WO2018062583A1 - 시멘트 조성물의 혼화제용 고분자 화합물 - Google Patents

시멘트 조성물의 혼화제용 고분자 화합물 Download PDF

Info

Publication number
WO2018062583A1
WO2018062583A1 PCT/KR2016/010856 KR2016010856W WO2018062583A1 WO 2018062583 A1 WO2018062583 A1 WO 2018062583A1 KR 2016010856 W KR2016010856 W KR 2016010856W WO 2018062583 A1 WO2018062583 A1 WO 2018062583A1
Authority
WO
WIPO (PCT)
Prior art keywords
poly
oxy
ethoxy
methyl
monomer
Prior art date
Application number
PCT/KR2016/010856
Other languages
English (en)
French (fr)
Inventor
박영우
유호석
Original Assignee
주식회사 넥스켐
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 넥스켐 filed Critical 주식회사 넥스켐
Priority to PCT/KR2016/010856 priority Critical patent/WO2018062583A1/ko
Publication of WO2018062583A1 publication Critical patent/WO2018062583A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof

Definitions

  • the present invention relates to a high molecular compound, and more particularly, to a high molecular compound which is added as a admixture to a cement composition to improve the water-resistance rate, workability, stability of entrained air bubbles, and fluid retention performance.
  • admixtures for cement compositions include lignin sulfonic acid admixtures, oxycarboxylic acid admixtures, naphthalene sulfonic acid admixtures, amino sulfonic acid admixtures and polycarboxylic acid admixtures.
  • admixtures for cement compositions polycarboxylic acid cement admixtures mainly composed of polycarboxylic acid copolymers can exhibit higher water-resistance performance than other admixtures.
  • Cement compositions using polycarboxylic acid-based copolymers exhibiting such high water sensitization performance use an air entrainer that entrains fine air bubbles in order to increase freeze-thawing resistance.
  • an air entrainer that entrains fine air bubbles in order to increase freeze-thawing resistance.
  • a mixed material such as fly ash or blast furnace slag fine powder is used in combination with cement, it is difficult to obtain a uniform high quality air running amount, and the air running amount tends to decrease with passage of time.
  • the polycarboxylic acid compound admixture needs to be improved in this respect.
  • the polymer compound according to the present invention for achieving the above object is formed by copolymerizing monomer 1 of formula 1, monomer 2 of formula 2 and monomer 3 of formula 3.
  • R 1 to R 3 represent a hydrogen atom or a methyl group
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms
  • m represents 1 to 100 as an average added mole number of the oxyalkylene group
  • R 4 Represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • n represents an integer of 0 to 2).
  • R 5 to R 7 represent a hydrogen atom or a methyl group
  • R 8 represents an alkyl phenoxymethyl group having 1 to 10 carbon atoms
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms, or a sulfonate ( Sulfonates composed of monovalent metal salts, divalent metal salts, ammonium salts or organic amine salts)
  • OA represents an oxyalkanediyl group having 2 to 4 carbon atoms
  • X represents 1 to 50 as an average added mole number of the oxyalkanediyl group. Indicates.
  • R 10 to R 12 represent a hydrogen atom or a methyl group
  • M 1 represents a hydrogen atom, a monovalent metal salt, a divalent metal salt, an ammonium salt, or an organic amine salt.
  • the proportion of the monomer 1 is 60 to 97% by weight, the proportion of the monomer 2 is 2 to 30% by weight, and the proportion of the monomer 3 is It is preferable that it is 1 to 10 weight%.
  • the weight average molecular weight of the monomer 1 is preferably 100 to 5,000.
  • the weight average molecular weight of the said monomer 2 is 100-3,000.
  • the weight average molecular weight of the high molecular compound is preferably 5,000 to 200,000.
  • the molecular weight distribution (Mw / Mn) of the said high molecular compound is 1.2-3.0.
  • the polymer compound is preferably used as a admixture to be added to the cement composition.
  • the polymer compound of the present invention is used as a admixture for a cement composition, and exhibits excellent effects in the reduction rate, workability, stability of entrained air bubbles, and fluidity retention performance.
  • the polymer compound of the present invention when used as a admixture for cement compositions, exhibits high fluidity of the cement composition even with a small amount of addition, and shows excellent fluidity even in a high water-resistance region.
  • the polymer compound of the present invention is formed by copolymerizing monomer 1 of formula 1, monomer 2 of formula 2 and monomer 3 of formula 3.
  • monomer 1 comprises 60 to 97% by weight
  • monomer 2 comprises 2 to 30% by weight
  • monomer 3 is 1 to 10 based on 100% by weight of monomer 1, monomer 2, and monomer 3 in total. Account for weight percent.
  • Copolymerization of the monomers can be carried out by radical polymerization methods as is well known.
  • R 1 to R 3 represent a hydrogen atom or a methyl group
  • AO represents an oxyalkylene group having 2 to 4 carbon atoms
  • m represents 1 to 100 as an average added mole number of the oxyalkylene group
  • R 4 Represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms
  • n represents an integer of 0 to 2).
  • Monomer 1 is a monoalkylene glycol monoalkenyl ether or a polyalkylene glycol monoalkenyl ether, preferably a polyalkylene glycol monoalkenyl ether.
  • alkenyl group include an allyl group, a metalyl group, a residue of 3-methyl-3-buten-1-ol (when n is 1), and the like, but are not limited thereto.
  • n is an integer of 0-2.
  • R 1 to R 3 in Formula 1 each independently represent a hydrogen atom or a methyl group.
  • AO in Formula 1 represents the same or different and represents an oxyalkylene group having 2 to 4 carbon atoms.
  • this oxyalkylene group an oxyethylene group (ethylene glycol), an oxypropylene group (propylene glycol), and an oxybutylene group (butylene glycol) are mentioned, for example.
  • the same or different means that when a plurality of AOs are contained in the formula (1), each AO may be the same oxyalkylene group or may be two or more different oxyalkylene groups.
  • At least two oxyalkylene groups selected from the group consisting of oxyethylene group (ethylene glycol), oxypropylene group (propylene glycol) and oxybutylene group (butylene glycol) The form which mixed is mentioned, The form which an oxyethylene group (ethylene glycol) and an oxypropylene group (propylene glycol) mix, or an oxyethylene group (ethylene glycol), an oxybutylene group (butylene glycol), and an oxypropylene group ( Propylene glycol) may be mixed.
  • addition of two or more types of oxyalkylene groups may be block-like addition or random addition may be sufficient as it.
  • M in General formula (1) is the average added mole number of an oxyalkylene group, and shows the number of 1-100. It is more preferable that m is 5-100, and it is more preferable that it is 10-100. For example, m can range from 40 to 60, specifically 50. As average added mole number, the mean value of the number of moles of the alkylene glycol unit added to 1 mol of monomers is meant.
  • R 4 in Formula 1 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms. If the number of hydrocarbon atoms is large, the cement dispersibility of the cement admixture is not sufficiently exhibited.
  • the method of adding 1-100 mol of alkylene oxides to unsaturated alcohols such as allyl alcohol, a metall alcohol, and 3-methyl-3- buten- 1-ol, is mentioned, for example.
  • the monomer 1 include (poly) ethylene glycol allyl ether, (poly) ethylene glycol metall ether, (poly) ethylene glycol 3-methyl-3-butenyl ether, (poly) ethylene (poly) propylene glycol allyl ether, (Poly) ethylene (poly) propylene glycol metalyl ether, (poly) ethylene (poly) propylene glycol 3-methyl-3-butenyl ether, (poly) ethylene (poly) butylene glycol allyl ether, (poly) ethylene ( Poly) butylene glycol metalyl ether, (poly) ethylene (poly) butylene glycol 3-methyl-3-butenyl ether, methoxy (pol
  • Monomer 1 preferably accounts for 60 to 97% by weight of the polymer compound of the present invention.
  • Monomer 1 is more preferably 70 to 95% by weight, most preferably 80 to 93% by weight.
  • Monomer 2 is a compound represented by the formula (2).
  • R 5 to R 7 represent a hydrogen atom or a methyl group
  • R 8 represents an alkyl phenoxymethyl group having 1 to 10 carbon atoms
  • R 9 represents a hydrogen atom, an alkyl group having 1 to 2 carbon atoms, or a sulfonate ( Sulfonates composed of monovalent metal salts, divalent metal salts, ammonium salts or organic amine salts)
  • OA represents an oxyalkanediyl group having 2 to 4 carbon atoms
  • X represents 1 to 50 as an average added mole number of the oxyalkanediyl group. Indicates.
  • R 5 , R 6 and R 7 in the formula (2) each independently represent a hydrogen atom or a methyl group.
  • OA in the formula (2) is the same or different, and represents an oxyalkanediyl group having 2 to 4 carbon atoms.
  • Examples of the oxyalkanediyl group include oxy-1,2-ethanediyl, oxy-1,2-propanediyl, oxy-1.4-butanediyl, and oxy-1,2-ethanediyl and oxy-. 1,2-propanediyl groups are preferred.
  • each OA may be the same oxyalkanediyl group, or two or more different oxyalkanediyl groups.
  • a plurality of OAs are included in Formula 2, two or more oxyalkanediyl groups selected from oxy-1,2-ethanediyl group, oxy-1,2-propanediyl group and oxy-1.4-butanediyl group
  • oxy-1,2-ethanediyl group and oxy-1,2-propanediyl group are mixed, or an oxy-1,2-ethanediyl group and oxy-1,4-.
  • it is a form in which a butanediyl group is mixed, and it is more preferable that it is a form in which an oxy-1,2-ethanediyl group and an oxy-1,2-propanediyl group are mixed.
  • the addition of two or more types of oxyalkanediyl groups may be block-like addition or random addition.
  • X in General formula (2) is an average added mole number of an oxyalkanediyl group and shows 1-50.
  • X is preferably 5 to 50 and most preferably 10 to 50.
  • X can range from 5 to 20, specifically 10.
  • average added mole number the mean value of the number of moles of the oxyalkanediyl unit added to 1 mol of monomers is meant.
  • R 8 in Formula 2 is C1-C10 alkyl phenoxymethyl group is shown.
  • alkyl phenoxymethyl group having 1 to 10 carbon atoms examples include methylphenoxymethyl, ethylphenoxymethyl, propylphenoxymethyl, butylphenoxymethyl, pentylphenoxymethyl, hexylphenoxymethyl, heptylphenoxymethyl, and octyl. Phenoxymethyl, nonylphenoxymethyl, decylphenoxymethyl, and the like.
  • R ⁇ 9> in General formula (2) represents a hydrogen atom, a C1-C2 alkyl group, or sulfonic acid (salt).
  • the monomer of formula (2) is for example ⁇ -sulfo- ⁇ - [1-[(4-methylphenoxy) methyl] -2- (2-propenyloxy) ethoxy] -poly (oxy-1,2-ethane Diyl) salts, ⁇ -sulfo- ⁇ - [1-[(4-methylphenoxy) methyl] -2- (2-propenyloxy) ethoxy] -poly (oxy-1,2-propanediyl) salt, ⁇ -sulfo- ⁇ - [1-[(4-methylphenoxy) methyl] -2- (2-propenyloxy) ethoxy] -poly (oxy-1,2-butanediyl) salt, ⁇ -sulfo- ⁇ - [1-[(4-ethylphenoxy) methyl] -2- (2-propenyloxy) ethoxy] -poly (oxy-1,2-ethanediyl) salt, ⁇ -sul
  • monomer 2 occupies 2-30 weight% in the high molecular compound of this invention.
  • Monomer 2 is more preferably 3 to 22% by weight, most preferably 4 to 13% by weight.
  • Monomer 3 is an unsaturated monocarboxylic acid monomer and is a compound represented by the formula (3).
  • R 10 to R 12 represent a hydrogen atom or a methyl group
  • M 1 represents a hydrogen atom, a monovalent metal salt, a divalent metal salt, an ammonium salt, or an organic amine salt.
  • the monomer 3 of the present invention may use one kind or two or more kinds of such unsaturated monocarboxylic acid monomers, among which acrylic acid or its salt, methacrylic acid or its salt is preferable.
  • Monomer 3 preferably accounts for 1 to 10% by weight of the polymer compound of the present invention.
  • Monomer 3 is more preferably 2 to 8% by weight, most preferably 3 to 7% by weight.
  • Monomer 3 will not be specifically limited if it is a monomer copolymerizable with monomer 1 and / or 2.
  • monomer 1, monomer 2 and monomer 3 may be used, but other monomers may be used if necessary.
  • Other monomers include the monomers exemplified below, and one or two or more of these monomers can be used.
  • Half esters and diesters of unsaturated dicarboxylic acids such as maleic acid, maleic anhydride, fmaric acid, itaconic acid and citraconic acid with alcohols having 1 to 30 carbon atoms; Half amides and diamides of the above unsaturated dicarboxylic acids with amines having 1 to 30 carbon atoms; Half esters and diesters of alkyl (poly) alkylene glycols having 1 to 500 moles of alkylene oxides having 2 to 18 carbon atoms added to the alcohol or amine and the unsaturated dicarboxylic acids; Half esters and diesters of the above-mentioned unsaturated dicarboxylic acids with glycols having 2 to 18 carbon atoms or polyalkylene glycols having 2 to 500 added moles of glycol; Halfamides of maleamic acid with glycol having 2 to 18 carbon atoms or polyalkylene glycol having 2 to 500 added moles of glycol.
  • unsaturated dicarboxylic acids such
  • Unsaturated amides such as (meth) acrylamide, (meth) acrylalkylamide, N-metholol (meth) acrylamide, and N, N-dimethyl (meth) acrylamide; Unsaturated cyanides such as (meth) acrylonitrile and -chloroacrylonitrile; Unsaturated esters such as vinyl acetate and vinyl propionate; Unsaturated amines such as aminoethyl (meth) acrylate, methylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylate, dibutylaminoethyl (meth) acrylate and vinylpyridine; Divinyl aromatics such as divinylbenzene; Ditalates such as triaryl citalate; Aryl such as (meth) aryl alcohol and glycidyl (meth) aryl ether
  • (meth) aryl phenol is more preferable. It is preferable that (meth) arylphenol has two or more phenol groups. In addition, the (meth) arylphenol preferably has two or more aryl groups. As (meth) aryl phenol, it is preferable to have two or more phenol groups and two or more aryl groups simultaneously, and the compound which aryl substituted 4, 4- dihydroxy diphenol sulfone is more preferable, and of 4, 4- dihydroxy diphenyl sulfone The compound which aryl substituted the 3 and 3 positions is more preferable.
  • the copolymer of the polycarboxylic acid copolymer or a salt thereof according to the present invention can be produced by copolymerizing a predetermined monomer by a known method, respectively. Polymerization in a solvent is the most preferable in this method.
  • the solvent used in the polymerization in the solvent is, for example, water; Lower alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol; Aromatic hydrocarbons such as benzene, toluene and xylene; Aliphatic hydrocarbons such as cyclohexane and n-hexane; Esters such as ethyl acetate; Ketones, such as acetone and methyl ethyl ketone, are mentioned.
  • each monomer and a polymerization initiator may be continuously dropped in the reaction container, respectively, and the mixture of each monomer and a polymerization initiator may be continuously dropped in the reaction container, respectively.
  • a solvent may be added to the reaction vessel, and the mixture of the monomer and the solvent and the polymerization initiator solution may be added dropwise to the reaction vessel, respectively, or part or all of the monomer may be added to the reaction vessel, and the polymerization initiator may be continuously added dropwise.
  • Polymerization initiators used for copolymerization include, for example, persulfates such as ammonium persulfate, sodium persulfate and potassium persulfate when copolymerizing in an aqueous solvent; Water-soluble organic peroxides, such as a t-butyl hydroperoxide and hydrogen peroxide, are mentioned. At this time, accelerators, such as sodium hydrogen sulfite and L-ascorbic acid, can also be used together.
  • an aromatic hydrocarbon such as an aliphatic hydrocarbon, esters, or ketones
  • peroxides such as benzoyl peroxide and lauryl peroxide
  • Hydroperoxides such as xmenperoxide
  • Aromatic azo compounds such as azobisisobutyronitrile, etc.
  • accelerators such as an amine compound
  • copolymerizing in a water-lower alcohol mixed solvent it can select suitably from the above-mentioned polymerization initiator or the combination of a polymerization initiator, and an accelerator, and can use.
  • the polymerization temperature depends on the solvent and polymerization initiator used, but is usually in the range of 50 to 100 ° C.
  • the chain transfer agent used is, for example, a thiol such as mercaptoethanol, thioglycerol, thioglycolic acid, 2-mercaptopropionic acid, 3-mercaptopropionic acid, chiolinic acid, octyl thioglycolate, and 2-mercaptoethanesulfonic acid System compounds; Phosphorous acid, hypophosphite and its salts (sodium hypophosphite, potassium hypophosphite, etc.) and sulfite, hydrogen sulfite, metabisulfite and its salts (sodium sulfite, potassium sulfite, sodium hydrogen sulfite, potassium hydrogen sulfite, sodium metabisulfite, metabisulfite Lower oxides of potassium sulfite and the like, salts thereof, and the like. This may be used
  • alkaline substance used for pH adjustment of the copolymer after copolymerization
  • inorganic substances such as hydroxides, chlorides and carbon salts of monovalent metals such as sodium hydroxide, potassium hydroxide or calcium hydroxide, and divalent metals; ammonium; Organic amines and the like are common.
  • the weight average molecular weight of the polycarboxylic acid copolymer or a salt thereof according to the present invention is preferably 5,000 to 200,000. If the weight average molecular weight is less than 5,000, the cement dispersibility of the cement admixture is not sufficiently exhibited, and thus the effect as a cement admixture is not sufficiently exhibited. In addition, when the weight average molecular weight exceeds 200,000, it exhibits a cohesive action, leading to a decrease in workability.
  • the adsorption amount per unit area of the cement admixtures of the other cement admixtures is high, and the cement admixtures of the present invention are susceptible to adsorption inhibition and thus the required cement dispersibility is not obtained. Do not.
  • the weight average molecular weight of the polycarboxylic acid copolymer or salt thereof of the present invention is preferably 10,000 to 150,000, most preferably 50,000 to 130,000.
  • the molecular weight distribution (Mw / Mn) of the polycarboxylic acid copolymer or its salt of this invention is the range of 1.2-3.0.
  • Mw / Mn has a good range of 1.3 to 2.0, and more preferably 1.5 to 2.0. If Mw / Mn is less than 1.2, the fluidity of the concrete is insufficient, and good slump retention is not obtained. Even above 3.0, there is a lack of liquidity.
  • Mw represents a weight average molecular weight and Mn represents a number average molecular weight.
  • the weight average molecular weight can be measured by a known method of converting polyethylene glycol into gel permeation chromatography (GPC).
  • the polycarboxylic acid copolymer or salt thereof of the present invention may be used in combination with one or two or more other compounds when used as a admixture for cement compositions.
  • Such other compounds are preferably compounds having a sulfonic acid group and an aromatic group in a molecule.
  • the sulfonic acid compound include polyalkylaryl sulfonates such as naphthalene sulfonic acid formaldehyde condensate, melamine sulfonic acid formaldehyde condensate and anthracene sulfonic acid formaldehyde condensate; Melamine formaldehyde resin sulfonates such as melamine sulfonic acid formaldehyde condensate; Aromatic aminosulfonic acid salts such as aminoarylsulfonic acid-phenol-formaldehyde condensate; Lignin sulfonates such as lignin sulfonate and modified lignin sulfonate; Polystyrene sulfonate etc. are mentioned. Of these, lignin sulfonate is good.
  • the sulfonic acid compound used together with the polymer compound of the present invention may be a polyalkylarylsulfonic acid compound, Melamine formalin resin sulfonate type compound, aromatic amino sulfonate type compound, polystyrene sulfonate type compound, etc. are suitable.
  • oxycarboxylic acids may include oxycarboxylic acids, sugars or salts thereof.
  • Such oxycarboxylic acid, sugar or its salt may combine 1 type (s) or 2 or more types chosen from the group which consists of oxycarboxylic acids, sugars, and its salt.
  • the oxycarboxylic acids include glyconic acid, glycoheptonic acid, arabic acid, lingoic acid, and cuenoic acid.
  • the salts of oxycarboxylic acids include inorganic salts or organic salts such as sodium, potassium, calcium, magnesium, ammonium and triethanolamine of the compounds mentioned as specific examples of the oxycarboxylic acids.
  • sugar for example, monosaccharides such as glucose, fructose, galactose, saccharose, chisirose, apios, ribose, isosaccharides, oligosaccharides such as disaccharides and trisaccharides, oligosaccharides such as dextrin, dextran and the like And polysaccharides.
  • sugars include sugar alcohols such as molasses and sorbitol containing such sugars.
  • salts of the saccharides include inorganic or organic salts such as sodium, potassium, calcium, magnesium, ammonium and triethanolamine of the compounds mentioned as specific examples of the saccharides.
  • oxycarboxylic acids among oxycarboxylic acid, sugar, or its salt, and it is more preferable to use gluconic acid or its salt.
  • An oxycarboxylic acid, a sugar, or its salt may be used individually by 1 type, and may use 2 or more types together.
  • the admixture for cement compositions of this invention may have another component as needed.
  • the copolymer copolymerized using the (poly) alkylene glycol monoester type monomer, and the water-soluble polyalkylene glycol whose sock terminal group is a hydrogen atom are mentioned.
  • the viscosity of the cement composition can be reduced quickly, the mixing time can be shortened, and the workability can be improved. Good in that you can.
  • water-soluble polyalkylene glycol wherein the sock terminal is a hydrogen atom examples include polyethylene glycol, polypropylene glycol, polyethylene polypropylene glycol, polyethylene polybutylene glycol, and the like.
  • the water-soluble polyalkylene glycol whose sock terminal group is a hydrogen atom can use 1 type (s) or 2 or more types.
  • the admixture for cement composition of the present invention is an AE agent, a water reducing agent, an AE water reducing agent, a high performance water reducing agent, a high performance AE water reducing agent, a flow agent, a delaying agent, a fastener, a dust reducing agent, a water-insoluble agent, within a range that does not impair the desired effect. It is possible to use a separation reducing agent, a pump pressure aid, an antifreeze / cold agent, an alkali aggregate reaction inhibitor, an anti-neutralizing agent, a shrinkage reducing agent, a hydration heat inhibitor, a foaming agent, a foaming agent, an admixture for immediate demoulding, and the like.
  • the admixture for cement compositions of the present invention can be used in the form of an aqueous solution or in a form powdered by drying. Moreover, it can be used for the premixed product which mixes the admixture for cement compositions of this invention of the form which powderized on the component other than what comprises a cement composition, such as cement powder and dry mortar, previously.
  • the slump value, the slump change over time, the measurement of the amount of air, and the compressive strength of the hardened concrete were measured by the method described in Korean Industrial Standard KS F 2402, 2421, 2405.
  • the pump In the GPC (Gel Permission Chromatography) system, the pump consists of the M930 Solvent Delivery Pump of the Younglin meter, the detector of the SCHAMBECK SFD GmbH RI2000-F refractive index detector, and the column oven of the CTS30 Column Oven of the Younglin meter.
  • the measurement was performed using a Waters Ultrahydrogel Linear Column and a Waters Ultrahydrogel 120 Column and measured at a flow rate of 1.0 mL / min with a mobile phase of 0.1 M NaNO 3 .
  • the column oven is 38 ° C and the RI detector is 35 ° C.
  • the standard sample was used by dissolving polyethylene glycol in tertiary distilled water, and the sample was diluted 50 times with tertiary distilled water and injected into 100 ⁇ l.
  • the copolymer obtained in Preparation Example and Comparative Example was used 0.4% by weight of cement. Sand and gravel were added to the blender and dry mixed for 30 seconds, then cement was added and dry mixed for 30 seconds. Then, water and the copolymer obtained in Preparation Examples and Comparative Examples were added and mixed for 2 minutes to prepare concrete.
  • MPE-50 50 mole adduct of ethylene oxide (called MPE-50) of 187.5 g of ion-exchanged water and metalyl alcohol as an unsaturated polyalkylene glycol ether monomer in a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser. ) 437.6 g and acetic acid 0.9 g were added, the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 70 ° C. under a nitrogen atmosphere. 4.0 g of a 4 mass% aqueous hydrogen peroxide solution was placed in a reaction vessel while maintaining the reaction temperature at 70 ° C.
  • aqueous solution of an unsaturated carboxylic acid monomer was added dropwise over 3 hours, and an aqueous solution of a chain transfer agent consisting of 0.3 g of mercaptoethanol, 0.2 g of L-ascorbic acid and 158.1 g of water was added dropwise at the same time as the dropwise start of the aqueous acrylic acid solution. After that, the mixture was kept at 70 ° C for 1 hour to complete the polymerization reaction. After cooling to 30 ° C., the solution was neutralized to pH 7.0 with 30% aqueous sodium hydroxide solution to obtain a copolymer solution having a weight average molecular weight of 62500.
  • a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser, 187.0 g of ion-exchanged water and 100 moles of ethylene oxide of metallyl alcohol as an unsaturated polyalkylene glycol ether monomer (referred to as MPE-100) 435.3 g and 1.0 g of acetic acid were added, the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 70 ° C. under a nitrogen atmosphere.
  • MPE-100 unsaturated polyalkylene glycol ether monomer
  • the acidic reaction solution was adjusted to pH 7.0 using an aqueous sodium hydroxide solution and ion-exchanged water at a temperature below the polymerization temperature to obtain a copolymer aqueous solution having a weight average molecular weight of 107800.
  • MPE-50 ethylene oxide
  • a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser.
  • 500.00 g and 0.9 g of acetic acid were added, the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 70 ° C. under a nitrogen atmosphere.
  • MPE-50 50 mole adduct of ethylene oxide
  • an unsaturated polyalkylene glycol ether monomer in a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser.
  • acetic acid 1.0 g 283.1 g and acetic acid 1.0 g were added, the reaction container was replaced with nitrogen while stirring, and the temperature was raised to 70 ° C. under a nitrogen atmosphere.
  • 4.0 g of 4 mass% aqueous hydrogen peroxide solution was placed in a reaction vessel while maintaining the reaction temperature at 70 ° C.
  • the mixture was kept at 70 ° C for 1 hour to complete the polymerization reaction.
  • the solution was neutralized to pH 7.0 with 30% aqueous sodium hydroxide solution to obtain a copolymer aqueous solution having a weight average molecular weight of 187500.
  • MPE-150 ethylene oxide
  • metallyl alcohol as unsaturated polyalkylene glycol ether monomers
  • a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser.
  • 399.3 g and acetic acid 1.0 g were added, the reaction container was replaced with nitrogen while stirring, and the temperature was raised to 70 ° C. under a nitrogen atmosphere.
  • aqueous solution of an unsaturated carboxylic acid monomer was added dropwise over 3 hours, and an aqueous solution of a chain transfer agent consisting of 0.4 g of mercaptoethanol, 0.6 g of L-ascorbic acid and 168.6 g of water was added dropwise at the same time as dropwise addition of the aqueous acrylic acid solution. After that, the mixture was kept at 70 ° C for 1 hour to complete the polymerization reaction. After cooling to 30 ° C., the mixture was neutralized to pH 7.0 with 30% aqueous sodium hydroxide solution to obtain a copolymer aqueous solution having a weight average molecular weight of 154300.
  • a glass reaction vessel equipped with a thermometer, a stirrer, a dropping device, a nitrogen inlet tube and a reflux condenser, 153.7 g of ion-exchanged water and an ethylene oxide 50 mole adduct of metallyl alcohol as an unsaturated polyalkylene glycol ether monomer (referred to as MPE-50) 452.1 g and 1.0 g of acetic acid were added, the reaction vessel was replaced with nitrogen while stirring, and the temperature was raised to 70 ° C. under a nitrogen atmosphere.
  • MPE-50 unsaturated polyalkylene glycol ether monomer
  • aqueous solution of an unsaturated carboxylic acid monomer was added dropwise over 3 hours, and an aqueous solution of a chain transfer agent consisting of 0.05 g of mercaptoethanol, 0.2 g of L-ascorbic acid, and 216.5 g of water was added dropwise at the same time as dropwise addition of the aqueous acrylic acid solution. After that, the mixture was kept at 70 ° C for 1 hour to complete the polymerization reaction. After cooling to 30 ° C., the mixture was neutralized to pH 7.0 with 30% aqueous sodium hydroxide solution to obtain a copolymer aqueous solution having a weight average molecular weight 312000.
  • Table 1 shows the monomers and the ratios used in Preparation Examples and Comparative Examples.
  • MPE-50 50 mole adduct of ethylene oxide of metharyl alcohol.
  • MPE-100 100 mol addition product of ethylene oxide of methyl alcohol.
  • MPE-150 150 mole adduct of ethylene oxide of metharyl alcohol.
  • MBP-50 50 mole adduct of ethylene oxide of 3-methyl-3-buten-1-ol.
  • SE-10 ⁇ -sulfo- ⁇ - [1-[(4-nonylphenoxy) methyl] -2- (2-propenyloxy) ethoxy] -poly (oxy-1,2-ethanediyl) ammonium salt ( Oxy-1,2-ethanediyl average added moles of 10 moles).
  • AA acrylic acid
  • Table 2 shows the bubble test results of the copolymers prepared in Preparation Examples and Comparative Examples.
  • Table 3 shows the test results of the concrete using the copolymers prepared in Preparation Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

폴리알킬렌글리콜 모노알케닐에테르 단량체와 불포화 모노카복실산 단량체가 공중합하여 형성되는 폴리카복실산계 공중합체 화합물이 개시된다. 본 발명의 고분자 화합물은 시멘트 조성물용 혼화제로 사용되어 감수율, 작업성, 연행 공기포의 안정성 및 유동성 유지성능에서 우수한 효과를 발휘한다.

Description

시멘트 조성물의 혼화제용 고분자 화합물
본 발명은 고분자 화합물에 관한 것으로서, 더욱 상세하게는 시멘트 조성물에 혼화제로 첨가되어 감수율, 작업성, 연행 공기포의 안정성 및 유동성 유지성능을 향상시키는 고분자 화합물에 관한 것이다.
콘크리트의 시공성과 더불어 내구성을 향상시키기 위해서는 콘크리트 중의 단위수량을 줄이는 것이 유효하다. 그러나 단위수량을 감소시키면 콘크리트의 유동성이 저하하고, 작업성이 나빠진다. 이를 해결하기 위하여 여러 종류의 시멘트 조성물용 혼화제가 사용되고 있다. 시멘트 조성물용 혼화제를 사용하면 시멘트 조성물을 감수시켜도 충분한 분산성을 발휘하여 그 유동성 및 시공성을 확보할 수 있고, 감수에 의한 내구성 및 강도 향상을 실현함과 동시에 시간 경과에 따라 안정된 분산성을 유지하여 양호한 시멘트 조성물을 얻을 수 있다.
시멘트 조성물용 혼화제로는 리그닌술폰산계 혼화제, 옥시카복실산계 혼화제, 나프탈렌술폰산계 혼화제, 아미노술폰산계 혼화제와 폴리카복실산계 혼화제 등이 있다. 이들 시멘트 조성물용 혼화제 가운데 폴리카복실산계 공중합체를 주성분으로 하는 시멘트 조성물용 혼화제(폴리카복실산계 시멘트 혼화제)는 다른 혼화제보다도 높은 감수 성능을 발휘할 수 있다. 특히 폴리카복실산계 공중합체 시멘트 조성물용 혼화제 중에서 불포화 폴리알킬렌글리콜에테르계 단량체 유래의 구조 단위와 불포화 카복실산계 단량체 유래의 구조 단위를 포함하는 폴리카복실산계 공중합체가 제안되어 왔다. 이러한 제안들은 특허등록 제10-0481059호(2005. 03. 25. 등록), 특허등록 제10-0786452호(2007. 12. 10. 등록), 특허등록 제10-0775801호(2007. 11. 06. 등록), 특허등록 제10-0832755호(2008. 05. 21. 등록), 특허등록 제10-0979768호(2010. 08. 27. 등록), 특허등록 제10-1017512호(2011. 02. 17. 등록), 특허공개 제10-2011-0016911호(2011. 02. 18. 공개) 등에 개시되어 있고, 또한 일본국 특허공개 제2014-31296호, 일본국 특허공개 제2012-180254호, 일본국 특허등록 제5473997호, 일본국 특허공개 제2014-65760호 등에도 개시되어 있다.
이러한 높은 감수 성능을 발휘하는 폴리카복실산계 공중합체를 사용하는 시멘트 조성물은 동결융해 저항성을 높이기 위하여 미세한 양질의 공기포를 연행시키는 공기연행제를 병용하고 있다. 그러나 플라이애시 또는 고로 수쇄 슬래그 미분말 등의 혼합재가 시멘트와 병용하여 사용되는 시멘트 조성물에 있어서는 균일한 양질의 공기연행량을 얻기가 어렵고, 시간의 경과와 더불어 공기연행량이 감소하는 경향이 있다.
또한 시멘트 조성물용 혼화제에 대해서 시멘트 조성물에 대한 유동성의 부여, 유동성의 유지, 경화 지연 방지 등 여러 가지 성능이 요구되고 있기 때문에 폴리카복실산계 혼화제에 대해서도 이러한 관점에서 개선이 필요하다.
따라서, 본 발명의 목적은 시멘트 조성물에 혼화제로 첨가되어 감수율, 작업성, 연행 공기포의 안정성 및 유동성 유지성능을 향상시키는 고분자 화합물을 제공하는 것이다.
상기한 목적을 달성하기 위한 본 발명에 따른 고분자 화합물은 하기의 화학식 1의 단량체 1, 화학식 2의 단량체 2 및 화학식 3의 단량체 3이 공중합하여 형성되는 것이다.
Figure PCTKR2016010856-appb-C000001
(상기 화학식 1에서, R1~R3는 수소원자 또는 메틸기를 나타내고, AO는 탄소수 2~4의 옥시알킬렌기를 나타내고, m은 옥시알킬렌기의 평균 부가 몰수로서 1~100을 나타내고, R4는 수소원자 또는 탄소수 1~2의 알킬기를 나타내며, n은 0~2의 정수를 나타낸다.)
Figure PCTKR2016010856-appb-C000002
(상기 화학식 2에서, R5~R7은 수소원자 또는 메틸기를 나타내고, R8은 탄소수 1~10의 알킬페녹시메틸기를 나타내고, R9은 수소원자, 탄소수 1~2의 알킬기 또는 술폰산염(1가 금속염, 2가 금속염, 암모늄염 또는 유기아민염으로 이루어진 술폰산염)을 나타내고, OA는 탄소수 2~4의 옥시알칸디일기를 나타내며, X는 옥시알칸디일기의 평균 부가 몰수로서 1~50을 나타낸다.)
Figure PCTKR2016010856-appb-C000003
(상기 화학식 3에서, R10~R12는 수소원자 또는 메틸기를 나타내며, M1은 수소원자, 1가 금속염, 2가 금속염, 암모늄염 또는 유기아민염을 나타낸다.)
상기 단량체 1, 단량체 2와 단량체 3의 합계 100 중량%에서 상기 단량체 1이 차지하는 비율은 60 내지 97 중량%이고, 상기 단량체 2가 차지하는 비율은 2 내지 30 중량%이며, 상기 단량체 3이 차지하는 비율은 1 내지 10 중량%인 것이 바람직하다.
상기 단량체 1의 중량평균분자량은 100 내지 5,000인 것이 바람직하다.
상기 단량체 2의 중량평균분자량은 100 내지 3,000인 것이 바람직하다.
상기 고분자 화합물의 중량평균분자량은 5,000 내지 200,000인 것이 바람직하다.
상기 고분자 화합물의 분자량 분포(Mw/Mn)은 1.2 내지 3.0인 것이 바람직하다.
상기 고분자 화합물은 시멘트 조성물에 첨가되는 혼화제로 사용되는 것이 바람직하다.
본 발명의 고분자 화합물은 시멘트 조성물용 혼화제로 사용되어 감수율, 작업성, 연행 공기포의 안정성 및 유동성 유지성능에서 우수한 효과를 발휘한다. 특히 본 발명의 고분자 화합물은 시멘트 조성물용 혼화제로 사용되는 경우, 적은 첨가량으로도 시멘트 조성물의 높은 유동성을 나타내고, 또한 높은 감수율 영역에서도 우수한 유동성을 나타낸다.
이하에서, 본 발명을 상세하게 설명한다.
본 발명의 고분자 화합물은 하기 화학식 1의 단량체 1, 화학식 2의 단량체 2 및 화학식 3의 단량체 3이 공중합하여 형성되는 것이다. 본 발명의 고분자 화합물에서 단량체 1, 단량체 2와 단량체 3의 합계 100 중량%에 대하여 단량체 1은 60 내지 97 중량%을 차지하고, 단량체 2는 2 내지 30 중량%를 차지하며, 단량체 3은 1 내지 10 중량%를 차지한다. 단량체들의 공중합은 잘 알려진 바와 같은 라디칼 중합방법에 의하여 수행될 수 있다.
구체적으로, 먼저 단량체 1에 대하여 설명하면 다음과 같다.
화학식 1
Figure PCTKR2016010856-appb-I000001
(상기 화학식 1에서, R1~R3는 수소원자 또는 메틸기를 나타내고, AO는 탄소수 2~4의 옥시알킬렌기를 나타내고, m은 옥시알킬렌기의 평균 부가 몰수로서 1~100을 나타내고, R4는 수소원자 또는 탄소수 1~2의 알킬기를 나타내며, n은 0~2의 정수를 나타낸다.)
단량체 1은 모노알킬렌글리콜 모노알케닐 에테르 또는 폴리알킬렌글리콜 모노알케닐에테르이고, 바람직하게는 폴리알킬렌글리콜 모노알케닐에테르이다. 화학식 1 중에서, 알케닐기로는 알릴기, 메탈릴기, 3-메틸-3-부텐-1-올의 잔기(n이 1인 경우) 등을 예시할 수 있으나 이것들에 한정되는 것은 아니다. n은 0 내지 2의 정수이다.
화학식 1 중의 R1~R3는 각각 독립적으로 수소원자 또는 메틸기이다.
화학식 1 중의 AO는 동일 내지는 다른 것으로 탄소수 2~4의 옥시알킬렌기를 나타낸다. 해당 옥시알킬렌기로서는 예를 들면 옥시에틸렌기(에틸렌글리콜), 옥시프로필렌기(프로필렌글리콜)와 옥시부틸렌기(부틸렌글리콜)를 들 수가 있다. 본 명세서에서 '동일 내지는 다른'이라는 것은 화학식 1에 AO가 복수로 함유되는 경우, 각각의 AO가 동일한 옥시알킬렌기이어도 좋고, 다른 2종류 이상의 옥시알킬렌기이어도 좋다는 것을 의미한다. 화학식 1에 AO가 복수로 포함되는 경우의 형태로는 옥시에틸렌기(에틸렌글리콜), 옥시프로필렌기(프로필렌글리콜) 및 옥시부틸렌기(부틸렌글리콜)로 이루어진 군 중에 선택된 2가지 이상의 옥시알킬렌기가 혼재하는 형태를 들 수 있고, 옥시에틸렌기(에틸렌글리콜)와 옥시프로필렌기(프로필렌글리콜)가 혼재하는 형태, 또는 옥시에틸렌기(에틸렌글리콜)와 옥시부틸렌기(부틸렌글리콜)와 옥시프로필렌기(프로필렌글리콜)가 혼재하는 형태이어도 좋다. 다른 옥시알킬렌기가 혼재하는 형태에서 2 종류 이상의 옥시알킬렌기의 부가는 블록상의 부가이어도 좋고, 랜덤상의 부가이어도 좋다.
화학식 1 중의 m은 옥시알킬렌기의 평균 부가 몰수이고, 1~100의 수를 나타낸다. m은 5~100인 것이 더욱 좋고, 10~100인 것이 더욱 바람직하다. 예를 들어, m은 40 내지 60의 범위를 가질 수 있고, 특정적으로는 50일 수 있다. 평균 부가 몰수로는 단량체 1 몰에 부가하고 있는 알킬렌글리콜 단위의 몰수의 평균값을 의미한다.
화학식 1의 R4는 수소원자 또는 탄소원자 수 1~2의 알킬기를 나타낸다. 탄화수소 원자 수가 크면 시멘트 혼화제의 시멘트 분산성이 충분히 발휘되지 않는다.
단량체 1의 제조방법으로는 예를 들면 알릴알코올, 메탈릴알코올과 3-메틸-3-부텐-1-올 등의 불포화 알코올에 알킬렌옥사이드를 1~100 몰 부가하는 방법을 들 수 있다. 단량체 1로는 예를 들면 (폴리)에틸렌글리콜알릴에테르, (폴리)에틸렌글리콜메탈릴에테르, (폴리)에틸렌글리콜 3-메틸-3-부테닐에테르, (폴리)에틸렌(폴리)프로필렌글리콜 알릴에테르, (폴리)에틸렌 (폴리)프로필렌글리콜 메탈릴에테르, (폴리)에틸렌 (폴리)프로필렌글리콜 3-메틸-3-부테닐에테르, (폴리)에틸렌 (폴리)부틸렌글리콜 알릴에테르, (폴리)에틸렌 (폴리)부틸렌글리콜 메탈릴에테르, (폴리)에틸렌 (폴리)부틸렌글리콜 3-메틸-3-부테닐에테르, 메톡시 (폴리)에틸렌글리콜 알릴에테르, 메톡시 (폴리)에틸렌글리콜 메탈릴에테르, 메톡시 (폴리)에틸렌글리콜 3-메틸-3-부테닐에테르, 메톡시 (폴리)에틸렌 (폴리)프로필렌글리콜 알릴에테르, 메톡시 (폴리)에틸렌 (폴리)프로필렌글리콜 메탈릴에테르, 메톡시 (폴리)에틸렌 (폴리)프로필렌글리콜 메탈릴에테르, 메톡시 (폴리)에틸렌 (폴리)프로필렌글리콜 3-메틸-3-부테닐에테르, 메톡시 (폴리)에틸렌 (폴리)부틸렌글리콜 알릴에테르, 메톡시 (폴리)에틸렌 (폴리)부틸렌글리콜 메탈릴에테르, 메톡시 (폴리)에틸렌 (폴리)부틸렌글리콜 3-메틸-3-부테닐에테르를 들 수 있다. 단량체 1로는 이 중에서 1종 내지는 2 종 이상을 사용할 수 있으나, 친수성 및 소수성의 발란스로부터 (폴리)에틸렌글리콜 모노 알케닐에테르를 사용하는 것이 좋다.
단량체 1은 본 발명의 고분자 화합물에서 60~97 중량%를 차지하는 것이 바람직하다. 단량체 1은 더욱 바람직하게는, 70~95 중량%이고, 가장 바람직하게는 80~93 중량%이다.
단량체 2는 화학식 2로 표시되는 화합물이다.
화학식 2
Figure PCTKR2016010856-appb-I000002
(상기 화학식 2에서, R5~R7은 수소원자 또는 메틸기를 나타내고, R8은 탄소수 1~10의 알킬페녹시메틸기를 나타내고, R9은 수소원자, 탄소수 1~2의 알킬기 또는 술폰산염(1가 금속염, 2가 금속염, 암모늄염 또는 유기아민염으로 이루어진 술폰산염)을 나타내고, OA는 탄소수 2~4의 옥시알칸디일기를 나타내며, X는 옥시알칸디일기의 평균 부가 몰수로서 1~50을 나타낸다.)
화학식 2 중의 R5, R6 및 R7는 각각 독립적으로 수소원자 또는 메틸기를 나타낸다.
화학식 2 중의 OA는 동일 내지는 다른데, 탄소원자 수 2~4의 옥시알칸디일기를 나타낸다. 해당 옥시알칸디일기로는 예를 들면 옥시-1,2-에탄디일, 옥시-1,2-프로판디일, 옥시-1.4-부탄디일을 들 수 있고, 옥시-1,2-에탄디일 및 옥시-1,2-프로판디일기가 좋다.
본 발명에서 OA가 동일 내지는 다르다 함은 화학식 2 중에 OA가 복수로 포함된 경우 각각 OA가 동일한 옥시알칸디일기이어도 좋고, 다른 2 종류 이상의 옥시알칸디일기이어도 좋다는 것을 의미한다. 화학식 2 중에 OA가 복수로 포함된 경우의 형태로는 옥시-1,2-에탄디일기, 옥시-1,2-프로판디일기 및 옥시-1.4-부탄디일기로부터 선택된 2종 이상의 옥시알칸디일기가 혼재하는 형태를 들 수 있고, 옥시-1,2-에탄디일기와 옥시-1,2-프로판디일기가 혼재하는 형태, 또는 옥시-1,2-에탄디일기와 옥시-1,4-부탄디일기가 혼재하는 형태인 것이 좋고, 옥시-1,2-에탄디일기와 옥시-1,2-프로판디일기가 혼재하는 형태인 것이 보다 좋다. 다른 옥시알칸디일기가 혼재하는 형태에 있어서 2 종류 이상의 옥시알칸디일기의 부가는 블록상의 부가이어도 좋고, 랜덤상의 부가이어도 좋다.
화학식 2 중의 X는 옥시알칸디일기의 평균 부가 몰수이고, 1~50을 나타낸다. X는 5~50인 것이 좋고, 10~50인 것이 가장 좋다. 예를 들어, X는 5 내지 20의 범위를 가질 수 있고, 특정적으로는 10일 수 있다. 평균 부가 몰수로는 단량체 1몰에 부가하는 옥시알칸디일 단위의 몰수의 평균값을 의미한다.
화학식 2 중의 R8 탄소수 1~10의 알킬페녹시메틸기를 나타낸다.
탄소수 1~10의 알킬페녹시메틸기로는 예를 들면 메틸페녹시메틸, 에틸페녹시메틸, 프로필페녹시메틸, 부틸페녹시메틸, 펜틸페녹시메틸, 헥실페녹시메틸, 헵틸페녹시메틸, 옥틸페녹시메틸, 노닐페녹시메틸와 데실페녹시메틸 등을 들 수가 있다.
화학식 2 중의 R9는 수소원자, 탄소수 1~2의 알킬기 또는 술폰산(염)을 나타낸다.
화학식 2의 단량체는 예를 들면 α-설포-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-설포-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일)염, α-설포-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일)염, α-설포-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일)염, α-하이드록시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-하이드록시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-하이드록시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-하이드록시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-메톡시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-메톡시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-메톡시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-메틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-에틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-프로필페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시ω--[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-부틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-펜틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-헥실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-헵틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-옥틸페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일), α-에톡시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일), α-에톡시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-프로판디일), α-에톡시-ω-[1-[(4-데실페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-부탄디일) 등을 들 수가 있다.
단량체 2는 본 발명의 고분자 화합물에서 2~30 중량%를 차지하는 것이 바람직하다. 단량체 2는 더욱 바람직하게는, 3~22 중량%이고, 가장 바람직하게는 4~13 중량%이다.
단량체 3은 불포화 모노카복실산계 단량체로서, 화학식 3으로 표시되는 화합물이다.
화학식 3
Figure PCTKR2016010856-appb-I000003
(상기 화학식 3에서, R10~R12는 수소원자 또는 메틸기를 나타내며, M1은 수소원자, 1가 금속염, 2가 금속염, 암모늄염 또는 유기아민염을 나타낸다.)
본 발명에서 단량체 3으로 사용될 수 있는 불포화 모노 카복실산계 단량체의 구체적인 예로는 아크릴산, 메타크릴산, 크로톤산 등의 카복실산류 및 염 (예를 들면 1가 금속염, 2가 금속염, 암모늄염, 유기아민염)을 들 수 있다. 본 발명의 단량체 3은 그러한 불포화 모노 카복실산계 단량체 가운데 1종 또는 2종 이상을 사용할 수 있는데 그 중에서도 아크릴산 또는 그 염, 메타크릴산 또는 그 염이 좋다.
단량체 3은 본 발명의 고분자 화합물에서 1~10 중량%를 차지하는 것이 바람직하다. 단량체 3은 더욱 바람직하게는, 2~8 중량%이고, 가장 바람직하게는 3~7 중량%이다.
단량체 3은 단량체 1 및/또는 2와 공중합 가능한 단량체이면 특별히 한정되지 않는다.
폴리카복실산계 공중합체 또는 그 염을 얻기 위한 필수 단량체는 단량체 1, 단량체 2 및 단량체 3이나, 필요에 따라 기타의 단량체를 사용하여도 좋다. 기타의 단량체로는 하기에 예시한 단량체들을 들 수 있고, 이 가운데 1종 또는 2종 이상을 사용할 수 있다.
말레인산, 무수말레인산, 프말산, 이타콘산, 시트라콘산 등의 불포화 디카르본산류와 탄소원자 수 1~30의 알코올과의 하프에스테르, 디에스테르류; 상기 불포화 디 카르본산류와 탄소 수 1~30의 아민과의 하프아미드, 디아미드류; 상기 알코올 또는 아민에 탄소원자 수 2~18의 알킬렌옥사이드를 1~500몰 부가시킨 알킬(폴리)알킬렌글리콜과 상기 불포화 디 카르본산류와의 하프에스테르, 디에스테르류; 상기 불포화 디 카르본산류와 탄소원자 수 2~18의 글리콜 또는 이 글리콜의 부가몰수 2~500의 폴리알킬렌글리콜과의 하프에스테르, 디에스테르류; 말레아미드산과 탄소원자 수 2~18의 글리콜 또는 이 글리콜의 부가몰수 2~500의 폴리알킬렌글리콜과의 하프아미드류.
트리에틸렌글리콜디(메타)아크릴레이트, (폴리)에틸렌글리콜디(메타)아크릴레이트, 폴리프로필렌글리콜디(메타)아크릴레이트, (폴리)에틸렌글리콜(폴리)프로필렌글리콜디(메타)아크릴레이트 등의 (폴리)알킬렌글리콜디(메타)아크릴레이트류; 헥산디올디(메타)아크릴레이트, 트리메티올프로판트리(메타)아크릴레이트, 트리메티올프로판디(메타)아크릴레이트 등의 다관능(메타)아크릴레이트류; 트리에틸렌글리콜디말레이트, 폴리에틸렌글리콜디말레이트 등의 (폴리)알킬렌글리콜디말레이트류; 비닐설포네이트, (메타)아릴설포네이트, 2-(메타)아크릴록시에틸설포네이트, 3-(메타)아크릴록시프로필설포네이트, 3-(메타)아크릴록시-2-히드록시프로필설포네이트, 3-(메타)아크릴록시-2-히드록시프로필설포네이트, 4-(메타)아크릴록시부틸설포네이트, (메타)아크릴아미드메틸설폰산, (메타)아크릴아미드에틸설폰산, 2-메틸프로판설폰산(메타)아크릴아미드, 스티렌설폰산 등의 불포화 설폰산류; 더불어 그것들의 1가 금속염, 2가 금속염, 암모늄염 및 유기아민염; 메틸(메타)아크릴아미드 등의 불포화 모노 카복실산류와 탄소원자 수 1~30의 아민과의 아미드류; 스티렌, -메틸스티렌, 비닐톨루엔, p-메틸스티렌 등의 비닐방향족 류; (메타)아릴페놀, (메타)아릴비스페놀 (비스페놀 (예 : 비스페놀A, 비스페놀 E, 비스페놀 AD, 4,4'-디히드록시디페닐설포)에 포함된 탄소원자의 1 또는 2 이상을 아릴 치환한 화합물) 류; 1,4-부탄디올 모노 (메타)아크릴레이트, 1,5-펜탄디올 모노 (메타)아크릴레이트, 1.6-헤산디올 모노 (메타)아크릴레이트 등의 알칸디올 모노 (메타)아크릴레이트 류; 부타디엔, 이소프렌, 2-메틸-1,3-부타디엔, 2-크롤-1.3-부타디엔 등의 디엔 류.
(메타)아크릴아미드, (메타)아크릴알킬아미드, N-메티롤(메타)아크릴아미드, N,N-디메틸(메타)아크릴아미드 등의 불포화아미드류; (메타)아크릴로니트릴, -크로로아크릴로니트릴 등의 불포화시안류; 초산비닐, 프로피온산비닐 등의 불포화에스테르 류; (메타)아크릴산아미노에틸, (메타)아크릴산메틸아미노에틸, (메타)아크릴산디메틸아미노에틸, (메타)아크릴산디메틸아미노프로필, (메타)아크릴산디부틸아미노에틸, 비닐피리딘 등의 불포화 아민 류; 디비닐벤젠 등의 디비닐 방향족 류; 트리아릴시아탈레이트 등의 디아탈레이트 류; (메타)아릴알코올, 글리시딜(메타)아릴에테르 등의 아릴 류; 메톡시폴리에틸렌글리콜 모노 비닐에테르, 폴리에틸렌글리콜 모노 비닐에테르, 메톡시폴리에틸렌글리콜 모노 (메타)아릴에테르, 폴리에틸렌글리콜 모노 (메타)아릴에테르 등의 비닐에테르 또는 아릴에테르 류; 폴리디메틸실록산프로필아미노말레인아미드산, 폴리디메틸실록산아미노프로필렌아미노말레인아미드산, 폴리디메틸실록산-비스-(프로필아미노말레인아미드산), 폴리디메틸실록산-비스-(디프로필렌아미노말레인아미드산), 폴리디메틸실록산-(1-프로필-3-아크릴레이트), 폴리디메틸실록산-(1-프로필-3-메타크릴레이트), 폴리디메틸실록산-비스-(1-프로필-3-아크릴레이트), 폴리디메틸실록산-비스-(1-프로필-3-메타크릴레이트) 등의 실록산 유도체.
이러한 것들 중 방향족 아릴류를 사용하는 것이 좋고, (메타)아릴페놀이 보다 좋다. (메타)아릴페놀은 페놀기를 2 이상 가지는 것이 좋다. 또한 (메타)아릴페놀은 아릴기를 2 이상 가지는 것이 좋다. (메타)아릴페놀로는 페놀기를 2 이상 동시에 아릴기를 2 이상 가지는 것이 좋고, 4,4-디히드록시디페놀술폰을 아릴 치환한 화합물이 보다 좋고, 4,4-디히드록시디페닐술폰의 3 및 3 위치를 아릴 치환한 화합물이 보다 좋다.
본 발명에 따른 폴리카복실산계 공중합체 또는 그 염의 공중합체는 각각 소정의 단량체를 공지의 방법에 의해 공중합시켜 제조할 수 있다. 해당 방법 중에서 용매 중에서의 중합이 가장 바람직하다.
용매 중에서의 중합에서 사용되는 용매는 예를 들면 물; 메틸알코올, 에틸알코올, 이소프로필알코올 등의 저급 알코올; 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소; 시클로헥산, n-헥산 등의 지방족 탄화수소; 초산에틸 등의 에스테르류; 아세톤, 메틸에틸케톤 등의 케톤류 등을 들 수 있다. 원료 단량체 및 얻어지는 공중합체의 용해성 면에서 물 및 저급 알코올로 이루어진 군에서 선택된 1종 이상을 사용하는 것이 좋고, 그 중에서도 물을 사용하는 것이 더욱 좋다.
용매 중에서 공중합을 하는 경우는 각 단량체와 중합개시제를 각각 반응용기에 연속 적하하여도 좋고, 각 단량체의 혼합물과 중합개시제를 각각 반응용기에 연속 적하하여도 좋다. 또한 반응 용기에 용매를 투입하고 단량체와 용매의 혼합물과 중합개시제 용액을 각각 반응 용기에 연속 적하하여도 좋고, 단량체 일부 또는 전부를 반응 용기에 투입하고 중합개시제를 연속 적하하여도 좋다.
공중합에 사용하는 중합개시제는 수 용매 중에서 공중합을 할 때의 예를 들면 과황산암모늄, 과황산나트륨, 과황산칼륨 등의 과황산염; t-부틸하이드로퍼옥사이드, 과산화수소 등의 수용성 유기 과산화물을 들 수 있다. 이 때 아황산수소나트륨, L-아스코르빈산 등의 촉진제를 병용할 수도 있다. 또한 저급 알코올, 방향족 탄화수소, 지방족 탄화수소, 에스테르류 또는 케톤류 등의 용매 중에서 공중합을 할 때의 예들 들면 벤조일퍼옥사이드와 라우릴퍼옥사이드 등의 퍼옥사이드; 크멘퍼옥사이드 등의 하이드로퍼옥사이드; 아조비스이소부티로니트릴 등의 방향족 아조화합물 등이 중합개시제로서 사용될 수 있다. 이 때 아민화합물 등의 촉진제를 병용할 수 있다. 더욱이 물-저급알코올 혼합 용제 중에서 공중합을 하는 경우에는 전술한 중합개시제 또는 중합개시제와 촉진제의 조합 중에서 적절하게 선택하여 사용할 수 있다. 중합 온도는 사용하는 용매와 중합개시제에 따라 다르나 통상 50~100℃의 범위에서 한다.
또한 공중합에 있어서 필요에 따라 연쇄이동제를 사용하여 분자량을 조정하는 것이 가능하다. 사용되는 연쇄이동제는 예를 들면 머캅토에탄올, 치오글리세롤, 치오글리콜산, 2-머캅토프로피온산, 3-머캅토프로피온산, 치오린고산, 치오글리콜산옥틸, 및 2-머캅토에탄술폰산 등의 치올계 화합물; 아인산, 차아인산 및 그 염 (차아인산나트륨, 차아인산칼륨 등)과 아황산, 아황산수소, 메타중아황산 및 그 염 (아황산나트륨, 아황산칼륨, 아황산수소나트륨, 아황산수소칼륨, 메타중아황산나트륨, 메타중아황산칼륨 등)의 저급산화물 및 그 염 등을 들 수 있다. 이것은 단독으로 사용하여도 좋고, 2 종 이상을 병용하여도 좋다.
공중합체를 얻을 때에 수용매 중에서 공중합하는 경우, 중합 시의 pH는 통상 불포화 결합을 가지는 단량체의 영향으로 강산성으로 되나 이것을 적당한 pH로 조정하여도 좋다. 중합할 때에 pH의 조정이 필요한 경우는 인산, 황산, 초산, 알킬인산, 알킬황산, 알킬술폰산, (알킬)벤젠술폰산 등의 산성 물질을 사용하여 pH의 조정을 할 수 있다. 이 산성 물질 중에서는 pH 완충 작용이 있다는 점 등으로부터 인산을 사용하는 것이 좋다. 또한 공중합 후에 공중합체의 pH 조정에 사용하는 알칼리성 물질에 특별한 한정은 없으나, 수산화나트륨, 수산화칼륨 또는 수산화칼슘 등의 1가 금속 및 2가 금속의 수산화물, 염화물 및 탄소염 등의 무기물; 암모늄; 유기아민 등이 일반적이다.
본 발명에 따른 폴리카복실산계 공중합체 또는 그 염의 중량평균분자량은 5,000~200,000인 것이 좋다. 중량평균분자량이 5,000 미만이면 시멘트 혼화제의 시멘트 분산성이 충분히 발휘되지 않아 유동성과 작업성이 개선되지 않는 등 시멘트 혼화제로서의 효과가 충분히 발현되지 않는다. 또한 중량평균분자량이 200,000을 넘으면 응집 작용을 나타내기 때문에 작업성의 저하를 불러온다. 더욱이 본 발명의 시멘트 혼화제를 다른 시멘트 혼화제와 병용하는 경우는 다른 시멘트 혼화제의 시멘트 입자에 대한 단위 면적 당 흡착량이 높게 되고, 본 발명의 시멘트 혼화제가 흡착 저해를 받기 쉬워 요구되는 시멘트 분산성이 얻어지지 않는다. 본 발명의 폴리카복실산계 공중합체 또는 그 염의 중량평균분자량은 좋게는 10,000~150,000, 가장 좋게는 50,000~130,000이다.
본 발명의 폴리카복실산계 공중합체 또는 그 염의 분자량 분포(Mw/Mn)는 1.2~3.0의 범위인 것이 좋다. Mw/Mn은 1.3~2.0의 범위가 좋고, 보다 좋게는 1.5~2.0이다. Mw/Mn이 1.2 미만인 경우 콘크리트의 유동성이 부족하고, 양호한 슬럼프 유지성이 얻어지지 않는다. 3.0을 넘는 경우에서도 유동성이 부족하다. 여기에서, Mw는 중량평균분자량을 나타내고, Mn은 수평균분자량을 나타낸다.
본 발명에 있어서 중량평균분자량은 겔퍼미션크로마토그래피(GPC)로 폴리에틸렌글리콜 환산하는 공지의 방법으로 측정할 수 있다.
본 발명의 폴리카복실산계 공중합체 또는 그 염은 시멘트 조성물용 혼화제로 사용될 때 1 종 또는 2 종 이상의 다른 화합물과 병용할 수 있다. 그와 같은 다른 화합물은 예를 들면 분자 중에 설폰산기 및 방향족기를 가지는 화합물이 좋다. 설폰산계 화합물의 구체적인 예로는 나프탈렌설폰산포름알데히드 축합물, 멜라민설폰산포름알데히드 축합물, 안트라센설폰산포름알데히드 축합물 등의 폴리알킬아릴술폰산염; 멜라민설폰산포름알데히드 축합물 등의 멜라민포름알데히드 수지 술폰산염; 아미노아릴설폰산-페놀-포름알데히드 축합물 등의 방향족 아미노설폰산염; 리그닌술설산염, 변성 리그닌설폰산염 등의 리그닌술폰산염; 폴리스티렌설폰산염 등을 들 수 있다. 이 중 리그닌설폰산염이 좋다.
본 발명에서, 시멘트 조성물용 혼화제가 물/시멘트 비가 큰 콘크리트에 사용되는 경우에는, 본 발명의 고분자 화합물과 함께 병용하는 설폰산계 화합물로는 리그닌술폰산염계가 적합하다. 한편 본 발명에서 시멘트 조성물용 혼화제가 보다 높은 감수성을 발휘하는 것이 요구되는 물/시멘트 비가 낮은 콘크리트에 사용되는 경우에는 본 발명의 고분자 화합물과 함께 병용하는 설폰산계 화합물로는 폴리알킬아릴설폰산계 화합물, 멜라민포르마린수지설폰산염계 화합물, 방향족 아미노설폰산염계 화합물, 폴리스티렌설폰산염계 화합물 등이 적합하다.
본 발명의 고분자 화합물이 시멘트 조성물용 혼화제로 사용될 때 병용되는 다른 화합물은 옥시카복실산, 당 또는 그 염을 포함할 수 있다. 그러한 옥시카복실산, 당 또는 그 염은 옥시카복실산류, 당류 및 그 염으로 이루어진 군 중에서 선택된 1 종 또는 2 종 이상을 조합시키는 것도 좋다. 옥시카복실산류의 예는 글리콘산, 글리코헵톤산, 아라본산, 린고산, 쿠엔산을 들 수 있다. 옥시카복실산류의 염으로는 예를 들어 상기 옥시카복실산류의 구체예로서 언급한 화합물의 나트륨, 칼륨, 칼슘, 마그네슘, 암모늄, 트리에탄올아민 등의 무기염 또는 유기염을 들 수 있다.
또한 당류로는 예를 들면 글루코스, 프락토스, 갈락토스, 삿카로스, 키시로스, 아피오스, 리보스, 이성화당 등의 단당류와 2당, 3당 등의 올리고당, 또는 덱스트린 등의 올리고당, 또는 덱스트란 등의 다당류 등을 들 수 있다. 또한 당류로는 이러한 당을 포함하는 당밀류, 솔비톨 등의 당알코올도 들 수 있다. 당류의 염으로는 상기 당류의 구체예로 언급한 화합물의 나트륨, 칼륨, 칼슘, 마그네슘, 암모늄, 트리에탄올아민 등의 무기염 또는 유기염 등을 들 수 있다.
옥시카복실산, 당 또는 그 염 중에서 옥시카복실산류를 사용하는 것이 좋고, 글루콘산 내지는 그 염을 사용하는 것이 보다 좋다. 옥시카복실산, 당 또는 그 염은 1종 단독으로 사용하여도 좋고, 2 종 이상을 병용하여도 좋다.
본 발명의 시멘트 조성물용 혼화제는 필요에 따라 또 다른 성분을 가지는 것도 좋다. 또 다른 성분으로는 (폴리)알킬렌글리콜 모노 에스테르계 단량체를 사용하여 공중합시킨 공중합체와 양말단기가 수소원자인 수용성 폴리알킬렌글리콜을 들 수가 있다.
본 발명의 시멘트 조성물용 혼화제가 (폴리)알킬렌글리콜 모노 에스테르계 단량체를 사용하여 공중합시킨 시멘트 조성물용 혼화제와 병용하면 시멘트 조성물의 점성을 빨리 저감시켜 혼합 시간을 단축시킬 수 있고, 워커빌리티를 향상시킬 수 있다는 점에서 좋다.
양말단기가 수소원자인 수용성 폴리알킬렌글리콜의 구체적인 예로는 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에틸렌폴리프로필렌글리콜, 폴리에틸렌폴리부틸렌글리콜 등을 들 수 있고, 폴리에틸렌글리콜이 좋다. 양말단기가 수소원자인 수용성 폴리알킬렌글리콜은 1 종 또는 2 종 이상을 사용할 수 있다.
본 발명의 시멘트 조성물용 혼화제는 소망의 효과를 저해하지 않는 범위에서 AE제, 감수제, AE감수제, 고성능감수제, 고성능AE감수제, 유동제, 지연제, 급결제, 분진저감제, 수중불분리제, 분리저감제, 펌프압송조제, 방동/내한제, 알칼리 골재 반응 억제제, 중성화 방지제, 수축저감제, 수화열억제제, 기포제, 발포제, 즉시 탈형용 혼화제 등을 병용하는 것이 가능하다.
본 발명의 시멘트 조성물용 혼화제는 수용액의 형태, 또는 건조시켜 분말화한 형태로 사용하는 것이 가능하다. 또한 시멘트 분말과 드라이 모르타르와 같은 시멘트 조성물을 구성하는 것 이외의 성분에 분체화한 형태의 본 발명의 시멘트 조성물용 혼화제를 미리 혼합하는 프리믹스트 제품에 사용할 수 있다.
하기의 실시예 등에서 슬럼프값, 슬럼프 경시변화, 공기량의 측정 및 경화콘크리트의 압축강도측정은 한국산업규격 KS F 2402, 2421, 2405에 기재된 방법으로 실시하였다.
<공중합체의 중량평균분자량 (Mw)의 측정 조건>
GPC(Gel Permission Chromatography)의 시스템에서 펌프는 영린계기의 M930 Solvent Delivery Pump, 검출기는 SCHAMBECK SFD GmbH RI2000-F 굴절율 검출기와 컬럼오븐은 영린계기의 CTS30 Column Oven으로 구성되어 있다. 측정은 Waters Ultrahydrogel Linear Column과 Waters Ultrahydrogel 120 Column을 사용하였고, 0.1M NaNO3의 이동상과 함께 1.0mL/min의 유속에서 측정하였다. 컬럼오븐은 38℃, RI 검출기는 35℃이다. 표준시료는 폴리에틸렌글리콜을 3차 증류수에 녹여 사용하였고, 시료는 3차 증류수로 50배 희석하여 100㎕씩 주입하였다.
<기포력 시험법>
100 ㎖의 매스실린더에 물 50㎖와 제조예와 비교예에서 얻어진 공중합체 1g을 넣고 덮개를 닫은 후 진폭 30 cm로 10 초간 20 회 상하로 흔들어 혼합하고 1 분간 정치한 다음 기포 높이를 측정하였다. 기포력은 발생된 기포의 높이 차이를 백분율로 계산하였고, 정치한 상태에서 30 분 단위로 기포 높이를 측정하여 기포의 안정성을 시험하였다.
<콘크리트 시험>
(1) 사용 재료
시멘트: 한일시멘트
자갈: 부순자갈
모래: 세척사/부순모래
(2) 단위량(kg/)
W/C = 42.9 %
S/a = 49.5 %
물 = 150 kg/m3
시멘트 = 350 kg/m3
자갈 = 1040 kg/m3
모래 = 772 kg/m3
(3) 사용 믹서 : 50ℓ 강제식 혼합 팬형 믹서, 혼합량 20ℓ
(4) 시험 방법
제조예와 비교예에서 얻어진 공중합체는 시멘트 중량 대비 0.4% 사용하였다. 모래와 자갈을 믹서기에 투입하고 30초간 건식 혼합을 한 후, 시멘트를 투입하고 다시 30초간 건식 혼합을 하였다. 그리고 물과 제조예 및 비교예에서 얻어진 공중합체를 투입하고 2분간 혼합하여 콘크리를 제조하였다.
다음의 실시예는 본 발명의 실시에 대해서 서술한다. 실시예는 본 발명의 예시에 대해서 서술하는 것이며, 본 발명을 한정하기 위한 것은 아니다.
<제조예 1>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 187.5 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 50몰 부가물 (MPE-50이라 칭함) 437.6 g, 아세트산 0.9 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 4.0 g을 반응 용기안에 넣고, 아크릴산 23.8 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰, SE-10이라 칭함) 24.3 g을 물 48.1 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.3 g, L-아스코르빈산 0.2 g, 물 162.2 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 57,000의 공중합체 수용액을 얻었다.
<제조예 2>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 186.0 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 50몰 부가물 (MPE-50이라 칭함) 433.8 g, 아세트산 0.9 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 4.1 g을 반응 용기안에 넣고, 아크릴산 24.8 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 20몰, SE-20이라 칭함) 37.2 g을 물 62.0 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.3 g, L-아스코르빈산 0.2 g, 물 158.1 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 62500의 공중합체 수용액을 얻었다.
<제조예 3>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 187.0 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 100몰 부가물 (MPE-100이라 칭함) 435.3 g, 아세트산 1.0 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 3.7 g을 반응 용기안에 넣고, 아크릴산 26.3 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 50몰, SE-50이라 칭함) 44.0 g을 물 65.4 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.6 g, L-아스코르빈산 0.3 g, 물 162.0 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 89000의 공중합체 수용액을 얻었다.
<제조예 4>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 191.9 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 100몰 부가물 (MPE-100이라 칭함) 447.8 g, 아세트산 1.0 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 3.8 g을 반응 용기안에 넣고, 아크릴산 28.6 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰, SE-10이라 칭함) 25.1 g을 물 49.8 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.6 g, L-아스코르빈산 0.3 g, 물 169.4 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 89000의 공중합체 수용액을 얻었다.
<제조예 5>
온도계, 교반기, 적하장치, 질소도입관 및 환류냉각장치를 갖춘 유리제 반응장치내에 이온교환수 197.0 g, 3-메틸-3-부텐-1-올의 에틸렌옥사이드 50몰 부가물(MBP-50이라 칭함) 460.0g, 초산 0.9 g을 투입하고, 교반 하에 반응장치 내를 질소 치환하고, 질소분위기 하에서 80℃로 유지한 상태에서 아크릴산 25.0 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰, SE-10이라 칭함) 25.5 g을 물 45.5 g에 용해시킨 수용액을 3시간, 이온교환수 90.1 g에 3-머캅토프로피온산 1.3 g을 용해시킨 수용액을 3시간, 이온교환수 90.0 g에 과황산암모늄 5.7g을 용해시킨 수용액을 3.5시간에 걸쳐 적하하였다. 그 후에 1 시간 계속하여 80℃로 온도를 유지한 후 중합반응을 종료하였다. 그 후 산성의 반응용액을 중합반응 온도 이하의 온도에서 수산화나트륨 수용액 및 이온교환수를 사용하여 pH 7.0으로 조정하여 중량평균분자량 107800인 공중합체 수용액을 얻었다.
<비교예 1>
*온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 214.3 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 50몰 부가물 (MPE-50이라 칭함) 500.00 g, 아세트산 0.9 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 4.0 g을 반응 용기안에 넣고, 아크릴산 15.9 g을 물 14.2 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.5 g, L-아스코르빈산 0.2 g, 물 177.5 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 53,000의 공중합체 수용액을 얻었다.
<비교예 2>
온도계, 교반기, 적하장치, 질소도입관 및 환류냉각장치를 갖춘 유리제 반응장치내에 이온교환수 205.4 g, 3-메틸-3-부텐-1-올의 에틸렌옥사이드 50몰 부가물(MBP-50이라 칭함) 483.1 g, 초산 0.2 g을 투입하고, 교반 하에 반응장치 내를 질소 치환하고, 질소분위기 하에서 80℃로 유지한 상태에서 아크릴산 22.8 g을 물 20.5 g을 용해시킨 수용액을 3시간, 이온교환수 100.5 g에 3-머캅토프로피온산 1.3 g을 용해시킨 수용액을 3시간, 이온교환수 93.2 g에 과황산암모늄 5.7 g을 용해시킨 수용액을 3.5시간에 걸쳐 적하하였다. 그 후에 1 시간 계속하여 80℃로 온도를 유지한 후 중합반응을 종료하였다. 그 후 산성의 반응용액을 중합반응 온도 이하의 온도에서 수산화나트륨 수용액 및 이온교환수를 사용하여 pH 7.0으로 조정하여 중량평균분자량 86500인 공중합체 수용액을 얻었다.
<비교예 3>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 100.3 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 50몰 부가물 (MPE-50이라 칭함) 283.1 g, 아세트산 1.0 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 4.0 g을 반응 용기안에 넣고, 아크릴산 61.8 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰, SE-10이라 칭함) 169.9 g을 물 211.5 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.1 g, L-아스코르빈산 0.2 g, 물 109.6 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 187500의 공중합체 수용액을 얻었다.
<비교예 4>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 151.1 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 150몰 부가물 (MPE-150이라 칭함) 399.3 g, 아세트산 1.0 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70 ℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 2.8 g을 반응 용기안에 넣고, 아크릴산 52.3 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰, SE-10이라 칭함) 23.8 g을 물 70.1 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.4 g, L-아스코르빈산 0.6 g, 물 168.6 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 154300의 공중합체 수용액을 얻었다.
<비교예 5>
온도계, 교반기, 적하 장치, 질소 도입관과 환류 냉각기를 갖춘 유리제 반응 용기에 이온교환수 153.7 g, 불포화 폴리알킬렌글리콜에테르계 단량체로서 메탈릴알코올의 에틸렌옥사이드 50몰 부가물 (MPE-50이라 칭함) 452.1 g, 아세트산 1.0 g을 넣고, 교반하면서 반응 용기안을 질소로 치환하고, 질소 분위기하에서 70 ℃로 승온하였다. 반응 온도를 70℃로 유지하면서 4 질량% 과산화수소 수용액 4.0 g을 반응 용기안에 넣고, 아크릴산 24.6 g과 α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰, SE-10이라 칭함) 25.1 g을 물 40.5 g에 용해시킨 불포화 카복실산 단량체 수용액을 3 시간에 걸쳐 적하하고, 아크릴산 수용액의 적하 시작과 동시에 머캅토에탄올 0.05 g, L-아스코르빈산 0.2 g, 물 216.5 g으로 이루어진 연쇄이동제 수용액을 3.5 시간에 걸쳐 적하하였다. 그 후 1 시간 계속하여 70℃를 유지하고, 중합 반응을 완결하였다. 그리고 30℃까지 냉각한 후 30% 수산화나트륨 수용액으로 pH 7.0까지 중화하고, 중량평균분자량 312000의 공중합체 수용액을 얻었다.
표 1에 제조예 및 비교예에서 사용된 단량체 및 비율을 나타내었다.
표 1
Figure PCTKR2016010856-appb-I000004
표 1에서 약자는 다음과 같다.
MPE-50: 메타릴알코올의 에틸렌옥사이드 50몰 부가물.
MPE-100 : 메타릴알코올의 에틸렌옥사이드 100몰 부가물.
MPE-150 : 메타릴알코올의 에틸렌옥사이드 150몰 부가물.
MBP-50: 3-메틸-3-부텐-1-올의 에틸렌옥사이드 50몰 부가물.
SE-10: α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 10몰).
SE-20: α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 20몰).
SE-50: α-설포-ω-[1-[(4-노닐페녹시)메틸]-2-(2-프로페닐옥시)에톡시]-폴리(옥시-1,2-에탄디일) 암모늄염 (옥시-1,2-에탄디일 평균 부가 몰수 50몰).
AA: 아크릴산.
표 2에 제조예 및 비교예에서 제조된 공중합체의 기포력 시험 결과를 나타내었다.
표 2
Figure PCTKR2016010856-appb-I000005
표 3에 제조예 및 비교예에서 제조된 공중합체를 사용한 콘크리트의 시험 결과를 나타내었다.
표 3
Figure PCTKR2016010856-appb-I000006
상기 표 3과 같이, 제조예 1~5에서 제조된 공중합체를 사용한 콘크리트 시험 결과로부터 본 발명의 공중합체를 사용하면 콘크리트의 초기 유동성이 개선됨을 알 수 있다. 특히 SE-10, SE-20과 SE-50을 사용한 제조예에서 얻어진 공중합체를 사용하면 콘크리트의 초기 유동성이 높을 뿐만 아니라 공기량의 경시변화도 개선된다. 이것은 표 2에서 알 수 있듯이 기포의 안정성과 관련이 있다고 판단된다. 그러나 단량체 1의 에틸렌옥사이드 부가 몰수가 100몰 보다 큰 비교예 4와 공중합체의 중량평균분자량이 200,000을 넘는 비교예 5에서 얻어진 공중합체를 사용하면 콘크리트의 유동성이 큰 폭으로 낮아진다. 단량체 2와 단량체 3의 중량비가 본 발명의 범위를 넘어서는 비교예 3에서 얻어진 공중합체를 사용하면 콘크리트의 유동성 경시변화가 커지고 압축강도도 낮아진다. 그러므로 본 발명에서 얻어진 공중합체를 사용하면 초기 유동성이 높고 공기량의 경시변화도 개선되어 실제 현장에서 시공상의 장해가 개선될 수 있다.

Claims (7)

  1. 하기 화학식 1의 단량체 1, 화학식 2의 단량체 2 및 화학식 3의 단량체 3이 공중합하여 형성되는 고분자 화합물.
    화학식 1
    Figure PCTKR2016010856-appb-I000007
    (상기 화학식 1에서, R1~R3는 수소원자 또는 메틸기를 나타내고, AO는 탄소수 2~4의 옥시알킬렌기를 나타내고, m은 옥시알킬렌기의 평균 부가 몰수로서 1~100을 나타내고, R4는 수소원자 또는 탄소수 1~2의 알킬기를 나타내며, n은 0~2의 정수를 나타낸다.)
    화학식 2
    Figure PCTKR2016010856-appb-I000008
    (상기 화학식 2에서, R5~R7은 수소원자 또는 메틸기를 나타내고, R8은 탄소수 1~10의 알킬페녹시메틸기를 나타내고, R9은 수소원자, 탄소수 1~2의 알킬기 또는 술폰산염(1가 금속염, 2가 금속염, 암모늄염 또는 유기아민염으로 이루어진 술폰산염)을 나타내고, OA는 탄소수 2~4의 옥시알칸디일기를 나타내며, X는 옥시알칸디일기의 평균 부가 몰수로서 1~50을 나타낸다.)
    화학식 3
    Figure PCTKR2016010856-appb-I000009
    (상기 화학식 3에서, R10~R12는 수소원자 또는 메틸기를 나타내며, M1은 수소원자, 1가 금속염, 2가 금속염, 암모늄염 또는 유기아민염을 나타낸다.)
  2. 제1항에 있어서,
    상기 단량체 1, 단량체 2와 단량체 3의 합계 100 중량%에서 상기 단량체 1이 차지하는 비율은 60 내지 97 중량%이고, 상기 단량체 2가 차지하는 비율은 2 내지 30 중량%이며, 상기 단량체 3이 차지하는 비율은 1 내지 10 중량%인 것을 특징으로 하는 고분자 화합물.
  3. 제1항 및 제2항 중 어느 한 항에 있어서,
    상기 단량체 1의 중량평균분자량은 100 내지 5,000인 것을 특징으로 하는 고분자 화합물.
  4. 제1항 및 제2항 중 어느 한 항에 있어서,
    상기 단량체 2의 중량평균분자량은 100 내지 3,000인 것을 특징으로 하는 고분자 화합물.
  5. 제1항 내지 제2항 중 어느 한 항에 있어서,
    상기 고분자 화합물의 중량평균분자량은 5,000 내지 200,000인 것을 특징으로 하는 고분자 화합물.
  6. 제1항 내지 제2항 중 어느 한 항에 있어서,
    상기 고분자 화합물의 분자량 분포(Mw/Mn)은 1.2 내지 3.0인 것을 특징으로 하는 고분자 화합물.
  7. 제1항 내지 제2항 중 어느 한 항에 있어서,
    상기 고분자 화합물은 시멘트 조성물에 첨가되는 혼화제로 사용되는 것임을 특징으로 하는 고분자 화합물.
PCT/KR2016/010856 2016-09-28 2016-09-28 시멘트 조성물의 혼화제용 고분자 화합물 WO2018062583A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/010856 WO2018062583A1 (ko) 2016-09-28 2016-09-28 시멘트 조성물의 혼화제용 고분자 화합물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2016/010856 WO2018062583A1 (ko) 2016-09-28 2016-09-28 시멘트 조성물의 혼화제용 고분자 화합물

Publications (1)

Publication Number Publication Date
WO2018062583A1 true WO2018062583A1 (ko) 2018-04-05

Family

ID=61760597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010856 WO2018062583A1 (ko) 2016-09-28 2016-09-28 시멘트 조성물의 혼화제용 고분자 화합물

Country Status (1)

Country Link
WO (1) WO2018062583A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001763A (ko) * 2002-06-28 2004-01-07 주식회사 엘지화학 고성능 감수효과를 가진 시멘트 혼화제 및 그의 제조방법
KR20060003085A (ko) * 2003-05-09 2006-01-09 가부시키가이샤 닛폰 쇼쿠바이 폴리카르복실산 콘크리트 혼화제
KR20070088304A (ko) * 2005-09-26 2007-08-29 니폰 쇼쿠바이 컴파니 리미티드 중합체, 그 중합체의 제조방법 및 그 중합체를 사용한시멘트 혼화제
KR20080043518A (ko) * 2006-11-14 2008-05-19 주식회사 엘지화학 시멘트 혼화제, 이의 제조방법, 및 이를 포함하는 시멘트조성물
KR101654017B1 (ko) * 2015-03-24 2016-09-05 유호석 시멘트 조성물의 혼화제용 고분자 화합물
KR20160116781A (ko) * 2015-03-31 2016-10-10 주식회사 넥스켐 시멘트 조성물의 혼화제용 고분자 화합물

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040001763A (ko) * 2002-06-28 2004-01-07 주식회사 엘지화학 고성능 감수효과를 가진 시멘트 혼화제 및 그의 제조방법
KR20060003085A (ko) * 2003-05-09 2006-01-09 가부시키가이샤 닛폰 쇼쿠바이 폴리카르복실산 콘크리트 혼화제
KR20070088304A (ko) * 2005-09-26 2007-08-29 니폰 쇼쿠바이 컴파니 리미티드 중합체, 그 중합체의 제조방법 및 그 중합체를 사용한시멘트 혼화제
KR20080043518A (ko) * 2006-11-14 2008-05-19 주식회사 엘지화학 시멘트 혼화제, 이의 제조방법, 및 이를 포함하는 시멘트조성물
KR101654017B1 (ko) * 2015-03-24 2016-09-05 유호석 시멘트 조성물의 혼화제용 고분자 화합물
KR20160116781A (ko) * 2015-03-31 2016-10-10 주식회사 넥스켐 시멘트 조성물의 혼화제용 고분자 화합물

Similar Documents

Publication Publication Date Title
DE60132140T2 (de) Zementdispergiermittel und die dieses enthaltende Zementzusammensetzung
JP3683176B2 (ja) セメント混和剤およびセメント組成物
US5798425A (en) Co-polymers based on oxyalkyleneglycol alkenyl ethers and unsaturated dicarboxylic acid derivatives
EP2831011B1 (en) Copolymer for dispersant for cement, dispersant for cement, and cement composition
KR101664911B1 (ko) 시멘트 조성물의 혼화제용 고분자 화합물
KR20000057113A (ko) 시멘트 첨가제, 시멘트 조성물 및 폴리카르복실산 중합체
US6444780B1 (en) Method of producing polyetherester monomer and cement dispersants
KR20040089528A (ko) 폴리카르복실산계 시멘트 분산제 및 콘크리트 2 차 제품의제조방법
WO2014030900A1 (ko) 폴리카르본산계 공중합체를 포함하는 시멘트 조성물의 첨가제 및 이를 포함하는 시멘트 조성물
JP5722535B2 (ja) セメント混和剤およびこれを用いたセメント組成物
US6454850B2 (en) Cement admixture and cement composition comprising this
JP5561997B2 (ja) セメント硬化促進剤組成物
KR100914597B1 (ko) 시멘트 혼화제, 이의 제조방법, 및 이를 포함하는 시멘트조성물
US20090018240A1 (en) Use of Water-Soluble or Water-Dispersible Polymers as Additives in Mineral Building Materials
JPH027897B2 (ko)
KR101654017B1 (ko) 시멘트 조성물의 혼화제용 고분자 화합물
WO2018062583A1 (ko) 시멘트 조성물의 혼화제용 고분자 화합물
JP4497830B2 (ja) セメント混和剤及びその製造方法
JP4822613B2 (ja) セメント混和剤及びセメント組成物
JP6293408B2 (ja) セメント混和剤およびこれを用いたセメント組成物
JP2001048620A (ja) セメント用添加剤組成物
JP2003183338A (ja) 新規共重合体及びその用途
JP2000290056A (ja) 水硬性組成物
JPH027898B2 (ko)
JP2002053358A (ja) セメント混和剤とセメント組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16917785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16917785

Country of ref document: EP

Kind code of ref document: A1