WO2007034857A1 - 磁気記録媒体用支持体および磁気記録媒体 - Google Patents

磁気記録媒体用支持体および磁気記録媒体 Download PDF

Info

Publication number
WO2007034857A1
WO2007034857A1 PCT/JP2006/318706 JP2006318706W WO2007034857A1 WO 2007034857 A1 WO2007034857 A1 WO 2007034857A1 JP 2006318706 W JP2006318706 W JP 2006318706W WO 2007034857 A1 WO2007034857 A1 WO 2007034857A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic recording
support
recording medium
metal
layer
Prior art date
Application number
PCT/JP2006/318706
Other languages
English (en)
French (fr)
Inventor
Masato Horie
Makoto Sato
Takuji Higashioji
Yukari Nakamori
Hiroaki Watanabe
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to JP2007536545A priority Critical patent/JP4270318B2/ja
Priority to EP06810366A priority patent/EP1936610B1/en
Priority to US11/992,388 priority patent/US7879471B2/en
Priority to CN2006800437977A priority patent/CN101313357B/zh
Publication of WO2007034857A1 publication Critical patent/WO2007034857A1/ja
Priority to KR1020087006856A priority patent/KR101261351B1/ko

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73923Organic polymer substrates
    • G11B5/73927Polyester substrates, e.g. polyethylene terephthalate
    • G11B5/73931Two or more layers, at least one layer being polyester
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/78Tape carriers

Definitions

  • the present invention relates to a support used for a magnetic recording medium such as a magnetic tape, and a magnetic recording medium having a magnetic layer using the support.
  • Biaxially stretched polyester films are used in various applications because of their excellent thermal properties, dimensional stability, mechanical properties, and ease of control of surface morphology, especially as a support for magnetic recording media and the like.
  • the usefulness of is well known.
  • magnetic recording media such as magnetic tapes have been required to have higher density due to lighter and smaller equipment and large capacity.
  • it is useful to shorten the recording wavelength and the recording track.
  • the recording track is made smaller, there is a problem that the recording track is liable to shift due to deformation due to heat during tape running or temperature / humidity change during tape storage. Therefore, there is an increasing demand for improvement of characteristics such as dimensional stability in the usage environment and storage environment of the tape.
  • aromatic polyamide having a higher rigidity than a biaxially stretched polyester film is sometimes used for the support in terms of strength and dimensional stability.
  • aromatic polyamide is expensive and expensive, and is not practical as a support for general-purpose recording media.
  • Patent Document 1 a method of providing a reinforcing layer such as a metal on one side or both sides of a polyester film (Patent Document 1) is disclosed.
  • the reinforcing layer is made of metal, it is highly conductive and has the property of reflecting light due to metal bonding. For this reason, transmitted light is used to control the film thickness when applying the magnetic layer.
  • transmitted light is used to control the film thickness when applying the magnetic layer.
  • the reinforcing layer is an oxide or other compound, it is hard but brittle and has no ductility due to ion bonding. As a result, cracks may occur due to tension, or cracks may occur due to bending.
  • oxides have a hygroscopic property, the dimensional stability is sometimes deteriorated by the hygroscopic expansion of the reinforcing layer itself, which has a small effect of improving the dimensional stability against humidity.
  • Patent Document 2 a technique for depositing a metal oxide layer with a controlled degree of oxidation is disclosed as a gas barrier film (Patent Document 2).
  • the film described in this document is a film for a packaging material intended for gasnore, and since transparency is a question, it has the effect of suppressing the expansion and contraction of a polyester film that has a vapor deposition film thickness of 40 nm or less. Is small.
  • a metal oxide layer having a thickness of 50 nm or more by controlling the acidity it is necessary to increase the amount of aluminum evaporated and to increase the amount of oxygen introduced accordingly.
  • the method described in this document uses a vacuum deposition apparatus as shown in FIG.
  • the polyester film runs out of the vacuum chamber 112 and travels from the roll unit 113 to the scooping roll unit 118 through the cooling drum 116.
  • the metal material 119 in the crucible 123 is heated and evaporated by the electron beam 121 irradiated from the electron gun 120, and oxygen gas is introduced from the oxygen supply nozzle 124, and the evaporated metal is cooled while undergoing an acid-oxidation reaction.
  • Vapor deposition on a polyester film on drum 116 since the oxygen supply nozzle 124 is close to the cooling drum 116, if the amount of oxygen introduced is increased, the metal vapor is blown off by the flow of oxygen gas and it is difficult to control the degree of oxidation.
  • the space where metal and oxygen react is small, and gold such as 50 nm or more
  • a deposited film that is difficult to form a vapor-deposited metal oxide film tends to be unstable. Unstable deposited films produce many structural defects and lead to poor dimensional stability.
  • the thickness of the base film is as thick as 10 m or more and the surface is not smooth. Since the polyester film to be used is generally thin and smooth, if it is vapor-deposited without any ingenuity like these methods, film tearing frequently occurs during vapor deposition due to deformation due to heat.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-272247
  • Patent Document 2 Japanese Patent Laid-Open No. 62-220330
  • An object of the present invention is to provide a support for a magnetic recording medium that solves the above-described problems, is excellent in dimensional stability, is hardly cracked, and the like.
  • the present invention provides a support that can be used as a high-density magnetic recording medium excellent in running durability, in which a dimensional change due to environmental changes is small when a magnetic recording medium is used, and crack generation and error rate are small. It is in.
  • the present invention for solving the above-described problems is characterized by the following (1) to (5).
  • a support for a magnetic recording medium in which layers (M layers) containing a metal oxide are provided on both sides of a polyester film, and the thickness of each of these M layers is 50 to 200 nm.
  • a support for magnetic recording media wherein the total light transmittance of the support for recording media is 0 to 75%, and the surface resistivity of each surface is 1 ⁇ 10 2 to 1 ⁇ 10 13 [ ⁇ ] .
  • the metal element concentration of the M layer is 10 to 70 at.%, According to any one of the above (1) to (4) A support for magnetic recording media.
  • the metal oxide in the M layer is acid aluminum, and the abundance ratio of aluminum atoms bonded to the hydroxyl group is 0 to 60 at.%, (1) to (6 ) A support for a magnetic recording medium according to any of the above.
  • the support for a magnetic recording medium of the present invention is a support that is excellent in dimensional stability and does not easily generate cracks.
  • a crack in which a dimensional change due to an environmental change is small when a magnetic recording medium is used. It is possible to obtain a support capable of producing a high density magnetic recording medium with low generation and error rate.
  • the support for a magnetic recording medium of the present invention comprises a layer (M layer) containing a metal oxide on both surfaces of a polyester film.
  • Metal oxides include, for example, Cu, Zn, Al, Si, Fe, Ag, Ti, Mg, Sn, Zr, In, Cr, Mn, V, Ni, Mo, Ce, Ga, Hf, Nb, T
  • a metal component such as a, Y, or W that has been oxidized and has an oxygen content of at least lOat.% in the average composition when a composition analysis is performed. Note that at.% Is an abbreviation for atomic%, and atomic% indicates the number of atoms per 100 atoms.
  • the above metal-based oxide may contain different metal components on both surfaces as long as the total light transmittance and the surface resistivity are within the ranges described later. Although it may be mixed, it is more preferable that both surfaces contain the same kind of metal component. Among these, it is preferable that the metal-based oxide contains at least one of aluminum, copper, zinc, silver, and silicon elements from the viewpoint of controllability of the degree of oxidation, dimensional stability, productivity, and environmental performance. Preferably, an aluminum element is the main component.
  • the metal element concentration of the M layer is preferably 10 to 70 at.%.
  • Metal element concentration is 10a If it is less than t.%, there are too many oxygen atoms relative to the metal atoms, so that the effect of taking an incomplete structure (metal atoms or oxygen atoms exist in an unbonded state) and strengthening immediately becomes small and dimensional stability is reduced. It will decline. If it is more than 70at.%, It has almost metallic properties, so there are problems such as short circuit due to conductivity and low strength and low dimensional stability. More preferably, it is 20 to 60 at.%, And further preferably 30 to 50 at.%.
  • the metal element concentration can be controlled by the amount of metal evaporation and the amount of oxygen gas introduced. In order to reduce the metal element concentration, it is sufficient to decrease the metal evaporation amount and increase the oxygen gas introduction amount, and vice versa.
  • the abundance ratio of metal atoms in the M layer that are metal-bonded is preferably 1 to 20 at.%. If the abundance ratio of metal bonds is less than lat.%, Cracks are likely to occur because there are few tough metal bonds even at the above-mentioned metal element concentrations. If the concentration is 20at.%, Even if the metal element concentration is as described above, the problem of short-circuiting due to conductivity is likely to occur due to the characteristics of the metal. Since metal atoms that are bonded to metal do not absorb moisture, it is possible to prevent the deterioration of dimensional stability in order to create structural defects. More preferably, it is 2-15 at.%, More preferably, it is 3-: LOat.%.
  • the abundance ratio of metal bonds can be controlled by the amount of metal evaporation and the amount of oxygen gas introduced, but it is a composition that shows a more microscopic structure than the concentration of metal elements, and control of the oxidation reaction is important. Since the abundance ratio of metal bonds is affected by the reaction efficiency between the metal and oxygen gas, the method of introducing oxygen gas is important. It is preferable to supply the oxygen gas in the same direction as the flow direction of the metal vapor from the side of the deposition source. This is because the reaction between the metal vapor and the oxygen gas is promoted and reaches the polyester film after the oxidation reaction is completed, so that the excess oxygen gas can be taken in and the metal bond abundance ratio can be reduced, or it can react with the oxygen gas.
  • the metal atoms are not bonded to each other and the metal bond abundance ratio is not increased.
  • the reaction is promoted by increasing the energy of metal vapor or oxygen gas, it is preferable to increase the energy of oxygen gas by plasma processing or the like by using high-energy energy to vaporize the metal vapor by electron beam evaporation. ⁇ .
  • the metal component of the M layer is preferably an aluminum element.
  • the M layer is preferably aluminum oxide.
  • the bonding state of aluminum in the acid aluminum is preferably 0 to 60 at.% Of the aluminum atom bonded to the hydroxyl group. ,.
  • aluminum oxide absorbs water vapor to form a hydrate (Al (OH)).
  • the hydrate is also considered as acid aluminum. Bonding with a hydroxyl group means that the aluminum atom absorbs moisture to form a hydrate, and aluminum is detected by photoelectron spectroscopy (XPS).
  • XPS photoelectron spectroscopy
  • the abundance ratio can be measured by analyzing the binding state of -um. Due to the formation of hydrates, the volume changes partially and the M layer is strained, resulting in structural defects. Hydrate formation is a factor that adversely affects dimensional stability, so it is preferably 60 at.% Or less. More preferred is 50 at.% Or less, and further preferred is 40 at.% Or less. In order to reduce the abundance ratio of the aluminum atom bonded to the hydroxyl group, it is preferable not to form a hydrate, that is, not to absorb moisture. Moisture absorption can be prevented by forming aluminum atoms and oxygen atoms that are firmly bonded, reducing unbonded aluminum atoms and oxygen atoms, and eliminating incomplete structures.
  • the structure is not incomplete, but if it is formed at the time of formation, it is preferable to forcibly absorb moisture all at once and to remove unbonded aluminum and oxygen atoms from the entire M layer. That is, after the M layer is formed, it is preferable to perform a forced humidification process to eliminate unbonded atoms. If unbonded atoms remain without humidification, partial moisture absorption occurs, and it becomes easier to create structural defects in the M layer due to volume changes due to the moisture absorption. The structural defect may cause further moisture absorption, and the abundance ratio of aluminum atoms bonded to the hydroxyl group may be higher than when no humidification treatment is performed.
  • the polyester film absorbs moisture when forming the M layer, the moisture of the polyester film is released due to the heat load at the time of formation, and moisture is taken into the M layer, and the hydrate is added. May form. It is preferable to reduce the amount of water in the polyester film before forming the M layer.
  • Each of the M layers needs to have a thickness of 50 to 200 nm.
  • the lower limit of the thickness of the M layer is preferably 60 nm, more preferably 70 nm.
  • the thickness of the M layer is larger than 200 nm, cracks are likely to occur and the dimensional stability is likely to deteriorate.
  • repeated running tends to cause detachment and dropout, resulting in poor dimensional stability.
  • the amount of oxygen introduced is increased to bring the total light transmittance and surface resistivity within the range of the present invention.
  • the upper limit of the thickness of the M layer is preferably 180 nm, more preferably 150 nm. A preferred range is 60 to 180 nm, and a more preferred range is 70 to 150 nm.
  • the support for a magnetic recording medium of the present invention needs to have a total light transmittance power of ⁇ 75%.
  • the lower limit of total light transmission is more preferably 1%, and further preferably 5%.
  • the upper limit is preferably 70%, more preferably 65%.
  • the support of the present invention includes those having a total light transmittance of 0%. This is because, when the support has a layer containing a metal-based oxide obtained by slightly oxidizing the metal component as described above, the surface resistivity is in the range described later, but the total light transmittance is 0. %, That is, below the detection limit. A more preferred range is 1 to 70%, and a more preferred range is 5 to 65%.
  • the support for a magnetic recording medium of the present invention has a surface resistivity of 1 ⁇ 10 2 to 1 ⁇ 10 13 ⁇ , preferably 1. ⁇ 10 2 to 9.9 910 12 ⁇ .
  • Surface resistivity is a characteristic value expressed as surface resistivity ( ⁇ Higuchi), which is different from pure surface resistance (resistance value that varies depending on area) and wire resistance (resistance of conductors, etc.) . If the surface resistivity is lower than 1.0 ⁇ 10 2 ⁇ , the electrical conductivity is too high, and current may flow through the magnetic tape due to static electricity or leakage current. There is sex.
  • the lower limit of the surface resistivity is preferably 1.0 to 10 4 ⁇ , more preferably 1.0 to 10 5 ⁇ .
  • the surface resistivity is higher than 1 X 10 13 ⁇ , especially 9.9 ⁇ 10 12 ⁇ , cracking and dimensional There is a tendency for sexual evil.
  • the upper limit of the surface resistivity is preferably 9. ⁇ ⁇ ⁇ ⁇ ⁇ , more preferably 9.9 X 10 10 Q -C is there. Preferred ranges, 1. 0 ⁇ 10 4 ⁇ 9. ⁇ ⁇ ⁇ ⁇ ⁇ , a more preferred range, 1 a 0 X 10 5 ⁇ 9. 9 X 10 10 ⁇ .
  • the surface resistivity value is the same on the surface on which the magnetic layer is provided ( ⁇ ) and the surface on which the magnetic layer is not provided, that is, on the backcoat layer side ( ⁇ ).
  • the surface resistivity on the side surface ( ⁇ ) is lower, which is preferable.
  • the center line average roughness Ra of the surface ( ⁇ ) on the side where the magnetic layer is provided is preferably 0.5 nm to 10 nm. If Ra on the surface (A) on the side where the magnetic layer is provided is less than 0.5 nm, the friction coefficient with the transfer tool, etc. may increase during film production and processing, etc. When used as a magnetic tape, the friction with the magnetic head increases and the magnetic tape characteristics tend to deteriorate. When Ra is larger than 10 nm, the electromagnetic conversion characteristics may be deteriorated when used as a magnetic tape for high-density recording.
  • the lower limit of Ra on the surface (A) on the side where the magnetic layer is provided is more preferably 2 nm, still more preferably 3 nm, and the upper limit is 9 nm, more preferably 8 nm.
  • a more preferable range is 2 to 9 nm, and a further preferable range is 3 to 8 nm.
  • the center line average roughness Ra of the surface (B) on the backcoat layer side is preferably 3 to 30 nm. If Ra on the surface of the knock coat layer (B) is less than 3nm, the friction coefficient with the transport rolls will increase during film production and processing, etc., which may cause process troubles and can be used as a magnetic tape. In this case, friction with the guide roll may increase and tape running performance may decrease. On the other hand, when Ra is larger than 30 nm, when stored as a film roll or pancake, the surface protrusion tends to be transferred to the opposite surface, and the electromagnetic conversion characteristics tend to deteriorate.
  • the lower limit of Ra on the surface (B) on the knock coat layer side is more preferably 5 nm, still more preferably 7 nm, and the upper limit is 20 nm, more preferably 15 nm.
  • a more preferable range is 5 to 20 nm, and a further preferable range is 7 to 15 nm.
  • the support for a magnetic recording medium of the present invention preferably has a humidity expansion coefficient in the width direction of 3 to: LOppmZ% RH.
  • the humidity expansion coefficient being within the above range is also preferable from the viewpoint of dimensional stability under high humidity conditions during processing of the magnetic recording medium and recording / reproduction of the magnetic recording medium.
  • the upper limit of the humidity expansion coefficient in the width direction is more preferably 8 ppmZ% RH, and even more preferably 7 ppmZ% RH. More preferably, the lower limit of the humidity expansion coefficient in the width direction is — LppmZ% RH, more preferably OppmZ% RH.
  • a more preferable range is 1 to 8 ppm /% RH, and a more preferable range is 0 to 7 ppm /% RH.
  • the support for a magnetic recording medium of the present invention preferably has a Young's modulus in the longitudinal direction of 5 to 13 GPa.
  • the Young's modulus in the longitudinal direction is less than 5 GPa, the tape stretches in the longitudinal direction due to the longitudinal tension in the tape drive, and contracts in the width direction due to this stretching deformation, which easily causes the problem of recording track displacement.
  • the lower limit of the Young's modulus in the longitudinal direction is more preferably 6 GPa, and even more preferably 7 GPa.
  • the Young's modulus in the longitudinal direction is larger than 13 GPa, it becomes difficult to control the Young's modulus in the width direction within a preferable range, and the Young's modulus in the width direction becomes insufficient, causing edge damage.
  • the upper limit of the Young's modulus in the longitudinal direction is more preferably 12 GPa, and even more preferably lGPa.
  • a more preferable range is 6 to 12 GPa, and a further preferable range is 7 to LGPa.
  • the support for a magnetic recording medium of the present invention preferably has a Young's modulus in the width direction in the range of 5 to 13 GPa. If the Young's modulus in the width direction is less than 5 GPa, edge damage may occur.
  • the lower limit of the Young's modulus in the width direction is more preferably 6 GPa, and even more preferably 7 GPa.
  • the upper limit of the Young's modulus in the width direction is more preferably 12 GPa, and still more preferably lGPa. A more preferred range is 6 to 12 GPa, and a more preferred range is 7 to: LlGPa.
  • the longitudinal direction of the support is a direction generally referred to as the MD direction, and refers to the same direction as the longitudinal direction during the polyester film manufacturing process, and the width direction of the support.
  • the direction generally referred to as the TD direction and refers to the same direction as the width direction during the polyester film manufacturing process.
  • the polyester film is a polymer having an acid component such as an aromatic dicarboxylic acid, alicyclic dicarboxylic acid or aliphatic dicarboxylic acid as a constituent unit (polymerization unit). It is configured.
  • aromatic dicarboxylic acid component examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4 naphthalene dicarboxylic acid, 1,5 naphthalene dicarboxylic acid, and 2,6 naphthalene diene.
  • Carboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, and the like can be used.
  • Acid, phthalic acid, 2, 6 naphthalenedicarboxylic acid can be used.
  • alicyclic dicarboxylic acid component for example, cyclohexanedicarboxylic acid can be used.
  • aliphatic dicarboxylic acid component for example, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like can be used. These acid components may be used alone or in combination of two or more.
  • diol component examples include ethylene glycol, 1,2 propanediol, 1,3 propanediol, neopentyl glycol, 1,3 butanediol, 1,4-butanediol, 1,5 pentanediol, 1,6 Hexanediol, 1, 2 cyclohexane dimethanol, 1, 3 cyclohexane dimethanol, 1, 4 cyclohexane dimethanol, diethylene glycol, triethylene glycol, polyanolene glycol, 2, 2
  • Monobis (4'- ⁇ -hydroxyethoxyphenol) propane, etc. can be used, among which ethylene glycol, 1,4 butanediol, 1,4-cyclohexanedimethanol, diethylene glycol and the like are preferably used Particularly preferably, ethylene glycol or the like can be used. These diol components may be used alone or in combination of two or more.
  • the polyester may be copolymerized with a monofunctional compound such as lauryl alcohol or isocyanate, or trimellitic acid, pyromellitic acid, glycerol, pentaerythritol, 2, 4 dioxy
  • a trifunctional compound such as benzoic acid may be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking.
  • the effects of the present invention include ⁇ -hydroxybenzoic acid, m-hydroxybenzoic acid, aromatic hydroxycarboxylic acids such as 2,6-hydroxynaphthoic acid, p-aminophenol, and p-aminobenzoic acid. If the amount is small enough not to be damaged, it can be further combined.
  • polyester polyethylene terephthalate and polyethylene naphthalate are preferable. These copolymers and polymer alloys with other thermoplastic resins may be used.
  • the polymer alloy here is a polymer multi-component system and is a copolymer A block copolymer may be used, or a polymer blend obtained by mixing or the like may be used.
  • the polymer resin of the above-mentioned polyester resin and polyimide resin is preferable because the heat resistance (glass transition temperature) can be controlled by the mixing ratio, and the polymer can be designed according to the use conditions.
  • the mixing ratio of polymers can be examined using NMR (nuclear magnetic resonance) or microscopic FT-IR (Fourier transform microinfrared spectroscopy).
  • polyimide-based resin for example, those containing a structural unit represented by the following general formula are preferable.
  • R 1 in the formula is
  • R 3 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms
  • R 4 is a divalent aromatic having 6 to 30 carbon atoms.
  • R 4 examples include aromatic residues represented by the following formula group.
  • n is an integer of 2 or more, preferably an integer of 20 to 50
  • This polyetherimide is available from GI Plastics Corporation under the trade name "Ultem” (registered trademark).
  • the polyester film preferably has a laminated structure of two or more layers.
  • the support of the present invention is used for a magnetic recording medium, one surface is required to have smoothness for obtaining excellent electromagnetic conversion characteristics, and the other surface is subjected to a film forming process. Roughness is required for imparting transportability and running durability of the magnetic tape. Therefore, it is preferable that the polyester film has a laminated structure of two or more layers.
  • the polyester film is provided with inorganic and organic particles such as clay, my strength, titanium oxide, calcium carbonate, and the like in order to impart easy slipping, abrasion resistance, scratch resistance, and the like to the surface of the polyester film.
  • inorganic and organic particles such as clay, my strength, titanium oxide, calcium carbonate, and the like in order to impart easy slipping, abrasion resistance, scratch resistance, and the like to the surface of the polyester film.
  • Organic particles, polyester particles deposited by a catalyst added during the polymerization reaction (so-called internal particles), etc. may be added.
  • the particle size of the particles can be examined by TEM, etc., and the added amount of particles can be examined by X-ray microana
  • the thickness of the support is preferably a force that can be appropriately determined according to the application.
  • 2 to 7 m is preferable. If this thickness is less than 2 m, the electromagnetic conversion characteristics may deteriorate when magnetic tape is used.
  • the thickness is greater than 7 m, the tape length per tape length is shortened, which may make it difficult to reduce the size of the magnetic tape and increase the capacity. Therefore, in the case of high-density magnetic recording medium applications, the lower limit of the thickness is preferably 3 ⁇ m, more preferably 4 ⁇ m, and the upper limit is preferably 6.5 m, more preferably 6 ⁇ m.
  • the more preferred! / ⁇ range is 3 to 6.5 m, and the more preferred range is 4 to 6 ⁇ m.
  • the thickness of the polyester film constituting the support of the present invention is preferably 2 to 6 ⁇ m. If this thickness is less than 2 / z m, the magnetic conversion characteristics may deteriorate because the tape becomes stiff when used as a magnetic tape.
  • the lower limit of the thickness of the polyester film is more preferably 3 ⁇ m, still more preferably 4 ⁇ m.
  • the thickness of the polyester film is larger than 6 ⁇ m, the tape length per 1 mm of tape is shortened, which may make it difficult to reduce the size of magnetic tape and increase the capacity.
  • the upper limit of the thickness of the polyester film is more preferably 5.8 / ⁇ ⁇ , and even more preferably 5. A more preferable range is 3 to 5.8 m, and a further preferable range is 4 to 5.6 m.
  • the support for a magnetic recording medium of the present invention as described above is manufactured, for example, as follows.
  • a polyester film constituting the support is produced.
  • polyester pellets are melted using an extruder, discharged from a die, cooled and solidified, and formed into a sheet.
  • a fiber sintered stainless metal filter in order to impart easy sliding, abrasion resistance, scratch resistance, etc.
  • inorganic particles and organic particles such as clay, My power, titanium oxide, carbonated power Lucium, Karion, talc, wet silica
  • organic particles composed of inorganic particles such as dry silica, colloidal silica, calcium phosphate, barium sulfate, alumina, and zirconium oxide, acrylic acid, styrene resin, thermosetting resin, silicone, imide compound, etc.
  • police It is also preferable to add particles (so-called internal particles) that are precipitated by a catalyst added during the terpolymerization reaction.
  • additive agents for example, compatibilizers, plasticizers, weathering agents, antioxidants, thermal stabilizers, lubricants, antistatic agents, whitening agents, colorants, as long as they do not inhibit the present invention.
  • a conductive agent, a crystal nucleating agent, an ultraviolet absorber, a flame retardant, a flame retardant aid, a pigment, a dye, and the like may be added.
  • the sheet is stretched biaxially in the longitudinal direction and the width direction, and then heat-treated.
  • the stretching process is not particularly limited, but is preferably divided into two or more stages in each direction.
  • the re-longitudinal and re-lateral stretching methods are preferred because it is easy to obtain a high-strength film optimal for high-density recording magnetic tape.
  • the stretching method may be a sequential biaxial stretching method such as stretching in the width direction after stretching in the longitudinal direction, or simultaneous biaxial stretching in which the longitudinal direction and the width direction are stretched simultaneously using a simultaneous biaxial tenter or the like. And a method combining a sequential biaxial stretching method and a simultaneous biaxial stretching method are included.
  • the simultaneous biaxial stretching method is easy to stretch stably at a high magnification because crystals grow uniformly in the longitudinal direction and the width direction in the film forming process.
  • the simultaneous biaxial stretching is a stretching method including a process in which stretching in the longitudinal direction and the width direction is performed simultaneously. It is not always necessary to stretch the longitudinal direction and the width direction at the same time in all sections. First, the stretching in the longitudinal direction starts first, and the stretching is performed in the width direction from the middle (simultaneous stretching). Alternatively, the method may be such that the process ends first and the rest is stretched only in the width direction.
  • a simultaneous biaxial stretching tenter is preferably exemplified, and among these, a linear motor driven simultaneous biaxial tenter is particularly preferable as a method of stretching a film without breaking.
  • a layer (M layer) containing a metal oxide is provided on both sides of the polyester film obtained as described above.
  • the oxidation state of the metal-based oxide is controlled so that the values of the total light transmittance and the surface resistivity are as described above.
  • a method for forming the M layer a physical vapor deposition method or a chemical vapor deposition method can be used.
  • vacuum vapor deposition and sputtering There are two types of physical vapor deposition on polyester film: vacuum vapor deposition and sputtering, and vacuum vapor deposition is preferred because it is easy to control the degree of oxidation.
  • electron beam vapor deposition that can increase the energy of metal vapor is preferred. .
  • the oxygen gas is supplied from the side of the vapor deposition source in the same direction as the flow direction of the metal vapor.
  • the disturbance of the metal vapor due to the oxygen gas is reduced, and the desired thickness and degree of oxidation can be easily controlled.
  • the reaction space between oxygen gas and metal vapor becomes large, the oxidation reaction is completed before reaching the polyester film, and it becomes possible to form a stable deposited film without structural defects. improves.
  • a general oxygen supply nozzle position close to the cooling drum Figs.
  • the gas flow hits the metal vapor perpendicularly, so that it is difficult to control the desired thickness, and it is difficult to increase the film thickness.
  • metal atoms arrive at the polyester film through an incomplete oxidation reaction, resulting in an incomplete structure and poor dimensional stability.
  • oxygen supply nozzles at the beginning and end of deposition on the polyester film, it tends to have a layer structure in which the oxygen concentration increases at the interface with the polyester film and the surface of the M layer. If there are layers of different composition in the M layer, the structure tends to be disturbed and the dimensional stability tends to decrease.
  • the position of the oxygen supply nozzle performed in the present application inevitably moves away from the cooling drum force, so that the unreacted oxygen gas fills the chamber and decreases the degree of decompression.
  • it is not employed because the surface of the molten metal is oxidized.
  • the amount of metal vapor is small, so the problem becomes remarkable and fine acidity control becomes difficult.
  • the acidity control is performed with a thick film of 50 nm or more, unreacted oxygen gas that reacts well with oxygen gas with a large amount of metal vapor and lowers the degree of decompression is not generated.
  • melting and evaporation are performed immediately on the surface of the crucible, the problem of surface oxidation can be avoided.
  • the total light transmittance increases as the acidity increases, it is possible to adjust the oxygen gas introduction amount during deposition, the position of the oxygen gas supply nozzle, the evaporation amount of the metal component, and the film conveyance speed.
  • System I can do it. Specifically, when increasing the total light transmittance by increasing the degree of oxidation, the amount of oxygen gas introduced can be increased to increase the amount of oxygen gas that can be reacted, or the position of the oxygen gas supply nozzle is installed at a position where it can react easily. It can be controlled by making it easier to proceed, reducing the evaporation of metal components, increasing the oxygen concentration, or slowing the film transport speed and increasing the reaction time. In particular, the influence of the oxygen gas introduction amount is large.
  • the surface resistivity also increases as the acidity increases, as with the total light transmittance, the amount of oxygen gas introduced during deposition, the position of the oxygen gas supply nozzle, the amount of evaporation of the metal component, the film transport It can be controlled by adjusting the speed. In particular, the effects of metal evaporation and film transport speed are significant.
  • the total light transmittance and the surface resistivity have a correlation with the metal element concentration in the M layer, but change depending on the bonding state of metal atoms even if the metal element concentration is the same. In particular, the abundance ratio of metal to metal bond is affected.
  • the center line average roughness Ra of the surface of the support can be controlled by changing the surface roughness of the polyester film in the above range. It can also be controlled by changing the type of metal component, the thickness of the M layer, and the acidity.
  • the surface roughness of the polyester film can be roughened by increasing the particle size of the inert particles or increasing the amount of addition. If the surface is roughened, the center line average roughness Ra of the support surface also increases.
  • increasing the thickness of the M layer increases the center line average roughness Ra of the support surface. When the thickness of the M layer is increased, the structure of the M layer becomes a columnar structure, and as a result, the columnar structure that is locally deposited and grown roughens the surface.
  • the center line average roughness Ra of the support surface can also be increased by increasing the acidity as described above. Above all, the influence of the thickness of the M layer is great.
  • the humidity expansion coefficient of the support can be controlled by the type and thickness of the metal component of the M layer, the degree of oxidation, the concentration of metal elements, the bonding state of metal atoms, and the like.
  • the Young's modulus in the longitudinal direction of the support is almost determined by the Young's modulus in the longitudinal direction of the polyester film.
  • the Young's modulus in the width direction of the support is also almost determined by the Young's modulus in the width direction of the polyester film. Therefore, the Young's modulus in the longitudinal direction and width direction of the polyester film may be controlled.
  • the Young's modulus of the polyester film can be controlled by the draw ratio and the draw temperature. Basically, increase the total area draw ratio or lower the draw temperature. If it does, the Young's modulus of the manufactured polyester film will become high.
  • the Young's modulus of the support can also be controlled by the type of metal component constituting the M layer, the thickness of the M layer, and the acidity.
  • the Young's modulus of the support can be increased by increasing the film thickness that increases the strength of the M layer itself.
  • the dimensional stability of the magnetic recording medium is influenced by the humidity expansion coefficient and Young's modulus of the support.
  • the influence of the humidity expansion coefficient is great.
  • composition control of the M layer is extremely important for improving dimensional stability.
  • a polyester film or a support obtained using the polyester film is optionally subjected to heat treatment, microwave heating, molding, surface treatment, lamination, coating, You may perform arbitrary processes, such as printing, embossing, and etching.
  • PET polyethylene terephthalate
  • the present application is not limited to a support using a PET film, and other polymers may be used.
  • extrusion and stretching should be performed at a temperature higher than that shown below! / ⁇ .
  • polyethylene terephthalate is prepared.
  • Polyethylene terephthalate is manufactured by one of the following processes.
  • (1) Polyethylene terephthalate or oligomer of low molecular weight is obtained by direct esterification reaction using terephthalic acid and ethylene glycol as raw materials, and then polycondensation reaction using antimony trioxide or antimony or titanium compound as a catalyst
  • a compound such as manganese, calcium, magnesium, zinc, lithium, titanium is usually used as a catalyst, and the transesterification reaction is carried out. After substantial completion, a phosphorus compound may be added for the purpose of inactivating the catalyst used in the reaction.
  • the polyester constituting the film contains inert particles, it is preferable to disperse the inert particles in a predetermined proportion in the form of a slurry in ethylene glycol and add this ethylene glycol during polymerization.
  • the inert particles are added, for example, if the water sol or alcohol sol state particles obtained during the synthesis of the inert particles are added without drying, the dispersibility of the particles is good.
  • the obtained PET pellets were dried under reduced pressure at 180 ° C for 3 hours or more, and then heated to 270 to 320 ° C under a nitrogen stream or under reduced pressure so that the intrinsic viscosity did not decrease. Then, it is fed to an extruded extruder, extruded in a slit-like die force, and cooled on a casting roll to obtain an unstretched film. At this time, it is preferable to use various filters such as sintered metal, porous ceramic, sand, and wire mesh to remove foreign substances and altered polymers. In addition, a gear pump may be provided as necessary to improve the quantitative supply. When laminating films, melt laminating different polymers using two or more extruders and marfolds or merge blocks.
  • the unstretched film is guided to a simultaneous biaxial stretching tenter, and biaxial stretching is performed simultaneously in the longitudinal and width directions.
  • the stretching speed should be within the range of 100 to 20,000% Z in both the longitudinal and width directions. More preferably, it is 500-10, 000% / min, and more preferably 2,000-7,000% Z min. If the stretching speed is less than 100% Z, the film will be exposed to heat for a long time, so the edge portion will crystallize and cause breakage of the film, resulting in a decrease in film-forming property and sufficient molecular orientation. However, the Young's modulus of the manufactured film may decrease. On the other hand, if it is larger than 20,000% Z, entanglement between the molecules tends to occur at the time of stretching, and the stretchability may be lowered, making it difficult to stretch at a high magnification.
  • the stretching temperature in the first stage can be determined by using the glass transition temperature Tg of the unstretched film, which varies depending on the type of polymer used. Longitudinal and width direction that Temperature, Tg to Tg + 30 Shiguyori is preferred that ° in the range of C preferably Ding 8 + 5 ⁇ Ding 8 + 20 Dedearu in the first-stage stretching steps, respectively.
  • Tg to Tg + 30 Shiguyori is preferred that ° in the range of C preferably Ding 8 + 5 ⁇ Ding 8 + 20 Dedearu in the first-stage stretching steps, respectively.
  • the stretching temperature is higher than the above range, the edge portion is crystallized to cause stretching breakage, resulting in a decrease in film forming property, or a molecular orientation does not advance sufficiently, resulting in a decrease in Young's modulus of the manufactured film.
  • the stretching ratio varies depending on the type of polymer used and the stretching temperature, and also in the case of multistage stretching, but the total area stretching ratio (total longitudinal stretching ratio X total transverse stretching ratio) is in the range of 20 to 40 times. It is preferable that More preferably, it is 25 to 35 times.
  • the total draw ratio in one direction of the longitudinal direction and the width direction is preferably 2.5 to 8 times, more preferably 3 to 7 times. If the draw ratio is smaller than the above range, uneven drawing may occur and the processability of the film may deteriorate. On the other hand, when the draw ratio is larger than the above range, stretch breakage frequently occurs and productivity may be lowered.
  • the stretching ratio in each of the first and second longitudinal and width directions is preferably 2.5 to 5 times, more preferably 3 to 4 times. Further, the preferred area stretch ratio in the first stage is 8 to 16 times, and more preferably 9 to 14 times. These stretching ratio values are particularly suitable when the simultaneous biaxial stretching method is adopted, but can also be applied to the sequential biaxial stretching method.
  • the second stage stretching temperature is preferably Tg + 40 ° C to Tg + 120 ° C, more preferably Tg + 60 ° C to Tg + 100 ° C.
  • the stretching temperature in the second stage is relatively low in the above temperature range, and it is better to use the stretching temperature. If the stretching temperature is out of the above range, the film may be broken frequently due to insufficient heat amount or excessive crystallization, resulting in a decrease in productivity or a sufficient decrease in orientation and a decrease in strength. is there.
  • the third stage stretching temperature is preferably lower than the heat treatment temperature described later, which is higher than the second stage stretching temperature. Note that the third-stage stretching tends to improve Young's modulus and thermal dimensional stability.
  • the stretching ratio in one direction when re-stretching is preferably 1.05 to 2.5 times. More preferably, it is 1.2 to 1.8 times.
  • the area stretching ratio for re-stretching is preferably 1.4 to 4 times, more preferably 1.9 to 3 times.
  • the third stage stretching ratio (one direction) is 1.05 to: L 2 times the area stretching ratio is preferably 1.1 to 1.4.
  • the stretched film is heat-treated under tension or while relaxing in the width direction.
  • the heat treatment conditions vary depending on the type of polymer.
  • the heat treatment temperature is preferably from 150 ° C to 230 ° C, and the heat treatment time is preferably from 0.5 to 10 seconds.
  • the heat treatment time is also set to a relatively short time of 0.5 to 2 seconds. preferable. In this way, the adhesion of the polyester film to the cooling drum is improved, and it is possible to avoid heat tearing and the like.
  • the produced polyester film should be stored in a low-humidity environment so as not to absorb moisture, and packaging that prevents moisture absorption as much as possible is preferred. This is because moisture absorption of the polyester film adversely affects the formation of the M layer.
  • a vacuum deposition apparatus as shown in Fig. 2 is used.
  • the polyester film runs through the inside of the vacuum chamber 12 and travels from the roll part 13 to the scooping roll part 18 through the cooling drum 16.
  • the metal material 19 in the crucible 23 is heated and evaporated by the electron beam 21 irradiated from the electron gun 20, and oxygen gas is introduced from the oxygen supply nozzle 24 to cause the evaporated metal to undergo an acid-oxidation reaction. While being deposited on the polyester film on the cooling drum 16.
  • the present invention requires M layers on both sides, after depositing a metal-based oxide on one surface (first side), remove the single-side deposited polyester film from the take-off roll part 18 and feed it out. In the same way, deposit metal oxide on the opposite surface (second surface).
  • the oxygen supply nozzle 24 is installed directly beside the crucible 23 as a deposition source so that the acidity can be easily controlled, and the metal vapor and the oxygen gas are in the same direction. To flow into. As a result, the reaction space between metal vapor and oxygen gas is also increased. Yes.
  • the inside of the vacuum chamber 12 is preferably decompressed to 1.
  • OX 10 2 Pa In order to form a more precise and less deteriorated M layer, preferably 1.
  • the cooling drum 16 preferably has a surface temperature in the range of 40 to 60 ° C. More preferably, it is 35-30 degreeC, More preferably, it is 30-0 degreeC.
  • the electron beam 21 has an output in the range of 2.0 to 8. OkW.
  • Oxygen gas is introduced into the vacuum channel 12 at a flow rate of 0.5 to: LOLZmin using the gas flow rate control device 26. More preferably, it is 1.5-8LZmin, More preferably, it is 2.0-5LZ mm.
  • the conveying speed of the polyester film in the vacuum chamber 12 is preferably 20 to 200 mZ min. More preferably 30 to: LOOmZmin, still more preferably 40 to 80 mZmin. If the transport speed is too slow than 20 mZmin, the metal evaporation needs to be made considerably small in order to control the M layer thickness as described above. For this reason, it is necessary to reduce the amount of oxygen gas introduced, and it becomes very difficult to control the acidity. If the transfer speed is higher than 200 mZmin, the contact time with the cooling drum is shortened, and heat tears and tears occur, which impairs productivity. In addition, it becomes difficult to control the degree of oxidation as soon as the metal vapor and oxygen gas are formed in an insufficient reaction state.
  • the conveying tension of the polyester film in the vacuum chamber 12 is preferably 50 to 150 NZm. More preferably, it is 70 to 120 NZm, and still more preferably 80 to: LOON / m. However, it is preferable that the transport tension is weaker than that of the first side during the evaporation of the second side.
  • the transport tension on the second surface is preferably 5-30 NZm lower than the transport tension on the first surface, more preferably 7-25 NZm lower, and even more preferably 10-20 NZm lower.
  • the polyester film loses the force to shrink due to heat load during the deposition of the first side, so if it is run with the same transport tension as the first side during the deposition of the second side, it will be damaged by heat and will be damaged. It is also the power to lose productivity. Furthermore, the surface roughness of the polyester film is If it differs depending on the condition, it is preferable to deposit the rough surface first. This is to improve the adhesion to the cooling drum during the second surface deposition. Vapor deposition may be performed one side at a time, or both sides may be performed in one step.
  • the vapor deposition in order to stabilize the M layer and improve the denseness, it is preferable to return the inside of the vacuum vapor deposition apparatus to normal pressure and to rewind the wound film.
  • the humidification rewinding is preferably performed at 20 to 40 ° C and 60 to 80% RH. Further, it is preferable to age for 1 to 3 days at a temperature of 20 to 50 ° C. More preferably, it is preferable to age under an environment where the humidity is not more than 60% and no condensation occurs.
  • the magnetic recording medium support obtained as described above is slit on, for example, 0.1 to 3 m width and conveyed on one side (A) at a speed of 20 to 300 mZmin and a tension of 50 to 300 N / m.
  • Magnetic coating and non-magnetic coating are applied in layers using an Etrusion Coater.
  • the magnetic coating is applied to the upper layer with a thickness of 0.1 to 0.3 m, and the nonmagnetic coating is applied to the lower layer with a thickness of 0.5 to 1.5 m.
  • the support coated with the magnetic paint and the non-magnetic paint is magnetically oriented and dried at a temperature of 80 to 130 ° C.
  • a back coat is applied to the opposite side (B) with a thickness of 0.3 to 0.8 m, calendered, and wound up.
  • the calendering is performed using a small test calender (steel / nylon roll, 5 stages) at a temperature of 70 to 120 ° C and a linear pressure of 0.5 to 5 kNZcm. After that, it is aged for 24 to 72 hours at 60 to 80 ° C and slit to 1Z2 inch (1.27cm) width to make pancake.
  • the specified length of the pancake force is incorporated into a cassette to obtain a cassette tape type magnetic recording medium.
  • examples of the composition of the magnetic paint include the following compositions.
  • Tonolen 75 parts by weight
  • Carbon black (average particle size 20nm): 95 parts by weight
  • Tonolen 100 parts by weight
  • the magnetic recording medium can be suitably used, for example, for data recording applications, specifically for computer data backup applications (LT04, LT05, etc.) and digital image recording applications such as video.
  • data recording applications specifically for computer data backup applications (LT04, LT05, etc.) and digital image recording applications such as video.
  • LT04, LT05, etc. computer data backup applications
  • digital image recording applications such as video.
  • the characteristic value measurement method and effect evaluation method in the present invention are as follows.
  • the magnetic tape force can be evaluated by wiping off the magnetic layer and the back coat layer using methyl ethyl ketone.
  • Measuring device Transmission electron microscope (TEM) Hitachi H-7100FA type
  • the composition analysis in the depth direction is performed under the following conditions.
  • the depth where the carbon concentration exceeds 50 at.% Is defined as the interface between the M layer and the polyester film, and the surface layer to the interface is divided equally into 5 parts, and the compositional analysis is performed with the center point of each section as the measurement point.
  • An average value is calculated from the composition of each measurement point obtained, and is defined as the average composition in the present invention.
  • Measuring device X-ray photoelectron spectrometer Quantera-SXM manufactured by PHI, USA
  • Photoelectron escape angle 45 °
  • Peak binding energy value Element information is obtained, and the area ratio of each peak is used to quantify the composition (at.%). Furthermore, the peak of the metal element can be divided into the respective peak of the bonded state according to the bonding state (metal-oxygen, metalluric hydroxyl group, metal metal, etc.), and the area ratio of the peak of each bonding state is determined. [At.%]. For example, when the metal component of the M layer is aluminum, metal bonds (A1—A1), aluminum-oxygen bonds (Al 2 O 3), aluminum-oxygen-hydroxyl bonds (AIOOH)
  • the abundance ratio of the aluminum bonded to the acid group is the abundance ratio of the fourth aluminum monohydroxyl bond ( ⁇ 1 ( ⁇ )).
  • Measuring device Direct reading haze meter HGM-2DP (for C light source) manufactured by Suga Test Instruments Co., Ltd.
  • the measurable equipment varies depending on the range of surface resistivity, first measure by the method i), and measure the sample whose surface resistivity is too low to measure by the method ii).
  • the average value of the five measurement results is defined as the surface resistivity in the present invention.
  • Measuring device Digital ultra-high resistance Z microammeter R8340 manufactured by Advantest Corporation
  • Measuring device Lorester EP MCP-T360 manufactured by Mitsubishi Chemical
  • Centerline average roughness Ra is measured under the following conditions using a stylus type surface roughness meter. Measurement is performed by scanning 20 times in the film width direction, and the average value of the obtained results is defined as the centerline average roughness Ra in the present invention. [0099] Measuring device: Kosaka Laboratory high precision thin film level difference measuring instrument ET-10
  • Measuring device Tape-stretching machine made by large food industry
  • Measurement humidity Dimension is measured after holding at 40% RH for 6 hours, increasing the humidity to 80% RH at a humidity increase rate of 1 [% RHZ], and holding at 80% RH for 6 hours ⁇ L [mm ] was measured.
  • the humidity expansion coefficient [ P pmZ% RH] was calculated from the following equation.
  • Humidity expansion coefficient [ppm /% RH] 10 6 X ⁇ ( ⁇ L / 200) / (80— 40) ⁇
  • Measuring device Automatic measuring device for film strength and elongation manufactured by Orientec Co., Ltd.
  • ⁇ sp (solution viscosity Z solvent viscosity) —1
  • C is the weight of dissolved polymer per 100 ml of solvent (gZlOOml, usually 1.2)
  • K is the Huggins constant (set to 0.343).
  • the solution viscosity and solvent viscosity are measured using an Ostwald viscometer.
  • Heating temperature 270-570K (RCS cooling method)
  • Reference container Aluminum open container (18mg)
  • the glass transition temperature is calculated by the following formula.
  • Glass transition temperature (extrapolated glass transition start temperature + extrapolated glass transition end temperature) / 2
  • Measuring device Orientec Co., Ltd. film strong elongation automatic measuring device
  • Measuring device Leica DMLB HC Leica Microsystems Co., Ltd.
  • a sample with an elongation of 0.9% is prepared and 10 fields of view are randomly observed. If there are more than 8 cracks observed, it is assumed that there are cracks. If there are no cracks, increase the elongation and observe even a sample with an elongation at which cracks can be observed, and evaluate the crack resistance according to the following criteria. X is rejected.
  • the support slit to the lm width is transported at a tension of 20 kgZm, and a magnetic coating and a non-magnetic coating of the following composition are applied to one surface (A) of the support with an Etrusion Coater (the upper layer is a magnetic coating, The coating thickness is 0.2 / ⁇ ⁇ , the lower layer is a non-magnetic paint, the coating thickness is 0.9 m), magnetically oriented, and dried at a drying temperature of 100 ° C.
  • a back coat having the following composition was applied to the opposite surface (B) and then calendered at a temperature of 85 ° C and a linear pressure of 200 kg / cm using a small test calender (steel Z nylon tool, 5 steps). Then wind up. Make a pancake by slitting the above tape stock into 1Z2 inch (1.27cm) width. Next, 200m length from this pancake is incorporated into a cassette to make a cassette tape. (Composition of magnetic paint)
  • Antistatic agent average primary particle size 0.018 ⁇ m
  • Antistatic agent average primary particle size 0.
  • Methyl ethyl ketone 300 parts by weight
  • the sheet width measuring device shown in FIG. 1 is a device that measures the width dimension using a laser, and fixes the magnetic tape 9 to the load detector 3 while setting the magnetic tape 9 on the free rolls 5 to 8, and the end portion. Suspend the weight 4 to be a load.
  • the laser beam 10 is oscillated on the magnetic tape 9
  • the laser beam 10 oscillated linearly in the width direction from the laser oscillator 1 is blocked only by the magnetic tape 9, and enters the light receiving unit 2, and the blocked laser beam. Is measured as the width of the magnetic tape.
  • the average value of three measurement results is defined as the width in the present invention.
  • Laser oscillator 1, light receiver 2 Laser dimension measuring machine LS-5040 manufactured by Keyence Corporation 3: Load cell CBE1-10K manufactured by Load Cell NMB
  • Temperature and humidity chamber SE-25VL-A manufactured by Kato Co., Ltd.
  • the width dimension (1, 1) is measured under two conditions, and the dimensional change rate is calculated by the following formula.
  • the dimensional stability is evaluated according to the following criteria. X is rejected.
  • Width change rate [ ⁇ ! 11] 10 6 ((1 1) / ⁇ )
  • Width change rate is 0 [ppm] or more and less than 500 [ppm]
  • Width change rate is 500 [ppm] or more and less than 800 [ppm]
  • Width change rate 800 [ppm] or more
  • the cassette tape produced in (11) above is evaluated by recording and reproducing (recording wavelength 0.55 m) in a 23 ° C 50% RH environment using a commercially available IBM LTO drive 3580—LI 1.
  • the error rate is calculated using the following formula from the error information (number of error bits) that also outputs the driving force.
  • the dimensional stability is evaluated according to the following criteria. X is rejected.
  • Error rate (number of error bits) / (number of write bits)
  • Error rate is 1.0X10-6 or more, less than 1.0X10-5
  • X Error rate is 1. OXIO— 4 or higher
  • PET polyethylene terephthalate
  • PEN poly (ethylene 2, 6 naphthalene dicarboxylate)
  • the reaction system was gradually heated from 230 ° C to 290 ° C and the pressure was reduced to 0.1 lkPa.
  • the time to reach the final temperature and final pressure was both 60 minutes.
  • the reaction was carried out for 2 hours (3 hours after the start of polymerization), and the stirring torque of the polymerization equipment was a predetermined value (the specific value differs depending on the specifications of the polymerization equipment, but this polymerization equipment was The value indicated by polyethylene terephthalate having an intrinsic viscosity of 0.62 was set to a predetermined value).
  • reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain PET pellet X of polyethylene terephthalate having an intrinsic viscosity of 0.62.
  • the PET pellet X produced in Reference Example 1 was added to 98 parts by weight and 10 ⁇ l of spherical crosslinked polystyrene particles with an average diameter of 0.3 ⁇ m in a vent-type twin-screw kneading extruder heated in the same direction at 280 ° C.
  • a 20% by weight water slurry (2 parts by weight as spherical cross-linked polystyrene) was supplied, the vent hole was kept at a vacuum of 1 kPa or less to remove moisture, and spherical cross-linked polystyrene particles having an average diameter of 0.3 m were supplied. It was obtained PET pellets Y 2 wt 0/0 containing intrinsic viscosity 0.62 to. [0115] (Reference Example 3)
  • the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290 ° C, subjected to a polycondensation reaction at a high vacuum of 30 Pa V, and the stirring torque of the polymerization apparatus is a predetermined value (specifications of the polymerization apparatus).
  • the specific value differs depending on the value, the value indicated by polyethylene 2,6 naphthalate having an intrinsic viscosity of 0.65 in the present polymerization apparatus was a predetermined value). Therefore, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in the form of strands, and immediately cut to obtain polyethylene 2,6 naphthalate pellets X with an intrinsic viscosity of 0.65.
  • the pellet X ′ prepared in Reference Example 4 was added to 98 parts by weight of a spherical cross-linked polystyrene particle having an average diameter of 0.3 ⁇ m and a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 20% by weight of water slurry (2 parts by weight as spherical crosslinked polystyrene) was supplied, the vent hole was kept at a vacuum of 1 kPa or less to remove moisture, and 2 ml of spherical crosslinked polystyrene particles having an average diameter of 0.3 m were added. weight 0/0 PEN pellets Y with an intrinsic viscosity of 0.65 containing, was obtained.
  • Extruder M which was heated to 280 ° C using Extruder M and N2 units, PET pellet X98 parts and PET pellet Y2 parts obtained in Reference Examples 1 and 2 were decompressed at 180 ° C for 3 hours.
  • Extruder N which was supplied after drying and heated to 280 ° C, was supplied to PET pellet X89.5 parts by weight, PET pellet Y10 parts by weight obtained in Reference Examples 1 to 3, and PET pellets ZO. 5 parts by weight. The portion was dried under reduced pressure at 180 ° C. for 3 hours and then supplied.
  • This laminated unstretched film was biaxially stretched using a simultaneous biaxial tenter having a linear motor clip. At the same time in the longitudinal direction and the width direction, the film was stretched 3.5 times X 3.5 times at a temperature of 90 ° C. and a stretching speed of 6,000%, and cooled to 70 ° C. Subsequently, the film was redrawn at a temperature of 165 ° C. in the longitudinal direction and the width direction simultaneously by 1.4 ⁇ 1.4 times. Further, the film was heat treated at 175 ° C for 1 second while being stretched 1.05 times in the width direction, and then 2% relaxation treatment was performed in the width direction to produce a biaxially oriented polyester film having a thickness of 5 ⁇ m. The prepared biaxially oriented polyester film was stored at 25 ° C and 30% RH.
  • the polyester film obtained was set on the feed roll unit 13 of the vacuum vapor deposition apparatus 11 shown in Fig. 2, and after making the degree of vacuum of 1.5 X 10 _3 Pa, the temperature was -20 ° C.
  • the polyester film was run through the cooling drum 16 at a conveyance speed of 60 mZmin and a conveyance tension of 100N.
  • An aluminum oxide vapor deposition thin film layer (thickness lOOnm) was formed on the layer on the B side of the film and scraped off by supplying in the same direction as the metal vapor with OLZmin.
  • an evaporated aluminum thin film layer was provided on the A-side layer of the film in the same manner except that the transport tension was 80N.
  • the inside of the vacuum evaporation system is returned to normal pressure, the film that has been scraped off is rewound and humidified at 25 ° C and 80% RH, and aged for 2 days in an environment of 40 ° C to support the magnetic recording medium.
  • the support for the magnetic recording medium was prepared in the same manner as in Example 1 except that the transport speed in the vapor deposition process was changed to 70 mZmin, the oxygen gas introduction rate was 1. OL / min, and the electron beam output was 5.3 kW. Obtained.
  • the obtained support for magnetic recording medium had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • the support for the magnetic recording medium was prepared in the same manner as in Example 1 except that the transport speed in the vapor deposition process was changed to 90 mZmin, the oxygen gas introduction rate was 3.2 L / min, and the electron beam output was changed to 6. lkW. Obtained.
  • the obtained support for magnetic recording medium had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • the support for the magnetic recording medium was prepared in the same manner as in Example 1 except that the transport speed in the vapor deposition process was changed to 30 mZmin, the oxygen gas introduction amount was 6. OL / min, and the electron beam output was 3.8 kW. Obtained.
  • the obtained support for magnetic recording medium had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • Example 2 Support for magnetic recording medium in the same manner as in Example 1 except that the conveyance speed in the vapor deposition process was changed to 120 mZmin, the oxygen gas introduction amount was 2. OL / min, and the electron beam output was 5. lkW. Got.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • the conveyance speed was increased compared to Example 1. However, as the conveyance speed increased, the M layer became thinner, resulting in higher total light transmittance and higher surface resistivity. Yes.
  • Conveying speed in the vapor deposition process is 25mZmin, oxygen gas introduction rate is 2. OL / min, electronic beam
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that the output was changed to 5. lkW.
  • the obtained support for magnetic recording medium had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • the conveyance speed was made slower than that in Example 1.
  • the conveyance speed became slow, the M layer became thick, and as a result, the total light transmittance and the surface specific resistance were low.
  • Extruder M heated to 280 ° C without using two extruders, and PET pellet X89.5 parts by weight, PET pellet Y10 parts by weight and PET pellets ZO.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that an amount was supplied after drying under reduced pressure at 180 ° C. for 3 hours and supplying a biaxially oriented polyester film with a single layer.
  • the obtained support for magnetic recording media has excellent characteristics when used as magnetic tape as shown in Tables 1-3! /
  • the obtained magnetic recording medium support has excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3! /
  • the film was heat-treated at a temperature of 175 ° C for 1 second while being stretched 1.05 times in the width direction, followed by a 2% relaxation treatment in the width direction to produce a biaxially oriented polyester film having a thickness of 5 m.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • Extruder M using N2 units and heated to 280 ° C, Extruder M was heated to 280 ° C, and PEN pellet X '98 parts by weight obtained in Reference Examples 4 and 5 and PEN pellet Y' 2 parts by weight were 180 ° C.
  • Extruder N which was supplied after drying under reduced pressure for 3 hours and heated to 280 ° C, PE N pellet X '89.5 parts by weight obtained in Reference Examples 4 to 6, PEN pellet Y' 10 Part by weight and 0.5 part by weight of PEN pellet Z ′ were dried at 180 ° C. for 3 hours under reduced pressure and then fed.
  • the obtained unstretched film was biaxially stretched using a simultaneous biaxial tenter having a linear motor clip. Stretched 4.0 times x 4.0 times at a temperature of 135 ° C and a stretching speed of 6,000% at the same time in the longitudinal and width directions. Cooled to C. Next, temperature 180. C was re-stretched 1.2 x 1.2 times simultaneously in the longitudinal and width directions. Further, the film was stretched 1.05 times in the width direction, heat-treated at a temperature of 195 ° C for 1 second, and then subjected to a relaxation treatment of 2% in the width direction to produce a biaxially oriented polyester film with a thickness of 5 ⁇ m. .
  • a magnetic recording medium support was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support was used as a magnetic tape as shown in Tables 1 to 3. It has excellent characteristics.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that the thickness of the polyester film was adjusted to 6.1 ⁇ m by controlling the extrusion conditions.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that the extrusion conditions were controlled and the thickness of the polyester film was 4.0 m.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a magnetic recording medium support was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a magnetic recording medium support was obtained in the same manner as in Example 9 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • the temperature is 125 at the same time in the longitudinal and width directions. C, stretched 3.5 times X 4.2 times at a stretching speed of 6,000%, and cooled to 70 ° C. Subsequently, the film was re-stretched 1.1 ⁇ 1.4 times in the longitudinal direction and the width direction simultaneously at a temperature of 180 ° C. The film was further heat treated at 195 ° C for 1 second while being stretched 1.05 times in the width direction, followed by 2% relaxation treatment in the width direction to produce a biaxially oriented polyester film with a thickness of 5 ⁇ m. .
  • a magnetic recording medium support was obtained in the same manner as in Example 10 except for the above. Gain The obtained magnetic recording medium support had excellent properties when used as a magnetic tape as shown in Tables 1 to 3.
  • the unstretched film was biaxially stretched, it was stretched 4.2 ⁇ 3.5 times at a temperature of 125 ° C. and a stretching speed of 6,000% at the same time in the longitudinal direction and the width direction, and cooled to 70 ° C. Subsequently, the film was redrawn at a temperature of 180 ° C. in the longitudinal direction and the width direction simultaneously by 1.4 ⁇ 1.1 times. The film was further heat treated at 195 ° C for 1 second while being stretched 1.05 times in the width direction, followed by 2% relaxation treatment in the width direction to produce a biaxially oriented polyester film with a thickness of 5 ⁇ m. .
  • a magnetic recording medium support was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a magnetic recording medium support was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • Two layers of deposited thin film layers were provided on both surfaces of the polyester film. That is, first of all, except that the metal material in the vapor deposition process was changed to 99.99 wt% silica, the transfer speed was 50 mZmin, the oxygen gas introduction rate was 1. OL / min, and the electron beam output was 5. OkW.
  • a silica layer having a thickness of 180 nm was formed by the method described above.
  • the metal material was changed to 99.99 wt% aluminum, the transfer speed was 60mZmin, the oxygen gas input was 2. OL / min, and the electron beam output was changed to 4. OkW.
  • Example 1 an aluminum oxide layer having a thickness of 20 nm was formed by the method described in Example 1.
  • a magnetic recording medium support pair was obtained in the same manner as in Example 1 except for the above.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • Example 1 except that the metal material in the vapor deposition process was changed to 99.99 wt% copper, the transfer speed was 60 mZmin, the oxygen gas introduction rate was 3. OL / min, and the electron beam output was 6.5 kW.
  • a support for a magnetic recording medium was obtained in the same manner.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a magnetic recording medium support was obtained in the same manner as in Example 1 except that n, the amount of oxygen gas introduced was 2.5 LZmin, and the electron beam output was 5.8 kW.
  • the obtained magnetic recording medium support had excellent characteristics when used as a magnetic tape as shown in Tables 1 to 3.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 4 except that after the M layer was deposited, no force was applied to humidify and rewind.
  • the magnetic recording medium support thus obtained had a higher abundance ratio of aluminum atoms bonded to hydroxyl groups than in Example 4, and the humidity expansion coefficient slightly deteriorated! .
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that the produced biaxially oriented polyester film was stored at 25 ° C. and 65% RH. Moisture absorbed in the polyester film is released when the M layer is formed, and as shown in Tables 1 to 3, the abundance ratio of aluminum atoms bonded to hydroxyl groups is larger than in Example 1, and the humidity expansion coefficient is increased. The size becomes slightly larger and the dimensional stability deteriorates.
  • Example 1 For magnetic recording media in the same manner as in Example 1 except that the M layer is formed by winding the induction heating coil around the crucible 23 and directly heating it without using the electron beam 21 from the electron gun 20. A support was obtained. As shown in Tables 1 to 3, the obtained magnetic recording medium support has a higher abundance ratio of aluminum atoms that are metal-bonded than Example 1, and the error rate is slightly worse.
  • Example 3 For magnetic recording media in the same manner as in Example 3 except that the M layer is formed by winding the induction heating coil around the crucible 23 and directly heating it without using the electron beam 21 from the electron gun 20. A support was obtained. As shown in Tables 1 to 3, the obtained support for a magnetic recording medium has a smaller abundance ratio of aluminum atoms that are metal-bonded as compared to Example 3, and its crack resistance is slightly lowered.
  • Double-sided AI 58 58 100 100 PET (5.0) 5 1 10
  • Double-sided AI 50 50 100 100 PET (5.0) 5 10
  • Example 3 Both sides One AI 60 60 100 100 PET (5.0) 5 10
  • Magnetic recording in the same manner as in Example 1 except that oxygen gas is not supplied in the vapor deposition process A medium support was obtained.
  • the obtained support for magnetic recording media did not have an aluminum oxide layer, and was inferior in characteristics when used as a magnetic tape as shown in Tables 4-6.
  • the obtained magnetic recording medium support had a light transmittance of 90% and a surface resistivity of 10 13 ⁇ , and was inferior in characteristics when used as a magnetic tape. It was.
  • the obtained magnetic recording medium support had a surface resistivity of 10 1 ⁇ and was inferior in characteristics when used as a magnetic tape.
  • the obtained magnetic recording medium support had a surface resistivity of 10 13 ⁇ and was inferior in characteristics when used as a magnetic tape.
  • Example 2 Support for magnetic recording medium in the same manner as in Example 1, except that the transport speed in the vapor deposition process was changed to 30 mZmin, the oxygen gas introduction rate was 15. OL / min, and the electron beam output was 4.3 kW. Got. As shown in Tables 4 to 6, the obtained support for magnetic recording medium had a light transmittance of 80% and was inferior in characteristics when used as a magnetic tape.
  • Example 7 Support for magnetic recording medium in the same manner as in Example 1 except that the conveyance speed in the vapor deposition process was changed to 180 mZmin, the oxygen gas introduction rate was 5. OL / min, and the electron beam output was 1.3 kW. Got. As shown in Tables 4 to 6, the obtained support for magnetic recording media had a vapor deposition thickness of 40 nm and was inferior in characteristics when used as a magnetic tape. [0167] (Comparative Example 7)
  • the support for the magnetic recording medium was prepared in the same manner as in Example 1 except that the transport speed in the vapor deposition process was changed to 10 mZmin, the oxygen gas introduction rate was 4. OL / min, and the electron beam output was 3.3 kW. Obtained. As shown in Tables 4 to 6, the obtained support for magnetic recording medium had a vapor deposition thickness of S250 nm, and was inferior in characteristics when used as a magnetic tape.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that vapor deposition was performed only on one side, not on both sides.
  • the obtained support for a magnetic recording medium had a vapor-deposited film only on one side, and as shown in Tables 4 to 6, was inferior in characteristics when used as a magnetic tape.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except that the vacuum deposition apparatus shown in FIG. 3 was used. Even if the obtained support for magnetic recording medium is controlled to have a deposition thickness, light transmittance, and surface resistivity within the range of the present invention, the position of the oxygen supply nozzle is inappropriate, so that control is possible. However, as shown in Tables 4 to 6, the characteristics were inferior when used as a magnetic tape.
  • Extruder M N2 units were used, and in Extruder M heated to 280 ° C, 90 parts by weight of PET pellets obtained in Reference Examples 1 and 2 and 10 parts by weight of PET pellets Y were decompressed at 180 ° C for 3 hours.
  • Extruder N which was supplied after drying and heated to 280 ° C, 180 parts by weight of PE T pellets X85, PET pellets Y12, and PET pellets Z3 obtained in Reference Examples 1 to 3 were added.
  • a biaxially oriented polyester film having a thickness of 5 ⁇ m was prepared after drying under reduced pressure for 3 hours at ° C. Also, the transport speed during deposition was 15mZmin, the oxygen gas introduction rate was 2.8L / min, and the electron beam output was 5.7kW.
  • a support for a magnetic recording medium was obtained in the same manner as in Example 1 except for the above. As shown in Tables 4 to 6, the obtained recording medium support had a vapor deposition thickness of 230 nm and was inferior in characteristics when used as a magnetic tape.
  • Comparative Example 1 0 2x 10 "0 1 X10" 0 12 6.5 6.5 X L ⁇ X Comparative Example 2 90 7 ⁇ 10 ⁇ 3 6x 10 ⁇ 3 13 8 8 XX ⁇ Comparative Example 3 10 3 ⁇ 10 ⁇ 5x 10 ⁇ 11 6.8 6.8 X ⁇ X Comparative Example 4 70 2 10 ⁇ 3 3 ⁇ 10 ⁇ 3 12 9 9 XX ⁇ Comparative Example 5 80 1 ⁇ 10 ⁇ 0 2 ⁇ 10 ⁇ 0 11 7.8 7.8 XX ⁇ Comparative Example 6 30 7X1CT5 7 ⁇ 10 ⁇ 5 10 6.5 6-5 X ⁇ ⁇ Comparative Example 7 30 8x10 ⁇ 5 9x1 (T5 11 9.5 9.5 XX ⁇ Comparison Example 8 70 1 ⁇ 10 ⁇ 6 5 ⁇ 10 ⁇ 0 12 7 7 X o X Comparative example 9 70 3 ⁇ 10 ⁇ 1 4 ⁇ 10 ⁇ 1 12 7 7 XX ⁇ Comparative example 10 75 4 ⁇ 10 ⁇ 2 7 10 ⁇ 2 11 10.5 10.5 XXX In the surface resistivity
  • Double-sided AI 100 100 100 100 0 0 Comparative Example 2 Both o AI 35 35 0.8 0.9 63 63 Comparative Example 3 Double-sided AI 80 80 29 27 42 42 Comparative Example 4 Both ⁇ Ai 36 36 0.8 0.8 65 65 Comparative Example 5 Both AI 39 39 1.8 1.9 67 67 Comparative Example 6 Rain surface AI 44 44 3.6 3.6 40 40 Comparison Example 7 Both AI 40 40 2 2 61 61 Comparative Example 8 Single-sided AI 39 1.8 38 Comparative Example 9 Double-sided AI 40 40 1 J 1.7 70 70 Comparative Example 1 0 Both [£ AI 39 39 1.5 1.5 68 68
  • FIG. 1 is a schematic diagram of a sheet width measuring device used for measuring a width dimension.
  • FIG. 2 is a schematic view of a vacuum vapor deposition apparatus used when producing the support of the present invention.
  • FIG. 3 is a schematic diagram of a vacuum vapor deposition apparatus used when manufacturing a conventional support. Explanation of symbols

Abstract

【課題】  寸法安定性、耐クラック性に優れた支持体であって、特に磁気記録媒体とした際に環境変化による寸法変化が小さく、エラーレート少ない高密度磁気記録媒体とすることができる支持体を提供することにある。 【解決手段】  ポリエステルフィルムの両面に金属系酸化物を含む層(M層)が設けられ、これらの各M層の厚みが50~200nmである磁気記録媒体用支持体であって、該磁気記録媒体用支持体の全光線透過率が0~75%であり、それぞれの面の表面抵抗率が1×102~1×1013Ωであることを特徴とする磁気記録媒体用支持体とする。

Description

明 細 書
磁気記録媒体用支持体および磁気記録媒体
技術分野
[0001] 本発明は、磁気テープなどの磁気記録媒体に用いられる支持体と、該支持体を用 Vヽた磁性層を有する磁気記録媒体とに関する。
背景技術
[0002] 二軸延伸ポリエステルフィルムはその優れた熱特性、寸法安定性、機械特性およ び表面形態の制御のし易さから各種用途に使用されており、特に磁気記録媒体など の支持体としての有用性がよく知られている。近年、磁気テープなどの磁気記録媒体 は、機材の軽量化、小型化、大容量ィ匕のため高密度化が要求されている。高密度記 録化のためには、記録波長を短くし、記録トラックを小さくすることが有用である。しか しながら、記録トラックを小さくすると、テープ走行時における熱やテープ保管時の温 湿度変化による変形により、記録トラックのずれが起こりやすくなるという問題がある。 したがって、テープの使用環境および保管環境での寸法安定性といった特性の改善 に対する要求がますます強まって 、る。
[0003] この観点から、支持体には、強度、寸法安定性の点で二軸延伸ポリエステルフィル ムよりも優れた剛性の高い芳香族ポリアミドが用いられることがある。し力しながら芳香 族ポリアミドは高価格でコストがかかり、汎用記録媒体の支持体としては現実的では ない。
[0004] 一方、ポリエチレンテレフタレートやポリエチレンナフタレートなどを用いたポリエス テルフィルムにお 、ても、延伸技術を用いて高強度化した磁気記録媒体用支持体が 開発されている。し力しながら、温度や湿度に対する寸法安定性などの厳しい要求を 満足することは 、まだ困難である。
[0005] また、温度や湿度に対する寸法安定性を向上するために、ポリエステルフィルムの 片面または両面に金属などの補強層を設ける方法 (特許文献 1)が開示されている。 しかしながら、補強層が金属の場合、金属結合のため導電性が高く光を反射する性 質を持つ。そのため、磁性層を塗布する際の膜厚管理に透過光を用いているものの 、金属の補強膜の影響で光が透過しないという問題がある。そのため膜厚管理が困 難となり、磁性層の膜厚にバラツキが生じ、エラーレートの多い磁気テープとなり易い 。また、導電性が高いため静電気や漏れ電流によって磁気テープに電流が流れてし まい、その電流のために磁気ヘッドがショートしたり、故障することがある。さらに、金 属は酸ィ匕物と比較して、強度が弱ぐポリエステルフィルムの膨張 ·収縮を抑制する効 果が小さいという問題もある。一方、補強層が酸化物やその他の化合物の場合、ィォ ン結合のため、硬いがもろく延性がない性質を持つ。そのため、張力によって割れを 生じたり、湾曲による割れが生じたりする。また、酸ィ匕物は吸湿性をもっため、湿度に 対する寸法安定性向上効果が小さぐ補強層自体の吸湿膨張により寸法安定性を 悪ィ匕させる場合もある。
[0006] そこで、鋭意検討した結果、金属を完全に酸ィ匕させるのではなぐ補強層の酸化度 を制御することで寸法安定性が飛躍的に向上し、上記の多くの課題を解決することを 見出した。
[0007] なお、酸化度を制御した酸化金属層を蒸着する技術はガスバリア性フィルムで開示 されている(特許文献 2)。しかし、この文献に記載のフィルムはガスノ《リアが目的の包 装材料用フィルムであり、透明性が問われるため、蒸着膜厚が 40nm以下と薄ぐポリ エステルフィルムの膨張 ·収縮を抑制する効果が小さい。また、酸ィ匕度を制御して 50 nm以上の酸化金属層を蒸着するには、アルミニウムの蒸発量を増加する必要があり 、それに合わせて酸素導入量も増やす必要がある。しかしながら、この文献に記載の 方法では図 3に示すような真空蒸着装置を用いるので厚膜ィ匕が困難である。すなわ ち、この真空蒸着装置 111においては、真空チャンバ 112の内部をポリエステルフィ ルムが卷出しロール部 113から冷却ドラム 116を経て卷取りロール部 118へと走行す る。このときに、るつぼ 123内の金属材料 119を電子銃 120から照射した電子ビーム 121で加熱蒸発させるとともに、酸素供給ノズル 124から酸素ガスを導入し、蒸発し た金属を酸ィ匕反応させながら冷却ドラム 116上のポリエステルフィルムに蒸着する。 しかしながら、酸素供給ノズル 124が冷却ドラム 116に近いため、酸素導入量を増や すとその酸素ガスの吹出流によって金属蒸気が飛ばされ、酸化度を制御することが 難しい。また、金属と酸素が反応する空間が小さいこともあり、 50nm以上といった金 属酸化物の蒸着膜を形成することが難しぐ形成された蒸着膜は不安定なものとなり やすい。そして不安定な蒸着膜は構造欠陥を多く生成させ寸法安定性の悪ィヒを招く 。さらに、これらのガスバリア性フィルムは包装材料用途であるため、ベースフィルム の厚みが 10 m以上と厚ぐまた表面が平滑ではないため、容易に蒸着ができるの に対し、磁気記録媒体用支持体に用いられるポリエステルフィルムは一般的に厚み が薄ぐ平滑であるために、これらの方法のように工夫無く蒸着すると熱による変形な どにより、蒸着中にフィルム破れが多発する。
特許文献 1:特開平 7— 272247号公報
特許文献 2:特開昭 62— 220330号公報
発明の開示
発明が解決しょうとする課題
[0008] 本発明の目的は、上記の問題を解決し、寸法安定性に優れ、クラックしにく 、磁気 記録媒体用支持体を提供することにある。詳しくは、磁気記録媒体とした際に環境変 化による寸法変化が少なぐクラック発生やエラーレートも少ない、走行耐久性に優 れた高密度磁気記録媒体とすることができる支持体を提供することにある。
課題を解決するための手段
[0009] 上記課題を解決するための本発明は、次の(1)〜(5)を特徴とするものである。
(1)ポリエステルフィルムの両面に金属系酸ィ匕物を含む層(M層)が設けられ、これら M層の厚みがそれぞれ 50〜200nmである磁気記録媒体用支持体であって、該磁 気記録媒体用支持体の全光線透過率が 0〜75%であり、各表面の表面抵抗率が 1 X 102〜1 X 1013[ Ω ]であることを特徴とする磁気記録媒体用支持体。
(2)少なくとも一方の表面の中心線平均粗さ Raが 0. 5〜: LOnmである、上記(1)に 記載の磁気記録媒体用支持体。
(3)長手方向のヤング率が 5〜13GPaである、上記(3)に記載の磁気記録媒体用支 持体。
(4)前記ポリエステルフィルムの厚みが 2〜6 μ mである、上記(1)〜(3)の!、ずれか に記載の磁気記録媒体用支持体。
(5) M層の金属元素濃度が 10〜70at. %である、上記(1)〜(4)のいずれかに記 載の磁気記録媒体用支持体。
(6) M層の金属結合している金属原子の存在比が l〜20at. %である、上記(1)〜 (5)の ヽずれかに記載の磁気記録媒体用支持体。
(7) M層の金属系酸ィ匕物が酸ィ匕アルミニウムであり、水酸基と結合しているアルミ- ゥム原子の存在比が 0〜60at. %である、上記(1)〜(6)のいずれかに記載の磁気 記録媒体用支持体。
(8)上記(1)〜(7)のいずれかに記載の磁気記録媒体用支持体の少なくとも片面に 磁性層が設けられた磁気記録媒体。
発明の効果
[0010] 本発明の磁気記録媒体用支持体は、寸法安定性に優れクラックも発生しにくい支 持体であって、特に磁気記録媒体とした際に環境変化による寸法変化が小さぐクラ ック発生、エラーレートが少な!/、高密度磁気記録媒体とすることができる支持体を得 ることがでさる。
発明を実施するための最良の形態
[0011] 本発明の磁気記録媒体用支持体は、ポリエステルフィルムの両方の表面上に金属 系酸化物を含む層(M層)が形成されてなる。金属系酸化物とは、例えば、 Cu、 Zn、 Al、 Si、 Fe、 Ag、 Ti、 Mg、 Sn、 Zr、 In、 Cr、 Mn、 V、 Ni、 Mo、 Ce、 Ga、 Hf、 Nb、 T a、 Y、 Wなどの金属成分を酸ィ匕させたものであって、組成分析を行った場合の平均 組成における酸素原子含有量が lOat. %以上となっているものをいう。なお、 at. % とは、 atomic%の略であり、 atomic%とは原子数 100個当たりの該原子数の個数を 示したものである。
[0012] 上記の金属系酸化物は、全光線透過率や表面抵抗率が後述するような範囲内で あれば両表面で異なる金属成分を含んでいても良ぐまた、複数種の金属成分を混 合して含んで 、ても構わな 、が、より好ましくは両表面で同一種の金属成分を含む 方が良い。中でも、金属系酸化物は、酸化度の制御性、寸法安定性、生産性、環境 性の観点から、アルミニウム、銅、亜鉛、銀、珪素元素の少なくとも一種を含んでいる ことが好ましぐより好ましくはアルミニウム元素が主成分となっていることが好ましい。
[0013] M層の金属元素濃度は 10〜70at. %であることが好ましい。金属元素濃度が 10a t. %より少ないと、金属原子に対して酸素原子が多すぎるため、不完全な構造 (金属 原子や酸素原子が未結合で存在する)を取りやすぐ補強する効果が小さくなり寸法 安定性が低下してしまう。 70at. %より多い場合、ほぼ金属の特性を持っため、導電 性によるショートの問題や強度が低く寸法安定性が低いなどの問題がある。より好ま しくは 20〜60at. %であり、さらに好ましくは 30〜50at. %である。金属元素濃度は 金属蒸発量と酸素ガス導入量力 制御することができる。金属元素濃度を小さくする には、金属蒸発量を少なくし、酸素ガス導入量を多くすればよぐ金属元素濃度を大 きくするにはその逆にすればよい。
[0014] また、 M層の金属結合している金属原子の存在比は l〜20at. %であることが好ま しい。金属結合の存在比が lat. %より小さいと、たとえ上述するような金属元素濃度 であっても靭性のある金属結合が少ないためクラックが起こりやすい。 20at. %ょり大 き 、と、たとえ上述するような金属元素濃度であっても金属の特性を持っため導電性 によるショートの問題が起こりやすくなる。金属結合している金属原子は吸湿しないた め、構造欠陥を作りに《寸法安定性の悪ィ匕を防ぐことができる。より好ましくは 2〜1 5at. %、さらに好ましくは 3〜: LOat. %である。金属結合の存在比は金属の蒸発量と 酸素ガス導入量力 制御することができるが金属元素濃度よりもさらにミクロな構造を 示した組成であり、酸化反応の制御が重要となる。金属結合の存在比は金属と酸素 ガスの反応効率が影響するため、酸素ガス導入の方法が重要となる。酸素ガス導入 方法は蒸着源の真横から金属蒸気の流れる方向と同じ方向に供給することが好まし い。これは、金属蒸気と酸素ガスの反応が促進され、酸化反応が完了した状態でポリ エステルフィルムに到達するため、過剰な酸素ガスを取り込んで金属結合存在比が 小さくなつたり、酸素ガスと反応できずに金属原子同士が結合し、金属結合存在比が 大きくなつてしまったりすることがなくなる。また、金属蒸気や酸素ガスを高エネルギー 化することで反応が促進されるため、電子ビーム蒸着法により金属蒸気を高工ネルギ 一化し、プラズマ処理などで酸素ガスを高エネルギー化することが好ま Uヽ。
[0015] M層の金属成分は上述にあるようにアルミニウム元素が好ましぐ M層は酸化アルミ -ゥムであることが好ましい。さらに酸ィ匕アルミニウム中のアルミニウムの結合状態は、 水酸基と結合して 、るアルミニウム原子の存在比が 0〜60at. %であることが好まし 、。一般的に酸ィ匕アルミニウムは水蒸気を吸湿して水和物 (Al (OH) )を形成する。
3
本願では水和物も酸ィ匕アルミニウムとして考える。水酸基と結合して ヽるとはアルミ二 ゥム原子が吸湿して水和物になっていることを表し、光電子分光法 (XPS)にてアルミ
-ゥムの結合状態を分析することで存在比を測定することができる。水和物の形成に より部分的に体積変化が起こり M層内にひずみができ構造欠陥が発生する。水和物 形成は寸法安定性を悪ィ匕させる要因となるため、 60at. %以下であることが好ましい 。より好ましくは 50at. %以下、さらに好ましくは 40at. %以下である。水酸基と結合 しているアルミニウム原子の存在比を小さくさせるには、水和物を形成させないこと、 すなわち水分を吸湿させな 、ことが好まし 、。アルミニウム原子と酸素原子がしっかり 結合していて、未結合のアルミニウム原子や酸素原子を減らし、不完全な構造をなく すように形成することで水分の吸湿を防ぐことができる。不完全な構造はな 、ことが好 ましいが、形成時に生成してしまった場合は強制的に一気に吸湿させ、 M層全体か ら未結合のアルミニウムや酸素原子をなくすことが好ましい。つまり、 M層形成後は未 結合原子をなくすための強制加湿処理を行うことが好ましい。加湿処理を行わず、未 結合原子が残存していると、部分的に吸湿が起こり、その吸湿による体積変化などで M層に構造欠陥を作りやすくなる。構造欠陥はさらなる吸湿を発生させる原因ともな り、加湿処理を行わない場合より、水酸基と結合しているアルミニウム原子の存在比 が高くなつてしまう場合もある。
[0016] また、 M層を形成する時にポリエステルフィルムが吸湿していると、形成時の熱負荷 などによりポリエステルフィルム力 水分が放出され、 M層の中に水分を取り込むこと となり、水和物を形成してしまうことがある。 M層を形成する前にポリエステルフィルム 内の水分量を減らしておくことが好まし 、。
[0017] M層の厚みは、それぞれ 50〜200nmである必要がある。 M層の厚みが 50nmより 小さい場合、補強効果が小さぐ寸法安定性が改善されない。 M層の厚みの下限は 、好ましくは 60nm、より好ましくは 70nmである。一方、 M層の厚みが 200nmより大 きい場合は、クラックを生じやすく寸法安定性が悪化しやすい。また走行を繰り返す ことで剥離や脱落が発生し易ぐ結果として寸法安定性が悪ィ匕する傾向にある。また 、全光線透過率や表面抵抗率を本発明の範囲内にするには酸素の導入量を増やす 必要がある力 真空製膜装置を使って 200nm以上の厚みの M層を形成しょうとする と、真空度が低下してしまい金属蒸気が蒸発しにくく不安定になる。その結果、 M層 が不完全な構造になり、寸法安定性、走行耐久性の悪い磁気記録媒体となってしま う。また、スパッタ法では酸素導入量が多いとターゲットの表面を酸ィ匕させてしまい、 スパッタによる金属原子の飛び出しが不安定となる。その結果、真空蒸着法と同様、 不完全な構造になってしまい、寸法安定性、走行耐久性の悪い磁気記録媒体となつ てしまう。 M層の厚みの上限は、好ましくは 180nm、より好ましくは 150nmである。好 ましい範囲としては、 60〜180nm、より好ましい範囲としては、 70〜150nmである。
[0018] 本発明の磁気記録媒体用支持体は、全光線透過率力^〜 75%である必要がある。
75%より高い場合、酸ィ匕が進みすぎているため、 M層が硬く脆くなり、張力や湾曲に よってクラックを生じやすぐまた、酸ィ匕物の吸湿膨張が起こり易く寸法安定性が劣る 傾向にある。全光線透過の下限は、より好ましくは 1%であり、さらに好ましくは 5%で ある。一方、上限は 70%が好ましぐさらに好ましくは 65%である。なお、本発明の支 持体としては全光線透過率が 0%のものも包含される。これは、支持体が、上記した ような金属成分を少しだけ酸化させた金属系酸化物を含む層を有する場合、表面抵 抗率が後述するような範囲になるものの、全光線透過率が 0%、すなわち、検出限界 以下という場合があるからである。より好ましい範囲としては、 1〜70%、より好ましい 範囲としては、 5〜65%である。
[0019] 本発明の磁気記録媒体用支持体は、表面抵抗率が 1 X 102〜1 X 1013 Ωであり、 好ましくは 1. Ο Χ 102〜9. 9 Χ 1012 Ωである。表面抵抗率とは、表面比抵抗(Ω Ζ口 )とも表記される特性値であり、純粋な表面抵抗 (面積によって変わる抵抗値)ゃ線抵 抗 (導線などの抵抗)とは異なるものである。表面抵抗率が 1. 0 Χ 102 Ωより低い場合 、導電性が高すぎるため、静電気や漏れ電流によって磁気テープに電流が流れてし まい、その電流のために磁気ヘッドがショートし故障する危険性がある。表面抵抗率 の下限は、好ましくは 1. 0 Χ 104 Ωであり、より好ましくは 1. 0 Χ 105 Ωである。一方、 表面抵抗率が 1 X 1013 Ω、特に 9. 9 Χ 1012 Ωより高い場合、透過率が高い場合と同 様に酸ィ匕が進みすぎているために、クラックの発生や寸法安定性の悪ィ匕の傾向があ る。表面抵抗率の上限は、好ましくは 9. Θ Χ ΙΟ^ Ω、より好ましくは 9. 9 X 1010 Q -C ある。好ましい範囲としては、 1. 0 Χ 104〜9. Θ Χ ΙΟ^ Ω、より好ましい範囲としては、 1. 0 X 105〜9. 9 X 1010 Ωである。なお、磁性層を設ける側の表面 (Α)と磁性層を 設けない側の表面、すなわちバックコート層側の表面 (Β)とでは、表面抵抗率の値が 同じでもよ 、が、バックコート層側の表面 (Β)の表面抵抗率が低 、方が好ま 、。
[0020] そして、本発明の磁気記録媒体用支持体において、磁性層を設ける側の表面 (Α) の中心線平均粗さ Raが 0. 5nm〜10nmであることが好ましい。磁性層を設ける側の 表面 (A)の Raが 0. 5nmより小さい場合は、フィルム製造、加工工程などで、搬送口 ールなどとの摩擦係数が大きくなり、工程トラブルを起こすことがあり、磁気テープとし て用いる場合に、磁気ヘッドとの摩擦が大きくなり、磁気テープ特性が低下しやすい 。また、 Raが 10nmより大きい場合は、高密度記録の磁気テープとして用いる場合に 、電磁変換特性が低下することがある。磁性層を設ける側の表面 (A)の Raの下限は 、より好ましくは 2nm、さらに好ましくは 3nmであり、上限は 9nm、さらに好ましくは 8n mである。より好ましい範囲としては、 2〜9nm、さらに好ましい範囲としては、 3〜8n mである。
[0021] 一方、バックコート層側の表面(B)の中心線平均粗さ Raは 3〜30nmであることが 好ましい。ノ ックコート層側の表面(B)の Raが 3nmより小さい場合は、フィルム製造、 加工工程などで、搬送ロールなどとの摩擦係数が大きくなり、工程トラブルを起こすこ とがあり、磁気テープとして用いる場合に、ガイドロールとの摩擦が大きくなり、テープ 走行性が低下することがある。また、 Raが 30nmより大きい場合は、フィルムロールや パンケーキとして保管する際に、表面突起が反対側の表面に転写し、電磁変換特性 が低下する傾向がある。ノ ックコート層側の表面(B)の Raの下限は、より好ましくは 5 nm、さらに好ましくは 7nmであり、上限は 20nm、さらに好ましくは 15nmである。より 好ましい範囲としては、 5〜20nm、さらに好ましい範囲としては 7〜15nmである。
[0022] 本発明の磁気記録媒体用支持体は、幅方向の湿度膨張係数が 3〜: LOppmZ %RHであることも好ましい。湿度膨張係数が上記範囲内であることは、磁気記録媒 体への加工工程や磁気記録媒体の記録再生時の高湿条件での寸法安定性の観点 力も好ましい。幅方向の湿度膨張係数の上限は、より好ましくは 8ppmZ%RH、さら に好ましくは 7ppmZ%RHである。幅方向の湿度膨張係数の下限はより好ましくは — lppmZ%RH、さらに好ましくは OppmZ%RHである。より好ましい範囲としては 、 一 l〜8ppm/%RH、さらに好ましい範囲としては 0〜7ppm/%RHである。
[0023] 本発明の磁気記録媒体用支持体は、長手方向のヤング率が 5〜13GPaであること が好ましい。長手方向のヤング率が 5GPaより小さい場合、テープドライブ内での長 手方向への張力によって長手方向に伸び、この伸び変形により幅方向に収縮し、記 録トラックずれという問題が発生しやすい。長手方向のヤング率の下限は、より好まし くは 6GPa、さらに好ましくは 7GPaである。一方、長手方向のヤング率が 13GPaより 大きい場合、幅方向のヤング率を好ましい範囲に制御することが難しくなり、幅方向 のヤング率が不足し、エッジダメージの原因となる。長手方向のヤング率の上限は、 より好ましくは 12GPa、さらに好ましくは l lGPaである。より好ましい範囲としては、 6 〜12GPa、さらに好ましい範囲としては 7〜: L lGPaである。
[0024] 本発明の磁気記録媒体用支持体は、幅方向のヤング率が 5〜13GPaの範囲であ ることが好ましい。幅方向のヤング率が 5GPaより小さい場合、エッジダメージの原因 となったりすることがある。幅方向のヤング率の下限は、より好ましくは 6GPa、さらに 好ましくは 7GPaである。一方、幅方向のヤング率が 13GPaより大きい場合、長手方 向のヤング率を好ましい範囲に制御することが難しくなり長手方向の張力により変形 しゃすくなつたり、スリット性が悪ィ匕することがある。幅方向のヤング率の上限は、より 好ましくは 12GPa、さらに好ましくは l lGPaである。より好ましい範囲としては、 6〜1 2GPa、さらに好ましい範囲としては 7〜: L lGPaである。
[0025] なお、本発明において、支持体の長手方向とは、一般的に MD方向といわれる方 向であって、ポリエステルフィルム製造工程時の長手方向と同じ方向を指し、支持体 の幅方向とは、一般的に TD方向といわれる方向であって、ポリエステルフィルム製造 工程時の幅方向と同じ方向を指す。
[0026] 本発明にお 、て、ポリエステルフィルムとは、例えば、芳香族ジカルボン酸、脂環族 ジカルボン酸または脂肪族ジカルボン酸などの酸成分ゃジオール成分を構成単位( 重合単位)とするポリマーで構成されたものである。
[0027] 芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、 1, 4 ナフタレンジカルボン酸、 1, 5 ナフタレンジカルボン酸、 2, 6 ナフタレンジ カルボン酸、 4, 4'ージフエ-ルジカルボン酸、 4, 4'ージフエ-ルエーテルジカルボ ン酸、 4, 4'—ジフエ-ルスルホンジカルボン酸等を用いることができ、なかでも好ま しくは、テレフタル酸、フタル酸、 2, 6 ナフタレンジカルボン酸を用いることができる 。脂環族ジカルボン酸成分としては、例えば、シクロへキサンジカルボン酸等を用い ることができる。脂肪族ジカルボン酸成分としては、例えば、アジピン酸、スベリン酸、 セバシン酸、ドデカンジオン酸等を用いることができる。これらの酸成分は一種のみを 用いてもよぐ二種以上を併用してもよい。
[0028] ジオール成分としては、例えば、エチレングリコール、 1, 2 プロパンジオール、 1, 3 プロパンジオール、ネオペンチルグリコール、 1, 3 ブタンジオール、 1, 4ーブタ ンジオール、 1, 5 ペンタンジオール、 1, 6 へキサンジオール、 1, 2 シクロへキ サンジメタノール、 1, 3 シクロへキサンジメタノール、 1, 4 シクロへキサンジメタノ ール、ジエチレングリコール、トリエチレングリコール、ポリアノレキレングリコール、 2, 2
,一ビス(4' - β—ヒドロキシエトキシフエ-ル)プロパン等を用いることができ、なかで も、エチレングリコール、 1, 4 ブタンジオール、 1, 4ーシクロへキサンジメタノール、 ジエチレングリコール等を好ましく用いることができ、特に好ましくは、エチレングリコ 一ル等を用いることができる。これらのジオール成分は一種のみを用いてもよぐ二種 以上を併用してもよい。
[0029] ポリエステルには、ラウリルアルコール、イソシアン酸フエ-ル等の単官能化合物が 共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリト ール、 2, 4 ジォキシ安息香酸、等の 3官能化合物などが、過度に分枝や架橋をせ ずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分、 ジオール成分以外に、 ρ ヒドロキシ安息香酸、 m—ヒドロキシ安息香酸、 2, 6 ヒド ロキシナフトェ酸などの芳香族ヒドロキシカルボン酸および p ァミノフエノール、 p— ァミノ安息香酸などを本発明の効果が損なわれない程度の少量であればさらに共重 合せしめることがでさる。
[0030] ポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレートが好ま しい。また、これらの共重合体、および変性体でもよぐ他の熱可塑性榭脂とのポリマ ーァロイでも良い。ここでいうポリマーァロイとは高分子多成分系のことであり、共重合 によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドでも良い。 特に、上記ポリエステル榭脂とポリイミド系榭脂のポリマーァロイは混合割合によつて 耐熱性 (ガラス転移温度)を制御できるため、使用条件に合わせたポリマー設計がで きるため好まし ヽ。ポリマーの混合割合は NMR法 (核磁気共鳴法)や顕微 FT—IR 法 (フーリエ変換顕微赤外分光法)を用いて調べることができる。
[0031] ポリイミド系榭脂としては、例えば、下記一般式で示されるような構造単位を含有す るものが好ましい。
[0032] [化 1]
Figure imgf000013_0001
[0033] ただし、式中の R1は、
[0034] [化 2]
剛 [SSOO]
Figure imgf000014_0001
90.8TC/900Zdf/X3d
Figure imgf000015_0001
(j )
Figure imgf000015_0002
(k)
[0036] などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基から選ばれた 種もしくは二種以上の基を表している。また、式中の R2は、
[0037] [化 4]
Figure imgf000016_0001
などの脂肪族炭化水素基、脂環族炭化水素基、芳香族炭化水素基から選ばれた一 種もしくは二種以上の基を表して 、る。 [0039] 溶融成形性やポリエステルとの親和性などの点から、下記一般式で示されるような 、ポリイミド構成成分にエーテル結合を含有するポリエーテルイミドが特に好まし 、。
[0040] [化 5]
Figure imgf000017_0001
[0041] (ただし、上記式中 R3は、 6〜30個の炭素原子を有する 2価の芳香族または脂肪族 残基、 R4は 6〜30個の炭素原子を有する 2価の芳香族残基、 2〜20個の炭素原子 を有するアルキレン基、 2〜20個の炭素原子を有するシクロアルキレン基、および 2 〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン 基からなる群より選択された 2価の有機基である。 )
上記 、 R4としては、例えば、下記式群に示される芳香族残基を挙げることができ る。
[0042] [化 6]
Figure imgf000017_0002
[0043] 本発明では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、 2, 2 ビ ス [4 (2, 3 ジカルボキシフエノキシ)フエ-ル]プロパン二無水物と m—フエ-レン ジァミン、または p フエ-レンジァミンとの縮合物である、下記式で示される繰り返し 単位を有するポリマーが好まし ヽ [0044] [化 7]
Figure imgf000018_0001
[0045] または
[0046] [化 8]
Figure imgf000018_0002
[0047] (nは 2以上の整数、好ましくは 20〜50の整数)
このポリエーテルイミドは、 "ウルテム"(登録商標)の商品名で、ジーィ一プラスチッ タス社より入手可能である。
[0048] 本発明にお 、て、ポリエステルフィルムは 2層以上の積層構成であることが好まし ヽ 。特に、本発明の支持体は、磁気記録媒体に用いるため、一方の表面には、優れた 電磁変換特性を得るための平滑さが求められ、他方の表面には、製膜'加工工程で の搬送や、磁気テープの走行性や走行耐久性を付与するための粗さが求められる。 そのため、ポリエステルフィルムを 2層以上の積層構成にすることが好ましい。
[0049] ポリエステルフィルムには、その表面に易滑性ゃ耐摩耗性、耐スクラッチ性などを付 与するため、無機粒子、有機粒子、例えば、クレー、マイ力、酸化チタン、炭酸カルシ ゥム、カリオン、タルク、湿式シリカ、乾式シリカ、コロイド状シリカ、リン酸カルシウム、 硫酸バリウム、アルミナ、ジルコユア等の無機粒子、アクリル酸類、スチレン系榭脂、 熱硬化榭脂、シリコーン、イミド系化合物等を構成成分とする有機粒子、ポリエステル 重合反応時に添加する触媒等によって析出する粒子 (いわゆる内部粒子)などが添 カロされていてもよい。粒子の粒径は TEMなどによって調べることができ、粒子の添加 量は X線マイクロアナライザーや熱分解ガスクロマト質量分析などによって調べること ができる。
[0050] 本発明において、支持体としての厚みは、用途に応じて適宜決定できる力 通常磁 気記録媒体用途では 2〜7 mが好ましい。この厚みが 2 mより小さい場合、磁気 テープにした際に電磁変換特性が低下することがある。一方、この厚みが 7 mより 大きい場合は、テープ 1卷あたりのテープ長さが短くなるため、磁気テープの小型化 、高容量ィ匕が困難になる場合がある。したがって、高密度磁気記録媒体用途の場合 、厚みの下限は、好ましくは 3 μ m、より好ましくは 4 μ mであり、上限は、好ましくは 6 . 5 m、より好ましくは 6 μ mである。より好まし!/ヽ範囲としては 3〜6. 5 m、より好ま しい範囲としては 4〜6 μ mである。
[0051] また、本発明の支持体を構成するポリエステルフィルムの厚みは、 2〜6 μ mである ことが好ましい。この厚みが 2 /z mより小さい場合は、磁気テープにした際にテープに 腰がなくなるため、電磁変換特性が低下することがある。ポリエステルフィルムの厚み の下限は、より好ましくは 3 μ m、さらに好ましくは 4 μ mである。一方、ポリエステルフ イルムの厚みが 6 μ mより大きい場合は、テープ 1卷あたりのテープ長さが短くなるた め、磁気テープの小型化、高容量ィ匕が困難になる場合がある。ポリエステルフィルム の厚みの上限は、より好ましくは 5. 8 /ζ πι、さらに好ましくは 5. である。より好ま しい範囲としては 3〜5. 8 m、さらに好ましい範囲としては 4〜5. 6 mである。
[0052] 上記したような本発明の磁気記録媒体用支持体は、たとえば次のように製造される
[0053] まず、支持体を構成するポリエステルフィルムを製造する。ポリエステルフィルムを 製造するには、たとえばポリエステルのペレットを、押出機を用いて溶融し、口金から 吐出した後、冷却固化してシート状に成形する。このとき、繊維焼結ステンレス金属フ ィルターによりポリマーを濾過することが、ポリマー中の未溶融物を除去するために好 ましい。また、ポリエステルフィルムの表面に易滑性ゃ耐摩耗性、耐スクラッチ性など を付与するため、無機粒子、有機粒子、例えば、クレー、マイ力、酸化チタン、炭酸力 ルシゥム、カリオン、タルク、湿式シリカ、乾式シリカ、コロイド状シリカ、リン酸カルシゥ ム、硫酸バリウム、アルミナ、ジルコユア等の無機粒子、アクリル酸類、スチレン系榭 脂、熱硬化榭脂、シリコーン、イミド系化合物等を構成成分とする有機粒子、ポリエス テル重合反応時に添加する触媒等によって析出する粒子 (いわゆる内部粒子)など を添加することも好ましい。さらに、本発明を阻害しない範囲内であれば、各種添カロ 剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止 剤、増白剤、着色剤、導電剤、結晶核剤、紫外線吸収剤、難燃剤、難燃助剤、顔料 、染料、などが添加されてもよい。
[0054] 続いて、上記シートを長手方向と幅方向の二軸に延伸した後、熱処理する。延伸ェ 程は、特に限定されないが、各方向において 2段階以上に分けることが好ましい。す なわち再縦、再横延伸を行う方法が高密度記録の磁気テープとして最適な高強度の フィルムが得られ易 、ために好まし 、。
[0055] 延伸形式としては、長手方向に延伸した後に幅方向に延伸を行うなどの逐次二軸 延伸法や、同時二軸テンター等を用いて長手方向と幅方向を同時に延伸する同時 二軸延伸法、さらに、逐次二軸延伸法と同時二軸延伸法を組み合わせた方法などが 包含される。
[0056] 特に同時二軸延伸法を用いることが好ましい。逐次二軸延伸法に比べて同時二軸 延伸法は、製膜工程で長手方向、幅方向に結晶が均一に成長するため、安定して 高倍率に延伸しやすい。なお、ここでいう同時二軸延伸とは、長手方向と幅方向の延 伸が同時に行われる工程を含む延伸方式である。必ずしも、すべての区間で長手方 向と幅方向が同時に延伸されている必要はなぐ長手方向の延伸が先にはじまり、そ の途中から幅方向にも延伸を行い(同時延伸)、長手方向の延伸が先に終了し、残り を幅方向のみ延伸するような方式でもよい。延伸装置としては、例えば同時二軸延伸 テンターなどが好ましく例示され、中でもリニアモータ駆動式の同時二軸テンターが 破れなくフィルムを延伸する方法として特に好ましい。
[0057] 次に、上記のようにして得られたポリエステルフィルムの両面に金属系酸ィ匕物を含 む層(M層)を設ける。このとき、全光線透過率と表面抵抗率の値を上述のとおりとす るために、金属系酸化物の酸化状態を制御する。 M層の形成方法としては物理蒸 着法や化学蒸着法を用いることができる。ポリエステルフィルムへの物理蒸着法には 真空蒸着法、スパッタリング法があり、特に酸化度の制御しやすさから真空蒸着法が 好ましぐさらに金属蒸気の高エネルギー化が可能な電子ビーム蒸着法が好ましい。 [0058] M層を構成する金属系酸ィ匕物の酸ィ匕度を制御するには、基本的には金属蒸発量 と酸素ガス導入量を制御する必要がある。金属蒸発量が一定であれば、酸素ガス導 入量を減らせば酸ィ匕度が低くなり、酸素ガス導入量を増やせば酸ィ匕度が高くなる。 逆に酸素ガス導入量が一定であれば、金属蒸発量を減らせば酸ィ匕度が高くなり、金 属蒸発量を増やせば酸化度が低くなる。
[0059] このとき、酸素ガスは、蒸着源の真横から金属蒸気の流れる方向と同じ方向に供給 することが好ましい。金属蒸気の流れる方向と同じ方向に供給することで、酸素ガス による金属蒸気の乱れが少なくなり、所望の厚みや酸化度に制御し易くなる。また、 酸素ガスと金属蒸気の反応空間が大きくなるため、ポリエステルフィルム上に達する までに酸化反応が完了し、安定した構造欠陥のない蒸着膜を製膜することが可能と なり、寸法安定性が向上する。冷却ドラムに近い一般的な酸素供給ノズル位置(図 3 、 124)ではガス流が金属蒸気と垂直に当たるため、所望の厚みに制御しづらぐ特 に厚膜化が困難となる。さらに、反応空間が小さくなるため金属原子が不完全な酸化 反応でポリエステルフィルムに到着するため、不完全な構造になり、寸法安定性を悪 化させる。それ以外にもポリエステルフィルムへの堆積始めと堆積終わりの部分に酸 素供給ノズルがあるため、ポリエステルフィルムとの界面や M層の表面で酸素濃度が 高くなる層構造になりやすい。 M層中に異組成の層があると、構造が乱れやすく寸法 安定性が低下する傾向がある。
[0060] 逆に本願でおこなう酸素供給ノズルの位置は、必然的に冷却ドラム力 離れる方向 となるため、未反応の酸素ガスがチャンバ内に充満して減圧度を低下させやすぐま た、るつぼ内の溶融金属の表面を酸ィ匕させるため通常は採用されない。特に、 50η m以下の薄い膜形成では金属蒸気量が少ないため、問題が顕著となり、細かい酸ィ匕 度制御は困難となる。しかし、本願では 50nm以上の厚膜で酸ィ匕度制御を行うため、 金属蒸気量が多ぐ酸素ガスとよく反応し減圧度を下げる未反応酸素ガスが発生しな い。また、るつぼ表面で溶融、蒸発がすぐに行われるため表面酸化の問題を回避で きる。
[0061] 全光線透過率は、酸ィ匕度が高いほど高くなるため、蒸着時の酸素ガス導入量や酸 素ガス供給ノズルの位置、金属成分の蒸発量、フィルム搬送速度を調整することで制 御することができる。具体的には、酸化度を高くして全光線透過率を高める場合は、 酸素ガス導入量を増やし反応できる酸素ガスを増やしたり、酸素ガス供給ノズルの位 置を反応しやすい位置に設置し反応を進め易くしたり、金属成分の蒸発量を減らし 酸素濃度を高めたり、フィルム搬送速度を遅くして反応時間を長くしたりすることで制 御する。特に酸素ガス導入量の影響が大きい。
[0062] 表面抵抗率も、酸ィ匕度が高いほど高くなるため、全光線透過率と同様に、蒸着時の 酸素ガス導入量や酸素ガス供給ノズルの位置、金属成分の蒸発量、フィルム搬送速 度を調整することで制御することができる。特に金属の蒸発量やフィルム搬送速度の 影響が大きい。
[0063] 全光線透過率や表面抵抗率は M層内の金属元素濃度と相関があるが、金属元素 濃度が同じでも金属原子の結合状態によっても変化する。特に金属 金属結合の 存在比が影響する。
[0064] また、支持体の表面の中心線平均粗さ Raを上記範囲内とするためには、ポリエステ ルフィルムの表面粗さを変更することで制御できる。金属成分の種類や M層の膜厚、 酸ィ匕度を変更することでも制御できる。ポリエステルフィルムの表面粗さは不活性粒 子の粒径を大きくするか、添加量を増やすことで粗くすることができる。表面を粗くす れば、支持体表面の中心線平均粗さ Raも大きくなる。また、 M層の膜厚を厚くするこ とでも支持体表面の中心線平均粗さ Raは大きくなる。 M層の厚みを厚くすると M層 の構造が柱状構造になりやすぐその結果、局部的に堆積成長した柱状構造が表面 を粗くする。さらに上記したように酸ィ匕度を高めることでも、支持体表面の中心線平均 粗さ Raを大きくすることができる。中でも M層の厚みの影響が大き 、。
[0065] 支持体の湿度膨張係数は、 M層の金属成分の種類や厚み、酸化度、金属元素濃 度、金属原子の結合状態などで制御することができる。
[0066] 支持体の長手方向のヤング率は、ポリエステルフィルムの長手方向のヤング率でほ とんど決まる。一方、支持体の幅方向のヤング率も、ポリエステルフィルムの幅方向の ヤング率でほとんど決まる。したがって、ポリエステルフィルムの長手方向、幅方向の ヤング率を制御すればよい。ポリエステルフィルムのヤング率は、延伸倍率や延伸温 度によって制御できる。基本的には、総面積延伸倍率を高くしたり、延伸温度を低く すれば、製造したポリエステルフィルムのヤング率は高くなる。
また、支持体のヤング率は、 M層を構成する金属成分の種類や M層の厚み、酸ィ匕度 によっても制御できる。 M層自体の強度を高ぐ膜厚を厚くすることで支持体のヤング 率を高めることができる。
[0067] 磁気記録媒体の寸法安定性は支持体の湿度膨張係数やヤング率が影響を与える 。特に湿度膨張係数の影響が大きい。つまり、 M層の組成制御が寸法安定性向上に きわめて重要である。
[0068] なお、本発明にお 、ては、ポリエステルフィルムやそのポリエステルフィルムを用い て得られた支持体に、必要に応じて、熱処理、マイクロ波加熱、成形、表面処理、ラミ ネート、コーティング、印刷、エンボス加工、エッチング、などの任意の加工を行っても よい。
[0069] 以下、本発明の支持体の製造方法について、ポリエチレンテレフタレート(PET)を ポリエステルとして用いた例を代表例として説明する。もちろん、本願は PETフィルム を用いた支持体に限定されるものではなぐ他のポリマーを用いたものものでもよい。 例えば、ガラス転移温度や融点の高いポリエチレン 2, 6 ナフタレンジカルボキシ レートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高 温で押出や延伸を行えばよ!/ヽ。
[0070] まず、ポリエチレンテレフタレートを準備する。ポリエチレンテレフタレートは、次のい ずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを 原料とし、直接エステルイ匕反応によって低分子量のポリエチレンテレフタレートまたは オリゴマーを得、さらにその後の三酸ィ匕アンチモンやチタンィ匕合物を触媒に用いた重 縮合反応によってポリマーを得るプロセス、 (2)ジメチルテレフタレートとエチレンダリ コールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の三酸 化アンチモンやチタンィ匕合物を触媒に用いた重縮合反応によってポリマーを得るプ ロセスである。ここで、エステルイ匕は無触媒でも反応は進行する力 エステル交換反 応においては、通常、マンガン、カルシウム、マグネシウム、亜鉛、リチウム、チタン等 の化合物を触媒に用いて進行させ、またエステル交換反応が実質的に完結した後に 、該反応に用いた触媒を不活性化する目的で、リン化合物を添加する場合もある。 [0071] フィルムを構成するポリエステルに不活性粒子を含有させる場合には、エチレンダリ コールに不活性粒子を所定割合にてスラリーの形で分散させ、このエチレングリコー ルを重合時に添加する方法が好ましい。不活性粒子を添加する際には、例えば、不 活性粒子の合成時に得られる水ゾルゃアルコールゾル状態の粒子をー且乾燥させ ることなく添加すると粒子の分散性がよい。また、不活性粒子の水スラリーを直接 PE Tペレットと混合し、ベント式二軸混練押出機を用いて、 PETに練り込む方法も有効 である。不活性粒子の含有量を調節する方法としては、上記方法で高濃度の不活性 粒子のマスターペレットを作っておき、それを製膜時に不活性粒子を実質的に含有 しない PETで希釈して不活性粒子の含有量を調節する方法が有効である。
[0072] 次に、得られた PETのペレットを、 180°Cで 3時間以上減圧乾燥した後、固有粘度 が低下しな 、ように窒素気流下あるいは減圧下で、 270〜320°Cに加熱された押出 機に供給し、スリット状のダイ力 押出し、キャスティングロール上で冷却して未延伸 フィルムを得る。この際、異物や変質ポリマーを除去するために各種のフィルター、例 えば、焼結金属、多孔性セラミック、サンド、金網などの素材力 なるフィルターを用 いることが好ましい。また、必要に応じて、定量供給性を向上させるためにギアポンプ を設けてもよい。フィルムを積層する場合には、 2台以上の押出機およびマ-ホール ドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層する。
[0073] 次に、この未延伸フィルムを同時二軸延伸テンターに導いて、長手および幅方向に 同時に二軸延伸を行う。延伸速度は長手、幅方向ともに 100〜20, 000%Z分の範 囲で行うの力 子ましい。より好ましくは、 500-10, 000%/分、さらに好ましくは 2, 0 00〜7, 000%Z分である。延伸速度が 100%Z分よりも小さい場合には、フィルム が熱にさらされる時間が長くなるため、特にエッジ部分が結晶化して延伸破れの原因 となり製膜性が低下したり、十分に分子配向が進まず、製造したフィルムのヤング率 が低下することがある。また、 20, 000%Z分よりも大きい場合には、延伸時点で分 子間の絡み合いが生成しやすくなり、延伸性が低下して、高倍率の延伸が困難とな ることがある。
[0074] また、 1段目の延伸温度は、用いるポリマーの種類によって異なる力 未延伸フィル ムのガラス転移温度 Tgを目安として決めることができる。長手方向および幅方向それ ぞれの 1段目の延伸工程における温度は、 Tg〜Tg + 30°Cの範囲であることが好ま しぐょり好ましくは丁8 + 5で〜丁8 + 20ででぁる。上記範囲より延伸温度が低い場合 には、フィルム破れが多発して生産性が低下したり、再延伸性が低下して、高倍率に 安定して延伸することが困難となることがある。また、上記範囲よりも延伸温度が高い 場合には、特にエッジ部分が結晶化して延伸破れの原因となり製膜性が低下したり、 十分に分子配向が進まず、製造したフィルムのヤング率が低下することがある。
[0075] 延伸倍率は、用いるポリマーの種類や延伸温度によって異なり、また多段延伸の場 合も異なるが、総面積延伸倍率 (総縦延伸倍率 X総横延伸倍率)が、 20〜40倍の 範囲になるようにすることが好ましい。より好ましくは 25〜35倍である。長手方向、幅 方向の一方向の総延伸倍率としては、 2. 5〜8倍が好ましぐより好ましくは、 3〜7倍 である。延伸倍率が上記範囲より小さい場合には、延伸ムラなどが発生しフィルムの 加工適性が低下することがある。また、延伸倍率が上記範囲より大きい場合には、延 伸破れが多発して、生産性が低下する場合がある。なお、各方向に関して延伸を多 段で行う場合、 1段目の長手、幅方向それぞれにおける延伸倍率は、 2. 5〜5倍が 好ましぐより好ましくは 3〜4倍である。また、 1段目における好ましい面積延伸倍率 は 8〜16倍であり、より好ましくは、 9〜14倍である。これらの延伸倍率の値は、特に 同時二軸延伸法を採用する場合に好適な値であるが、逐次二軸延伸法でも適用で きる。
[0076] 本発明のポリエステルフィルムの製造方法が多段延伸、すなわち再延伸工程を含 む場合、 2段目の延伸温度は Tg+40°C〜Tg+ 120°Cが好ましぐさらに好ましくは Tg + 60°C〜Tg+ 100°Cである。(なお、 3段の延伸を行う場合、 2段目の延伸温度 としては上記温度範囲の中でも比較的低!、延伸温度とする方がょ 、)。延伸温度が 上記範囲を外れる場合には、熱量不足や結晶化の進みすぎによって、フィルム破れ が多発して生産性が低下したり、十分に配向を高めることができず、強度が低下する 場合がある。さらに 3段目の延伸を行う場合には、 3段目の延伸温度は 2段目の延伸 温度よりも高ぐ後述する熱処理の温度よりも低いことが好ましい。なお、 3段目の延 伸を行うとはヤング率や熱的寸法安定性が向上し易い。
[0077] また、再延伸を行う場合の一方向における延伸倍率は、 1. 05〜2. 5倍が好ましく 、より好ましくは 1. 2〜1. 8倍である。再延伸の面積延伸倍率としては、 1. 4〜4倍が 好ましぐより好ましくは 1. 9〜3倍である。さらに 3段目の延伸を行う場合には、 3段 目の延伸倍率 (一方向)は、 1. 05〜: L 2倍が好ましぐ面積延伸倍率は 1. 1〜1. 4 が好ましい。
[0078] 続、て、この延伸フィルムを緊張下または幅方向に弛緩しながら熱処理する。熱処 理条件は、ポリマーの種類によっても異なる力 熱処理温度は、 150°C〜230°Cが好 ましぐ熱処理時間は 0. 5〜10秒の範囲で行うのが好ましい。さらに、蒸着適性を向 上させるために、熱処理温度は 160°C〜190°Cの比較的低温で行うことが好ましぐ 熱処理時間も 0. 5〜2秒の比較的短時間で行うことが好ましい。こうすることでポリエ ステルフィルムの冷却ドラムへの密着性が向上し、熱によるシヮゃ破れなどを回避す ることができる。また、作製されたポリエステルフィルムは水分を吸湿しないように、低 湿度の環境下で保存することが好ましぐ輸送時などもできるだけ吸湿を防ぐような梱 包が好まし 、。ポリエステルフィルムの吸湿は M層形成時に悪影響を及ぼすためで ある。
[0079] 次に、上記のようにして得られたポリエステルフィルムの両面に金属系酸ィ匕物を含 む層(M層)を設ける方法を説明する。
[0080] ポリエステルフィルム表面に M層を形成するには、たとえば図 2に示すような真空蒸 着装置を用いる。この真空蒸着装置 11においては、真空チャンバ 12の内部をポリエ ステルフィルムが卷出しロール部 13から冷却ドラム 16を経て卷取りロール部 18へと 走行する。そのときに、るつぼ 23内の金属材料 19を電子銃 20から照射した電子ビ ーム 21で加熱蒸発させるとともに、酸素供給ノズル 24から酸素ガスを導入し、蒸発し た金属を酸ィ匕反応させながら冷却ドラム 16上のポリエステルフィルムに蒸着する。本 発明は両面に M層が必要なため、片方の表面(1面目)に金属系酸化物を蒸着した 後卷取りロール部 18から片面蒸着ポリエステルフィルムを取り外し、それを卷出し口 ール部 13にセットし同じように反対側の表面(2面目)に金属系酸ィ匕物を蒸着する。 なお、この真空蒸着装置 11は、酸ィ匕度を容易に制御できるように、酸素供給ノズル 2 4を蒸着源であるるつぼ 23の真横に設置し、かつ、金属蒸気と酸素ガスとが同じ方向 に流れるようにしている。その結果、金属蒸気と酸素ガスとの反応空間も大きくなつて いる。
[0081] ここで、真空チャンバ 12の内部は 1. O X 10_8〜1. O X 102Paに減圧することが好 ましい。さらに緻密で劣化部分の少ない M層を形成させるために好ましくは、 1. O X
10一6〜 1. O X 10_1Paに減圧することが好ましい。
[0082] 冷却ドラム 16は、その表面温度を 40〜60°Cの範囲内にすることが好ましい。より 好ましくは 35〜30°C、さらに好ましくは 30〜0°Cである。
[0083] 電子ビーム 21は、その出力が 2. 0〜8. OkWの範囲内のもので行うのが好ましい。
より好ましくは 3. 0〜7. OkW、さらに好ましくは 4. 0〜6. OkWの範囲内である。なお
、直接ルツボを加熱することで金属材料 19を加熱蒸発させてもょ 、。
[0084] 酸素ガスは、ガス流量制御装置 26を用いて 0. 5〜: LOLZminの流量で真空チャン ノ 12内部に導入する。より好ましくは 1. 5〜8LZmin、さらに好ましくは 2. 0〜5LZ mmである。
[0085] 真空チャンバ 12の内部におけるポリエステルフィルムの搬送速度は 20〜200mZ minが好ましい。より好ましくは 30〜: LOOmZmin、さらに好ましくは 40〜80mZmin である。搬送速度が 20mZminより遅すぎる場合、上記のような M層厚みに制御する ためには金属の蒸発量をかなり小さくする必要がある。そのため、酸素ガス導入量も 減らす必要がでてくるために、酸ィ匕度の制御が非常に難しくなる。搬送速度が 200m Zminより速くなると、冷却ドラムとの接触時間が短くなるため熱による破れやシヮが 発生し、生産性が損なわれる。また、金属蒸気と酸素ガスとが不充分な反応状態で 成膜されやすぐ酸化度の制御が難しくなる。
[0086] 真空チャンバ 12の内部におけるポリエステルフィルムの搬送張力は 50〜 150NZ mが好ましい。より好ましくは 70〜120NZm、さらに好ましくは 80〜: LOON/mであ る。ただし、 2面目の蒸着時には搬送張力を 1面目より弱めることが好ましい。 2面目 の搬送張力は 1面目の搬送張力より 5〜30NZm低いことが好ましぐより好ましくは 7〜25NZm低ぐさらに好ましくは 10〜20NZm低いことが好ましい。これは、 1面 目の蒸着時にポリエステルフィルムが熱負荷を受け収縮しょうとする力を失うため、 2 面目の蒸着時に 1面目と同様の搬送張力で走行させると、熱による破れやシヮが発 生し、生産性が損なわれる力もである。さらに、ポリエステルフィルムの表面粗さが面 によって異なる場合は、先に粗い方の面を蒸着することが好ましい。これは 2面目蒸 着時に冷却ドラムへの密着性を高めるためである。蒸着は片面ずつ行っても良いし、 両面を 1工程で行っても良い。
[0087] 蒸着後、 M層を安定化させ、緻密性を高めるためには、真空蒸着装置内を常圧に 戻して、卷取ったフィルムを巻き返すことが好ましい。特に、未結合原子を減らすため に加湿巻き返しを行うことが水蒸気と M層が接触する機会が長くなるため好ましい。 加湿巻き返しは 20〜40°Cで 60〜80%RHで行うことが好ましい。さらに 20〜50°C の温度で 1〜3日間エージングすることが好ましぐさらに好ましくは湿度 60%以上の 結露しな 、程度の環境下でエージングすることが好ま 、。
[0088] 次に、磁気記録媒体を製造する方法を説明する。上記のようにして得られた磁気記 録媒体用支持体を、たとえば 0. l〜3m幅にスリットし、速度 20〜300mZmin、張 力 50〜300N/mで搬送しながら、一方の面 (A)に磁性塗料および非磁性塗料を エタストルージョンコーターにより重層塗布する。なお、上層に磁性塗料を厚み 0. 1 〜0. 3 mで塗布し、下層に非磁性塗料を厚み 0. 5〜1. 5 mで塗布する。その後 、磁性塗料および非磁性塗料が塗布された支持体を磁気配向させ、温度 80〜130 °Cで乾燥させる。次いで、反対側の面(B)にバックコートを厚み 0. 3〜0. 8 mで塗 布し、カレンダー処理した後、巻き取る。なお、カレンダー処理は、小型テストカレン ダー装置 (スチール/ナイロンロール、 5段)を用い、温度 70〜120°C、線圧 0. 5〜5 kNZcmで行う。その後、 60〜80°Cにて 24〜72時間エージング処理し、 1Z2イン チ(1. 27cm)幅にスリットし、パンケーキを作製する。次いで、このパンケーキ力 特 定の長さ分をカセットに組み込んで、カセットテープ型磁気記録媒体とする。
[0089] ここで、磁性塗料などの組成は例えば以下のような組成が挙げられる。
(磁性塗料の組成)
•強磁性金属粉末 : 100重量部
•変成塩化ビニル共重合体 : 10重量部
'変成ポリウレタン : 10重量部
•ポリイソシァネート : 5重量部
• 2—ェチルへキシルォレート : 1. 5重量部 'パルミチン酸 : 1重量部
•カーボンブラック : 1重量部
'アルミナ : 10重量部
•メチルェチルケトン : 75重量部
.シクロへキサノン : 75重量部
.トノレェン : 75重量部
(バックコートの組成)
•カーボンブラック(平均粒径 20nm) : 95重量部
•カーボンブラック(平均粒径 280nm): 10重量部
'アルミナ : 0. 1重量部
'変成ポリウレタン : 20重量部
•変成塩化ビニル共重合体 : 30重量部
.シクロへキサノン : 200重量言
•メチルェチルケトン : 300重量部
.トノレェン : 100重量部
磁気記録媒体は、例えば、データ記録用途、具体的にはコンピュータデータのバッ クアップ用途 (LT04や LT05など)や映像などのデジタル画像の記録用途などに好 適に用いることができる。
[0090] (物性の測定方法ならびに効果の評価方法)
本発明における特性値の測定方法並びに効果の評価方法は次の通りである。例え ば、磁気テープ力も本願の支持体を取り出すためには、メチルェチルケトンを用いて 磁性層やバックコート層を拭き剥がすことで評価が可能となる。
(1) M層の厚み
下記条件にて断面観察を行い、得られた合計 9点の厚み [nm]の平均値を算出し、 M層の厚み [nm]とする。
[0091] 測定装置:透過型電子顕微鏡 (TEM) 日立製 H— 7100FA型
測定条件:加速電圧 lOOkV
測定倍率: 20万倍 試料調整:超薄膜切片法
観察面 : TD— ZD断面
測定回数: 1視野につき 3点、 3視野を測定する。
(2)組成分析
下記条件にて、深さ方向の組成分析を行う。炭素濃度が 50at. %を越える深さを M層とポリエステルフィルムとの界面とし、表層から界面までを等分に 5分割し、それ ぞれの区間の中央点を測定点として組成分析を行う。得られた各測定点の組成から 平均値を算出し、本発明における平均組成とする。
[0092] 測定装置: X線光電子分光機 Quantera-SXM 米国 PHI社製
励起 X線: monochromatic ΑΙΚ α 1, 2線(1486. 6eV)
X線径 : 100[ ^ πι]
光電子脱出角度: 45°
ラスター領域: 2 X 2 [mm]
Arイオンエッチング: 2. 0[kV] 1. 5 X 10—7 [Torr]
スパッタ速度: 3. 68nm/min (Si O換算値)
2
テータ処理: 9— point smoothing
ピークの結合エネルギー値力 元素情報が得られ、各ピークの面積比を用いて組 成を定量化 (at. %)する。さらに、金属元素のピークは結合状態 (メタル—酸素,メタ ルー水酸基,メタル メタルなど)によってそれぞれ結合状態のピークへ分割ができ 、それぞれの結合状態のピークの面積比力 結合状態の存在比を定量化 [at. %] することができる。例えば、 M層の金属成分がアルミニウムの場合、金属結合 (A1—A 1)、アルミニウム—酸素結合 (Al O )、アルミニウム—酸素—水酸基結合 (AIOOH)
2 3
、アルミニウム—水酸基結合 (Al(OH) )の 4種類に分割することができる。本願の水
3
酸基と結合するアルミニウムの存在比は 4つめのアルミニウム一水酸基結合 (Α1 (ΟΗ ) )の存在比のことである。
3
[0093] なお、結合状態のピーク分割につ!、ては B.Vincent Crist著 Handbook of Monochro matic XPS Spectra (2000年 10月、 Wiley社発行)を参考にして行う。
(3)全光線透過率 JIS—K7105 (1981)に準拠し、下記測定装置を用いて測定する。 5回の測定結 果の平均値を本発明における全光線透過率とする。
[0094] 測定装置:直読ヘーズメーター HGM— 2DP (C光源用) スガ試験機社製
光源 :ハロゲンランプ 12V、 50W
受光特性: 395〜745nm
測定環境:温度 23°C湿度 65%RH
測定回数: 5回測定する。
(4)表面抵抗率
表面抵抗率の範囲によって、測定可能な装置が異なるため、まず i)の方法で測定 を行い、表面抵抗率が低すぎて測定不可能なサンプルを ii)の方法で測定する。 5回 の測定結果の平均値を本発明における表面抵抗率とする。
[0095] i)高抵抗率測定 JIS— C2151 (1990)に準拠し、下記測定装置を用いて測定 する。
[0096] 測定装置:デジタル超高抵抗 Z微小電流計 R8340 アドバンテスト (株)製
印加電圧: 100V
印加時間: 10秒間
測定単位: Ω
測定環境:温度 23°C湿度 65%RH
測定回数: 5回測定する。
[0097] ii)低抵抗率測定
JIS-K7194 (1994)に準拠し、下記測定装置を用いて測定する。
[0098] 測定装置:ロレスター EP MCP-T360 三菱化学製
測定環境:温度 23°C湿度 65%RH
測定回数: 5回測定する。
(5)中心線平均粗さ Ra
触針式表面粗さ計を用いて下記条件にて中心線平均粗さ Raを測定する。フィルム 幅方向に 20回走査して測定を行 、、得られた結果の平均値を本発明における中心 線平均粗さ Raとする。 [0099] 測定装置 :小坂研究所製高精度薄膜段差測定器 ET— 10
触針先端半径: 0. δ μ ηι
触針荷重 :5mg
測定長 : lmm
カットオフ値: 0. 08mm
測定環境 :温度 23°C湿度 65%RH
(6)湿度膨張係数
下記条件にて測定を行!、、 3回の測定結果の平均値を本発明における湿度膨張 係数とする。
[0100] 測定装置:大食インダストリ一製テープ伸び試験機
試料サイズ:幅 1 Omm X試長間 200mm
荷重: 10g
測定回数: 3回
測定温度: 30°C
測定湿度: 40%RHで 6時間保持し寸法を測定し、昇湿速度 1 [%RHZ分]で 80 %RHまで昇湿し、 80%RHで 6時間保持したあと寸法変化量 Δ L [mm]を測定した 。次式カゝら湿度膨張係数 [PpmZ%RH]を算出した。
[0101] 湿度膨張係数 [ppm/%RH] = 106 X { ( Δ L/200) / (80— 40) }
(7)ヤング率
ASTM - D882 ( 1997)に準拠して測定する。なお、インストロンタイプの引張試験 機を用い、条件は下記のとおりとする。 5回の測定結果の平均値を本発明におけるャ ング率とする。
[0102] 測定装置:オリエンテック (株)製フィルム強伸度自動測定装置
"テンシロン AMF/RTA— 100"
試料サイズ:幅 1 Omm X試長間 1 OOmm
引張り速度: 200mmZ分
測定環境:温度 23°C、湿度 65%RH
測定回数: 5回測定し、平均値から算出する。 (8)固有粘度
オルトクロロフェノール中、 25°Cで測定した溶液粘度から下式に基づ 、て計算する
[0103] η /C = [ r? ] +K[ r
sp ? r- C
ここで、 η sp = (溶液粘度 Z溶媒粘度)— 1、 Cは溶媒 100mlあたりの溶解ポリマー 重量 (gZlOOml、通常 1. 2)、 Kはハギンス定数 (0. 343とする)である。また、溶液 粘度、溶媒粘度はォストワルド粘度計を用いて測定する。
(9)ガラス転移温度 (Tg)
下記装置および条件で比熱測定を行い、 JIS K7121 ( 1987)に従って決定する。
[0104] 装置 : TA Instrument社製温度変調 DSC
測定条件:
加熱温度 : 270〜570K (RCS冷却法)
温度校正 :高純度インジウムおよびスズの融点
温度変調振幅: ± 1Κ
温度変調周期: 60秒
昇温ステップ: 5Κ
試料直直 : 5mg
試料容器 :アルミニウム製開放型容器 (22mg)
参照容器 :アルミニウム製開放型容器 ( 18mg)
なお、ガラス転移温度は下記式により算出する。
[0105] ガラス転移温度 = (補外ガラス転移開始温度 +補外ガラス転移終了温度) /2
( 10)耐クラック性
引張試験機を使用し、ある特定の伸び量で引張った後、微分干渉顕微鏡にて表面 状態を観察する。条件は下記のとおりとする。
[0106] 引張試験機
測定装置:オリエンテック (株)製フィルム強伸度自動測定装置
"テンシロン AMF/RTA— 100"
試料サイズ:幅 1 Omm X試長間 1 OOmm、 引張り速度: io%Z分
引張り伸度: 0. 5%〜10% (所定の伸度になった時点で引っ張り試験機を停止さ せる)
測定環境:温度 23°C、湿度 65%RH
微分干渉顕微鏡
測定装置:ライカ DMLB HC ライカマイクロシステムズ (株)製
観察倍率: 1, 000倍
伸度 0. 9%のサンプルを作製し無作為に 10視野を観察し、クラックが 8力所以上観 察される場合をクラック有りとする。クラックがない場合は伸度を大きくし、クラック発生 が観察できる伸度のサンプルまで観察し、次の基準で耐クラック性を評価する。 Xを 不合格とする。
◎:伸び 5%以上でクラックが発生した場合
〇:伸び 2%以上 5%未満でクラックが発生した場合
△:伸び 1%以上 2%未満でクラックが発生した場合
X:伸び 1%未満でクラックが発生した場合
(11)幅寸法測定
lm幅にスリットした支持体を、張力 20kgZmで搬送させ、支持体の一方の表面 (A )に下記組成の磁性塗料および非磁性塗料をエタストルージョンコーターにより重層 塗布し (上層が磁性塗料で、塗布厚 0. 2 /ζ πι、下層が非磁性塗料で塗布厚 0. 9 m )、磁気配向させ、乾燥温度 100°Cで乾燥させる。次いで反対側の表面 (B)に下記 組成のバックコートを塗布した後、小型テストカレンダー装置 (スチール Zナイロン口 ール、 5段)で、温度 85°C、線圧 200kg/cmでカレンダー処理した後、巻き取る。上 記テープ原反を 1Z2インチ(1. 27cm)幅にスリットし、パンケーキを作成する。次い で、このパンケーキから長さ 200m分をカセットに組み込んで、カセットテープとする。 (磁性塗料の組成)
•強磁性金属粉末 : 100重量部
〔Fe : Co :Ni:Al:Y: Ca = 70 : 24 : l : 2 : 2 : l (重量比)〕
〔長軸長: 0. 09 ^ m,軸比: 6、保磁力: 153kAZm (l, 9220e)、飽和磁化: 146A mVkg (146emu/g)、 BET比表面積: 53m2 Zg、 X線粒径: 15nm〕
•変成塩化ビニル共重合体 (結合剤) : 10重量部
(平均重合度:280、エポキシ基含有量: 3. 1重量%、スルホン酸基含有 : 8 X 10 5当量 Zg)
•変成ポリウレタン (結合剤) : 10重量部
(数平均分子量: 25, 000、スルホン酸基含有量: 1. 2 X 10—4当 g、ガラス転移 点: 45°C)
•ポリイソシァネート (硬化剤) :
(日本ポリウレタン工業 (株)製コロネート L (商品名)
.2 ェチルへキシルォレート(潤滑剤) -. 5重量部
'パルミチン酸 (潤滑剤) 重量部
•カーボンブラック (帯電防止剤) 1重量部
(平均一次粒子径: 0. 018 /z m)
•アルミナ (研磨剤) : 10重量部
アルミナ、平均粒子径: 0. 18 ^ m)
•メチルェチルケトン 75重量部
'シクロへキサノン : 75重量部
•トルエン : 75重量部
(非磁性塗料の組成)
'変成ポリウレタン : 10重量部
(数平均分子量: 25, 000、スルホン酸基含有 ί . 2 X 10—4当: g、ガラス転移 点: 45°C)
•変成塩化ビニル共重合体 : 10重量部
(平均重合度:280、エポキシ基含有量: 3. 1重 %、スルホン酸基含有量:8 X 10
5当量 Zg)
•メチルェチルケトン 75重量部
'シクロへキサノン : 75重量部
•トルエン : 75重量部 •ポリイソシァネート :
(日本ポリウレタン工業 (株)製コロネート L (商品名) )
.2 ェチルへキシルォレート(潤滑剤) -. 5重量部
'パルミチン酸 (潤滑剤) : 重量部
(バックコートの組成)
•カーボンブラック
(帯電防止剤、平均一次粒子径 0. 018 ^ m)
•カーボンブラック 10重量部
(帯電防止剤、平均一次粒子径 0.
•アルミナ : 0. 1重量部
アルミナ、平均粒子径: 0. 18 ^ m)
•変成ポリウレタン 20重量部
(数平均分子量: 25, 000、スルホン酸基含有 2 X 10—4当: ガラス転移 点: 45°C)
•変成塩化ビニル共重合体 : 30重量部
(平均重合度: 280、エポキシ基含有 3. 1重量%、スルホン酸基含有量: 8 X 10—
5、 シクロへキサノン : 200重量部
メチルェチルケトン : 300重量部
トルエン : 100重量部
カセットテープのカートリッジ力 テープを取り出し、下記恒温恒湿槽内へ図 1のよう に作製したシート幅測定装置を入れ、幅寸法測定を行う。なお、図 1に示すシート幅 測定装置は、レーザーを使って幅方向の寸法を測定する装置で、磁気テープ 9をフ リーロール 5〜8上にセットしつつ荷重検出器 3に固定し、端部に荷重となる分銅 4を 吊す。この磁気テープ 9にレーザー光 10を発振すると、レーザー発振器 1から幅方向 に線状に発振されたレーザー光 10が磁気テープ 9の部分だけ遮られ、受光部 2に入 り、その遮られたレーザーの幅が磁気テープの幅として測定される。 3回の測定結果 の平均値を本発明における幅とする。 [0107] 測定装置:(株)アヤハエンジニアリング社製シート幅測定装置
レーザー発振器 1、受光部 2:レーザー寸法測定機 キーエンス社製 LS— 5040 荷重検出器 3:ロードセル NMB社製 CBE1— 10K
恒温恒湿槽:(株)カトー社製 SE— 25VL—A
荷重 4:分銅 (長手方向)
試料サイズ:幅 lZ2inchX長さ 250mm
保持時間:5時間
測定回数: 3回測定する。
(幅寸法変化率)
2つの条件でそれぞれ幅寸法 (1 , 1 )を測定し、次式にて寸法変化率を算出する。
A B
次の基準で寸法安定性を評価する。 Xを不合格とする。
[0108] A条件: 10°C10%RH 張力 1. ON
B条件: 29°C80%RH 張力 0.6N
幅寸法変化率[卯!11]=106 ((1 1 )/\ )
B A A
◎:幅寸法変化率が 0 [ppm]以上 500 [ppm]未満
〇:幅寸法変化率が 500 [ppm]以上 800 [ppm]未満
X:幅寸法変化率が 800 [ppm]以上
(12)エラーレート
上記(11)で作製したカセットテープを、市販の IBM社製 LTOドライブ 3580— LI 1 を用いて 23°C50%RHの環境で記録 ·再生 (記録波長 0.55 m)することで評価す る。エラーレートはドライブ力も出力されるエラー情報 (エラービット数)から次式にて 算出する。次の基準で寸法安定性を評価する。 Xを不合格とする。
[0109] エラーレート = (エラービット数) / (書き込みビット数)
◎;エラーレートが 1.0X10—6未満
〇;エラーレートが 1.0X10—6以上、 1.0X10—5未満
△;エラーレートが 1.0X10—5以上、 1. OXIO—4未満
X;エラーレートが 1. OXIO—4以上
実施例 [0110] 次の実施例に基づき、本発明の実施形態を説明する。なお、ここでポリエチレンテ レフタレートを PET、ポリ(エチレン 2, 6 ナフタレンジカルボキシレート)を PENと 表記する。
[0111] (参考例 1)
テレフタル酸ジメチル 194重量部とエチレングリコール 124重量部とをエステル交 換反応装置に仕込み、内容物を 140°Cに加熱して溶解した。その後、内容物を撹拌 しながら酢酸マグネシウム 4水塩 0. 1重量部および三酸化アンチモン 0. 05重量部を 加え、 140〜230°Cでメタノールを留出しつつエステル交換反応を行った。次いで、 リン酸トリメチルの 5重量0 /0エチレングリコール溶液を 1重量部(リン酸トリメチルとして 0. 05重量部)添加した。
[0112] トリメチルリン酸のエチレングリコール溶液を添加すると反応内容物の温度が低下 する。そこで余剰のエチレングリコールを留出させながら反応内容物の温度が 230°C に復帰するまで撹拌を継続した。このようにしてエステル交換反応装置内の反応内 容物の温度が 230°Cに達したら、反応内容物を重合装置へ移行した。
[0113] 移行後、反応系を 230°Cから 290°Cまで徐々に昇温するとともに、圧力を 0. lkPa まで下げた。最終温度、最終圧力到達までの時間はともに 60分とした。最終温度、 最終圧力に到達した後、 2時間 (重合を始めて 3時間)反応させたところ、重合装置の 撹拌トルクが所定の値 (重合装置の仕様によって具体的な値は異なるが、本重合装 置にて固有粘度 0. 62のポリエチレンテレフタレートが示す値を所定の値とした)を示 した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストラ ンド状に吐出、直ちにカッティングして固有粘度 0. 62のポリエチレンテレフタレート の PETペレット Xを得た。
[0114] (参考例 2)
280°Cに加熱された同方向回転タイプのベント式 2軸混練押出機に、参考例 1にて 作製した PETペレット Xを 98重量部と平均径 0. 3 μ mの球状架橋ポリスチレン粒子 の 10重量%水スラリーを 20重量部(球状架橋ポリスチレンとして 2重量部)供給し、ベ ント孔を lkPa以下の真空度に保持し水分を除去し、平均径 0. 3 mの球状架橋ポリ スチレン粒子を 2重量0 /0含有する固有粘度 0. 62の PETペレット Yを得た。 [0115] (参考例 3)
平均径 0. 3 mの球状架橋ポリスチレン粒子ではなく平均径 0. 8 mの球状架橋 ポリスチレン粒子を用いたこと以外、参考例 2と同様の方法にて、平均径 0. の 球状架橋ポリスチレン粒子を 2重量%含有する固有粘度 0. 62の PETペレット Zを得 た。
[0116] (参考例 4)
2, 6 ナフタレンジカルボン酸ジメチル 100重量部とエチレングリコール 60重量部 の混合物に、酢酸マンガン · 4水和物塩 0. 03重量部を添加し、 150°Cの温度力ら 24 0°Cの温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が 17 0°Cに達した時点で三酸ィ匕アンチモン 0. 024重量部を添加した。また、反応温度が 220°Cに達した時点で 3, 5 ジカルボキシベンゼンスルホン酸テトラブチルホスホ- ゥム塩 0. 042重量部(2mmol%に相当)を添カ卩した。その後、引き続いてエステル 交換反応を行い、トリメチルリン酸 0. 023重量部を添加した。次いで、反応生成物を 重合装置に移し、 290°Cの温度まで昇温し、 30Paの高減圧下にて重縮合反応を行 V、、重合装置の撹拌トルクが所定の値 (重合装置の仕様によって具体的な値は異な るが、本重合装置にて固有粘度 0. 65のポリエチレン 2, 6 ナフタレートが示す値 を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応 を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度 0. 65のポリ エチレン 2, 6 ナフタレートペレット X,を得た。
[0117] (参考例 5)
280°Cに加熱された同方向回転タイプのベント式 2軸混練押出機に、参考例 4にて 作製したペレット X'を 98重量部と平均径 0. 3 μ mの球状架橋ポリスチレン粒子の 10 重量%水スラリーを 20重量部(球状架橋ポリスチレンとして 2重量部)供給し、ベント 孔を lkPa以下の真空度に保持し水分を除去し、平均径 0. 3 mの球状架橋ポリス チレン粒子を 2重量0 /0含有する固有粘度 0. 65の PENペレット Y,を得た。
[0118] (参考例 6)
平均径 0. 3 mの球状架橋ポリスチレン粒子ではなく平均径 0. 8 mの球状架橋 ポリスチレン粒子を用いたこと以外、参考例 5と同様の方法にて、平均径 0. の 球状架橋ポリスチレン粒子を 2重量0 /0含有する固有粘度 0. 65の PENペレット Z,を 得た。
[0119] (実施例 1)
押出機 M、 N2台を用い、 280°Cに加熱された押出機 Mには、参考例 1、 2で得られ た PETペレット X98重量部、 PETペレット Y2重量部を 180°Cで 3時間減圧乾燥した 後に供給し、同じく 280°Cに加熱された押出機 Nには、参考例 1〜3で得られた PET ペレット X89. 5重量部、 PETペレット Y10重量部、および PETペレット ZO. 5重量部 を 180°Cで 3時間減圧乾燥した後に供給した。これらを 2層積層するべく Tダイ中で 合流させ (積層比 M (A面側) ZN (B面側) = 7ZD、表面温度 25°Cのキャストドラム に静電荷を印カ卩させながら密着冷却固化し、積層未延伸フィルムを作製した。
[0120] この積層未延伸フィルムを、リニアモータ式クリップを有する同時二軸テンターを用 いて、二軸延伸した。長手方向および幅方向に同時に、温度 90°C、延伸速度 6, 00 0%で 3. 5倍 X 3. 5倍延伸し、 70°Cまで冷却した。続いて、温度 165°Cで長手方向 および幅方向に同時に 1. 4 X 1. 4倍に再延伸した。さらに幅方向に 1. 05倍の延伸 を行いながら温度 175°Cで 1秒間熱処理後、幅方向に 2%の弛緩処理を行い、厚さ 5 μ mの二軸配向ポリエステルフィルムを作製した。作製した二軸配向ポリエステルフィ ルムは 25°C30%RHにて保管した。
[0121] 次に、図 2に示す真空蒸着装置 11の卷出しロール部 13に得られたポリエステルフ イルムをセットし、 1. 5 X 10_3Paの真空度にした後に、— 20°Cの冷却ドラム 16を介し てポリエステルフィルムを搬送速度 60mZmin、搬送張力 100Nで走行させた。この とき、 99. 99重量0 /0のアルミニウムを電子ビーム(出力 5. lkW)で加熱蒸発させ、さ らに蒸発源であるるつぼ 23の真横に設置した酸素供給ノズル 24から酸素ガスを 2. OLZminで金属蒸気と同じ方向に供給し、酸化アルミの蒸着薄膜層(厚み lOOnm) をフィルムの B面側の層の上に形成して卷取った。次に搬送張力を 80Nにしたこと以 外は同様にしてフィルムの A面側の層の上に酸ィ匕アルミの蒸着薄膜層を設けた。両 面を蒸着した後、真空蒸着装置内を常圧に戻して、卷取ったフィルムを 25°C80%R Hで加湿巻き返し、 40°Cの環境で 2日間エージングして、磁気記録媒体用支持体を 得た。 [0122] 得られた磁気記録媒体用支持体を評価したところ、表 1〜3に示すように、ポリエス テルフィルムの両面に酸化アルミ層を持ち、蒸着膜厚や光線透過率や表面抵抗率 が本発明の範囲内であった。また、磁気テープとして使用した際に寸法変化率が小 さく優れた特性を有して 、た。
[0123] (実施例 2)
蒸着工程での搬送速度を 70mZmin、酸素ガス導入量を 1. OL/min,電子ビー ム出力を 5. 3kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体用 支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープ として使用した際に優れた特性を有していた。
[0124] (実施例 3)
蒸着工程での搬送速度を 90mZmin、酸素ガス導入量を 3. 2L/min,電子ビー ム出力を 6. lkWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体用 支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープ として使用した際に優れた特性を有していた。
[0125] (実施例 4)
蒸着工程での搬送速度を 30mZmin、酸素ガス導入量を 6. OL/min,電子ビー ム出力を 3. 8kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体用 支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープ として使用した際に優れた特性を有していた。
[0126] (実施例 5)
蒸着工程での搬送速度を 120mZmin、酸素ガス導入量を 2. OL/min,電子ビ ーム出力を 5. lkWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体 用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テー プとして使用した際に優れた特性を有していた。なお、本実施例は、実施例 1に対し て、搬送速度を速めたものであるが、搬送速度が速くなると M層が薄くなり、その結果 、全光線透過率や表面比抵抗が高くなつている。
[0127] (実施例 6)
蒸着工程での搬送速度を 25mZmin、酸素ガス導入量を 2. OL/min,電子ビー ム出力を 5. lkWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体用 支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープ として使用した際に優れた特性を有していた。なお、本実施例は、実施例 1に対して 搬送速度を遅くしたものであるが、搬送速度が遅くなると M層が厚くなり、その結果、 全光線透過率や表面比抵抗が低くなつて 、る。
[0128] (実施例 7)
押出機を 2台使わずに、 280°Cに加熱された押出機 Mに、参考例 1〜3で得られた PETペレット X89. 5重量部、 PETペレット Y10重量部および PETペレット ZO. 5重 量部を 180°Cで 3時間減圧乾燥した後に供給し、単層で二軸配向ポリエステルフィル ムを作製したこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。 得られた磁気記録媒体用支持体は表 1〜 3に示すように磁気テープとして使用した 際に優れた特性を有して!/ヽた。
[0129] (実施例 8)
二軸延伸する際の延伸倍率を、 1段目 2. 0倍 X 3. 5倍、 2段目 1. 2 X 1. 4倍、 3段 目幅方向に 1. 05倍と変更した以外は実施例 1と同様にして磁気記録媒体用支持体 を得た。
[0130] 得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープとして使用した 際に優れた特性を有して!/ヽた。
[0131] (実施例 9)
290°Cに加熱された同方向回転タイプのベント式 2軸混練押出機に、参考例 1で得 られた PETペレット X50重量0 /0と GE Plastics社製のポリエーテルイミド" UltemlO 10" (固有粘度 0. 68)のペレット 50重量0 /0を供給し、ブレンドチップ (I)を作製した。
[0132] 押出機 M、 N2台を用い、 295°Cに加熱された押出機 Mには、参考例 1、 2で得られ た PETペレット X88重量0 /0、 PETペレット Y2重量0 /0と、ブレンドチップ(I) 10重量0 /0 を 180°Cで 3時間減圧乾燥した後に供給し、同じく 295°Cに加熱された押出機 Nに は、参考例 1〜3で得られた PETペレット X79. 5重量0 /0、 PETペレット Y10重量0 /0、 PETペレット ZO. 5重量%と、ブレンドチップ(1) 10重量%を180でで 3時間減圧乾 燥した後に供給した。 2層積層するべく Tダイ中で合流させ (積層比 M (A面側) ZN ( B面側) =5Zl)、表面温度 25°Cのキャストドラムに静電荷を印加させながら密着冷 却固化し、積層未延伸フィルムを作製した。この未延伸フィルムを、リニアモータ式ク リップを有する同時二軸テンターを用いて、二軸延伸した。長手方向および幅方向に 同時に、温度 95°C、延伸速度 6, 000%で 3. 5倍 X 3. 5倍延伸し、 70°Cまで冷却し た。続いて、温度 170°Cで長手方向および幅方向に同時に 1. 4 X 1. 4倍に再延伸 した。さらに幅方向に 1. 05倍の延伸を行いながら温度 175°Cで 1秒間熱処理後、幅 方向に 2%の弛緩処理を行い、厚さ 5 mの二軸配向ポリエステルフィルムを作製し た。
[0133] 上記したこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。得 られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープとして使用した際 に優れた特性を有して 、た。
[0134] (実施例 10)
押出機 M、 N2台を用い、 280°Cに加熱された押出機 Mには、参考例 4、 5で得られ た PENペレット X' 98重量部、 PENペレット Y' 2重量部を 180°Cで 3時間減圧乾燥し た後に供給し、同じく 280°Cに加熱された押出機 Nには、参考例 4〜6で得られた PE Nペレット X' 89. 5重量部、 PENペレット Y' 10重量部、および PENペレット Z' 0. 5 重量部を 180°Cで 3時間減圧乾燥した後に供給した。これらを 2層積層するべく Tダ ィ中で合流させ (積層比 M (A面側) ZN (B面側) = 7/1)、表面温度 25°Cのキャス トドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した
[0135] また、得られた未延伸フィルムをリニアモータ式クリップを有する同時二軸テンター を用いて、二軸延伸した。長手方向および幅方向に同時に、温度 135°C、延伸速度 6, 000%で 4. 0倍 X 4. 0倍延伸し、 70。Cまで冷却した。続いて、温度 180。Cで長 手方向および幅方向に同時に 1. 2 X 1. 2倍に再延伸した。さらに幅方向に 1. 05倍 の延伸を行 、ながら温度 195°Cで 1秒間熱処理後、幅方向に 2%の弛緩処理を行 、 、厚さ 5 μ mの二軸配向ポリエステルフィルムを作製した。
[0136] 上記したこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。得 られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープとして使用した際 に優れた特性を有して 、た。
[0137] (実施例 11)
押出条件を制御してポリエステルフィルムの厚みを 6. 1 μ mにしたこと以外は実施 例 1と同様の方法にて磁気記録媒体用支持体を得た。得られた磁気記録媒体用支 持体は表 1〜3に示すように磁気テープとして使用した際に優れた特性を有していた
[0138] (実施例 12)
押出条件を制御してポリエステルフィルムの厚みを 4. 0 mにしたこと以外は実施 例 1と同様の方法にて磁気記録媒体用支持体を得た。得られた磁気記録媒体用支 持体は表 1〜3に示すように磁気テープとして使用した際に優れた特性を有していた
[0139] (実施例 13)
二軸延伸する際の延伸倍率を、 1段目 3. 5倍 X 3. 5倍、 2段目 1. 2倍 X I. 6倍、 3 段目幅方向に 1. 05倍と変更したこと以外は実施例 1と同様の方法にて磁気記録媒 体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テ ープとして使用した際に優れた特性を有していた。
[0140] (実施例 14)
二軸延伸する際の延伸倍率を、 1段目 3. 5倍 X 3. 5倍、 2段目 1. 2倍 X I. 6倍、 3 段目幅方向に 1. 05倍と変更したこと以外は実施例 9と同様の方法にて磁気記録媒 体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テ ープとして使用した際に優れた特性を有していた。
[0141] (実施例 15)
未延伸フィルムを二軸延伸する際に、長手方向および幅方向に同時に、温度 125 。C、延伸速度 6, 000%で 3. 5倍 X 4. 2倍延伸し、 70°Cまで冷却した。続いて、温度 180°Cで長手方向および幅方向に同時に 1. 1 X 1. 4倍に再延伸した。さらに幅方 向に 1. 05倍の延伸を行いながら温度 195°Cで 1秒間熱処理後、幅方向に 2%の弛 緩処理を行い、厚さ 5 μ mの二軸配向ポリエステルフィルムを作製した。
[0142] 上記したこと以外は実施例 10と同様の方法にて磁気記録媒体用支持体を得た。得 られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープとして使用した際 に優れた特性を有して 、た。
[0143] (実施例 16)
二軸延伸する際の延伸倍率を、 1段目 3. 5倍 X 3. 5倍、 2段目 1. 6倍 X I . 2倍、 3 段目幅方向に 1. 05倍と変更したこと以外は実施例 1と同様の方法にて磁気記録媒 体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テ ープとして使用した際に優れた特性を有していた。
[0144] (実施例 17)
二軸延伸する際の延伸倍率を、 1段目 3. 5倍 X 3. 5倍、 2段目 1. 6倍 X I . 2倍、 3 段目幅方向に 1. 05倍と変更したこと以外は実施例 9と同様の方法にて磁気記録媒 体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように磁気テ ープとして使用した際に優れた特性を有していた。
[0145] (実施例 18)
未延伸フィルムを二軸延伸する際に、長手方向および幅方向に同時に、温度 125 °C、延伸速度 6, 000%で 4. 2倍 X 3. 5倍延伸し、 70°Cまで冷却した。続いて、温度 180°Cで長手方向および幅方向に同時に 1. 4 X 1. 1倍に再延伸した。さらに幅方 向に 1. 05倍の延伸を行いながら温度 195°Cで 1秒間熱処理後、幅方向に 2%の弛 緩処理を行い、厚さ 5 μ mの二軸配向ポリエステルフィルムを作製した。
[0146] 上記したこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。得 られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープとして使用した際 に優れた特性を有して 、た。
[0147] (実施例 19)
未延伸フィルムを二軸延伸する際に、ロール式延伸機にて長手方向に 2段で、速 度 20, 000%Z分、温度 90°Cで 3. 0倍延伸し、さらに、テンターを用いて、幅方向 に速度 2, 000%Z分、温度 100°Cで 3. 0倍延伸した。続いて、ロール式延伸機で 長手方向に 1段で、温度 140°Cで 1. 7倍に再延伸した。続いて、テンターを用いて幅 方向に温度 170°Cで 1. 5倍再延伸した。その後、定長下で温度 190°C1秒間熱処 理した後、幅方向に 2%の弛緩処理を行い、厚さ 5 mの二軸配向ポリエステルフィ ルムを作製した。
[0148] 上記したこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。得 られた磁気記録媒体用支持体は表 1〜3に示すように磁気テープとして使用した際 に優れた特性を有して 、た。
[0149] (実施例 20)
蒸着工程での金属材料をアルミニウム 50重量%と銅 50重量%との混合物へ変更 し、搬送速度を 60mZmin、酸素ガス導入量を 2. OL/min,電子ビーム出力を 5. 5 kWとしたこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。得ら れた磁気記録媒体用支持体は表 1〜 3に示すように磁気テープとして使用した際に 優れた特性を有していた。
[0150] (実施例 21)
ポリエステルフィルムの両表面に 2層構成の蒸着薄膜層を設けた。すなわち、まず、 蒸着工程での金属材料を 99. 99重量%シリカに変更し、搬送速度を 50mZmin、 酸素ガス導入量を 1. OL/min,電子ビーム出力を 5. OkWとした以外は実施例 1〖こ 記載の方法にて厚み 180nmのシリカ層を形成した。ついで、このシリカ層の上に、金 属材料を 99. 99重量%のアルミニウムに変更し、搬送速度 60mZmin、酸素ガス導 入量 2. OL/min,電子ビーム出力を 4. OkWと変更した以外は実施例 1に記載の方 法にて厚み 20nmの酸ィ匕アルミニウム層を形成した。
[0151] 上記したこと以外は実施例 1と同様の方法にて磁気記録媒体支持対を得た。得ら れた磁気記録媒体用支持体は表 1〜 3に示すように磁気テープとして使用した際に 優れた特性を有していた。
[0152] (実施例 22)
蒸着工程での金属材料を 99. 99重量%銅へ変更し、搬送速度を 60mZmin、酸 素ガス導入量を 3. OL/min,電子ビーム出力を 6. 5kWとしたこと以外は実施例 1と 同様の方法にて磁気記録媒体用支持体を得た。得られた磁気記録媒体用支持体は 表 1〜 3に示すように磁気テープとして使用した際に優れた特性を有して 、た。
[0153] (実施例 23)
蒸着工程での金属材料を 99. 9999重量%亜鉛へ変更し、搬送速度を 60mZmi n、酸素ガス導入量を 2. 5LZmin、電子ビーム出力を 5. 8kWとしたこと以外は実施 例 1と同様の方法にて磁気記録媒体用支持体を得た。得られた磁気記録媒体用支 持体は表 1〜3に示すように磁気テープとして使用した際に優れた特性を有していた
[0154] (実施例 24)
M層を蒸着後、加湿巻き返しを行わな力つたこと以外は実施例 4と同様の方法にて 磁気記録媒体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示す ように実施例 4と比較して水酸基と結合するアルミニウム原子の存在比が大きくなり、 湿度膨張係数が若干悪化して!/ヽる。
[0155] (実施例 25)
作製した二軸配向ポリエステルフィルムを 25°C65%RHで保管したこと以外は実施 例 1と同様の方法にて磁気記録媒体用支持体を得た。ポリエステルフィルム内に吸 湿した水分が M層形成時放出され、表 1〜3に示すように、実施例 1と比較して水酸 基と結合するアルミニウム原子の存在比が大きくなり、湿度膨張係数が若干大きくな り寸法安定性が悪化して ヽる。
[0156] (実施例 26)
電子銃 20からの電子ビーム 21を使わずに、るつぼ 23に誘導加熱コイルを巻き付 け直接加熱する方法で M層を形成すること以外は実施例 1と同様の方法にて磁気記 録媒体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように実 施例 1と比較して金属結合するアルミニウム原子の存在比が大きくなり、エラーレート が若干悪ィ匕している。
[0157] (実施例 27)
電子銃 20からの電子ビーム 21を使わずに、るつぼ 23に誘導加熱コイルを巻き付 け直接加熱する方法で M層を形成すること以外は実施例 3と同様の方法にて磁気記 録媒体用支持体を得た。得られた磁気記録媒体用支持体は表 1〜3に示すように実 施例 3と比較して金属結合するアルミニウム原子の存在比が小さくなり、耐クラック性 が若干低下している。
[0158] [表 1] 表 1】
A面 B面 A面 B面
A面 Rs B面 Ra 蒸着 H 金属材料 酸素濃度 酸素濃度 蒸着厚み 蒸着厚み ベ一スフイルム
(厚み jU m)
[at.%] [at.%] [nmj [nmj [nm] [nm] 実施例 1 両面 AI 58 58 100 100 PET(5.0) 5 1 10 実施例 2 両面 AI 50 50 100 100 PET(5.0) 5 10 実施例 3 両面 一 AI 60 60 100 100 PET(5.0) 5 10
¾施例 4 ιΦώ AI : 62 62 100 100 > PET(5.0) 5 10 実施例 5 AI 58 58 50 50 PET(5.0) 5 10 実施例 6 両面 AI 61 61 200 200 ΡΕΤ(5·0) 5 10 〕〕〔 〔 実施例 7 両面 AI 58 58 100 100 PET(5.0) 15 15 実施例 8 li^H AI 58 58 100 100 PETC5.0) 5 )0 実施例 9 IS AI 58 58 100 100 PET/PEK5.0) 5 10 実施例 1 0 両面 AI 58 58 100 100 PEN(5.0) 5 10 実施例 1 1 両面 AI 58 58 100 100 PET(6.0) 5 10 実施例 1 2 両面 AI 58 58 100 100 PET(4.0) 5 10 実施例 1 3 両面 AI 58 58 100 100 PET(5.0) 5 10 実施例 1 4 両面 AI 58 58 100 100 PET/PEK5.0) 5 10 実施例 1 5 両面 AI 58 58 100 100 PEN(5.0) 5 10 実施例 1 6 両面 ― AI 58 58 100 100 PETC5.0) 5 10 実施例 1 7 AI 58 58 100 100 PET/PEK5.0) 5 10 実施例 1 8 両面 AI 58 58 100 100 PEN(5.0) 5 10 実輕 1 9 兩 [S AI 58 58 100 100 PETC5.0) 5 10 実施例 20 両面 Al+Cu 40 40 100 100 PET(5.0) 5 10 実施例 21 [^面 Si/AI 60 60 200 200 PETC5.0) 5 10 実施例 22 両 O Cu 40 40 100 100 PETC5.0) 5 10 実施例 23 lif on Zn _ 40 40 100 100 PETC5.0) 5 10 実施例 24 両面 AI 62 62 100 100 PEK5.0) 5 10 実施例 25 両面 AI [ 58 58 100 100 PET(5.0) 5 To 実施例 26 両面 AI 58 58 100 100 PET(5.0) 5 10 実施例 27 両面 AI 60 60 100 100 PETC5.0) 5 10
Figure imgf000049_0001
表面抵抗率の値の表記において、「10~nJ とあるのは「10の 乗」を意味する。
Figure imgf000050_0001
(比較例 1)
蒸着工程で酸素ガスを供給しないこと以外は実施例 1と同様の方法にて磁気記録 媒体用支持体を得た。得られた磁気記録媒体用支持体は酸化アルミ層を持たず、ま た、表 4〜6に示すように磁気テープとして使用した際に劣る特性であった。
[0162] (比較例 2)
蒸着工程での搬送速度を 10mZmin、酸素ガス導入量を 12. OL/min,電子ビ ーム出力を 3. 2kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体 用支持体を得た。得られた磁気記録媒体用支持体は、表 4〜6に示すように、光線透 過率が 90%で表面抵抗率が 1013 Ωであり、また磁気テープとして使用した際に劣る 特性であった。
[0163] (比較例 3)
蒸着工程での搬送速度を 220mZmin、酸素ガス導入量を 1. OL/min,電子ビ ーム出力を 5. 3kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体 用支持体を得た。得られた磁気記録媒体用支持体は、表 4〜6に示すように、表面抵 抗率が 101 Ωであり、また磁気テープとして使用した際に劣る特性であった。
[0164] (比較例 4)
蒸着工程での搬送速度を 40mZmin、酸素ガス導入量を 10. OL/min,電子ビ ーム出力を 8. 9kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体 用支持体を得た。得られた磁気記録媒体用支持体は、表 4〜6に示すように、表面抵 抗率が 1013 Ωであり、また磁気テープとして使用した際に劣る特性であった。
[0165] (比較例 5)
蒸着工程での搬送速度を 30mZmin、酸素ガス導入量を 15. OL/min,電子ビ ーム出力を 4. 3kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体 用支持体を得た。得られた磁気記録媒体用支持体は、表 4〜6に示すように、光線透 過率が 80%であり、また磁気テープとして使用した際に劣る特性であった。
[0166] (比較例 6)
蒸着工程での搬送速度を 180mZmin、酸素ガス導入量を 5. OL/min,電子ビ ーム出力を 1. 3kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体 用支持体を得た。得られた磁気記録媒体用支持体は、表 4〜6に示すように、蒸着厚 みが 40nmであり、また磁気テープとして使用した際に劣る特性であった。 [0167] (比較例 7)
蒸着工程での搬送速度を 10mZmin、酸素ガス導入量を 4. OL/min,電子ビー ム出力を 3. 3kWと変更したこと以外は実施例 1と同様の方法にて磁気記録媒体用 支持体を得た。得られた磁気記録媒体用支持体は、表 4〜6に示すように、蒸着厚み 力 S250nmであり、また磁気テープとして使用した際に劣る特性であった。
[0168] (比較例 8)
両面ではなく片面だけに蒸着したこと以外は実施例 1と同様の方法にて磁気記録 媒体用支持体を得た。得られた磁気記録媒体用支持体は、蒸着膜が片面のみであ り、また表 4〜6に示すように、磁気テープとして使用した際に劣る特性であった。
[0169] (比較例 9)
図 3に示す真空蒸着装置を用 、たこと以外は実施例 1と同様の方法にて磁気記録 媒体用支持体を得た。得られた磁気記録媒体用支持体は、本発明の範囲内の蒸着 厚み、光線透過率、表面抵抗率に制御しょうとしても、酸素供給ノズルの位置が不適 切であったためそのようには制御できず、表 4〜6に示すように磁気テープとして使用 した際に劣る特¾であった。
[0170] (比較例 10)
押出機 M、 N2台を用い、 280°Cに加熱された押出機 Mには、参考例 1、 2で得られ た PETペレット X90重量部、 PETペレット Y10重量部を 180°Cで 3時間減圧乾燥し た後に供給し、同じく 280°Cに加熱された押出機 Nには、参考例 1〜3で得られた PE Tペレット X85重量部、 PETペレット Y12重量部、 PETペレット Z3重量部を 180°Cで 3時間減圧乾燥した後に供給し厚さ 5 μ mの二軸配向ポリエステルフィルムを作製し た。また、蒸着時の搬送速度 15mZmin、酸素ガス導入量 2. 8L/min,電子ビーム 出力を 5. 7kWとした。
[0171] 上記したこと以外は実施例 1と同様の方法にて磁気記録媒体用支持体を得た。得 られた記録媒体用支持体は、表 4〜6に示すように、蒸着厚みが 230nmであり、また 、磁気テープとして使用した際に劣る特性であった。
[0172] [表 4] 表 4】
A面 B面 A面 B面
面 Ra B面 Ra 素濃度 酸素濃度 蒸着厚み 蒸着厚み ベースフィルム Α
蒸着 H 金属材料 酸
(厚み/ m)
[at.%] [at.%] [nm] [nmj [nm] [nm] 比較例 1 両面 AI 0 0 100 100 PETC5.0) 5 10 比較例 2 両面 AI 65 65 100 100 PET(5.0) 5 10 比 例 3 両面 AI 20 20 60 60 PET(5.0) 5 10 比較例 4 両 AI 64 64 180 180 PETC5.0) 5 10 比較例 5 両£ AI 61 61 100 100 PETC5.0) 5 10 比較例 6 AI 56 56 40 40 PETC5.0) 5 10 比較例 7 両 AI 60 60 250 250 PET(5.0) 5 10 比較例 8 片面 AI 61 100 PET(5.0) 5 10 比較例 9 両面 AI 60 60 40 40 ΡΕΤ(5·0) 5 10 比較例 1 0 両面 AI 61 61 230 230 ΡΕΤ(5·0) 12 35
【表 5】
全光線 A面 B面 幅方向 長手方向 幅方向
透過率 表面抵抗率 表面抵抗率 湿度膨張係数 ヤング率 ヤング率 寸法安定性 耐クラック性 エラ一レート
[%] [Ω] [Ω] [ppm/%RH] [GPa] [GPa]
比較例 1 0 2x 10"0 1 X10"0 12 6.5 6.5 X L ◎ X 比較例 2 90 7Χ10Ί3 6x 10Ί3 13 8 8 X X Δ 比較例 3 10 3Χ10Ί 5x 10Ί 11 6.8 6.8 X 〇 X 比較例 4 70 2 10Ί3 3Χ10Ί3 12 9 9 X X Δ 比較例 5 80 1 Χ10Ί0 2Χ10Ί0 11 7.8 7.8 X X △ 比較例 6 30 7X1CT5 7Χ10Λ5 10 6.5 6-5 X Δ Δ 比較例 7 30 8x10^5 9x1(T5 11 9.5 9.5 X X Δ 比較例 8 70 1 Χ10Ί6 5Χ10Ί0 12 7 7 X o X 比較例 9 70 3Χ10Ί1 4Χ10Ί1 12 7 7 X X Δ 比較例 10 75 4Χ10Ί2 7 10Ί2 11 10.5 10.5 X X X 表面抵抗率の値の表記において、 Π0Λη」とあるのは「10の1"»乗」を蕙味する。
sffi0174 【表 6】
A面 B面 A面 B面
A面 B面
金属結合する 金属結合する 水酸基と結合する 水酸基と結合する 金) ¾'農, 金厲 度
蒸着面 金属材料 金属原子の存在比 金属原子の存在比 アルミニウムの存在比 アルミニウムの存在比
[at.%] [at.%] [at.%] [at.% ] [at.%] [at.%] 比較例 1 両面 AI 100 100 100 100 0 0 比較例 2 両 o AI 35 35 0.8 0.9 63 63 比較例 3 両面 AI 80 80 29 27 42 42 比較例 4 両^ Ai 36 36 0.8 0.8 65 65 比較例 5 両 AI 39 39 1.8 1.9 67 67 比較例 6 雨面 AI 44 44 3.6 3.6 40 40 比較例 7 両 AI 40 40 2 2 61 61 比較例 8 片面 AI 39 1.8 38 比較例 9 両面 AI 40 40 1 J 1.7 70 70 比較例 1 0 両 [£ AI 39 39 1.5 1.5 68 68
図面の簡単な説明
[図 1]幅寸法を測定する際に用いるシート幅測定装置の模式図である。
[図 2]本発明の支持体を製造する際に用いられる真空蒸着装置の模式図である。
[図 3]従来の支持体を製造する際に用いられる真空蒸着装置の模式図である。 符号の説明
1 :レーザー発振器
2 :受光部
3 :荷重検出器
4 :荷重
5 :フリーロール
6 :フリーロール
7 :フリーロール
8 :フリーロール
9 :磁気テープ
10: :レーザー光
11: :真空蒸着装置
12: :真空チャンバ
13: :卷出しロール部
14: :ポリエステルフィルム
15: :ガイドロール
16: :冷却ドラム
17: :蒸着チャンノ
18: :卷取りロール部
19: :金属材料
20: :電子銃
21: :電子ビーム
22: :酸素ガスボンベ
23:るつぼ 24:酸素供給ノズル 25:マスク
26:ガス流量制御装置
111 :真空蒸着装置
112 :真空チャンバ
113 :卷出しロール部
114 :ポリエステノレフィ/レム
115 :ガイドロール
116 :冷却ドラム
117 :蒸看チャンノ
118: :卷取りロール部
119: :金属材料
120: :電子銃
121: :電子ビーム
122: :酸素ガスボンベ
123: :るつぼ
124: :酸素供給ノズル
125:マスク
126:ガス流量制御装置

Claims

請求の範囲
[1] ポリエステルフィルムの両面に金属系酸化物を含む層(M層)が設けられ、これら M 層の厚みがそれぞれ 50〜200nmである磁気記録媒体用支持体であって、該磁気 記録媒体用支持体の全光線透過率が 0〜75%であり、各表面の表面抵抗率が 1 X 102〜1 X 1013 Ωであることを特徴とする磁気記録媒体用支持体。
[2] 少なくとも一方の表面の中心線平均粗さ Raが 0. 5〜: LOnmである、請求項 1に記載 の磁気記録媒体用支持体。
[3] 長手方向のヤング率が 5〜13GPaである、請求項 1または 2に記載の磁気記録媒体 用支持体。
[4] 前記ポリエステルフィルムの厚みが 2〜6 μ mである、請求項 1〜3のいずれかに記載 の磁気記録媒体用支持体。
[5] M層の金属元素濃度が 10〜70at. %である、請求項 1〜4のいずれかに記載の磁 気記録媒体用支持体。
[6] M層の金属結合している金属原子の存在比が l〜20at. %である、請求項 1〜5の
Vヽずれかに記載の磁気記録媒体用支持体。
[7] M層の金属系酸ィ匕物が酸ィ匕アルミニウムであり、水酸基と結合しているアルミニウム 原子の存在比が 0〜60at. %である、請求項 1〜6のいずれかに記載の磁気記録媒 体用支持体。
[8] 請求項 1〜4の 、ずれかに記載の磁気記録媒体用支持体の少なくとも片面に磁性層 が設けられた磁気記録媒体。
PCT/JP2006/318706 2005-09-22 2006-09-21 磁気記録媒体用支持体および磁気記録媒体 WO2007034857A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007536545A JP4270318B2 (ja) 2005-09-22 2006-09-21 磁気記録媒体用支持体および磁気記録媒体
EP06810366A EP1936610B1 (en) 2005-09-22 2006-09-21 Support for magnetic recording medium, and magnetic recording medium
US11/992,388 US7879471B2 (en) 2005-09-22 2006-09-21 Support for magnetic recording medium, and magnetic recording medium
CN2006800437977A CN101313357B (zh) 2005-09-22 2006-09-21 磁记录介质用支持体和磁记录介质
KR1020087006856A KR101261351B1 (ko) 2005-09-22 2008-03-21 자기 기록 매체용 지지체 및 자기 기록 매체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-275124 2005-09-22
JP2005275124 2005-09-22

Publications (1)

Publication Number Publication Date
WO2007034857A1 true WO2007034857A1 (ja) 2007-03-29

Family

ID=37888900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318706 WO2007034857A1 (ja) 2005-09-22 2006-09-21 磁気記録媒体用支持体および磁気記録媒体

Country Status (7)

Country Link
US (1) US7879471B2 (ja)
EP (1) EP1936610B1 (ja)
JP (1) JP4270318B2 (ja)
KR (1) KR101261351B1 (ja)
CN (1) CN101313357B (ja)
AT (1) ATE518226T1 (ja)
WO (1) WO2007034857A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226943A (ja) * 2006-01-24 2007-09-06 Toray Ind Inc 磁気記録媒体用支持体および磁気記録媒体
JP2009099245A (ja) * 2007-09-26 2009-05-07 Toray Ind Inc 磁気記録媒体用支持体および磁気記録媒体
US8404371B2 (en) 2006-02-09 2013-03-26 Teijin Dupont Films Japan Limited Biaxially oriented polyester film and magnetic recording tape

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153188A1 (ja) * 2007-06-13 2008-12-18 Teijin Limited 二軸配向積層フィルム
JP2009259377A (ja) * 2008-03-27 2009-11-05 Fujifilm Corp 磁気記録媒体及び磁気記録媒体の製造方法
WO2010131643A1 (ja) * 2009-05-15 2010-11-18 東レ株式会社 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP5739146B2 (ja) * 2009-12-03 2015-06-24 帝人株式会社 共重合芳香族ポリエステル、二軸配向ポリエステルフィルムおよび磁気記録媒体
US8742058B2 (en) * 2010-09-27 2014-06-03 Toray Industries, Inc. Biaxially oriented polyester film and linear magnetic recording medium
KR20140105695A (ko) * 2011-12-02 2014-09-02 미쓰비시 쥬시 가부시끼가이샤 적층 다공 필름의 제조 방법
JP7116782B2 (ja) * 2018-03-28 2022-08-10 Jx金属株式会社 垂直磁気記録媒体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103359A (ja) * 1985-10-29 1987-05-13 Toyo Metaraijingu Kk 透明ガス遮断性フイルムの製造方法
JP2002319122A (ja) * 2001-04-24 2002-10-31 Toray Ind Inc 磁気記録媒体用支持体および磁気記録テープ
JP2003129229A (ja) * 2001-10-23 2003-05-08 Toray Ind Inc 金属酸化物膜つきフィルムの製造方法および製造装置
JP2003311873A (ja) * 2002-04-24 2003-11-06 Tohcello Co Ltd 酸化アルミニウム蒸着フィルム及びその製造方法
JP2005265928A (ja) * 2004-03-16 2005-09-29 Seiko Epson Corp 反射防止膜の形成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2167448B (en) * 1984-11-02 1988-10-19 Hitachi Ltd Perpendicular magnetic recording medium
JPS62220330A (ja) 1986-03-24 1987-09-28 東洋メタライジング株式会社 帯電防止性ガスバリアフイルム
US20010050829A1 (en) * 1991-07-10 2001-12-13 Osamu Kitakami Magnetic recording and reproducing system including a ring head of materials having different saturation flux densities
JPH05274646A (ja) 1992-03-30 1993-10-22 Mitsubishi Kasei Corp 磁気記録媒体
US20040241454A1 (en) * 1993-10-04 2004-12-02 Shaw David G. Barrier sheet and method of making same
JP2002536778A (ja) * 1999-02-12 2002-10-29 ゼネラル・エレクトリック・カンパニイ データ記憶媒体
US6623849B2 (en) * 2000-05-25 2003-09-23 Fuji Photo Film Co., Ltd. Magnetic recording medium
JP2002042325A (ja) * 2000-07-24 2002-02-08 Fuji Photo Film Co Ltd 磁気記録媒体
AU2001283025A1 (en) * 2000-07-27 2002-02-13 Imation Corp. Magnetic recording media and coating methods
DE10039380A1 (de) * 2000-08-11 2002-02-21 Mitsubishi Polyester Film Gmbh Transparente Polyesterfolie mit hoher Sauerstoffbarriere, Verfahren zu ihrer Herstellung und ihre Verwendung
US6800356B2 (en) * 2002-03-11 2004-10-05 Fuji Photo Film Co., Ltd. Magnetic recording medium
GB0208506D0 (en) * 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
US7252878B2 (en) * 2002-10-23 2007-08-07 Toray Plastics (America), Inc. High barrier flexible packaging structure
US7279262B2 (en) * 2003-11-20 2007-10-09 Canon Kabushiki Kaisha Magnetic carrier and two-component developer
JP2005196944A (ja) 2003-12-08 2005-07-21 Toray Ind Inc 磁気記録媒体用支持体および磁気記録媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103359A (ja) * 1985-10-29 1987-05-13 Toyo Metaraijingu Kk 透明ガス遮断性フイルムの製造方法
JP2002319122A (ja) * 2001-04-24 2002-10-31 Toray Ind Inc 磁気記録媒体用支持体および磁気記録テープ
JP2003129229A (ja) * 2001-10-23 2003-05-08 Toray Ind Inc 金属酸化物膜つきフィルムの製造方法および製造装置
JP2003311873A (ja) * 2002-04-24 2003-11-06 Tohcello Co Ltd 酸化アルミニウム蒸着フィルム及びその製造方法
JP2005265928A (ja) * 2004-03-16 2005-09-29 Seiko Epson Corp 反射防止膜の形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226943A (ja) * 2006-01-24 2007-09-06 Toray Ind Inc 磁気記録媒体用支持体および磁気記録媒体
US8404371B2 (en) 2006-02-09 2013-03-26 Teijin Dupont Films Japan Limited Biaxially oriented polyester film and magnetic recording tape
JP2009099245A (ja) * 2007-09-26 2009-05-07 Toray Ind Inc 磁気記録媒体用支持体および磁気記録媒体

Also Published As

Publication number Publication date
US7879471B2 (en) 2011-02-01
JPWO2007034857A1 (ja) 2009-03-26
JP4270318B2 (ja) 2009-05-27
CN101313357A (zh) 2008-11-26
EP1936610A4 (en) 2008-10-01
EP1936610A1 (en) 2008-06-25
ATE518226T1 (de) 2011-08-15
US20090297888A1 (en) 2009-12-03
CN101313357B (zh) 2010-10-20
EP1936610B1 (en) 2011-07-27
KR20080045721A (ko) 2008-05-23
KR101261351B1 (ko) 2013-05-07

Similar Documents

Publication Publication Date Title
JP2007226943A (ja) 磁気記録媒体用支持体および磁気記録媒体
WO2007034857A1 (ja) 磁気記録媒体用支持体および磁気記録媒体
JP2009087518A (ja) 磁気記録媒体用支持体および磁気記録媒体
JP5410919B2 (ja) 二軸配向多層積層フィルムおよび積層体
JP2007287215A (ja) 磁気記録媒体用支持体および磁気記録媒体
WO2008153188A1 (ja) 二軸配向積層フィルム
JP2010264683A (ja) 支持体
JP2009223923A (ja) 積層体、磁気記録媒体用支持体および強磁性金属薄膜型磁気記録媒体
JP2011084037A (ja) 二軸配向多層積層フィルム
JP4706680B2 (ja) 複合フィルム
JP2006277920A (ja) 磁気記録媒体用支持体および磁気記録媒体
JP2003030818A (ja) 磁気記録媒体用支持体及び磁気記録媒体
JP4557017B2 (ja) 磁気記録媒体用支持体
JP2005196944A (ja) 磁気記録媒体用支持体および磁気記録媒体
JP2008210498A (ja) 強磁性金属薄膜型磁気記録媒体用支持体および強磁性金属薄膜型磁気記録媒体
JP2010052416A (ja) 積層体、磁気記録媒体用支持体および磁気記録媒体
JP2006216194A (ja) 磁気記録媒体支持体およびその製造方法
JP5332436B2 (ja) 磁気記録媒体用支持体および磁気記録媒体
JP4066768B2 (ja) 二軸配向ポリエステルフィルム
JP5112923B2 (ja) 磁気記録媒体支持体
JP4232378B2 (ja) 二軸配向ポリエステルフィルムとその製造方法
JP2009064511A (ja) 強磁性金属薄膜型磁気記録媒体用支持体および強磁性金属薄膜型磁気記録媒体
JP5521627B2 (ja) 二軸配向ポリエステルフィルムおよび磁気記録媒体
JP2007157244A (ja) 磁気記録媒体用支持体および磁気記録媒体
JP2004013958A (ja) 磁気記録媒体用支持体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680043797.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087006856

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006810366

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2007536545

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 11992388

Country of ref document: US