WO2007029605A1 - ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造方法 - Google Patents

ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造方法 Download PDF

Info

Publication number
WO2007029605A1
WO2007029605A1 PCT/JP2006/317300 JP2006317300W WO2007029605A1 WO 2007029605 A1 WO2007029605 A1 WO 2007029605A1 JP 2006317300 W JP2006317300 W JP 2006317300W WO 2007029605 A1 WO2007029605 A1 WO 2007029605A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
dispersion
composition
dielectric constant
inorganic particles
Prior art date
Application number
PCT/JP2006/317300
Other languages
English (en)
French (fr)
Inventor
Toshihisa Nonaka
Yoshitake Hara
Masahiro Yoshioka
Original Assignee
Toray Industries, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries, Inc. filed Critical Toray Industries, Inc.
Priority to EP06810037.9A priority Critical patent/EP1939894A4/en
Priority to CN2006800325257A priority patent/CN101258560B/zh
Priority to US11/991,464 priority patent/US20090103236A1/en
Priority to KR1020087006883A priority patent/KR101233702B1/ko
Publication of WO2007029605A1 publication Critical patent/WO2007029605A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/06Acrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/10Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B26/14Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/006Other inhomogeneous material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic

Definitions

  • Paste composition dielectric composition, capacitor, and method for producing paste composition
  • the present invention is an information display member such as a flat panel display, a flexible display, an electronic paper, a display of a portable information terminal, a touch panel, etc., and a transparent high dielectric constant layer is formed in a region where transparency is required,
  • the present invention relates to a paste composition and a dielectric composition capable of forming a transparent capacitor or the like by being combined with a transparent electrode as an interlayer insulating film, and a transparent capacitor formed by them.
  • Dispersion of inorganic particles in a resin material is achieved by first producing a dispersion in which inorganic particles are well dispersed in an organic solvent, and then mixing the dispersion with the resin.
  • inorganic particles with an average particle size on the order of nanometers to several tens of nanometers are agglomerated with individual particles (primary particles) in an appropriate manner, and are in the form of powder with an average particle size of several tens of ⁇ m. Often provided as particles (secondary particles).
  • a dispersion liquid in which the primary particles are stably dispersed by deaggregating these secondary particles in the dispersion medium Need to manufacture.
  • the particle size of the inorganic particles becomes smaller, shear stress is applied to the aggregated inorganic particles. It is very difficult to uniformly disperse the inorganic particles in the dispersion medium because the mechanism for obtaining the particles cannot follow the particle size.
  • the ratio of the surface area to the particle weight increases, when the dispersion proceeds, the viscosity of the dispersion increases and it becomes difficult to further promote the dispersion.
  • a method for dispersing inorganic particles in the form of primary particles a method using a dispersing device such as a homogenizer, a bead mill, or an ultrasonic disperser is known.
  • a bead mill that promotes dispersion by shearing stress due to friction of fine beads can be preferably used.
  • Patent Document 4 there is one in which silica particles having a particle diameter of 70 nm or less are dispersed in an organic solvent using a bead mill (see Patent Document 4).
  • the method described in Patent Document 4 is a method for silica particles having high polarity and relatively easy dispersion in an organic solvent, and is not effective for other inorganic particles.
  • the organic solvent used in the dispersion medium is limited to alcohols, and after dispersion in a bead mill, the particle size is reduced using a centrifuge.
  • Patent Document 4 shows a dispersion example regarding particles having a polarity smaller than that of silica particles such as alumina, but no specific particle size distribution is shown except for silica particles. Achieving dispersion up to the primary particles is considered difficult.
  • the polar force and dice particles include barium titanate, which is a high dielectric constant inorganic particle having a belobskite crystal structure.
  • Patent Document 5 a method of dispersing nanometer-order carbon particles using a bead mill has been proposed (see Patent Document 5).
  • water having a high polarity is used as a dispersion medium, and the dispersion is easier than a general organic solvent. Therefore, the method described in Patent Document 5 is not effective for general organic solvents.
  • the degree of dispersion is often influenced by the type and size of the inorganic particles and the type of the dispersion medium, and the high dielectric constant inorganic particles having a perovskite crystal structure are often used.
  • the degree of dispersion is often influenced by the type and size of the inorganic particles and the type of the dispersion medium, and the high dielectric constant inorganic particles having a perovskite crystal structure are often used.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-38821 (Claims)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-285105 (Claims)
  • Patent Document 3 Japanese Patent Laid-Open No. 4 70818 (Claims)
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-346288 (page 6, example)
  • Patent Document 5 US Patent Application Publication No. 2005Z8560
  • the present invention provides a transparent capacitor and charge amount by forming a transparent high dielectric constant layer in an area where transparency is required and combining it with a transparent electrode as an interlayer insulating film.
  • a paste composition and a dielectric composition capable of forming a controllable transparent dielectric layer, and a transparent capacitor formed thereby.
  • a paste composition comprising (a) rosin, (b) high dielectric constant inorganic particles having a velovskite crystal structure, and (c) an organic solvent, (b) high dielectric constant
  • the average particle diameter of the inorganic particles is 0.002 m or more and 0.06 m or less, and the total organic solvent amount is 35% by weight or more and 85% by weight or less of the total amount of the paste composition. It is.
  • another aspect of the present invention is a dielectric composition
  • a dielectric composition comprising (a) a resin, (b) high dielectric constant inorganic particles having a velovskite crystal structure, (b) A dielectric composition in which the average particle size of the high dielectric constant inorganic particles is 0.002 ⁇ m or more and 0.06 ⁇ m or less, and a capacitor using the dielectric composition as an insulating film.
  • the present invention it is possible to obtain a dielectric composition having a high light transmittance in the entire wavelength range of 400 to 700 nm where the relative dielectric constant is large and a paste composition as a raw material for obtaining the dielectric composition. Furthermore, the composition of the present invention has a high high voltage holding ratio with a small leakage current force S even in a thin film of Lm. In addition, these dielectric compositions can provide an interlayer insulating film for capacitors in applications that require high visible light transmittance, such as display members.
  • FIG. 1 is a diagram showing the relationship between the applied rectangular pulse and the potential difference between the upper electrode and the ITO transparent electrode used in the calculation of the voltage holding ratio in the example.
  • the paste composition of the present invention contains (a) rosin, (b) high dielectric constant inorganic particles having a perovskite crystal structure, and (c) an organic solvent, and (b) high The average particle diameter of the dielectric constant inorganic particles is 0.002 ⁇ m or more and 0.06 ⁇ m or less, and the total amount of the organic solvent is 35% by weight or more and 85% by weight or less of the total amount of the paste composition.
  • the average particle size of the high dielectric constant inorganic particles having a belobskite crystal structure used in the present invention is from 0.002 ⁇ m to 0.06 ⁇ m, and preferably from 0.002 ⁇ m. It is not less than ⁇ m and not more than 0.04 / zm, more preferably not less than 0.002 m and not more than 0.03 m.
  • B When the average particle size of the high dielectric constant inorganic particles having a belobskite crystal structure is 0.06 m or less, the surface of the dielectric composition obtained by curing the paste composition tends to be smooth. Therefore, light scattering at the surface is reduced, and as a result, the light transmittance can be increased.
  • the intensity of Rayleigh scattering received by the propagating light beam has a positive correlation with the cube of the particle diameter of the particles in the medium through which the light beam passes, so that (b) the velovskite crystal structure in the dielectric composition
  • the average particle size of the high dielectric constant inorganic particles having a velovskite crystal structure is 0.04 m or less, when the light is transmitted through the dielectric composition obtained by curing the paste composition
  • the effect of suppressing Rayleigh scattering caused by high dielectric constant inorganic particles becomes remarkable, and the light transmittance is greatly reduced.
  • the total amount of the organic solvent in the paste composition of the present invention is 35% by weight of the total amount of the paste composition. It is preferably 85% by weight or less, more preferably 45% by weight or more, or 75% by weight or less.
  • the amount of the organic solvent is 85% by weight or less of the total paste composition, the solid content in the paste is sufficiently large, so that a continuous film can be easily obtained even when the coating film is thin.
  • the amount of organic solvent is 75% by weight or less of the total paste composition, the generation of voids due to volatilization of organic solvent during drying is suppressed.
  • the dielectric constant of the dielectric composition can be increased, Rayleigh scattering by the voids can be suppressed, the light transmittance can be increased, and the amount of voids that can cause moisture absorption is small. Changes in physical properties due to water effects can be reduced.
  • the amount of the organic solvent is 35% by weight or more of the total amount of the paste composition, excessive aggregation of high dielectric constant inorganic particles can be prevented and the viscosity can be lowered before the dispersion treatment. If the viscosity is extremely high, the dispersion process cannot be started, and it is easy to carry out the dispersion process with a dispersing device such as a bead mill.
  • the amount of organic solvent is 45% by weight or more of the total paste composition, the viscosity of the paste after uniformly dispersing the high dielectric constant inorganic particles can be reduced, so that a highly uniform coating film is formed. It is easy.
  • the paste composition includes, for example, a method in which high dielectric constant inorganic particles are added to a liquid resin solution and mixed and dispersed, or a dispersion liquid in which high dielectric constant inorganic particles are previously dispersed in an appropriate organic solvent. This is prepared by a let-down method or the like in which the dispersion is mixed with liquid or a resin solution.
  • the method for dispersing the high dielectric constant inorganic particles in the resin or the organic solvent is not particularly limited.
  • an ultrasonic disperser, a ball mill, a roll mill, a Claremix, a homogenizer, a bead mill, a media disperser, or the like is used.
  • surface treatment of high dielectric constant inorganic particles in addition to treatment with various coupling agents such as silane, titanium and aluminum, fatty acid, phosphoric acid compound, etc., rosin treatment, acid treatment, basic treatment, etc. Is mentioned.
  • surface treatment of high dielectric constant inorganic particles The surface treatment applied to the high dielectric constant inorganic particles may be performed before the composition is prepared. Even if there is a difference in the manner in which the treatment agent adheres.
  • Examples of the dispersant added to the composition include those having an acid group such as phosphoric acid, carboxylic acid, fatty acid, and esters thereof.
  • the dispersant can interact with the surface of the high dielectric constant inorganic particles using the acid-base interaction. It is effective to use a dispersant having an acid group, and a compound having a phosphate ester skeleton is particularly preferably used.
  • Dispersants containing a compound having a phosphate ester skeleton include, for example, “Dysperbyk-111” manufactured by Big Chemi 'Japan Co., Ltd., and the same “BYK—W9 010”.
  • alkyl phosphates such as triethyl phosphate and tributyl phosphate, and phosphoric acid atarylates are also effective, and the dispersant added to the composition may be used as a surface treatment agent for high dielectric constant inorganic particles. Good.
  • the amount of the dispersant added is preferably 2% by weight or more and 25% by weight or less with respect to the high dielectric constant inorganic particles.
  • the dispersant has the effect of inhibiting the re-aggregation of the particles and maintaining the dispersion by covering the surfaces of the particles that have been deagglomerated by the dispersion treatment or the like.
  • the amount of the dispersant is 2% by weight or more based on the high dielectric constant inorganic particles, the above-described effect is exhibited.
  • the particle size of the high dielectric constant particles which is more preferable, is 0.02 m or less. Good dispersion is obtained, and the light transmittance of the dielectric composition is greatly reduced. If the amount of the dispersant is 25% by weight or less with respect to the high dielectric constant inorganic particles, the dielectric constant will be greatly reduced.
  • nonionic, cationic, and cationic surfactants wetting agents such as polyvalent carboxylic acids, amphoteric substances.
  • Addition of a resin having a hindered substituent is included.
  • these additives may be used as a surface treatment agent for high dielectric constant inorganic particles.
  • the polarity of the system at the time of dispersion or after dispersion can be controlled by adding an organic solvent.
  • the organic solvent a solvent that dissolves rosin and is compatible with the dispersant may be appropriately selected.
  • eta Alcohols such as diol, i-propanol, n-butanol, benzyl alcohol, isobutyl alcohol, methoxymethylbutanol, aromatic hydrocarbons such as black benzene, benzene, toluene, xylene, mesitylene, methyl cesolve sorb, ethyl celloso Cellosolves such as rubbing and butylcetosolve, cellosolves such as methylcetosolve acetate, ethylcetosolvesolve and butylcetosolve acetate, propylene glycolenolemonomethinoatenoacetate, propyleneglycolenomethenoateoate Propylene glycol esters such as acetate, ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran and azole, methyl ethyl ketone,
  • the organic solvent used in the present invention preferably has a boiling point of 160 ° C or higher.
  • the boiling point of the organic solvent is 160 ° C or higher, the generation of voids in the dielectric composition is suppressed, and the relative dielectric constant of the dielectric composition is increased.
  • the boiling point is lower than 160 ° C, the volatilization rate of the organic solvent is fast, so that densification due to mass transfer during heat treatment cannot catch up, voids increase, and the dielectric constant of the dielectric composition often decreases.
  • it is 180 ° C or higher, and still more preferably 200 ° C or higher.
  • the organic solvent used in the present invention preferably has a boiling point of 300 ° C or lower, more preferably 280 ° C or lower.
  • the boiling point is higher than 280 ° C, the treatment for the deorganic solvent becomes high temperature, and the high temperature treatment decomposes the resin, resulting in deterioration of dielectric characteristics and mechanical strength.
  • the temperature is higher than 300 ° C, the decomposition of the fat becomes more intense and the mechanical strength is lowered.
  • the organic solvent used in the paste composition of the present invention may be only one kind of organic solvent having a boiling point of 160 ° C or higher, but if it contains an organic solvent having a boiling point of 160 ° C or higher, other solvents are used.
  • the paste composition may contain stabilizers, dispersants, anti-settling agents, plasticizers, antioxidants, cross-linking agents, cross-linking accelerators, dissolution regulators, surface active agents as necessary. It may contain additives such as agents and antifoaming agents.
  • Examples of the organic solvent having a boiling point of 160 ° C or higher include mesitylene, acetonylacetone, methylcyclohexanone, diisoptylketone, methylphenolketone, dimethylsulfoxide, ⁇ -butyrorataton, isophorone, jetylformamide, ⁇ , ⁇ -dimethylacetamide, ⁇ -methylpyrrolidone, ⁇ -butyrolatatam, ethylene glycol monoacetate, ethylene glycol diacetate, 3-methoxy 3-methylbutanol and its acetate, 3-methoxybutyl acetate, 2-ethyl There are xyl acetate, oxalate, methyl malonate, maleate, propylene carbonate, butyl solvate, ethyl carbitol and the like.
  • the boiling point in the present invention is a boiling point at a pressure of 1 atm, that is, 1. 01325 X 10 5 NZm 2 .
  • the boiling point can be measured using a known technique, and is not particularly limited.
  • the boiling point can be measured using a Swietoslawski boiling point meter.
  • the filling rate of the high dielectric constant inorganic particles increases, the influence of the amount of the organic solvent increases, and the total weight of the components excluding the organic solvent contained in the paste composition is high dielectric constant inorganic particles. In the case of 80% by weight or more, the effect of the present invention is particularly great.
  • a method for applying the paste composition to an adherend such as a substrate is not particularly limited, and for example, a method using a screen printing machine, a blade coater, a spin coater, a bar coater or the like. Is mentioned. Subsequently, the coating film is subjected to removal of organic solvent or heat curing using a heating device such as a hot plate or oven.
  • the adherend (eg, substrate) to which the paste composition is applied can be selected from, for example, an organic substrate, an inorganic substrate, and a substrate in which a circuit component material is disposed.
  • organic substrates include resin substrates, paper 'phenolic copper clad laminates, paper' epoxy copper clad laminates, paper 'polyester copper clad laminates, etc.', paper substrates copper clad laminates, glass cloth 'epoxy copper Glass laminates, glass cloth 'polyimide copper clad laminates, glass cloth' Teflon (registered trademark) copper clad laminates and other glass-based copper clad laminates, paper 'glass cloth' epoxy copper clad laminates, glass non-woven Cloth ⁇ Composite copper-clad laminates such as epoxy copper-clad laminates, polyetherimide substrates, polyetherketone substrates, polysulfone-based resin substrates, polycarbonate substrates, polyimide substrates, resin substrates such as polyester, polyester films
  • examples of inorganic substrates include ceramic substrates such as alumina substrates, aluminum nitride substrates, and silicon carbide substrates, metal substrates such as aluminum base substrates and iron base substrates, glass substrates, and silicon substrates. And quartz substrate.
  • circuit components include metals such as silver, gold, copper, chromium, nickel, titanium, and alloys thereof, indium stannate (ITO), indium zincate, oxide Conductor containing tin, oxide indium, acid zinc, and other elements doped with these, resistors containing inorganic oxides, glass materials and low containing metal or Z resin Examples thereof include dielectrics, high dielectrics containing high-permittivity inorganic particles, and insulators containing glass-based materials.
  • ITO indium stannate
  • oxide Conductor containing tin oxide indium, acid zinc, and other elements doped with these
  • resistors containing inorganic oxides, glass materials and low containing metal or Z resin examples thereof include dielectrics, high dielectrics containing high-permittivity inorganic particles, and insulators containing glass-based materials.
  • the dielectric composition of the present invention has (a) a resin, (b) a velovskite crystal structure, and (b) an average particle diameter of the high dielectric constant inorganic particles of 0.002 m or more. 06 m or less.
  • the dielectric composition of the present invention preferably has a light transmittance of 50% or more and 100% or less over a wavelength range of 400 to 700 nm, more preferably 70% or more and 100% or less, and more preferably 90% or more and 100% or less.
  • the light transmittance of the dielectric composition in the entire wavelength range of 400 to 700 nm is 50% or more, when information is displayed with light transmitted through the dielectric composition, V and transparency functions can be satisfied.
  • the light transmittance of the dielectric composition in the entire wavelength range of 400 to 700 nm is 70% or more, information display on a monochromator is facilitated by the light transmitted through the dielectric composition.
  • the light transmittance of the dielectric composition in the entire wavelength range of 400 to 700 nm is 90% or more, it is easy to display information in color with the light transmitted through the dielectric composition.
  • the light transmittance of the dielectric composition in the entire wavelength range of 400 to 700 nm is 50% or more and 100% or less.
  • the wavelength of the dielectric composition is 400 to 700 nm. This means that the minimum value of the light transmittance in the transmitted light spectrum is 50% or more.
  • the light transmittance of the dielectric composition in the entire wavelength range of 400 to 700 nm is determined by visible spectral light. It can be measured using a dynamometer.
  • the dielectric composition is in the form of a film
  • light is produced by forming a dielectric composition film on a substrate such as glass or quartz that has no absorption over the entire wavelength range of 400 to 700 nm. If used as a transmittance measurement sample.
  • the dielectric composition of the present invention preferably has a relative dielectric constant of 10 or more and 300 or less.
  • the relative dielectric constant is 20 or more and 80 or less. More preferably, the relative dielectric constant is 30 or more and 50 or less.
  • the dielectric composition is used as an interlayer insulating film, if the relative dielectric constant is 10 or more, it becomes easy to form a capacitor having a large capacitance.
  • the dielectric constant is 20 or more, when forming a capacitor having a large capacity, it is not necessary to make the interlayer insulating film extremely thin, so that pinholes that cause leakage current are generated in the interlayer insulating film. It becomes difficult to do.
  • the relative dielectric constant is 30 or more, even when a capacitor having a large capacity is formed, the interlayer insulating film can be formed relatively thick, so that the withstand voltage is greatly reduced.
  • the relative permittivity of high-permittivity inorganic particles having many velovskite crystal structures has a positive correlation with the size of the particle diameter.
  • the relative dielectric constant of the present dielectric composition is 300 or less, the relative dielectric constant of the high dielectric constant inorganic particles having a perovskite crystal structure is extremely large and it is not necessary to use the particles.
  • High dielectric constant inorganic particles having a relatively small mouthbskite crystal structure can be used, and the light transmittance at a wavelength of 400 to 700 nm is greatly reduced.
  • the relative dielectric constant of the dielectric composition is to be greater than 80, it is often necessary to make the particle packing rate equal to or greater than the closest packing when a single particle size is used. Therefore, when the relative dielectric constant of the present dielectric composition is 80 or less, it is possible to use high dielectric constant inorganic particles having a very sharp particle size distribution, which is close to the case where only a single particle size is effective. When the relative dielectric constant of the dielectric composition is 50 or less, (b) high dielectric constant organic particles having a perovskite crystal structure do not need to have extremely large dielectric constants. Expands the range of inorganic particle material selection.
  • the high dielectric constant inorganic particles (b) having a berobskite crystal structure used in the present invention have an average particle size of 0.002 ⁇ m or more and 0.06 ⁇ m or less, and 0.002 ⁇ m or more. 0.04 ⁇ m or less is preferred.
  • the average particle size of the high-permittivity inorganic particles having a velovskite crystal structure is more preferably 0.005 ⁇ m or more and 0.03 ⁇ m or less. This is the case. When the average particle diameter is 0.002 m or more, (b) the dielectric constant of the high dielectric constant inorganic particles having a perovskite crystal structure is greatly reduced.
  • the average particle size is 0.05 ⁇ m or more
  • (b) high dielectric constant inorganic particles having a belobskite crystal structure are less likely to aggregate and are easily dispersed uniformly in the resin.
  • (b) Rayleigh scattering caused by high dielectric constant inorganic particles having a perovskite crystal structure is suppressed when light is transmitted through the dielectric composition. Increases transmittance.
  • the average particle size is 0.03 m or less, the effect of suppressing Rayleigh scattering becomes larger, and the dielectric composition that only needs to greatly reduce the light transmittance of the dielectric composition is likely to occur during production. Precipitation that causes uneven distribution of high-dielectric-constant inorganic particles having a lobskite crystal structure occurs every other time.
  • the fluidity of a paste or the like in which (b) a high dielectric constant inorganic particle having a perovskite crystal structure is dispersed in a liquid or solution uncured resin is used.
  • a certain state is solidified by heating or the like.
  • the specific gravity of the high dielectric constant inorganic particles having a velovskite crystal structure is larger than the specific gravity of the resin, so that in the fluid state, the particles sink to the bottom of the dispersion by gravity. It is easy to sink.
  • the weight of each particle decreases, the effect of Brownian motion increases, and the particle settles.
  • the magnitude of Rayleigh scattering of light traveling in the dielectric composition is positively correlated with the cube of the high dielectric constant inorganic particle diameter with (b) perovskite crystal structure. Even when the average particle size of the particles is equal, the narrower the particle size distribution or the smaller the amount of large particles present, the greater the light transmittance of the dielectric composition.
  • the average particle diameter of the high dielectric constant inorganic particles having a belobskite crystal structure of the present invention is measured by XMA measurement and transmission through an ultrathin slice of a cured thin film of the dielectric composition. This can be done by observation with a scanning electron microscope (TEM). For this ultrathin slice, a hardened thin film of the dielectric composition having a cross section cut in the film thickness direction is used.
  • TEM scanning electron microscope
  • Berbers force High-permittivity inorganic particles with a beite-based crystal structure and (a) rosin differ in electron beam transmittance. Therefore, in a TEM observation image, (b) a high-permittivity with a perovskite crystal structure.
  • Inorganic particles and (a) rosin can be distinguished by the difference in contrast.
  • Multiple types of (b) Velovskite When high-permittivity inorganic particles having a crystal structure are used, identification of each high-permittivity inorganic particle can be performed by elemental analysis based on XMA measurement and crystal structure analysis by electron diffraction image observation. From the image analysis of the TEM observation image, (b) the distribution of the high dielectric constant inorganic particles having a perovskite crystal structure and (a) the area of the rosin was obtained, and (b) the high dielectric constant inorganic having a velovskite crystal structure. The particle diameter can be calculated from the area by approximating the cross section of the particle image to be circular.
  • This particle size can be evaluated on TEM images at magnifications of 5000 and 40000!
  • the calculated particle size distribution is represented by a histogram in increments of 0.1 ⁇ m for a TEM image with a magnification of 5000 times, and a histogram in increments of 0.01 ⁇ m for a TEM image with a magnification power of 0000 times.
  • For each column of the obtained histogram find the product of its center value and frequency. Next, the average particle diameter is obtained by dividing the sum of these products by the sum of the frequencies.
  • the particle size distribution can also be evaluated by performing the same analysis as described above using a scanning electron microscope (SEM) instead of TEM.
  • SEM scanning electron microscope
  • the temperature at which the primary particle shape change occurs such as grain growth and sintering of high dielectric constant inorganic particles having a velovskite crystal structure is (a) much higher than the curing temperature of the resin
  • the particle size of the high dielectric constant inorganic particles having a crystal structure may be evaluated.
  • high dielectric constant inorganic particles having a Berobus forceite crystal structure can be directly observed using a TEM or SEM as described above, and obtained by image analysis of the obtained observation image. .
  • Laser diffraction type and laser scattering type particle size distribution analyzers include LA-920 manufactured by Horiba, Ltd., SALD-1100 manufactured by Shimadzu Corporation, MICROTRAC- UPA150 manufactured by Nikkiso Co., Ltd., and Sysmex Corporation. Zetasizer / Nano ZS.
  • (b) high dielectric constant inorganic particles having a velovskite crystal structure of the dielectric composition of the present invention The content of the child is preferably 30% by weight or more and 99% by weight or less with respect to the entire dielectric composition.
  • the content of the high dielectric constant inorganic particles having a velovskite crystal structure is 99% by weight or less with respect to the entire dielectric composition, the content of the resin is sufficiently high. Highly noisy.
  • the resin used in the present invention is a force that can be selected between thermoplastic and thermosetting resin.
  • the light transmittance of the dielectric composition in the entire wavelength range of 400 to 700 nm is 50%. In order to achieve at least%, it is preferable to use (a) a resin having a light transmittance of 50% or more. In order to greatly reduce the light transmittance of the dielectric composition, (a) the light transmittance of the resin is preferably large.
  • thermoplastic resin used in the present invention examples include polyphenylene ether, polyphenylene sulfide, polyether sulfone, polyether imide, liquid crystal polymer, polystyrene, polyethylene, and fluorine resin. be able to.
  • thermosetting resin used in the present invention for example, epoxy resin, phenol resin, siloxane resin, polyimide, acrylic resin, cyanate resin, benzocyclobutene resin, etc. are used. be able to. It is preferable to use a thermosetting resin because of its high heat resistance.
  • Epoxy resin is also preferred because of its high power, such as dispersibility of high dielectric constant inorganic particles with a velovskite crystal structure. Is done.
  • the epoxy resin is a resin having a polymer having two or more epoxy groups (oxysilane rings) in the molecular structure.
  • a curing agent generally used for epoxy resin can be added to the curing agent which may have the curing agent in the paste composition of the present invention.
  • curing agents include amine-based curing agents, acid anhydride-based curing agents, and phenol-based curing agents. These curing agents may be used in combination with each other.
  • a curing accelerator can be used together with the curing agent. The curing accelerator may be added alone to the resin without a curing agent.
  • Such curing accelerators include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanethyl-2-phenol.
  • metal chelate compounds such as di-limidazole, 1-cyanethyl-1-2-phenylimidazolium trimellitate, triphenylphosphine, and tris (2,4-pentadionato) cobalt.
  • acrylic resin can also be preferably used as (a) resin since it has a high transmittance for light having a wavelength of 400 to 700 nm.
  • High dielectric constant inorganic particles having a perovskite crystal structure are those having a perovskite crystal structure or a composite perovskite crystal structure. These include, for example, barium titanate, barium zirconate titanate, strontium titanate, calcium titanate, bismuth titanate, magnesium titanate, barium neodymium titanate, barium tin titanate, magnesium niobium Barium oxide, barium magnesium tantalate, lead titanate, lead zirconate, lead zirconate titanate, lead niobate, lead magnesium niobate, lead nickel niobate, tin tandate Examples thereof include kanolethung tungstate, magnesium tungsten bell, titanium dioxide, and the like.
  • the barium titanate system includes solid solutions based on barium titanate, in which some elements in the barium titanate crystal are replaced with other elements, or other elements are introduced into the crystal structure. It is a generic name. Others: barium zirconate titanate, strontium titanate, kanoleth titanate, bismuth titanate, magnesium titanate, barium neodymium titanate, barium tin titanate, barium magnesium niobate, magnesium tantalum Barium oxide, lead titanate, lead zirconate, lead zirconate titanate, lead niobate, lead magnesium niobate, lead nickel niobate, lead tungstate, calcium tungstate, magne The same is true for the lead lead tungstate, which is a generic term that includes the solid solution that uses each as a base material.
  • the high dielectric constant inorganic particles having a perovskite crystal structure may be used alone or in combination of two or more. Can be.
  • a compound mainly composed of barium titanate from the viewpoint of compatibility with commercial convenience.
  • shifters and depressors it is also possible to use a small amount of additives.
  • the high dielectric constant inorganic particles having a perovskite crystal structure it is preferable to use inorganic particles having a relative dielectric constant of 50 to 30,000.
  • high dielectric constant inorganic particles having a relative dielectric constant of 50 or more are used, a dielectric composition having a sufficiently large relative dielectric constant can be easily obtained. Also, if the relative dielectric constant of the high dielectric constant inorganic particles is 30000 or less, the temperature dependence of the relative dielectric constant of the dielectric composition will be reduced.
  • the relative permittivity of high dielectric constant inorganic particles having a perovskite crystal structure is (b) high dielectric constant inorganic particles having a perovskite crystal structure as raw material powder, heated and fired. It refers to the relative dielectric constant of the obtained sintered body.
  • the relative dielectric constant of the sintered body is measured, for example, by the following procedure.
  • a paste-like composition is prepared by mixing high dielectric constant inorganic particles with binder resin such as polybutyl alcohol, organic solvent or water, and then filled into a pellet molder, dried, and pelletized solid. Get a shape.
  • the binder resin By firing the pellet-like solid material at, for example, about 900 to 1200 ° C., the binder resin is decomposed and removed, and (b) high dielectric constant inorganic particles having a velovskite crystal structure are sintered, It is possible to obtain a sintered body having only an inorganic component. At this time, the porosity of the sintered body must be sufficiently small, and the porosity calculated from the measured density and the measured density must be 1% or less. Upper and lower electrodes are formed on the sintered pellet, and the dielectric constant is calculated from the measurement results of capacitance and dimensions.
  • Methods for producing high dielectric constant inorganic particles having a velovskite crystal structure include solid phase reaction method, hydrothermal synthesis method, supercritical hydrothermal synthesis method, sol-gel method, oxalate method, alkoxy The method such as the Do method is mentioned.
  • the shape of the high dielectric constant inorganic particles having a velovskite crystal structure includes a spherical shape, a substantially spherical shape, an elliptical sphere shape, a needle shape, a plate shape, a scale shape, a rod shape, a cube shape, etc. However, it is particularly preferable that the shape is spherical or substantially spherical.
  • the high dielectric constant inorganic particles having a spherical or substantially spherical (b) perovskite crystal structure have a small specific surface area. Therefore, the aggregation of the high dielectric constant inorganic particles during filling causes a decrease in resin fluidity. Because it's garlic.
  • the method for producing the paste composition of the present invention is not particularly limited, but can be preferably carried out by the following method.
  • the high dielectric constant inorganic particles (b) having a velovskite crystal structure used in the present invention have a small average particle size. Therefore, in order to achieve a uniform dispersion by solving the aggregation between the particles, a dispersion medium is used. A dispersion method using microbeads is effective.
  • the average particle diameter of the high dielectric constant inorganic particles having a velovskite crystal structure is not less than 0.002 m and not more than 0.06 m
  • the average particle diameter of the beads in the dispersion medium is not less than 0.02 mm. It is effective to use one of 1 mm or less. It is more effective when the average particle size of the beads of the dispersion media is 0.03 mm or more and 0.06 mm or less.
  • the average particle size of the beads is 0.1 mm or less, a sufficient dispersion effect can be obtained in which the frequency of contact of the high dielectric constant inorganic particles with the beads is high when the dispersion passes between the beads.
  • the average particle size of the beads is preferably 0.06 mm or less.
  • the average particle diameter of the beads is 0.02 mm or more, a shear stress sufficient to solve the aggregation of high dielectric constant inorganic particles whose individual momentum is sufficiently large can be obtained.
  • the average particle size of the beads is preferably 0.03 mm or more.
  • Evaluation of the average particle diameter of the beads can be performed, for example, by the following method.
  • the beads can be observed using an optical microscope. Place beads (sample) on a transparent plate such as glass, apply light from the lower force of the transparent plate, observe the transmitted light image through the objective lens, and evaluate the particle size of the beads. Any 100 beads can be observed, and the average particle diameter determined for each bead can be used as the average particle diameter of the beads.
  • the bead particle size can be obtained by performing spherical approximation on the observed image of the beads using various image processing software. Specifically, a digital image obtained by a CCD camera attached in place of the eyepiece of the microscope is processed on a computer. As such a CCD camera, there is ADP-240 manufactured by Flowbell Co., Ltd., and software that can perform such image processing includes FlvFs manufactured by Flowbell Co., Ltd.
  • the beads as the dispersion medium those made of metal, ceramic or glass can be preferably used. These specific materials include stainless steel, iron, copper, chromium, nickel, titanium, silicon nitride, silicon carbide, alumina, zircoure, zirconium silicate, and titanium. Examples thereof include barium nitrate, silicate glass, and quartz. In particular, Zircoyu beads with high hardness can be suitably used. It is preferable to use yttria stable Zircoyu because of its high strength.
  • the dispersion method using beads in the present invention is not particularly limited, and examples of the apparatus to be used include a ball mill, a homogenizer, and a pin rotor bead mill.
  • a ball mill Yasaza ⁇ Fine Star Co., Ltd. “Star Mill” (trade name) and the like are particularly suitable for dispersing fine particles.
  • These two types of bead mills are formed by a cylindrical stator that forms an outer wall called a vessel in which high-permittivity inorganic particles are dispersed, and a rotor that rotates at the center of the stator. The Then, a dispersion liquid in which high dielectric constant inorganic particles and an organic solvent are mixed is sent between the stator and the rotor.
  • Multiple blades protrude radially from the rotor.
  • Filling the vessel with beads that are dispersion media and rotating the rotor causes the beads to be agitated by the blade, and the beads give shearing stress to the high-permittivity inorganic particles in the dispersion, resulting in a high permittivity.
  • Inorganic particles are dispersed in fine particles.
  • the dispersion once passed through the vessel is circulated and repeatedly sent into the vessel to gradually disaggregate the high dielectric constant inorganic particles in the dispersion and advance the dispersion.
  • the size of the high dielectric constant inorganic particles when present in the dispersion is large. This is the median diameter (50% particle diameter) when the distribution of the primary particles of several high dielectric constant inorganic particles in the dispersion is based on the volume.
  • High dielectric constant in dispersion Liquids can measure the average particle size of inorganic particles by static light scattering method or dynamic light scattering method using laser. When evaluating by using the dynamic light scattering method, it is preferable.
  • An example of a particle size measuring apparatus using this method is “Nano-Trag” UPA-EX150 (trade name) manufactured by Nikkiso Co., Ltd.
  • the bead filling amount in the vessel of the bead mill is preferably 20% by volume or more and 85% by volume or less of the vessel volume. If the bead filling is 20% by volume or more, Since the gap between adjacent beads is narrow, the frequency with which the high dielectric constant inorganic particles in the dispersion come into contact with the beads is high and the dispersion proceeds efficiently in a short time. In order to further enhance this effect, the bead filling amount is more preferably 50% by volume or more. On the other hand, the bead filling amount is 8
  • the volume is 5% by volume or less, there is a sufficient gap between adjacent beads, so that the dispersion can be smoothly fed without clogging the vessel.
  • the charge Hamaryou beads is 85 volume 0/0 or less, the amount of heat generated by the friction between beads or between beads and the vessel of the stay coater or rotor, is small, constitute a dispersion of a dispersing agent The material is not easily altered.
  • the filtering function does not work sufficiently, and the possibility of beads being mixed into the dispersion recovered from the vessel increases. If the filling amount is less than 85% by volume, the beads are not mixed or very small. Furthermore, in order to achieve this effect greatly, it is more preferable that the filling amount of beads is 75% by volume or less! /.
  • the rotational peripheral speed of the rotor of the bead mill is preferably 8 mZs or more and 15 mZs or less.
  • the rotational peripheral speed in the present invention is the speed at which the tip of the blade that also projects the rotor force rotates.
  • the rotational peripheral speed is 8 mZs or more, sufficient shear stress is obtained to disperse the high dielectric constant inorganic particles to an average particle diameter of 0.02 m or less.
  • the rotational speed is 8 mZs or more, beads are not mixed into the recovered dispersion in a bead mill that filters beads by centrifugal force.
  • the rotational peripheral speed is 15 mZs or less, the amount of heat generated by friction between the beads or between the beads and the vessel's stator or rotor is small, so that the dispersion is not easily altered.
  • the temperature of the dispersion during the dispersion treatment is preferably 10 ° C or higher and 40 ° C or lower.
  • the temperature of the dispersion during the dispersion treatment is the temperature of the dispersion immediately after the Bessel force is delivered.
  • the dispersion temperature is 40 ° C or lower, the volatilization amount of the organic solvent in the dispersion is small, and the concentration change of the composition of the high dielectric constant inorganic particles and the dispersant in the dispersion is small.
  • the liquid temperature is higher than 40 ° C, the concentration of the dispersion may change, and the dispersibility of the dispersion may deteriorate.
  • the dispersibility of a dispersion can be affected by pH.
  • the pH value of a dispersion varies with changes in the concentration of the dispersion. Therefore, the temperature control of the dispersion This is one of the important conditions for controlling the H value and the dispersibility of high dielectric constant inorganic particles in the dispersion.
  • the dispersion contains a material that chemically reacts with temperature or a material that changes quality with temperature, it is preferable to control the temperature during dispersion because the characteristics of the dispersion change due to temperature change. In order to further enhance this effect, the temperature of the dispersion is preferably 35 ° C or lower.
  • the temperature of the dispersion during the dispersion treatment is lower than 10 ° C, condensation occurs in the container that collects the dispersion sent by the vessel force, and moisture is mixed into the dispersion, thereby improving the characteristics of the dispersion. Since there is a possibility of deterioration, the temperature of the dispersion during dispersion treatment is preferably 10 ° C or higher. In addition, when the temperature of the dispersion is 10 ° C or higher, the viscosity of the dispersion becomes low, so that the kinetic energy of the beads can be avoided and the dispersion efficiency is increased. In order to further enhance this effect, the temperature of the dispersion is preferably 20 ° C or higher.
  • the viscosity of the dispersion during the dispersion treatment is preferably ImP's or more and lOOmP's or less.
  • the viscosity of the dispersion during the dispersion treatment is the viscosity measured at 5 minutes after sampling after sampling the dispersion with Bessel force.
  • the measurement temperature is 25 ° C.
  • the viscosity can be measured using, for example, a viscometer RE-115L manufactured by Toki Sangyo Co., Ltd.
  • the beads in the bead mill vessel acquire kinetic energy from the rotating rotor blades and generate shear stress by contact with the high dielectric constant inorganic particles in the dispersion.
  • the viscosity of the dispersion is high, the kinetic energy is greatly reduced in the solvent before the beads come into contact with the high dielectric constant inorganic particles, and sufficient shear stress is applied to the high dielectric constant inorganic particles.
  • the viscosity of the dispersion during dispersion treatment is ⁇ ⁇ ⁇ s or less.
  • the viscosity of the dispersion during the dispersion treatment is more preferably 20 mP's or less.
  • the viscosity of the dispersion is not less than ImP's, the viscosity of the paste composition prepared by mixing the produced dispersion and the resin is not lowered.
  • the high dielectric constant inorganic particles are dispersed in a bead mill.
  • a predetermined amount of beads having a predetermined particle diameter is put into a bead mill vessel, and while rotating the rotor, the same organic solvent as that used for the dispersion is fed into the vessel Z and circulated through the beads. If organic solvent stains are noticeable during cleaning, replace with a new organic solvent and continue washing until organic solvent stains are not noticeable.
  • the circulated organic solvent is recovered, and then the mixed liquid of the high dielectric constant inorganic particles, the dispersant, and the organic solvent is fed into the vessel Z for dispersion treatment.
  • the concentration of the dispersion liquid sent out from the vessel at first is reduced by the organic solvent remaining in the vessel, the concentration of the dispersion liquid sent out from the vessel becomes constant according to the size of the vessel. Remove the first stream until.
  • the dispersion treatment is small at a time, and may be carried out in beads, or may be carried out by changing the size of the beads step by step. For example, dispersion may be performed with beads having a particle diameter of 0.5 mm until the average particle diameter of the high dielectric constant inorganic particles reaches about 100 ⁇ m, and then with finer beads.
  • the dispersion treatment until the average particle size reaches about 0.1 m is called coarse dispersion
  • the subsequent dispersion treatment to a fine particle size of 0.06 m or less is called main dispersion.
  • the coarse dispersion and the main dispersion can be performed by different apparatuses, for example, the coarse dispersion is performed by a homogenizer and the main dispersion is performed by a bead mill. In the bead mill, when the sample is fed to the mill body through a tube and the coarse dispersion is performed using the bead mill, particles with a large particle size may be clogged in the liquid feed tube. This can be avoided if the coarse dispersion is performed with another device such as a homogenizer.
  • the peripheral speed of the tip of the rotary blade is set to 1 to: LOm Zs, and the treatment is performed for about 1 hour. Since heat is generated during the homogenizer treatment, treatment in an ice bath is preferred.
  • the homogenizer that can be used include “Etacel Ode” (trade name) (manufactured by Nippon Seiki Seisakusho Co., Ltd.).
  • the viscosity of the dispersion during the dispersion treatment depends on the dispersibility of the high dielectric constant inorganic particles and the efficiency of the dispersion treatment. It is preferable to understand the viscosity change of the dispersion as the dispersion process progresses. For example, the change in viscosity over time can be grasped by sampling the dispersion at regular intervals and measuring the viscosity. If the viscosity of the dispersion increases during the dispersion treatment, an appropriate amount of an organic solvent, a dispersant, a pH adjuster, or the like can be added to the circulating dispersion to lower the viscosity.
  • the temperature of the dispersion during the dispersion treatment can be controlled by the temperature and flow rate of the cooling water for cooling the outside of the vessel and the circulation rate of the dispersion.
  • the temperature rise of the dispersion tends to occur when the viscosity of the dispersion during the dispersion treatment is high. If the temperature of the dispersion is too high, the dispersion may be altered.
  • the solid content concentration of the dispersion is preferably 10% by weight or more, more preferably 20% by weight or more.
  • the solid content concentration of the dispersion is preferably 60% by weight or less, more preferably 40% by weight or less.
  • the solid content concentration of the dispersion of the present invention is the ratio of components other than the organic solvent contained in the dispersion to the total amount of the dispersion.
  • the solid content concentration of the dispersion When the solid content concentration of the dispersion is 20% by weight or more, a thick film of 1 ⁇ m or more is formed when the dielectric composition film is formed using the paste composition in which the dispersion and the resin liquid are mixed. I'll do it.
  • the solid content concentration of the dispersion if the solid content concentration of the dispersion is 60% by weight or less, beads can be easily separated when using a filtering type bead mill by centrifugal separation! /.
  • the solid content concentration of the dispersion when the solid content concentration of the dispersion is 40% by weight or less, the high dielectric constant inorganic particles in the dispersion and the beads frequently come into contact with each other because the viscosity of the dispersion is low. Is easier to solve.
  • the high dielectric constant inorganic particles in the dispersion can be efficiently dispersed, and the particle size distribution is close to the primary particle diameter.
  • the transmittance is high and the film is easy to obtain.
  • the rotational peripheral speed of the rotor of the bead mill may be constant or may be changed in stages during the dispersion process. Since the rotational peripheral speed of the rotor may affect the temperature of the dispersion during dispersion processing, if the rotational peripheral speed is changed during dispersion processing, the temperature rise of the dispersion increases. It is preferable not to be too much.
  • the liquid feed pump is operated before the rotor is rotated to start circulation of the dispersion liquid, and then the beads are mixed into the dispersion liquid sent from the vessel. Therefore, the pump should be operated after rotating the rotor.
  • the dispersion treatment time is appropriately set according to the type and composition ratio of materials constituting the dispersion liquid such as high dielectric constant inorganic particles, organic solvent, and dispersant. For example, sampling the dispersion at regular intervals and measuring the average particle size of the high-permittivity inorganic particles in the dispersion makes it possible to grasp the change over time in the dispersion state and determine the end point of the dispersion process. It is preferable because it can be done. In the case of a composition with good dispersibility, a dispersion treatment time of about 30 minutes is sufficient, but depending on the composition, the dispersion treatment may be performed for 24 hours or more. If the dispersion treatment time is long, the composition ratio of the dispersion may change and the dispersibility may change due to volatilization of the material constituting the dispersion, such as an organic solvent. Add necessary ingredients and adjust the composition.
  • materials constituting the dispersion liquid such as high dielectric constant inorganic particles, organic solvent, and dispersant.
  • Mixing of the dispersion liquid and the resin solution containing the resin and the resin composition containing the resin and the organic solvent is performed by injecting the dispersion liquid into the resin solution containing the resin or the resin and the organic solvent until a predetermined amount is reached.
  • the resin may be a liquid resin or a resin solution in which solid resin is dissolved in a solvent.
  • the state of the resin solution containing the resin and the organic solvent at this time may be a resin solution obtained by diluting a liquid resin or a resin obtained by dissolving solid resin in a solvent with an organic solvent.
  • a high dielectric constant inorganic material can be obtained only by a method of mixing a dispersion prepared separately as described above and a resin, or a resin solution containing a resin and an organic solvent.
  • a method in which the particles are directly dispersed in a liquid resin or a resin solution can also be used. Even when the high dielectric constant inorganic particles are directly dispersed in a liquid resin or a resin solution, a bead mill can be preferably used.
  • a ball mill or a roll mill may be used. it can.
  • bubbles are mixed in the paste composition due to the mixing treatment, if the bubbles are removed by standing or using a stirring defoaming machine, etc., the foam composition manufactured using the paste composition Bubbles can be prevented from being mixed in.
  • a paste composition in which high-permittivity inorganic particles are dispersed in a liquid resin or a resin solution is prepared, and the paste
  • a method of obtaining a dielectric composition by applying the composition to an adherend (for example, a substrate) and performing an organic removal solvent and solidification.
  • solidification methods include solidification by heat, light, and the like.
  • the adherend is heated at the same time as the paste composition without decomposing or removing the resin. It is preferable to heat at a temperature of 500 ° C.
  • the adherend to be applied is not limited to a rigid substrate such as a glass substrate or a glass epoxy substrate, and may be a flexible substrate such as a resin film or a metal foil such as copper.
  • the porosity of the dielectric composition of the present invention is preferably 30% by volume or less. More preferably, it is 20% by volume or less, and still more preferably 10% by volume or less. When the porosity is 30% by volume or less, Rayleigh scattering due to the voids can be reduced, and the transmittance can be easily increased. When the porosity is 20% by volume or less, the insulation resistance is greatly reduced. If the porosity is 10% by volume or less, the leakage current will be reduced.
  • the method for reducing the porosity to 30% by volume or less can be achieved by, for example, appropriately selecting a resin, high dielectric constant inorganic particles, or an organic solvent from the above. Specifically, this can be achieved, for example, by containing at least one organic solvent having a paste composition strength boiling point of 160 ° C. or higher.
  • the method for measuring the porosity of the dielectric composition can be appropriately selected according to the application, such as a gas adsorption method, a mercury intrusion method, a positron annihilation method, and a small-angle X-ray scattering method.
  • the power of the paste composition of the present invention is not particularly limited. Shape, rod shape, spherical shape, and the like can be selected according to the application, but a film shape is particularly preferable.
  • the membrane here includes a film, a sheet, a plate, a pellet and the like.
  • pattern formation such as via hole formation for conduction, adjustment of internal stress or provision of heat dissipation function, such as impedance and capacitance.
  • the transparent electrode used in the present invention is not particularly limited as long as the light transmittance in the entire wavelength range of 400 to 700 nm is 50% or more and 100% or less. However, since the light transmittance is high, indium tin Acid oxide (ITO), indium zinc oxide, tin oxide, indium oxide, zinc oxide, and other elements doped with these elements can be used. If the light transmittance of the transparent electrode is less than 50%, the transparency of the capacitor used in a display or the like is insufficient, and the information display characteristics are insufficient.
  • ITO indium tin Acid oxide
  • a capacitor having an interlayer insulating film obtained from the dielectric composition of the present invention and a transparent electrode having a light transmittance of 50% or more and 100% or less over a wavelength range of 400 to 700 nm is a wavelength of 400 to 700 nm. Since it has high light transmittance, it is possible to display information by light passing through it as a transparent capacitor.
  • the capacitor of the present invention has at least an interlayer insulating film and a transparent electrode, and the interlayer insulating film exists between the electrodes.
  • the interlayer insulating film exists between the electrodes.
  • at least one of the two electrodes must be transparent.
  • the other is an opaque electrode such as metal.
  • the film thickness is arbitrary as long as the capacitance and light transmittance of the capacitor using the dielectric composition as an interlayer insulating film satisfy desired values. However, it is preferably 0.05 ⁇ m or more, 20 ⁇ m or less, more preferably 0 .: L m or more, or 5 m or less. It is. In order to secure a large capacitance as a capacitor, it is preferable that the film thickness is small. However, if it is thicker than 0.05 m, it is easy to obtain electrical insulation that is difficult to generate pinholes.
  • the electrostatic tangent is unlikely to increase after the PCT (pressure tacker test), which is an accelerated durability test. If the film thickness is 20 m or less, it is easy to obtain a sufficiently large capacitance as a capacitor. When the film thickness is 5 m or less, it is easy to obtain a sufficiently high light transmittance.
  • Temperature change and in-plane variation of capacitance of capacitor using dielectric composition as interlayer insulating film The smaller one is preferable in terms of circuit design.
  • the temperature change is preferably as small as possible.
  • it is preferable to satisfy the X7R characteristic (capacitance temperature change rate within 15 to 125 ° C is within ⁇ 15%).
  • the in-plane variation of the capacitance is preferably 5% or less of the average value (capacitance average value 5% ⁇ capacitance ⁇ capacitance average value + 5%).
  • the dielectric composition of the present invention can be used in addition to an interlayer insulating material for capacitors sandwiched between electrodes.
  • it can be used as a material in contact with the electrolyte of electrowetting type electronic paper.
  • the dielectric composition film of the present invention is formed so that the surface opposite to the surface in contact with the electrolytic solution is in contact with the electrode.
  • the dielectric composition of the present invention is used in contact with a liquid substance such as an electrolytic solution, as in the case of an electrowetting type electronic paper, such a dielectric composition is applied to the dielectric composition. It is preferable to prevent liquid substances from seeping in. In order to suppress the penetration, it is preferable to use (a) a resin that has little influence on moisture absorption and water absorption.
  • Low water absorption epoxy resins include xylylene novolak type, biphenyl novolak type, dicyclopentagen type, dicyclopentadiene phenol novolak type, diphenylmethane type, naphthol aralkyl type, naphthol novolak type, tetrafunctional Examples thereof include an epoxy resin having a naphthalene type, a naphthalene skeleton, and a biphenyl skeleton.
  • Examples of the low water-absorbing curing agent include phenol-based novolac resin.
  • a stabilizer, a dispersant, a sedimentation dispersant, a plasticizer, an antioxidant, a cross-linking agent, a cross-linking accelerator, a dissolution inhibitor, and a dissolution control agent are included as necessary.
  • Additives such as surfactants, surface modifiers and antifoaming agents may be added.
  • additives such as a plasticizer, a crosslinking agent, a surfactant, a surface modifier, and an antifoaming agent are added to the paste composition. It is preferable to contain.
  • More preferable examples of the additive include a fluorine-based surfactant and a fluorine-based surface modifier.
  • Fluorosurfactants include "Mechanical” manufactured by Dainippon Ink & Chemicals, Inc. Gaffag, (product name) F-493, F-494, F-470, F-475, F-477, F-478, F-482, F-487, F-172D, "Defenser, (product name) Examples include MCF-350SF and “Novec” (trade name) FC-4430 manufactured by Sumitomo 3M Limited.
  • fluorine on the film surface of the dielectric composition in addition to the above-mentioned additive contained in the paste composition, fluorine on the film surface of the dielectric composition
  • a surface-active agent, a fluorine-based surface modifier, a fluorine-based coating agent, etc. may be applied in an extremely thin thickness of 1 ⁇ m or less to form a transparent film on the film surface of the dielectric composition.
  • the film thickness of the transparent film is preferably 0. or less, more preferably 0. or less. Since the relative dielectric constant of the transparent film is lower than that of the dielectric composition, it is preferable that the transparent film is thin in order to ensure a large capacitance as a capacitor. When the film thickness of the transparent coating is 0 or less, it is easy to obtain a sufficiently large capacitance as a capacitor. Sufficiently high light transmittance can be easily obtained when the film thickness of the transparent film is 0.5 ⁇ m or less!
  • a microspectrophotometer MCPD-2000 manufactured by Otsuka Electronics Co., Ltd.
  • A a light transmittance of 400 to 700 nm on the glass substrate
  • B a sample with a dielectric composition formed on the glass substrate.
  • the light transmittance at a wavelength of 400 to 700 nm was measured.
  • the light transmittance of the dielectric composition of the present invention was a difference spectrum obtained by subtracting the light transmittance of (A) from the light transmittance of (B). Soda lime glass was used for the glass substrate.
  • the value of a wavelength of 400 nm was used as a representative value for the light transmittance in the examples of the present invention.
  • the light transmittance that shows a minimum value other than the wavelength of 400 nm the light transmittance showing the smallest value in the wavelength range of 400 to 700 nm and the wavelength at which the value was obtained are listed.
  • the capacitance of the dielectric composition is determined by impedance analyzer 4294A and sample Measurement was performed using Ruder 16451B (both manufactured by Agilent Technologies).
  • a capacitance measurement sample was prepared as follows, and the relative dielectric constant at frequencies lkH and 1 MHz was obtained.
  • a coating film of a dielectric composition was formed on the entire surface of an aluminum substrate having an area of 6 cm ⁇ 6 cm and a thickness of 0.3 mm. This coating film was formed by appropriately heating the spin-coated paste composition, evaporating the organic solvent, and curing the resin. Subsequently, an aluminum electrode was formed on the coating film by vapor deposition.
  • the aluminum electrode is a measurement electrode having a circular pattern with a diameter of 10 mm and a guard electrode having a ring pattern with an inner diameter of 11.5 mm.
  • the film thickness of the dielectric composition was in the range of 10 ⁇ m to 20 ⁇ m.
  • a portion sandwiched between the measurement electrode and the aluminum substrate is a measurement target region.
  • the relative dielectric constant was calculated from the capacitance and dimensional force of the measurement target area.
  • electrostatic capacity measurement samples were produced as follows, and the relative dielectric constant at the frequency lkH was determined.
  • a coating film of the dielectric composition was formed on a glass substrate with a transparent electrode. This coating film was formed by appropriately heating the spin-coated paste composition, evaporating the organic solvent, and curing the resin. Subsequently, an aluminum electrode was formed on the coating film by vapor deposition.
  • the glass substrate had an area of 6 cm ⁇ 6 cm, a thickness of 0.7 mm, and an ITO (Indium Tin Oxide) electrode was used as the transparent electrode.
  • ITO Indium Tin Oxide
  • the ITO electrode As the ITO electrode, a film thickness of 150 ⁇ 10 nm, a resistance value of 8 to 20 ⁇ , and a transmittance ⁇ 85% (measurement wavelength: 550 nm) were used.
  • the resistance value of the ITO electrode was measured with a four-terminal tester.
  • the aluminum electrode is a measurement electrode with a circular pattern with a diameter of 10 mm and a guard electrode with a ring pattern with an inner diameter of 11.5 mm.
  • the thickness of the dielectric composition was 1 ⁇ m except for Example 68, and 1.1 ⁇ m for Example 68.
  • the area between the measurement electrode and ITO electrode is the measurement area.
  • the film thickness of the coating film was determined by measuring the level difference between the coating film and the substrate using the Surfcom 1400 (manufactured by Tokyo Seimitsu Co., Ltd.) by the stylus method.
  • the average particle size of the high dielectric constant inorganic particles was determined by the following method. High-permittivity inorganic particles dispersed in an organic solvent and loosened in a coagulated state are dropped onto a TEM observation mesh, the organic solvent is evaporated, and transmission electron microscope (TEM) observation is performed. . Transmission electron microscope Microscope (TEM) observation was performed at magnifications of 100000 and 200,000 times. The obtained high-permittivity inorganic particles were analyzed with a transmission electron microscope using an image analysis software (Scion Image, manufactured by Scion Corporation), and the area of each high-permittivity inorganic particle image was determined. Each inorganic filler image thus obtained was approximated as a circle, and the area force particle size was calculated. The particle diameter was calculated for all the high dielectric constant inorganic particles in the photograph using a transmission electron micrograph in which 100 or more particles were photographed, and the average value was taken as the average particle diameter.
  • the particle size distribution of the dispersion was measured using a particle size distribution measuring device Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.). For the particle size distribution, values of 50% diameter and 90% diameter were used.
  • the 50% diameter is the cumulative median point (Median diameter) of the particle diameter at which the cumulative curve is 50% when the total curve of the aggregate of powders is 100%.
  • the 90% diameter is the particle diameter at which the cumulative force curve is 90%.
  • the leakage current of the dielectric composition was measured as follows.
  • a dielectric composition was formed on a glass substrate with a transparent electrode.
  • the glass substrate had an area of 6cmX6cm, a thickness of 0.7mm, and the transparent electrode was an ITO (Indium Tin Oxide) electrode.
  • ITO Indium Tin Oxide
  • As the ITO electrode a film thickness of 150 ⁇ 10 nm, a resistance value of 8 to 20 ⁇ , and a transmittance ⁇ 85% (measurement wavelength: 550 nm) were used.
  • the resistance value of the ITO electrode was measured with a four-terminal tester.
  • a coating film of the dielectric composition was formed on a glass substrate with an ITO transparent electrode. An aluminum electrode was formed on this coating film by vapor deposition.
  • the aluminum electrode is a circular pattern electrode with a thickness of 300 nm and a diameter of 2.5 mm.
  • the area between the transparent electrode and the aluminum electrode is the measurement target.
  • a voltage of 2 V was applied between the transparent electrode and the aluminum electrode, and the current was measured 20 seconds after the voltage was applied.
  • an electrometer / high resistance system 6517A type manufactured by Keithley Instruments Inc. was used.
  • a coating film of the dielectric composition was formed on a glass substrate with a transparent electrode.
  • the glass substrate with a transparent electrode was the same as the above (6).
  • a potassium chloride aqueous solution with a concentration of ImM is dropped onto the coating film of the dielectric composition, and the upper electrode is disposed through the salty potassium aqueous solution, and the upper electrode Z potassium chloride aqueous solution Z dielectric composition ZITO transparent An electrode sandwich structure was formed. Droplets of the aqueous potassium chloride solution an area 3 mm 2 at the time of forming the San Doitsuchi structure was adjusted to a thickness 0. 7 mm.
  • Measurement Target region a portion sandwiched between the upper and lower electrode with an area of 3 mm 2 portions in contact with Shioi ⁇ aqueous potassium.
  • a rectangular voltage pulse with a potential difference of 5 V and a width of 60 s was applied between the upper electrode and the ITO transparent electrode.
  • the voltage holding ratio (VHR) was calculated from equation (1).
  • V is the potential difference between the upper electrode and the ITO transparent electrode when a rectangular voltage pulse is applied, and V is the voltage when 16.6 ms elapses after the pulse falls.
  • FIG. 1 Represents the potential difference between electrodes.
  • Figure 1 shows the relationship between each potential difference and the applied rectangular voltage pulse.
  • the measurement of the voltage holding ratio was carried out 30 seconds after dropping a salty potassium aqueous solution having a concentration of ImM.
  • the average value of the three measurements was taken as the voltage holding ratio (VHR) of the dielectric composition.
  • VHR V / V (1).
  • Barium titanate manufactured by Cabot, Inc., K-Plus 16: average particle size 0.06 / ⁇ ⁇
  • dispersant (acid having phosphate ester skeleton Copolymer having a group, BYK-W9010, manufactured by BYK-Chemichi 'Japan Co., Ltd. 21. 4 parts by weight were kneaded using ULTRA AVEX Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain dispersion A-1. .
  • Epoxy resin Japan Epoxy Resin Co., Ltd., “Epicoat” (trade name) YX8000) 6.8 parts by weight, Hardener (Shin Nihon Rika Co., Ltd., “Licacid” (trade name) ⁇ 700) 4.7 2 parts by weight, 1.2 parts by weight of ⁇ -butyrorataton were mixed to obtain an epoxy resin solution B-1.
  • Epicoat® 8000 is a liquid epoxy resin having an epoxy equivalent of 205 gZe q.
  • C-1 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-1 is 90% by weight with respect to the total amount of the dielectric composition.
  • the paste composition C 1 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. line Then, a dielectric composition (cured film) having a film thickness of 1.4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 50% (wavelength 400 nm).
  • the porosity of the sample was measured and found to be 3%.
  • the porosity was measured by the following method.
  • a coating film of the dielectric composition was formed on the entire surface of the silicon wafer. This coating film was formed by appropriately heating the spin-coated paste composition, evaporating the organic solvent, and curing the resin. Five pieces of this were cut into a size of about 2 cm ⁇ 2.5 cm. Next, a more accurate size was measured using a caliper to determine the membrane area. The film volume and the bulk volume A of the film obtained by the film thickness measurement method of (3) above were determined.
  • pore volume B was determined by a mercury intrusion method (measurement pressure range: 100 kPa to 207 MPa, cell volume 15 cm 2 ) using a pore sizer 9320 manufactured by Micromeritex Corporation.
  • Paste composition C-1 was applied on a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried. A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative dielectric constant at 1 MHz was 38.
  • Paste composition C-1 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. And cured to obtain a dielectric composition (cured film) having a thickness of 0.8 ⁇ m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 65%.
  • Paste composition C-1 was applied onto a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours. Curing was performed to obtain a dielectric composition (cured film) having a thickness of 0.4 m. The film thickness was adjusted by adjusting the spin speed during spin coating. Light transmittance of this dielectric composition (wavelength 400nm) was 85%.
  • Paste composition C-1 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. And cured to obtain a dielectric composition (cured film) having a thickness of 0.1 ⁇ m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 93% (wavelength 400 nm).
  • Object C2 was made.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 2 is 87% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-2 was applied on a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 55% (wavelength 400 nm).
  • a dielectric composition was prepared from the paste composition C-2, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 36.
  • Paste composition C 3 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 3 is 77% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C3 was applied onto a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then dried at 175 ° C for 4 hours. A heat treatment was performed and cured to obtain a dielectric composition (cured film) having a film thickness of 1.4 / zm. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 70%.
  • a dielectric composition was prepared from paste composition C-3. When the dielectric properties were evaluated, the relative dielectric constant at 1 MHz was 18.
  • Paste composition C 4 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 4 is 68% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C4 was coated on a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then dried at 175 ° C for 4 hours. A heat treatment was performed and cured to obtain a dielectric composition (cured film) having a film thickness of 1.4 / zm. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 80% (wavelength 400 nm).
  • a dielectric composition was prepared from the paste composition C-4, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 12.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 5 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C5 was applied onto a glass substrate using a spin coater, dried by heat treatment at 80 ° C for 15 minutes using an oven, and then cured by heat treatment at 175 ° C for 4 hours.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 75%.
  • a dielectric composition was prepared from the paste composition C-5, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 35.
  • Example 9 Paste composition C-5 was applied onto a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours.
  • V was cured to obtain a dielectric composition (cured film) having a thickness of 0.8 ⁇ m.
  • the film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 80% (wavelength 400 nm).
  • Paste composition C-5 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. Curing was performed to obtain a dielectric composition (cured film) having a thickness of 0.4 m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 92%.
  • Paste composition C-5 was applied onto a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours.
  • V was cured to obtain a dielectric composition (cured film) having a thickness of 0.1 ⁇ m.
  • the film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 96% (wavelength 400 nm).
  • Material C6 was made. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 6 is 87% by weight with respect to the total amount of the dielectric composition.
  • This paste yarn composite C-6 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours. And was cured to obtain a dielectric composition (cured film) having a thickness of 1.4 m. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 78%.
  • a dielectric composition was prepared from the paste composition C-6 in the same manner as in Example 1, and the dielectric characteristics were evaluated. The relative dielectric constant at 1 MHz was 32. [0114] Example 13
  • Paste composition C 7 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 7 is 77% by weight with respect to the total amount of the dielectric composition.
  • This paste yarn composite C 7 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours. And cured to obtain a dielectric composition (cured film) having a film thickness of 1.4 / zm. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 83% (wavelength 400 nm).
  • a dielectric composition was prepared from the paste composition C-7, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 17.
  • Paste composition C 8 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 8 is 68% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C8 was applied on a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then dried at 175 ° C for 4 hours. A heat treatment was performed and cured to obtain a dielectric composition (cured film) having a film thickness of 1.4 / zm. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 88% (wavelength 400 nm).
  • a dielectric composition was prepared from the paste composition C-8, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 12.
  • Barium titanate (Buhler P ARTEC GmbH, Barium titanate: average particle size 0.022 m (manufacturer-specific average particle size 0.018 m) 429 parts by weight, ⁇ -butyrolatatone 1050 parts by weight, dispersant (phosphoric acid A copolymer having an acid group with an ester skeleton, manufactured by BYK-Chiichi Japan Co., Ltd., BYK-W9010) 21. 4 parts by weight are kneaded using an ultra-pex mill (manufactured by Kotobuki Kogyo Co., Ltd.) and dispersed. A-3 was obtained, and 150 parts by weight of dispersion A-3 was obtained.
  • a paste composition C 9 in which the amount of the organic solvent contained was 69% by weight based on the total amount of the paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 9 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-9 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes and dried, then heat-treated at 175 ° C for 4 hours to cure, and the film thickness 1 A dielectric composition (cured film) of 4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 80% (wavelength 400 nm).
  • Paste composition C-9 was applied onto a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried.
  • a dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours.
  • An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative dielectric constant at 1 MHz was 32.
  • Paste composition C-9 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. And cured to obtain a dielectric composition (cured film) having a thickness of 0.8 ⁇ m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 83% (wavelength 400 nm).
  • Paste composition C-9 was applied onto a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours. Curing was performed to obtain a dielectric composition (cured film) having a thickness of 0.4 m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 94% (wavelength 400 nm).
  • Paste composition C-9 was applied onto a glass substrate using a spin coater, heat treated at 80 ° C for 15 minutes using an oven, dried, and then heat treated at 175 ° C for 4 hours. V was cured to obtain a dielectric composition (cured film) having a thickness of 0.1 ⁇ m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance of 97% (wavelength 400 nm).
  • Material C-10 was prepared.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-10 is 87% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-10 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours.
  • the dielectric composition (cured film) having a thickness of 1.4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 83% (wavelength 400 nm).
  • a dielectric composition was prepared from the paste composition C-10, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 30.
  • paste composition C-11 150 parts by weight of dispersion A-3 and 12 parts by weight of epoxy resin solution B-1 were mixed using a ball mill to prepare paste composition C-11.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-11 is 77% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-11 was applied on a glass substrate using a spin coater, dried by heat treatment at 80 ° C for 15 minutes using an oven, and then cured by heat treatment at 175 ° C for 4 hours. Thus, a dielectric composition (cured film) having a thickness of 1.4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 85% (wavelength 400 nm).
  • a dielectric composition was prepared from the paste composition C-11 in the same manner as in Example 1, and the dielectric properties were evaluated.
  • the relative dielectric constant at 1 MHz was 16.
  • paste composition C-12 150 parts by weight of dispersion A-3 and 20 parts by weight of epoxy resin solution B-1 were mixed using a ball mill to prepare paste composition C-12. Induction obtained by curing C-12 The content of the high dielectric constant inorganic particles in the electric composition is 68% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-12 was applied onto a glass substrate using a spin coater, dried by heat treatment at 80 ° C for 15 minutes using an oven, and then cured by heat treatment at 175 ° C for 4 hours. Thus, a dielectric composition (cured film) having a thickness of 1.4 m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 90% (wavelength 400 nm). In the same manner as in Example 1, a dielectric composition was prepared from the paste composition C-12, and dielectric properties were evaluated. As a result, the relative dielectric constant at 1 MHz was 12.
  • Strontium titanate manufactured by TPL, Inc., HPS-2000: average particle size 0.045 m
  • dispersing agent copolymer with phosphate group having acid group BYK-W9010 manufactured by BYK-Chemichi 'Japan Co., Ltd. 21.4 parts by weight were kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain dispersion A-4.
  • C13 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 13 is 90% by weight with respect to the total amount of the dielectric composition.
  • the paste composition C-13 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then dried at 175 ° C for 4 minutes. It was cured by heat treatment for a time to obtain a dielectric composition (cured film) having a thickness of 1.4 m. The film thickness was adjusted by adjusting the spin speed during spin coating. Light transmittance of this dielectric composition (wavelength
  • Paste composition C-13 was applied onto a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then dried at 175 ° C.
  • a dielectric composition (cured film) was obtained by curing with heat treatment for a period of time.
  • An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative permittivity at 1 MHz was 27.
  • Paste composition C-9 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. Curing was performed to obtain a dielectric composition (cured film) having a thickness of 2 ⁇ m. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 70%.
  • Barium titanate (Buhler P ARTEC GmbH, Barium titanate: average particle size 0.022 m (manufacturer-specific average particle size 0.018 m) 224 parts by weight, ⁇ -butyrolatatone 165 parts by weight, dispersant (phosphoric acid 11 parts by weight of a copolymer having an acid group having an ester skeleton, BYK-W9010, manufactured by Bicchemi 'Japan Co., Ltd., was kneaded using a homogenizer to obtain Dispersion ⁇ -5.
  • 150 parts by weight and 5.9 parts by weight of epoxy resin solution B-1 were mixed using a ball mill to prepare paste composition C-14 having an organic solvent content of 0% by weight based on the total paste composition.
  • the content of high dielectric constant inorganic particles in the dielectric composition obtained by curing C-14 is 90% by weight with respect to the total amount of the dielectric composition. Apply it on top using a spin coater, and then use an oven at 80 ° C for 15 After drying for 4 minutes, the film was cured by heat treatment at 175 ° C for 4 hours to obtain a dielectric composition (cured film) with a film thickness of 1.4 m.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 68%.
  • Paste composition C-14 was applied onto a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried. A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample. Relative permittivity at 1MHz was 34.
  • a paste composition C-15 which was 80% by weight, was prepared. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by C-15 is cured whereas the total amount of the dielectric composition, is 90 weight 0/0.
  • This paste composition C-15 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. Curing was performed to obtain a dielectric composition (cured film) having a thickness of 0.8 m. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 51%.
  • Paste composition C-15 was applied on a 300 m thick aluminum substrate using a spin coater and dried by heat treatment at 80 ° C for 15 minutes using an oven. A dielectric composition (cured film) was obtained by curing by heat treatment at 175 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample. The relative dielectric constant at 1 MHz was 41.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 16 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-16 was applied onto a glass substrate using a spin coater, and heat-treated at 80 ° C for 15 minutes using an oven! After drying, heat treatment was performed at 175 ° C for 4 hours.
  • a dielectric composition (cured film) having a film thickness of 1 was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating. This The dielectric composition had a light transmittance of 50% (wavelength 400 nm).
  • Paste composition C 16 was applied onto an aluminum substrate with a thickness of 300 ⁇ m using a spin coater, heat-treated at 80 ° C for 15 minutes and dried in an oven, and then dried at 175 ° C for 4 hours.
  • the dielectric composition (cured film) was obtained by curing by heat treatment.
  • An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative dielectric constant at 1 MHz was 36.
  • a paste composition C-17 having a solvent amount of 69% by weight was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-17 is 20% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-17 was applied on a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. And cured to obtain a dielectric composition (cured film) having a thickness of 1.4 m. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 82% (wavelength 400 nm).
  • Paste composition C-17 was applied on a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried. A dielectric composition (cured film) was obtained by curing by heat treatment at ° C for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample. The relative dielectric constant at 8 MHz was 8.
  • Epoxy resin (Nippon Kayaku Co., Ltd., NC3000) 15. 3 parts by weight, phenol novolac resin (Nippon Kayaku Co., Ltd., “Kyahad” (trade name) KTG—105) 5.3 parts by weight, Curing accelerator (manufactured by Hokukyo Chemical Co., Ltd., triphenylphosphine)
  • An epoxy resin solution B-2 was obtained by mixing an amount. 150 parts by weight of dispersion A-3 and 10.9 parts by weight of epoxy resin solution B-2 were mixed using a ball mill, and the amount of organic solvent contained in the paste composition was 70% by weight.
  • Paste composition C-18 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C 18 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-18 was applied to a glass substrate. Then, heat treatment is performed for 15 minutes at 80 ° C using an oven and dried, and then cured by heat treatment at 175 ° C for 4 hours to obtain a dielectric composition having a thickness of 1. ) The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 72%.
  • Paste composition C-18 was applied onto a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried. A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative dielectric constant at 1 MHz was 32.
  • PGMEA propylene glycol methyl ether acetate
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing is 90% by weight with respect to the total amount of the dielectric composition.
  • the paste composition C-19 is applied to a glass substrate with a spin coater. And apply for 15 minutes at 80 ° C using an oven After drying by heat treatment, the entire surface is exposed to an ultra-high pressure mercury lamp and cured to obtain a film thickness of 1.
  • a dielectric composition (cured film) was obtained.
  • the film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 75%.
  • Paste composition C-19 was applied onto a 300 ⁇ m thick aluminum substrate using a spin coater. After coating and drying using an oven at 80 ° C. for 15 minutes, the entire surface was exposed to an ultrahigh pressure mercury lamp and cured to obtain a dielectric composition (cured film). An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative permittivity at 1 MHz was 28.
  • Barium titanate manufactured by Zhigaku Kogyo Co., Ltd., BT-05, average particle diameter: 0.5 / ⁇ ⁇
  • dispersant phosphate ester skeleton Copolymer having acid group having, BYK-W9010, manufactured by BYK-Chemichi 'Japan Co., Ltd. 0.2 parts by weight was mixed and dispersed for 1 hour under ice-cooling using a homogenizer to obtain dispersion A-8 .
  • Epoxy resin (Nippon Kayaku Co., Ltd., EPPN502H) 12.8 parts by weight, phenol novolak resin (Dainippon Ink & Chemicals, TD-2131) 7.8 parts by weight, curing accelerator (Hokuko Chemical Industry Co., Ltd. (Triphenylphosphine) 0.2 parts by weight and ⁇ -butyrolatatone 24.8 parts by weight were mixed to obtain epoxy resin solution -4.
  • the dispersion liquid ⁇ -8 was mixed with 341.2 parts by weight and the epoxy resin solution ⁇ -4 was mixed with 45.6 parts by weight using a ball mill.
  • the amount of the organic solvent contained in the paste composition was 11% by weight.
  • a paste composition C-20 was prepared.
  • the content of high dielectric constant inorganic particles in the dielectric composition obtained by curing C-20 is 94% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-20 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. And cured to obtain a dielectric composition (cured film) having a thickness of 10 ⁇ m. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 8% (wavelength 400 nm).
  • Paste composition C-20 was applied onto a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried. A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample. The relative dielectric constant at 1 MHz was 95.
  • Barium titanate manufactured by Zhiyogaku Kogyo Co., Ltd., 8-05-05: average particle size 0.5 ⁇ ⁇
  • barium titanate manufactured by TPL, Inc., HPB-1000: average particle size 0.059 m
  • dispersant (acid group having phosphate ester skeleton A copolymer having a high molecular weight, BYK-W9010, manufactured by Big Chemi 'Japan Co., Ltd. 0.8 parts by weight was kneaded using a homogenizer to obtain dispersion A-9.
  • Epoxy resin manufactured by Nippon Kayaku Co., Ltd., EPPN502H
  • phenol novolac resin manufactured by Dainippon Ink and Chemicals, TD-2131
  • accelerator Hokuko
  • Triphenylphosphine 0.04 parts by weight
  • ⁇ -petit-mouthed ratataton 7.1 parts by weight were mixed to obtain an epoxy resin solution 5.
  • Dispersion ⁇ -9 was mixed with 100 parts by weight
  • epoxy resin solution ⁇ -5 was mixed with 10.7 parts by weight using a ball mill, and the amount of organic solvent contained in the paste composition was 20% by weight.
  • Composition C-21 was prepared.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-21 is 95% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-21 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried and then heat-treated at 175 ° C for 4 hours.
  • the dielectric composition (cured film) having a thickness of 10 ⁇ m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 5%.
  • Paste composition C-21 was applied on a 300 ⁇ m thick aluminum substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, and then dried. A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample.
  • the relative dielectric constant at 1 MHz was 123.
  • Barium titanate manufactured by Zhigaku Kogyo Co., Ltd., BT-01: average particle size 0 .: L m
  • 200 parts by weight and 400 parts by weight of toluene are kneaded and dispersed for 1 hour under ice cooling using a homogenizer. Liquid A-10 was obtained.
  • Epoxy resin YD— 8125 (manufactured by Toto Kasei Co., Ltd., YD8125) 100 parts by weight, curing agent (manufactured by Hitachi Chemical Co., Ltd., HN—5500) 90 parts by weight, curing accelerator (manufactured by Japan Epoxy Resin Co., Ltd.) “Epicure” (trade name) 3010) 1 part by weight was mixed to obtain an epoxy resin solution B-6.
  • a paste composition C-22 was prepared in which the amount of organic solvent contained was 69% by weight relative to the total paste composition.
  • the content of high dielectric constant inorganic particles in the dielectric composition obtained by curing C-22 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-22 was applied onto a glass substrate using a spin coater V, cured by heat treatment at 120 ° C for 15 hours using an oven, the spin speed was adjusted, and the film thickness was 1.4.
  • a dielectric composition (cured film) of m was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the light transmittance (wavelength 400 nm) of this dielectric composition was 28%.
  • Paste composition C-22 was applied to a 300 ⁇ m thick aluminum substrate using a spin coater, and cured by heat treatment at 120 ° C for 15 hours using an oven. A product (cured film) was obtained. An aluminum electrode was formed on this dielectric composition to provide a dielectric property evaluation sample.
  • the relative dielectric constant at 1 MHz was 34.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C23 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-23 was applied to a glass substrate. Then, using an oven, heat treatment was performed at 80 ° C. for 15 minutes for drying, followed by curing at 175 ° C. for 4 hours to obtain a dielectric composition (cured film). Since the paste composition C-22 had a high viscosity, the spin coater was not able to obtain a flat coating film. When the light transmittance was measured at a thickness of about 2 m, the light transmittance (wavelength 400 nm) was 35%.
  • Paste composition C-23 was applied on a 300 ⁇ m thick aluminum substrate using a spin coater, dried by heat treatment at 80 ° C for 15 minutes in an oven, and then 175 A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. This dielectric composition An aluminum electrode was formed on top and used as a dielectric property evaluation sample. The relative permittivity at 1 MHz was 40.
  • a paste composition C-24 having a N content of 90% by weight was prepared.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by hardening C-24 is 90% by weight with respect to the total amount of the dielectric composition.
  • This paste composition C-24 was applied onto a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then heat-treated at 175 ° C for 4 hours. Cured to obtain a dielectric composition (cured film). However, due to the low viscosity, it was not a complete continuous film. For this reason, the light transmittance of this dielectric composition was unmeasurable.
  • Paste composition C-24 was applied on a 300 ⁇ m thick aluminum substrate using a spin coater, dried by heat treatment at 80 ° C for 15 minutes using an oven. A dielectric composition (cured film) was obtained by curing by heat treatment at 4 ° C. for 4 hours. An aluminum electrode was formed on this dielectric composition to obtain a dielectric property evaluation sample. However, because it was not a complete continuous film, the upper and lower electrodes were short-circuited, and the dielectric constant could not be measured.
  • Barium titanate manufactured by Toda Kogyo Co., Ltd., T-BTO-020RF: average particle size 0.027 m
  • T-BTO-020RF average particle size 0.027 m
  • dispersant having phosphate ester skeleton A copolymer having an acid group, BYK-W9010, manufactured by BYK-Chemichi 'Japan Co., Ltd.
  • 8 parts by weight were kneaded and dispersed for 2 hours under ice-cooling using a homogenizer to obtain dispersion A-12.
  • the content of the dispersant in dispersion A-12 is 4% by weight of the high dielectric constant inorganic particles.
  • the aggregation of the high dielectric constant inorganic particles is not sufficiently solved, and the particle diameter of the high dielectric constant inorganic particles obtained by the particle size distribution measurement is smaller than the average particle diameter of the raw material high dielectric constant inorganic particles. Be big.
  • Epoxy resin manufactured by Japan Epoxy Resin Co., Ltd., “Epicord, (trade name) YX8000) 6 8 parts by weight, curing agent (manufactured by Shin Nippon Rika Co., Ltd., “Licacid” (trade name) MH700) 4.7 parts by weight, curing accelerator (N, N-dimethylbenzylamine) 0.2 parts by weight
  • an epoxy resin solution B-7 was obtained.
  • Material C-25 was prepared. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-25 is 81% by weight based on the total amount of the dielectric composition.
  • Example 1 Using the paste composition C-25, a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The dielectric composition had a light transmittance (wavelength 400 nm) of 79%. Using paste composition C-25, a dielectric property evaluation sample was obtained in the same manner as in Example 1. The relative dielectric constant at 1 MHz was 22.
  • Dispersion A- 13 was of particle size distribution 50 0/0 size ⁇ or 0. 04 ⁇ m, 90 0/ 0 size ⁇ or 0. 07 / zm.
  • the high dielectric constant inorganic particles have a higher content of the dispersant than dispersion A-12.
  • the aggregation of the high dielectric constant inorganic particles can be further solved, and the particle size of the high dielectric constant inorganic particles obtained by particle size distribution measurement is larger. The average particle diameter of the raw material high dielectric constant inorganic particles was approached.
  • composition C-26 150 parts by weight of dispersion A-13 and 6 parts by weight of epoxy resin solution B-7 were mixed using a ball mill, and the amount of organic solvent contained in the paste composition was 67% by weight.
  • Composition C-26 was prepared. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-26 is 81% by weight with respect to the total amount of the dielectric composition.
  • Barium titanate (manufactured by Toda Kogyo Co., Ltd., T-BTO-020RF: average particle size 0.027 m) 391.3 parts by weight, ⁇ -petit-mouth rataton 1050 parts by weight, dispersant (having phosphate ester skeleton) Copolymer having acid groups, manufactured by BYK-Chiichi Japan Co., Ltd., BYK-W9010) 58. 7 parts by weight were kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain dispersion A-14 The The content of the dispersant in dispersion A-14 is 15% by weight of the high dielectric constant inorganic particles.
  • dispersion A- 14 particle size distribution 50 0/0 size ⁇ or 0. 025 ⁇ m, 90 0/ 0 size ⁇ or 0. 06 ⁇ m.
  • Aggregation of high-permittivity inorganic particles, which are sufficiently higher than the dispersions A-12 and A-13, in the content of the dispersant relative to the high-permittivity inorganic particles can be sufficiently solved, and can be obtained by particle size distribution measurement.
  • the particle size of the high dielectric constant inorganic particles was closer to the average particle size of the raw material high dielectric constant inorganic particles.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1.
  • the film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 97% (wavelength 400 nm).
  • the minimum value of the light transmittance at a wavelength of 400 to 700 nm was 88% (wavelength 530 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1.
  • the relative dielectric constant at 1 MHz was 28.
  • Paste composition C-27 was applied on a glass substrate with ITO using a spin coater, dried in an oven at 80 ° C for 15 minutes, and then cured at 175 ° C for 4 hours to obtain a dielectric.
  • a body composition (cured film) was obtained.
  • a glass substrate with ITO is formed by sputtering a 1737 glass with a thickness of 150 nm of ITO.
  • the dielectric composition had an optical transmissivity of 98% (wavelength 400 nm).
  • capacitor D-1 composed of glass ZITO electrode Z dielectric composition / aluminum electrode was produced.
  • Aluminum electrode is a mask It was formed by vacuum deposition via. The relative permittivity of this capacitor D-1 at 1 kHz was 29.
  • Capacitor D-2 composed of glass ZITO electrode Z dielectric composition ZITO electrode was produced using ITO instead of aluminum for the upper electrode.
  • the top layer of the upper electrode was formed by sputtering.
  • capacitor D-3 made of glass ZITO electrode 1Z dielectric composition ZNi-CrZ copper was fabricated.
  • the upper electrode was formed by performing sputtering in the order of Ni-Cr and copper, and further performing electrolytic copper plating to form a conductive layer, and patterning was performed by an etching method.
  • the relative permittivity of capacitors D 2 and D 3 at 1 kHz was 29.
  • Dispersion A-15 The content of the dispersant in Dispersion A-15 is 15% by weight of the high dielectric constant inorganic particles.
  • Dispersion A- 15 was of particle size distribution 50 0/0 size ⁇ or 0. 02 ⁇ m, 90 0/ 0 size ⁇ or 0. 05 / zm
  • Dispersion A-15 was mixed with 150 parts by weight and epoxy resin solution B-1 with 3.4 parts by weight using a ball mill, and the amount of organic solvent contained in the paste composition was 68% by weight.
  • a paste composition C-28 was prepared. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-28 is 81% by weight with respect to the total amount of the dielectric composition.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1.
  • the film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 99%.
  • the minimum value of light transmittance at a wavelength of 400 to 700 nm was 90% (wavelength 570 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1.
  • the relative dielectric constant at 1 MHz was 23.
  • Example 35 Barium titanate (manufactured by Toda Kogyo Co., Ltd., T-BTO-010RF: average particle size 0.012 m) 391.3 parts by weight, ⁇ -petit-mouth rataton 1050 parts by weight, dispersant (having phosphate ester skeleton) A copolymer having an acid group, manufactured by Big Chemie's Japan Co., Ltd., ⁇ —111) 58.7 parts by weight was kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain dispersion ⁇ -16. The content of the dispersant in dispersion liquid 16 is 15% by weight of the high dielectric constant inorganic particles. Dispersion A- 16 was of particle size distribution 50 0/0 size ⁇ or 0. 02 ⁇ m, 90 0/ 0 size ⁇ or 0. 04 / zm.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1.
  • the film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had a light transmittance (wavelength 400 nm) of 99%.
  • the minimum value of light transmittance at a wavelength of 400 to 700 nm was 90% (wavelength 530 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1.
  • the relative dielectric constant at 1 MHz was 23.
  • Dispersion A-17 Barium titanate (manufactured by Toda Kogyo Co., Ltd., T-BTO-020RF: average particle size 0.027 m) 652 parts by weight, ⁇ petit ratatone 750 parts by weight, dispersant (having an acid group having a phosphate ester skeleton 97.8 parts by weight of a copolymer, BYK-Chiichi 'Japan Co., Ltd., BYK-W9010) was kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain Dispersion A-17.
  • the content of the dispersant in Dispersion A-17 is 15% by weight of the high dielectric constant inorganic particles.
  • Dispersion A- 17 was of particle size distribution 50 0/0 size ⁇ or 0. 025 ⁇ m, 90 0/ 0 size ⁇ or 0. 06 ⁇ m.
  • 150 parts by weight of dispersion A-17 and 5.7 parts by weight of epoxy resin solution B-1 were mixed with a ball mill, and the amount of organic solvent contained in the paste composition was 48% by weight.
  • a paste composition C-30 was prepared. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-30 is 81% by weight with respect to the total amount of the dielectric composition.
  • the dielectric composition ( A cured film) was obtained. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 97% (wavelength 400 nm). The minimum value of light transmittance at a wavelength of 400 to 700 nm was 88% (wavelength 530 nm).
  • paste composition C-26 a dielectric property evaluation sample was obtained in the same manner as in Example 1. The relative permittivity at 1 MHz was 29.
  • Barium titanate manufactured by Toda Kogyo Co., Ltd., T-BTO-010RF: average particle size 0.012 m
  • T-BTO-010RF average particle size 0.012 m
  • dispersant having phosphate ester skeleton
  • A-18 The content of the dispersant in dispersion A-18 is 4% by weight of the high dielectric constant inorganic particles.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 78% (wavelength 400 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1. The relative dielectric constant at 1 MHz was 16.
  • Barium titanate manufactured by Toda Kogyo Co., Ltd., T-BTO-010RF: average particle size 0.012 m
  • dispersant having phosphate ester skeleton
  • acid group BYK-Chemichi 'Japan Co., Ltd., BYK-W9010
  • Quadruple An amount part was kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain a dispersion A-19.
  • the content of the dispersant in Dispersion A-19 is 7% by weight of the high dielectric constant inorganic particles.
  • High-dielectric constant inorganic particles have a higher content of dispersant than dispersion A-18, which can further agglomerate inorganic particles, and the particle size of high-dielectric-constant inorganic particles obtained by particle size distribution measurement The average particle diameter of the raw material high dielectric constant inorganic particles was approached.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had an optical transmissivity of 89% (wavelength 400 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1. The specific dielectric constant at 1 MHz was 22.
  • Barium titanate manufactured by Toda Kogyo Co., Ltd., T-BTO-010RF: average particle size 0.012 m
  • T-BTO-010RF average particle size 0.012 m
  • dispersant (acid having phosphate ester skeleton)
  • a copolymer having a group, 75 parts by weight of BYK-W9010) manufactured by Big Chemi 'Japan Co., Ltd. was kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain dispersion A-20.
  • the content of the dispersant in the dispersion A-20 is 20% by weight of the weight of the high dielectric constant inorganic particles.
  • Dispersion A- 20 was of particle size distribution 50 0/0 size ⁇ or 0. 016 ⁇ m, 90 0/ 0 size ⁇ or 0. 04 / zm. Comparing Dispersion A-14 using inorganic particles with an average particle size of 0.027 m and Dispersion A-20 using inorganic particles with an average particle size of 0.012 m, It can be seen that when the content of the agent is increased, the dispersion has a particle size distribution close to that of the primary particles.
  • Dispersion A-20 150 parts by weight
  • epoxy resin solution B-7 4.2 parts by weight
  • a paste composition C-33 was prepared.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-33 is 75% by weight with respect to the total amount of the dielectric composition.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 99%. The minimum value of light transmittance at a wavelength of 400 to 700 nm was 90% (wavelength 510 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1. The specific dielectric constant at 1 MHz was 22.
  • Dispersion A-21 was of particle size distribution 50 0/0 size ⁇ or 0. 016 ⁇ m, 90 0/ 0 size ⁇ or 0. 04 / zm.
  • Composition C-34 was made.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-34 is 72% by weight with respect to the total amount of the dielectric composition.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 99%. The minimum value of light transmittance at a wavelength of 400 to 700 nm was 91% (wavelength 530 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1. The specific dielectric constant at 18 MHz was 18.
  • Barium titanate manufactured by Toda Kogyo Co., Ltd., T-BTO-010RF: average particle size 0.012 m
  • dispersant having phosphate ester skeleton
  • a copolymer having an acid group, BYK-W9010, manufactured by BYK-Chemichi 'Japan Co., Ltd., 98 parts by weight was kneaded using an Ultra Abex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain dispersion A-22.
  • the content of the dispersing agent in the dispersion A-22 is 28% by weight of the high dielectric constant inorganic particles.
  • Dispersion A- 22 was of particle size distribution 50 0/0 size ⁇ or 0. 016 ⁇ m, 90 0/ 0 size ⁇ or 0. 04 / zm.
  • 150 parts by weight of dispersion A-22 and 4 parts by weight of epoxy resin solution B-7 were mixed using a ball mill, and the best composition was 67% by weight of organic solvent with respect to the total paste composition.
  • Material C-35 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-35 is 70% by weight with respect to the total amount of the dielectric composition.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The film thickness was adjusted by adjusting the spin speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 99%. The minimum value of light transmittance at a wavelength of 400 to 700 nm was 92% (wavelength 510 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1. The specific dielectric constant at 9 MHz was 9. In the case of Dispersion A-22, the amount of the dispersant was 28% by weight based on the high dielectric constant inorganic particles, but the high dielectric constant inorganic particles could not be highly filled, and the relative dielectric constant decreased.
  • Barium titanate manufactured by Buhler P ARTEC GmbH, Barium titanate: average particle size 0.022 / zm (manufacturer-specific average particle size 0.0018 391.3 parts by weight, ⁇ -buchi-mouth rataton 1050 parts by weight, dispersant (phosphorus A copolymer with an acid group having an acid ester skeleton, manufactured by BYK-Chemichi 'Japan Co., Ltd., BYK-W9010) 58. 7 parts by weight are kneaded and dispersed using Ultraapex Mill (manufactured by Kotobuki Industries Co., Ltd.) to obtain a liquid A- 23.
  • Ultraapex Mill manufactured by Kotobuki Industries Co., Ltd.
  • dispersion A- content of the dispersant in 23 is 15 wt% weight of the high dielectric constant inorganic particles.
  • dispersion A- particle size distribution 50 23 0/0 size ⁇ or 0 . was 025 ⁇ m, 90 0/0 size ⁇ or 0. 06 mu m.
  • a paste composition C-36 was prepared.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-36 is 81% by weight with respect to the total amount of the dielectric composition.
  • a dielectric composition (cured film) having a thickness of 1.4 m was obtained in the same manner as in Example 1. The film thickness was adjusted by adjusting the spin speed during spin coating.
  • the dielectric composition had an optical transmissivity of 96% (wavelength 400 nm).
  • the minimum value of light transmittance at a wavelength of 400 to 700 nm was 94% (wavelength 580 nm).
  • a dielectric property evaluation sample was obtained in the same manner as in Example 1 using the paste composition C36.
  • the specific dielectric constant at 18 MHz was 18.
  • Dispersant copolymer having phosphate ester skeleton, manufactured by Big Chemi 'Japan Co., Ltd., BYK-W9010
  • 109.6 parts by weight barium titanate (manufactured by Toda Kogyo Co., Ltd.)
  • the 50% size was 0.06 ⁇ m, and the 90% size was 0.22 ⁇ m.
  • the beads in the vessel were collected and newly filled with 0.4 kg of zirca balls (manufactured by Nitsukato Co., Ltd., YTZ balls, size ⁇ 0.05 mm).
  • the manufacturer's value in the inspection report on the particle size of Zirca Ball is an average particle size of 0.05 mm.
  • Dispersion was performed at a peripheral speed of the rotor of 12 mZs until the particle size distribution reached 0.02 ⁇ 0.01 m to obtain dispersion A-24C.
  • the 50% size was 0.022 m and the 90% size was 0.051 m.
  • Epoxy resin Japan Epoxy Resin Co., Ltd., Epicoat (trade name) YX8000 7.57 parts by weight, curing agent (Shin Nihon Rika Co., Ltd., Rikasid (trade name) MH700 2.13 parts by weight, curing accelerator (N, N dimethyl benzylamine) 0.3 parts by weight and ⁇ -butyroratatone 12.13 parts by weight were mixed to obtain an epoxy resin solution ⁇ -8.15 parts by weight of dispersion A-24C and an epoxy resin solution 94-8 is mixed with 0.94 parts by weight and a surfactant manufactured by Big Chemie's Japan Co., Ltd., and ⁇ -333 is mixed with 0.012 parts by weight using a ball mill, and the organic solvent contained relative to the total amount of the paste composition Quantity force S67.
  • a 7% by weight paste composition C-37 was produced, and the content of high dielectric constant inorganic particles in the dielectric composition obtained by curing C-37 was determined by the total amount of the dielectric composition. 7
  • Paste composition C 37 was filtered using a filter with a pore size of 0.45 ⁇ m, and then with ITO. It is applied on a glass substrate using a spin coater, heat-treated at 80 ° C for 15 minutes using an oven, dried, and then cured by heat treatment at 175 ° C for 4 hours to give a film thickness of 1 m. A dielectric composition (cured film) was obtained. The film thickness was adjusted by the spin adjustment speed during spin coating. The dielectric composition had a light transmittance (wavelength 400 nm) of 99%, and the minimum value of the light transmittance at wavelengths of 400 to 700 nm was 91% (wavelength 520 nm). The leak current value at an applied voltage of 2 V was 15 nAZcm 2 , and the voltage holding ratio was 4%.
  • An aluminum electrode was formed as an upper electrode on the dielectric composition, and a capacitor composed of glass ZITO electrode Z dielectric composition / aluminum electrode was produced.
  • the aluminum electrode was formed by vacuum deposition through a mask.
  • the relative dielectric constant of this capacitor at 1 kHz was 23.
  • Epoxy resin (Nippon Yakuyaku Co., Ltd., NC3000) 220.18 parts by weight, curing agent (Nippon Yakuyaku Co., Ltd., “Kahhard” (trade name) TPM) 76.82 parts by weight, curing acceleration 3 parts by weight of an agent (triphenylphosphine) and 76.82 parts by weight of ⁇ -petit-mouthed rataton were mixed to obtain an epoxy resin solution -9.
  • NC3000 is an epoxy resin having a biphenyl skeleton with an epoxy equivalent of 278 gZeq.
  • Ball mill 15 parts by weight of dispersion A-24C, 8.74 parts by weight of epoxy resin solution B-9, and BYK-333 by 0.018 parts by weight as a surfactant. mixed with, organic solvent content of the paste composition the total amount to prepare a paste composition C-38 is 52.6 by weight 0/0. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-38 is 35% by weight with respect to the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 4.
  • Example 46 Dispersion A-24C (15 parts by weight) and epoxy resin solution B-9 (4.35 parts by weight) and BYK-333 (0.016 parts by weight) manufactured by BYK-Japan Co., Ltd.
  • the paste composition C-39 was prepared by mixing 59.4% by weight of the organic solvent with respect to the total paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-39 is 50% by weight based on the total amount of the dielectric composition. Evaluation was performed in the same manner as in Example 43. The results are shown in Table 4. [0194]
  • Example 46 The results are shown in Table 4.
  • paste composition C-40 having an organic solvent content of 66.7% by weight based on the total paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-40 is 73% by weight with respect to the total amount of the dielectric composition. Evaluation was performed in the same manner as in Example 43. The results are shown in Table 4.
  • Dispersion A—24C 15 parts by weight of epoxy resin solution B-9, 0.44 parts by weight, BYK-Japan Co., Ltd. as a surfactant, 0.012 parts by weight of BYK-333 was used to prepare paste composition C-42 having an organic solvent content of 68.6% by weight based on the total paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-42 is 81% by weight with respect to the total amount of the dielectric composition. Evaluation was performed in the same manner as in Example 43. The results are shown in Table 4.
  • Paste composition C-43 was filtered using a 0.45 ⁇ m pore size filter, then applied onto a glass substrate with ITO using a spin coater, and then 120 ° C using a hot plate. Pre-beta for 1 minute. Next, exposure was performed using an exposure apparatus (PEM-6M manufactured by Union Optics Co., Ltd.) with an exposure light amount of 500 miZcm 2 (intensity of 365 nm). After exposure, after baking at 120 ° C for 1 minute, N atmosphere using INO-60 manufactured by Koyo Thermo System Co., Ltd.
  • PEM-6M manufactured by Union Optics Co., Ltd.
  • Composition C-44 was made. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-44 is 76% by weight with respect to the total amount of the dielectric composition.
  • Paste composition C-44 was filtered using a filter with a pore size of 0.45 ⁇ m, then applied onto a glass substrate with ITO using a spin coater, and 10 ° C at 80 ° C using a hot plate. Pre-beta for a minute. Next, using an exposure device (PEM-6M manufactured by Union Optics Co., Ltd.), the exposure composition was exposed to 2000 miZcm 2 (intensity of 365 nm) and cured to a dielectric composition (cured film) with a thickness of 1 ⁇ m. Got. The film thickness was adjusted by the spin adjustment speed at the time of spin coating. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 4.
  • Epoxy resin (Nippon Yakuyaku Co., Ltd., NC3000) 208.5 parts by weight, curing agent (Dainippon Ink & Chemicals Co., Ltd., "Funolite” (trade name) VH4150) 88.5 parts by weight, 3 parts by weight of a curing accelerator (triphenylphosphine) and 88.50 parts by weight of ⁇ -butyrolatatone were mixed to obtain an epoxy resin solution 11.
  • "Phenolide, VH-4150 is a phenolic novolak resin. 15 parts by weight of dispersion A-24C and 0.88 parts by weight of epoxy resin solution 11 are used as a surfactant.
  • Ultra Apex Mill U AM—015 (manufactured by Kotobuki Industries) Fill the inside with 0.4 kg of Zirca Ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ . 05 mm), and feed and circulate dispersion A-25A into the vessel while rotating the rotor. It was. Dispersion was carried out at a rotor peripheral speed of 12 mZs for 2 hours to obtain dispersion A-25B.
  • Zirca Ball manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ . 05 mm
  • dispersion A-25B since separation of the beads and the dispersion was insufficient in a vessel having a high viscosity, the dispersion A-25C was further filtered using a filter having a pore diameter of 10 m to obtain dispersion A-25C.
  • the particle size distribution of dispersion A-25C was 50% diameter 0.102 ⁇ m and 90% diameter 0.225 / zm, and it was difficult to disperse to near the primary particle diameter.
  • a paste composition C-46 is 28.9 weight 0/0.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by hardening C-46 is 73% by weight based on the total amount of the dielectric composition.
  • Paste composition C-46 could not be filtered with a filter having a pore size of 0.45 m.
  • Paste composition C-46 was filtered using a filter with a pore size of 2 ⁇ m instead of a filter with a pore size of 0.45 ⁇ m, then applied onto a glass substrate with ITO using a spin coater, and then using an oven. After heat treatment at 80 ° C. for 15 minutes and drying, heat treatment was performed at 175 ° C. for 4 hours and cured to obtain a dielectric composition (cured film) having a thickness of 1 ⁇ m. The film thickness was adjusted by the spin adjustment speed during spin coating. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 4.
  • Puchiguchi Rataton 1120 parts by weight, dispersant (copolymer having phosphate ester skeleton, manufactured by Big Chemi 'Japan Co., Ltd., BYK-W9010) 219. 13 parts by weight, barium titanate (manufactured by Toda Kogyo Co., Ltd.) T—BTO—020RF: average particle size 0.027, um) 1460. After 87 parts by weight, the mixture was mixed using a homogenizer to obtain dispersion A-26A. The homogenizer was filled with 1.46 kg of Zirco Your Ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ .
  • paste composition C-47 was prepared in which the amount of organic solvent contained in the paste composition was 37.8% by weight.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-47 is 73% by weight with respect to the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 4.
  • Dispersion A-27A was fed into the vessel and circulated. Dispersion was carried out at a rotor peripheral speed of 12 mZs for 2 hours to obtain dispersion A-27B.
  • the particle size distribution of dispersion A—27B was 50% diameter 0.038 m and 90% diameter 0.08 m.
  • Dispersion A—27B 15 parts by weight
  • epoxy resin solution B-9 (1.98 parts by weight) as a surface-active agent manufactured by BYK-Chemichi Japan Co., Ltd., BYK-333 0. Olg
  • a paste composition C-48 having an organic solvent content of 47% by weight based on the total paste composition was prepared.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-48 is 73% by weight with respect to the total amount of the dielectric composition. Evaluation was performed in the same manner as in Example 43. The results are shown in Table 4.
  • Dispersant copolymer having phosphate ester skeleton, manufactured by Big Chemi 'Japan Co., Ltd., BYK-W9010
  • barium titanate door Takoto Co., Ltd., T BTO-020RF: average particle size 0.027
  • Dispersion A-28A was fed into the vessel and circulated. Dispersion was carried out at a rotor peripheral speed of 12 mZs for 2 hours to obtain dispersion A-28B.
  • the particle size distribution of dispersion A-28B was 50% diameter 0.021 ⁇ m and 90% diameter 0.05 ⁇ m.
  • Dispersion A-28B (15 parts by weight) and epoxy resin solution B-9 (0.75 parts by weight) and BYK-333 (0.014 parts by weight) manufactured by BYK-Japan Co., Ltd. was used to prepare paste composition C-49 having an organic solvent content of 77.3% by weight based on the total paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-49 is 73% by weight based on the total amount of the dielectric composition. Evaluation was performed in the same manner as in Example 43. The results are shown in Table 4.
  • Dispersion A-29A was fed into the vessel and circulated. Dispersion was performed at a rotor peripheral speed of 12 mZs for 2 hours to obtain dispersion A-29B.
  • the 50% size was 0.021 ⁇ m
  • the 90% size was 0.051 ⁇ m.
  • Dispersion A-29B (15 parts by weight) and epoxy resin solution B-9 (0.38 parts by weight) as a surface-active agent, BYK-Japan Co., Ltd., BYK-333 (0.014 parts by weight) Mixing using Lumil, the amount of organic solvent in the paste composition is 88.4% by weight % Paste composition C-50 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-50 is 73% by weight with respect to the total amount of the dielectric composition.
  • a dielectric composition (cured film) was obtained using paste composition C-50 in the same manner as in Example 43, but a cured film having a low viscosity and a film thickness of 1 ⁇ m or more was not obtained. The film thickness was 0.3 ⁇ m. Evaluation was carried out in the same manner as in Example 43. In addition, the leakage current value at an applied voltage of 2 V was 20 mA or more, exceeding the upper limit of the measurement device's measurement current, and therefore could not be measured. The relative dielectric constant was so strong that the leakage current could not be measured. The voltage holding ratio of this dielectric composition was 0%. The results are shown in Table 4.
  • a ball mill containing 15 parts by weight of dispersion A-24B and 1.13 parts by weight of epoxy resin solution B-9, and BYK-333 by 0.012 parts by weight as a surfactant. was used to prepare paste composition C-51 in which the amount of the organic solvent contained was 66.7% by weight relative to the total amount of the paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-51 is 73% by weight with respect to the total amount of the dielectric composition.
  • dispersant copolymer having phosphate ester skeleton, manufactured by Big Chemi 'Japan Co., Ltd., BYK-W9010
  • barium titanate manufactured by Toda Kogyo Co., Ltd., T— BTO—010RF: Average particle size 0.012 m
  • the mixture was mixed using a homogenizer to obtain dispersion A-30A.
  • the homogenizer was filled with 0.7 kg of zirca ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ .
  • the homogenizer was filled in a cup with 0.73 kg of zirconia balls (manufactured by Nitsukato Co., Ltd., bowl balls, size ⁇ .5 mm) and treated in an ice bath. Fill the vessel of Ultra Apex Mill U AM-015 (manufactured by Kotobuki Industries Co., Ltd.) with 0.4 kg of Zirco Your Ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ 0.05 mm) and rotate the rotor. Then, dispersion A-31A was fed into the vessel and circulated. Dispersion was performed at a rotor peripheral speed of 12 mZs for 2 hours to obtain Dispersion A-31B.
  • the particle size distribution of dispersion A—31B was 50% diameter 0.048 ⁇ m and 90% diameter 0.08 m.
  • a ball mill containing 15 parts by weight of dispersion A-31B, 1.13 parts by weight of epoxy resin solution B-9, and BYK-333 by 0.012 parts by weight as a surfactant. was used to prepare paste composition C-53 in which the amount of organic solvent contained in the paste composition was 66.7% by weight.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-53 is 73% by weight based on the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 5.
  • Ultrapex mill U AM—015 (manufactured by Kotobuki Industries Co., Ltd.) vessel filled with 0.4 kg of zirco ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ . 05 mm), and rotor rotated Then, Dispersion A-32A was fed into the vessel and circulated. Dispersion was carried out at a rotor peripheral speed of 12 mZs for 2 hours to obtain dispersion A-32B. In the particle size distribution of dispersion A-32B, the 50% size was 0.15 ⁇ m, and the 90% size was 0. Tsu.
  • Dispersion A-32B 15 parts by weight, epoxy resin solution B-9 1.14 parts by weight, and BYK-333 as a surfactant, BYK-333 0.01 part by weight
  • the mixture was mixed using a ball mill to prepare paste composition C-54 in which the amount of organic solvent contained was 66.5% by weight relative to the total amount of paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-54 is 73% by weight based on the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 5.
  • Dispersion A-30B was centrifuged and only the supernatant was extracted to obtain Dispersion A-30C. Centrifugation is performed by setting the S55A angle rotor (trade name) manufactured by Hitachi High-Technologies Corp. to a small ultracentrifuge for separation “himac, CS100GXL” (trade name) and processing at 50000 rpm for 10 minutes. Further, using a rotary evaporator, the dispersion A-30C was concentrated to obtain dispersion A-30D, the particle size distribution of dispersion A-30D was 50% diameter 0.008 ⁇ m, and 90% diameter was 0.
  • Example 60 019 / zm 15% by weight of dispersion A—30D and 0.88 parts by weight of epoxy resin solution B-9, and BYK-333 made by BYK Japan Japan as a surfactant. 0,012 parts by weight were mixed using a ball mill to prepare paste composition C-55 having an organic solvent content of 67.5% by weight based on the total paste composition, obtained by curing C 55. The content of the high dielectric constant inorganic particles in the dielectric composition is 73% by weight with respect to the total amount of the dielectric composition. The evaluation was performed in the same manner as in 43. The results are shown in Table 5. [0216] Example 60
  • the homogenizer was treated in an ice bath by filling the cup with 0.73 kg of zirca ball (manufactured by Nitsukato Co., Ltd., bowl ball, size ⁇ 0.5 mm). Fill the vessel of Ultra Apex Mill U AM-015 (manufactured by Kotobuki Industries Co., Ltd.) with 0.4 kg of Zirco Your Ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ 0.05 mm) and rotate the rotor. Then, Dispersion A-33A was fed into the vessel and circulated. Dispersion was carried out at a peripheral speed of the rotor of 12 mZs for 2 hours to obtain dispersion A-33B.
  • the particle size distribution of dispersion A—33B was 50% diameter 0.049 ⁇ m and 90% diameter 0.09 m.
  • a ball mill containing 15 parts by weight of dispersion A-33B and 1.13 parts by weight of epoxy resin solution B-9, and BYK-333 as a surfactant and 0.012 parts by weight of BYK-333. was used to prepare a paste composition C-56 having an organic solvent content of 66.7% by weight based on the total amount of the paste composition.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-56 is 73% by weight based on the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 5.
  • dispersant copolymer having phosphate ester skeleton, manufactured by Big Chemi 'Japan Co., Ltd., BYK-W9010
  • barium titanate manufactured by Toda Kogyo Co., Ltd.
  • Dispersion A-34 ⁇ was too strong to be dispersed with beads having a high viscosity, and was diluted with ⁇ -petit-mouth rataton and then dispersed with a homogenizer to obtain dispersion A-34C.
  • the 50% size was 0.56 ⁇ m, and the 90% size was 1.3 m.
  • the content of high dielectric constant inorganic particles in the dielectric composition obtained by mixing dispersion A-34C and epoxy resin solution B-9 and curing is 73% by weight with respect to the total amount of the dielectric composition.
  • a paste composition C-57 prepared as described above was obtained.
  • Paste composition C-57 had an organic solvent content of 88% of the total paste. [0218]
  • Paste composition C 57 could not be filtered using a filter having a pore size of 2 ⁇ m.
  • Paste composition C-57 was applied onto a glass substrate with ITO using a spin coater, heat-treated at 80 ° C for 15 minutes and dried in an oven, and then heat-treated at 175 ° C for 4 hours. Cured to obtain a dielectric composition film.
  • the minimum value of the light transmittance at a wavelength of 400 to 700 nm of this dielectric composition was in the range of 5 to 10% where the variation depending on the measurement site was large.
  • the leakage current value at an applied voltage of 2 V was 20 mA or more, exceeding the upper limit of the measurement current of the evaluation device.
  • the specific permittivity was such that the leak current was too large to be measured.
  • This dielectric yarn composite had a voltage holding ratio of 0%.
  • Dispersion A-35B was fed into the vessel and circulated while rotating the rotor.
  • Dispersion A-35C was obtained at a peripheral speed of the rotor of 12 mZs for 90 minutes.
  • Dispersion A-35D dispersed for 120 minutes was obtained.
  • Dispersion A- 35C was particle size distribution of 50 0/0 size ⁇ or 0. 027 ⁇ m, 90 0/ 0 size ⁇ or 0.061.
  • Dispersion A-35C (15 parts by weight) and epoxy resin solution B-9 (1.56 parts by weight), BYK-Japan Co., Ltd. as a surfactant, BYK-333 (0.012 parts by weight) and ball mill
  • a paste composition C-58 was prepared in which the amount of the organic solvent contained was 65.5% by weight relative to the total amount of the paste composition.
  • Dielectric obtained by curing C-58 The content of the high dielectric constant inorganic particles in the body composition is 73% by weight with respect to the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 5.
  • dispersant copolymer having phosphate ester skeleton, manufactured by Big Chemi 'Japan Co., Ltd., BYK-W9010
  • barium titanate manufactured by Toda Kogyo Co., Ltd., T— BTO—020RF: Average particle size 0.027 m
  • Dispersion A-36A was fed into the vessel and circulated. After dispersion for 1 hour at a rotor peripheral speed of 8 mZs, dispersion A-36B was obtained. The beads in the vessel were collected and newly filled with 0.4 kg of Zirco Your Ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ . 05 mm).
  • Dispersion A-36B was fed into the vessel and circulated while rotating the rotor.
  • Dispersion A-36C was obtained by dispersing for 120 minutes at a rotor peripheral speed of 12 mZs.
  • the 50% size was 0.021 m
  • the 90% size was 0.049 m.
  • Dispersion A-36C (15 parts by weight) and epoxy resin solution B-9 (0.84 parts by weight), BYK-3 33 manufactured by BYK-Japan Co., Ltd. as a surfactant, 0.012 parts by weight a ball mill and mixed with, containing organic organic solvent content of the paste composition the total amount to prepare a paste composition C-59 is 67.5 weight 0/0.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by hardening C-59 is 73% by weight based on the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 5.
  • Dispersion A-37B was fed into the vessel and circulated while rotating the rotor.
  • Dispersion A-37C was obtained by dispersing for 120 minutes at a rotor peripheral speed of 12 mZs.
  • the 50% size was 0.02 / ⁇
  • the 90% size was 0.047 / zm.
  • Dispersion A-37C (15 parts by weight) and epoxy resin solution B-9 (0.42 parts by weight) and BYK-Japan Co., Ltd. as a surfactant, BYK-333 (0.012 parts by weight) are ball milled.
  • C-61 was produced.
  • the content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-61 is 35% by weight with respect to the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 50. The results are shown in Table 5.
  • Example 66 15 parts by weight of dispersion A-24C and acrylic resin (manufactured by Toa Gosei Co., Ltd., “ALONIX” (trade name) ⁇ 305) and 3.2 parts by weight of photopolymerization initiator (Cibagayki Co., Ltd., “Irgacure "(Product name) 184) 0.16 parts by weight and ⁇ -butyrolatatone 0.99 parts by weight are mixed using a ball mill, and the amount of organic solvent contained in the paste composition is 59.4% by weight.
  • Composition C-63 was prepared. The content of the high dielectric constant inorganic particles in the dielectric composition obtained by curing C-63 is 73% by weight with respect to the total amount of the dielectric composition. Evaluation was carried out in the same manner as in Example 50. The results are shown in Table 5.
  • Dispersion A-38A was fed into the vessel and circulated. After dispersion for 1 hour at a rotor peripheral speed of 8 mZs, dispersion A-38B was obtained. The beads in the vessel were collected and newly filled with 0.4 kg of Zirco Your Ball (manufactured by Nitsukato Co., Ltd., YTZ ball, size ⁇ ⁇ . 05 mm).
  • Dispersion A-38B was fed and circulated in the vessel while rotating the rotor. Dispersion was performed at a rotor peripheral speed of 12 mZs until the particle size distribution reached 0.02 ⁇ 0.01 / zm, and dispersion A-38C was obtained. Dispersion A - particle size distribution of 38C 50 0/0 size ⁇ or 0. 022 ⁇ m, was 90 0/0 size ⁇ or 0. 049 / zm.
  • Example 68 Paste composition C 64 was filtered using a 0.45 ⁇ m pore size filter, applied to a glass substrate with ITO using a spin coater, and heat-treated at 80 ° C. for 15 minutes using an oven. After drying, heat treatment was performed at 175 ° C. for 4 hours to cure to obtain a dielectric composition (cured film) having a thickness of 1 m. The film thickness was adjusted by the spin adjustment speed during spin coating. Furthermore, a 0 .: L m thick transparent film is formed on this dielectric composition using a fluorosurfactant (manufactured by Dainippon Ink & Chemicals, "Defenser" (trade name) MCF-350SF). did. Evaluation was carried out in the same manner as in Example 43. The results are shown in Table 7.
  • Dispersing device Described in Dispersing device / Bead particle size. Homogenizer, Ultra Apex Mill.
  • the paste composition and dielectric composition of the present invention can be suitably used as a material for a transparent capacitor used in a display portion of a display, a material that comes into contact with an electrolytic solution of electrowetting type electronic paper, or the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

  【課題】フラットパネルディスプレイ、フレキシブルディスプレイ、携帯情報端末のディスプレイ、タッチパネルなどの情報表示部材で、透明性が必要とされる領域に透明な高誘電率層を形成し、層間絶縁膜として透明電極などと組み合わせることにより透明なキャパシタを形成することができる誘電体組成物を提供する。   【解決手段】(a)樹脂、(b)ペロブスカイト系結晶構造を有する高誘電率無機粒子、および(c)有機溶剤を含有してなるペースト組成物であって、(b)高誘電率無機粒子の平均粒子径が0.002μm以上0.06μm以下であり、全有機溶剤量がペースト組成物全量の35重量%以上85重量%以下であるペースト組成物。また、(a)樹脂、(b)ペロブスカイト系結晶構造を有する高誘電率無機粒子を含有してなる誘電体組成物であって、(b)高誘電率無機粒子の平均粒子径が0.002μm以上0.06μm以下である誘電体組成物。

Description

明 細 書
ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造 方法
技術分野
[0001] 本発明は、フラットパネルディスプレイ、フレキシブルディスプレイ、電子ペーパー、 携帯情報端末のディスプレイ、タツチパネルなどの情報表示部材で、透明性が必要 とされる領域に透明な高誘電率層を形成し、層間絶縁膜として透明電極などと組み 合わせることにより透明なキャパシタなどを形成することができるペースト組成物およ び誘電体組成物、およびそれらによって形成された透明キャパシタに関する。
背景技術
[0002] 実装基板に内蔵するキャパシタ用の層間絶縁膜を作製する方法として、高誘電率 無機粒子を榭脂中に分散したペースト組成物を塗布、乾燥、硬化させるという方法が 知られている (特許文献 1〜2参照)。しカゝしながら、これらの方法により作製された層 間絶縁膜は、用いている粒子の粒子径が大きいためと、膜厚が厚いためから、不透 明であり、透明誘電体膜として用いることが困難であった。
[0003] 一方、液晶配向膜榭脂中に高誘電率無機粒子を分散させ、比誘電率を 6〜7に高 めるという技術も知られている(特許文献 3参照)。この技術では榭脂単体の 2〜2. 5 倍となる比誘電率を得ているが、比誘電率の値が 6〜7と不十分で、この膜を層間絶 縁膜とするキャパシタの静電容量は小さく実用的でない。
[0004] 無機粒子の榭脂材料中への分散は、まず、有機溶剤中へ無機粒子を良好に分散 させた分散液を製造し、その後、分散液を榭脂と混合することで達成することができる 。市販されて ヽる平均粒子径がナノメートル〜数十ナノメートルオーダーである無機 粒子は、個々の粒子(1次粒子)を適度に凝集させ、平均粒子径が数十 μ mの粉体 状の粒子(2次粒子)として提供されている場合が多い。したがって、平均粒子径が 0 . 06 m以下の無機粒子の分散液を製造するためには、分散媒中で、これら 2次粒 子の凝集を解し、 1次粒子が安定に分散した分散液を製造する必要がある。しかしな がら、無機粒子の粒子径がより微小になると、凝集した無機粒子にせん断応力をカロ えるための機構が粒子サイズに追随できなくなることから、無機粒子を分散媒中で均 一分散させることが非常に困難となる。また、粒子重量に対する表面積の割合が高く なるため、分散が進行すると分散液の粘度が増加し、分散をさらに進めることが難しく なる。
[0005] 他方、無機粒子を 1次粒子の状態にして分散させる方法として、ホモジナイザーや ビーズミル、超音波分散機などの分散装置を用いる方法が知られている。特に、無機 粒子を平均粒子径 0. 06 m以下の微小粒子へと分散するには、微小ビーズの摩 擦によるせん断応力により分散を促進するビーズミルを好ましく用いることができる。
[0006] 例えば、粒子径 70nm以下のシリカ粒子を有機溶剤中へ、ビーズミルを用いて分散 させるものがある (特許文献 4参照)。しカゝしながら、特許文献 4に記載された方法は、 シリカ粒子という極性が高く有機溶剤への分散が比較的容易な無機粒子についての 方法であり、他の無機粒子に対しては有効でない。さらに、分散が容易なシリカ粒子 においても、分散媒に使用する有機溶剤はアルコール系に限定され、ビーズミルで の分散後、遠心分離機を用いて、粒子径を小さくしている。また特許文献 4には、ァ ルミナなどのシリカ粒子よりも極性が小さい粒子に関する分散例が示されているが、 シリカ粒子以外にっ ヽては具体的な粒子径分布が示されておらず、 1次粒子までの 分散達成は難しいと考えられる。極性力 、さい粒子として、ベロブスカイト系結晶構 造を有する高誘電率無機粒子であるチタン酸バリウムなどが挙げられる。
[0007] また、ビーズミルを用いたナノメートルオーダーの炭素粒子の分散を行う方法も提 案されている(特許文献 5参照)。し力しながら、特許文献 5に記載された方法では、 分散媒としては極性が高い水を用いており、一般的な有機溶剤よりも分散が容易で ある。したがって、一般的な有機溶剤に対しては、特許文献 5に記載された方法は有 効でない。
[0008] これら従来の分散方法は、無機粒子の種類や大きさ、分散媒の種類によって分散 の度合いが左右されることが多ぐなかでもぺロブスカイト系結晶構造を有する高誘 電率無機粒子の分散に適用した場合、安定した分散性を実現することは非常に困難 であった。
特許文献 1:特開 2005 - 38821号公報 (特許請求の範囲) 特許文献 2:特開 2004— 285105号公報 (特許請求の範囲)
特許文献 3:特開平 4 70818号公報 (特許請求の範囲)
特許文献 4:特開 2004— 346288号公報(6頁、実施例)
特許文献 5:米国特許出願公開第 2005Z8560号明細書
発明の開示
発明が解決しょうとする課題
[0009] 力かる状況に鑑み、本発明は、透明性が必要とされる領域に透明な高誘電率層を 形成し、層間絶縁膜として透明電極などと組み合わせることにより透明なキャパシタ や帯電量を制御できる透明誘電体層を形成することができるペースト組成物および 誘電体組成物、およびそれらによって形成された透明キャパシタを提供する。
課題を解決するための手段
[0010] すなわち(a)榭脂、 (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子、お よび (c)有機溶剤を含有してなるペースト組成物であって、 (b)高誘電率無機粒子の 平均粒子径が 0. 002 m以上 0. 06 m以下であり、全有機溶剤量がペースト組成 物全量の 35重量%以上 85重量%以下であるペースト組成物であり、その製造方法 である。
[0011] また、本発明のもう一つの態様は、(a)榭脂、(b)ベロブスカイト系結晶構造を有す る高誘電率無機粒子を含有してなる誘電体組成物であって、 (b)高誘電率無機粒子 の平均粒子径が 0. 002 μ m以上 0. 06 μ m以下である誘電体組成物と、その誘電 体組成物を絶縁膜として用いたキャパシタである。
発明の効果
[0012] 本発明によれば、比誘電率が大きぐ波長 400〜700nmの全域において光線透 過率が高い誘電体組成物およびそれを得るための原料となるペースト組成物を得る ことができる。さらには、本発明の組成物は、: L mという薄膜においても、リーク電流 力 S小さぐ高電圧保持率が大きい。またこれらの誘電体組成物は、ディスプレイ部材 などの高い可視光透過率を要求される用途でのキャパシタ用層間絶縁膜を提供する ことができる。 図面の簡単な説明
[0013] [図 1]実施例における電圧保持率の算出で用いた上部電極と ITO透明電極間の電 位差と印加矩形パルスの関係を示した図
発明を実施するための最良の形態
[0014] 本発明のペースト組成物は、(a)榭脂、(b)ぺロブスカイト系結晶構造を有する高誘 電率無機粒子、および (c)有機溶剤を含有しており、(b)高誘電率無機粒子の平均 粒子径が 0. 002 μ m以上 0. 06 μ m以下であって、全有機溶剤量がペースト組成 物全量の 35重量%以上 85重量%以下である。
[0015] 本発明で用いる (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均 粒子径 ίま、 0. 002 μ m以上 0. 06 μ m以下であり、好ましく ίま 0. 002 μ m以上 0. 04 /z m以下であり、より好ましくは 0. 002 m以上であることや 0. 03 m以下であるこ とである。(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均粒子径が 0. 06 m以下であると、ペースト組成物を硬化させて得られる誘電体組成物の表面 が平滑になりやすくなり、そのため表面での光の散乱が小さくなり、その結果、光線透 過率を大きくできる。伝搬する光線が受けるレーリー散乱の強度は、光線が通過する 媒質中にある粒子の粒子径の 3乗に正の相関関係があるため、誘電体組成物中の( b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の粒子径が小さ!/、ほど、 (b )高誘電率無機粒子による光線透過を阻害するレーリー散乱は小さくなる。 (b)ベロ ブスカイト系結晶構造を有する高誘電率無機粒子の平均粒子径が 0. 04 m以下で あると、ペースト組成物を硬化させて得られる誘電体組成物に光を透過させる際に (b )高誘電率無機粒子により起こるレーリー散乱の抑制効果が顕著となり、光線透過率 を大きくしゃすくなる。(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の 平均粒子径が 0. 03 μ m以下であると、ペースト中の (b)高誘電率無機粒子の沈降 が起きに《なる。(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均 粒子径が 0. 002 m以上であると高誘電率無機粒子の結晶性が良くなるために、 ( b)高誘電率無機粒子の誘電率を大きくすることができるため、誘電体組成物の誘電 率を大きくしゃすくなる。
[0016] 本発明のペースト組成物中の全有機溶剤量は、ペースト組成物全量の 35重量% 以上 85重量%以下であり、さらには、 45重量%以上であることや、 75重量%以下で あることが好ましい。有機溶剤量がペースト組成物全量の 85重量%以下では、ぺー スト中の固形分量が十分多くなるため、塗布膜を形成した際に膜厚が薄い場合にも 連続膜が得やすくなる。有機溶剤量がペースト組成物全量の 75重量%以下では、 乾燥時の有機溶剤揮発による空隙の発生が抑制される。このため誘電体組成物の 誘電率を大きくすることができ、かつ空隙によるレーリー散乱が抑制され光線透過率 を高くすることができ、また吸湿の原因となりうる空隙の量が小さいために、湿度、水 分の影響による物性変化を小さくできる。有機溶剤量がペースト組成物全量の 35重 量%以上では、分散処理する前の段階にぉ 、ての)高誘電率無機粒子の過剰な凝 集を防ぎ粘度を低くできるため、分散処理開始時点において極端に高い粘度である と分散処理を開始できな 、ことがあるビーズミルなどの分散装置での分散処理を行 、 やすい。有機溶剤量がペースト組成物全量の 45重量%以上では、高誘電率無機粒 子を均一に分散した後のペーストの粘度も低くすることができるため、膜厚均一性が 高 ヽ塗布膜を形成しやす ヽ。
[0017] ペースト組成物は、例えば、高誘電率無機粒子を液状榭脂ゃ榭脂溶液に加えて混 合分散する方法や、予め高誘電率無機粒子を適当な有機溶剤中に分散した分散液 を作製し、その分散液と液状榭脂もしくは榭脂溶液を混合するレットダウン法などによ つて作製される。また、榭脂または有機溶剤中へ高誘電率無機粒子を分散させる方 法は特に限定されず、例えば、超音波分散機、ボールミル、ロールミル、クレアミック ス、ホモジナイザー、ビーズミル、メディア分散機などを使用する方法を用いることが できるが、特に、高い分散性が達成できる点でボールミル、ホモジナイザー、ビーズミ ルを用いるのが好ましい。
[0018] 高誘電率無機粒子を分散させる際、分散性を向上させるために、例えば、高誘電 率無機粒子の表面処理、組成物への分散剤の添加、界面活性剤の添加、溶剤の添 加などを行ってもよい。
[0019] 高誘電率無機粒子の表面処理としては、シラン系、チタン系、アルミニウム系などの 各種カップリング剤、脂肪酸、リン酸化合物などによる処理のほか、ロジン処理、酸性 処理、塩基性処理などが挙げられる。ここで、高誘電率無機粒子の表面処理は、組 成物を作製する前に、高誘電率無機粒子に施す表面処理であってもよぐまた、上 記の処理剤を組成物中に添加し、結果として高誘電率無機粒子の表面に上記の処 理剤が付着する態様の ヽずれでもよ 、。
[0020] 組成物へ添加する分散剤の例としては、リン酸、カルボン酸、脂肪酸、およびそれ らのエステル類などの酸基を有するものなどが挙げられる。チタン酸バリウムなど表面 が塩基性である高誘電率無機粒子を分散させる場合には、酸一塩基相互作用を利 用して分散剤を高誘電率無機粒子表面と相互作用させることができるため、酸基を 有する分散剤を用いることが有効であり、特に、リン酸エステル骨格を有する化合物 が好ましく用いられる。リン酸エステル骨格を有する化合物が含まれる分散剤として は、ビックケミ一'ジャパン (株)製:商品名" Dysperbyk— 111"、同じぐ' BYK— W9 010"などがある。その他、リン酸トリメチル、リン酸トリェチル、リン酸トリブチルなどの リン酸アルキルやリン酸アタリレートなども有効な場合がある。また、組成物へ添加す る分散剤は高誘電率無機粒子の表面処理剤として用いられてもよい。
[0021] 添加する分散剤の量は、高誘電率無機粒子に対し、 2重量%以上 25重量%以下 が好ましい。分散剤の量が 2重量%以上であると高誘電率粒子の良好な分散が達成 されやすくなる。分散剤は、分散処理等によって凝集が解された粒子の表面を覆うこ とで粒子の再凝集を阻害し、分散を維持する効果を有している。分散剤の量が高誘 電率無機粒子に対し 2重量%以上であると、前記の効果が発現する。分散剤の量が 高誘電率無機粒子に対し 5重量%以上であるとより好ましぐ高誘電率粒子の粒子径 が 0. 02 m以下の場合にも前述の分散剤の効果が発現し、良好な分散が得られ、 誘電体組成物の光線透過率を大きくしゃすい。分散剤の量が高誘電率無機粒子に 対し 25重量%以下であると誘電率を大きくしゃすくなる。
[0022] そのほか、分散性を良好にするための手段として、ノ-オン性、カチオン性、ァ-ォ ン性の界面活性剤、多価カルボン酸などの湿潤剤、両親和性物質、高立体障害の 置換基を有する榭脂などの添加が挙げられる。これらの添加剤は、高誘電率無機粒 子の表面処理剤として用いられてもよい。また、有機溶剤の添カ卩によって、分散時ま たは分散後の系の極性を制御することができる。有機溶剤としては、榭脂を溶解する ものであり、かつ分散剤との相溶性のあるものを適宜選択すれば良い。例えば、エタ ノール、 i—プロパノール、 n—ブタノール、ベンジルアルコール、イソブチルアルコー ル、メトキシメチルブタノールなどのアルコール類、クロ口ベンゼン、ベンゼン、トルェ ン、キシレン、メシチレンなどの芳香族炭化水素類、メチルセ口ソルブ、ェチルセロソ ルブ、ブチルセ口ソルブ等のセロソルブ類、メチルセ口ソルブアセテート、ェチルセ口 ソルブアセテート、ブチルセ口ソルブアセテート等のセロソルブエステル類、プロピレ ングリコーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエーテ ルアセテート等のプロピレングリコールエステル類、 1, 2—ジメトキシェタン、 1, 2— ジエトキシェタン、テトラヒドロフラン、ァ-ソールなどのエーテル類、メチルェチルケト ン、メチルイソブチルケトン、メチルー n アミルケトン、シクロへキサノン、 γ ブチロ ラタトン、 γ ブチロラタタム、ジォキサン、アセトン、シクロへキサノン、シクロペンタノ ンなどのケトン類、 Ν, Ν ジメチルホルムアミド、ジメチルァセトアミド、 Ν—メチルピロ リドン、ジメチルスルホキシド、スルホラン、テトラヒドロフラン、イソホロン、トリクロロェチ レン、乳酸ェチル、酢酸ブチル、プロピレングリコールモノメチルエーテルなどや、こ れらのうちの 1種類以上を含有する混合物を有機溶剤として用いることができる。 また本発明で用いる有機溶剤は沸点 160°C以上であることが好ましい。有機溶剤 の沸点が 160°C以上では、誘電体組成物内での空隙発生が抑制されて、誘電体組 成物の比誘電率を高くしゃすい。沸点が 160°Cより低いと、有機溶剤の揮発速度が 速いため、熱処理時の物質移動による緻密化が追いつかず、空隙部が増加し、誘電 体組成物の誘電率が低下することが多くなる。より好ましくは 180°C以上、さらにより 好ましくは 200°C以上である。また、本発明で用いられる有機溶剤は、沸点 300°C以 下であることが好ましぐより好ましくは 280°C以下である。沸点が 280°Cより高くなる と、脱有機溶剤のための処理が高温となり、高温処理によって榭脂が分解し、誘電特 性の劣化や機械的強度の低下などが起こる。また 300°Cより大きくなると、榭脂の分 解がより激しくなり、機械強度の低下が起きる。本発明のペースト組成物に使用する 有機溶剤は、沸点 160°C以上の有機溶剤 1種のみでもよいが、沸点 160°C以上の有 機溶剤を含有して ヽれば、それ以外の溶剤を含んで 、ても空隙発生が抑制される効 果が得られやすくなる。また、ペースト組成物は必要に応じて、安定化剤、分散剤、 沈降防止剤、可塑剤、酸化防止剤、架橋剤、架橋促進剤、溶解調整剤、界面活性 剤、消泡剤などの添加剤などを含有してもよ 、。
[0024] 沸点 160°C以上の有機溶剤としては、メシチレン、ァセトニルアセトン、メチルシクロ へキサノン、ジイソプチルケトン、メチルフエ-ルケトン、ジメチルスルホキシド、 γ—ブ チロラタトン、イソホロン、ジェチルホルムアミド、 Ν, Ν—ジメチルァセトアミド、 Ν—メ チルピロリドン、 γ —ブチロラタタム、エチレングリコールモノアセテート、エチレングリ コールジアセテート、 3—メトキシ 3—メチルブタノールおよびそのアセテート、 3—メト キシブチルアセテート、 2—ェチルへキシルアセテート、シユウ酸エステル、マロン酸 ジェチル、マレイン酸エステル、炭酸プロピレン、ブチルセ口ソルブ、ェチルカルビト ール等がある。
[0025] 本発明でいう沸点とは、 1気圧、即ち 1. 01325 X 105NZm2の圧力下での沸点で ある。沸点の測定は公知の技術を用いて行うことができ、特に限定されないが、例え ば、 Swietoslawskiの沸点計を用いることで測定できる。
[0026] なお、高誘電率無機粒子の充填率が高くなるにつれて、上記有機溶剤量による影 響は大きくなり、高誘電率無機粒子がペースト組成物に含まれる有機溶剤を除く成 分の総重量の 80重量%以上の場合に、本発明の効果が特に大きい。
[0027] 次に、ペースト組成物を基板などの被着体に塗布する方法としては、特に限定され ず、例えば、スクリーン印刷機、ブレードコーター、スピンコーター、バーコ一ターなど を用いて塗布する方法が挙げられる。続いて塗布後の膜に対し、ホットプレート、ォ ーブンなどの加熱装置を用いて、脱有機溶剤や熱硬化を行う。
[0028] ペースト組成物を塗布する被着体 (例えば基板)としては、例えば、有機系基板、無 機系基板、およびこれらの基板に回路の構成材料が配置されたものから選択できる 。有機系基板の例としては、榭脂基板、紙'フエノール銅張積層板、紙'エポキシ銅張 積層板、紙'ポリエステル銅張積層板などの紙基材銅張積層板、ガラス布'エポキシ 銅張積層板、ガラス布'ポリイミド銅張積層板、ガラス布'テフロン (登録商標)銅張積 層板などのガラス基材銅張積層板、紙'ガラス布'エポキシ銅張積層板、ガラス不織 布 ·エポキシ銅張積層板などのコンポジット銅張積層板、ポリエーテルイミド基板、ポリ エーテルケトン基板、ポリサルフォン系榭脂基板、ポリカーボネート基板、ポリイミド基 板、ポリエステルなどの榭脂基板、ポリエステルフィルム、ポリエステル銅張フィルム基 板、ポリイミドフィルム、ァラミドフィルム、ポリイミド銅張フィルム基板、各種液晶ポリマ
Figure imgf000010_0001
[0029] また、無機系基板の例としては、アルミナ基板、窒化アルミニウム基板、炭化ケィ素 基板などのセラミック基板、アルミニウムベース基板、鉄ベース基板などの金属系基 板、そのほか、ガラス基板、シリコン基板、石英基板などが挙げられる。
[0030] 回路の構成材料の例としては、銀、金、銅、クロム、ニッケル、チタンやこれらの合金 などの金属や、インジウム 錫酸ィ匕物 (ITO)、インジウム 亜鉛酸ィ匕物、酸化錫、酸 ィ匕インジウム、酸ィ匕亜鉛やこれらにその他元素のドープしたものなどを含有する導体 、無機系酸化物などを含有する抵抗体、ガラス系材料および Zまたは榭脂などを含 有する低誘電体、榭脂ゃ高誘電率無機粒子などを含有する高誘電体、ガラス系材 料などを含有する絶縁体などが挙げられる。
[0031] 本発明の誘電体組成物は、(a)榭脂、(b)ベロブスカイト系結晶構造を有し、かつ( b)高誘電率無機粒子の平均粒子径が 0. 002 m以上 0. 06 m以下である。本発 明の誘電体組成物は、波長 400〜700nmの全域の光線透過率が 50%以上 100% 以下であることが好ましぐより好ましくは 70%以上 100%以下であり、さらに好ましく は、 90%以上 100%以下である。波長 400〜700nmの全域における誘電体組成物 の光線透過率が 50%以上となると、誘電体組成物を透過した光で情報表示を行うと V、う透明性の機能を満足できるようになる。波長 400〜700nmの全域における誘電 体組成物の光線透過率が 70%以上となると、誘電体組成物を透過した光でモノクロ メーターでの情報表示が行 、やすくなる。波長 400〜700nmの全域における誘電 体組成物の光線透過率が 90%以上となると、誘電体組成物を透過した光でカラー での情報表示が行 、やすくなる。ここで波長 400〜700nmの全域における誘電体 組成物の光線透過率が 50%以上 100%以下であるとは、光線透過率に波長依存性 がある場合に、誘電体組成物の波長 400〜700nmの透過光スペクトルにお!/、て光 線透過率の最小値が 50%以上であるということと同義である。これらの光線透過率は 、榭脂中に存在する (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の良 好な分散性に依り、これは前述した分散技術によって達成できる。
[0032] 波長 400〜700nmの全域における誘電体組成物の光線透過率は、可視分光光 度計を用いて測定することができる。誘電体組成物が膜状である場合は、波長 400 〜700nmの全域にお!、て吸収を持たな 、材料であるガラスや石英などの基板上に 誘電体組成物膜を形成したものを光線透過率測定用試料として用いればょ ヽ。
[0033] 本発明の誘電体組成物は比誘電率が 10以上 300以下であることが良い。好ましく は比誘電率が 20以上である場合と、 80以下である場合である。より好ましくは比誘電 率が 30以上である場合と、 50以下である場合である。誘電体組成物を層間絶縁膜と して用いた場合に、比誘電率が 10以上では、大きな容量をもつキャパシタを形成す ることが容易となる。また、比誘電率が 20以上では、大きな容量をもつキャパシタを形 成する場合に、層間絶縁膜を極端に薄くする必要がないため、層間絶縁膜にリーク 電流発生の原因となるピンホールが発生しにくくなる。比誘電率が 30以上となると、 容量の大きなキャパシタを形成する場合にも、層間絶縁膜を比較的厚く形成すること ができるため、絶縁耐圧を大きくしゃすくなる。多くのベロブスカイト系結晶構造を有 する高誘電率無機粒子の比誘電率は、粒子径の大きさと正の相関関係がある。本誘 電体組成物の比誘電率が 300以下の場合、ぺロブスカイト系結晶構造を有する高誘 電率無機粒子に極端に比誘電率が大き 、ものを用いる必要がな 、ため、粒子径が 比較的小さいべ口ブスカイト系結晶構造を有する高誘電率無機粒子を用いることが でき、波長 400〜700nmにおける光線透過率を大きくしゃすい。本誘電体組成物の 比誘電率を 80より大きくしょうとすると、粒子充填率を単一粒子径のものを用いた場 合の最密充填以上とすることが必要となる場合が多い。したがって、本誘電体組成物 の比誘電率が 80以下の場合は、単一粒子径のみ力 なる場合に近い、粒子径分布 が非常にシャープな高誘電率無機粒子を用いることが可能となる。本誘電体組成物 の比誘電率が 50以下の場合は、 (b)ぺロブスカイト系結晶構造を有する高誘電率無 機粒子の誘電率が極端に大きなものを用いる必要がないため、高誘電率無機粒子 の材料選択の幅が広がる。
[0034] 本発明で用いる (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子は、その 平均粒子径カ 0. 002 μ m以上 0. 06 μ m以下であり、 0. 002 μ m以上 0. 04 μ m以 下であることが好ま 、。 (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子 の平均粒子径は、より好ましくは 0. 005 μ m以上である場合と、 0. 03 μ m以下であ る場合である。平均粒子径が 0. 002 m以上となると、(b)ぺロブスカイト系結晶構 造を有する高誘電率無機粒子の比誘電率を大きくしゃすくなる。平均粒子径が 0. 0 05 μ m以上となると、 (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子が凝 集しにくくなり、榭脂に均一に分散させやすくなる。平均粒子径が 0. 以下とな ると、誘電体組成物に光を透過させる際に (b)ぺロブスカイト系結晶構造を有する高 誘電率無機粒子により起こるレーリー散乱が抑制されるために、光線透過率を大きく しゃすくなる。平均粒子径が 0. 03 m以下となると、レーリー散乱抑制効果がより大 きくなり誘電体組成物の光線透過率を大きくしゃすくなるだけでなぐ誘電体組成物 製造時に発生しやすく (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の 分布の偏りの原因となる沈降がおきに《なる。
[0035] 本発明の誘電体組成物の製造方法として、液状もしくは溶液状の未硬化樹脂に (b )ぺ口ブスカイト系結晶構造を有する高誘電率無機粒子が分散されたペーストなどの 流動性がある状態のものを、加熱などにより固化させるというものがある。このような場 合、一般に (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の比重が榭脂 の比重より大きいために、流動性がある状態では重力で粒子が分散体の下部に沈む という沈降がおきやすい。し力しながら、粒子径が小さくなると、粒子 1つ 1つの重量が 小さくなり、ブラウン運動による影響が大きくなり、粒子が沈降しに《なる。
[0036] 誘電体組成物内を進む光のレーリー散乱の大きさは (b)ぺロブスカイト系結晶構造 を有する高誘電率無機粒子径の 3乗に正の相関関係があるため、高誘電率無機粒 子の平均粒子径が等しいものの場合でも、粒子径分布の幅が狭いものや、大きな粒 子の存在量が少な!、ものほど、誘電体組成物の光線透過率を大きくしゃす ヽ。
[0037] なお、本発明の (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均 粒子径の測定は、誘電体組成物の硬化薄膜の超薄切片に対する XMA測定、およ び透過型電子顕微鏡 (TEM)観察により行うことができる。この超薄切片には、誘電 体組成物の硬化薄膜を、膜厚方向に断面を切り出したものを用いる。(b)ベロブス力 イト系結晶構造を有する高誘電率無機粒子と (a)榭脂では電子線に対する透過率が 異なるので、 TEM観察像中で (b)ぺロブスカイト系結晶構造を有する高誘電率無機 粒子と (a)榭脂はコントラストの違いにより識別できる。複数種の (b)ベロブスカイト系 結晶構造を有する高誘電率無機粒子が使用されている場合の各高誘電率無機粒子 の同定は、 XMA測定に基づく元素分析および電子線回折像観察による結晶構造 解析により行うことができる。 TEM観察像の画像解析から、(b)ぺロブスカイト系結晶 構造を有する高誘電率無機粒子と (a)榭脂の面積の分布を求め、(b)ベロブスカイト 系結晶構造を有する高誘電率無機粒子像の断面を円形と近似して面積から粒子径 を算出できる。この粒子径の評価は倍率 5000倍と 40000倍の TEM画像につ!、て 行えばよい。算出された粒子径の分布を倍率が 5000倍の TEM画像において 0. 1 μ m刻みのヒストグラム、倍率力 0000倍の TEM画像において 0. 01 μ m刻みのヒ ストグラムで表す。得られたヒストグラムの各カラムに対し、その中心値と度数の積を 求める。次にそれらの積の和を度数の総和で除したものを平均粒子径とする。なお、 粒子径分布の評価は、 TEMのかわりに走査型電子顕微鏡(SEM)を用いて、上記と 同様の解析を行うことによつてもできる。
[0038] 一般に (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の粒成長や焼結 などの一次粒子の形状変化が起きる温度は、(a)榭脂の硬化温度より遙かに高い場 合が殆どであるので、そのような場合は、(b)ぺロブスカイト系結晶構造を有する高誘 電率無機粒子を (a)榭脂に分散させる前の原料段階で (b)ベロブスカイト系結晶構 造を有する高誘電率無機粒子の粒子径を評価してもよい。この場合、(b)ベロブス力 イト系結晶構造を有する高誘電率無機粒子を直接、前記と同様の TEMや SEMを用 いて観察し、それにより得られた観察像の画像解析により求めることができる。
[0039] また、上記以外にも、(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の 液体中でのブラウン運動による散乱光の揺らぎを測定する動的光散乱法、(b)ベロ ブスカイト系結晶構造を有する高誘電率無機粒子を電気泳動させたときの散乱光の ドップラー効果を測定する電気泳動光散乱法、照射した超音波の減衰状態求める超 音波減衰分光法などによって平均粒子径を測定することができる。レーザー回折式、 レーザー散乱式の粒度分布測定装置としては、(株)堀場製作所製 LA— 920、(株) 島津製作所製 SALD— 1100、日機装(株)製 MICROTRAC— UPA150やシスメ ックス (株)製ゼータサイザ一ナノ ZS等がある。
[0040] 本発明の誘電体組成物の (b)ベロブスカイト系結晶構造を有する高誘電率無機粒 子含有量は誘電体組成物全体に対し、 30重量%以上 99重量%以下であることが好 ましい。(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の含有量が、誘電 体組成物全体に対し 30重量%以上では、誘電体組成物の比誘電率を大きくしゃす くなり、キャパシタの層間絶縁材料として用いた場合に、大きな静電容量のキャパシ タを実現しやすくなる。 (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の 含有量が、誘電体組成物全体に対し 99重量%以下の場合、榭脂の含有量が十分 に多いために、膜の強度を高くしゃすい。
[0041] 本発明で用いられる (a)榭脂は、熱可塑性、熱硬化性榭脂の 、ずれも選択すること ができる力 波長 400〜700nmの全域における誘電体組成物の光線透過率を 50% 以上とするために、(a)榭脂は光線透過率が 50%以上であるものを用いることが好ま しい。誘電体組成物の光線透過率を大きくしゃすいため、(a)榭脂の光線透過率は 大きい方が好ましい。
[0042] 本発明で用いられる熱可塑性榭脂としては、例えば、ポリフエ-レンエーテル、ポリ フエ-レンスルフイド、ポリエーテルサルフォン、ポリエーテルイミド、液晶ポリマー、ポ リスチレン、ポリエチレン、フッ素榭脂などを用いることができる。
[0043] また、本発明で用いられる熱硬化性榭脂としては、例えば、エポキシ榭脂、フエノー ル榭脂、シロキサン榭脂、ポリイミド、アクリル榭脂、シァネート榭脂、ベンゾシクロブテ ン榭脂などを用いることができる。耐熱性が高いことなどの点から、熱硬化性榭脂を 用いることが好ましぐ(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子分 散性などの点力もエポキシ榭脂が好ましく使用される。
[0044] ここで、エポキシ榭脂とは、分子構造中にエポキシ基 (ォキシラン環)を 2個以上含 むプレボリマーを有する榭脂である。また、本発明のペースト組成物は硬化剤を有し ていてもよぐ硬化剤には、例えば、一般にエポキシ榭脂に使用されている硬化剤を 添加することができる。このような硬化剤としては、アミン系硬化剤、酸無水物系硬化 剤、フエノール系硬化剤などが例示される。また、これらの硬化剤は相互に併用して もよい。さらに、硬化剤と共に硬化促進剤を用いることができる。硬化促進剤は、硬化 剤を伴わないで単独で榭脂に添加してもよい。このような硬化促進剤としては、 2—メ チルイミダゾール、 2—ェチルー 4ーメチルイミダゾール、 1ーシァノエチルー 2—フエ 二ルイミダゾール、 1—シァノエチル一 2—フエ-ルイミダゾリゥムトリメリテート、トリフエ -ルホスフィン、トリス(2, 4—ペンタジォナト)コバルトなどの金属キレート化合物など が挙げられる。
[0045] 波長 400〜700nmの光に対する透過性が高いという点から、本発明では(a)榭脂 としてアクリル榭脂も好ましく用いることができる。
[0046] (b)ぺロブスカイト系結晶構造を有する高誘電率無機粒子とは、ぺロブスカイト型結 晶構造、あるいは複合ぺロブスカイト型結晶構造を有するもののことである。これらは 、例えばチタン酸バリウム系、チタン酸ジルコン酸バリウム系、チタン酸ストロンチウム 系、チタン酸カルシウム系、チタン酸ビスマス系、チタン酸マグネシウム系、チタン酸 バリウムネオジム系、チタン酸バリウム錫系、マグネシウムニオブ酸バリウム系、マグネ シゥムタンタル酸バリウム系、チタン酸鉛系、ジルコン酸鉛系、チタン酸ジルコン酸鉛 系、ニオブ酸鉛系、マグネシウムニオブ酸鉛系、ニッケルニオブ酸鉛系、タンダステ ン酸鈴系、タングステン酸カノレシゥム系、マグネシウムタングステン酸鈴系、二酸化チ タン系、などを挙げることができる。チタン酸バリウム系とは、チタン酸バリウム結晶内 の一部の元素を他の元素で置換したり、結晶構造内に他の元素を侵入させたりした チタン酸バリウムを母材とする固溶体を含めた総称である。その他のチタン酸ジルコ ン酸バリウム系、チタン酸ストロンチウム系、チタン酸カノレシゥム系、チタン酸ビスマス 系、チタン酸マグネシウム系、チタン酸バリウムネオジム系、チタン酸バリウム錫系、マ グネシゥムニオブ酸バリウム系、マグネシウムタンタル酸バリウム系、チタン酸鉛系、ジ ルコン酸鉛系、チタン酸ジルコン酸鉛系、ニオブ酸鉛系、マグネシウムニオブ酸鉛系 、ニッケルニオブ酸鉛系、タングステン酸鉛系、タングステン酸カルシウム系、マグネ シゥムタングステン酸鉛系も 、ずれも同様で、それぞれを母材とする固溶体を含めた 総称である。
[0047] なお、ぺロブスカイト型結晶構造、ある!/、は複合ぺロブスカイト型結晶構造を有する 高誘電率無機粒子は、これらのうち 1種を単独で用いたり、 2種以上を混合して用い たりすることができる。大きい誘電率を有する誘電体組成物を得る場合には、商業的 利便性との両立の点から、主としてチタン酸バリウム力 なる化合物を用いることが好 ましい。但し、誘電特性や温度安定性を向上させる目的で、シフター、デブレッサー 剤などを少量添カ卩して用いてもょ ヽ。
[0048] (b)ぺロブスカイト系結晶構造を有する高誘電率無機粒子には、比誘電率が 50〜 30000の無機粒子を用いることが好ま 、。比誘電率が 50以上である高誘電率無 機粒子を用いると比誘電率が十分大きい誘電体組成物が得られやすい。また、高誘 電率無機粒子の比誘電率が 30000以下であると、誘電体組成物の 比誘電率の温 度依存性を小さくしゃすくなる。ここでいう(b)ぺロブスカイト系結晶構造を有する高 誘電率無機粒子の比誘電率とは、 (b)ベロブスカイト系結晶構造を有する高誘電率 無機粒子を原料粉末として、加熱、焼成して得られる焼結体の比誘電率をさす。焼 結体の比誘電率は、例えば以下の手順によって測定する。高誘電率無機粒子とポリ ビュルアルコールのようなバインダー榭脂、有機溶剤もしくは水を混合して、ペースト 状組成物を作製したのち、ペレット成型器の中に充填して、乾燥させ、ペレット状固 形物を得る。そのペレット状固形物を、例えば 900〜1200°C程度で焼成することに より、バインダー榭脂を分解、除去し、(b)ベロブスカイト系結晶構造を有する高誘電 率無機粒子を焼結させ、無機成分のみ力もなる焼結体を得ることができる。このとき、 焼結体の空隙は十分小さぐ理論密度と実測密度から計算した空隙率が 1%以下と なっていることが必要である。この焼結体ペレットに上下電極を形成し、静電容量お よび寸法の測定結果から、比誘電率を計算する。
[0049] (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の作製方法としては、固 相反応法、水熱合成法、超臨界水熱合成法、ゾルゲル法、しゅう酸塩法、アルコキシ ド法などの方法が挙げられる。粒子径が小さく大きさが揃った (b)ベロブスカイト系結 晶構造を有する高誘電率無機粒子の作製が容易であるという理由から、水熱合成法 、超臨界水熱合成法、ゾルゲル法、のいずれかを用いることが好ましい。
[0050] (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の形状は、球状、略球状 、楕円球状、針状、板状、鱗片状、棒状、立方体 (サイコロ)状などが挙げられるが、 特に、球形あるいは略球形であることが好ましい。球状あるいは略球状の(b)ぺロブ スカイト系結晶構造を有する高誘電率無機粒子は、比表面積が小さ!、ために充填時 に高誘電率無機粒子の凝集ゃ榭脂流動性低下などを生じにく 、からである。これら のうち 1種を単独で用いたり、 2種以上を混合して用いることができる。 [0051] 本発明のペースト組成物の製造方法は特に限定されないが、以下のような方法に より好ましく実施することができる。本発明で用いられる (b)ベロブスカイト系結晶構造 を有する高誘電率無機粒子は平均粒子径が小さいため、粒子間の凝集を解して均 一な分散を達成するためには、分散メディアに微小ビーズを用いる分散手法が有効 である。 (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均粒子径は 0 . 002 m以上 0. 06 m以下であるため、分散メディアにはビーズの平均粒子径が 0. 02mm以上 0. 1mm以下のものを用いることが有効である。分散メディアのビーズ の平均粒子径が 0. 03mm以上である場合と 0. 06mm以下である場合は、より有効 である。ビーズの平均粒子径が 0. 1mm以下である場合、ビーズの間を分散液が通 過する際に、高誘電率無機粒子がビーズと接触する頻度が高ぐ十分な分散効果が 得られる。さらに高い分散効果を得るためには、ビーズの平均粒子径は 0. 06mm以 下であることが好ましい。ビーズの平均粒子径が 0. 02mm以上である場合、個々の ビーズの持つ運動量が十分大きぐ高誘電率無機粒子の凝集を解くのに十分なせん 断応力が得られる。高誘電率無機粒子の凝集体にさらに強いせん断応力を与えるた めには、ビーズの平均粒子径は 0. 03mm以上であることが好ましい。
[0052] ビーズの平均粒子径の評価は、例えば以下のような方法で行うことができる。ビー ズは光学顕微鏡を用いて観察を行うことができる。ガラスなどの透明板の上にビーズ (サンプル)を載せ、透明板の下側力ゝら光を当て透過光像を対物レンズを通して観察 し、ビーズの粒子径を評価する。任意の 100個のビーズの観察を行い、それぞれの ビーズに対して求めた粒子径の平均値をビーズの平均粒子径とすることができる。ビ ーズの粒子径は、ビーズの観察像に対し各種の画像処理ソフトを用いた球形近似を 行うことで求めることができる。具体的には、顕微鏡の接眼レンズ部の代わりに取り付 けた CCDカメラによるデジタル画像をコンピューター上で画像処理することにより行う 。このような CCDカメラとしては(株)フローベル製の ADP— 240があり、このような画 像処理ができるソフトとしては (株)フローベル製の FlvFsなどがある。
[0053] 分散メディアであるビーズとしては、金属製、セラミック製やガラス製のものを好まし く使用できる。これらの具体的な材質としては、ステンレス、鉄、銅、クロム、ニッケル、 チタ-ァ、窒化ケィ素、炭化ケィ素、アルミナ、ジルコユア、ケィ酸ジルコニウム、チタ ン酸バリウム、珪酸ガラス、石英などが挙げられる。特に、硬度が高いジルコユア製ビ ーズが好適に使用できる。ジルコユアとしては強度が大きいことからイットリア安定ィ匕 ジルコユアを用いることが好まし 、。
[0054] 本発明におけるビーズを用いた分散方法は特に限定されないが、用いる装置とし ては、ボールミル、ホモジナイザー、ピンロータービーズミルなどが挙げられ、寿工業 (株)製の"ウルトラァペックスミル"(商品名)ゃァシザヮ ·ファインテック (株)製の"スタ 一ミル"(商品名)などが微小粒子の分散に特に好適なものとして挙げられる。これら の 2種のビーズミルにお!、ては、高誘電率無機粒子の分散が行われるベッセルと呼 ばれる部位力 外壁を形成する円筒形のステーターと、ステーターの中心で回転す るローターによって形成される。そして、高誘電率無機粒子と有機溶剤とを混合した 分散液を、ステーターとローターとの間を送液する。ローターからは放射状に複数の ブレードが突出している。ベッセル内に分散メディアであるビーズを充填し、ローター を回転させることにより、ブレードによりビーズが攪拌され、それに伴い、ビーズが分 散液中の高誘電率無機粒子にせん断応力を与え、高誘電率無機粒子が微小粒子 に分散される。一度ベッセル内を通過した分散液を循環させ、繰り返しベッセル内へ と送液することで、分散液中の高誘電率無機粒子の凝集を徐々に解し、分散を進め る。
[0055] 分散液に含まれる高誘電率無機粒子は 1次粒子あるいは凝集体として存在するも のであるが、本発明にお 、ては分散液中に存在するときの高誘電率無機粒子の大き さは、分散液中で幾つかの高誘電率無機粒子の 1次粒子が凝集した状態のものを体 積基準で分布にしたときのメジアン径(50%粒子径)である。分散液中での高誘電率 無機粒子の平均粒子径を測定する方法としては、レーザーによる静的光散乱方式や 動的光散乱方式が挙げられるが、平均粒子径 20nm以下の粒子径を高精度で評価 する場合は、動的光散乱方式を用いる方が好ましい。この方式による粒子径測定装 置として、例えば、日機装 (株)製の"ナノトラッグ' UPA— EX150 (商品名)が挙げら れる。
[0056] ビーズミルのベッセル内のビーズ充填量は、ベッセル容積の 20容積%以上の場合 と 85容積%以下の場合が好ま 、。ビーズの充填量が 20容積%以上である場合、 近接するビーズの間隙が狭いため分散液中の高誘電率無機粒子がビーズに接触す る頻度が高ぐ分散が短時間で効率よく進行する。さらにこの効果を高めるために、ビ ーズの充填量は 50容積%以上であることがより好ましい。一方、ビーズの充填量が 8
5容積%以下である場合、近接するビーズの間に十分な間隙が存在するため、分散 液がベッセル内に詰まることなくスムーズに送液することができる。また、ビーズの充 填量が 85容積0 /0以下である場合、ビーズ同士、あるいはビーズとベッセルのステー ターやローターとの摩擦により発生する熱量が少ないため、分散剤などの分散液を 構成する材料が変質しにくい。また、遠心力によりビーズをフィルタリングする方式の ビーズミルにおいて、ビーズの充填量が多くなると、フィルタリング機能が十分に働か ず、ベッセルから回収した分散液中にビーズが混入する可能性が大きくなるが、ビー ズの充填量が 85容積%以下である場合は、ビーズの混入がないか、あるいは非常に 小さくて済む。さらにこの効果を大きく奏するために、ビーズの充填量は 75容積%以 下であることがより好まし!/、。
[0057] ビーズミルのローターの回転周速は 8mZs以上 15mZs以下であることが好ましい 。本発明における回転周速とは、ローター力も突出しているブレードの先端が回転す るときの速度である。回転周速が 8mZs以上である場合、高誘電率無機粒子を平均 粒子径 0. 02 m以下に分散するのに十分なせん断応力が得られる。また、回転周 速が 8mZs以上である場合、ビーズを遠心力によりフィルタリングする方式のビーズミ ルにおいて、回収した分散液中にビーズが混入しない。一方、回転周速が 15mZs 以下である場合、ビーズ同士、あるいはビーズとベッセルのステーターやローターと の摩擦による発熱量は少ないため、分散液が変質しにくい。
[0058] 分散処理時の分散液の温度は 10°C以上 40°C以下であることが好ましい。ここで、 分散処理時の分散液の温度は、ベッセル力 送出された直後の分散液の温度とする 。分散液温が 40°C以下である場合、分散液中の有機溶剤の揮発量は少なぐ分散 液中の高誘電率無機粒子や分散剤などの組成の濃度変化は少な 、。液温が 40°C よりも高いと、分散液組成の濃度変化が生じ、分散液の分散性が悪くなる場合がある 。例えば、分散液の分散性は pHにより影響を受けることがある力 分散液の pH値は 分散液組成の濃度変化により変化する。したがって分散液の温度制御は分散液の p H値、また分散液中の高誘電率無機粒子の分散性を制御する重要な条件の 1つで ある。また、分散液中に温度により化学反応する材料や、温度により変質する材料を 含有する場合は、温度変化により分散液が有する特性が変化するため、分散時の温 度制御を行うことが好ましい。さらにこの効果を高めるために、分散液の温度は 35°C 以下であることが好ましい。一方、分散処理時の分散液の温度が 10°Cよりも低い場 合、ベッセル力 送出した分散液を回収する容器内に結露が生じ、分散液中に水分 が混入し、分散液の特性を劣化させる可能性があるため、分散処理時の分散液の温 度は 10°C以上であることが好ましい。また、分散液の温度が 10°C以上であると、分 散液の粘度が低くなるため、ビーズの運動エネルギーの減損が避けられ、分散効率 が高くなる。さらにこの効果を高めるためには、分散液の温度は 20°C以上であること 力 り好ましい。
[0059] 分散処理時の分散液の粘度は、 ImP' s以上 lOOmP' s以下であることが好ましい。
ここで、分散処理時の分散液の粘度は、ベッセル力 送出された分散液をサンプリン グし、サンプリングから 5分後に測定した際の粘度とする。測定温度は 25°Cとする。粘 度測定は、例えば、東機産業 (株)製の粘度計 RE—115Lを用いて行うことができる 。ビーズミルのベッセル内のビーズは回転するローターのブレードから運動エネルギ 一を獲得し、分散液中の高誘電率無機粒子と接触することにより、せん断応力を発 生する。しかし、分散液の粘度が高い場合は、ビーズが高誘電率無機粒子へ接触す る前に、溶剤中で運動エネルギーが大きく減損し、高誘電率無機粒子に十分なせん 断応力を与えることができない場合がある。分散処理時の分散液の粘度が ΙΟΟπιΡ· s以下である場合は、上記問題を回避することができる。さらにこの効果を高めるため に、分散処理時の分散液の粘度は、 20mP' s以下であることがより好ましい。一方、 分散液の粘度が ImP' s以上であれば、製造した分散液と樹脂とを混ぜて作製する ペースト組成物の粘度が低くならず、ペースト組成物を基板上に塗布し膜状の榭脂 組成物を製造する場合、連続膜を形成しやすくなる。
[0060] 本発明における無機粒子の分散液の製造方法についての例を以下に記す。
[0061] (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子、分散剤、 (c)有機溶剤 を所定の分量で混合し、攪拌する。混合直後は、高誘電率無機粒子の表面を空気 の層が覆っているため、高誘電率無機粒子と有機溶剤との濡れが十分でなぐ粘度 が増加する場合がある。この場合は、高誘電率無機粒子と有機溶剤が完全に濡れる まで、回転羽根などで時間をかけて攪拌するのが好まし 、。
[0062] 高誘電率無機粒子、分散剤、有機溶剤を混合、攪拌した後、ビーズミルにて高誘 電率無機粒子の分散処理を行う。まず、ビーズミルのベッセル内に所定粒子径のビ ーズを所定量投入し、ローターを回転させながら、分散液に用いるものと同じ有機溶 剤をベッセル内へ送液 Z循環させビーズ洗浄を行う。洗浄時に有機溶剤の汚れが 目立つ場合は、新しい有機溶剤と入れ替え、有機溶剤の汚れが目立たなくなるまで 洗浄を続ける。ビーズ洗浄後、循環させた有機溶剤を回収し、次いで、上記高誘電 率無機粒子、分散剤、有機溶剤の混合液をベッセル内へ送液 Z循環させ分散処理 を行う。初めにベッセル内から送出される分散液は、ベッセル内に残留した有機溶剤 により濃度が薄くなつているため、ベッセルの大きさに応じて、ベッセル内から送出さ れる分散液の濃度が一定になるまで初流を除去する。分散処理は一度に小さ 、ビー ズで実施してもよぐ段階的にビーズの大きさを変えて行ってもよぐ特に限定されな い。例えば、粒子径が 0. 5mmのビーズで高誘電率無機粒子の平均粒子径が 100η m程度になるまで分散を行ってから、次に、より微小なビーズでの分散を施してもよい 。ここで、平均粒子径が 0. 1 m程度になるまでの分散処理を粗分散とよび、その後 の 0. 06 m以下の微小粒子径への分散処理を本分散とよぶ。粗分散をホモジナイ ザ一で行い、本分散をビーズミルで行うなど、粗分散と本分散を異なる装置にて行う こともできる。ビーズミルにおいては、サンプルをミル本体へチューブを通して送液す る方式のものが多ぐ粗分散をビーズミルで行うと、粒子径の大きな粒子が送液チュ ーブ中で目詰まりする場合がある。粗分散をホモジナイザーなど別の装置で行うと、 これを避けることができる。
[0063] 粗分散をホモジナイザーで行う場合は、例えば、回転刃の先端の周速を 1〜: LOm Zsにして、 1時間程度処理する。ホモジナイザー処理中は熱が発生するため、氷浴 中で処理することが好ましい。用いることができるホモジナイザーとしては、 "エタセル オード' (商品名)((株)日本精機製作所製)などが挙げられる。
[0064] 分散処理時の分散液の粘度は高誘電率無機粒子の分散性や分散処理の効率に 影響するので、分散処理の経過に伴う分散液の粘度変化を把握することが好ま 、 。例えば、一定時間ごとに分散液をサンプリングし、粘度測定をすることにより、粘度 の経時変化を把握することができる。分散処理時に分散液の粘度が上昇した場合は 、循環させている分散液中に有機溶剤や分散剤、 pH調整剤などを適量加えて、粘 度を低下させることちできる。
[0065] 分散処理時の分散液の温度は、ベッセル外部を冷却する冷却水の温度や流量、 分散液の循環速度により制御できる。分散液の温度上昇は、分散処理時の分散液 の粘度が高い場合に発生しやすい。分散液の温度上昇が大きすぎる場合には、分 散液の変質が起きることがある。
[0066] 分散液の固形分濃度は 10重量%以上が好ましぐより好ましくは 20重量%以上で ある。また、分散液の固形分濃度は 60重量%以下であることが好ましぐより好ましく は 40重量%以下である。本発明の分散液の固形分濃度とは、分散液全量に対して 分散液中に含まれる有機溶剤以外の成分の割合である。分散液の固形分濃度が 10 重量%以上であると、粘度の低い分散液を作製することが可能となり、分散処理時も ビーズとの摩擦などにより発生する熱量が少な 、ため、分散液を構成する材料が変 質しに《なる。分散液の固形分濃度が 20重量%以上であると、分散液と榭脂液を 混合したペースト組成物を用いて誘電体組成物の膜を形成した時に 1 μ m以上の厚 膜を形成しやくなる。また、分散液の固形分濃度が 60重量%以下であると、遠心分 離によるフィルタリング方式のビーズミルを用いた場合に、ビーズが分離されやす!/、。 さらに、分散液の固形分濃度が 40重量%以下であると、分散液の粘度が低ぐ分散 液中の高誘電率無機粒子とビーズが頻度よく接触するため、高誘電率無機粒子の 凝集体を解きやすくなる。また、平均粒子径 0. 1 m以下の高誘電率無機粒子を用 いた場合においても、分散液中の高誘電率無機粒子を効率良く分散することができ 、粒度分布が 1次粒子径付近まで分散しやすぐ本分散液を用いて誘電体組成物の 膜を形成した時に透過率の高 、膜を得やす 、。
[0067] ビーズミルのローターの回転周速は一定でもよぐ分散処理時に段階的に変更して もよい。ローターの回転周速は分散処理時の分散液の温度に影響を与える場合があ るので、分散処理時に回転周速を変更する場合は、分散液の温度上昇が大きくなり すぎないようにするのが好ましい。また、ビーズを遠心分離によりフィルタリングする方 式のビーズミルの場合は、ローターを回転する前に送液ポンプを作動し、分散液の 循環を開始すると、ベッセル内から送出する分散液中にビーズが混入することがある ので、ローターを回転した後に送液ポンプを作動するようにする。
[0068] 分散処理時間は高誘電率無機粒子や有機溶剤、分散剤などの分散液を構成する 材料の種類や組成比により適宜設定する。例えば、一定時間ごとに分散液をサンプ リングし、分散液中での高誘電率無機粒子の平均粒子径を測定することは、分散状 態の経時変化を把握でき、分散処理の終了時点を判断することができるので好まし い。分散性が良好な組成の場合は、 30分程度の分散処理時間で十分であるが、組 成によっては、分散処理を 24時間以上行ってもよい。分散処理時間が長い場合は、 有機溶剤などの分散液を構成する材料が揮発することにより、分散液の組成比が変 化し、分散性が変化する場合があるので、そのような場合は、適宜必要な成分を添加 し、組成を調整する。
[0069] 次に、上記の高誘電率無機粒子分散液の製造方法によって得られた分散液と、榭 脂、もしくは榭脂と有機溶剤を有する榭脂溶液とを含有するペースト組成物の製造方 法について説明する。
[0070] 分散液と榭脂、もしくは榭脂と有機溶剤を有する榭脂溶液の混合は、榭脂、もしくは 榭脂と有機溶剤を有する榭脂溶液中に分散液を所定量となるまで注入してもよ ヽし、 分散液中に榭脂、もしくは榭脂と有機溶剤を有する榭脂溶液を所定量となるまで注 入してもよい。この際の樹脂の態様は、液状樹脂であっても、固形榭脂を溶剤に溶か した榭脂溶液であってもよい。また、この際の樹脂と有機溶剤を有する榭脂溶液の態 様は、液状榭脂もしくは固形榭脂を溶剤に溶力した榭脂を有機溶剤で希釈した榭脂 溶液であってもよい。
[0071] ペースト組成物の製造方法としては、上記の方法のように別々に作製した分散液と 榭脂、もしくは榭脂と有機溶剤を有する榭脂溶液を混合する方法だけでなぐ高誘電 率無機粒子を液状榭脂もしくは榭脂溶液に直接分散する方法も用いることができる。 高誘電率無機粒子を液状榭脂もしくは榭脂溶液に直接分散する場合においても、ビ ーズミルを好ましく用いることができる。 [0072] 所定量の高誘電率無機粒子を有する分散液と榭脂材料を混合して得られたベー スト組成物を、さらに均質になるようにするために、ボールミルやロールミルを用いるこ とができる。また、混合処理によりペースト組成物中に気泡が混入した場合は、静置 する、あるいは攪拌脱泡機を用いるなどして、気泡を除去すると、ペースト組成物を 用いて製造する榭脂組成物中への気泡の混入を抑制することができる。
[0073] 本発明の誘電体組成物を得る方法として、例えば、上記のように、まず、高誘電率 無機粒子を液状榭脂もしくは榭脂溶液に分散させたペースト組成物を作製し、その ペースト組成物を被着体 (例えば基板)などに塗布し、脱有機溶剤、固化を行うことに より、誘電体組成物を得る方法が挙げられる。このとき、固化の方法として、熱、光な どによる固化が挙げられる。但し、加熱によって固化を行う場合は、本発明の誘電体 糸且成物は焼結体ではないので、榭脂を分解したり、除去したりすることなぐペースト 組成物と同時に加熱行う被着体や電子部品などの耐熱温度範囲内、例えば、 500 °C以下の温度で加熱することが好ましい。より好ましくは 250°C以下の温度で加熱す ることが好ましい。また、塗布する被着体は、ガラス基板やガラスエポキシ基板などの リジッドな基板に限定されず、榭脂フィルムや銅などの金属箔などのフレキシブル基 板でもよい。
[0074] 本発明の誘電体組成物の空隙率は、 30体積%以下であることが好ましい。より好ま しくは 20体積%以下であり、さらにより好ましくは 10体積%以下である。空隙率が 30 体積%以下であると、空隙によるレーリー散乱などを小さくすることができ透過率を大 きくしやすい。空隙率が 20体積%以下となると絶縁抵抗を大きくしゃすい。空隙率が 10体積%以下であるとリーク電流を小さくしゃすい。
[0075] ここで、空隙率を 30体積%以下にする方法としては、例えば、榭脂、高誘電率無機 粒子、有機溶剤を上記した中から適宜選択することで達成可能である。具体的には 、例えばペースト組成物力 沸点 160°C以上の有機溶剤を少なくとも 1種含むものと することで達成することができる。
[0076] 誘電体組成物の空隙率の測定方法は、ガス吸着法、水銀圧入法、陽電子消滅法、 小角 X線散乱法など、用途に合わせて適宜選択することができる。
[0077] 本発明のペースト組成物力 得られる誘電体組成物の形態は特に限定されず、膜 状、棒状、球状など、用途に合わせて選択することができるが、特に膜状であることが 好ましい。ここでいう膜とは、フィルム、シート、板、ペレットなども含まれる。もちろん、 導通のためのビアホール形成、インピーダンスや静電容量ある 、は内部応力の調整 、または、放熱機能付与など、用途にあわせたパターン形成を行うこともできる。
[0078] 本発明で用いる透明電極は、波長 400〜700nmの全域における光線透過率が 5 0%以上 100%以下であればよぐ材質は特に限定されないが、光透過性が高いこと からインジウム 錫酸ィ匕物 (ITO)、インジウム 亜鉛酸ィ匕物、酸化錫、酸化インジゥ ムゃ酸ィ匕亜鉛これらにその他元素のドープしたものなどを用いることができる。透明 電極の光線透過率が 50%未満であると、ディスプレイなどに用いるキャパシタとして は透明性が不十分となり、情報表示特性が不十分で良くない。
[0079] 本発明の誘電体組成物から得られる層間絶縁膜と、波長 400〜700nmの全域に おける光線透過率が 50%以上 100%以下である透明電極を有するキャパシタは、 波長 400〜700nmで高 、光線透過率を有するため、透明キャパシタとしてそれを通 した光線による情報表示を行うことができる。
[0080] 本発明のキャパシタは、少なくとも層間絶縁膜と透明電極を有しており、層間絶縁 膜は電極間に存在するものである力 本発明では、 2つの電極のうち少なくとも 1つが 透明であれば良ぐもう 1つは金属などの不透明な電極であってもよい。
[0081] 本発明の誘電体組成物を膜状にしたときの膜厚は、誘電体組成物を層間絶縁膜と したキャパシタの静電容量や光線透過率が所望の値を満たす範囲内で任意に設定 することができるが、 0. 05 μ m以上である場合と、 20 μ m以下である場合が好ましく 、さらに好ましくは、 0.: L m以上である場合と、 5 m以下である場合である。キャパ シタとして大きな静電容量を確保するには膜厚が薄い方が好ましいが、 0. 05 m り厚い場合にはピンホールなどが発生しにくぐ電気的絶縁を得やすくなる。また、 0 . 以上では、耐久性加速試験である PCT (プレッシャータッカーテスト)後に誘 電正接が増大しにくい。また、膜厚が 20 m以下であると、キャパシタとして十分大き な静電容量を得やすい。膜厚が 5 m以下であると、十分高い光線透過率を得やす い。
[0082] 誘電体組成物を層間絶縁膜としたキャパシタの静電容量の温度変化、面内ばらつ きは、小さい方が回路設計上好ましい。温度変化についても、できるだけ小さい方が 好ましぐ例えば、 X7R特性(一 55〜125°Cにおいて静電容量の温度変化率が ± 1 5%以内)を満たすことが好ましい。静電容量の面内ばらつきは、平均値に対して 5% 以下 (静電容量の平均値 5%≤静電容量≤静電容量の平均値 + 5%)であること が好ましい。
[0083] 本発明の誘電体組成物は、電極で挟まれたキャパシタ用の層間絶縁材料以外にも 用いることができる。例えば、エレクトロウエツティングタイプの電子ペーパーの電解液 に接する材料として用いることができる。この場合は、本発明の誘電体組成物膜は、 電解液に接する面と反対の面が電極に接するように形成される。透明な高誘電率層 を電解液に接する面に形成することで、電圧印加による電解液の濡れ性変化が大き くなり、電解液の移動速度が大きくなり、表示速度が大きいエレクトロウ ッテイングタ イブの電子ペーパーを実現することができる。
[0084] エレクトロウエツティングタイプの電子ペーパーに用いられる場合のように、本発明 の誘電体組成物が電解液などの液状物質に接して用いられる用途においては、誘 電体組成物へこのような液状物質が染み込むようなことが起きないようにすることが好 ましい。染み込みを抑制するためには、(a)榭脂として吸湿、吸水の影響が少ないも のを用いることが好ましい。低吸水性のエポキシ榭脂としては、キシリレンノボラック型 、ビフエ-ルノボラック型、ジシクロペンタジェン型、ジシクロペンタジェンフエノールノ ボラック型、ジフエニルメタン型、ナフトールァラルキル型、ナフトールノボラック型、 4 官能ナフタレン型、ナフタレン骨格、ビフエニル骨格を有するエポキシ榭脂等がある。 低吸水性の硬化剤としては、例えば、フエノール系のノボラック榭脂等がある。
[0085] 本発明のペースト組成物には、必要に応じて、安定化剤、分散剤、沈降分散剤、可 塑剤、酸化防止剤、架橋剤、架橋促進剤、溶解抑制剤、溶解調整剤、界面活性剤、 表面改質剤、消泡剤などの添加剤の添加を行っても良い。また、上記のような誘電体 組成物への液状物質の染み込みを抑制する場合には、ペースト組成物中に可塑剤 、架橋剤、界面活性剤、表面改質剤、消泡剤などの添加剤を含有することが好ましい 。より好ましい添加剤の例としては、フッ素系の界面活性剤、フッ素系の表面改質剤 が挙げられる。フッ素系の界面活性剤としては、大日本インキ化学工業 (株)製の"メ ガファッグ,(商品名) F— 493、 F— 494、 F— 470、 F— 475、 F— 477、 F— 478、 F —482、 F— 487、 F— 172D、 "ディフェンサ,,(商品名) MCF— 350SF、住友スリー ェム (株)製の"ノベック"(商品名) FC—4430などが挙げられる。
[0086] また、誘電体組成物への液状物質の染み込みを抑制する方法として、ペースト組 成物中に上記の添加剤を含有することの他に、誘電体組成物の膜表面上に、フッ素 系の表面活性剤、フッ素系の表面改質剤、フッ素系のコーティング剤などを 1 μ m厚 以下の極薄で塗布し、誘電体組成物の膜表面上に透明被膜を形成しても良い。透 明被膜の膜厚は、好ましくは 0. 以下、より好ましくは 0. 以下である。透明 被膜の比誘電率は、誘電体組成物の比誘電率と比べて低いため、キャパシタとして 大きな静電容量を確保するには、透明被膜の膜厚は薄い方が好ましい。透明被膜の 膜厚が 0. 以下であると、キャパシタとして十分大きな静電容量を得やすい。透 明被膜の膜厚が 0. 5 μ m以下では十分高 ヽ光線透過率を得やす!/、。
実施例
[0087] 以下、本発明の実施例について説明する力 本発明はこれらによって限定されるも のではない。光線透過率、誘電特性、膜厚、高誘電率無機粒子の平均粒子径、分 散液の粒度分布、リーク電流、電圧保持率の評価は下記の方法に従って測定した。
[0088] (1)光線透過率
顕微分光装置 MCPD— 2000 (大塚電子 (株)製)を用いて、(A)ガラス基板の波 長 400〜700nmの光線透過率、(B)ガラス基板上に誘電体組成物を形成したサン プルの波長 400〜700nmの光線透過率を測定した。本発明の誘電体組成物の光 線透過率は(B)の光線透過率から (A)の光線透過率を差し引いた差スペクトルとし た。ガラス基板には、ソーダライムガラスを用いた。本発明の誘電体組成物の透過光 スペクトルにおいて、本発明の実施例における光線透過率は波長 400nmの値を代 表値として用いた。光線透過率が波長 400nm以外で最小値を示すものにっ ヽては 、波長 400〜700nmで最も小さい値を示した光線透過率と、その値が得られた波長 を 載した。
[0089] (2)誘電特性
誘電体組成物の静電容量は、インピーダンスアナライザ 4294Aおよびサンプルホ ルダー 16451B (共にアジレントテクノロジー (株)製)を用いて測定した。
[0090] 実施例 1〜42および比較例 1〜5については、以下のようにして静電容量測定サン プルを作製し、周波数 lkHおよび 1MHzにおける比誘電率を求めた。面積 6cm X 6 cm、厚さ 0. 3mmのアルミニウム基板上の全面に誘電体組成物の塗膜を形成した。 この塗膜はスピンコートしたペースト組成物を適宜加熱し、有機溶剤蒸発、榭脂硬化 させることにより形成した。続いてこの塗膜上に蒸着法によりアルミニウム電極を形成 した。アルミニウム電極は、直径 10mmの円形パターンの測定用電極と内径 11. 5m mのリング状パターンのガード電極である。誘電体組成物の膜厚は 10 μ m〜20 μ m の範囲とした。測定用電極とアルミニウム基板に挟まれた部分が測定対象領域となる 。比誘電率は静電容量と測定対象領域の寸法力 算出した。
[0091] 実施例 43〜68および比較例 6〜8については、以下のようにして静電容量測定サ ンプルを作製し、周波数 lkHにおける比誘電率を求めた。透明電極付きガラス基板 上に誘電体組成物の塗膜を形成した。この塗膜はスピンコートしたペースト組成物を 適宜加熱し、有機溶剤蒸発、榭脂硬化させることにより形成した。続いてこの塗膜上 に蒸着法によりアルミニウム電極を形成した。ガラス基板は面積 6cm X 6cm、厚さ 0. 7mm、透明電極は ITO (Indium Tin Oxide)電極を用いた。 ITO電極は、膜厚 1 50± 10nm、抵抗値 8〜20ΩΖ口、透過率≥85% (測定波長 550nm)を用いた。 I TO電極の抵抗値は四端子テスターで測定した。アルミニウム電極は、直径 10mmの 円形パターンの測定用電極と内径 11. 5mmのリング状パターンのガード電極である 。誘電体組成物の膜厚は実施例 68以外は 1 μ m、実施例 68は 1. 1 μ mとした。測 定用電極と ITO電極に挟まれた部分が測定対象領域となる。
[0092] (3)膜厚
塗膜の膜厚は、塗膜と基板の段差をサーフコム 1400 (東京精密 (株)製)を用いて 触針法により測定することで求めた。
[0093] (4)高誘電率無機粒子の平均粒子径
高誘電率無機粒子の平均粒子径は以下の方法で求めた。高誘電率無機粒子を有 機溶剤に分散し、凝集をほぐした状態にしたものを TEM観察用メッシュ上に滴下し、 有機溶剤を蒸発させた後、透過型電子顕微鏡 (TEM)観察を行った。透過型電子顕 微鏡 (TEM)観察は倍率 100000倍および 200000倍において行った。得られた高 誘電率無機粒子の透過型電子顕微鏡観察写真を画像解析ソフト (Scion Corpora tion社製、 Scion Image)を用いて解析し、各高誘電率無機粒子の像の面積を求 めた。このようにして得られた各無機フィラー像を円形と近似し、面積力 粒子径を算 出した。粒子径の算出は、 100個以上の粒子が撮影されている透過型電子顕微鏡 写真を用いて写真内の全ての高誘電率無機粒子に対して行い、その平均値を平均 粒子径とした。
[0094] (5)高誘電率無機粒子の分散液中の粒度分布
分散液の粒度分布は、粒度分布測定装置マイクロトラック UPA150 (日機装 (株) 製)を用いて測定した。粒度分布は、 50%径、 90%径の値を用いた。 50%径とは、 粉体の集合の全体積を 100%として累積カーブを求めたときに、その累積カーブが 5 0%となる点の粒子径の累積中位点(Median径)である。 90%径とは、その累積力 ーブが 90%となる点の粒子径である。
[0095] (6)リーク電流
誘電体組成物のリーク電流は以下のようにして測定した。透明電極付きガラス基板 上に誘電体組成物を形成した。ガラス基板は面積 6cmX 6cm、厚さ 0. 7mm,透明 電極は ITO (Indium Tin Oxide)電極を用いた。 ITO電極は、膜厚 150± 10nm 、抵抗値 8〜20ΩΖ口、透過率≥85% (測定波長 550nm)を用いた。 ITO電極の 抵抗値は四端子テスターで測定した。 ITO透明電極付きガラス基板上に誘電体組成 物の塗膜を形成した。この塗膜上に蒸着法によりアルミニウム電極を形成した。アルミ -ゥム電極は、厚さ 300nmの直径 2. 5mmの円形パターンの電極である。透明電極 とアルミニウム電極に挟まれた部分が測定対象となる。透明電極とアルミニウム電極 の間に 2Vの電圧を印加し、電圧印加 20秒後に電流を測定した。この測定にはケー スレーインスツルメンッ (株)製、エレクト口メータ/高抵抗システム 6517A型を用 V、た
[0096] (7)電圧保持率
上記 (6)と同じようにして、透明電極付きガラス基板上に誘電体組成物の塗膜を形 成した。透明電極付きガラス基板は上記 (6)と同じものを用いた。 [0097] 誘電体組成物の塗膜上に濃度 ImMの塩化カリウム水溶液を滴下し、塩ィ匕カリウム 水溶液を介して、上部電極を配置し、上部電極 Z塩化カリウム水溶液 Z誘電体組成 物 ZITO透明電極のサンドイッチ構造を形成した。塩化カリウム水溶液の液滴はサン ドイツチ構造を形成した際に面積 3mm2、厚み 0. 7mmとなるように調整した。測定対 象領域は、塩ィ匕カリウム水溶液と接した面積 3mm2部分の上下電極に挟まれた部分 となる。上部電極と ITO透明電極間に電位差 5V、幅 60 sの矩形電圧パルスを加え た。電圧保持率 (VHR)は、式(1)から計算した。 Vは矩形電圧パルス印加時の上 部電極と ITO透明電極間の電位差、 Vはパルス立ち下がり後 16. 6ms経過時の電
2
極間電位差を表す。図 1に各電位差と印加矩形電圧パルスの関係を示す。電圧保 持率の測定は濃度 ImMの塩ィ匕カリウム水溶液を滴下し、 30秒後に行った。 3回の 測定値の平均値を、その誘電体組成物の電圧保持率 (VHR)とした。
[0098] VHR=V /V (1) 。
2 1
[0099] 実施例 1
チタン酸バリウム(Cabot, Inc.社製、 K— Plus 16 :平均粒子径 0. 06 /ζ πι) 429重 量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有する酸基を 持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 21. 4重量部をウル トラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 1を得た。エポキシ榭 脂(ジャパンエポキシレジン (株)製、 "ェピコート"(商品名) YX8000) 6. 8重量部、 硬化剤 (新日本理化 (株)製、 "リカシッド"(商品名) ΜΗ700) 4. 7重量部、硬化促進 剤 , Ν ジメチルベンジルァミン) 0. 2重量部、 γ—ブチロラタトン 1. 2重量部を混 合し、エポキシ榭脂溶液 B—1を得た。ェピコート ΥΧ8000はエポキシ当量 205gZe qの液状エポキシ榭脂である。分散液 A—1を 150重量部と、エポキシ榭脂溶液 B— 1 を 3重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶 剤量が 69重量%であるペースト組成物 C— 1を作製した。 C— 1を硬化させて得られ る誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 90 重量%となる。
[0100] ペースト組成物 C 1をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 50%であった。
[0101] この試料の空隙率を測定したところ、 3%であった。空隙率の測定は以下の方法で 行った。シリコンウェハ上の全面に誘電体組成物の塗膜を形成した。この塗膜はスピ ンコートしたペースト組成物を適宜加熱し、有機溶剤蒸発、榭脂硬化させることにより 形成した。これを約 2cm X 2. 5cmの大きさにカットしたものを 5枚作製した。次に、よ り正確な大きさをノギスを用いて採寸し、膜面積をもとめた。この膜面積と上記(3)の 膜厚の測定方法で求めた膜厚カゝら膜の嵩体積 Aを求めた。次にマイクロメリテックス 社製のポアサイザ一 9320を用いて水銀圧入法(測定圧力範囲: 100kPa〜207MP a、セル容積 15cm2)により、細孔容積 Bを求めた。空隙率 C (%)は、 C= 100 X BZ Aから求めた。
[0102] ペースト組成物 C— 1を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 38であった。
[0103] 実施例 2
ペースト組成物 C— 1をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 V、硬化させ、膜厚 0. 8 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 65%であった。
[0104] 実施例 3
ペースト組成物 C— 1をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 い硬化させ、膜厚 0. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 85%であった。
[0105] 実施例 4
ペースト組成物 C— 1をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 V、硬化させ、膜厚 0. 1 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 93%であった。
[0106] 実施例 5
分散液 A— 1を 150重量部と、エポキシ榭脂溶液 B— 1を 5重量部とをボールミルを 用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%であるべ 一スト組成物 C 2を作製した。 C 2を硬化させて得られる誘電体組成物中の高誘 電率無機粒子の含有量は誘電体組成物全量に対し、 87重量%となる。このペースト 組成物 C - 2をガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80 °Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 、硬化さ せ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のス ピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 55% であった。実施例 1と同様にして、ペースト組成物 C— 2から誘電体組成物を作製し、 誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 36であった。
[0107] 実施例 6
分散液 A— 1を 150重量部と、エポキシ榭脂溶液 B— 1を 12重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 65重量%である ペースト組成物 C 3を作製した。 C 3を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は誘電体組成物全量に対し、 77重量%となる。このぺー スト組成物 C 3をガラス基板上にスピンコ一ターを用 ヽて塗布し、オーブンを用 ヽて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 、硬化 させ、膜厚 1. 4 /z mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時の スピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 70 %であった。実施例 1と同様にして、ペースト組成物 C— 3から誘電体組成物を作製 し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 18であった。
[0108] 実施例 7
分散液 A— 1を 150重量部と、エポキシ榭脂溶液 B— 1を 20重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 63重量%である ペースト組成物 C 4を作製した。 C 4を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は誘電体組成物全量に対し、 68重量%となる。このぺー スト組成物 C 4をガラス基板上にスピンコ一ターを用 ヽて塗布し、オーブンを用 ヽて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 、硬化 させ、膜厚 1. 4 /z mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時の スピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 80 %であった。実施例 1と同様にして、ペースト組成物 C— 4から誘電体組成物を作製 し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 12であった。
[0109] 実施例 8
水熱合成法を用いて作製した平均粒子径 0. 03 μ mのチタン酸バリウム Τ 1を 42 9重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有する酸 基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 21. 4重量部を ウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 2を得た。分散液 A— 2を 150重量部と、エポキシ榭脂溶液 B— 1を 3重量部とをボールミルを用いて混 合し、ペースト組成物全量に対する含有有機溶剤量が 69重量%であるペースト組成 物 C 5を作製した。 C 5を硬化させて得られる誘電体組成物中の高誘電率無機 粒子の含有量は誘電体組成物全量に対し、 90重量%となる。このペースト組成物 C 5をガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80°Cで 15 分間の熱処理を行い乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度 調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 75%であった 。実施例 1と同様にして、ペースト組成物 C— 5から誘電体組成物を作製し、誘電特 性の評価を行ったところ、 1MHzにおける比誘電率は 35であった。
[0110] 実施例 9 ペースト組成物 C— 5をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行
V、硬化させ、膜厚 0. 8 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 80%であった。
[0111] 実施例 10
ペースト組成物 C— 5をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 い硬化させ、膜厚 0. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 92%であった。
[0112] 実施例 11
ペースト組成物 C— 5をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行
V、硬化させ、膜厚 0. 1 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 96%であった。
[0113] 実施例 12
分散液 A— 2を 150重量部と、エポキシ榭脂溶液 B— 1を 5重量部とをボールミルを 用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%であるべ 一スト組成物 C 6を作製した。 C 6を硬化させて得られる誘電体組成物中の高誘 電率無機粒子の含有量は誘電体組成物全量に対し、 87重量%となる。このペースト 糸且成物 C— 6をガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80 °Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 、硬化さ せ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のス ピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 78% であった。実施例 1と同様にして、ペースト組成物 C— 6から誘電体組成物を作製し、 誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 32であった。 [0114] 実施例 13
分散液 A— 2を 150重量部と、エポキシ榭脂溶液 B— 1を 12重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 65重量%である ペースト組成物 C 7を作製した。 C 7を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は誘電体組成物全量に対し、 77重量%となる。このぺー スト糸且成物 C 7をガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 、硬化 させ、膜厚 1. 4 /z mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時の スピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 83 %であった。実施例 1と同様にして、ペースト組成物 C— 7から誘電体組成物を作製 し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 17であった。
[0115] 実施例 14
分散液 A— 2を 150重量部と、エポキシ榭脂溶液 B— 1を 20重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 63重量%である ペースト組成物 C 8を作製した。 C 8を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は誘電体組成物全量に対し、 68重量%となる。このぺー スト組成物 C 8をガラス基板上にスピンコ一ターを用 ヽて塗布し、オーブンを用 ヽて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 、硬化 させ、膜厚 1. 4 /z mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時の スピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 88 %であった。実施例 1と同様にして、ペースト組成物 C— 8から誘電体組成物を作製 し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 12であった。
[0116] 実施例 15
チタン酸バリウム(Buhler P ARTEC GmbH社製、 Barium titanate :平均粒 子径 0. 022 m (メーカー仕様平均粒子径 0. 018 m) 429重量部、 γ—ブチロラ タトン 1050重量部、分散剤(リン酸エステル骨格を有する酸基を持つコポリマー、ビ ックケミ一'ジャパン(株)製、 BYK-W9010) 21. 4重量部をウルトラァペックスミル( 寿工業 (株)製)を用いて混練し、分散液 A— 3を得た。分散液 A— 3を 150重量部と 、エポキシ榭脂溶液 B—lを 3重量部とをボールミルを用いて混合し、ペースト組成物 全量に対する含有有機溶剤量が 69重量%であるペースト組成物 C 9を作製した。 C 9を硬化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電 体組成物全量に対し、 90重量%となる。このペースト組成物 C— 9をガラス基板上に スピンコーターを用いて塗布し 80°Cで 15分間の熱処理を行い乾燥させた後、 175°C で 4時間の熱処理を行い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。 膜厚調整はスピンコート時のスピン速度調整により行った。この誘電体組成物の光線 透過率(波長 400nm)は 80%であった。
[0117] ペースト組成物 C— 9を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 32であった。
[0118] 実施例 16
ペースト組成物 C— 9をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 V、硬化させ、膜厚 0. 8 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 83%であった。
[0119] 実施例 17
ペースト組成物 C— 9をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 い硬化させ、膜厚 0. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 94%であった。
[0120] 実施例 18
ペースト組成物 C— 9をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 V、硬化させ、膜厚 0. 1 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコー ト時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 97%であった。
[0121] 実施例 19
分散液 A— 3を 150重量部と、エポキシ榭脂溶液 B— 1を 5重量部とをボールミルを 用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%であるべ 一スト組成物 C— 10を作製した。 C— 10を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は誘電体組成物全量に対し、 87重量%となる。このぺー スト組成物 C— 10をガラス基板上にスピンコーターを用いて塗布し、オーブンを用い て 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行!ヽ硬 化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時 のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 8 3%であった。実施例 1と同様にして、ペースト組成物 C— 10から誘電体組成物を作 製し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率は 30であった。
[0122] 実施例 20
分散液 A— 3を 150重量部と、エポキシ榭脂溶液 B— 1を 12重量部とをボールミル を用いて混合し、ペースト組成物 C— 11を作製した。 C— 11を硬化させて得られる誘 電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 77重量 %となる。このペースト組成物 C— 11をガラス基板上にスピンコーターを用いて塗布 し、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4時間 の熱処理を行い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調 整はスピンコート時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 85%であった。実施例 1と同様にして、ペースト組成物 C— 11から 誘電体組成物を作製し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率 は 16であった。
[0123] 実施例 21
分散液 A— 3を 150重量部と、エポキシ榭脂溶液 B— 1を 20重量部とをボールミル を用いて混合し、ペースト組成物 C— 12を作製した。 C— 12を硬化させて得られる誘 電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 68重量 %となる。このペースト組成物 C— 12をガラス基板上にスピンコーターを用いて塗布 し、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4時間 の熱処理を行い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調 整はスピンコート時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm)は 90%であった。実施例 1と同様にして、ペースト組成物 C— 12から 誘電体組成物を作製し、誘電特性の評価を行ったところ、 1MHzにおける比誘電率 は 12であった。
[0124] 実施例 22
チタン酸ストロンチウム(TPL, Inc.製、 HPS— 2000 :平均粒子径 0. 045 m) 4 29重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有する 酸基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 21. 4重量 部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 4を得た。分 散液 A— 4を 150重量部と、エポキシ榭脂溶液 B— 1を 3重量部とをボールミルを用い て混合し、ペースト組成物全量に対する含有有機溶剤量が 69重量%であるペースト 組成物 C 13を作製した。 C 13を硬化させて得られる誘電体組成物中の高誘電 率無機粒子の含有量は誘電体組成物全量に対し、 90重量%となる。
[0125] このペースト組成物 C— 13をガラス基板上にスピンコーターを用いて塗布し、ォー ブンを用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処 理を行い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はス ピンコート時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長
400nm)は 55%であった。ペースト組成物 C— 13を厚さ 300 μ mのアルミ基板上に スピンコーターを用いて塗布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い 乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を 得た。この誘電体組成物上にアルミ電極を形成し、誘電特性評価サンプルとした。 1 MHzにおける比誘電率は 27であった。
[0126] 実施例 23
ペースト組成物 C— 5をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 Vヽ硬化させ、膜厚 2 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート 時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 65%であった。
[0127] 実施例 24
ペースト組成物 C— 9をガラス基板上にスピンコーターを用いて塗布し、オーブンを 用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の熱処理を行 Vヽ硬化させ、膜厚 2 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート 時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波長 400nm) は 70%であった。
[0128] 実施例 25
チタン酸バリウム(Buhler P ARTEC GmbH社製、 Barium titanate :平均粒 子径 0. 022 m (メーカー仕様平均粒子径 0. 018 m) 224重量部、 γ—ブチロラ タトン 165重量部、分散剤(リン酸エステル骨格を有する酸基を持つコポリマー、ビッ クケミ一'ジャパン (株)製、 BYK— W9010) 11重量部をホモジナイザーを用いて混 練し、分散液 Α- 5を得た。分散液 Α— 5を 150重量部と、エポキシ榭脂溶液 B—1を 5. 9重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有機 溶剤量力 0重量%であるペースト組成物 C— 14を作製した。 C— 14を硬化させて得 られる誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 90重量%となる。このペースト組成物 C— 14をガラス基板上にスピンコーターを用い て塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 175°C で 4時間の熱処理を行い硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。 膜厚調整はスピンコート時のスピン速度調整により行った。この誘電体組成物の光線 透過率(波長 400nm)は 68%であった。
[0129] ペースト組成物 C— 14を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 34であった。
[0130] 実施例 26
分散液 A— 1を 150重量部と、エポキシ榭脂溶液 B— 1を 3重量部と、 γ プチロラ タトンを 86重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有 有機溶剤量が 80重量%であるペースト組成物 C— 15を作製した。 C— 15を硬化さ せて得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量 に対し、 90重量0 /0となる。このペースト組成物 C— 15をガラス基板上にスピンコータ 一を用いて塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行 、乾燥させた後 、 175°Cで 4時間の熱処理を行い硬化させ、膜厚 0. 8 mの誘電体組成物 (硬化膜 )を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この誘電体組成 物の光線透過率 (波長 400nm)は 51%であった。
[0131] ペースト組成物 C— 15を厚さ 300 mのアルミ基板上にスピンコ一ターを用!ヽて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 41であった。
[0132] 実施例 27
チタン酸バリウム(Cabot, Inc.社製、 K— Plus 16 :平均粒子径 0. 06 /ζ πι) 429重 量部、 γ プチ口ラタトン 315重量部、分散剤(リン酸エステル骨格を有する酸基を 持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 21. 4重量部をホモ ジナイザーを用いて混練し、分散液 A— 6を得た。分散液 A— 6を 76. 5重量部と、ェ ポキシ榭脂溶液 B— 1を 3重量部とをボールミルを用いて混合し、ペースト組成物全 量に対する含有有機溶剤量が 40重量%であるペースト組成物 C— 16を作製した。 C 16を硬化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電 体組成物全量に対し、 90重量%となる。このペースト組成物 C— 16をガラス基板上 にスピンコーターを用いて塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行!ヽ 乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、膜厚 1. の誘電体組 成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。こ の誘電体組成物の光線透過率(波長 400nm)は 50%であった。ペースト組成物 C 16を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗布し、オーブンを用い て、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4時間の熱処理を行い 硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物上にアルミ電極を形成 し、誘電特性評価サンプルとした。 1MHzにおける比誘電率は 36であった。
[0133] 実施例 28
水熱合成法を用いて作製した平均粒子径 0. 05 μ mのチタン酸バリウム Τ 2を 42 9重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有する酸 基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 21. 4重量部を ウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 7を得た。分散液 A— 7を 150重量部と、エポキシ榭脂溶液 B—1を 189重量部と、 y—ブチ口ラタトン を 365重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有 機溶剤量が 69重量%であるペースト組成物 C— 17を作製した。 C— 17を硬化させて 得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対 し、 20重量%となる。このペースト組成物 C— 17をガラス基板上にスピンコーターを 用いて塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 17 5°Cで 4時間の熱処理を行 、硬化させ、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得 た。膜厚調整はスピンコート時のスピン速度調整により行った。この誘電体組成物の 光線透過率 (波長 400nm)は 82%であった。
[0134] ペースト組成物 C— 17を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 8であった。
[0135] 実施例 29
エポキシ榭脂(日本化薬 (株)製、 NC3000) 15. 3重量部、フエノールノボラック榭 脂(日本化薬 (株)製、 "カャハード"(商品名) KTG— 105) 5. 3重量部、硬化促進剤 (北興ィ匕学 (株)製、トリフエ-ルホスフィン) 0. 2重量部、 γ—プチ口ラタトン 24. 7重 量部を混合し、エポキシ榭脂溶液 B— 2を得た。分散液 A— 3を 150重量部と、ェポ キシ榭脂溶液 B— 2を 10. 9重量部とをボールミルを用いて混合し、ペースト組成物 全量に対する含有有機溶剤量が 70重量%であるペースト組成物 C— 18を作製した 。 C 18を硬化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は誘 電体組成物全量に対し、 90重量%となる。このペースト組成物 C— 18をガラス基板
Figure imgf000042_0001
、て塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行 い乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、膜厚 1. の誘電体 組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。 この誘電体組成物の光線透過率 (波長 400nm)は 72%であった。
[0136] ペースト組成物 C— 18を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 32であった。
[0137] 実施例 30
光重合性アクリル榭脂 (ダイセル化学工業 (株)製、 "サイクロマー"(商品名)) 100 重量0 /0、光ラジカル発生剤(チバスペシャルティケミカルズ社製、 "ィルガキュア,,(商 品名) 369) 10重量部、 PGMEA (プロピレングリコールメチルエーテルアセテート) 9 0重量部を室温にて 2時間攪拌し、アクリル榭脂溶液 B— 3を得た。分散液 A— 3を 15 0重量部と、アクリル榭脂溶液 B— 3を 4. 9重量部とをボールミルを用いて混合し、ぺ 一スト組成物全量に対する含有有機溶剤量が 69重量%であるペースト組成物 C 1 9を作製した。 C 19を硬化させて得られる誘電体組成物中の高誘電率無機粒子の 含有量は誘電体組成物全量に対し、 90重量%となる。このペースト組成物 C— 19を ガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80°Cで 15分間の 熱処理を行い乾燥させた後、全面に超高圧水銀灯を露光して硬化し、膜厚 1.
の誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整によ り行った。この誘電体組成物の光線透過率 (波長 400nm)は 75%であった。
[0138] ペースト組成物 C— 19を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、全面に超 高圧水銀灯を露光して硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成 物上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電 率は 28であった。
[0139] 比較例 1
チタン酸バリウム (堺ィ匕学工業 (株)製、 BT— 05、平均粒子径: 0. 5 /ζ πι) 323重量 部、 Ί—プチ口ラタトン 18重量部、分散剤(リン酸エステル骨格を有する酸基を持つ コポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 0. 2重量部をホモジナイ ザ一を用いて氷冷下で 1時間混合分散し、分散液 A— 8を得た。エポキシ榭脂(日本 化薬 (株)製、 EPPN502H) 12. 8重量部、フエノールノボラック榭脂(大日本インキ 化学工業 (株)製、 TD— 2131) 7. 8重量部、硬化促進剤 (北興化学工業 (株)製、ト リフエ-ルホスフィン) 0. 2重量部、 γ —ブチロラタトン 24. 8重量部を混合し、ェポキ シ榭脂溶液 Β— 4を得た。分散液 Α— 8を 341. 2重量部と、エポキシ榭脂溶液 Β— 4 を 45. 6重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有 機溶剤量が 11重量%であるペースト組成物 C— 20を作製した。 C— 20を硬化させて 得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対 し、 94重量%となる。このペースト組成物 C— 20をガラス基板上にスピンコーターを 用いて塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 17 5°Cで 4時間の熱処理を行 、硬化させ、膜厚 10 μ mの誘電体組成物 (硬化膜)を得 た。膜厚調整はスピンコート時のスピン速度調整により行った。この誘電体組成物の 光線透過率 (波長 400nm)は 8%であった。
[0140] ペースト組成物 C— 20を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 95であった。
[0141] 比較例 2
チタン酸バリウム (堺ィ匕学工業 (株)製、 8丁ー05 :平均粒子径0. 5 ^ πι) 62. 3重量 部、チタン酸バリウム(TPL, Inc.社製、 HPB— 1000 :平均粒子径 0. 059 m) 21 . 9重量部、 γ プチ口ラタトン 15重量部、分散剤(リン酸エステル骨格を有する酸基 を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 0. 8重量部をホ モジナイザーを用いて混練し、分散液 A— 9を得た。エポキシ榭脂(日本化薬 (株)製 、 EPPN502H) 2. 2重量部、フエノールノボラック榭脂(大日本インキ化学工業 (株) 製、 TD—2131) 1. 4重量部、硬化促進剤 (北興化学工業 (株)製、トリフエニルホス フィン) 0. 04重量部、 γ プチ口ラタトン 7. 1重量部を混合し、エポキシ榭脂溶液 Β 5を得た。分散液 Α— 9を 100重量部と、エポキシ榭脂溶液 Β— 5を 10. 7重量部と をボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 20重 量%であるペースト組成物 C— 21を作製した。 C— 21を硬化させて得られる誘電体 組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 95重量%と なる。このペースト組成物 C - 21をガラス基板上にスピンコ一ターを用 ヽて塗布し、 オーブンを用いて 80°Cで 15分間の熱処理を行 、乾燥させた後、 175°Cで 4時間の 熱処理を行!ヽ硬化させ、膜厚 10 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整は スピンコート時のスピン速度調整により行った。この誘電体組成物の光線透過率 (波 長 400nm)は 5%であった。
[0142] ペースト組成物 C— 21を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 123であった。
[0143] 比較例 3
チタン酸バリウム (堺ィ匕学工業 (株)製、 BT— 01 :平均粒子径 0.: L m) 200重量 部、トルエン 400重量部をホモジナイザー用いて氷冷下で 1時間混練分散し、分散 液 A— 10を得た。エポキシ榭脂 YD— 8125 (東都化成 (株)製、 YD8125) 100重量 部、硬化剤 (日立化成工業 (株)製、 HN— 5500) 90重量部、硬化促進剤 (ジャパン エポキシレジン (株)製、 "ェピキュア"(商品名) 3010) 1重量部を混合し、エポキシ榭 脂溶液 B— 6を得た。分散液 A— 10を 60重量部と、 B— 6を 1. 9重量部とを混合し、 ペースト組成物全量に対する含有有機溶剤量が 69重量%であるペースト組成物 C —22を作製した。 C— 22を硬化させて得られる誘電体組成物中の高誘電率無機粒 子の含有量は誘電体組成物全量に対し、 90重量%となる。このペースト組成物 C— 22をガラス基板上にスピンコーターを用 V、て塗布し、オーブンを用いて 120°Cで 15 時間の熱処理を行い硬化させ、スピン速度を調整し、膜厚 1. 4 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この誘 電体組成物の光線透過率 (波長 400nm)は 28%であった。
[0144] ペースト組成物 C— 22を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 120°Cで 15時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物上にアルミ電極を形成し、誘電特性評価サンプ ルとした。 1MHzにおける比誘電率は 34であった。
[0145] 比較例 4
チタン酸バリウム(Cabot, Inc.社製、 K— Plus 16 :平均粒子径 0. 06 m) 224重 量部、 γ プチ口ラタトン 105重量部、分散剤(リン酸エステル骨格を有する酸基を 持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK— W9010) 11重量部をホモジ ナイザーを用いて混練し、分散液 Α— 11を得た。分散液 Α— 11を 150重量部と、ェ ポキシ榭脂溶液 B—1を 5. 9重量部とをボールミルを用いて混合し、ペースト組成物 全量に対する含有有機溶剤量が 30重量%であるペースト組成物 C— 23を作製した 。 C 23を硬化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は誘 電体組成物全量に対し、 90重量%となる。このペースト組成物 C— 23をガラス基板
Figure imgf000045_0001
、て塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行 い乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜) を得た。ペースト組成物 C— 22は粘度が高いため、スピンコーターでは平坦な塗膜 が得られな力つた。膜厚が 2 m付近の部位において光線透過率を測定したところ、 光線透過率 (波長 400nm)は 35%であった。
[0146] ペースト組成物 C— 23を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。 1MHzにおける比誘電率 は 40であった。
[0147] 比較例 5
分散液 A— 1を 150重量部と、エポキシ榭脂溶液 B— 1を 3重量部と、 γ プチロラ タトンを 324重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含 有有機溶剤量が 90重量%であるペースト組成物 C— 24を作製した。 C— 24を硬ィ匕 させて得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全 量に対し、 90重量%となる。このペースト組成物 C— 24をガラス基板上にスピンコー ターを用いて塗布し、オーブンを用いて 80°Cで 15分間の熱処理を行 、乾燥させた 後、 175°Cで 4時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。しか しながら、粘度が低いため、完全な連続膜にはならなかった。そのため、この誘電体 組成物の光線透過率は測定できな力つた。
[0148] ペースト組成物 C— 24を厚さ 300 μ mのアルミ基板上にスピンコーターを用いて塗 布し、オーブンを用いて、 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4 時間の熱処理を行い硬化させ、誘電体組成物 (硬化膜)を得た。この誘電体組成物 上にアルミ電極を形成し、誘電特性評価サンプルとした。しかしながら、完全な連続 膜にはならなかったため、上下の電極が短絡し、誘電率の測定ができな力つた。
[0149] 実施例 31
チタン酸バリウム(戸田工業 (株)製、 T— BTO -020RF:平均粒子径 0. 027 m ) 144. 2重量部、 γ—プチ口ラタトン 350重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミ一'ジャパン(株)製、 BYK-W9010) 5. 8重 量部をホモジナイザーを用いて氷冷下で 2時間混練分散し、分散液 A— 12を得た。 分散液 A— 12における分散剤の含有量は高誘電率無機粒子重量の 4重量%である 。分散液 A— 12の粒度分布 500/0径 ίま 0. 25 ^ m, 900/0径 ίま 0. 42 /z mであった。分 散液 A— 12は、高誘電率無機粒子の凝集が十分に解けておらず、粒度分布測定で 得られる高誘電率無機粒子の粒子径が原料高誘電率無機粒子の平均粒子径に比 ベ大きくなつた。
[0150] エポキシ榭脂(ジャパンエポキシレジン (株)製、 "ェピコード,(商品名) YX8000) 6 . 8重量部、硬化剤 (新日本理化 (株)製、"リカシッド"(商品名) MH700) 4. 7重量 部、硬化促進剤 (N, N—ジメチルベンジルァミン) 0. 2重量部を混合し、エポキシ榭 脂溶液 B— 7を得た。分散液 A— 12を 150重量部と、エポキシ榭脂溶液 B— 7を 8. 2 重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤 量が 67重量%であるペースト組成物 C— 25を作製した。 C— 25を硬化させて得られ る誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81 重量%となる。
[0151] ペースト組成物 C— 25を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。この誘電体組成物の光線透過率 (波長 400nm)は 79%であつ た。ペースト組成物 C— 25を用い、実施例 1と同様にして誘電特性評価サンプルを 得た。 1MHzにおける比誘電率は 22であった。
[0152] 実施例 32
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 020RF:平均粒子径 0. 027 m ) 416. 7重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミ一'ジャパン(株)製、 BYK-W9010) 33. 3重 量部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 13を得た 。分散液 A— 13における分散剤の含有量は高誘電率無機粒子重量の 8重量%であ る。分散液 A— 13の粒度分布 500/0径 ίま 0. 04 ^ m, 900/0径 ίま 0. 07 /z mであった。 高誘電率無機粒子に対する分散剤の含有量が分散液 A— 12に比べ多ぐ高誘電率 無機粒子の凝集をより解くことができ、粒度分布測定で得られる高誘電率無機粒子 の粒子径が原料高誘電率無機粒子の平均粒子径に近づいた。
[0153] 分散液 A— 13を 150重量部と、エポキシ榭脂溶液 B— 7を 6重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67重量%である ペースト組成物 C - 26を作製した。 C - 26を硬化させて得られる誘電体組成物中の 高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0154] ペースト組成物 C— 26を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。この誘電体組成物の光線透過率 (波長 400nm)は 87%であつ た。ペースト組成物 C— 25を用い、実施例 1と同様にして誘電特性評価サンプルを 得た。 1MHzにおける比誘電率は 27であった。
[0155] 実施例 33
チタン酸バリウム(戸田工業 (株)製、 T— BTO -020RF:平均粒子径 0. 027 m ) 391. 3重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミ一'ジャパン(株)製、 BYK-W9010) 58. 7重 量部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 14を得た 。分散液 A— 14における分散剤の含有量は高誘電率無機粒子重量の 15重量%で ある。分散液 A— 14の粒度分布 500/0径 ίま 0. 025 μ m、 900/0径 ίま 0. 06 μ mであつ た。高誘電率無機粒子に対する分散剤の含有量が分散液 A— 12、 A— 13に比べ十 分に多ぐ高誘電率無機粒子の凝集を十分に解くことができ、粒度分布測定で得ら れる高誘電率無機粒子の粒子径が、原料高誘電率無機粒子の平均粒子径により近 づいた。
[0156] 分散液 A— 14を 150重量部と、エポキシ榭脂溶液 B— 7を 2. 9重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 69重量%であ るペースト組成物 C - 27を作製した。 C - 27を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0157] ペースト組成物 C— 27を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 97%であった。波長 400〜700nmに おける光線透過率の最小値は 88% (波長 530nm)であった。また、実施例 1と同様 にして誘電特性評価サンプルを得た。 1MHzにおける比誘電率は 28であった。
[0158] ペースト組成物 C— 27を ITO付きガラス基板上にスピンコーターを用いて塗布し、 オーブンを用いて、 80°Cで 15分間乾燥させた後、 175°Cで 4時間硬化させ、誘電体 組成物 (硬化膜)を得た。 ITO付きガラス基板は、 1737ガラス上に ITOを 150nmの 膜厚となるようスパッタリング法で形成されたものである。この誘電体組成物の光線透 過率(波長 400nm)は 98%であった。
[0159] 誘電体組成物上に上部電極としてアルミ電極を形成し、ガラス ZITO電極 Z誘電 体組成物/アルミ電極で構成されるキャパシタ D— 1を作製した。アルミ電極はマスク を介して真空蒸着することによって形成した。このキャパシタ D— 1の 1kHzにおける 比誘電率は 29であった。
[0160] 上部電極をアルミに代え ITOを用い、ガラス ZITO電極 Z誘電体組成物 ZITO電 極で構成されるキャパシタ D— 2を作製した。上部電極の ΙΤΟ層は、スパッタリング法 を用いて形成した。さら〖こ、上部電極をアルミ電極に代え Ni—CrZ銅層を用い、ガラ ス ZITO電極 1Z誘電体組成物 ZNi— CrZ銅で構成されるキャパシタ D— 3を作製 した。上部電極は、 Ni-Cr,銅の順にスパッタリングを行い、さらに電解銅めつきを行 い導通層を形成し、エッチング法によってパターン力卩ェを行い、形成した。キャパシタ D 2、 D 3の 1kHzにおける比誘電率は 29であった。
[0161] 実施例 34
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 391. 3重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミ一'ジャパン(株)製、 BYK-W9010) 58. 7重 量部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 15を得た 。分散液 A— 15における分散剤の含有量は高誘電率無機粒子重量の 15重量%で ある。分散液 A— 15の粒度分布 500/0径 ίま 0. 02 ^ m, 900/0径 ίま 0. 05 /z mであった
[0162] 分散液 A— 15を 150重量部と、エポキシ榭脂溶液 B— 1を 3. 4重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%であ るペースト組成物 C - 28を作製した。 C - 28を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0163] ペースト組成物 C— 28を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 99%であった。波長 400〜700nmに おける光線透過率の最小値は 90% (波長 570nm)であった。ペースト組成物 C 28 を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 23であった。
[0164] 実施例 35 チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 391. 3重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミー'ジャパン (株)製、 ΒΥΚ— 111) 58. 7重量 部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 Α— 16を得た。 分散液 Α— 16における分散剤の含有量は高誘電率無機粒子重量の 15重量%であ る。分散液 A— 16の粒度分布 500/0径 ίま 0. 02 ^ m, 900/0径 ίま 0. 04 /z mであった。
[0165] 分散液 A— 16を 150重量部と、エポキシ榭脂溶液 B— 1を 3. 4重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%であ るペースト組成物 C— 28を作製した。 C— 29を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0166] ペースト組成物 C— 29を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 99%であった。波長 400〜700nmに おける光線透過率の最小値は 90% (波長 530nm)であった。ペースト組成物 C 29 を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 23であった。
[0167] 実施例 36
チタン酸バリウム(戸田工業 (株)製、 T— BTO -020RF:平均粒子径 0. 027 m ) 652重量部、 γ プチ口ラタトン 750重量部、分散剤(リン酸エステル骨格を有する 酸基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK-W9010) 97. 8重量 部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 17を得た。 分散液 A— 17における分散剤の含有量は高誘電率無機粒子重量の 15重量%であ る。分散液 A— 17の粒度分布 500/0径 ίま 0. 025 μ m、 900/0径 ίま 0. 06 μ mであった 。分散液 A— 17を 150重量部と、エポキシ榭脂溶液 B—1を 5. 7重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 48重量%であ るペースト組成物 C - 30を作製した。 C - 30を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0168] ペースト組成物 C— 30を用い、実施例 1と同様にして膜厚 4 mの誘電体組成物( 硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この誘電 体組成物の光線透過率(波長 400nm)は 97%であった。波長 400〜700nmにおけ る光線透過率の最小値は 88% (波長 530nm)であった。ペースト組成物 C— 26を用 い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘電率 は 29であった。
[0169] 実施例 37
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 432. 6重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミ一'ジャパン(株)製、 BYK-W9010) 17. 4重 量部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 18を得た 。分散液 A— 18における分散剤の含有量は高誘電率無機粒子重量の 4重量%であ る。分散液 A— 18の粒度分布 500/0径 ίま 0. 30 ^ m, 900/0径 ίま 0. 55 /z mであった。 分散液 A— 12と同様に、高誘電率無機粒子に対する分散剤の含有量が少なぐ高 誘電率無機粒子の凝集が十分には解けておらず、粒度分布測定で得られる高誘電 率無機粒子の粒子径が原料高誘電率無機粒子の平均粒子径に比べ大きくなつた。
[0170] 分散液 A— 18を 150重量部と、エポキシ榭脂溶液 B— 7を 8. 2重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67重量%であ るペースト組成物 C - 31を作製した。 C— 31を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0171] ペースト組成物 C— 31を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率 (波長 400nm)は 78%であった。ペースト組成物 C— 3 1を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 16であった。
[0172] 実施例 38
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 420. 6重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有 する酸基を持つコポリマー、ビックケミ一'ジャパン(株)製、 BYK-W9010) 29. 4重 量部をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 19を得た 。分散液 A— 19における分散剤の含有量は高誘電率無機粒子重量の 7重量%であ る。分散液 A— 19の粒度分布 500/0径 ίま 0. 04 ^ m, 900/0径 ίま 0. 08 /z mであった。 高誘電率無機粒子に対する分散剤の含有量が分散液 A— 18に比べ多ぐ高誘電率 無機粒子の凝集をより解くことができ、粒度分布測定で得られる高誘電率無機粒子 の粒子径が原料高誘電率無機粒子の平均粒子径に近づいた。
[0173] 分散液 A— 19を 150重量部と、エポキシ榭脂溶液 B— 7を 6. 5重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67重量%であ るペースト組成物 C - 32を作製した。 C - 32を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。
[0174] ペースト組成物 C— 32を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率 (波長 400nm)は 89%であった。ペースト組成物 C— 3 2を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 22であった。
[0175] 実施例 39
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 375重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有す る酸基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK— W9010) 75重量部 をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 20を得た。分 散液 A— 20における分散剤の含有量は高誘電率無機粒子重量の 20重量%である 。分散液 A— 20の粒度分布 500/0径 ίま 0. 016 ^ m, 900/0径 ίま 0. 04 /z mであった。 平均粒子径 0. 027 mの無機粒子を用いた分散液 A— 14と平均粒子径 0. 012 mの無機粒子を用いた分散液 A— 20を比較すると、平均粒子径がより小さい場合、 分散剤の含有量を多くするとその分散液は 1次粒子に近い粒度分布を得ていること が分かる。
[0176] 分散液 A— 20を 150重量部と、エポキシ榭脂溶液 B— 7を 4. 2重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%であ るペースト組成物 C - 33を作製した。 C - 33を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 75重量%となる。
[0177] ペースト組成物 C— 33を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 99%であった。波長 400〜700nmに おける光線透過率の最小値は 90% (波長 510nm)であった。ペースト組成物 C 33 を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 22であった。
[0178] 実施例 40
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 360重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有す る酸基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK—W9010) 90重量部 をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 21を得た。分 散液 A— 21における分散剤の含有量は高誘電率無機粒子重量の 25重量%である 。分散液 A— 21の粒度分布 500/0径 ίま 0. 016 ^ m, 900/0径 ίま 0. 04 /z mであった。
[0179] 分散液 A— 21を 150重量部と、エポキシ榭脂溶液 B— 7を 4重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68重量%である ペースト組成物 C - 34を作製した。 C - 34を硬化させて得られる誘電体組成物中の 高誘電率無機粒子の含有量は誘電体組成物全量に対し、 72重量%となる。
[0180] ペースト組成物 C— 34を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 99%であった。波長 400〜700nmに おける光線透過率の最小値は 91% (波長 530nm)であった。ペースト組成物 C— 34 を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 18であった。
[0181] 実施例 41
チタン酸バリウム(戸田工業 (株)製、 T— BTO - 010RF:平均粒子径 0. 012 m ) 352重量部、 γ—プチ口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有す る酸基を持つコポリマー、ビックケミ一'ジャパン (株)製、 BYK— W9010) 98重量部 をウルトラアベックスミル (寿工業 (株)製)を用いて混練し、分散液 A— 22を得た。分 散液 A— 22における分散剤の含有量は高誘電率無機粒子重量の 28重量%である 。分散液 A— 22の粒度分布 500/0径 ίま 0. 016 ^ m, 900/0径 ίま 0. 04 /z mであった。 分散液 A— 22を 150重量部と、エポキシ榭脂溶液 B— 7を 4重量部とをボールミルを 用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67重量%であるべ 一スト組成物 C - 35を作製した。 C - 35を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は誘電体組成物全量に対し、 70重量%となる。
[0182] ペースト組成物 C— 35を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 99%であった。波長 400〜700nmに おける光線透過率の最小値は 92% (波長 510nm)であった。ペースト組成物 C 35 を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 9であった。なお、分散液 A— 22は分散剤の量が高誘電率無機粒子に対して 28重量%であるが、高誘電率無機粒子を高充填化することができなくなり、比誘電 率が低下した。
[0183] 実施例 42
チタン酸バリウム(Buhler P ARTEC GmbH社製、 Barium titanate :平均粒 子径 0. 022 /z m (メーカー仕様平均粒子径 0. 018 391. 3重量部、 γ ブチ 口ラタトン 1050重量部、分散剤(リン酸エステル骨格を有する酸基を持つコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 58. 7重量部をウルトラァペックスミ ル (寿工業 (株)製)を用いて混練し、分散液 A— 23を得た。分散液 A— 23における 分散剤の含有量は高誘電率無機粒子重量の 15重量%である。分散液 A— 23の粒 度分布 500/0径 ίま 0. 025 μ m、 900/0径 ίま 0. 06 μ mであった。
[0184] 分散液 A— 23を 150重量部と、エポキシ榭脂溶液 B— 7を 2. 9重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 69重量%であ るペースト組成物 C— 36を作製した。 C— 36を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%となる。 [0185] ペースト組成物 C— 36を用い、実施例 1と同様にして膜厚 1. 4 mの誘電体組成 物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン速度調整により行った。この 誘電体組成物の光線透過率(波長 400nm)は 96%であった。波長 400〜700nmに おける光線透過率の最小値は 94% (波長 580nm)であった。ペースト組成物 C 36 を用い、実施例 1と同様にして誘電特性評価サンプルを得た。 1MHzにおける比誘 電率は 18であった。
[0186] [表 1]
表 1
Figure imgf000056_0001
 表 2
Figure imgf000058_0001
[ε挲] [8810] £Ll£/900Zd /lDd 89 S096Z0/.00Z OAV 表 3
Figure imgf000060_0001
[0189] 実施例 43
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 109. 6重量部、チタン酸バリウム(戸 田工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ^ m) 730. 4重量部の順 に混合し、分散液 A— 24Aを得た。ウルトラァペックスミル UAM— 015 (寿工業 (株) 製)のベッセル内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ 0. 5 mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 24Aをベッセル内に 送液、循環させた。ジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 5 mm)の粒子径に関する検査報告書にあるメーカー値は平均粒子径 0. 537mmであ る。ローターの周速 8mZsで 1時間分散後、分散液 A— 24Bを得た。分散液 A— 24 Bの粒度分布 50%径は 0. 06 μ m、 90%径は 0. 22 μ mであった。ベッセル内のビ ーズを回収し、新たにジルコ-ァボール ( (株)ニツカトー製、 YTZボール、寸法 φ 0. 05mm)を 0. 4kg充填した。ジルコ-ァボール((株)ニツカトー製、 YTZボール、寸 法 φ θ. 05mm)の粒子径に関する検査報告書にあるメーカー値は平均粒子径 0. 0 58mmである。ビーズ交換後、ローターを回転させながら、分散液 A—24Bをべッセ ル内に送液、循環させた。ローターの周速 12mZsで、粒度分布が 0. 02±0. 01 mになるまで分散を行い、分散液 A— 24Cを得た。分散液 A— 24Cの粒度分布 50 %径 0. 022 m、 90%径は 0. 051 mであった。エポキシ榭脂(ジャパンエポキシ レジン (株)製、ェピコート(商品名) YX8000 7. 57重量部、硬化剤 (新日本理化( 株)製、リカシッド (商品名) MH700 2. 13重量部、硬化促進剤 (N, N ジメチル ベンジルァミン) 0. 3重量部、 γ—ブチロラタトン 12. 13重量部を混合し、エポキシ榭 脂溶液 Β— 8を得た。分散液 A— 24Cを 15重量部とエポキシ榭脂溶液 Β— 8を 0. 94 重量部と、界面活性剤としてビックケミー'ジャパン (株)製、 ΒΥΚ— 333を 0. 012重 量部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量 力 S67. 7重量%であるペースト組成物 C— 37を作製した。 C— 37を硬化させて得ら れる誘電体組成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 7 6重量%である。
[0190] ペースト組成物 C 37を孔径 0. 45 μ mのフィルターを用いて濾過した後、 ITO付 きガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80°Cで 15分間 の熱処理を行い乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、膜厚 1 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン調整速度に より行った。この誘電体組成物の光線透過率 (波長 400nm)は 99%であり、波長 40 0〜700nmにおける光線透過率の最小値は 91% (波長 520nm)であった。印加電 圧 2Vにおけるリーク電流値は 15nAZcm2、電圧保持率は 4%であった。
[0191] 誘電体組成物上に上部電極としてアルミ電極を形成し、ガラス ZITO電極 Z誘電 体組成物/アルミ電極で構成されるキャパシタを作製した。アルミ電極はマスクを介 して真空蒸着することによって形成した。このキャパシタの 1kHzにおける比誘電率は 23であった。
[0192] 実施例 44
エポキシ榭脂 (日本ィ匕薬 (株)製、 NC3000) 220. 18重量部、硬化剤 (日本ィ匕薬( 株)製、 "カャハード"(商品名) TPM) 76. 82重量部、硬化促進剤(トリフエ-ルホス フィン) 3重量部、 γ—プチ口ラタトン 76. 82重量部を混合し、エポキシ榭脂溶液 Β— 9を得た。 NC3000はエポキシ当量 278gZeqのビフエ-ル骨格を有するエポキシ榭 脂である。分散液 A—24Cを 15重量部とエポキシ榭脂溶液 B— 9を 8. 74重量部と、 界面活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 018重量部とをボ ールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 52. 6重 量0 /0であるペースト組成物 C— 38を作製した。 C— 38を硬化させて得られる誘電体 組成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 35重量%で ある。実施例 43と同様にして評価を行った。結果は表 4に示した。
[0193] 実施例 45
分散液 A—24Cを 15重量部とエポキシ榭脂溶液 B— 9を 4. 35重量部と、界面活 性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 016重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 59. 4重量%で あるペースト組成物 C— 39を作製した。 C— 39を硬化させて得られる誘電体組成物 中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 50重量%である。実 施例 43と同様にして評価を行つた。結果は表 4に示した。 [0194] 実施例 46
分散液 A— 24Cを 15重量部とエポキシ榭脂溶液 B— 9を 1. 13重量部と、界面活 性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 7重量%で あるペースト組成物 C - 40を作製した。 C - 40を硬化させて得られる誘電体組成物 中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実 施例 43と同様にして評価を行つた。結果は表 4に示した。
[0195] 実施例 47
分散液 A— 24Cを 15重量部とエポキシ榭脂溶液 B— 9を 0. 83重量部と、界面活 性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67. 5重量%で あるペースト組成物 C - 41を作製した。 C— 41を硬化させて得られる誘電体組成物 中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 76重量%である。実 施例 43と同様にして評価を行つた。結果は表 4に示した。
[0196] 実施例 48
分散液 A— 24Cを 15重量部とエポキシ榭脂溶液 B— 9を 0. 44重量部と、界面活 性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 68. 6重量%で あるペースト組成物 C— 42を作製した。 C— 42を硬化させて得られる誘電体組成物 中の高誘電率無機粒子の含有量は誘電体組成物全量に対し、 81重量%である。実 施例 43と同様にして評価を行つた。結果は表 4に示した。
[0197] 実施例 49
乾燥窒素気流下、 2, 2—ビス(3—アミノー 4ーヒドロキシフエ-ル)へキサフルォロ プロパン(BAHF) 30. 03g (0. 082モル)、 1, 3—ビス(3—ァミノプロピル)テトラメチ ルジシロキサン 1. 24g (0. 005モル)、末端封止剤として、 3—ヒドロキシフタル酸無 水物 (東京化成工業 (株)製) 4. lg (0. 025モル)を N—メチル—2—ピロリドン (NM P) 100gに溶解させた。ここにビス(3, 4—ジカルボキシフエ-ル)エーテル二無水物 31. 02g (0. 1モル)を NMP30gとともに加えて、 20°Cで 1時間攪拌し、次いで 50°C で 4時間攪拌した。その後、 180°Cで 5時間攪拌した。攪拌終了後、溶液を水 3Lに 投入して白色沈殿を集めた。この沈殿をろ過で集めて、水で 3回洗浄した後、 200°C の真空乾燥機で 5時間乾燥した。得られたポリマー粉体を、赤外吸収スペクトルで測 定したところ、 1780cm_1付近、 1377cm_1付近にポリイミドに起因するイミド構造の 吸収ピークが検出された。 次に、このポリマー粉体 10gに光重合開始剤の 1, 2—ォ クタンジオン一 1— [4— (フエ-ルチオ)フエ-ル]— 2— (o—ベンゾィルォキシム) 0. 4g、熱架橋性化合物の二力ラック(NIKALAC) MW— 100LM (商品名、(株)三和 ケミカル製) 1. 5g、着色剤の A— DMA (商品名、保土谷ィ匕学工業 (株)製) 0. 3g、P DBE— 250 (商品名、(株)日本油脂製。重合性不飽和二重結合を有する化合物) 8 g、ジメチロールトリシクロデカンジアタリレート (重合性不飽和二重結合を有する化合 物) 2gをジアセトンアルコール 10g、乳酸ェチル 20. 5gに溶解させ、光硬化型ポリイ ミド組成物溶液 B— 10を得た。
[0198] 分散液 A—24Cを 15重量部と光硬化型ポリイミド組成物溶液 B— 10を 1. 23重量 部とをボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 6 8. 3重量%であるペースト組成物 C— 43を作製した。 C— 43を硬化させて得られる 誘電体組成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 76重 量%である。
[0199] ペースト組成物 C— 43を孔径 0. 45 μ mのフィルターを用いて濾過した後、 ITO付 きガラス基板上にスピンコーターを用 V、て塗布し、ホットプレートを用いて 120°Cで 1 分間プリベータした。次に露光装置 (ユニオン光学 (株)製 PEM— 6M)を用いて、露 光量 500miZcm2 (365nmの強度)で露光を行った。露光後、 120°Cで 1分間べ一 クした後、光洋サーモシステム (株)製イナートオーブン INL— 60を用いて N雰囲気
2 下で 200°Cで 60分間熱処理し、硬化させて膜厚 1 μ mの誘電体組成物 (硬化膜)を 得た。膜厚調整はスピンコート時のスピン調整速度により行った。実施例 43と同様に して評価を行った。結果は表 4に示した。
[0200] 実施例 50
分散液 A— 24Cを 15重量部とアクリル榭脂 (東亜合成 (株)製、 "ァロニックス"(商 品名) M305)を 0. 61重量部と光重合開始剤(チバガイキー (株)製、 "ィルガキュア" (商品名) 184)を 0. 03重量部、 γ —ブチロラタトン 0. 19重量部とをボールミルを用 いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67. 5重量%であるべ 一スト組成物 C - 44を作製した。 C - 44を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は、誘電体組成物全量に対し 76重量%である。
[0201] ペースト組成物 C— 44を孔径 0. 45 μ mのフィルターを用いて濾過した後、 ITO付 きガラス基板上にスピンコーターを用いて塗布し、ホットプレートを用いて 80°Cで 10 分間プリベータした。次に露光装置 (ユニオン光学 (株)製 PEM— 6M)を用いて、露 光量 2000miZcm2 (365nmの強度)で露光を行って硬化させて膜厚 1 μ mの誘電 体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン調整速度により行った 。実施例 43と同様にして評価を行った。結果は表 4に示した。
[0202] 実施例 51
エポキシ榭脂 (日本ィ匕薬 (株)製、 NC3000) 208. 5重量部、硬化剤(大日本インキ 化学工業 (株)製、 "フ ノライト"(商品名) VH4150) 88. 5重量部、硬化促進剤(トリ フエ-ルホスフィン) 3重量部、 γ—ブチロラタトン 88. 50重量部を混合し、エポキシ 榭脂溶液 Β— 11を得た。 "フエノライド, VH— 4150はフエノール系のノボラック榭脂 である。分散液 A—24Cを 15重量部とエポキシ榭脂溶液 Β— 11を 0. 86重量部と、 界面活性剤としてビックケミー'ジャパン (株)製、 ΒΥΚ— 333を 0. 012重量部とをボ ールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67. 6重 量%であるペースト組成物 C— 45を作製した。 C— 45を硬化させて得られる誘電体 組成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 76重量%で ある。実施例 43と同様にして評価を行った。結果は表 4に示した。
[0203] 比較例 6
Ύ—プチ口ラタトン 840重量部、分散剤(リン酸エステル骨格を有するコポリマー、ビ ックケミ一'ジャパン(株)製、 BYK-W9010) 255. 65重量部、チタン酸バリウム(戸 田工業 (株)製、 T— BTO— 020RF :平均粒子径 0. 027 ,u m) 1704. 35重量部の 順に混合後、ホモジナイザーを用いて混合し、分散液 A— 25Aを得た。ホモジナイザ 一のカップ内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 5mm )を 1. 7kg充填した。ウルトラァペックスミル U AM— 015 (寿工業 (株)製)のベッセル 内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 05mm)を 0. 4k g充填し、ローターを回転させながら、分散液 A— 25Aをベッセル内に送液、循環さ せた。ローターの周速 12mZsで 2時間分散し、分散液 A— 25Bを得た。分散液 A— 25Bは、粘度が高ぐベッセル内でビーズと分散液の分離が不十分であったため、さ らに孔径 10 mのフィルターを用いて濾過し、分散液 A— 25Cを得た。分散液 A— 2 5Cの粒度分布 50%径 0. 102 ^ m, 90%径は 0. 254 /z mであり、一次粒子径付近 まで分散することは困難であった。分散液 A— 25Cを 15重量部とエポキシ榭脂溶液 B— 9を 2. 62重量部と、界面活性剤としてビックケミー'ジャパン (株)製、 BYK— 33 3を 0. 008重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含 有有機溶剤量が 28. 9重量0 /0であるペースト組成物 C— 46を作製した。 C— 46を硬 化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は、誘電体組成物 全量に対し 73重量%である。
[0204] ペースト組成物 C— 46を孔径 0. 45 mのフィルターで濾過することができなかつ た。ペースト組成物 C— 46を孔径 0. 45 μ mのフィルターの代わりに孔径 2 μ mのフィ ルターを用いて濾過した後、 ITO付きガラス基板上にスピンコーターを用いて塗布し 、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4時間 の熱処理を行!、硬化させ、膜厚 1 μ mの誘電体組成物 (硬化膜)を得た。膜厚調整 はスピンコート時のスピン調整速度により行った。実施例 43と同様にして評価を行つ た。結果は表 4に示した。
[0205] 実施例 52
Ύ—プチ口ラタトン 1120重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 219. 13重量部、チタン酸バリウム( 戸田工業 (株)製、 T— BTO— 020RF :平均粒子径 0. 027 ,u m) 1460. 87重量部 の順に混合後、ホモジナイザーを用いて混合し、分散液 A— 26Aを得た。ホモジナイ ザ一は、カップ内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 5 mm)を 1. 46kg充填して、氷浴中で処理した。ウルトラァペックスミル U AM— 015 ( 寿工業 (株)製)のベッセル内にジルコニァボール( (株)ニツカトー製、 YTZボール、 寸法 φ θ. 05mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 26Aを ベッセル内に送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A — 26Bを得た。分散液 A— 26Bの粒度分布 50%径 0. 045 μ m, 90%径は 0. 104 mであった。分散液 A—26Bを 15重量部とエポキシ榭脂溶液 B— 9を 2. 25重量 部と、界面活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 01重量部と をボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 37. 8重量%であるペースト組成物 C— 47を作製した。 C— 47を硬化させて得られる誘電 体組成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量% である。実施例 43と同様にして評価を行った。結果は表 4に示した。
[0206] 実施例 53
Ύ—プチ口ラタトン 1400重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 182. 6重量部、チタン酸バリウム(戸 田工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ,u m) 1217. 4重量部の順 に混合後、ホモジナイザーを用いて混合し、分散液 A— 27Aを得た。ホモジナイザー は、カップ内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 5mm) を 1. 2kg充填して、氷浴中で処理した。ウルトラァペックスミル UAM— 015 (寿工業( 株)製)のベッセル内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ 0 . 05mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 27Aをベッセル 内に送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A— 27Bを 得た。分散液 A— 27Bの粒度分布 50%径 0. 038 m、 90%径は 0. 08 mであつ た。分散液 A— 27Bを 15重量部とエポキシ榭脂溶液 B— 9を 1. 88重量部と、界面活 性剤としてビックケミ一.ジャパン (株)製、 BYK—333を 0. Olgとをボールミルを用い て混合し、ペースト組成物全量に対する含有有機溶剤量が 47重量%であるペースト 組成物 C— 48を作製した。 C— 48を硬化させて得られる誘電体組成物中の高誘電 率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実施例 43と同 様にして評価を行った。結果は表 4に示した。
[0207] 実施例 54
Ύ—プチ口ラタトン 2240重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 73. 04重量部、チタン酸バリウム(戸 田工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ^ πι) 486. 96重量部の順 に混合後、ホモジナイザーを用いて混合し、分散液 A— 28Αを得た。ホモジナイザー は、カップ内にジルコユアボール((株)ニツカトー製、 ΥΤΖボール、寸法 φ θ. 5mm) を 0. 5kg充填して、氷浴中で処理した。ウルトラァペックスミル UAM— 015 (寿工業( 株)製)のベッセル内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ 0 . 05mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 28Aをベッセル 内に送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A— 28Bを 得た。分散液 A— 28Bの粒度分布 50%径 0. 021 μ m、 90%径は 0. 05 μ mであつ た。分散液 A— 28Bを 15重量部とエポキシ榭脂溶液 B— 9を 0. 75重量部と、界面活 性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 014重量部とをボールミ ルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 77. 3重量%で あるペースト組成物 C— 49を作製した。 C— 49を硬化させて得られる誘電体組成物 中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実 施例 43と同様にして評価を行つた。結果は表 4に示した。
比較例 7
Ύ—プチ口ラタトン 2520重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 36. 52重量部、チタン酸バリウム(戸 田工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 μ ηι) 243. 5重量部の順 に混合後、ホモジナイザーを用いて混合し、分散液 A— 29Αを得た。ホモジナイザー は、カップ内にジルコユアボール((株)ニツカトー製、 ΥΤΖボール、寸法 φ θ. 5mm) を 0. 24kg充填して、氷浴中で処理した。ウルトラァペックスミル UAM— 015 (寿ェ 業 (株)製)のベッセル内にジルコニァボール((株)ニツカトー製、 YTZボール、寸法 θ. 05mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 29Aをべッセ ル内に送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A—29B を得た。分散液 A— 29Bの粒度分布 50%径 0. 021 μ m、 90%径は 0. 051 μ mで あった。分散液 A— 29Bを 15重量部とエポキシ榭脂溶液 B— 9を 0. 38重量部と、界 面活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 014重量部とをボー ルミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 88. 4重量 %であるペースト組成物 C - 50を作製した。 C - 50を硬化させて得られる誘電体組 成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%であ る。
[0209] ペースト組成物 C— 50を用い、実施例 43と同様にして、誘電体組成物 (硬化膜)を 得たが、粘度が低ぐ膜厚 1 μ m以上の硬化膜が得られず、膜厚は 0. 3 μ mであった 。実施例 43と同様にして評価を行った。また、印加電圧 2Vにおけるリーク電流値力 20mA以上となり、評価装置の測定電流の上限値を超えたため、測定することができ なかった。比誘電率は、リーク電流が大きく測定することができな力つた。この誘電体 組成物の電圧保持率は 0%であった。結果は表 4に示した。
[0210] 実施例 55
分散液 A— 24Bを 15重量部とエポキシ榭脂溶液 B— 9を 1. 13重量部と、界面活性 剤としてビックケミ一'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 7重量%であ るペースト組成物 C - 51を作製した。 C— 51を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。
[0211] ペースト組成物 C— 51を孔径 0. 45 μ mのフィルターを用いて濾過した力 すぐに 目詰まりしてしまい、濾過することが困難であった。ペースト組成物 C— 51を孔径 0. 45 μ mの代わりに孔径 2 mのフィルターを用いて濾過した後、実施例 43と同様に して膜厚 1 μ mの誘電体組成物 (硬化膜)を得た。実施例 43と同様にして評価を行つ た。結果は表 5に示した。
[0212] 実施例 56
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 140重量部、チタン酸バリウム(戸田 工業 (株)製、 T— BTO— 010RF :平均粒子径 0. 012 m) 700重量部の順に混合 後、ホモジナイザーを用いて混合し、分散液 A— 30Aを得た。ホモジナイザーは、力 ップ内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 5mm)を 0. 7 kg充填して、氷浴中で処理した。ウルトラァペックスミル UAM— 015 (寿工業 (株)製 )のベッセル内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 05m m)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 30Aをベッセル内に送 液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A— 30Bを得た。 分散液 A— 30Bの粒度分布 50%径 0. 013 ^ m, 90%径は 0. (津 であった。 分散液 A— 30Bを 15重量部とエポキシ榭脂溶液 B— 9を 0. 84重量部と、界面活性 剤としてビックケミ一'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 67. 5重量%であ るペースト組成物 C - 52を作製した。 C - 52を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実施 例 43と同様にして評価を行った。結果は表 5に示した。
[0213] 実施例 57
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 109. 6重量部、チタン酸バリウム(戸 田ェ業(株)製、丁ー8丁0— 0301^:平均粒子径0. 03 ^ πι) 730. 4重量部の順に混 合後、ホモジナイザーを用いて混合し、分散液 A— 31Aを得た。ホモジナイザーは、 カップ内にジルコ-ァボール((株)ニツカトー製、 ΥΤΖボール、寸法 φ θ. 5mm)を 0 . 73kg充填して、氷浴中で処理した。ウルトラァペックスミル U AM— 015 (寿工業( 株)製)のベッセル内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ 0 . 05mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 31Aをベッセル 内に送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A—31Bを 得た。分散液 A— 31Bの粒度分布 50%径 0. 048 μ m, 90%径は 0. 08 mであ つた。分散液 A— 31Bを 15重量部とエポキシ榭脂溶液 B— 9を 1. 13重量部と、界面 活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボール ミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 7重量% であるペースト組成物 C— 53を作製した。 C— 53を硬化させて得られる誘電体組成 物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。 実施例 43と同様にして評価を行った。結果は表 5に示した。
[0214] 実施例 58
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 24. 5重量部、チタン酸バリウム(Ca bot, Inc.社製、 K Plus 16 :平均粒子径 0. 06 ^ πι) 815. 5重量部の順に混合後 、ホモジナイザーを用いて混合し、分散液 A— 32Αを得た。ホモジナイザーは、カツ プ内にジルコ-ァボール((株)ニツカトー製、 ΥΤΖボール、寸法 φ θ. 5mm)を 0. 81 5kg充填して、氷浴中で処理した。ウルトラァペックスミル U AM— 015 (寿工業 (株) 製)のベッセル内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ θ. 05 mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 32Aをベッセル内に 送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A— 32Bを得た 。分散液 A— 32Bの粒度分布 50%径 0. 15 ^ m, 90%径は 0.津 であった。分 散液 A— 32Bを 15重量部とエポキシ榭脂溶液 B— 9を 1. 14重量部と、界面活性剤 としてビックケミ一'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミルを 用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 5重量%である ペースト組成物 C - 54を作製した。 C - 54を硬化させて得られる誘電体組成物中の 高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実施例 43と同様にして評価を行った。結果は表 5に示した。
実施例 59
分散液 A—30Bを遠心分離にかけ上澄み部分のみを抽出し、分散液 A— 30Cを 得た。遠心分離は、(株)日立ハイテクノロジーズ製の分離用小形超遠心機" himac、 CS100GXL" (商品名)に同社製の" S55Aアングル形ローター(商品名)をセットし、 50000rpmで、 10分間処理を行った。さらにロータリーエバポレーターを用いて分散 液 A— 30Cを濃縮し、分散液 A— 30Dを得た。分散液 A— 30Dの粒度分布 50%径 0. 008 μ m, 90%径は 0. 019 /z mであった。分散液 A— 30Dを 15重量咅とェポキ シ榭脂溶液 B— 9を 0. 84重量部と、界面活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボールミルを用いて混合し、ペースト組成物全量に 対する含有有機溶剤量が 67. 5重量%であるペースト組成物 C— 55を作製した。 C 55を硬化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は、誘電 体組成物全量に対し 73重量%である。実施例 43と同様にして評価を行った。結果 ί¾表 5に示した。 [0216] 実施例 60
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 109. 6重量部、チタン酸バリウム(戸 田工業 (株)製、 T BTO— 040RF :平均粒子径 0. 04 ^ πι) 730. 4重量部の順に 混合後、ホモジナイザーを用いて混合し、分散液 A— 33Αを得た。ホモジナイザーは 、カップ内にジルコ-ァボール((株)ニツカトー製、 ΥΤΖボール、寸法 φ 0. 5mm)を 0. 73kg充填して、氷浴中で処理した。ウルトラァペックスミル U AM— 015 (寿工業( 株)製)のベッセル内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ 0 . 05mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 33Aをベッセル 内に送液、循環させた。ローターの周速 12mZsで 2時間分散し、分散液 A— 33Bを 得た。分散液 A— 33Bの粒度分布 50%径 0. 049 μ m, 90%径は 0. 09 mであ つた。分散液 A— 33Bを 15重量部とエポキシ榭脂溶液 B— 9を 1. 13重量部と、界面 活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部とをボール ミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 7重量% であるペースト組成物 C - 56を作製した。 C - 56を硬化させて得られる誘電体組成 物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。 実施例 43と同様にして評価を行った。結果は表 5に示した。
[0217] 比較例 8
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 8. 3重量部、チタン酸バリウム(戸田 工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ^ πι) 831. 7重量部の順に 混合し、分散液 A— 34Αを得た。分散液 A— 34Αは粘度が高ぐビーズで分散でき る状態ではな力つたため、 γ—プチ口ラタトンで希釈した後、ホモジナイザーで分散し 、分散液 A—34Cを得た。分散液 A—34Cの粒度分布 50%径は 0. 56 ^ m, 90% 径 1. 3 mであった。分散液 A— 34Cとエポキシ榭脂溶液 B— 9を混合し、硬化させ て得られる誘電体組成物中の高誘電率無機粒子の含有量は誘電体組成物全量に 対し、 73重量%となるように調整したペースト組成物 C— 57を得た。ペースト組成物 C— 57はペースト全量に対する含有有機溶剤量が 88%となった。 [0218] ペースト組成物 C 57は孔径 2 μ mのフィルターを用いて濾過することができなか つた。ペースト組成物 C— 57を ITO付きガラス基板上にスピンコーターを用いて塗布 し、オーブンを用いて 80°Cで 15分間の熱処理を行い乾燥させた後、 175°Cで 4時間 の熱処理を行い硬化させて、誘電体組成物の膜を得た。この誘電体組成物の波長 4 00〜700nmにおける光線透過率の最小値は測定部位によるばらつきが大きぐ 5〜 10%の範囲であった。また、印加電圧 2Vにおけるリーク電流値力 20mA以上とな り、評価装置の測定電流の上限値を超えたため、測定することができな力つた。比誘 電率は、リーク電流が大きく測定することができな力つた。この誘電体糸且成物の電圧 保持率は 0%であった。
[0219] 実施例 61
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 62. 22重量部、チタン酸バリウム(戸 田工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ^ m) 777. 78重量部の順 に混合し、分散液 A— 35Aを得た。ウルトラァペックスミル UAM— 015 (寿工業 (株) 製)のベッセル内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ 0. 5 mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A—35Aをベッセル内に 送液、循環させた。ローターの周速 8mZsで 1時間分散後、分散液 A— 35Bを得た。 ベッセル内のビーズを回収し、新たにジルコユアボール((株)ニツカトー製、 YTZボ ール、寸法 φ θ. 05mm)を 0. 4kg充填した。ビーズ交換後、ローターを回転させな がら、分散液 A— 35Bをベッセル内に送液、循環させた。ローターの周速 12mZsで 、 90分間分散し、分散液 A— 35Cを得た。また、 120分間分散した分散液 A— 35D を得た。分散液 A— 35Cの粒度分布 500/0径 ίま 0. 027 ^ m, 900/0径 ίま 0. 061 であった。分散液 A— 35Dの粒度分布 500/0径 ίま 0. 035 ^ m, 900/0径 ίま 0. 074 μ mとなり、実施例 46より分散剤が少ないため、長時間の分散では粒度分布の増加が 確認された。分散液 A— 35Cを 15重量部とエポキシ榭脂溶液 B— 9を 1. 56重量部 と、界面活性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部と をボールミルを用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 65. 5重量%であるペースト組成物 C— 58を作製した。 C— 58を硬化させて得られる誘電 体組成物中の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量% である。実施例 43と同様にして評価を行った。結果は表 5に示した。
[0220] 実施例 62
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 140重量部、チタン酸バリウム(戸田 工業 (株)製、 T— BTO— 020RF :平均粒子径 0. 027 m) 700重量部の順に混合 し、分散液 A— 36Aを得た。ウルトラァペックスミル UAM— 015 (寿工業 (株)製)の ベッセル内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ 0. 5mm) を 0. 4kg充填し、ローターを回転させながら、分散液 A—36Aをベッセル内に送液、 循環させた。ローターの周速 8mZsで 1時間分散後、分散液 A— 36Bを得た。べッセ ル内のビーズを回収し、新たにジルコユアボール((株)ニツカトー製、 YTZボール、 寸法 φ θ. 05mm)を 0. 4kg充填した。ビーズ交換後、ローターを回転させながら、分 散液 A— 36Bをベッセル内に送液、循環させた。ローターの周速 12mZsで、 120分 間分散し、分散液 A— 36Cを得た。分散液 A— 36Cの粒度分布 50%径は 0. 021 m、 90%径は 0. 049 mであった。分散液 A—36Cを 15重量部とエポキシ榭脂溶 液 B— 9を 0. 84重量部と、界面活性剤としてビックケミー'ジャパン (株)製、 BYK— 3 33を 0. 012重量部とをボールミルを用いて混合し、ペースト組成物全量に対する含 有有機溶剤量が 67. 5重量0 /0であるペースト組成物 C— 59を作製した。 C— 59を硬 化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は、誘電体組成物 全量に対し 73重量%である。実施例 43と同様にして評価を行った。結果は表 5に示 した。
[0221] 実施例 63
Ύ—プチ口ラタトン 1960重量部、分散剤(リン酸エステル骨格を有するコポリマー、 ビックケミ一'ジャパン (株)製、 BYK-W9010) 183. 75重量部、チタン酸バリウム( 戸田工業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ^ m) 656. 25重量部の 順に混合し、分散液 A— 37Aを得た。ウルトラァペックスミル UAM— 015 (寿工業( 株)製)のベッセル内にジルコユアボール((株)ニツカトー製、 YTZボール、寸法 φ 0 . 5mm)を 0. 4kg充填し、ローターを回転させながら、分散液 A— 37Aをベッセル内 に送液、循環させた。ローターの周速 8mZsで 1時間分散後、分散液 A— 37Bを得 た。ベッセル内のビーズを回収し、新たにジルコユアボール((株)ニツカトー製、 YTZ ボール、寸法 Φ 0. 5mm)を 0. 4kg充填した。ビーズ交換後、ローターを回転させな がら、分散液 A— 37Bをベッセル内に送液、循環させた。ローターの周速 12mZsで 、 120分間分散し、分散液 A— 37Cを得た。分散液 A— 37Cの粒度分布 50%径は 0 . 02 /ζ πι、 90%径は 0. 047 /z mであった。分散液 A— 37Cを 15重量咅とエポキシ 榭脂溶液 B— 9を 0. 42重量部と、界面活性剤としてビックケミー'ジャパン (株)製、 B YK— 333を 0. 012重量部とをボールミルを用いて混合し、ペースト組成物全量に 対する含有有機溶剤量が 68. 7重量%であるペースト組成物 C— 60を作製した。 C 60を硬化させて得られる誘電体組成物中の高誘電率無機粒子の含有量は、誘電 体組成物全量に対し 73重量%である。実施例 43と同様にして評価を行った。結果 ί¾表 5に示した。
[0222] 実施例 64
分散液 A— 24Cを 15重量部とアクリル榭脂 (東亜合成 (株)製、 "ァロニックス"(商 品名) Μ305)を 6. 43重量部と光重合開始剤(チバガイキー (株)製、ィルガキュア( 商品名) 184)を 0. 32重量部、 γ ブチロラタトン 1. 99重量部とをボールミルを用い て混合し、ペースト組成物全量に対する含有有機溶剤量が 52. 6重量%であるべ一 スト組成物 C - 61を作製した。 C— 61を硬化させて得られる誘電体組成物中の高誘 電率無機粒子の含有量は、誘電体組成物全量に対し 35重量%である。実施例 50と 同様にして評価を行った。結果を表 5に示した。
[0223] 実施例 65
分散液 A— 24Cを 15重量部とアクリル榭脂 (東亜合成 (株)製、 "ァロニックス"(商 品名) Μ305)を 3. 2重量部と光重合開始剤(チバガイキー (株)製、 "ィルガキュア"( 商品名) 184)を 0. 16重量部、 γ ブチロラタトン 0. 99重量部とをボールミルを用い て混合し、ペースト組成物全量に対する含有有機溶剤量が 59. 4重量%であるべ一 スト組成物 C— 62を作製した。 C— 62を硬化させて得られる誘電体組成物中の高誘 電率無機粒子の含有量は、誘電体組成物全量に対し 50重量%である。実施例 50と 同様にして評価を行った。結果を表 5に示した。 [0224] 実施例 66
分散液 A— 24Cを 15重量部とアクリル榭脂 (東亜合成 (株)製、 "ァロニックス"(商 品名) M305)を 0. 83重量部と光重合開始剤(チバガイキー (株)製、 "ィルガキュア" (商品名) 184)を 0. 04重量部、 γ ブチロラタトン 0. 26重量部とをボールミルを用 いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 7重量%であるべ 一スト組成物 C— 63を作製した。 C— 63を硬化させて得られる誘電体組成物中の高 誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実施例 5 0と同様にして評価を行った。結果を表 5に示した。
[0225] 実施例 67
乳酸ェチル I960重量部、分散剤(リン酸エステル骨格を有するコポリマー、ビック ケミ一'ジャパン(株)製、 BYK-W9010) 109. 6重量部、チタン酸バリウム(戸田ェ 業 (株)製、 T BTO— 020RF :平均粒子径 0. 027 ^ m) 730. 4重量部の順に混 合し、分散液 A— 38Aを得た。ウルトラァペックスミル UAM— 015 (寿工業 (株)製) のベッセル内にジルコ-ァボール((株)ニツカトー製、 YTZボール、寸法 φ 0. 5mm )を 0. 4kg充填し、ローターを回転させながら、分散液 A—38Aをベッセル内に送液 、循環させた。ローターの周速 8mZsで 1時間分散後、分散液 A— 38Bを得た。べッ セル内のビーズを回収し、新たにジルコユアボール((株)ニツカトー製、 YTZボール 、寸法 φ θ. 05mm)を 0. 4kg充填した。ビーズ交換後、ローターを回転させながら、 分散液 A—38Bをベッセル内に送液、循環させた。ローターの周速 12mZsで、粒度 分布が 0. 02±0. 01 /z mになるまで分散を行い、分散液 A— 38Cを得た。分散液 A — 38Cの粒度分布 500/0径 ίま 0. 022 ^ m, 900/0径 ίま 0. 049 /z mであった。
[0226] 分散液 A— 38Cを 15重量部とエポキシ榭脂溶液 B— 9を 1. 13重量部と、界面活 性剤としてビックケミー'ジャパン (株)製、 BYK— 333を 0. 012重量部をボールミル を用いて混合し、ペースト組成物全量に対する含有有機溶剤量が 66. 7重量%であ るペースト組成物 C - 64を作製した。 C - 64を硬化させて得られる誘電体組成物中 の高誘電率無機粒子の含有量は、誘電体組成物全量に対し 73重量%である。実施 例 50と同様にして評価を行った。結果を表 7に示した。
[0227] 実施例 68 ペースト組成物 C 64を孔径 0. 45 μ mのフィルターを用いて濾過した後、 ITO付 きガラス基板上にスピンコーターを用いて塗布し、オーブンを用いて 80°Cで 15分間 の熱処理を行い乾燥させた後、 175°Cで 4時間の熱処理を行い硬化させ、膜厚 1 mの誘電体組成物 (硬化膜)を得た。膜厚調整はスピンコート時のスピン調整速度に より行った。さらに、この誘電体組成物上にフッ素系界面活性剤(大日本インキ化学 工業 (株)製、 "ディフェンサ"(商品名) MCF— 350SF)を用いて 0.: L m厚の透明 被膜を形成した。実施例 43と同様にして評価を行った。結果を表 7に示した。
[表 4]
〔 表
Figure imgf000078_0001
分散装置/ビーズ粒子径の に記載。 ホモジナイザー、 ウルトラァペックスミル。
表 5
Figure imgf000079_0001
:分散装置/ビーズ粒子径の順に記 «。 :ホモジナイザー、 :ウルトラァペックスミル。
90ε20
表 6
Figure imgf000081_0001
※ :分散装置だーズ粒子径の順に記載。 U .ウルトラアベックスミル。
n [τεεο] £Ll£/900Zd /lDd 12 S096Z0/.00Z OAV 表 7
Figure imgf000083_0001
産業上の利用可能性
本発明の、ペースト組成物および誘電体組成物は、ディスプレイの表示部に使用さ れる透明キャパシタ用材料や、エレクトロウエツティングタイプの電子ペーパーの電解 液に接する材料などとして好適に利用可能である。

Claims

請求の範囲
[I] (a)榭脂、 (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子、および (c)有 機溶剤を含有するペースト組成物であって、 (b)高誘電率無機粒子の平均粒子径が 0. 002 m以上 0. 06 m以下であり、全有機溶剤量がペースト組成物全量の 35 重量%以上 85重量%以下であるペースト組成物。
[2] (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均粒子径が 0. 002 μ m以上 0. 04 m以下である請求項 1記載のペースト組成物。
[3] (a)榭脂が熱硬化性である請求項 1記載のペースト組成物。
[4] (a)榭脂がアクリル榭脂もしくはエポキシ榭脂を有する請求項 1記載のペースト組成 物。
[5] さらに分散剤を有し、その含有量が (b)結晶構造がベロブスカイト型を有する高誘電 率無機粒子に対し 2重量%以上 25重量%以下である請求項 1記載のペースト組成 物。
[6] (a)榭脂、(b)ベロブスカイト系結晶構造を有する高誘電率無機粒子を含有する誘電 体組成物であって、(b)高誘電率無機粒子の平均粒子径が 0. 002 m以上 0. 06 μ m以下である誘電体組成物。
[7] (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の平均粒子径が 0. 002 μ m以上 0. 04 m以下である請求項 6記載の誘電体組成物。
[8] (b)ベロブスカイト系結晶構造を有する高誘電率無機粒子の含有量が、誘電体組成 物全体に対し 30重量%以上 99重量%以下である請求項 6記載の誘電体組成物。
[9] 波長 400〜700nmの全域における光線透過率が 50%以上 100%以下である請求 項 6記載の誘電体組成物。
[10] 周波数 1kHzにおける比誘電率が 10以上、 300以下である請求項 6記載の誘電体 組成物。
[I I] (a)榭脂が熱硬化性である請求項 6記載の誘電体組成物。
[12] (a)榭脂がアクリル榭脂もしくはエポキシ榭脂を有する請求項 6記載の誘電体組成物
[13] さらに分散剤を有し、その含有量が (b)ベロブスカイト系結晶構造を有する高誘電率 無機粒子に対し 2重量%以上 25重量%以下である請求項 6記載の誘電体組成物。
[14] 請求項 6〜 13のいずれか記載の誘電体組成物と、波長 400〜700nmの全域〖こお ける光線透過率が 50%以上 100%以下である透明電極を有するキャパシタ。
[15] 金属、セラミックス、ガラスのいずれかの平均粒子径が 0. 02mm以上 0. 1mm以下 であるビーズを分散メディアとして用いて、 (b)ぺロブスカイト系結晶構造を有する高 誘電率無機粒子を有機溶剤に分散して (d)分散液を作製し、次に榭脂、もしくは榭 脂と有機溶剤を有する榭脂溶液と (d)分散液とを混合する請求項 1記載のペースト組 成物の製造方法。
PCT/JP2006/317300 2005-09-06 2006-09-01 ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造方法 WO2007029605A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06810037.9A EP1939894A4 (en) 2005-09-06 2006-09-01 PASTE COMPOSITION, DIELECTRIC COMPOSITION, CAPACITOR AND METHOD FOR PRODUCING A PASTEN COMPOSITION
CN2006800325257A CN101258560B (zh) 2005-09-06 2006-09-01 糊剂组合物及其制造方法
US11/991,464 US20090103236A1 (en) 2005-09-06 2006-09-01 Paste composition, dielectric composition, capacitor, and method for production of paste composition
KR1020087006883A KR101233702B1 (ko) 2005-09-06 2006-09-01 페이스트 조성물, 유전체 조성물, 커패시터 및 페이스트조성물의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-257450 2005-09-06
JP2005257450 2005-09-06

Publications (1)

Publication Number Publication Date
WO2007029605A1 true WO2007029605A1 (ja) 2007-03-15

Family

ID=37835724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317300 WO2007029605A1 (ja) 2005-09-06 2006-09-01 ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造方法

Country Status (6)

Country Link
US (1) US20090103236A1 (ja)
EP (1) EP1939894A4 (ja)
KR (1) KR101233702B1 (ja)
CN (3) CN101258560B (ja)
TW (1) TWI395783B (ja)
WO (1) WO2007029605A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090943A1 (ja) * 2008-01-18 2009-07-23 Toray Industries, Inc. 高誘電率ペースト組成物およびそれを用いた誘電体組成物
JP2013522898A (ja) * 2010-03-17 2013-06-13 イギリス国 誘電体の改良
JP2014154825A (ja) * 2013-02-13 2014-08-25 Mitsubishi Materials Corp LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5261896B2 (ja) * 2006-07-27 2013-08-14 ダイキン工業株式会社 コーティング組成物
US9978479B2 (en) 2009-02-26 2018-05-22 Corning Incorporated Electrically isolating polymer composition
CN101989157A (zh) * 2009-08-03 2011-03-23 义隆电子股份有限公司 高感度电容式触控组件及其制程
US8586660B2 (en) 2010-04-07 2013-11-19 Samsung Electronics Co., Ltd. Dielectric paste composition, method of forming dielectric layer, dielectric layer, and device including the dielectric layer
WO2013141009A1 (ja) * 2012-03-22 2013-09-26 東レ株式会社 感光性導電ペーストおよび導電パターンの製造方法
US9380979B2 (en) * 2012-11-02 2016-07-05 Nokia Technologies Oy Apparatus and method of assembling an apparatus for sensing pressure
TWI450759B (zh) 2012-12-07 2014-09-01 Ind Tech Res Inst 有機分散液及其製法及應用其之塗層組成物
JP6112553B2 (ja) * 2013-04-08 2017-04-12 国立研究開発法人産業技術総合研究所 観察システム及び観察方法
JP7222494B2 (ja) * 2019-08-08 2023-02-15 株式会社村田製作所 フィルムコンデンサ、及び、フィルムコンデンサ用の外装ケース
CN110903649A (zh) * 2019-11-21 2020-03-24 广东工业大学 一种低介电聚酰亚胺薄膜及其制备方法和应用
CN115851074A (zh) * 2022-11-25 2023-03-28 温州亨斯迈科技有限公司 一种放热小用于汽车模型的糊状树脂配方及制备方法
KR20240105092A (ko) 2022-12-28 2024-07-05 한국생산기술연구원 할라이드 페로브스카이트 페이스트 조성물 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283620A (ja) * 1986-06-02 1987-12-09 株式会社 アサヒ化学研究所 厚膜コンデンサ用誘電体ペ−スト
JP2001214097A (ja) * 2000-02-03 2001-08-07 Matsushita Electric Ind Co Ltd 酸化物インキとその製造方法およびセラミック電子部品の製造方法
JP2004091229A (ja) * 2002-08-29 2004-03-25 Hitachi Maxell Ltd 板状チタン酸複合酸化物粒子およびその製造方法
JP2004307607A (ja) * 2003-04-04 2004-11-04 Toray Ind Inc 高誘電体組成物
EP1513165A1 (en) * 2003-09-03 2005-03-09 JSR Corporation Dielectric-forming composition containing particles with perovskite crystal structure, production process and uses of the same, and process for preparing crystal particles having perovskite crystal structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445806A (en) * 1989-08-21 1995-08-29 Tayca Corporation Process for preparing fine powder of perovskite-type compound
DE19638195A1 (de) * 1996-09-19 1998-04-02 Bosch Gmbh Robert Dielektrische Paste
DE10022037A1 (de) * 2000-05-05 2001-11-08 Bayer Ag IR-absorbierende Zusammensetzungen
KR100776509B1 (ko) * 2000-12-30 2007-11-16 엘지.필립스 엘시디 주식회사 액정표시장치 및 그 제조방법
JP4148501B2 (ja) * 2002-04-02 2008-09-10 三井金属鉱業株式会社 プリント配線板の内蔵キャパシタ層形成用の誘電体フィラー含有樹脂及びその誘電体フィラー含有樹脂を用いて誘電体層を形成した両面銅張積層板並びにその両面銅張積層板の製造方法
JP4561031B2 (ja) * 2002-11-27 2010-10-13 コニカミノルタホールディングス株式会社 活性光線硬化型インクジェット無溶剤インク及び画像形成方法
TWI252215B (en) * 2003-03-27 2006-04-01 Univ Nat Central Zirconia sol and method of preparing the same
WO2004090912A1 (ja) * 2003-04-04 2004-10-21 Toray Industries, Inc. ペースト組成物およびこれを用いた誘電体組成物
DE102004025048A1 (de) * 2003-05-20 2004-12-23 Futaba Corp., Mobara Ultra-dispergierter Nano-Kohlenstoff und Verfahren zu seiner Herstellung
KR20050019214A (ko) * 2003-08-18 2005-03-03 한국과학기술원 내장형 커패시터용 폴리머/세라믹 복합 페이스트 및 이를이용한 커패시터 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62283620A (ja) * 1986-06-02 1987-12-09 株式会社 アサヒ化学研究所 厚膜コンデンサ用誘電体ペ−スト
JP2001214097A (ja) * 2000-02-03 2001-08-07 Matsushita Electric Ind Co Ltd 酸化物インキとその製造方法およびセラミック電子部品の製造方法
JP2004091229A (ja) * 2002-08-29 2004-03-25 Hitachi Maxell Ltd 板状チタン酸複合酸化物粒子およびその製造方法
JP2004307607A (ja) * 2003-04-04 2004-11-04 Toray Ind Inc 高誘電体組成物
EP1513165A1 (en) * 2003-09-03 2005-03-09 JSR Corporation Dielectric-forming composition containing particles with perovskite crystal structure, production process and uses of the same, and process for preparing crystal particles having perovskite crystal structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAWASAKI M. ET AL.: "Development of High-k Inorganic/Organic Composite Material for Embedded Capacitors", 2004 ELECTRONIC COMPONENTS AND TECHNOLOGY, vol. 1, 1 June 2004 (2004-06-01), pages 525 - 530, XP010714621 *
See also references of EP1939894A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009090943A1 (ja) * 2008-01-18 2009-07-23 Toray Industries, Inc. 高誘電率ペースト組成物およびそれを用いた誘電体組成物
US8247338B2 (en) 2008-01-18 2012-08-21 Toray Industries, Inc High dielectric constant paste composition and dielectric composition using the same
JP2013522898A (ja) * 2010-03-17 2013-06-13 イギリス国 誘電体の改良
US9159493B2 (en) 2010-03-17 2015-10-13 The Secretary Of State For Defense Dielectrics
JP2014154825A (ja) * 2013-02-13 2014-08-25 Mitsubishi Materials Corp LaNiO3薄膜形成用組成物及びこの組成物を用いたLaNiO3薄膜の形成方法

Also Published As

Publication number Publication date
EP1939894A4 (en) 2015-01-14
CN102117700B (zh) 2012-09-05
CN102117700A (zh) 2011-07-06
CN102122569A (zh) 2011-07-13
TWI395783B (zh) 2013-05-11
KR101233702B1 (ko) 2013-02-15
KR20080041711A (ko) 2008-05-13
CN101258560B (zh) 2011-07-20
EP1939894A1 (en) 2008-07-02
US20090103236A1 (en) 2009-04-23
CN101258560A (zh) 2008-09-03
TW200714650A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
WO2007029605A1 (ja) ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造方法
JP3995020B2 (ja) ペースト組成物、誘電体組成物、キャパシタおよびペースト組成物の製造方法
JP4972903B2 (ja) 誘電体組成物
Sasikala et al. Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled Polyteterafluoroethylene composites
JP3680854B2 (ja) ペースト組成物およびこれを用いた誘電体組成物
KR101071791B1 (ko) 페이스트 조성물 및 이것을 사용한 유전체 조성물
Wang et al. Modified BCZN particles filled PTFE composites with high dielectric constant and low loss for microwave substrate applications
CN108140447B (zh) 导电性浆料和导电性浆料的制造方法
US8247338B2 (en) High dielectric constant paste composition and dielectric composition using the same
Li et al. Clean and in-situ synthesis of copper–epoxy nanocomposite as a matrix for dielectric composites with improved dielectric performance
JP2008112147A (ja) 感光性樹脂組成物およびそれを用いた誘電体組成物、半導体装置
WO2023218948A1 (ja) シリカ粒子分散液
JP5169484B2 (ja) コア−シェル構造粒子、ペースト組成物およびキャパシタ
JP2007217623A (ja) ペースト組成物および誘電体組成物、ならびに誘電体組成物を用いたキャパシタ
TWI652226B (zh) Magnesium oxide microparticle dispersion liquid and preparation method thereof
CN113853410B (zh) 含红外线吸收微粒的组合物及其制造方法
CN105838036B (zh) 一种介电浆料及其制备与应用
KR102539617B1 (ko) 티타늄산바륨 미립자 분말, 분산체 및 도막
JP2006351390A (ja) 複合材料
JP2004307607A (ja) 高誘電体組成物
TWI853221B (zh) 片狀銀粉及其製造方法和導電膏
JP5493365B2 (ja) 樹脂付き基材の製造方法
JP2004363065A (ja) 誘電体組成物
EP3279275A1 (en) Inkjet printing ink, method of obtaining said ink and using it for making an insulating film
Shi Microstructure, Mixing Rules and Interfacial Behavior in High K Barium Titanate Epoxy Composite

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680032525.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1105/CHENP/2008

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087006883

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006810037

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11991464

Country of ref document: US