formates such as rum can be used.
- the blending mass ratio between the cement admixture and the accelerator of the present invention is preferably in the range of 10Z90 to 99.9 / 0.1, more preferably in the range of 20Z80 to 99Zl.
- a combination comprising two components of the cement admixture of the present invention and a material separation reducing agent as essential.
- the material separation reducing agent include various thickeners such as nonionic cellulose ethers, a hydrophobic structure having a hydrocarbon chain strength of 4 to 30 carbon atoms and an alkylene group of 2 to 18 carbon atoms as a partial structure.
- a compound having a polyoxyalkylene chain with an average attached mole number of 2 to 300 moles can be used.
- the blending mass ratio between the cement admixture of the present invention and the material separation reducing agent is preferably in the range of 10 ⁇ 90 to 99.99 / 0.01, more preferably 50 ⁇ 50 to 99.9 / 0.1. Is within the range.
- the cement composition of this combination is suitable as high fluidity concrete, self-filling concrete, self-leveling material and the like.
- a combination comprising two components of the cement admixture of the present invention and a sulfonic acid-based dispersant having a sulfonic acid group in the molecule.
- sulfonic acid-based dispersants include aminosulfonic acid-based dispersions such as lignosulfonic acid salt, naphthalenesulfonic acid formalin condensate, melamine sulfonic acid formalin condensate, polystyrene sulfonate, and aminoaryl sulfonic acid phenol-formaldehyde condensate.
- An agent or the like can be used.
- the blending ratio of the cement admixture of the present invention and the sulfonic acid-based dispersant having a sulfonic acid group in the molecule is as follows.
- the mass ratio is preferably 5 to 95 to 95 to 5, more preferably 10 to 90 to 90 ZlO.
- the cement admixture of the present invention can be used in combination with cement compositions such as cement paste, mortar, concrete, and the like, as well as known cement admixtures. It can also be used for ultra high strength concrete.
- cement compositions such as cement paste, mortar, concrete, and the like, as well as known cement admixtures. It can also be used for ultra high strength concrete.
- the cement composition those usually used including cement, water, fine aggregate, coarse aggregate and the like are suitable. Further, a fine powder such as fly ash, blast furnace slag, silica fume, or limestone may be added.
- Ultra-high-strength concrete is generally referred to as such in the field of cement composition, that is, its hardened material can be obtained even if the water-Z cement ratio is smaller than that of conventional concrete. It means concrete that has the same or higher strength than conventional ones.
- the water-Z cement ratio is 25% by mass or less, further 20% by mass or less, especially 18% by mass or less, especially 14% by mass or less, especially 12%. Even if it is about mass%, it becomes a concrete having workability that does not hinder normal use, and its hardened material is preferably 60 NZmm 2 or more, more preferably 80N Zmm 2 or more, more preferably lOONZmm 2 or more, more preferably 120NZmm 2 than on, more preferably 160NZmm 2 or more, and particularly preferably those which will exhibit 200NZmm 2 or more compression strength of.
- portland cement such as normal, early strength, ultra-early strength, moderate heat, white, etc .
- mixed portland cement such as alumina cement, fly ash cement, blast furnace cement, silica cement, etc.
- the addition ratio of the cement admixture of the present invention in the cement composition is the total mass of the polycarboxylic acid polymer (A) and the polycarboxylic acid polymer (B), which are essential components of the present invention.
- the said mass% is a value of solid content conversion.
- Empower Professional + GPC option from Waters Column TSKgel guard column manufactured by Tosoh Corporation (inner diameter 6.0 X 40mm) + G4000SWX L + G3000SWXL + G2000SWXL (each inner diameter 7.8 X 300mm)
- RI Differential refractometer
- PDA Multi-wavelength visible ultraviolet
- Sample solution injection amount 100 / z L (sample solution 0.2 to 0.5 wt% eluent solution)
- Analytical method In the obtained RI chromatogram, the portion that was flat and stable in the baseline immediately after the elution of the polymer was connected with a straight line, and the polymer was detected and analyzed. However, when the monomer peak was measured to overlap the polymer peak, the polymer part and the monomer part were separated by vertical division in the most concave part of the overlapping part of the monomer and polymer, and the molecular weight distribution of only the polymer part was measured. . When oligomers above dimer were detected, they were included in the polymer part. In the following, the ratio of the area of the polymer peak to the sum of the areas of the polymer peak and the monomer peak is expressed as a pure polymer.
- Sorting device HLC-8070 manufactured by Tosoh Corporation
- Sample solution injection volume 3 mL (eluent solution with sample concentration of 2 wt%, 18.4 mg / mL)
- Calibration curve Created by cubic equation using Mp value of above polyethylene glycol
- thermometer A thermometer, a stirrer with a height of 2.5 cm and a blade with a width of 11 cm, a dripping device, a nitrogen introduction pipe and a 3 L glass reactor with an inside diameter of 16 cm equipped with a reflux cooling device were charged with 420 g of water and stirred at 200 rpm. Below, the reactor was heated to 80 ° C while purging with nitrogen at lOOmLZ.
- Thermometer height 2.5 « ⁇ ⁇ width Stirrer with 11cm blade, dripping device, nitrogen inlet tube
- a 3L glass reactor with an internal diameter of 16 cm equipped with a reflux condenser and an ethylene oxide adduct of 3-methyl-3-butene 1 ol (average addition mole number of ethylene oxide 50) 484.
- 502 g, acrylic acid 0. 875 g of water and 250.043 g of water were charged, and while stirring at 200 rpm, the reactor was heated to 58 ° C. while substituting nitrogen with lOOmLZ.
- an aqueous solution prepared by adding water to 2.541 g of 30% hydrogen peroxide solution in a reactor to a total of 38.112 g was added and heated to 58 ° C.
- add 64.623 g of acrylic acid and 61.845 g of water for 3 hours add 0.0967 g of L-asconolevic acid and 2.141 g of 3-menolecaptopropionic acid (MPA), and add water.
- the aqueous solution adjusted to 100 g was dropped into the reactor at a uniform rate over 3.5 hours. However, the time from the start of heating to the start of dropping was set to within 2 hours.
- the polymerization reaction was completed by maintaining the temperature at 58 ° C. for an additional hour, followed by cooling to obtain a comparative polymer 2-1.
- Thermometer, stirrer with 2.5cm height and 11cm width blade, dripping device, nitrogen introduction tube and 3L glass reactor with 16cm inner diameter equipped with reflux cooling device, 3 methyl 3-butene-1 Charged with all ethylene oxide (average number of moles of ethylene oxide 50) 517. 826g, acrylic acid 0. 935g, water 267. 241g, charged at 200rpm with lOOmLZ min. The solution was heated to 58 ° C while purging with nitrogen. Subsequently, with the same conditions, 30% peroxy hydrogen peroxide water was added to 1.525 g of water in the reactor, totaling 22.879 g The prepared aqueous solution was added and heated to 58 ° C.
- Comparative polymers having different Mw were obtained in the same procedure as in Production Example 9 except that only the amount of chain transfer agent (MPA) was changed.
- MPA chain transfer agent
- Production Example 19 25 Polymer of the present invention 2-1 2-7>
- Heavy platform of the present invention 2 1 18.00 20.10 113 100 1.20 3.36
- Polymer of the present invention 2 2 20.11 20.70 60500 1.26 2.34
- Polymer of the present invention 2-4 21.31 21.90 24200 1.31 1.63
- Polymer of the present invention 2—6 22.36 22.75 18500 1.62 1.52
- Polymer of the present invention 2—7 22.76 23.50 14200 2.03 1.44
- the comparative polymer 3-1 synthesized in Production Example 9 was subjected to GPC fractionation in the same manner as the method for obtaining the polymers 11 to 17 of the present invention, and the polymer 3-1 to 3-7 was obtained.
- the preparative conditions and the physical properties of the obtained polymer are shown in Table 6.
- PEIEO polyethyleneimine
- PEIEO 45.34 g, 1 equivalent
- ion-exchanged water degassed under reduced pressure at 25 ° C. 10 OmmHg with stirring, and the inside of the system was replaced with nitrogen to return to normal pressure.
- CuBr (4. 678 g, 1.3 eq) was added under a nitrogen atmosphere and stirred for 1 hour to obtain aqueous catalyst solution B.
- Catalyst aqueous solution A prepared in Production Example 33 (l. 171 g), Catalyst aqueous solution B prepared in Production Example 34 (0.364 g), 2-bromoisobutyric acid ethyl (0.234 g), ion-exchanged water (18. 829 g)
- the mixed solution was degassed under reduced pressure at 25 ° C. and 100 mmHg while stirring, and the system was purged with nitrogen to return to normal pressure. While stirring a mixed aqueous solution of methacrylic acid (2. 492 g), methoxypolyethylene gallic monometatalylate (average mol number with EO 75) (12.
- Catalyst aqueous solution A (0. 878 g) synthesized in Production Example 33
- Catalyst aqueous solution B (0. 728 g) synthesized in Production Example 34
- 2-bromoisobutyric acid ethyl (0.117 g)
- ion-exchanged water (19. 122 g)
- the mixed solution was degassed under reduced pressure at 25 ° C. and 100 mmHg while stirring, and the system was purged with nitrogen to return to normal pressure. While stirring a mixed aqueous solution of methacrylic acid (2. 492 g), methoxypolyethylene gallic monometatalylate (average mol number with EO 75) (12.
- Thermometer, stirrer with height 2.5 cm, width 11 cm, stirrer, dripping device, nitrogen inlet tube and reflux cooling device equipped with 16 g of 3L glass reactor with 400 g of water and stirring at 200 rpm Below, the reactor was heated to 80 ° C while purging with nitrogen at lOOmLZ.
- Polymers 1 3 to 15 of the present invention (Examples 1 to 3), Polymers 2 to 3 to 2-5 of the present invention (Examples 4 to 6), Polymers 3 to 3 to 5 of the present invention (Examples 7 to 9), the polymer 4 of the present invention (Example 10), the comparative polymers 1 1 to 1 4 (Comparative Examples 1 to 4), the comparative polymers 2-1 to 2-4 (Comparative Example 5) -8), Comparative Polymers 3-1 to 3-3 (Comparative Examples 9 to 11) and Comparative Polymer 4 (Comparative Example 12) were subjected to a mortar test by the method of mortar test 1 described below. The results are shown in Tables 7-10.
- the experimental environment was a temperature of 20 ° C ⁇ 1 ° C and a relative humidity of 60% ⁇ 10%.
- a stainless steel beater (stirring blade) was attached to an N-50 mixer (manufactured by HOBART), and a predetermined amount of cement (C) and sand (S) were charged into a kneading container. After kneading for 15 seconds at the first speed, the sample aqueous solution (W) was charged at a constant speed over 15 seconds while mixing. Subsequently, after kneading at 2nd speed for 30 seconds, kneading was stopped, and the mortar attached to the container wall was scraped off for 15 seconds and allowed to stand for 45 seconds. After mixing for 90 seconds at 2 speed, kneading was completed, and the mortar was transferred from the kneading container to a 1 L polyethylene container.
- the kneaded mortar was immediately stirred 20 times with a spatula, then placed on a smooth plate made of SUS304, uniformly packed in a SUS304 flow cone with an inner diameter of 55 mm and a height of 50 mm, and the surface was leveled. After the flow cone was pulled up vertically and the mortar flow stopped, the diameter of the expanded mortar was measured at two points in length and width, and the average value was taken as the flow value. However, the kneading start time was kept within 5 minutes and 30 seconds until the flow value was measured.
- Table 7 shows the results of a mortar test of a polymer in which polyalkylene glycol is bonded to the main chain with an ester bond.
- Comparative polymer 1 1 to 14 having the same weight average molecular weight (Mw) as that of the polymer 1 3 to 15 of the present invention. While the polymer is 148 mm to 165 mm, the polymer of the present invention is 207 mm to 220 mm, and the polymer of the present invention is superior in cement dispersion performance. It can be a problem. This is because the dispersion degree of the comparative polymer (MwZMn) is 1.57-1.93, whereas the dispersion degree of the polymer of the present invention is 1.36 ⁇ : L 38, which is very narrow. It is speculated that this is due to this.
- Table 8 shows the moles of polymer in which the polyalkylene glycol chain is bonded to the main chain with an ether bond. Tal test results are shown.
- Mw weight average molecular weight
- the comparative polymer is 158 mm to 170 mm, while the polymer of the present invention is 185 mm to 214 mm, indicating that the polymer of the present invention is superior in cement dispersion performance.
- Table 9 shows the results of a mortar test of a polymer in which the same polyalkylene glycol chain as above was bonded to the main chain with an ether bond. Similar to the above results, the mortar flow value of the comparative polymer having a dispersity of 1.64 to L. 78 is 154 mn 177 mm, while the weight of the present invention having a dispersity of 1.35 to L 41 The polymer of the present invention having a narrow molecular weight distribution with a molecular weight distribution of I86 mm and 219 mm is superior in cement dispersion performance.
- Table 10 shows the mortar test results of the polymer 4 of the present invention obtained by living radical polymerization and the comparative polymer 4 obtained by conventional radical polymerization.
- the comparative polymer 4 obtained by conventional radical polymerization has a mortar flow value of 170 mm, whereas the polymer of the present invention obtained by living radical polymerization. In No. 4, it is 22 2 mm, and it can be seen that the polymer of the present invention obtained by living radical polymerization is superior in cement dispersibility.
- the polymer of the present invention is 1.40 and the comparative polymer is 1.74, and the polymer of the present invention has a narrower molecular weight distribution, which is attributed to the dispersion performance. I guess that.
- Catalyst aqueous solution A (l. 098 g) prepared in Production Example 33, Catalyst aqueous solution B (0.910 g) prepared in Production Example 34, 2-bromoisobutyric acid ethyl (0.146 g), ion-exchanged water (17.062 g)
- the mixed solution was degassed under reduced pressure at 25 ° C and lOOmmHg while stirring, and the system was replaced with nitrogen to return to normal pressure. While stirring a mixed aqueous solution of methacrylic acid (2. 30 g), methoxypolyethylene glycol monometatalylate (average EO addition moles 25) (20.
- Catalyst aqueous solution A prepared in Production Example 33 (0. 878 g), Catalyst aqueous solution B prepared in Production Example 34 (0.273 g), 2-bromoisobutyric acid ethyl (0.176 g), ion-exchanged water (9.90 g)
- the mixed solution was degassed under reduced pressure at 25 ° C and lOOmmHg while stirring, and the system was replaced with nitrogen to return to normal pressure. While stirring a mixed aqueous solution of methacrylic acid (2. 24 g), methoxypolyethylene glycol monometatalylate (average EO addition moles 25) (11.
- the experimental environment was a temperature of 20 ° C ⁇ 1 ° C and a relative humidity of 60% ⁇ 10%.
- the amount of polymer 6 of the present invention added is 0.14.
- the flow value in mass% is 245 mm, whereas in comparative polymer 5, it is 223 mm.
- the necessary addition amount for obtaining a flow value equivalent to that of the comparative polymer 5 is 0.12% by mass, and an addition amount of 14% less than that of the comparative polymer 5 may be used.
- the polymer obtained by the living radical polymerization of the present invention is superior in cement dispersion performance.
- the polymer 6 of the present invention is 1.64, while the comparative polymer 5 is 1. 83, indicating that the polymer 6 of the present invention has a narrower molecular weight distribution.
- the high molecular weight part that aggregates the cement having a narrow molecular weight distribution and the low molecular weight part that does not contribute to the cement dispersion performance are reduced, and the molecular weight part that contributes to the cement dispersion performance is less than that of the comparative polymer 5.
- it is thought that the cement dispersion performance has improved.
- the amount of polymer 7 of the present invention added is 0.1.
- the flow value is 252 mm in mass%, whereas it is 210 mm in comparative polymer 6.
- the necessary addition amount for obtaining a flow value equivalent to that of Comparative Polymer 6 is 0.08% by mass, and an addition amount of 20% less than that of Comparative Polymer 6 may be used.
- the polymer obtained by the living radical polymerization of the present invention is superior in cement dispersion performance.
- the polymer 7 of the present invention is 1.55, while the comparative polymer 6 is 1. 89, indicating that the polymer 7 of the present invention has a narrower molecular weight distribution.
- the high molecular weight part that aggregates the cement having a narrow molecular weight distribution and the low molecular weight part that does not contribute to the cement dispersion performance are reduced, and the molecular weight part that contributes to the cement dispersion performance is smaller than that of the comparative polymer 6.
- it is thought that the cement dispersion performance has improved.
- the telluride compound was identified from the measurement results of ⁇ -NMR and MS.
- the measurement conditions for the molecular weight and molecular weight distribution of the polymer are the same as in Production Examples 1-32 and 35-41.
- the acid value of the polymer was measured by titration using an automatic titrator COMTITE-550 manufactured by Hiranuma Sangyo Co., Ltd.
- the acid value represents the number of mg of potassium hydroxide required to neutralize the acid contained in the polymer lg.
- neutralization curve power carboxylic acid content is measured, it is expressed as total rubonic acid value (hereinafter sometimes abbreviated as “TCAV”).
- a glass reactor equipped with a thermometer, stirrer, dripping device, nitrogen inlet tube and reflux cooling device was charged with 126.0 g of water, and the inside of the reactor was purged with nitrogen under stirring and heated to 80 ° C under a nitrogen atmosphere. did.
- Methoxypolyethylene glycol monometatalylate (average number of moles of ethylene oxide added 23) 139.4 g, methacrylic acid 22.6 g, 3-mercaptoethanol 1.2 g, water 40.5 g mixed monomer aqueous solution for 4 hours, 5. 31.5 g of 9% by mass ammonium persulfate aqueous solution was dropped into the reactor over 5 hours.
- Example 14 Agent added amount Flow value Air amount Polymer used (wtVC), difficult) ()
- Example 1 5 Polymer of the present invention 8 0. 1 195 1.
- Comparative example 1 5 Comparative polymer 7 0. 1 163 2.
- Comparative Example 1 6 Comparative Example 1 6 Comparative Polymer 7 0. 12 195 1.1 Comparing the mortar flow values of the polymer 8 of the present invention obtained by living radical polymerization and the comparative polymer 7 obtained by conventional radical polymerization, The polymer 8 of the present invention has an addition amount of 0.1% by mass and a flow value of 195 mm, whereas the comparative polymer 7 has a flow value of 163 mm.
- the necessary addition amount for obtaining a flow value equivalent to that of the polymer 8 of the present invention is 0.12% by mass, and the addition amount of the polymer 8 of the present invention is increased by 20%.
- the polymer 8 obtained by the living radical polymerization of the present invention is superior in cement dispersion performance.
- the dispersity (MwZMn) of the polymer 8 of the present invention and the comparative polymer 7 is 1.35, while the comparative polymer 7 is 1. 82, indicating that the polymer 8 of the present invention has a narrower molecular weight distribution.
- the high molecular weight part that aggregates cement with a narrow molecular weight distribution and the low molecular weight part that does not contribute to cement dispersion performance are reduced, and the molecular weight part that contributes to cement dispersion performance is reduced. It is thought that the cement dispersibility improved because it is more than that.
- the target product was extracted with jetyl ether, and the solvent was distilled off with an evaporator.
- the obtained crude product was produced by distillation to obtain the target dimethyl diteryl compound. ⁇ ! NMR confirmed the target substance.
- the amount of polymer 9 of the present invention added was 0.1.
- the flow value in mass% is 225 mm, while the comparative polymer 8 is 219 mm.
- the necessary addition amount for obtaining a flow value equivalent to that of the comparative polymer 8 is 0.07% by mass, and an addition amount of 30% less than that of the comparative polymer 8 may be used.
- the polymer obtained by the living radical polymerization of the present invention is superior in cement dispersion performance.
- the polymer 9 of the present invention is 1.55, while the comparative polymer 8 is 1. 89, indicating that the polymer 9 of the present invention has a narrower molecular weight distribution.
- the high molecular weight part that aggregates the cement having a narrow molecular weight distribution and the low molecular weight part that does not contribute to the cement dispersion performance are reduced, and the molecular weight part that contributes to the cement dispersion performance is smaller than that of the comparative polymer 8.
- it is thought that the cement dispersion performance has improved.
- the amount of additive 10 in the polymer 10 of the present invention is 0. Compared to 14% by mass, the flow value is 265mm, compared to 223mm for comparative polymer 9. Further, the necessary addition amount for obtaining a flow value equivalent to that of the comparative polymer 9 is 0.11% by mass, and an addition amount of 21% less than that of the comparative polymer 9 may be used. As described above, it can be seen that the polymer obtained by the living radical polymerization of the present invention is superior in cement dispersion performance.
- the polymer 10 of the present invention is 1.62, whereas the comparative polymer 9 is 1. 83, indicating that the polymer 10 of the present invention has a narrower molecular weight distribution.
- the polymer 10 of the present invention has fewer high molecular weight portions that aggregate cement with a narrow molecular weight distribution and low molecular weight portions that do not contribute to cement dispersion performance, and the molecular weight portion that contributes to cement dispersion performance is less than that of comparative polymer 9. It is thought that the cement dispersion performance has been improved due to the increase.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
ポリアルキレングリコール鎖を有する重合体でありながら、従来の共重合体とは異なる分子量分布の非常に狭く、特定のパラメータ値を有する重合体およびそれを用いた分散性能に優れる無機粉体用分散剤、特にセメント混和剤を提供すること。
本発明の重合体は、ポリオキシアルキレン鎖由来の構成単位を含む重合体(P)であって、下記数式1:
【数1】 1 < PD < MD (数式1)
[但し、PD=Mw/Mn、MD=G(n)×Mw + H(n)]
により定義されるPD値の範囲を満たす。
Description
明 細 書
重合体、その重合体の製造方法およびその重合体を用いたセメント混和 剤
技術分野
[0001] 本発明は、重合体、その重合体の製造方法およびその重合体を用いたセメント混 和剤に関する。
背景技術
[0002] ポリオキシアルキレン鎖由来の構成単位を有する重合体は、特開平 9 86990号 公報ゃ特開 2001— 220417号公報に開示されているように、セメントのような無機粉 体の分散剤として広く使用されている。し力しながら、従来の重合体は分子量分布が 広く無機粉体を凝集させる高分子量部分、分散性能にあまり寄与しな 、低分子量部 分が多く含まれていた。
[0003] 特に、セメント分散剤においては、通常、建築物外壁材 '建築物構造体などでは、 セメントに水を添カ卩したセメントペーストやセメントペーストに細骨材である砂を混合し たモルタル、モルタルに粗骨材である石を混合させたコンクリートなどにセメント混和 剤を加えて加工することで、セメント硬化物の強度や耐久性を高めている。上記セメ ント混和剤には、セメント組成物の含水量 (減水)を低下させても十分な分散性 ·流動 性'施工性を確保できると共に、減水によって耐久性や強度を向上できることが要求 される。したがって、少量の添加量で高い減水性能を有するセメント混和剤が求めら れている。
[0004] 上記セメント混和剤の中でもポリカルボン酸系のセメント混和剤は、ナフタレン系な どの他のセメント混和剤と比べてセメント組成物に高い分散性を付与できることから、 好適に用いられている。例えば、特開平 9 86990号公報〖こは、特定の不飽和ポリ アルキレングリコールエステル系単量体と (メタ)アクリル酸系単量体からなる共重合 体を含むセメント混和剤が開示されている。また、特開 2001— 220417号公報には 、特定の不飽和ポリアルキレングリコールエーテル系単量体と不飽和モノカルボン酸 である(メタ)アクリル酸系単量体や不飽和ジカルボン酸であるマレイン酸系単量体か
らなる共重合体を含むセメント混和剤が開示されている。しかし、上記セメント混和剤 でも減水性の点で若干不十分であった。
[0005] 重合体において高分子量部分と低分子量部分を低減させる、つまり分子量分布を 狭くする方法として、リビング重合が知られている。例えば、ラジカル重合開始剤とテ ルル化合物を用いて酸解離性基含有榭脂を合成する方法が開示されている (特開 2 005— 126459号公報を参照)。また、重合体の分子量分布を制御する方法として、 ァゾ系重合開始剤とテルルイ匕合物を用いて、二段階でビュルモノマーを重合して重 合体を得る方法が開示されている(特開 2004— 323693号公報を参照)。しかしな がら、上記の方法には無機粉体の分散剤に有用であるポリアルキレングリコール鎖 由来の構成単位を有する重合体にっ ヽて開示されて!ヽなかった。
発明の開示
[0006] 上述した状況の下、本発明が解決すべき課題は、ポリアルキレングリコール鎖を有 する重合体でありながら、従来の共重合体とは異なる分子量分布の非常に狭ぐ特 定のパラメータ値を有する重合体およびそれを用いた分散性能に優れる無機粉体用 分散剤、特にセメント混和剤を提供することにある。
[0007] 本発明者らは、特開平 9— 86990号公報ゃ特開 2001— 220417号公報に記載の ような従来の分子量分布が広 、重合体では、比較的高!、セメント分散性能を示すも のの、高分子量部分はセメント粒子を凝集させる効果を有するためセメント分散性能 を阻害し、低分子量部分はセメント粒子分散性能が低 、ため分散性能に寄与しな!ヽ と考えた。そこで、分散性能に寄与しない高分子量部分と低分子量部分を低減した 分子量分布が狭い重合体であれば、さらにセメント分散性能が向上すると考えて分 子量分が狭い重合体を作成し、その分散性能を検討した。その結果、得られた結果 を基にしてパラメータを作成し、該パラメータの値が特定の範囲内にある重合体を含 むセメント混和剤を用いて得られたセメント組成物では、分散性が非常に優れて 、る ことを見出した。その際、ポリオキシアルキレン鎖を有する不飽和単量体を含む単量 体をリビング重合することにより容易にパラメータを満たす重合体を製造できることを 見出し、本発明を完成した。
[0008] <i>すなわち、本発明は、ポリオキシアルキレン鎖由来の構成単位を含む重合体
(P)であって、下記数式 1:
[0009] [数 1]
1 く PD く MD (数式 1)
[但し、 PD = MwZMnゝ MD = G(n) XMw + H(n)、 G(n) XMwは下記数式 2 [0010] [数 2]
G (n) XMw= {-0. 985X】 n (n) +5. 802} X 10"5XMw
(数式 2) により定義され (nは重合体 (P)のォキシアルキレン基の平均付加モル数を表し、 Mw 、 Mnはそれぞれ重合体 (P)のゲル浸透クロマトグラフィー(GPC)により測定された 重量平均分子量、数平均分子量を表す)、
H(n)は下記数式 3:
[0011] [数 3]
H (n) =4. 513 X 10_5Xn2-6. 041 X 10 3 X n + 1. 351
(数式 3) により定義される(nは重合体 (P)のォキシアルキレン基の平均付加モル数を表す) ] により定義される PD値の範囲を満たす重合体を提供する。
[0012] <ii>また、本発明は、下記化学式 1:
[0013] [化 1]
(M) a (L) b (X) c (化学式 1)
[但し、 Mは第 4周期に属する遷移元素、 Lは下記化学式 2:
[0014] [化 2]
(AI) d (AO) e (AS) f (化学式 2) で表され、 AIはアルキレンィミン、 AOはアルキレンォキシド、 ASはアルキレンスルフ イド、 Xはハロゲンを表し、 a、 b、 c、 d、 eおよび fは互いに独立して 0以上の数を表す]
で示される有機金属化合物と、有機ハロゲン化合物との混合物を提供する。
[0015] く iii>さらに、本発明は、ポリアルキレングリコール鎖由来の構成単位を含む重合 体(P)であって、上記の混合物を用いて、不飽和ポリアルキレングリコール系単量体 (I-M)を含む不飽和単量体 (M)を重合して得られる重合体を提供する。
[0016] く iv>さらに、本発明は、ポリアルキレングリコール鎖由来の構成単位を含む重合 体(P)であって、
下記化学式 3 :
(化学式 3)
[但し、 Raは炭素数 1〜8のアルキル基、ァリール基、置換ァリール基または芳香族へ テロ環基を表し、 Rbおよび Reは互いに独立して水素原子または炭素数 1〜8のアル キル基を表し、 Rdはァリール基、置換ァリール基、芳香族へテロ環基、ァシル基、ォ キシカルボニル基またはシァノ基を表す]
で示される有機テルルイ匕合物および Zまたは下記化学式 4:
[0018] [化 4]
RfTe TeRs
(化学式 4)
[但し、 Rfおよび は互いに独立して炭素数 1〜8のアルキル基、ァリール基、置換ァ リール基または芳香族へテロ環基を表す]
で示されるジテルリドィ匕合物とラジカル重合開始剤とを用いて、不飽和ポリアルキレン グリコール系単量体 (I M)を含む不飽和単量体 (M)を重合して得られる重合体を 提供する。
[0019] <v>上記 <iii>および <iv>に記載の重合体は、好ましくは、上記 <i>に記載 の上記数式 1により定義される PD値の範囲を満たす。
[0020] <vi> $:発明の重合体は、前記ポリオキシアルキレン鎖由来の構成単位を含む重
合体 (P)がポリオキシアルキレン鎖由来の構成単位とカルボキシル基由来の部位を 有する構成単位を含むことを特徴とする。
[0021] く vii>前記重合体 (P)のポリオキシアルキレン鎖由来の構成単位は、好ましくは、 下記化学式 5 :
[0022] [化 5]
(化学式 5)
[式中、 R1および R2は互いに独立して水素原子またはメチル基を表し、 AOは互いに 独立して炭素数 2以上のォキシアルキレン基の 1種または 2種以上の混合物(2種以 上の場合はブロック状に付カ卩していてもランダム状に付カ卩していても良い)を表し、 X は 0〜2の整数を表し、 yは 0または 1を表し、 nはォキシアルキレン基の平均付加モル 数を表し、 1〜300の数であり、 R3は水素原子または炭素数 1〜20の炭化水素基を 表す]で示される構成単位 (I)を含む。
[0023] <viii>また、前記カルボキシル基由来の部位を有する構成単位は、好ましくは、 下記化学式 6 :
(化学式 6)
[式中、 R4、 R5および R6は互いに独立して水素原子またはメチル基、―(CH ) zCO
2
OM2 (- (CH ) zCOOM2は、—COOM1またはその他の—(CH ) zCOOM2と無水
2 2
物を形成していても良い)を表し、 zは 0〜2の整数を表し、 M1および M2は互いに独 立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモ-ゥム基または 有機アミン基を表す]
で示される構成単位 (II)を含む。
[0025] <ix>また、本発明は、前記ポリオキシアルキレン鎖由来の構成単位を含む重合 体 (P)の製造方法であって、ポリオキシアルキレン鎖を有する不飽和単量体 (I M) を含む不飽和単量体 (M)をリビング重合する製造方法を提供する。
[0026] <x>その際、上記化学式 1で示される有機金属化合物と、有機ハロゲンィ匕合物と の混合物を用いて、不飽和ポリアルキレングリコール系単量体 (I M)を含む単量体 (M)をリビング重合する力、あるいは、く xi>上記化学式 3で示される有機テルルイ匕 合物および Zまたは下記化学式 4で示されるジテルリドィ匕合物とラジカル重合開始剤 とを用いて、不飽和ポリアルキレンダルコール系単量体(I M)を含む不飽和単量体 (M)をリビング重合することが好ま 、。
[0027] <xii>また、その際、不飽和単量体 (M)にカルボキシル基由来の部位を有する不 飽和単量体 (Π— M)を含むことも好ま 、。
[0028] <xiii>本発明の製造方法において、前記ポリオキシアルキレン鎖を有する不飽和 単量体 (I M)は、好ましくは、下記化学式 7 :
[0029] [化 7]
R2 1
C=C
H (CH2)x(CO)y-0-CAO)n-R3
(化学式 7)
[式中、 R1および R2は互いに独立して水素原子またはメチル基を表し、 AOは互いに 独立して炭素数 2以上のォキシアルキレン基の 1種または 2種以上の混合物(2種以 上の場合はブロック状に付カ卩していてもランダム状に付カ卩していても良い)を表し、 X は 0〜2の整数を表し、 yは 0または 1を表し、 nはォキシアルキレン基の平均付加モル 数を表し、 1〜300の数であり、 R3は水素原子または炭素数 1〜20の炭化水素基を 表す]で示される不飽和単量体である。
[0030] <xiv>また、前記カルボキシル基由来の部位を有する不飽和単量体 (Π— M)は、 好ましくは、下記化学式 8 :
(化学式 8)
[式中、 R4、 R5および R6は互いに独立して水素原子またはメチル基、―(CH ) zCO
2
OM2 (- (CH ) zCOOM2は、—COOM1またはその他の—(CH ) zCOOM2と無水
2 2
物を形成していても良い)を表し、 zは 0〜2の整数を表し、 M1および M2は同一また は異なって、水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモニゥム基 または有機アミン基、炭素数 3〜18の炭化水素基を有するシリル基を表す] で示される不飽和単量体である。
[0032] <xv>さらに、本発明は、上記いずれかの重合体を必須成分として含むセメント混 和剤を提供する。
[0033] <xvi>さらに、本発明は、上記いずれかの製造方法で製造された重合体 (P)を必 須成分として含むセメント混和剤を提供する。
[0034] 本発明の重合体は、無機粉体を凝集させる高分子量側の重合体成分とセメント分 散性にあまり寄与しな ヽ低分子量側の重合体成分を低減し、分子量分布がある特定 のパラメータでの限られた範囲内に限定して!/、るため、非常に分子量分布がシヤー プであり、本発明の重合体を無機粉体の分散剤に用いることにより分散性能を向上 することができる。特に、無機粉体としてセメントを用いた場合では、優れた分散性能 を発現することができる。
発明を実施するための最良の形態
[0035] 本発明の重合体は、ポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)で あって、下記数式 1:
[0036] 画
1 く P D < MD (数式 1 )
[但し、 PD = MwZMnゝ MD = G (n) X Mw + H (n)、 G (n) X Mwは下記数式 2
[0037] [数 5]
G (n) XMw= {-0. 985 X 1 n (n) +5. 802} X 10"5XMw
(数式 2) により定義され (nは重合体 (P)のォキシアルキレン基の平均付加モル数を表し、 Mw 、 Mnはそれぞれ重合体 (P)のゲル浸透クロマトグラフィー(GPC)により測定された 重量平均分子量、数平均分子量を表す)、
H(n)は下記数式 3:
[0038] [数 6]
H (n) =4. 513 X 10"5X n2- 6. 041 X 10 3 X n+ 1. 351
(数式 3) により定義される(nは重合体 (P)のォキシアルキレン基の平均付加モル数を表す) ] により定義される PD値の範囲を満たすことを特徴としている。なお、上記 MD値は下 記の方法で求めることができる。
[0039] 《パラメータの算出方法〉〉
(1)重合体(P)の重量平均分子量(Mw)をゲル浸透クロマトグラフィー(GPC)で測 定する。
[0040] (2)重合体(P)のォキシアルキレン鎖の平均付カ卩モル数(n)が不明の場合は NM
Rなどで平均付加モル数 (n)を測定する。
[0041] (3)上記(1)および(2)で求められた重量平均分子量 (Mw)およびォキシアルキレ ン鎖の平均付加モル数 (n)の値を上記数式 1〜数式 3に代入して MD値を求める。
[0042] 上記 MD値は、重合体 (P)の分子量分布 (分散度)を表すパラメータである。以下、
PD値について説明する。
[0043] MwZMnは Mwと強!、相関がある。重合体がアルキレングリコールのように長 ヽ側 鎖を有する場合は、側鎖長 (n)も MwZMnに影響する。また、共重合体の場合は、 重合体の組成も分子量分布に影響する。それゆえ、長い側鎖を有する共重合体の 分子量分布は下記数式 4:
[0044] [数 7]
Mw/Mn = F (Mw, n, 糸诚) ( 4)
で示される分子量、側鎖の大きさ、組成の関数として表すことができる。
[0045] GPCは原理的に相対値を測定するので、上記数式 4は、ある GPC条件で固有の 式となり、一定条件で様々な重合体を測定した結果力 矛盾の無 、ように導出しなけ ればならな 、。後述の GPC条件での上記数式 4の導出は下記のような手順で行った
[0046] Mw、 n、組成を様々に変えた多数の重合体を測定した結果、測定する重合体が G PCカラムに吸着しな 、場合、組成は測定結果への影響が小さ!/、ので無視することが でき、分子量分布パラメータ値 (MD値)は下記数式 5:
[0047] [数 8]
MD = G (n) XMw+H (n) ( 5) で表すことができる。ここで、右辺第 1項は主に MwZMnに対する Mwの影響、右辺 第 2項は MwZMnに対するポリオキシアルキレン鎖長 nの影響を表す。
[0048] 一定のォキシアルキレン鎖長 nで Mwの異なる重合体につ!、て、 X軸に Mw、 Y軸 に MwZMnをとると、両者の関係は 1次関数で表され、傾き力 その側鎖長におけ る G(n)の値、切片からその nにおける H(n)の値が算出された。別のォキシアルキレ ン鎖長 nを有する重合体についても、同様の手順で、 G(n)、 H(n)の値を算出した。
[0049] 次いで、 X軸に n、 Y軸に G(n)をとると、両者の関係は下記数式 6:
[0050] [数 9]
G (n) = {a 1 X 1 n (n) +a 2} X 10"5 (数式 6) で示される自然対数でよく近似された。但し、 al、 a2は測定結果より求まる定数であ り、 al =— 0. 985、 a2 = 5.802であった。
[0051] さらに、 X軸に n、 Y軸に H(n)をとると、両者の関係は下記数式 7:
[0052] [数 10]
H (n) =b 1 Xn2+b 2 Xn + b 3 (数式 7) で示される 2次式でよく近似された。但し、 bl、 b2、 b3は測定結果より求まる定数であ り、 bl=4. 513X10_5、 b2=-6.041X10_3、 b3 = l. 351であった。よって、上
記数式 5は下記数式 8:
[0053] [数 11] D= {-0. 985 X 1 n (n) +5. 802} x 10 - 5 XMw+ 4. 513 X 10" 5Xn2-6. 041 X 10- 3Xn+ 1. 351 (数式 8) で示される。
[0054] 本発明の重合体 (P)の PD値の範囲は、上記数式 8から得られた分子量分布パラメ ータ(分散度)値(MD値)を用いて、 1 < PDく MDの範囲である。
[0055] 例えば、(a)重量平均分子量 30, 000、ォキシアルキレン鎖の平均付カ卩モル数 25 の重合体であれば、 G(n) XMw=0.789、 H(n) =1.226となり、分子量分布パラ メータ値は、 MD = 0.789 + 1.226 = 2.015となる。また、(b)重量平均分子量 40 , 000、ォキシアルキレン鎖の平均付加モル数 50の重合体であれば、 G(n) XMw =0.779, H(n)=l.160となり、分子量分布ノ ラメータ値は MD = 0.779 + 1. 1 60 = 1.939となる。したがって、(a)重量平均分子量 30, 000、ォキシアルキレン鎖 の平均付カ卩モル数 25の重合体であれば、 PD<2.015を満たす PD値を有する重 合体が本発明の重合体 (P)であり、また、(b)重量平均分子量 40, 000、ォキシアル キレン鎖の平均付カ卩モル数 50の重合体であれば、 PD<1.939を満たす PD値を有 する重合体が本発明の重合体 (P)となる。
[0056] また、上記の分子量分布パラメータ値 (MD値)は重合体の分散度 (MwZMn)を 表すパラメータであり、その値が大きければ分散度が大きく重合体の分子量分布が 広いことを表し、その値が小さければ分散度が小さく重合体の分子量分布が狭いこと を表している。本発明の重合体 (P)は上記の分子量分布パラメータ値 (MD値)未満 の PD値の範囲を有するものであり、分子量分布は非常に狭いものであることを意味 している。
[0057] 上記 PD値は 1<PD<MDの関係であれば、特に限定されるものではないが、分 子量分布 (分散度)が狭いほど無機粉体の分散性能を向上させる観点力 は、 PDく MD-0.1、さらに好ましくは PDく MD— 0.15、さらに好ましくは PDく MD— 0.2 、さらに好ましくは PDく MD— 0.25、さらに好ましくは PDく MD— 0.3、さらに好ま しくは PDく MD— 0.35である。また、重合体の製造の観点からは、 1<PDが好まし
く、さらに好ましくは 1. 05< PD、さらに好ましくは 1. 1 < PD、さらに好ましくは 1. 15 く PD、さらに好ましくは 1. 2< PD、さらに好ましくは 1. 25< PD、さらに好ましくは 1 . 3く PDである。
[0058] 本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)として、特定の 重合法で得られた重合体がある。
[0059] 例えば、新規触媒系を用いることにより、特に (メタ)アクリル系モノマーやポリアルキ レンダリコール側鎖を有する重合体のように高極性のモノマーを、バルタもしくは高極 性溶媒中で重合する方法がある。新規触媒系は下記化学式 1:
[0060] [化 9]
(M) a ( L) b (X) c (化学式 1 )
(但し、 Mは第 4周期に属する遷移元素、 Lは下記化学式 2 :
[0061] [化 10]
(A I ) d (AO) e (A S) f (化学式 2 ) で表され、 AIはアルキレンィミン、 AOはアルキレンォキシド、 ASはアルキレンスルフ イド、 Xはハロゲンを表し、 a、 b、 c、 d、 eおよび fはそれぞれ独立に 0以上の数を表す o )
で表される有機金属化合物と、下記化学式 9 :
[0062] [化 11]
R8
R7一 C一 R9
I
(化学式 9)
(但し、 R7、 R8、 R9および R1C)は互いに独立して水素原子、炭化水素基またはハロゲ ン原子を表すが、炭化水素基には 1個以上のハロゲン原子や異種原子が含まれて いてもよい)
で示される有機ハロゲンィ匕合物との混合物である。
[0063] 上記触媒系は上記化学式 1で示される 1種または 2種以上の化合物と、上記化学
式 9で示される 1種または 2種以上の化合物とから構成される。
[0064] この新規触媒系を用いて、ポリアルキレングリコール鎖を有する不飽和単量体 (I
M)を含む単量体 (M)を重合することにより、本発明のポリオキシアルキレン鎖由来 の構成単位を含む重合体 (p)を製造することができる。
[0065] 本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)の他の具体例 としては、下記化学式 3 :
(化学式 3)
(但し、 Raは炭素数 1〜8のアルキル基、ァリール基、置換ァリール基または芳香族へ テロ環基を表し、 Rbおよび Reは互いに独立して水素原子または炭素数 1〜8のアル キル基を表し、 Rdはァリール基、置換ァリール基、芳香族へテロ環基、ァシル基、ォ キシカルボニル基またはシァノ基を表す)
で示される有機テルルイ匕合物および Zまたは下記化学式 4:
[0067] [化 13]
RfTe Te s
(化学式 4)
(但し、 Rfおよび は互いに独立して炭素数 1〜8のアルキル基、ァリール基、置換ァ リール基または芳香族へテロ環基を表す)
で示されるジテルリドィ匕合物と重合開始剤とを用いて、ポリアルキレングリコール鎖を 有する不飽和単量体 (I M)を含む単量体 (M)を重合することにより得られる重合 体が挙げられる。
[0068] <ポリオキシアルキレン鎖由来の構成単位を含む重合体 >
本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)は、重合体中 にポリオキシアルキレン鎖由来の構成単位を含んでいれば、特に限定されるもので はないが、ポリオキシアルキレン鎖は重合体主鎖にグラフトされている構造が好まし
い。ポリオキシアルキレン鎖の由来の構成単位は、重合体の全質量に対して、好まし くは 2〜98質量%、より好ましくは 50質量%以上、さらに好ましくは 60質量%以上、 さらに好ましくは 65質量%以上、さらに好ましくは 70質量%以上含まれている。ただ し、質量%の計算において、重合体の構成単位が酸や塩基など塩を形成しうる官能 基を有する場合は、塩を形成していない状態で質量を計算する (例えば、カルボン酸 塩ならカルボン酸に換算、ァミン塩ならァミンに換算する)ものとし、以下でも同様とす る。
[0069] また、ォキシアルキレン鎖を構成するォキシアルキレン基の種類および平均付加モ ル数は、特に限定されるものではないが、好ましくは炭素数 2〜18のォキシアルキレ ン基、より好ましくは炭素数 2〜8のォキシアルキレン基である。また、水を媒体とした 無機粉体の分散性能の観点からは、ォキシアルキレン基の親水性を高める必要があ り、炭素数 2のォキシエチレン基が主体を占めることが好ましい。このとき、炭素数 3以 上のォキシアルキレン基とォキシエチレン基の合計に対するォキシエチレン基の比 率としては、好ましくは 50モル%以上、より好ましくは 60モル%以上、さらに好ましく は 70モル%以上、さらに好ましくは 90モル%以上、さらに好ましくは 95モル%以上、 さらに好ましくは 100モル%である。
[0070] また、ォキシアルキレン鎖の平均付加モル数は、特に限定されるものではな 、が、 ォキシアルキレン鎖は平均付加モル数は、好ましくは 1〜300モルである力 無機粉 体の分散性能向上の観点からは、好ましくは 2モル以上、より好ましくは 4モル以上、 さらに好ましくは 6モル以上、さらに好ましくは 10モル以上、さらに好ましくは 15モル 以上、さらに好ましくは 20モル以上である。ォキシアルキレン鎖の製造の観点からは 、ォキシアルキレン鎖の上限は、好ましくは 300モル、より好ましくは 250モル、さらに 好ましくは 200モノレ、さら〖こ好ましくは 150モノレである。
[0071] 上記重合体 (P)は、ポリオキシアルキレン鎖由来の構成単位に加えて、さらにカル ボキシル基由来の構成単位を有するものが好まし 、。カルボキシル基を有する構成 単位は、重合体の全質量に対して、好ましくは 2〜90質量%含まれている力 無機 粉体への吸着性能の観点からは、好ましくは 2質量%以上、より好ましくは 5質量% 以上、さらに好ましくは 7. 5質量%以上、さらに好ましくは 10質量%以上、さらに好ま
しくは 12. 5質量%以上、さらに好ましくは 15質量%以上、さらに好ましくは 20質量 %以上、さらに好ましくは 25質量%以上である。しかし、カルボキシル基を有する構 成単位が多くなると、無機粉体を分散させる機能を有する構成単位の導入量が少な くなることから、その上限は、好ましくは 90質量%、より好ましくは 80質量%、さらに好 ましくは 60質量%、さらに好ましくは 50質量%、さらに好ましくは 40質量%、さらに好 ましくは 35質量%、さらに好ましくは 30質量%である。
[0072] 上記のポリオキシアルキレン鎖由来の構成単位は、下記化学式 5 :
(化学式 5)
で示される構成単位 (I)を、好ましくは 2〜98質量%含んでいる。ォキシアルキレン鎖 は、立体反発効果により、セメント粒子のような無機粉体を分散させる機能を有し、好 ましくは 2〜98質量%含まれることにより、セメント粒子を十分に分散させることができ る。上記化学式 5において、 R1および R2は互いに独立して水素原子またはメチル基 を表し、 AOは互いに独立して炭素数 2以上のォキシアルキレン基の 1種または 2種 以上の混合物(2種以上の場合はブロック状に付加して 、てもランダム状に付加して いても良い)を表し、 Xは 0〜2の整数を表し、 yは 0または 1を表し、 nはォキシアルキ レン基の平均付加モル数を表し、 1〜300の数であり、 R3は水素原子または炭素数 1 〜20の炭化水素基を表す。
[0074] 上記構成単位 (I)は、無機粉体を分散させる効果を得るためには、重合体中に、好 ましくは 2質量%以上、より好ましくは 50質量%以上、さらに好ましくは 60質量%以 上、さらに好ましくは 65質量%以上、さらに好ましくは 70質量%以上含まれている。 しかし、上記構成単位 (I)の含有量が多くなると、セメントのような無機粉体粒子に吸 着する機能を有する構成単位 (II)の含有量が少なくなるため多量の混和剤を添加し なければ充分な流動性を有する組成物が得られない。そのため、含有量の上限は、 好ましくは 98質量%、より好ましくは 95質量%、さらに好ましくは 90質量%、さらに好
ましくは 85質量%、さらに好ましくは 80質量%である。
[0075] 特に、 AOで表されるォキシアルキレン基は、炭素数 2〜18のォキシアルキレン基 が好ましぐ水を媒体とした無機粉体の分散性能の向上の観点からはォキシアルキレ ン基の親水性を高める必要があり、炭素数 2のォキシアルキレン基であるォキシェチ レン基が主体を占めることが好ましい。このとき、構成単位 (I)中での炭素数 3以上の ォキシアルキレン基とォキシエチレン基の合計に対するォキシエチレン基の比率とし ては、モル比で、好ましくは 50モル%以上、より好ましくは 60モル%以上、さらに好ま しくは 70モル%以上、さらに好ましくは 80モル%以上、さらに好ましくは 90モル%以 上、さらに好ましくは 100モル%である。
[0076] また、構成単位 (I)中のォキシァノレキレン鎖に炭素数 3以上のォキシァノレキレン基 を導入し、ある程度の疎水性を付与することでセメント粒子に若干の構造 (ネットヮー ク)をもたらすことにより、本発明の重合体を用いて製造されたコンクリートの状態を改 善する(コンクリートの粘性やこわばりを低減できるなど)こともできる。しかし、炭素数 3以上のォキシアルキレン基を導入しすぎると、得られたポリマーの疎水性が高くなり すぎることから、セメントを分散させる性能が低下することがある。構成単位 (I)中の炭 素数 3以上のォキシアルキレン基の比率は、疎水性を付与する観点から、好ましくは 1モル%以上、より好ましくは 3モル%以上、さらに好ましくは 5モル%以上であり、ま た、セメント分散性能の観点から、好ましくは 50モル%以下、より好ましくは 40モル% 以下、さらに好ましくは 30モル%以下である。
[0077] 炭素数 3以上のォキシアルキレン基としては、導入のしゃすさ、セメントとの親和性 の観点から、炭素数 3〜8のォキシアルキレン基、さらには炭素数 3〜4のォキシプロ ピレン基ゃォキシブチレン基が好まし 、。
[0078] ォキシアルキレン鎖の平均付加モル数は、好ましくは 1〜300モルである力 無機 粉体の分散性能向上の観点からは、好ましくは 2モル以上、より好ましくは 4モル以上 、さらに好ましくは 6モル以上、さらに好ましくは 10モル以上、さらに好ましくは 15モル 以上、さらに好ましくは 20モル以上である。ォキシアルキレン鎖の製造の観点からは 、ォキシアルキレン鎖の上限は、好ましくは 300モル、より好ましくは 250モル、さらに 好ましくは 200モノレ、さら〖こ好ましくは 150モノレである。
[0079] ォキシアルキレン鎖の末端基 R3は、水素原子または炭素数 1〜20の炭化水素基 [ 例えば、炭素数 1〜20のアルキル基 (脂肪族アルキル基または脂環式アルキル基)、 炭素数 1〜20のアルケニル基、炭素数 1〜20のアルキニル基、炭素数 6〜20のフエ -ル基、アルキルフエニル基、ナフチル基などのベンゼン環を有する芳香族基などが 挙げられる]であるが、水を媒体とした無機粉体 (セメント組成物など)を分散させる観 点から疎水性が低いことが好ましぐ水素原子または炭素数 1〜10の炭化水素基 (例 えば、アルキル基、ァルケ-ル基、アルキ-ル基、フエ-ル基などが挙げられる)、さ らには水素原子または炭素数 1〜6の炭化水素基 (例えば、アルキル基、アルケニル 基、アルキニル基、フ ニル基などが挙げられる)、さらには水素原子または炭素数 1 〜3の炭化水素基 (例えば、アルキル基、アルケニル基、アルキニル基などが挙げら れる)が好ましい。
[0080] 上記のカルボキシル基由来の部位を有する構成単位は、下記化学式 6 :
(化学式 6)
で示される構成単位 (II)を、好ましくは 2〜90質量%含んで 、る。
[0082] 上記化学式 6において、 R4、 R5および R6は互いに独立して水素原子またはメチル 基、—(CH ) zCOOM2 (— (CH ) zCOOM2は、—COOM1またはその他の—(CH
2 2
) zCOOM2と無水物を形成していても良い)を表し、 Zは 0〜2の整数を表し、 M1お
2
よび M2は互いに独立して水素原子、アルカリ金属原子、アルカリ土類金属原子、ァ ンモ-ゥム基または有機アミン基を表す。
[0083] 上記構成単位 (Π)は、セメントのような無機粉体に吸着作用を及ぼす部分であり、 無機粉体に対する吸着性を充分に付与する観点から、重合体中に、好ましくは 2質 量%以上、より好ましくは 5質量%以上、さらに好ましくは 7. 5質量%以上、さらに好 ましくは 10質量%以上、さらに好ましくは 12. 5質量%以上、さらに好ましくは 15質量 %以上、さらに好ましくは 20質量%以上、さらに好ましくは 25質量%以上含まれてい
る。しかし、上記構成単位 (Π)の含有量が多すぎると、無機粉体を分散させる機能を 有する構成単位 (I)の重合体中の含有量が少なくなるため混和剤を多量に添加しな ければ充分な流動性を有する組成物を得ることができない。そのため、上記構成単 位 (Π)の含有量の上限は、好ましくは 90質量%、より好ましくは 80質量%、さらに好 ましくは 60質量%、さらに好ましくは 50質量%、さらに好ましくは 40質量%、さらに好 ましくは 35質量%、さらに好ましくは 30質量%である。
[0084] 上記重合体 (Ρ)は、上記必須の構成単位 (繰り返し単位)を有することを特徴とし、 後述の単量体 (ΠΙ— Μ)に由来する構成単位 (III)をさらに有するものであってもよ!/、 。これらの構成単位は、それぞれ 1種であってもよぐ 2種以上であってもよい。
[0085] 上記重合体 (Ρ)を構成する各構成単位の比率は、質量比で、構成単位 (I) Ζ構成 単位 (Π)Ζ構成単位 (ΠΙ)が好ましくは 2〜98質量%Ζ2〜90質量%ZO〜50質量 %、より好ましくは 50〜95質量%Ζ5〜80質量%Ζ0〜40質量%、さらに好ましくは 60〜90質量%Ζ7. 5〜60質量%ZO〜30質量%である。
[0086] <ポリオキシアルキレン基由来の構成単位を含む重合体 (Ρ)を得るための単量体
>
前記構成単位 (I)を与える単量体としては、例えば、下記化学式 7 :
[0087] [化 16]
R2 1
C=C
H (CH2)x(CO)y-0-CAO)n-R3
(化学式 7)
[式中、 R1および R2は互いに独立して水素原子またはメチル基を表し、 AOは互いに 独立して炭素数 2以上のォキシアルキレン基の 1種または 2種以上の混合物(2種以 上の場合はブロック状に付カ卩していてもランダム状に付カ卩していても良い)を表し、 X は 0〜2の整数を表し、 yは 0または 1を表し、 nはォキシアルキレン基の平均付加モル 数を表し、 1〜300の数であり、 R3は水素原子または炭素数 1〜20の炭化水素基を 表す]で示される単量体を含むポリオキシアルキレン鎖を有する不飽和単量体成分( 以下「I M」とも称する)が挙げられる。
[0088] 不飽和単量体成分(I M)としては、メタノール、エタノール、 1 プロパノール、 2 プロパノーノレ、 1ーブタノ一ノレ、 2—ブタノ一ノレ、 1 ペンタノ一ノレ、 1一へキサノー ル、ォクタノール、 2—ェチルー 1一へキサノール、ノ-ルアルコール、ラウリルアルコ ール、セチルアルコール、ステアリルアルコールなどの炭素数 1〜20の飽和脂肪族 アルコール類、ァリルアルコール、メタリルアルコール、クロチルアルコール、ォレイノレ アルコールなどの炭素数 3〜20の不飽和脂肪族アルコール類、シクロへキサノール などの炭素数 3〜20の脂環式アルコール類、フエノール、フエ-ルメタノール(ベンジ ルアルコール)、メチルフエノール(タレゾール)、 p ェチルフエノール、ジメチルフエ ノール(キシレノール)、ノ-ルフエノール、ドデシルフエノール、フエ-ルフエノール、 ナフトールなどの炭素数 6〜20の芳香族アルコール類のいずれかに炭素数 2〜18 のアルキレンォキシドを付加することによって得られるアルコキシポリアルキレングリコ ール類、炭素数 2〜18のアルキレンォキシドを重合したポリアルキレングリコール類と (メタ)アクリル酸、クロトン酸とのエステルイ匕物を挙げることができる。これらの不飽和 単量体は、単独で用いても 2種以上を併用してもよい。これらの不飽和単量体のうち 、(メタ)アクリル酸のアルコキシポリアルキレングリコール類のエステルが好まし!/、。
[0089] さらにビュルアルコール、(メタ)ァリルアルコール、 3—メチルー 3 ブテンー1ーォ ール、 3—メチルー 2 ブテン 1 オール、 2—メチルー 3 ブテン 2 オール、 2 メチル 2 ブテン 1 オール、 2 メチル 3 ブテン 1 オールなどの不 飽和アルコールにアルキレンォキシドを 1〜300モル付カ卩した化合物を挙げることが できる。これらの不飽和単量体は、単独で用いても 2種以上を併用してもよい。これら の不飽和単量体のうち、(メタ)ァリルアルコールゃ 3 メチル 3 ブテン 1 ォー ルにアルキレンォキシドを 1〜300モル付カ卩した化合物が特に好適である。なお、上 記の不飽和エステル類および不飽和エーテル類は、アルキレンォキシドとして、例え ば、エチレンォキシド、プロピレンォキシド、ブチレンォキシド、スチレンォキシドなど の炭素数 2〜 18のアルキレンォキシドカも選択される 1種または 2種以上のアルキレ ンォキシドを付加させてもよい。 2種以上を付加させる場合、ランダム付加、ブロック付 カロ、交互付カ卩などのいずれであってもよい。
[0090] 前記構成単位 (II)を与える単量体としては、例えば、下記化学式 8:
[0091] [化 17]
R5 4
C=C
I I
R6 COO 1
(化学式 8)
[式中、 R4、 R5および R6は互いに独立して水素原子またはメチル基、―(CH ) zCO
2
OM2 (- (CH ) zCOOM2は、—COOM1またはその他の—(CH ) zCOOM2と無水
2 2
物を形成していても良い)を表し、 Zは 0〜2の整数を表し、 M1および M2は互いに独 立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモ-ゥム基または 有機アミン基、炭素数 1〜20の炭化水素基、炭素数 3〜18の炭化水素基を有するシ リル基を表す]
で示される単量体を含む不飽和単量体成分 (以下「II M」とも称する)が挙げられる
[0092] II Mで示される不飽和単量体の例としては、(メタ)アクリル酸、クロトン酸などのモ ノカルボン酸系単量体、マレイン酸、ィタコン酸、フマル酸などのジカルボン酸系単量 体、またこれらの無水物もしくはその塩 (例えば、一価金属、二価金属、三価金属、ァ ンモ -ゥムまたは有機アミノ酸の塩)、 (メタ)アクリル酸、クロトン酸などのモノカルボン 酸系単量体の炭素数 1〜20の炭化水素基のエステル類、炭素数 3〜18の炭化水素 基を有するシリルエステル類、マレイン酸、ィタコン酸、フマル酸などのジカルボン酸 系単量体の炭素数 1〜20の炭化水素基のモノまたはジエステル類、炭素数 3〜18 の炭化水素基を有するモノまたはジシリルエステル類が挙げられる。これらの不飽和 単量体のうち、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸(アクリル酸、メタ クリル酸が特に好ましい)およびこれらの塩、アクリル酸またはメタクリル酸の炭素数 1 〜6のァノレキノレエステノレ類(メチノレエステノレ、ェチノレエステノレ、プロピノレエステノレ、ブ チルエステルなど)、炭素数 3〜 16の炭化水素基を有するシリルエステル類(トリメチ ルシリルエステル、 tーブチルージメチルシリルエステル、 tーブチルージフエ二ルシリ ルエステルなど)、マレイン酸の炭素数 1〜6のモノまたはジアルキルエステル類 (メチ ルエステル、ェチルエステル、プロピルエステル、ブチルエステルなど)、炭素数 3〜
16の炭化水素基を有するモノまたはジシリルエステル類(トリメチルシリルエステル、 t ーブチルージメチルシリルエステル、 tーブチルージフエ-ルシリルエステルなど)が 重合性の観点カゝら好ましい。アルキルエステル、シリルエステルを用いた場合は、必 要に応じて、エステルを加水分解してカルボキシル基に変換してもよ!/ヽ。
[0093] また、これらの単量体は 2種以上併用してもよい。
[0094] 上記 I Mや II Mとは異なる成分であり、かつ I Mや II Mと共重合可能な不飽 和単量体(ΠΙ— M)をさらに用いることも好ましい。不飽和単量体 ΠΙ— Mとしては、マ レイン酸、フマル酸、ィタコン酸、シトラコン酸などの不飽和ジカルボン酸類と炭素数 1 〜20のアルキルアルコール、炭素数 2〜18のグリコールもしくはこれらのグリコール の付カ卩モル数 2〜300のポリアルキレングリコールおよび炭素数 1〜20のアルキルァ ルコールに炭素数 2〜18のアルキレンォキシドもしくはアルキレンォキシドの付カロモ ル数 2〜300のアルコキシポリアルキレンォキシドとのモノエステル類、ジエステル類 、またこれら酸と炭素数 1〜20のアルキルァミンおよび炭素数 2〜18のグリコールの 片末端アミノ化物、もしくはこれらのグリコールの付カ卩モル数 2〜300のポリアルキレ ングリコールの片末端アミノ化物とのモノアミド、ジアミド類;(メタ)アクリル酸、クロトン 酸などの不飽和モノカルボン酸類と炭素数 1〜20のアルキルアルコール、炭素数 2 〜18のグリコールもしくはこれらのグリコールの付カ卩モル数 2〜300のポリアルキレン グリコールおよび炭素数 1〜20のアルキルアルコールに炭素数 2〜18のアルキレン ォキシドもしくはアルキレンォキシドの付カ卩モル数 2〜300のアルコキシポリアルキレ ングリコールとのエステル類、またこれらの酸と炭素数 1〜20のアルキルァミンおよび 炭素数 2〜 18のグリコールの片末端アミノ化物、もしくはこれらのグリコールの付加モ ル数 2〜300のポリアルキレングリコールの片末端アミノ化物とのアミド類;スルホェチ ル (メタ)アタリレート、 2—メチルプロパンスルホン酸 (メタ)アクリルアミド、スチレンスル ホン酸などの不飽和スルホン酸類、ならびにこれらの一価金属塩、二価金属塩、アン モ -ゥム塩および有機アミン塩;(メタ)アクリルアミド、(メタ)アクリルアルキルアミドな どの不飽和アミド類;ジメチルアミノエチル (メタ)アタリレートなどの不飽和ァミノ化合 物類;酢酸ビュル、プロピオン酸ビュルなどのビュルエステル類;メチルビニルエーテ ノレ、ェチノレビニノレエーテノレ-プロピノレビニノレエーテノレ、ブチノレビニノレエーテノレなどの
炭素数 3〜20のアルキルビュルエーテルなどのビュルエーテル類;スチレンなどの 芳香族ビュル類;などを挙げることができる。これらの不飽和単量体は、単独で用い ても 2種以上を併用してもよい。
[0095] 不飽和単量体(I M)、不飽和単量体(Π— M)および不飽和単量体(ΠΙ— M)を 共重合してポリマーを得るには、これら不飽和単量体の使用割合は、合計量を 100 質量%として、不飽和単量体 (I M) Z不飽和単量体 (Π— M) Z不飽和単量体 (III M)が好ましくは 2〜98質量%Z2〜90質量%Z0〜50質量0 /0、より好ましくは 50 〜95質量%Ζ5〜80質量%Ζ0〜40質量%、さらに好ましくは 60〜90質量%Ζ7 . 5〜60質量0 /oZO〜30質量%である。
[0096] 重合体 (Ρ)の重量平均分子量 Mwは、目的に合わせて適宜調整することができる。
例えば、重合体 (P)を無機粉体の分散剤として使用するには、分散したい無機粉体 の種類や粒径などによって適切に重合体 (P)の Mwを調整すればよ ヽ。重合体 (P) をセメント分散剤として用いる場合には、セメント粒子へ重合体 (P)を吸着させて、セ メント粒子を十分に分散させる観点から、重合体 (P)の Mwは 1, 000以上が好ましく 、 5, 000以上力 Sより好ましく、 10, 000以上力 Sさらに好ましく、 15, 000以上力 Sさらに 好ましぐ 20, 000以上がさらに好ましぐ 25, 000以上がさらに好ましい。また、セメ ント粒子の凝集を防ぐ観点から、重合体 (P)の Mwは 500, 000以下力 S好ましく、 200 , 000以下がより好ましぐ 100, 000以下がさらに好ましぐ 80, 000以下がさらに好 ましぐ 60, 000以下がさらに好ましぐ 40, 000以下がさらに好ましい。ただし、上記 Mwの値は、本明細書に記載の GPC条件で測定した場合のものである。
[0097] <ポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)の製造 >
本発明のポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)は、上記した 特定の PD値を有するものであり、特に分子量分布が狭!、ことを特徴とする重合体で ある。上記した特定の PD値を有する重合体の製造方法として、例えば、次のような形 態を挙げることができる。
[0098] (1)公知の重合方法で得られたポリオキシアルキレン鎖由来の構成単位を有する 重合体をゲルマーミエーシヨンクロマトグラフィー(GPC)や濾過膜などを用いて分画 する方法、溶解度の差による分別、あるいは透析する方法。
[0099] (2)ポリオキシアルキレン鎖を有する不飽和単量体を含む単量体をリビング重合す る方法。リビング重合の中でもリビングラジカル重合が好ましい。以下にリビングラジカ ル重合法の一形態を示す。
[0100] リビングラジカル重合法には、多くの手法が知られている。例えば、 TEMPO (2, 2 , 6, 6, —Tetramethyl—l—piperidinyloxy)などの窒素酸化物を用いる方法、 遷移金属触媒を用いた重合方法(ATRP ( Atom Transfer Radical Polymeriz ation)法と称されることもある)、 RAFT (Reversible Addition - Fragmentation chain Transfer)法などがある。
[0101] リビングラジカル重合法の一形態として、遷移元素触媒を用いた重合方法であるが 、新規触媒系を用いることにより、特に (メタ)アクリル系モノマーやポリアルキレンダリ コール側鎖を有するモノマーのように高極性のモノマーを、バルタもしくは高極性溶 媒中で重合する方法がある。新規触媒系は下記化学式 1:
[0102] [化 18]
(M) a (L) b (X) c (化学式 1 )
(但し、 Mは第 4周期に属する遷移元素、 Lは下記化学式 2 :
[0103] [化 19]
(A I ) d (AO) e (A S ) f (化学式 2 ) で表され、 AIはアルキレンィミン、 AOはアルキレンォキシド、 ASはアルキレンスルフ イド、 Xはハロゲンを表し、 a、 b、 c、 d、 eおよび fは互いに独立して 0以上の数を表す) で示される有機金属化合物と、下記化学式 9 :
[0104] [化 20]
R8
7一 C一 R9
I
(化学式 9)
(但し、 R7、 R8、 R9および R1C)は互いに独立して水素原子、炭化水素基またはハロゲ ン原子を表すが、炭化水素基には 1個以上のハロゲン原子や異種原子が含まれて
いてもよい)
で示される有機ハロゲンィ匕合物との混合物である。
[0105] 上記触媒系は上記化学式 1で示される 1種または 2種以上の化合物と、上記化学 式 2で示される 1種または 2種以上の化合物とから構成される。
[0106] 上記化学式 1において、 Lとしては、一般的には、ビビリジン系化合物、トリフエニル ホスフィン系化合物といった複素環や芳香環を有する化合物が使用されているが、 モノマーや溶媒との溶解性に限界があり、特に高極性溶媒や高極性モノマーを用い た場合に重合が進行しないなどの欠点があった。他方、上記化学式 2で示される化 合物を含む上記化学式 1で示される化合物は、炭素原子に比較して電気陰性度の 大きい窒素原子、酸素原子、硫黄原子を多数含むことにより、高極性溶媒中におい ても安定性、溶解性が向上し、また (メタ)アクリル系モノマーやポリアルキレングリコ ール側鎖を有するモノマーのような高極性モノマーに対する親和性が大きくなつた。 その結果、高極性溶媒中であっても高極性モノマーのリビングラジカル重合が可能と なり、分子量分布の小さなポリマーを高収率で得ることが出来た。また、リビングラジ カル重合であるので、従来のラジカル重合とは異なり、ランダムポリマーだけでなくブ ロックポリマーを合成することも可能となった。
[0107] 上記化学式 1で示される化合物は、単独で用いても 2種以上を併用してもよい。上 記化学式 1で示される化合物は、重合速度を向上させるために、異なる 2種類以上の Mを含有することが好ましぐ正電荷数が異なる 2種類の Mを含有することがより好ま しい。この場合、正電荷数を g、 h (g<h)とすると、 Mg+に対する Mh+のモル比(Mh+ ZMg+)は、特に限定されるものではないが、分子量分布の観点から、好ましくは 0. lmol%以上、より好ましくは lmol%以上、さらに好ましくは 5mol%以上、さらに好ま しくは 10mol%以上、さらに好ましくは 20mol%以上であり、また、重合速度の観点 から、好ましくは 1, OOOmol%以下、より好ましくは 200mol%以下、さらに好ましくは 100mol%以下、さらに好ましくは 80mol%以下、さらに好ましくは 50mol%以下で ある。
[0108] また、モノマーに対する Mの合計量のモル比は、必要とする重合体の分子量に依 存するが、重合速度の観点から、好ましくは 0. Olmol%以上、より好ましくは 0. Imo
1%以上、さらに好ましくは 0. 5mol%以上、さらに lmol以上であり、また、分子量分 布の観点から、好ましくは 1, OOOmol%以下、より好ましくは 100mol%以下、さらに 好ましくは 1 Omol%以下、さらに好ましくは 5mol%以下である。
[0109] Mは 1種であっても 2種以上の異なる電荷および Zまたは異なる元素の組合せであ つてもよいが、第 4周期の遷移元素が好ましぐマンガン、鉄、コバルト、ニッケル、銅 力 り好ましく用いられる。
[0110] 上記化学式 9で示される有機ハロゲンィ匕合物は、 1個以上のハロゲン原子を含有し ていなければならない。また、上記化学式 9で示される有機ハロゲンィ匕合物は、単独 で用いても 2種以上を併用してもよい。上記化学式 9で示される有機ハロゲン化合物 としては、 ί列免ば、テ卜ラクロロメタン、卜リクロロメタン、ジクロロメタン、モノクロ口エタン 、トリクロ口フエ-ルメタン、ジクロロジフエ-ルメタンなどのハロゲン化炭化水素化合物 ; 2, 2, 2—トリクロ口アセトン、 2, 2—ジクロロアセトフエノンなどの α ハロゲノカルボ -ル化合物; 2, 2, 2—トリクロ口酢酸メチル、 2, 2—ジクロ口酢酸メチル、 2—クロロプ 口パン酸メチル、 2—ブロモー 2—メチルプロパン酸ェチル、 2—ョードー 2—メチルプ 口パン酸ェチル、 2—ブロモープロパン酸ェチル、 2—ョードープロパン酸ェチル、 2 —クロ口一 2, 4, 4 トリメチルダルタル酸ジメチル、 1, 2 ビス(2, 一ブロモ 2, 一メ チルプロピオ-ノレォキシ)ェタン、 1 , 2—ビス(2, 一ブロモプロピオ-ノレォキシ)ェタン 、 2- (2,ーブロモー 2, 一メチルプロピオ-ルォキシ)エチルアルコールなどの α— ハロゲノカルボン酸エステル;などを挙げることができる。これらの有機ハロゲン化合 物は、単独で用いても 2種以上を併用してもよい。これらの有機ハロゲンィ匕合物のう ち、 α —ハロゲノカルボ-ル化合物や α —ハロゲノカルボン酸エステルが好適であり 、具体的には、 2, 2 ジクロロアセトフエノン、 2 クロ口一 2, 4, 4 トリメチルダルタ ル酸ジメチル、 2—ブロモー 2—メチルプロパン酸ェチル、 2—ョードー 2—メチルプロ パン酸ェチルが好適である。
[0111] 単量体に対する上記化学式 9で示される有機ハロゲンィ匕合物のモル比は、必要と する重合体の分子量に依存する力 重合速度の観点から、好ましくは 0. Olmol%以 上、より好ましくは 0. lmol%以上、さらに好ましくは 0. 5mol%以上、さらに好ましく は lmol%以上であり、また、分子量分布の観点から、好ましくは 1, OOOmol%以下、
より好ましくは 100mol%以下、さらに好ましくは 10mol%以下、さらに好ましくは 5m ol%以下である。上記化学式 9で示される有機ハロゲン化合物に対する上記化学式 1で示される化合物に含有される遷移元素の配合モル比率は、特に限定されるもの ではな!/、が、上記化学式 1における遷移元素が少なすぎると重合速度が遅くなる傾 向にあるので、好ましくは lmol%以上、より好ましくは 5mol%以上、さらに好ましくは 10mol%以上である。逆に、多すぎると副反応が生じやすくなり得られる重合体の分 子量分布が広くなる傾向があるので、好ましくは 1, OOOmol%以下、より好ましくは 2 OOmol%以下、さらに好ましくは 100mol%以下である。
[0112] 上記化学式 2で示される化合物、すなわちアルキレンィミン、アルキレンォキシド、 アルキレンスルフイドを (共)重合してなる(共)重合体は、単独で用いても 2種以上を 併用してもよい。また、 AI、 AO、 ASの各々も、単独で用いても 2種以上を併用しても よい。
[0113] 上記化学式 2で示される化合物において、 d、 e、 fはそれぞれ AI、 AO、 ASの繰り 返し単位数を表す。 dは、遷移金属元素の安定ィ匕の観点から、好ましくは 1以上、より 好ましくは 2以上、さらに好ましくは 4以上、さらに好ましくは 6以上、さらに好ましくは 1 0以上、さらに好ましくは 15以上であり、また、製造の観点から、好ましくは 200以下、 より好ましくは 100以下、さらに好ましくは 50以下、さらにこのましくは 20以下である。 eは、上記化学式 1で示される化合物の溶解性の観点から、好ましくは 1以上、より好 ましくは 2以上、さらに好ましくは 3以上、さらに好ましくは 7以上、さらに好ましくは 10 以上であり、また、製造の観点から、好ましくは 500以下、より好ましくは 300以下、さ らに好ましくは 200以下、さらに好ましくは 100以下、さらに好ましくは 50以下である。 fは、遷移金属元素の安定化の観点から、好ましくは 1以上、より好ましくは 2以上、さ らに好ましくは 4以上、さらに好ましくは 6以上、さらに好ましくは 10以上、さらに好まし くは 15以上であり、また、製造の観点から、好ましくは 200以下、より好ましくは 100以 下、さらに好ましくは 50以下、さらに好ましくは 20以下である。
[0114] 上記化学式 2で示される化合物は、上記化学式 1で示される化合物の安定性と溶 解性とを両立するために、 AI、 AO、 ASのうち 2種類以上を含有することが好ましぐ AIと AOとを両方含有することが好ましぐ AIと AOとのみ力もなることがさらに好まし
い。 AI、 AO、 ASの結合順は、ランダム構造でもブロック構造でもよいが、副反応を 低減するには、ブロック構造が好ましい。ポリ AIの活性水素に AOを付加したもの力 上記化学式 1で示される化合物の安定性、溶解性、反応性に優れ、より好ましい。
[0115] AIとしては、反応性、遷移金属元素の安定ィ匕の観点から、エチレンィミンが好まし い。 AOとしては、反応性、溶解性の観点から、炭素数 18以下のアルキレンォキシド が好ましぐ炭素数 8以下のアルキレンォキシドがより好ましぐ炭素数 4以下のアルキ レンォキシドがさらに好ましぐ炭素数 3以下のアルキレンォキシドがさらに好ましぐ 炭素数 2のアルキレンォキシドがさらに好ましい。 ASとしては、反応性、遷移金属元 素の安定化の観点から、エチレンスルフイドが好まし 、。
[0116] <有機テルル化合物およびジテルリド化合物 >
リビングラジカル重合法の他の形態として、下記化学式 3:
(化学式 3)
(但し、 Raは炭素数 1〜8のアルキル基、ァリール基、置換ァリール基または芳香族へ テロ環基を表し、 Rbおよび Reは互いに独立して水素原子または炭素数 1〜8のアル キル基を表し、 Rdはァリール基、置換ァリール基、芳香族へテロ環基、ァシル基、ォ キシカルボニル基またはシァノ基を表す)
で示される有機テルルイ匕合物および Zまたは下記化学式 4:
[0118] [化 22]
RfTe TeRs
(化学式 4)
(但し、 Rfおよび Rgは互いに独立して炭素数 1〜8のアルキル基、ァリール基、置換ァ リール基または芳香族へテロ環基を表す)
で示されるジテルリドィ匕合物とラジカル重合開始剤とを用いて重合する方法がある。
[0119] 上記化学式 3で示される有機テルル化合物および上記化学式 4で示されるジテルリ
ド化合物は、各々、単独で用いても 2種以上を併用してもよい。
[0120] 上記化学式 3において、 Raで表される炭素数 1〜8のアルキル基としては、例えば、 メチル基、ェチル基、 n—プロピル基、イソプロピル基、シクロプロピル基、 n—ブチル 基、 sec ブチル基、 tert ブチル基、シクロブチル基、 n—ペンチル基、 n—へキシ ル基、 n—へプチル基、 n—才クチル基などの炭素数 1〜8の直鎖状、分岐鎖状また は環状のアルキル基が挙げられる。これらのアルキル基のうち、炭素数 1〜4の直鎖 状または分岐鎖状のアルキル基が好ましぐメチル基、ェチル基、 n ブチル基がより 好ましい。 Raで表されるァリール基としては、例えば、フエ-ル基、ナフチル基などが 挙げられる。 Raで表される置換ァリール基としては、置換基を有するフ 二ル基、置 換基を有するナフチル基などが挙げられる。 Raで表される芳香族へテロ環基としては 、ピリジル基、ピロール基、フリル基、チェニル基などが挙げられる。置換ァリール基 の置換基としては、例えば、ハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基 、シァノ基、 CORhで示されるカルボ-ル含有基(ここで、 Rhは炭素数 1〜8のアル キル基、ァリール基、炭素数 1〜8のアルコキシ基またはァリールォキシ基を表す)、 スルホニル基、トリフルォロメチル基などが挙げられる。好ましいァリール基としては、 例えば、フエニル基、トリフルォロメチル置換フエニル基などが挙げられる。また、これ ら置換基は、 1個または 2個置換しているのがよぐパラ位もしくはオルト位が好ましい
[0121] 上記化学式 3において、 Rbまたは Reで表される炭素数 1〜8のアルキル基としては、 例えば、メチル基、ェチル基、 n—プロピル基、イソプロピル基、シクロプロピル基、 n ブチル基、 sec ブチル基、 tert ブチル基、シクロブチル基、 n ペンチル基、 n 一へキシル基、 n—へプチル基、 n—ォクチル基などの炭素数 1〜8の直鎖状、分岐 鎖状または環状のアルキル基が挙げられる。これらのアルキル基のうち、炭素数 1〜 4の直鎖状または分岐鎖状のアルキル基が好ましぐメチル基、ェチル基、 n プチ ル基がより好ましい。
[0122] 上記化学式 3において、 Rdで表されるァリール基、置換ァリール基、芳香族へテロ 環基としては、例えば、 で表されるァリール基、置換ァリール基、芳香族へテロ環 基として列挙した上記の置換基などが挙げられる。 Rdで表されるァシル基としては、
例えば、ホルミル基、ァセチル基、ベンゾィル基などが挙げられる。 Rdで表されるォキ シカルボ-ル基としては、 COORi (ここで、 Riは水素原子、炭素数 1〜8のアルキ ル基またはァリール基を表す)で示される基が好ましぐ例えば、カルボキシル基、メト キシカルボ-ル基、エトキシカルボ-ル基、プロポキシカルボニル基、 n ブトキシカ ルボニル基、 sec ブトキシカルボ-ル基、 ter ブトキシカルボ-ル基、 n—ペントキ シカルボニル基、フエノキシカルボ-ル基などが挙げられる。好ましいォキシカルボ- ル基としては、例えば、メトキシカルボ-ル基、エトキシカルボニル基などが挙げられ る。
[0123] Rdで表される好ま U、基としては、ァリール基、置換ァリール基、ォキシカルボニル 基またはシァノ基である。好ましいァリール基としては、例えば、フエニル基などが挙 げられる。好ましい置換ァリール基としては、例えば、ハロゲン原子置換フエニル基、 トリフルォロメチル置換フエ-ル基などが挙げられる。また、これらの置換基は、ハロゲ ン原子の場合は、 1〜5個置換しているのがよい。アルコキシ基やトリフルォロメチル 基の場合は、 1個または 2個置換しているのがよぐ 1個置換の場合は、ノ ラ位もしく はオルト位が好ましぐ 2個置換の場合はメタ位が好ましい。好ましいォキシカルボ- ル基としては、例えば、メトキシカルボ-ル基、エトキシカルボニル基などが挙げられ る。
[0124] 上記化学式 3で示される好ましい有機テルル化合物は、 Raが炭素数 1〜4のアルキ ル基を表し、 Rbおよび Reが水素原子または炭素数 1〜4のアルキル基を表し、 Rdがァ リール基、置換ァリール基またはォキシカルボ二ル基を表すィ匕合物である。特に好ま しい有機テルルイ匕合物は、 が炭素数 1〜4のアルキル基を表し、 Rbおよび Reが水 素原子または炭素数 1〜4のアルキル基を表し、 Rdがフエ-ル基、置換フエニル基、 メトキシカルボ-ル基またはエトキシカルボ二ル基を表すィ匕合物である。
[0125] 上記化学式 3で示される有機テルル化合物の具体例としては、例えば、(メチルテラ 二ルーメチル)ベンゼン、(1 メチルテラ-ルーェチル)ベンゼン、(2—メチルテラ- ループ口ピル)ベンゼン、 1 クロロー 4 (メチルテラ-ルーメチル)ベンゼン、 1ーヒ ドロキシー4 (メチルテラ-ルーメチル)ベンゼン、 1ーメトキシー4 (メチルテラ- ルーメチル)ベンゼン、 1 アミノー 4—(メチルテラ-ルーメチル)ベンゼン、 1 -トロ
-4- (メチルテラ-ルーメチル)ベンゼン、 1ーシァノー 4 (メチルテラ-ルーメチル )ベンゼン、 1 メチルカルボ-ルー 4—(メチルテラ-ルーメチル)ベンゼン、 1 フエ -ルカルボ-ルー 4 (メチルテラ-ルーメチル)ベンゼン、 1ーメトキシカルボ-ルー 4 (メチルテラ-ルーメチル)ベンゼン、 1 フエノキシカルボ-ルー 4 (メチルテラ 二ルーメチル)ベンゼン、 1ースルホ-ルー 4—(メチルテラ-ルーメチル)ベンゼン、 1 トリフルォロメチルー 4 (メチルテラ-ルーメチル)ベンゼン、 1 クロロー 4一(1— メチルテラニル ェチル)ベンゼン、 1ーヒドロキシ 4一(1 メチルテラニル ェチ ル)ベンゼン、 1—メトキシ一 4— (1—メチルテラ-ルーェチル)ベンゼン、 1—アミノー 4— (1—メチルテラ-ルーェチル)ベンゼン、 1— -トロ— 4— (1—メチルテラ-ルー ェチル)ベンゼン、 1—シァノ 4— (1—メチルテラ-ルーェチル)ベンゼン、 1—メチ ルカルボ二ルー 4一(1 メチルテラ二ルーェチル)ベンゼン、 1—フエニルカルボ二 ルー 4一(1 メチルテラ-ルーェチル)ベンゼン、 1ーメトキシカルボ-ルー 4一(1— メチルテラ二ルーェチル)ベンゼン、 1—フエノキシカルボ-ルー 4— (1—メチルテラ -ル—ェチル)ベンゼン、 1—スルホ -ル— 4— (1—メチルテラ-ルーェチル)ベンゼ ン、 1 トリフルォロメチルー 4ー(1 メチルテラ-ルーェチル)ベンゼン、 1ー(1ーメ チルテラ二ルーェチル)ー 3, 5 ビス トリフルォロメチルベンゼン、 1, 2, 3, 4, 5— ペンタフルオロー 6— (1—メチルテラ-ルーェチル)ベンゼン、 1—クロ口一 4— (2— メチルテラニル プロピル)ベンゼン、 1 ヒドロキシ 4一(2 メチルテラニル プロ ピル)ベンゼン、 1—メトキシ一 4— (2—メチルテラ-ループロピル)ベンゼン、 1—アミ ノー 4— (2—メチルテラ-ループロピル)ベンゼン、 1— -トロ一 4— (2—メチルテラ- ループ口ピル)ベンゼン、 1—シァノ 4— (2—メチルテラ-ループロピル)ベンゼン、 1 メチルカルボ-ルー 4一(2 メチルテラ-ループロピル)ベンゼン、 1 フエ-ル カルボ二ルー 4一(2 メチルテラ二ループ口ピル)ベンゼン、 1ーメトキシカルボニル —4— (2—メチルテラ-ループロピル)ベンゼン、 1—フエノキシカルボ-ルー 4— (2 メチルテラ-ループロピル)ベンゼン、 1ースルホ-ルー 4一(2 メチルテラ-ルー プロピル)ベンゼン、 1 トリフルォロメチルー 4一(2—メチルテラ-ループロピル)ベ ンゼン、 2—(メチルテラ-ルーメチル)ピリジン、 2—(1 メチルテラ-ルーェチル)ピ リジン、 2—(2—メチルテラ二ループ口ピル)ピリジン、 2—メチルー 2—メチルテラニル
プロパナール、 3—メチルー 3 メチルテラ二ルー 2 ブタノン、 2 メチルテラニル エタン酸メチル、 2—メチルテラ二ループ口ピオン酸メチル、 2—メチルテラ二ルー 2 メチルプロピオン酸メチル、 2—メチルテラ二ルーエタン酸ェチル、 2—メチルテラ 二ループ口ピオン酸ェチル、 2—メチルテラ-ルー 2—メチルプロピオン酸ェチル、 2 一(n ブチルテラ-ル) 2—メチルプロピオン酸ェチル、 2—メチルテラ-ルァセト 二トリル、 2—メチルテラニルプロピオ二トリル、 2—メチルー 2—メチルテラニルプロピ ォ-トリル、(フエ-ルテラ-ルーメチル)ベンゼン、(1 フエ-ルテラ-ルーェチル) ベンゼン、(2—フエ-ルテラ-ループロピル)ベンゼンなどが挙げられる。
また、上記の有機テルルイ匕合物において、メチルテラニル、 1—メチルテラ-ル、 2 メチルテラ-ルの部分が、各々、ェチルテラ-ル、 1 ェチルテラ-ル、 2—ェチル テラニル、ブチルテラ-ル、 1 ブチルテラ-ル、 2—ブチルテラ-ルに変更された有 機テルル化合物もすベて含まれる。これらの有機テルル化合物のうち、(メチルテラ- ルーメチル)ベンゼン、(1 メチルテラ-ルーェチル)ベンゼン、(2—メチルテラ-ル —プロピル)ベンゼン、 1—クロ口一 4— (1—メチルテラ-ルーェチル)ベンゼン、 1— トリフルォロメチルー 4一(1 メチルテラ二ルーェチル)ベンゼン、 2 メチルテラニル 2—メチルプロピオン酸メチル、 2—メチルテラ二ルー 2—メチルプロピオン酸ェチ ル、 2—(n ブチルテラ-ル) 2—メチルプロピオン酸ェチル、 1一(1 メチルテラ 二ルーェチル)—3, 5 ビス トリフルォロメチルベンゼン、 1, 2, 3, 4, 5 ペンタフ ルオロー 6—(1 メチルテラ-ルーェチル)ベンゼン、 2 メチルテラ-ルプロピオ- トリル、 2—メチル—2—メチルテラニルプロピオ二トリル、(ェチルテラ二ルーメチル) ベンゼン、(1 ェチルテラ-ルーェチル)ベンゼン、(2—ェチルテラ-ループロピル )ベンゼン、 2—ェチルテラ二ルー 2—メチルプロピオン酸メチル、 2—ェチルテラニル 2—メチルプロピオン酸ェチル、 2—ェチルテラニルプロピオ二トリル、 2—メチルー 2—ェチルテラ-ルプロピオ-トリル、(n ブチルテラ-ルーメチル)ベンゼン、(1— n ブチルテラ-ルーェチル)ベンゼン、(2— n—ブチルテラ二ループ口ピル)ベンゼ ン、 2— n ブチルテラ二ルー 2—メチルプロピオン酸メチル、 2— n ブチルテラニル 2—メチルプロピオン酸ェチル、 2— n—ブチルテラ-ルプロピオ-トリル、 2—メチ ルー 2— n—ブチルテラ-ルプロピオ-トリルが好適である。
[0127] 上記化学式 4において、 Rfまたは Rgで表される炭素数 1〜8のアルキル基としては、 例えば、メチル基、ェチル基、 n—プロピル基、イソプロピル基、シクロプロピル基、 n ブチル基、 sec ブチル基、 tert ブチル基、シクロブチル基、 n ペンチル基、 n 一へキシル基、 n—へプチル基、 n—ォクチル基などの炭素数 1〜8の直鎖状、分岐 鎖状または環状のアルキル基などが挙げられる。好ましいアルキル基としては、例え ば、炭素数 1〜4の直鎖状または分岐鎖状のアルキル基などが挙げられる、より好ま しいアルキル基は、メチル基、ェチル基またはブチル基である。 Rfまたは で表され るァリール基としては、例えば、フエ-ル基、ナフチル基などが挙げられる。 Rfまたは で表される置換ァリール基としては、例えば、置換基を有するフエ-ル基、置換基 を有するナフチル基などが挙げられる。 Rfまたは で表される芳香族へテロ環基とし ては、例えば、ピリジル基、フリル基、チェニル基などが挙げられる。置換ァリール基 の置換基としては、例えば、ハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基 、シァノ基、—CORjで示されるカルボ-ル含有基(ここで、 Rjは炭素数 1〜8のアルキ ル基、ァリール基、炭素数 1〜8のアルコキシ基またはァリールォキシ基を表す)、ス ルホニル基、トリフルォロメチル基などが挙げられる。好ましいァリール基としては、例 えば、フエニル基、トリフルォロメチル置換フエニル基などが挙げられる。また、これら の置換基は、 1個または 2個置換しているのがよぐノ ラ位もしくはオルト位が好ましい
[0128] 上記化学式 4で示されるジテルリドィ匕合物の具体例としては、例えば、ジメチルジテ ルリド、ジェチルジテルリド、ジー n プロピルジテルリド、ジイソプロピルジテルリド、 ジシクロプロピルジテルリド、ジー n—ブチルジテルリド、ジー sec ブチルジテルリド、 ジー tert—ブチルジテルリド、ジシクロブチルジテルリド、ジフ -ルジテルリド、ビス - (p—メトキシフエ-ル)ジテルリド、ビス—(p ァミノフエ-ル)ジテルリド、ビス—(p -トロフエ-ル)ジテルリド、ビス一(p シァノフエ-ル)ジテルリド、ビス一(p—スル ホ-ルフエ-ル)ジテルリド、ジナフチルジテルリド、ジピリジルジテルリドなどが挙げら れる。
[0129] <ラジカル重合開始剤 >
上記化学式 3で示される有機テルル化合物および Zまたは上記化学式 4で示され
るジテルリドィ匕合物を用いてリビングラジカル重合を行う際には、ラジカル重合開始剤 が用いられる。ラジカル重合開始剤としては、通常のラジカル重合で使用するラジカ ル重合開始剤であれば、特に限定されるものではないが、例えば、下記化学式 10 :
[0130] [化 23]
R11 R11
R12— C—— N^=N—— C—— R12
I I
(化学式 10)
(式中、 R11および R12は互いに独立して炭素数 1〜 10のアルキル基、カルボキシル 基で置換された炭素数 1〜4のアルキル基、置換基を有して!/、てもよ 、フエ-ル基を 表し、同じ炭素原子に結合している R11と R12とが脂肪族環を形成していてもよぐ R13 はシァノ基、ァセトキシ基、力ルバモイル基、(炭素数 1〜4のアルコキシ)カルボ-ル 基を表す)
で示されるァゾィ匕合物を例示することができる。上記化学式 10において、 R11または R12で示される炭素数 1〜10のアルキル基としては、例えば、メチル基、ェチル基、プ 口ピル基、イソプロピル基、ブチル基、ペンチル基、へキシル基、ヘプチル基、ォクチ ル基、ノ-ル基、デシル基などが挙げられる。 R11または R12で示される、カルボキシル 基で置換された炭素数 1〜4のアルキル基としては、例えば、メチル基、ェチル基、プ 口ピル基、イソプロピル基、ブチル基などが挙げられる。同じ炭素原子に結合している R11と R12とで形成される脂肪族環としては、例えば、シクロペンチル基、シクロへキシ ル基、シクロへプチル基、シクロォクチル基などが挙げられる。なお、フエ-ル基には 、例えば、水酸基、メチル基、ェチル基、メトキシ基、エトキシ基、ニトロ基、アミノ基、 ァセチル基、ァセチルァミノ基などの置換基が置換されていてもよい。 R13で表される (炭素数 1〜4のアルコキシ)カルボ-ル基としては、例えば、メトキシカルボ-ル基、 エトキシカルボ-ル基、プロポキシカルボ-ル基、イソプロポキシカルボニル基、ブト キシカルボニル基などが挙げられる。
[0131] 化学式 10で示されるァゾ化合物の具体例としては、例えば、 2, 2'ーァゾビス (イソ ブチ口-トリノレ)(AIBN)、 2, 2,ーァゾビス(2—メチノレブチ口-トリノレ)(AMBN)、 2,
2, -ァゾビス(2, 4—ジメチルバレ口-トリル)(ADVN)、 1 , 1, 一ァゾビス( 1―シクロ へキサンカルボ-トリル)(ACHN)、ジメチルー 2, 2'ーァゾビスイソブチレート(MAI B)、 4, 4,一ァゾビス(4—シァノバレリアン酸)(ACVA)、 1, 1, 一ァゾビス(1—ァセ トキシ— 1—フエ-ルェタン)、 2, 2'—ァゾビス(2—メチルブチルアミド)、 1, 1 '—ァ ゾビス(1ーシクロへキサンカルボン酸メチル)などが挙げられる。
[0132] <有機テルルイ匕合物および Zまたはジテルリドィ匕合物を用いた重合体の製造〉 本発明の重合体は、上記化学式 3で示される有機テルルイ匕合物および Zまたは上 記化学式 4で示されるジテルリドィ匕合物とラジカル重合開始剤とを用いて、例えば、 以下のようにして製造される。
[0133] まず、不活性ガスで置換した反応容器内で、化学式 3で示される有機テルルイ匕合 物および Zまたは化学式 4で示されるジテルリドィ匕合物とラジカル重合開始剤とを混 合し、撹拌する。反応温度や反応時間は、適宜調節すればよぐ特に限定されるもの で ίまな ヽ力 通常、 40〜150。Cの温度で、 0. 5〜: LOO時 [¾、好ましく ίま、 60〜120 °Cの温度で、 1〜30時間撹拌する。この際、反応は、通常、常圧下で行われるが、加 圧下または減圧下で行ってもよい。不活性ガスとしては、例えば、窒素、アルゴン、へ リウムなどが挙げられる。これらの不活性ガスのうち、アルゴン、窒素が好適であり、窒 素が特に好適である。
[0134] 化学式 3で示される有機テルル化合物および Zまたは化学式 4で示されるジテルリ ド化合物とラジカル重合開始剤との使用量は、通常、ラジカル重合開始剤 lmolに対 して、化学式 3で示される有機テルル化合物および Zまたは化学式 4で示されるジテ ルリド化合物が 0. 01〜: LOOmol、好ましくは 0. 1〜: LOmol、より好ましくは 0. l〜5m olである。
[0135] 反応は、通常、無溶媒で行うが、ラジカル重合で一般に使用される有機溶媒あるい は水系溶媒を使用してもよい。使用可能な有機溶媒としては、例えば、ベンゼン、ト ルェン、 N, N—ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、ァセ トン、クロ口ホルム、四塩化炭素、テトラヒドロフラン (THF)、酢酸ェチル、トリフルォロ メチルベンゼンなどが挙げられる。また、水系溶媒としては、例えば、水、メタノール、 エタノール、イソプロパノール、 n—ブタノール、ェチノレセロソノレブ、ブチノレセロソノレブ
、 1—メトキシ— 2—プロパノールなどが挙げられる。溶媒の使用量は、適宜調節すれ ばよぐ特に限定されるものではないが、例えば、不飽和単量体 lgに対して、 0. 01 〜50mL、好ましくは 0. 05〜5mLである。
[0136] 次に、上記混合物に不飽和単量体を加えて撹拌する。重合温度や重合時間は、 得られるリビングラジカル重合体の分子量または分子量分布に応じて適宜調節すれ ばよぐ特に限定されるものではないが、通常、 40〜150°Cの温度で、 0. 5〜: LOO時 間、好ましくは、 60〜120°Cの温度で、 1〜30時間撹拌する。この際、重合は、通常 、常圧下で行われるが、加圧下または減圧下で行ってもよい。
[0137] 不飽和単量体の使用量は、得られるリビングラジカル重合体の分子量または分子 量分布に応じて適宜調節すればよぐ特に限定されるものではないが、通常、ラジカ ル重合開始剤 1モルに対して、 5〜: LO, 000モル、好ましくは 50〜5, 000モルである
[0138] 反応終了後、従来公知の方法により、溶媒や残存する不飽和単量体を減圧下で除 去して目的の重合体を取り出したり、目的の重合体を溶解しな 、溶媒を使用して再 沈澱処理により目的の重合体を単離したりする。反応後処理については、目的の重 合体に支障がなければ、どのような処理方法でも行うことができる。
[0139] 上記のようなリビングラジカル重合は、非常に温和な条件下で、分子量および分子 量分布を精度よく行うことができる。本発明で得られるリビングラジカル重合体の分子 量は、反応時間やテルル化合物の量により調整可能であるが、例えば、数平均分子 量力 00〜: L, 000, 000、好まし <は 1, 000〜300, 000、より好まし <は 3, 000〜 150, 000であるリビングラジカル重合体を得ることができる。また、本発明で得られる 重合体の分子量分布(MwZMn)は、好ましくは 1. 01〜: L 60、より好ましくは 1. 0 5〜1. 50、さらに好ましくは 1. 05〜: L 40、さらに好ましくは 1. 05〜: L 30、さらに 好ましくは 1. 05-1. 20の範囲内で制御することができる。
[0140] 本発明で得られるリビングラジカル重合体の末端基は、有機テルルイ匕合物に由来 するアルキル基、ァリール基、置換ァリール基、芳香族へテロ環基、ォキシカルボ- ル基またはシァノ基力 また、成長末端は、反応性の高いテルルであることが確認さ れている。従って、有機テルルイ匕合物をリビングラジカル重合に用いることにより、従
来のリビングラジカル重合で得られるリビングラジカル重合体よりも末端基を他の官能 基に変換することが容易である。これらにより、本発明で得られるリビングラジカル重 合体は、マクロリビングラジカル重合開始剤(マクロイニシエータ一)として用いること ができる。
[0141] すなわち、本発明のマクロリビングラジカル重合開始剤を用いて、例えば、メトキシ ポリエチレングリコールメタクリル酸エステルーメタクリル酸などの A—Bジブロック共重 合体ゃメトキシポリエチレングリコールメタクリル酸エステルーメタクリル酸ーメトキシポ リエチレングリコールメタクリル酸エステルなどの A—B— Aトリブロック共重合体、ブロ ック共重合体の製造方法としては、具体的には、以下のとおりである。
[0142] A— Bジブロック共重合体の場合、例えば、メトキシポリエチレングリコールメタクリル 酸エステルーメタクリル酸共重合体の場合は、上記のリビングラジカル重合体の製造 方法と同様に、まず、メトキシポリエチレングリコールメタクリル酸エステルを、化学式 3 で示される有機テルルイ匕合物および Zまたは化学式 4で示されるジテルリドィ匕合物と ラジカル重合開始剤と混合し、ポリメトキシポリエチレングリコールメタクリル酸エステ ルを製造した後、続いてメタクリル酸を混合して、メトキシポリエチレングリコールメタク リル酸エステルーメタクリル酸共重合体を得る方法が挙げられる。
[0143] A—B— Aトリブロック共重合体や A—B—Cトリブロック共重合体の場合も、上記の 方法で A—Bジブロック共重合体を製造した後、単量体 Aまたは単量体 Cを混合し、 A—B— Aトリブロック共重合体または A—B— Cトリブロック共重合体を得る方法が挙 げられる。
[0144] 上記の方法で各ブロックを製造後、そのまま次のブロックの反応を開始してもよいし 、一度反応を終了後、精製して力も次のブロックの反応を開始してもよい。ブロック共 重合体の単離は通常の方法により行うことができる。
[0145] <本発明の重合体の用途 >
本発明の重合体は、上記の方法によって得られるポリオキシアルキレン鎖由来の構 成単位を必須成分とする重合体であるが、その用途としては、例えば、無機粉体'顔 料の水系スラリー分散剤、セメント混和剤、スケール防止剤、高分子界面活性剤、乳 ィ匕剤、洗剤用ビルダー、脱墨剤、キレート剤、染料分散剤、石炭用分散剤などが挙
げられる。
[0146] 本発明の重合体は、上述の方法によって得られるポリオキシアルキレン鎖由来の構 成単位を必須成分とする重合体であるが、特に、本発明の重合体をセメント混和剤 用重合体として用いる場合、以下の形態が好ましい。
[0147] セメント混和剤用重合体として用いる場合、取り扱い上、水溶液の形態が好ましぐ また、他の添加剤を本発明のセメント混和剤に含有していても良いし、あるいは、本 混和剤をセメントと混合する際に、添加することもできる。他の添加剤としては、公知 のセメント添加剤を用いることができ、例えば、
(A)水溶性高分子物質:ポリアクリル酸 (ナトリウム)、ポリメタクリル酸 (ナトリウム)、 ポリマレイン酸 (ナトリウム)、アクリル酸 ·マレイン酸共重合物のナトリウム塩などの不 飽和カルボン酸重合物;ポリエチレングリコール、ポリプロピレングリコールなどのポリ ォキシエチレンあるいはポリオキシプロピレンのポリマーまたはそれらのコポリマー;メ チノレセノレロース、ェチノレセノレロース、ヒドロキシメチノレセノレロース、ヒドロキシェチノレセ ノレロース、カノレボキシメチノレセノレロース、カノレボキシェチノレセノレロース、ヒドロキシプロ ピルセルロースなどの非イオン性セルロースエーテル類;酵母グルカンゃキサンタン ガム、 β— 1, 3グルカン類 (直鎖状、分岐鎖状の何れでも良ぐ一例を挙げれば、力 一ドラン、パラミロン、バキマン、スクレログルカン、ラミナランなど)などの微生物醱酵 によって製造される多糖類;ポリアクリルアミド;ポリビュルアルコール;デンプン;デン プンリン酸エステル;アルギン酸ナトリウム;ゼラチン;分子内にアミノ基を有するアタリ ル酸のコポリマーおよびその四級化合物など。
[0148] (Β)高分子ェマルジヨン:(メタ)アクリル酸アルキルなどの各種ビュル単量体の共重 合物など。
[0149] (C)遅延剤:ダルコン酸、ダルコヘプトン酸、ァラボン酸、リンゴ酸またはクェン酸、 および、これらの、ナトリウム、カリウム、カルシウム、マグネシウム、アンモ-ゥム、トリ エタノールァミンなどの無機塩または有機塩などのォキシカルボン酸並びにその塩; グルコース、フラクトース、ガラクトース、サッカロース、キシロース、ァピオース、リボー ス、異性ィ匕糖などの単糖類や、二糖、三糖などのオリゴ糖、またはデキストリンなどの オリゴ糖、またはデキストランなどの多糖類、これらを含む糖蜜類などの糖類;ソルビト
ールなどの糖アルコール;珪弗化マグネシウム;リン酸並びにその塩またはホウ酸ェ ステル類;アミノカルボン酸とその塩;アルカリ可溶タンパク質;フミン酸;タンニン酸;フ ェノール;グリセリンなどの多価アルコール;アミノトリ(メチレンホスホン酸)、 1ーヒドロ キシェチリデン 1, 1ージホスホン酸、エチレンジアミンテトラ(メチレンホスホン酸)、 ジエチレントリァミンペンタ(メチレンホスホン酸)およびこれらのアルカリ金属塩、アル カリ土類金属塩などのホスホン酸およびその誘導体など。
[0150] (D)早強剤 '促進剤:塩ィ匕カルシウム、亜硝酸カルシウム、硝酸カルシウム、臭化力 ルシゥム、ヨウ化カルシウムなどの可溶性カルシウム塩;塩化鉄、塩化マグネシウムな どの塩化物;硫酸塩;水酸化カリウム;水酸化ナトリウム;炭酸塩;チォ硫酸塩;ギ酸お よびギ酸カルシウムなどのギ酸塩;アルカノールァミン;アルミナセメント;カルシウムァ ルミネートシリケートなど。
[0151] (E)鉱油系消泡剤:燈油、流動パラフィンなど。
[0152] (F)油脂系消泡剤:動植物油、ごま油、ひまし油、これらのアルキレンォキシド付カロ 物など。
[0153] (G)脂肪酸系消泡剤:ォレイン酸、ステアリン酸、これらのアルキレンォキシド付カロ 物など。
[0154] (H)脂肪酸エステル系消泡剤:グリセリンモノリシノレート、ァルケ-ルコハク酸誘導 体、ソルビトールモノラウレート、ソルビトールトリオレエート、天然ワックスなど。
[0155] (I)ォキシアルキレン系消泡剤:(ポリ)ォキシエチレン(ポリ)ォキシプロピレン付カロ 物などのポリオキシアルキレン類;ジエチレングリコールへプチルエーテル、ポリオキ シエチレンォレイルエーテル、ポリオキシプロピレンブチルエーテル、ポリオキシェチ レンポリオキシプロピレン 2 ェチルへキシルエーテル、炭素数 12〜 14の高級アル コールへのォキシエチレンォキシプロピレン付カ卩物などの(ポリ)ォキシアルキルエー テル類;ポリオキシプロピレンフエニルエーテル、ポリオキシエチレンノニルフエニルェ 一テルなどの(ポリ)ォキシアルキレン(アルキル)ァリールエーテル類; 2, 4, 7, 9— テトラメチル— 5 デシン— 4, 7 ジオール、 2, 5 ジメチルー 3 へキシン— 2, 5 ジオール、 3 メチル 1 ブチン 3 オールなどのアセチレンアルコ一ルにァ ルキレンォキシドを付カ卩重合させたアセチレンエーテル類;ジエチレングリコールォレ
イン酸エステル、ジエチレングリコールラウリル酸エステル、エチレングリコールジステ アリン酸エステルなどの(ポリ)ォキシアルキレン脂肪酸エステル類;ポリオキシェチレ ンソルビタンモノラウリン酸エステル、ポリオキシエチレンソルビタントリオレイン酸エス テルなどの(ポリ)ォキシアルキレンソルビタン脂肪酸エステル類;ポリオキシプロピレ ンメチルエーテル硫酸ナトリウム、ポリオキシエチレンドデシルフエノールエーテル硫 酸ナトリウムなどの(ポリ)ォキシアルキレンアルキル(ァリール)エーテル硫酸エステル 塩類;(ポリ)ォキシエチレンステアリルリン酸エステルなどの(ポリ)ォキシアルキレン アルキルリン酸エステル類;ポリオキシエチレンラウリルァミンなどの(ポリ)ォキシアル キレンァノレキノレアミン類;ポリ才キシァノレキレンアミドなど。
[0156] (J)アルコール系消泡剤:ォクチルアルコール、へキサデシルアルコール、ァセチレ ンアルコール、グリコール類など。
[0157] (K)アミド系消泡剤:アタリレートポリアミンなど。
[0158] (L)リン酸エステル系消泡剤:リン酸トリブチル、ナトリウムォクチルホスフェートなど
[0159] (M)金属石鹼系消泡剤:アルミ-ゥムステアレート、カルシウムォレエートなど。
[0160] (N)シリコーン系消泡剤:ジメチルシリコーン油、シリコーンペースト、シリコーンエマ ルジョン、有機変性ポリシロキサン(ジメチルポリシロキサンなどのポリオルガノシロキ サン)、フルォロシリコーン油など。
[0161] (O)AE剤:榭脂石鹼、飽和あるいは不飽和脂肪酸、ヒドロキシステアリン酸ナトリウ ム、ラウリルサルフェート、 ABS (アルキルベンゼンスルホン酸)、 LAS (直鎖アルキル ベンゼンスルホン酸)、アルカンスルホネート、ポリオキシエチレンアルキル(フエ-ル )エーテル、ポリオキシエチレンアルキル(フエ-ル)エーテル硫酸エステルまたはそ の塩、ポリオキシエチレンアルキル(フエ-ル)エーテルリン酸エステルまたはその塩、 蛋白質材料、ァルケ-ルスルホコハク酸、 aーォレフインスルホネートなど。
[0162] (P)その他界面活性剤:ォクタデシルアルコールゃステアリルアルコールなどの分 子内に 6〜30個の炭素原子を有する脂肪族 1価アルコール、アビエチルアルコール などの分子内に 6〜30個の炭素原子を有する脂環式 1価アルコール、ドデシルメル カプタンなどの分子内に 6〜30個の炭素原子を有する 1価メルカプタン、ノ-ルフエノ
ールなどの分子内に 6〜30個の炭素原子を有するアルキルフエノール、ドデシルアミ ンなどの分子内に 6〜30個の炭素原子を有するァミン、ラウリン酸ゃステアリン酸など の分子内に 6〜30個の炭素原子を有するカルボン酸に、エチレンォキシド、プロピレ ンォキシドなどのアルキレンォキシドを 10モル以上付カ卩させたポリアルキレンォキシ ド誘導体類;アルキル基またはアルコキシル基を置換基として有しても良 、、スルホン 基を有する 2個のフエ-ル基がエーテル結合した、アルキルジフエ-ルエーテルスル ホン酸塩類;各種ァ-オン性界面活性剤;アルキルアミンアセテート、アルキルトリメ チルアンモ -ゥムクロライドなどの各種カチオン性界面活性剤;各種ノ-オン性界面 活性剤;各種両性界面活性剤など。
[0163] (Q)防水剤:脂肪酸 (塩)、脂肪酸エステル、油脂、シリコン、パラフィン、ァスフアル ト、ワックスなど。
[0164] (R)防鲭剤:亜硝酸塩、リン酸塩、酸化亜鉛など。
[0165] (S)ひび割れ低減剤:ポリオキシアルキルエーテル類; 2—メチルー 2, 4—ペンタン ジオールなどのアルカンジオール類など。
[0166] (T)膨張材:エトリンガイト系、石炭系など。
その他の公知のセメント添加剤 (材)としては、セメント湿潤剤、増粘剤、分離低減剤、 凝集剤、乾燥収縮低減剤、強度増進剤、セルフレべリング剤、防鲭剤、着色剤、防力 ビ剤、高炉スラグ、フライアッシュ、シンダーアッシュ、クリンカーアッシュ、ハスクアツシ ュ、シリカヒューム、シリカ粉末、石膏などを挙げることができる。これら公知のセメント 添加剤 (材)は単独で用いてもよぐ 2種以上を併用してもよ 、。
[0167] さらには、本発明のセメント混和剤には、公知のセメント分散剤を併用することがで き、例えば、以下のものが使用できる。
[0168] リグ-ンスルホン酸塩;ポリオール誘導体;ナフタレンスルホン酸ホルマリン縮合物; メラミンスルホン酸ホルマリン縮合物;ポリスチレンスルホン酸塩;特開平 1 113419 号公報に記載の如くアミノアリ一ルスルホン酸 フエノール ホルムアルデヒド縮合 物などのアミノスルホン酸系;特開平 7— 267705号公報に記載の如く(a)成分として 、ポリアルキレングリコールモノ (メタ)アクリル酸エステル系化合物と (メタ)アクリル酸 系化合物との共重合体および Zまたはその塩と、(b)成分として、ポリアルキレンダリ
コールモノ (メタ)ァリルエーテル系化合物と無水マレイン酸との共重合体および Z若 しくはその加水分解物、並びに Zまたは、その塩と、(C)成分として、ポリアルキレング リコールモノ(メタ)ァリルエーテル系化合物と、ポリアルキレングリコール系化合物の マレイン酸エステルとの共重合体および Zまたはその塩とを含むセメント分散剤;特 許第 2508113号明細書に記載の如く A成分として、(メタ)アクリル酸のポリアルキレ ングリコールエステルと (メタ)アクリル酸 (塩)との共重合体、 B成分として、特定のポリ エチレングリコールポリプロピレングリコール系化合物、 C成分として、特定の界面活 性剤からなるコンクリート混和剤;特開昭 62— 216950号公報に記載の如く(メタ)ァ クリル酸のポリエチレン(プロピレン)グリコールエステル若しくはポリエチレン(プロピ レン)グリコールモノ (メタ)ァリルエーテル、(メタ)ァリルスルホン酸 (塩)、並びに、(メ タ)アクリル酸 (塩)からなる共重合体。特開平 1— 226757号公報に記載の如く(メタ) アクリル酸のポリエチレン(プロピレン)グリコールエステル、(メタ)ァリルスルホン酸 ( 塩)、および、(メタ)アクリル酸 (塩)からなる共重合体;特公平 5— 36377号公報に記 載の如く(メタ)アクリル酸のポリエチレン(プロピレン)グリコールエステル、(メタ)ァリ ルスルホン酸 (塩)若しくは (メタ)ァリルォキシベンゼンスルホン酸 (塩)、並びに、 (メタ)アクリル酸 (塩)からなる共重合体;特開平 4—149056号公報に記載の如くポ リエチレングリコールモノ (メタ)ァリルエーテルとマレイン酸 (塩)との共重合体;特開 平 5— 170501号公報に記載の如く(メタ)アクリル酸のポリエチレングリコールエステ ル、(メタ)ァリルスルホン酸 (塩)、(メタ)アクリル酸 (塩)、アルカンジオールモノ (メタ) アタリレート、ポリアルキレングリコールモノ (メタ)アタリレート、および、分子中にアミド 基を有する α , β 不飽和単量体からなる共重合体;特開平 6— 191918号公報に 記載の如くポリエチレングリコールモノ(メタ)ァリルエーテル、ポリエチレングリコール モノ (メタ)アタリレート、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸 (塩)、並 びに、(メタ)ァリルスルホン酸 (塩)若しくは - (メタ)ァリルォキシベンゼンスルホン酸 (塩)からなる共重合体;特開平 5—43288号公報に記載の如くアルコキシポリアルキ レンダリコールモノアリルエーテルと無水マレイン酸との共重合体、若しくは、その加 水分解物、または、その塩;特公昭 58— 38380号公報に記載の如くポリエチレンダリ コールモノアリルエーテル、マレイン酸、および、これらの単量体と共重合可能な単量
体からなる共重合体、若しくは、その塩、または、そのエステル。特公昭 59— 18338 号公報に記載の如くポリアルキレングリコールモノ (メタ)アクリル酸エステル系単量体 、(メタ)アクリル酸系単量体、および、これらの単量体と共重合可能な単量体からなる 共重合体;特開昭 62— 119147号公報に記載の如くスルホン酸基を有する (メタ)ァ クリル酸エステルおよび必要によりこれと共重合可能な単量体力 なる共重合体、ま たは、その塩;特開平 6— 271347号公報に記載の如くアルコキシポリアルキレンダリ コールモノアリルエーテルと無水マレイン酸との共重合体と、末端にァルケ-ル基を 有するポリオキシアルキレン誘導体とのエステルイ匕反応物;特開平 6— 298555号公 報に記載の如くアルコキシポリアルキレングリコールモノアリルエーテルと無水マレイ ン酸との共重合体と、末端に水酸基を有するポリオキシアルキレン誘導体とのエステ ルイ匕反応物;特開昭 62— 68806号公報に記載の如く 3—メチルー 3ブテン— 1ーォ ールなどの特定の不飽和アルコールにエチレンォキシドなどを付カ卩したアルケ-ル エーテル系単量体、不飽和カルボン酸系単量体、および、これらの単量体と共重合 可能な単量体からなる共重合体、または、その塩などのポリカルボン酸 (塩)。これら セメント分散剤は単独で用いてもよぐ 2種以上を併用してもよい。
[0169] その他の公知のセメント添加剤 (材)としては、セメント湿潤剤、増粘剤、分離低減剤 、凝集剤、乾燥収縮低減剤、強度増進剤、セルフレべリング剤、防鲭剤、着色剤、防 カビ剤などを挙げることができる。これら公知のセメント添加剤 (材)は単独で用いても よぐ 2種以上を併用してもよい。
[0170] 上記セメント糸且成物において、セメントおよび水以外の成分についての特に好適な 実施形態としては、次の(1)〜(7)が挙げられる。
[0171] (1)本発明のセメント混和剤とォキシアルキレン系消泡剤との 2成分を必須とする組 み合わせ。ォキシアルキレン系消泡剤としては、ポリオキシアルキレン類、ポリオキシ アルキレンアルキルエーテル類、ポリオキシアルキレンアセチレンエーテル類、ポリオ キシァノレキレンァノレキノレアミン類などが使用可會であるが、ポリ才キシァノレキレンァノレ キルアミン類が特に好適である。なお、ォキシアルキレン系消泡剤の配合質量比は、 セメント混和剤に対して、好ましくは 0. 01〜20質量%の範囲内である。
[0172] (2)本発明のセメント混和剤、ォキシアルキレン系消泡剤および AE剤の 3成分を必
須とする組み合わせ。ォキシアルキレン系消泡剤としては、ポリオキシアルキレン類、 ポリオキシアルキレンアルキルエーテル類、ポリオキシアルキレンアセチレンエーテル 類、ポリオキシアルキレンアルキルアミン類などが使用可能であるが、ポリオキシアル キレンァノレキノレアミン類が特に好適である。一方、 AE剤としては、榭脂酸石鹼、アル キル硫酸エステル類、アルキルリン酸エステル類が特に好適である。なお、本発明の セメント混和剤とのォキシアルキレン系消泡剤の配合質量比は、本発明のセメント混 和剤に対して、好ましくは 0. 01〜20質量%の範囲内である。他方、 AE剤の配合質 量比は、セメントに対して、好ましくは 0. 001〜2質量%の範囲内である。
[0173] (3)本発明のセメント混和剤、炭素原子数 2〜 18のアルキレンォキシドを平均付カロ モル数で 2〜300付カ卩したポリオキシアルキレン鎖を有するポリアルキレングリコール モノ (メタ)アクリル酸エステル系単量体と、(メタ)アクリル酸系単量体と、これらの単量 体と共重合可能な単量体とからなる共重合体 (特公昭 59— 18338号公報、特開平 7 223852号公報、特開平 9— 241056号公報などに記載)、ならびに、ォキシアル キレン系消泡剤の 3成分を必須とする組み合わせ。なお、本発明のセメント混和剤と 前記共重合体との配合質量比は、好ましくは 5Z95〜95Z5の範囲内であり、より好 ましくは 10Z90〜90Z10の範囲内である。ォキシアルキレン系消泡剤の配合質量 比は、本発明のセメント混和剤と前記共重合体との合計量に対して、好ましくは 0. 0 1〜20質量%の範囲内である。
[0174] (4)本発明のセメント混和剤と遅延剤との 2成分を必須とする組み合わせ。遅延剤と しては、ダルコン酸(塩)、クェン酸(塩)などのォキシカルボン酸類、グルコースなどの 糖類、ソルビトールなどの糖アルコール類、アミノトリ(メチレンホスホン酸)などのホス ホン酸類などが使用可能である。なお、本発明のセメント混和剤と遅延剤との配合比 は、共重合体 (Α)および Ζまたは共重合体 (Β)と遅延剤との質量比で、好ましくは 5 0Ζ50〜99. 9/0. 1の範囲内であり、より好ましくは 70Z30〜99Zlの範囲内で ある。
[0175] (5)本発明のセメント混和剤と促進剤との 2成分を必須とする組み合わせ。促進剤と しては、塩化カルシウム、亜硝酸カルシウム、硝酸カルシウムなどの可溶性カルシゥ ム塩類、塩化鉄、塩化マグネシウムなどの塩化物類、チォ硫酸塩、ギ酸、ギ酸カルシ
ゥムなどのギ酸塩類などが使用可能である。なお、本発明のセメント混和剤と促進剤 との配合質量比としては、好ましくは 10Z90〜99. 9/0. 1の範囲内であり、より好 ましくは 20Z80〜99Zlの範囲内である。
[0176] (6)本発明のセメント混和剤と材料分離低減剤との 2成分を必須とする組み合わせ 。材料分離低減剤としては、非イオン性セルロースエーテル類などの各種増粘剤、部 分構造として炭素原子数 4〜30の炭化水素鎖力 なる疎水性置換基と炭素原子数 2 〜18のアルキレンォキシドを平均付カ卩モル数で 2〜300付カ卩したポリオキシアルキレ ン鎖とを有する化合物などが使用可能である。なお、本発明のセメント混和剤と材料 分離低減剤との配合質量比は、好ましくは 10Ζ90〜99. 99/0. 01の範囲内であ り、より好ましくは 50Ζ50〜99. 9/0. 1の範囲内である。この組み合わせのセメント 組成物は、高流動コンクリート、自己充填性コンクリート、セルフレベリング材などとし て好適である。
[0177] (7)本発明のセメント混和剤と分子中にスルホン酸基を有するスルホン酸系分散剤 との 2成分を必須とする組み合わせ。スルホン酸系分散剤としては、リグ-ンスルホン 酸塩、ナフタレンスルホン酸ホルマリン縮合物、メラミンスルホン酸ホルマリン縮合物、 ポリスチレンスルホン酸塩、アミノアリ一ルスルホン酸 フエノール -ホルムアルデヒド 縮合物などのアミノスルホン酸系の分散剤などが使用可能である。なお、本発明のセ メント混和剤と分子中にスルホン酸基を有するスルホン酸系分散剤との配合比として は、本発明のセメント混和剤と分子中にスルホン酸基を有するスルホン酸系分散剤と の質量比で、好ましくは 5Ζ95〜95Ζ5の範囲内であり、より好ましくは 10Ζ90〜90 ZlOの範囲内である。
[0178] 本発明のセメント混和剤は、公知のセメント混和剤と同様に、セメントペースト、モル タル、コンクリートなどのセメント組成物にカ卩えて用いることができる。また、超高強度 コンクリートにも用いることができる。上記セメント組成物としては、セメント、水、細骨 材、粗骨材などを含む通常用いられるものが好適である。また、フライアッシュ、高炉 スラグ、シリカヒューム、石灰石などの微粉体を添加したものであってもよい。なお、超 高強度コンクリートとは、セメント組成物の分野で一般的にそのように称されているも の、すなわち従来のコンクリートに比べて水 Zセメント比を小さくしてもその硬化物が
従来と同等またはより高い強度となるようなコンクリートを意味し、例えば、水 Zセメン ト比が 25質量%以下、更に 20質量%以下、特に 18質量%以下、特に 14質量%以 下、特に 12質量%程度であっても通常の使用に支障をきたすことのない作業性を有 するコンクリートとなり、その硬化物が好ましくは 60NZmm2以上、より好ましくは 80N Zmm2以上、さらに好ましくは lOONZmm2以上、さらに好ましくは 120NZmm2以 上、さらに好ましくは 160NZmm2以上、特に好ましくは 200NZmm2以上の圧縮強 度を示すことになるものである。
[0179] 上記セメントとしては、普通、早強、超早強、中庸熱、白色などのポルトランドセメン ト;アルミナセメント、フライアッシュセメント、高炉セメント、シリカセメントなどの混合ポ ルトランドセメントが好適である。上記セメントのコンクリート lm3あたりの配合量および 単位水量としては、例えば、高耐久性 ·高強度のコンクリートを製造するためには、単 位水量 100〜185kgZm3、水 Zセメント比 = 10〜70%とすることが好ましい。より好 ましくは、単位水量120〜1751¾71113、水/セメント比 = 20〜65%である。
[0180] 本発明のセメント混和剤のセメント組成物中の添加量割合としては、本発明の必須 成分であるポリカルボン酸系重合体 (A)およびポリカルボン酸系重合体 (B)の合計 質量が、セメント質量の全量 100質量%に対して、 0. 01質量%以上となるようにする ことが好ましぐ 10質量%以下となるようにすることが好ましい。 0. 01質量%未満で あると、性能的に不充分となるおそれがあり、 10質量%を超えると、経済性が劣ること となる。より好ましくは、 0. 05質量%以上、 8質量%以下であり、さらに好ましくは、 0. 1質量%以上、 5質量%以下である。なお、上記質量%は、固形分換算の値である。 実施例
[0181] 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実 施例により制限を受けるものではなぐ前 ·後記の趣旨に適合し得る範囲で適当に変 更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含ま れる。
[0182] <重合体の分子量および分子量分布測定条件 >
装置: Waters Alliance (2695)
解析ソフト: Waters社製の Empowerプロフェッショナル + GPCォプション
カラム:東ソー(株)製の TSKgelガードカラム(内径 6. 0 X 40mm) + G4000SWX L + G3000SWXL + G2000SWXL (各内径 7. 8 X 300mm)
検出器:示差屈折率計 (RI)検出器 (Waters 2414)、多波長可視紫外 (PDA)検 出器(Waters 2996)
溶離液:ァセトニトリル 6001g、水 10999gの溶液に酢酸ナトリウム 3水和物 115. 6 gを溶解し、さらに酢酸で pH6. 0に調整したもの
流量: 1. OmLZ分
カラム'測定温度: 40°C
測定時間: 45分
試料液注入量: 100 /z L (試料濃度 0. 2-0. 5wt%の溶離液溶液)
GPC標準サンプル:ジーエルサイエンス(株)製のポリエチレングリコール Mp = 2 72, 500、 219, 300、 107, 000、 50, 000、 24, 000、 11, 840、 6, 450、 4, 250 、 1, 470の 9点を使用
検量線:上記ポリエチレングリコールの Mp値を用いて 3次式で作成
解析法:得られた RIクロマトグラムにおいて、ポリマー溶出直前'溶出直後のベース ラインにおいて平らに安定している部分を直線で結び、ポリマーを検出 '解析した。た だしモノマーピークがポリマーピークに重なって測定された場合、モノマーとポリマー の重なり部分の最凹部において垂直分割してポリマー部とモノマー部を分離し、ポリ マー部のみの分子量'分子量分布を測定した。ダイマー以上のオリゴマーが検出さ れた場合はポリマー部に含めた。また、以下で、ポリマーピークおよびモノマーピーク の面積の和に対するポリマーピークの面積の比をポリマー純分と表す。
<重合体の GPC分画分取条件 >
分取装置:東ソー (株)製 HLC— 8070
カラム:東ソー(株)製 TSKgel α -Μ+ α - 2500 (内径 1インチ、カラム長 30 cm)
検出器:紫外検出器、 254nm
溶離液: 50mMギ酸アンモ-ゥムイオン交換水溶液 Zァセトニトリル =85Zl5wt %の混合物に 30%水酸ィ匕ナトリウムをカ卩えて pH8. 0に調整したもの
カラム'測定温度: 40°C
試料液注入量: 3mL (試料濃度 2wt%の溶離液溶液、 18. 4mg/mL) GPC標準サンプル:東ソー(株)製ポリエチレングリコール Mp = 272500、 2193 00、 107000、 50000、 24000、 11840、 6450、 4250、 1470の 9点を使用 検量線:上記ポリエチレングリコールの Mp値を用いて 3次式で作成
<製造例 1:比較重合体 1一 1の合成 >
温度計、高さ 2. 5cm,幅 11cmの羽根を備えた撹拌機、滴下装置、窒素導入管お よび還流冷却装置を備えた内径 16cmの 3Lガラス製反応装置に水 420gを仕込み、 200rpmで攪拌下に反応装置内を lOOmLZ分で窒素置換しながら、 80°Cまで加温 した。続いて同条件のまま、反応装置内にメトキシポリエチレングリコールモノメタタリ レート(エチレンォキシドの平均付加モル数 25) 450. 319g、メタクリル酸 89. 681g 、 3—メルカプトプロピオン酸(MPA) 4. 511g、水 135gを混合した水溶液を 4時間、 過硫酸アンモニゥム 6. 21gに水をカ卩えて合計 105gに調整した水溶液を 5時間かけ て、それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後、更に 1時間 80°Cを維持して重合反応を完結させ、冷却して比較重合体 1一 1を得た。得られた 重合体は、 Mw= 24225, Mw/Mn= l. 928であった。
[0184] <製造例 2〜4:比較重合体 1一 2〜;!一 4の合成 >
製造例 1と同様の手順で、連鎖移動剤(MPA)の量のみを変えて Mwの異なる比 較重合体を得た。得られた重合体の物性を、それぞれ表 1に示した。
[0185] [表 1]
<製造例 5:比較重合体 2— 1の合成 >
温度計、高さ 2. 5«η·幅 11cmの羽根を備えた撹拌機、滴下装置、窒素導入管お
よび還流冷却装置を備えた内径 16cmの 3Lガラス製反応装置に、 3—メチルー 3— ブテン 1 オールのエチレンォキシド付加物(エチレンォキシドの平均付加モル数 50) 484. 502g、アクリル酸 0. 875g、水 250. 043gを仕込み、 200rpmで攪拌下 に反応装置内を lOOmLZ分で窒素置換しながら、 58°Cまで加温した。続いて同条 件のまま、反応装置内に 30%過酸化水素水 2. 541gに水をカ卩えて合計 38. 112g に調整した水溶液を添加し、 58°Cまで加温した。続いて同条件のまま、アクリル酸 64 . 623gと水 61. 845gの混合水溶液を 3時間、 L ァスコノレビン酸 0. 967gと 3—メノレ カプトプロピオン酸 (MPA) 2. 141gに水をカ卩えて合計 100gに調整した水溶液を 3. 5時間かけて、それぞれ反応装置内に均一速度で滴下した。ただし、加温開始から 滴下開始までの時間は 2時間以内とした。すべての滴下終了後、更に 1時間 58°Cを 維持して重合反応を完結させ、冷却して比較重合体 2— 1を得た。得られた重合体は 、 Mw= 36606、 Mw/Mn= l. 978であった。
[0186] <製造例 6〜8:比較重合体 2— 2〜2— 4の合成〉
製造例 5と同様の手順で、連鎖移動剤(MPA)の量のみを変えて Mwの異なる比 較重合体を得た。得られた重合体の物性を、それぞれ表 2に示した。
[0187] [表 2]
<製造例 9:比較重合体 3— 1の合成 >
温度計、高さ 2. 5cm,幅 11cmの羽根を備えた撹拌機、滴下装置、窒素導入管お よび還流冷却装置を備えた内径 16cmの 3Lガラス製反応装置に、 3 メチル 3— ブテン— 1 オールのエチレンォキシド付カ卩物(エチレンォキシドの平均付カ卩モル数 50) 517. 826g、アクリル酸 0. 935g、水 267. 241gを仕込み、 200rpmで攪拌下 に反応装置内を lOOmLZ分で窒素置換しながら、 58°Cまで加温した。続いて同条 件のまま、反応装置内に 30%過酸ィ匕水素水 1. 525gに水をカ卩えて合計 22. 879g
に調整した水溶液を添カ卩し、 58°Cまで加温した。続いて同条件のまま、アクリル酸 31 . 238gと水 59. 880gの混合水溶液を 3時間、 L ァスコノレビン酸 0. 592gと 3—メノレ カプトプロピオン酸 (MPA) 1. 107gに水を加えて合計 lOOgに調整した水溶液を 3. 5時間かけて、それぞれ反応装置内に均一速度で滴下した。ただし、加温開始から 滴下開始までの時間は 2時間以内とした。すべての滴下終了後、更に 1時間 58°Cを 維持して重合反応を完結させ、冷却して比較重合体 3— 1を得た。得られた重合体は 、 Mw= 34965、 Mw/Mn= l. 864であった。
[0188] <製造例 10〜 11:比較重合体 3— 2〜3— 3の合成 >
製造例 9と同様の手順で、連鎖移動剤(MPA)の量のみを変えて Mwの異なる比 較重合体を得た。得られた重合体の物性を、それぞれ表 3に示した。
[0189] [表 3]
<製造例 12〜 18:本発明の重合体 1一 :!〜 1一 7 >
製造例 1で合成した比較重合体 1 1を用いて、所要量の重合体が得られるまで前 述の条件で GPC分画分取を行った。得られた 7分画を、 20mmHgの減圧下 50°Cで エバポレートして約 10wt%に濃縮した。濃縮液を脱塩処理後、 20mmHgの減圧下 50°Cでエバポレートして約 10wt%に濃縮し、前述の方法で分子量および分子量分 布を測定した。分取条件と得られた重合体の物性値を表 4に記載した。
く製造例 19 25:本発明の重合体 2— 1 2— 7>
本発明の重合体 1 1 1 7を得る方法と同様の手順で、製造例 5で合成した比 較重合体 2— 1を GPC分画分取して、本発明の重合体 2— :! 2— 7を得た。分取条
φ#¾s¼5ϋ»室¾w1373ν 2632:Ό <ί:~~ιι
GPC分画
G PC分子量測定結果
重合体 画分採取時間 MD値
開始 (分) 終了 (分) Mw Mw/Mn
本発明の重台体 2 1 18.00 20.10 113100 1.20 3.36
本発明の重合体 2 2 20.11 20.70 60500 1.26 2.34
本発明の重合体 2— 3 20.71 21.30 34200 1.35 1.83
本発明の重合体 2— 4 21.31 21.90 24200 1.31 1.63
21.91 22.35 22100 1.35 1.59
本発明の重合体 2— 6 22.36 22.75 18500 1.62 1.52
本発明の重合体 2— 7 22.76 23.50 14200 2.03 1.44
本発明の重合体 1 1〜1 7を得る方法と同様の手順で、製造例 9で合成した比 較重合体 3— 1を GPC分画分取して、本発明の重合体 3— 1〜3— 7を得た。分取条 件と得られた重合体の物性値を表 6に記載した。
[表 6]
<製造例 33 :触媒 Aの合成 >
ポリエチレンィミン(分子量 300)のそれぞれの活性水素にエチレンォキシドを 8当 ずつ付加した化合物(以下「PEIEO」と略す、 Mw= 2814)を公知の方法で合成
した。 PEIEO (50. 84g、 1当量)をイオン交換水 50. 8gに溶解し、撹拌しながら 25 °C100mmHgで減圧脱気した後、系内を窒素置換して常圧に戻した。窒素雰囲気 下で CuBr (4. 146g、 1. 6当量)を加え、 1時間撹拌して触媒水溶液 Aを得た。
[0193] <製造例 34 :触媒 Bの合成 >
PEIEO (45. 34g、 1当量)をイオン交換水 45. 3gに溶解し、撹拌しながら 25°C10 OmmHgで減圧脱気した後、系内を窒素置換して常圧に戻した。窒素雰囲気下で C uBr (4. 678g、 1. 3当量)を加え、 1時間撹拌して触媒水溶液 Bを得た。
2
[0194] <製造例 35 :本発明の重合体 4の合成 >
製造例 33で調製した触媒水溶液 A(l. 171g)、製造例 34で調製した触媒水溶液 B (0. 364g)、 2—ブロモイソ酪酸ェチル(0. 234g)、イオン交換水(18. 829g)の 混合溶液を撹拌しながら 25°C100mmHgで減圧脱気した後、系内を窒素置換して 常圧に戻し、触媒水溶液 Cを得た。メタクリル酸(2. 492g)、メトキシポリエチレンダリ コールモノメタタリレート(平均 EO付カ卩モル数 75) (12. 508g)、イオン交換水(5g) の混合水溶液を撹拌しながら 25°C100mmHgで減圧脱気した後、系内を窒素置換 して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下で 50°Cに 加温した後、 50°Cに加温した触媒水溶液 Cを加えて重合反応を開始し、撹拌下 24 時間 50°Cに保持して重合反応を完結させ本発明の重合体 4を得た。得られた重合 体は、 Mw= 35700、 Mw/Mn= l. 40であった。
[0195] <製造例 36 :本発明の重合体 5の合成 >
製造例 33で合成した触媒水溶液 A (0. 878g)、製造例 34で合成した触媒水溶液 B (0. 728g)、 2—ブロモイソ酪酸ェチル(0. 117g)、イオン交換水(19. 122g)の 混合溶液を撹拌しながら 25°C100mmHgで減圧脱気した後、系内を窒素置換して 常圧に戻し、触媒水溶液 Cを得た。メタクリル酸(2. 492g)、メトキシポリエチレンダリ コールモノメタタリレート(平均 EO付カ卩モル数 75) (12. 508g)、イオン交換水(5g) の混合水溶液を撹拌しながら 25°C100mmHgで減圧脱気した後、系内を窒素置換 して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下で 50°Cに 加温した後、 50°Cに加温した触媒水溶液 Cを加えて重合反応を開始し、撹拌下 24 時間 50°Cに保持して重合反応を完結させ本発明の重合体 5を得た。得られた重合
体は、 Mw= 30500、 Mw/Mn= l. 36であった。
[0196] <製造例 37:比較重合体 4の合成 >
温度計、高さ 2. 5cm,幅 11cmの羽根を備えた撹拌機、滴下装置、窒素導入管お よび還流冷却装置を備えた内径 16cmの 3Lガラス製反応装置に水 400gを仕込み、 200rpmで攪拌下に反応装置内を lOOmLZ分で窒素置換しながら、 80°Cまで加温 した。続いて反応装置内を 80°Cに保ったまま、メトキシポリエチレングリコールモノメタ タリレート(エチレンォキシドの平均付加モル数 75) 166. 785g、メタクリル酸 33. 21 5g、 3—メルカプトプロピオン酸 1. 592gにイオン交換水をカ卩えて 500gに調整した混 合水溶液を 4時間、過硫酸アンモ-ゥム 2. 292gにイオン交換水をカ卩えて合計 lOOg に調整した水溶液を 5時間かけて、それぞれ反応装置内に均一速度で滴下した。す ベての滴下終了後、更に 1時間 80°Cを維持して重合反応を完結させ比較重合体 4を 得た。得られた重合体は、 Mw= 36400、 Mw/Mn= l. 74であった。
[0197] <実施例 1〜 10および比較例 1〜 12 >
本発明の重合体1 3〜1 5 (実施例1〜3)、本発明の重合体2— 3〜2— 5 (実施 例4〜6)、本発明の重合体3— 3〜3— 5 (実施例7〜9)、本発明の重合体4 (実施例 10)、比較重合体 1 1〜1 4 (比較例 1〜4)、比較重合体 2— 1〜2—4 (比較例 5 〜8)、比較重合体 3— 1〜3— 3 (比較例 9〜11)、比較重合体 4 (比較例 12)を用い て、下記のモルタル試験 1の方法により、モルタル試験を行った。結果を表 7〜10〖こ 示す。
[0198] <モルタル試験 1 >
(モルタル配合)
モノレタノレ酉己合は CZSZW=600Z600Z210 (g)とした。ただし、
C:普通ポルトランドセメント (太平洋セメント社製)
S :豊浦標準砂
w:試料のイオン交換水溶液
(モルタル実験環境)
実験環境は、温度 20°C± 1°C、相対湿度 60% ± 10%とした。
[0199] (モルタル混練手順)
所定量のポリマー水溶液を量り採り、消泡剤 MA— 404 (ポゾリス物産製)を有姿で ポリマー分に対して 10wt%加え、更にイオン交換水をカ卩えて 210gとし、十分に均一 溶解させた。
[0200] N— 50ミキサー (HOBART社製)にステンレス製ビータ一 (撹拌羽根)を取り付け、 混練容器に所定量のセメント (C)、砂(S)を仕込んだ。 1速で 15秒混練したのち、混 練しながら 15秒かけて等速度で試料水溶液 (W)を投入した。続ヽて 2速で 30秒混 練後、混練停止して 15秒間容器壁に付いたモルタルを搔き落し、 45秒静置した。 2 速で 90秒混練して混練終了とし、モルタルを混練容器カゝらポリエチレン製 1L容器に 移した。
[0201] (モルタルフロー測定手順)
練りあがったモルタルを直ちにスパチュラで 20回撹拌した後、 SUS304製の平滑 な板状に置 、た内径 55mm高さ 50mmの SUS304製フローコーンの中に均一に詰 め、表面を均した。フローコーンを垂直に引き上げ、モルタルの流動が止まってから、 広がったモルタルの直径を縦横 2点計測し、平均値をフロー値とした。ただし混練開 始カもフロー値測定までは 5分 30秒以内に収まるようにした。
[0202] (モルタル空気量測定手順)
モルタルを 500mLガラス製メスシリンダーに約 200mL詰め、径 8mmの丸棒で突 いた後容器に振動を加え、粗い気泡を抜いた。さらにモルタルを約 200mLカ卩えて同 様に気泡を抜いた後体積と重量を測り、重量と各材料の密度から空気量を計算した
[0203] [表 7]
表 7にポリアルキレングリコールがエステル結合で主鎖に結合した重合体のモルタ ル試験結果を示した。比較重合体 1 1〜1 4と同程度の重量平均分子量 (Mw)を 有する本発明の重合体 1 3〜1 5の添カ卩量 0. 1質量%でのモルタルフロー値を 比較すると、比較重合体が 148mm〜165mmであるのに対して、本発明の重合体 では 207mm〜220mmであり、本発明の重合体の方がセメント分散性能に優れてい
ることがゎカゝる。これは、比較重合体の分散度(MwZMn)が 1. 57-1. 93であるの に対して、本発明の重合体の分散度が 1. 36〜: L 38と非常に狭くなつていることに 起因するものであると推察される。
[表 8]
表 8にポリアルキレングリコール鎖がエーテル結合で主鎖に結合した重合体のモル
タル試験結果を示した。比較重合体 2— 1〜2— 4と同程度の重量平均分子量 (Mw) を有する本発明の重合体 2— 3〜2— 5の添カ卩量 0. 1質量%でのモルタルフロー値 を比較すると、比較重合体が 158mm〜 170mmであるのに対して、本発明の重合 体では 185mm〜 214mmであり、本発明の重合体の方がセメント分散性能に優れ ていることがわかる。これは、比較重合体の分散度(MwZMn)が 1. 54-1. 93であ るのに対して、本発明の重合体の分散度が 1. 31〜: L 35と非常に狭くなつているこ とに起因するものであると推察される。この結果は、表 7に示した、ポリアルキレンダリ コール鎖がエステル結合で主鎖に結合した重合体の結果と同じであつた。
[表 9]
表 9に上記と同様のポリアルキレングリコール鎖がエーテル結合で主鎖に結合した 重合体のモルタル試験結果を示した。上記の結果と同様に分散度が 1. 64〜: L . 78 の比較重合体のモルタルフロー値は 154mn 177mmであるのに対して、分散度 が 1. 35〜: L 41の本発明の重合体のモルタルフロー値は I86mm 219mmと分 子量分布が狭い本発明の重合体の方がセメント分散性能に優れる。
表 10にリビングラジカル重合で得られた本発明の重合体 4と従来のラジカル重合で 得られた比較重合体 4のモルタル試験結果を示した。同一添カ卩量でモルタルフロー 値を比較すると従来のラジカル重合で得られた比較重合体 4のモルタルフロー値が 1 70mmであるのに対して、リビングラジカル重合で得られた本発明の重合体 4では 22 2mmであり、リビングラジカル重合で得られた本発明の重合体の方がセメント分散性 能に優れていることがわかる。また、分散度を比較すると本発明の重合体が 1. 40、 比較重合体が 1. 74であり、本発明の重合体の方が分子量分布が狭くなつており、こ れが分散性能に起因していると推察している。
[0207] <製造例 38 :本発明の重合体 6の合成 >
製造例 33で調製した触媒水溶液 A(l. 098g)、製造例 34で調製した触媒水溶液 B (0. 910g)、 2—ブロモイソ酪酸ェチル(0. 146g)、イオン交換水(17. 062g)の 混合溶液を攪拌しながら 25°C、 lOOmmHgで減圧脱気した後系内を窒素置換して 常圧に戻し、触媒水溶液 Cを得た。メタクリル酸(2. 30g)、メトキシポリエチレングリコ ールモノメタタリレート(平均 EO付加モル数 25) (20. 20g)、イオン交換水(7. 70g) の混合水溶液を攪拌しながら 25°C、 lOOmmHgで減圧脱気した後、系内を窒素置 換して常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下 24時間 50°Cに加温した後、 50°Cに加温した触媒水溶液 Cをカ卩えて重合反応を開始し、攪 拌下 24時間 50°Cに保持して重合反応を完結させ本発明の重合体 6を得た。得られ た重合体は Mw= 26700、 Mw/Mn= l . 64であった。
[0208] <製造例 39 :本発明の重合体 7の合成 >
製造例 33で調製した触媒水溶液 A (0. 878g)、製造例 34で調製した触媒水溶液 B (0. 273g)、 2—ブロモイソ酪酸ェチル(0. 176g)、イオン交換水(9. 90g)の混合 溶液を攪拌しながら 25°C、 lOOmmHgで減圧脱気した後系内を窒素置換して常圧 に戻し、触媒水溶液 Cを得た。メタクリル酸(2. 24g)、メトキシポリエチレングリコール モノメタタリレート(平均 EO付加モル数 25) (11. 26g)、イオン交換水(4. 69g)の混 合水溶液を攪拌しながら 25°C、 lOOmmHgで減圧脱気した後、系内を窒素置換し て常圧に戻し、モノマー水溶液を得た。モノマー水溶液を窒素雰囲気下で 50°Cに加 温した後、 50°Cに加温した触媒水溶液 Cを加えて重合反応を開始し、攪拌下 24時
間 50°Cに保持して重合反応を完結させ本発明の重合体 7を得た。得られた重合体 は Mw= 19000、 Mw/Mn= l. 55であった。
[0209] <製造例 40 :比較重合体 5の合成 >
温度計、攪拌機、滴下装置、窒素導入管および還流冷却装置を備えたガラス製反 応装置に水 1698gを仕込み、 200rpmで攪拌下に反応装置内を lOOmLZ分で窒 素置換しながら、 80°Cまで加温した。続いて反応装置内を 80°Cに保ったまま、メトキ シポリエチレングリコールモノメタタリレート(エチレンォキシドの平均付カ卩モル数 25) 1 796g、メタクリル酸 204g、 3—メルカプトプロピオン酸 16. 7gにイオン交換水 500gを 加えた混合水溶液を 4時間、 10%過硫酸アンモ-ゥム水溶液 230gを 5時間かけて、 それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後、更に 1時間 80 °Cを維持して重合反応を完結させ比較重合体 5を得た。得られた重合体は Mw= 22 500、 Mw/Mn= l. 83であった。
[0210] <製造例 41 :比較重合体 6の合成 >
温度計、攪拌機、滴下装置、窒素導入管及び還流冷却装置を備えたガラス製反応 装置に水 1700gを仕込み、 200rpmで攪拌下に反応装置内を lOOmLZ分で窒素 置換しながら、 80°Cまで加温した。続いて反応装置内を 80°Cに保ったまま、メトキシ ポリエチレングリコールモノメタタリレート(エチレンォキシドの平均付カ卩モル数 25) 15 80g、メタクリル酸 420g、 3—メルカプトプロピオン酸 14. 5gにイオン交換水 500gを 加えた混合水溶液を 4時間、 10%過硫酸アンモ-ゥム水溶液 230gを 5時間かけて、 それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後、更に 1時間 80 °Cを維持して重合反応を完結させ比較重合体 6を得た。得られた重合体は Mw= 25 200、 Mw/Mn= l. 89であった。
[0211] <実施例 11〜 14および比較例 13〜 14 >
本発明の重合体 6 (実施例 11〜12)、本発明の重合体 7 (実施例 13〜14)、比較 重合体 5 (比較例 13)、比較重合体 6 (比較例 14)を用いて、下記のモルタル試験 2 の方法により、モルタル試験を行った。結果を表 11〜12に示す。
[0212] <モルタル試験 2 >
(モルタル配合)
モルタル配合は CZSZW=550Zl350Z220 (g)とした。ただし、 C:普通ポルトランドセメント (太平洋セメント社製)
S: ISO標準砂(日本セメント協会製)
w:試料のイオン交換水溶液
(モルタル実験環境)
実験環境は、温度 20°C± 1°C、相対湿度 60% ± 10%とした。
[0213] (モルタルの調製、フロー値の測定)
所定量のポリマー水溶液を量り採り、消泡剤 MA— 404 (ポゾリス物産製)を有姿で ポリマー分に対して 10wt%加え、更にイオン交換水をカ卩えて 220gとし、十分に均一 溶解させた。
[0214] モルタルの混練には、 HOBART社製の N— 50ミキサーにステンレス製ビータ一( 撹拌羽根)を取り付けたものを用い、混練とモルタルフロー値の測定手順 ¾JIS R5 201 (1997)に準拠した。ただし、混練開始力もフロー値測定までは 6分 30秒以内に 収まるようにした。
[0215] (モルタル空気量の測定)
モルタルを 500mLガラス製メスシリンダーに約 200mL詰め、径 8mmの丸棒で突 いた後容器に振動を加え、粗い気泡を抜いた。さらにモルタルを約 200mLカ卩えて同 様に気泡を抜いた後、体積と重量を測り、この質量と各材料の密度から空気量を計 昇した。
[0216] [表 11]
リビングラジカル重合で得られた本発明の重合体 6と従来のラジカル重合で得られ た比較重合体 5のモルタルフロー値を比較すると、本発明の重合体 6が添加量 0. 14
質量%でフロー値が 245mmであるのに対して、比較重合体 5では 223mmである。 さらに、比較重合体 5と同等のフロー値を得るための必要添加量は 0. 12質量%であ り、比較重合体 5の 14%減の添加量で良い。以上のように、本発明のリビングラジカ ル重合で得られた重合体の方がセメント分散性能に優れて 、ることがわかる。また、 本発明の重合体 6と比較重合体 5の分散度 (MwZMn)を比較してみると、本発明の 重合体 6が 1. 64であるのに対して、比較重合体 5が 1. 83であり、本発明の重合体 6 の方が分子量分布が狭いことがわかる。本発明の重合体 6は分子量分布が狭ぐセメ ントを凝集させる高分子量部分およびセメント分散性能に寄与しない低分子量部分 が少なくなつており、セメント分散性能に寄与する分子量部分が比較重合体 5よりも 多くなつていることからセメント分散性能が向上したと考えられる。
[表 12]
リビングラジカル重合で得られた本発明の重合体 7と従来のラジカル重合で得られ た比較重合体 6のモルタルフロー値を比較すると、本発明の重合体 7が添加量 0. 1
質量%でフロー値が 252mmであるのに対して、比較重合体 6では 210mmである。 さらに、比較重合体 6と同等のフロー値を得るための必要添加量は 0. 08質量%であ り、比較重合体 6の 20%減の添加量で良い。以上のように、本発明のリビングラジカ ル重合で得られた重合体の方がセメント分散性能に優れて 、ることがわかる。また、 本発明の重合体 7と比較重合体 6の分散度 (MwZMn)を比較してみると、本発明の 重合体 7が 1. 55であるのに対して、比較重合体 6が 1. 89であり、本発明の重合体 7 の方が分子量分布が狭いことがわかる。本発明の重合体 7は分子量分布が狭ぐセメ ントを凝集させる高分子量部分およびセメント分散性能に寄与しない低分子量部分 が少なくなつており、セメント分散性能に寄与する分子量部分が比較重合体 6よりも 多くなつていることからセメント分散性能が向上したと考えられる。
[0218] <テルリド化合物の同定 >
テルリド化合物は、 ^—NMR及び MSの測定結果から同定した。
[0219] ¾ - NMR: Varian¾:¾ 400MHz—NMR
MS (HRMS):日本電子(株)製の JMS— 600
<重合体の分子量および分子量分布測定条件 >
重合体の分子量および分子量分布の測定条件は、製造例 1〜32、 35〜41と同様 である。
[0220] <重合体の酸価 >
重合体の酸価は、平沼産業 (株)製の自動滴定装置 COMTITE— 550を用いて、 滴定により測定した。酸価の値は、重合体 lgに含まれる酸を中和するために必要な 水酸ィ匕カリウムの mg数を表す。ここでは、中和曲線力 カルボン酸量を測定している ので、特に総力ルボン酸価(以下「TCAV」と略すことがある。)と表した。
[0221] <製造例 42 :テルリド化合物の合成 >
金属テルル 6. 38g (50mmol)を THF50mLに懸濁させ、メチルリチウム(ジェチル エーテル溶液) 52. 9mL (55mmol)を室温でゆっくり加えた(10分間)。この反応溶 液を金属テルルが完全に消失するまで撹拌した(20分間)。この反応溶液に、 1ーブ 口モー 1—フエ-ルェタン l lg (60mmol)を室温でカ卩え、 2時間撹拌した。溶媒を減 圧下で留去後、減圧蒸留することによって薄黄色油状物を得た。 MS (HRMS)、
— NMRにより目的の物質であることを確認した。
[0222] <製造例 43 :本発明の重合体 8の合成 >
窒素置換したグローブボックス内で、 2, 2'—ァゾビス (イソブチ口-トリル)(0. 04m ol)、製造例 42で製造したテルリドィ匕合物(0. 04mol)、メトキシポリエチレングリコー ルモノメタタリレート(エチレンォキシドの平均付カ卩モル数 23) (0. 76mol)及びメタク リル酸(1. 558mol)を 80°Cで 20時間撹拌することによって本発明の重合体 8を得た 。得られた重合体は、 Mw= 18300、 Mw/Mn= l. 37であった。また、酸価は 107 . 4であった。 GPC分析及び TCAVの結果を表 13に示す。
[0223] <製造例 44 :比較重合体 7の製造 >
温度計、攪拌機、滴下装置、窒素導入管及び還流冷却装置を備えたガラス製反応 装置に水 126. 0gを仕込み、攪拌下に反応装置内を窒素置換し、窒素雰囲気下で 80°Cまで加熱した。メトキシポリエチレングリコールモノメタタリレート(エチレンォキシ ドの平均付加モル数 23) 139. 4g、メタクリル酸 22. 6g、 3—メルカプトエタノール 1. 2g、水 40. 5gを混合した単量体水溶液を 4時間、 5. 9質量%過硫酸アンモ-ゥム水 溶液 31. 5gを 5時間かけてそれぞれ反応装置内に滴下した。滴下終了後さらに 1時 間 80°Cを維持して重合反応を完結させ比較重合体 7を得た。得られた重合体は、 M w= 21100、 Mw/Mn= l. 82であった。また、酸価は 98. 82であった。 GPC分析 及び TCAVの結果を表 13に示す。
[0224] [表 13]
<実施例 15および比較例 15〜 16 >
本発明の重合体 8 (実施例 15)、比較重合体 7 (比較例 15)、比較重合体 7 (比較例 16)を用いて、上記のモルタル試験 1の方法により、モルタル試験を行った。結果を 表 14に示す。
[表 14]
剤添加量 フロー値 空気量 使用した重合体 (wtVC) 、難) ( ) 実施例 1 5 本発明の重合体 8 0. 1 195 1. 1 比較例 1 5 比較重合体 7 0. 1 163 2. 6 比較例 1 6 比較重合体 7 0. 12 195 1. 1 リビングラジカル重合で得られた本発明の重合体 8と従来のラジカル重合で得られ た比較重合体 7のモルタルフロー値を比較すると、本発明の重合体 8が添加量 0. 1 質量%でフロー値が 195mmであるのに対して、比較重合体 7では 163mmである。 さらに、本発明の重合体 8と同等のフロー値を得るための必要添加量は 0. 12質量% であり、本発明の重合体 8の 20%増の添カ卩量が必要である。以上のように、本発明 のリビングラジカル重合で得られた重合体 8の方がセメント分散性能に優れていること がわかる。また、本発明の重合体 8と比較重合体 7の分散度 (MwZMn)を比較して みると、本発明の重合体 8が 1. 35であるのに対して、比較重合体 7が 1. 82であり、 本発明の重合体 8の方が分子量分布が狭いことがわかる。本発明の重合体 8は分子 量分布が狭ぐセメントを凝集させる高分子量部分およびセメント分散性能に寄与し ない低分子量部分が少なくなつており、セメント分散性能に寄与する分子量部分が 比較重合体 7よりも多くなつていることからセメント分散性能が向上したと考えられる。
[0226] <製造例 45 :ジテルリド化合物の合成 >
金属テルル 6. 38g (50mmol)を THF50mLに懸濁させ、メチルリチウム(1. 14M ジェチルエーテル溶液) 50mL (57mmol)を室温でゆっくり加えた(10分間)。この 反応溶液を金属テルルが完全に消失するまで撹拌した (20分間)。大気雰囲気下、 この反応溶液に飽和 NH C1水溶液を 20mL加え、室温で約 10時間激しく攪拌した。
4
反応終了後、ジェチルエーテルで目的生成物を抽出し、エバポレーターで溶媒を留 出させた。得られた粗生成物を蒸留で生成することによって目的のジメチルジテリル ド化合物を得た。丄!! NMRにより目的の物質であることを確認した。
[0227] <製造例 46 :本発明の重合体 9の合成 >
窒素置換したグローブボックス内で、 V—50 (0. 267mmol)、合成例 1で製造した 化合物(0. 534mmol)、合成例 2で製造した化合物(0. 534mmmol)、メトキシポリ エチレングリコールモノメタタリレート(エチレンォキシドの平均付カ卩モル数 25) (11. 2
7mmol)及びメタクリル酸(30. 85mmol)を 60°Cで 3時間撹拌することによって本発 明の重合体 9を得た。 GPC分析及び TCAVの結果を表 15に示した。
[0228] <製造例 47 :本発明の重合体 10の合成 >
窒素置換したグローブボックス内で、 V—50 (0. 1594mmol)、合成例 1で製造し た化合物(0. 3097mmol)、合成例 2で製造した化合物(0. 3097mmmol)、メトキ シポリエチレングリコールモノメタタリレート(エチレンォキシドの平均付カ卩モル数 25) ( 12. O9mmol)及びメタクリル酸(30. 97mmol)を 60°Cで 3時間撹拌することによつ て本発明の重合体 10を得た。 GPC分析及び TCAVの結果を表 15に示した。
[0229] <製造例 48 :比較重合体 8の製造 >
温度計、攪拌機、滴下装置、窒素導入管及び還流冷却装置を備えたガラス製反応 装置に水 1700gを仕込み、 200rpmで攪拌下に反応装置内を lOOmLZ分で窒素 置換しながら、 80°Cまで加温した。続いて反応装置内を 80°Cに保ったまま、メトキシ ポリエチレングリコールモノメタタリレート(エチレンォキシドの平均付カ卩モル数 25) 15 80g、メタクリル酸 420g、 3—メルカプトプロピオン酸 14. 5gにイオン交換水 500gを 加えた混合水溶液を 4時間、 10%過硫酸アンモ-ゥム水溶液 230gを 5時間かけて、 それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後、更に 1時間 80 °Cを維持して重合反応を完結させ比較重合体 8を得た。得られた重合体は Mw= 25 200、 Mw/Mn= l. 89であった。
[0230] <製造例 49 :比較重合体 9の製造 >
温度計、攪拌機、滴下装置、窒素導入管及び還流冷却装置を備えたガラス製反応 装置に水 1698gを仕込み、 200rpmで攪拌下に反応装置内を lOOmLZ分で窒素 置換しながら、 80°Cまで加温した。続いて反応装置内を 80°Cに保ったまま、メトキシ ポリエチレングリコールモノメタタリレート(エチレンォキシドの平均付カ卩モル数 25) 17 96g、メタクリル酸 204g、 3—メルカプトプロピオン酸 16. 7gにイオン交換水 500gを 加えた混合水溶液を 4時間、 10%過硫酸アンモ-ゥム水溶液 230gを 5時間かけて、 それぞれ反応装置内に均一速度で滴下した。すべての滴下終了後、更に 1時間 80 °Cを維持して重合反応を完結させ比較重合体 9を得た。得られた重合体は Mw= 22 500、 Mw/Mn= l. 83であった。
[表 15]
<実施例 16〜 19および比較例 17〜 18 >
本発明の重合体 9 (実施例 16〜17)、本発明の重合体 10 (実施例 18〜19)、比較 重合体 8 (比較例 17)、比較重合体 9 (比較例 18)を用いて、上記のモルタル試験 2 の方法により、モルタル試験を行った。結果を表 16〜17に示す。
[表 16]
リビングラジカル重合で得られた本発明の重合体 9と従来のラジカル重合で得られ た比較重合体 8のモルタルフロー値を比較すると、本発明の重合体 9が添加量 0. 1
質量%でフロー値が 225mmであるのに対して、比較重合体 8では 219mmである。 さらに、比較重合体 8と同等のフロー値を得るための必要添加量は 0. 07質量%であ り、比較重合体 8の 30%減の添加量で良い。以上のように、本発明のリビングラジカ ル重合で得られた重合体の方がセメント分散性能に優れて 、ることがわかる。また、 本発明の重合体 9と比較重合体 8の分散度 (MwZMn)を比較してみると、本発明の 重合体 9が 1. 55であるのに対して、比較重合体 8が 1. 89であり、本発明の重合体 9 の方が分子量分布が狭いことがわかる。本発明の重合体 9は分子量分布が狭ぐセメ ントを凝集させる高分子量部分およびセメント分散性能に寄与しない低分子量部分 が少なくなつており、セメント分散性能に寄与する分子量部分が比較重合体 8よりも 多くなつていることからセメント分散性能が向上したと考えられる。
[表 17]
リビングラジカル重合で得られた本発明の重合体 10と従来のラジカル重合で得ら れた比較重合体 9のモルタルフロー値を比較すると、本発明の重合体 10が添カ卩量 0
. 14質量%でフロー値が 265mmであるのに対して、比較重合体 9では 223mmであ る。さらに、比較重合体 9と同等のフロー値を得るための必要添加量は 0. 11質量% であり、比較重合体 9の 21%減の添加量で良い。以上のように、本発明のリビングラ ジカル重合で得られた重合体の方がセメント分散性能に優れて 、ることがわかる。ま た、本発明の重合体 10と比較重合体 9の分散度 (MwZMn)を比較してみると、本 発明の重合体 10が 1. 62であるのに対して、比較重合体 9が 1. 83であり、本発明の 重合体 10の方が分子量分布が狭いことがわかる。本発明の重合体 10は分子量分布 が狭ぐセメントを凝集させる高分子量部分およびセメント分散性能に寄与しない低 分子量部分が少なくなつており、セメント分散性能に寄与する分子量部分が比較重 合体 9よりも多くなつていることからセメント分散性能が向上したと考えられる。
Claims
[化 1]
(M) a (L) b (X) c (化学式 1)
[但し、 Mは第 4周期に属する遷移元素、 Lは下記化学式 2:
[化 2]
(AI) d (AO) e (AS) f (化学式 2) で表され、 AIはアルキレンィミン、 AOはアルキレンォキシド、 ASはアルキレンスルフ イド、 Xはハロゲンを表し、 a、 b、 c、 d、 eおよび fは互いに独立して 0以上の数を表す]
で示される有機金属化合物と、有機ハロゲン化合物との混合物。
[3] ポリアルキレングリコール鎖由来の構成単位を含む重合体 (P)であって、請求項 2 に記載の混合物を用いて、不飽和ポリアルキレングリコール系単量体 (I M)を含む 不飽和単量体 (M)を重合して得られる重合体。
[4] ポリアルキレングリコール鎖由来の構成単位を含む重合体 (P)であって、
下記化学式 3 :
(化学式 3)
[但し、 Raは炭素数 1〜8のアルキル基、ァリール基、置換ァリール基または芳香族へ テロ環基を表し、 Rbおよび Reは互いに独立して水素原子または炭素数 1〜8のアル キル基を表し、 Rdはァリール基、置換ァリール基、芳香族へテロ環基、ァシル基、ォ キシカルボニル基またはシァノ基を表す]
で示される有機テルルイ匕合物および Zまたは下記化学式 4:
[化 4]
RfTe Te s
(化学式 4)
[但し、 Rfおよび Rgは互いに独立して炭素数 1〜8のアルキル基、ァリール基、置換ァ リール基または芳香族へテロ環基を表す]
で示されるジテルリドィ匕合物とラジカル重合開始剤とを用いて、不飽和ポリアルキレン グリコール系単量体 (I M)を含む不飽和単量体 (M)を重合して得られる重合体。
[5] 請求項 1に記載の上記数式 1により定義される PD値の範囲を満たす請求項 3また は 4に記載の重合体。
[6] 前記ポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)がポリオキシアルキ レン鎖由来の構成単位とカルボキシル基由来の部位を有する構成単位を含む請求 項 1または請求項 3〜5のいずれか 1項に記載の重合体。
[7] 前記ポリオキシアルキレン鎖由来の構成単位が下記化学式 5:
[化 5]
R2 1
H (CH2)x(CO)y-0-(AO)n-R3
(化学式 5)
[式中、 R1および R2は互いに独立して水素原子またはメチル基を表し、 AOは互いに 独立して炭素数 2以上のォキシアルキレン基の 1種または 2種以上の混合物(2種以 上の場合はブロック状に付カ卩していてもランダム状に付カ卩していても良い)を表し、 X は 0〜2の整数を表し、 yは 0または 1を表し、 nはォキシアルキレン基の平均付加モル 数を表し、 1〜300の数であり、 R3は水素原子または炭素数 1〜20の炭化水素基を 表す]で示される構成単位 (I)を含む請求項 1または請求項 3〜6のいずれか 1項に 記載の重合体。
[8] 前記カルボキシル基由来の部位を有する構成単位が下記化学式 6:
(化学式 6)
[式中、 R4、 R5および R6は互いに独立して水素原子またはメチル基、―(CH ) zCO
2
OM2 (- (CH ) zCOOM2は、—COOM1またはその他の—(CH ) zCOOM2と無水
2 2
物を形成していても良い)を表し、 zは 0〜2の整数を表し、 M1および M2は互いに独 立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモ-ゥム基または 有機アミン基を表す]
で示される構成単位 (II)を含む請求項 6に記載の重合体。
[9] 前記ポリオキシアルキレン鎖由来の構成単位を含む重合体 (P)の製造方法であつ て、ポリオキシアルキレン鎖を有する不飽和単量体 (I M)を含む不飽和単量体(M )をリビング重合する製造方法。
[10] 請求項 2に記載の混合物を用いて、不飽和ポリアルキレングリコール系単量体 (I
M)を含む不飽和単量体 (M)をリビング重合する請求項 9に記載の製造方法。
[11] 請求項 4に記載のテルルイ匕合物および Zまたはジテルリドィ匕合物とラジカル重合開 始剤とを用いて、不飽和ポリアルキレングリコール系単量体 (I M)を含む不飽和単 量体 (M)をリビング重合する請求項 9に記載の製造方法。
[12] 前記単量体 (M)がカルボキシル基由来の部位を有する不飽和単量体 (Π— M)を 含む請求項 9〜11のいずれか 1項に記載の製造方法。
[13] 前記ポリオキシアルキレン鎖を有する不飽和単量体 (I M)が下記化学式 7 :
[化 7]
R2 1
c=c
H (CH2)x(CO)y-0-(AO)n-R3
(化学式 7)
[式中、 R1および R2は互いに独立して水素原子またはメチル基を表し、 AOは互いに 独立して炭素数 2以上のォキシアルキレン基の 1種または 2種以上の混合物(2種以 上の場合はブロック状に付カ卩していてもランダム状に付カ卩していても良い)を表し、 X は 0〜2の整数を表し、 yは 0または 1を表し、 nはォキシアルキレン基の平均付加モル 数を表し、 1〜300の数であり、 R3は水素原子または炭素数 1〜20の炭化水素基を 表す]で示される不飽和単量体である請求項 9〜: L 1のいずれか 1項に記載の製造方 法。
[14] 前記カルボキシル基由来の部位を有する不飽和単量体 (Π— M)が下記化学式 8: [化 8]
R5 4
C=C
I I
R° COO 1
(化学式 8)
[式中、 R4、 R5および R6は互いに独立して水素原子またはメチル基、―(CH ) zCO
2
OM2 (- (CH ) zCOOM2は、—COOM1またはその他の—(CH ) zCOOM2と無水
物を形成していても良い)を表し、 zは 0〜2の整数を表し、 M1および M2は互いに独 立して水素原子、アルカリ金属原子、アルカリ土類金属原子、アンモ-ゥム基または 有機アミン基、炭素数 1〜20の炭化水素基、炭素数 3〜18の炭化水素基を有するシ リル基を表す]
で示される不飽和単量体である請求項 12に記載の製造方法。
[15] 請求項 1〜8のいずれか 1項に記載の重合体を必須成分として含むセメント混和剤
[16] 請求項 9〜14のいずれか 1項に記載の製造方法で製造された重合体 (P)を必須 成分として含むセメント混和剤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006800002195A CN101208366B (zh) | 2005-09-26 | 2006-09-26 | 聚合物、该聚合物的制备方法以及使用了该聚合物的水泥混合剂 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005278100 | 2005-09-26 | ||
JP2005-278100 | 2005-09-26 | ||
JP2005-324043 | 2005-11-08 | ||
JP2005324043 | 2005-11-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007034965A1 true WO2007034965A1 (ja) | 2007-03-29 |
Family
ID=37563561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/319080 WO2007034965A1 (ja) | 2005-09-26 | 2006-09-26 | 重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20070073015A1 (ja) |
EP (1) | EP1767564B2 (ja) |
KR (1) | KR100860370B1 (ja) |
CN (1) | CN101208366B (ja) |
DE (1) | DE602006010296D1 (ja) |
ES (1) | ES2336473T5 (ja) |
MX (1) | MX280211B (ja) |
WO (1) | WO2007034965A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113002A (ja) * | 2005-09-26 | 2007-05-10 | Nippon Shokubai Co Ltd | 重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 |
JP2009001683A (ja) * | 2007-06-21 | 2009-01-08 | Nippon Shokubai Co Ltd | コンクリート混和剤用ポリカルボン酸系共重合体及び共重合体組成物 |
JP2010209283A (ja) * | 2009-03-12 | 2010-09-24 | Otsuka Chem Co Ltd | リビングラジカル重合開始剤及びそれを用いるポリマーの製造方法 |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9221700B2 (en) * | 2010-12-22 | 2015-12-29 | Ecolab Usa Inc. | Method for inhibiting the formation and deposition of silica scale in aqueous systems |
KR101648255B1 (ko) | 2014-04-28 | 2016-08-23 | 안교덕 | 시멘트 혼화제용 공중합체, 이의 제조방법 및 이를 포함하는 시멘트 혼화제 |
US10550278B2 (en) * | 2015-08-18 | 2020-02-04 | Kao Corporation | Water-based ink for ink-jet recording |
BR112018005571B1 (pt) * | 2015-09-24 | 2022-12-20 | Sika Technology Ag | Processo para a preparação de um dispersante para partículas sólidas, copolímero e uso do mesmo |
JP6863971B2 (ja) * | 2015-09-24 | 2021-04-21 | シーカ テクノロジー アクチェンゲゼルシャフト | 流動化剤及びコポリマーを含有する添加剤 |
CN108025973B (zh) | 2015-09-24 | 2022-05-03 | Sika技术股份公司 | 用于基于硫酸钙的组合物的分散剂 |
WO2018062583A1 (ko) * | 2016-09-28 | 2018-04-05 | 주식회사 넥스켐 | 시멘트 조성물의 혼화제용 고분자 화합물 |
MX2020012998A (es) * | 2018-06-01 | 2021-02-17 | Dow Global Technologies Llc | Inhibición de incrustación de sílice usando polímeros para cepillo para botellas. |
KR20220164229A (ko) | 2021-06-04 | 2022-12-13 | 안교덕 | 다관능 인산기를 함유한 고분자 첨가제 및 이의 제조방법 |
CN114086276B (zh) * | 2021-12-15 | 2023-08-04 | 杭州朗平纺织有限公司 | 一种高强涤纶全拉伸丝及其制造方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001002734A (ja) * | 1999-06-24 | 2001-01-09 | Nippon Shokubai Co Ltd | 重合体の製造方法 |
JP2002540234A (ja) * | 1999-03-23 | 2002-11-26 | カーネギー−メロン ユニバーシティ | フリーラジカル的に(共)重合可能なモノマーの制御された重合のための触媒法、およびそれによって製造される官能性高分子系 |
JP2002362952A (ja) * | 2001-06-12 | 2002-12-18 | Taiheiyo Cement Corp | セメント分散剤の製造方法 |
JP2003064132A (ja) * | 2001-08-28 | 2003-03-05 | Nof Corp | 重合体、製造方法および乳化・分散剤 |
JP2004018556A (ja) * | 2002-06-12 | 2004-01-22 | Nisshinbo Ind Inc | リビング開始種を有するポリマー粒子及びその製造方法 |
WO2004014848A1 (ja) * | 2002-08-06 | 2004-02-19 | Otsuka Chemical Co., Ltd. | 有機テルル化合物、その製造方法、リビングラジカル重合開始剤、それを用いるポリマーの製造方法及びポリマー |
WO2004014962A1 (ja) * | 2002-08-08 | 2004-02-19 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
WO2004072126A1 (ja) * | 2003-02-17 | 2004-08-26 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
WO2004096870A1 (ja) * | 2003-04-25 | 2004-11-11 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
JP2004323437A (ja) * | 2003-04-25 | 2004-11-18 | Otsuka Chemical Co Ltd | 有機テルル化合物の製造方法 |
JP2004323693A (ja) * | 2003-04-25 | 2004-11-18 | Otsuka Chemical Co Ltd | リビングラジカルポリマーの製造方法及びポリマー |
JP2005126459A (ja) * | 2003-10-21 | 2005-05-19 | Jsr Corp | 酸解離性基含有樹脂およびその製造方法 |
JP2005128049A (ja) * | 2003-10-21 | 2005-05-19 | Jsr Corp | 感放射線性樹脂組成物 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4808641A (en) * | 1986-07-31 | 1989-02-28 | Fujisawa Pharmaceutical Co., Ltd. | Concrete admixture |
JPH01226757A (ja) * | 1988-03-04 | 1989-09-11 | Takemoto Oil & Fat Co Ltd | セメント用分散剤 |
JP2507280B2 (ja) * | 1991-12-21 | 1996-06-12 | 竹本油脂株式会社 | セメント用分散剤 |
JP2774445B2 (ja) * | 1993-12-14 | 1998-07-09 | 花王株式会社 | コンクリート混和剤 |
US5763548A (en) * | 1995-03-31 | 1998-06-09 | Carnegie-Mellon University | (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization |
US5689012A (en) * | 1996-07-18 | 1997-11-18 | Arco Chemical Technology, L.P. | Continuous preparation of low unsaturation polyoxyalkylene polyether polyols with continuous additon of starter |
US6174980B1 (en) * | 1996-12-26 | 2001-01-16 | Nippon Shokubai Co., Ltd. | Cement dispersant, method for producing polycarboxylic acid for cement dispersant and cement composition |
US6214958B1 (en) * | 1999-07-21 | 2001-04-10 | Arco Chemical Technology, L.P. | Process for preparing comb-branched polymers |
CN1243777C (zh) * | 2000-12-27 | 2006-03-01 | 株式会社日本触媒 | 多元羧酸型共聚物及其制备方法和用途 |
US6527850B2 (en) * | 2001-04-11 | 2003-03-04 | Arco Chemical Technology L.P. | Use of comb-branched copolymers in gypsum compositions |
US6794473B2 (en) * | 2001-05-01 | 2004-09-21 | Nippon Shokubai Co., Ltd. | Acrylic acid (salt) polymer, its production process and uses |
US6946505B2 (en) * | 2001-10-17 | 2005-09-20 | Nippon Shokubai Co., Ltd. | Cement dispersant, its production process, and cement composition using the cement dispersant |
FR2851937B1 (fr) * | 2003-03-03 | 2006-07-28 | Cray Valley Sa | Dispersant polymere comme agent fluidifiant de compositions de liant hydraulique et procede de preparation |
US7232873B2 (en) * | 2003-04-10 | 2007-06-19 | Nippon Shokubai Co., Ltd. | Polycarboxylic acid cement dispersant and method for producing concrete secondary product |
JP2005046781A (ja) * | 2003-07-31 | 2005-02-24 | Kao Corp | 無機顔料用分散剤 |
TW200517406A (en) * | 2003-10-29 | 2005-06-01 | Nippon Catalytic Chem Ind | Polymer, process for preparing the same, and use of the same |
JP2007529397A (ja) * | 2004-03-16 | 2007-10-25 | 株式会社日本触媒 | 乾燥収縮低減剤 |
US20080035022A1 (en) * | 2004-07-15 | 2008-02-14 | Daisuke Hamada | Phosphate Polymer |
-
2006
- 2006-09-26 MX MXPA06010996 patent/MX280211B/es active IP Right Grant
- 2006-09-26 US US11/526,681 patent/US20070073015A1/en not_active Abandoned
- 2006-09-26 EP EP06020164.7A patent/EP1767564B2/en not_active Not-in-force
- 2006-09-26 KR KR1020067024881A patent/KR100860370B1/ko active IP Right Grant
- 2006-09-26 ES ES06020164.7T patent/ES2336473T5/es active Active
- 2006-09-26 CN CN2006800002195A patent/CN101208366B/zh not_active Expired - Fee Related
- 2006-09-26 WO PCT/JP2006/319080 patent/WO2007034965A1/ja active Application Filing
- 2006-09-26 DE DE602006010296T patent/DE602006010296D1/de active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002540234A (ja) * | 1999-03-23 | 2002-11-26 | カーネギー−メロン ユニバーシティ | フリーラジカル的に(共)重合可能なモノマーの制御された重合のための触媒法、およびそれによって製造される官能性高分子系 |
JP2001002734A (ja) * | 1999-06-24 | 2001-01-09 | Nippon Shokubai Co Ltd | 重合体の製造方法 |
JP2002362952A (ja) * | 2001-06-12 | 2002-12-18 | Taiheiyo Cement Corp | セメント分散剤の製造方法 |
JP2003064132A (ja) * | 2001-08-28 | 2003-03-05 | Nof Corp | 重合体、製造方法および乳化・分散剤 |
JP2004018556A (ja) * | 2002-06-12 | 2004-01-22 | Nisshinbo Ind Inc | リビング開始種を有するポリマー粒子及びその製造方法 |
WO2004014848A1 (ja) * | 2002-08-06 | 2004-02-19 | Otsuka Chemical Co., Ltd. | 有機テルル化合物、その製造方法、リビングラジカル重合開始剤、それを用いるポリマーの製造方法及びポリマー |
WO2004014962A1 (ja) * | 2002-08-08 | 2004-02-19 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
WO2004072126A1 (ja) * | 2003-02-17 | 2004-08-26 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
WO2004096870A1 (ja) * | 2003-04-25 | 2004-11-11 | Otsuka Chemical Co., Ltd. | リビングラジカルポリマーの製造方法及びポリマー |
JP2004323437A (ja) * | 2003-04-25 | 2004-11-18 | Otsuka Chemical Co Ltd | 有機テルル化合物の製造方法 |
JP2004323693A (ja) * | 2003-04-25 | 2004-11-18 | Otsuka Chemical Co Ltd | リビングラジカルポリマーの製造方法及びポリマー |
JP2005126459A (ja) * | 2003-10-21 | 2005-05-19 | Jsr Corp | 酸解離性基含有樹脂およびその製造方法 |
JP2005128049A (ja) * | 2003-10-21 | 2005-05-19 | Jsr Corp | 感放射線性樹脂組成物 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113002A (ja) * | 2005-09-26 | 2007-05-10 | Nippon Shokubai Co Ltd | 重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 |
JP2009001683A (ja) * | 2007-06-21 | 2009-01-08 | Nippon Shokubai Co Ltd | コンクリート混和剤用ポリカルボン酸系共重合体及び共重合体組成物 |
JP2010209283A (ja) * | 2009-03-12 | 2010-09-24 | Otsuka Chem Co Ltd | リビングラジカル重合開始剤及びそれを用いるポリマーの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1767564A2 (en) | 2007-03-28 |
EP1767564B1 (en) | 2009-11-11 |
MX280211B (es) | 2010-10-22 |
EP1767564A3 (en) | 2007-04-04 |
CN101208366B (zh) | 2011-12-07 |
KR100860370B1 (ko) | 2008-09-25 |
ES2336473T5 (es) | 2014-01-07 |
KR20070088304A (ko) | 2007-08-29 |
MXPA06010996A (es) | 2007-09-27 |
ES2336473T3 (es) | 2010-04-13 |
US20070073015A1 (en) | 2007-03-29 |
CN101208366A (zh) | 2008-06-25 |
EP1767564B2 (en) | 2013-09-25 |
DE602006010296D1 (de) | 2009-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007034965A1 (ja) | 重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 | |
KR100615378B1 (ko) | 폴리카르복실산계 공중합체 및 그의 제조 방법, 및 그의용도 | |
JP2004519406A (ja) | セメント混和剤及びセメント組成物 | |
JP5485494B2 (ja) | 重合体、その重合体の製造方法およびその重合体を用いたセメント混和剤 | |
JP2003171156A (ja) | セメント混和剤及びセメント組成物 | |
JP4410438B2 (ja) | セメント分散剤およびこれを用いたセメント組成物 | |
JP5072326B2 (ja) | ポリカルボン酸系コンクリート混和剤の製造方法 | |
JP2007131520A (ja) | セメント混和剤 | |
JP2007112703A (ja) | セメント混和剤用ポリカルボン酸系重合体およびセメント混和剤 | |
JP2005330129A (ja) | セメント混和剤 | |
JP2006232615A (ja) | セメント混和剤混合物 | |
JP2004182583A (ja) | セメント混和剤 | |
JP4497830B2 (ja) | セメント混和剤及びその製造方法 | |
JP4274838B2 (ja) | セメント混和剤及びその製造方法 | |
JP4883901B2 (ja) | セメント混和剤 | |
JP2009046655A (ja) | 不飽和(ポリ)アルキレングリコール系エーテル単量体の製造方法及び(ポリ)アルキレングリコール鎖を有する重合体の製造方法 | |
JP2004043280A (ja) | セメント混和剤及びその製造方法 | |
JP4079589B2 (ja) | ポリカルボン酸系共重合体の製造方法 | |
JP2008273820A (ja) | セメント混和剤 | |
JP2003327459A (ja) | セメント混和剤 | |
JP4553559B2 (ja) | ポリカルボン酸系コンクリート混和剤の製造方法 | |
JP5030333B2 (ja) | セメント混和剤 | |
JP2007154171A (ja) | 重合体およびそれを用いたセメント混和剤 | |
JP4094341B2 (ja) | セメント混和剤 | |
JP2004043284A (ja) | セメント混和剤及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680000219.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067024881 Country of ref document: KR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06810588 Country of ref document: EP Kind code of ref document: A1 |