WO2007026480A1 - シリコン系薄膜光電変換装置、及びその製造方法 - Google Patents

シリコン系薄膜光電変換装置、及びその製造方法 Download PDF

Info

Publication number
WO2007026480A1
WO2007026480A1 PCT/JP2006/314605 JP2006314605W WO2007026480A1 WO 2007026480 A1 WO2007026480 A1 WO 2007026480A1 JP 2006314605 W JP2006314605 W JP 2006314605W WO 2007026480 A1 WO2007026480 A1 WO 2007026480A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoelectric conversion
silicon
type
conversion device
Prior art date
Application number
PCT/JP2006/314605
Other languages
English (en)
French (fr)
Inventor
Toshiaki Sasaki
Kenji Yamamoto
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007533134A priority Critical patent/JP5156379B2/ja
Priority to US11/991,141 priority patent/US7960646B2/en
Priority to EP06781517.5A priority patent/EP1939947B1/en
Publication of WO2007026480A1 publication Critical patent/WO2007026480A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a silicon-based thin film photoelectric conversion device including a substantially i-type photoelectric conversion layer having a hydrogenated amorphous silicon or hydrogenated amorphous silicon alloy force, and a conductive SiO layer, and
  • Such a silicon-based thin film photoelectric conversion device generally includes a transparent electrode layer, one or more photoelectric conversion units, and a back electrode layer that are sequentially stacked on a transparent insulating substrate.
  • the photoelectric conversion unit generally has a p-type layer, an i-type layer, and an n-type layer laminated in this order or vice versa, and the i-type photoelectric conversion layer that occupies the main part is amorphous. Is called an amorphous photoelectric conversion unit, and those whose i-type layer is crystalline are called crystalline photoelectric conversion units.
  • the photoelectric conversion layer is a layer that absorbs light and generates electron-hole pairs.
  • an i-type layer of a pin junction is a photoelectric conversion layer.
  • the i-type layer which is a photoelectric conversion layer, occupies the main film thickness of the photoelectric conversion unit.
  • the i-type layer is an intrinsic semiconductor layer that ideally does not contain a conductivity determining impurity. However, even if it contains a small amount of impurities, if the Fermi level is in the middle of the forbidden band, it functions as a pin-bonded i-type layer, so this is called a substantially i-type layer.
  • the substantially i-type layer is formed without adding a conductivity determining impurity to the source gas.
  • the conductivity determining impurity may be included in an allowable range that functions as an i-type layer.
  • the substantially i-type The layer may be formed by intentionally adding a small amount of conductivity determining impurity in order to remove the influence of impurities caused by the atmosphere or the underlayer on the Fermi level.
  • amorphous silicon or an amorphous silicon alloy is used as the photoelectric conversion layer
  • hydrogenated amorphous silicon or hydrogenated amorphous silicon alloy containing 5 to 20 atomic% of hydrogen in the film is used. It is done.
  • amorphous silicon that does not contain hydrogen has a high defect density of 10 19 to 10 2 Q cm 3 due to dangling bonds, so semiconductors such as photoelectric conversion devices are used. It cannot be used for devices.
  • hydrogenated amorphous silicon has a defect density reduced to 10 15 to 10 17 cm 3 because hydrogen in the film terminates dangling bonds, and is used for semiconductor devices such as photoelectric conversion devices. be able to.
  • the defect density is reduced by including hydrogen in the film, and photoelectric conversion devices, etc. It can be used for semiconductor devices.
  • a photoelectric conversion device employing a structure called a stacked type in which two or more photoelectric conversion units are stacked is known.
  • a front photoelectric conversion unit including a photoelectric conversion layer having a large optical forbidden bandwidth is arranged on the light incident side of the photoelectric conversion device, and a photoelectric conversion having a small optical forbidden bandwidth in order behind the photoelectric conversion unit.
  • the rear photoelectric conversion unit including the layers photoelectric conversion over a wide wavelength range of incident light is enabled, and the conversion efficiency of the entire device is improved by effectively using incident light. .
  • a photoelectric conversion unit disposed relatively on the light incident side is referred to as a front photoelectric conversion unit, and a photoelectric conversion unit disposed adjacent to a side farther from the light incident side than this is referred to as a rear photoelectric conversion unit. This is called a conversion unit.
  • a stack of an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit is called a hybrid photoelectric conversion device.
  • the wavelength of light that can be photoelectrically converted by amorphous silicon is about 800 nm on the long wavelength side.
  • Crystalline silicon photoelectrically converts light up to about 100 nm longer than that. Therefore, it is possible to effectively photoelectrically convert a wider range of incident light.
  • a structure using the so-called light confinement effect that effectively reflects light of a specific wavelength by placing a layer having a smaller refractive index than the photoelectric conversion layer behind the photoelectric conversion layer when viewed from the light incident side is common. It is used for.
  • Arranging behind the photoelectric conversion layer as viewed from the light incident side may be in contact with the photoelectric conversion layer on the back side, or arrange another layer on the back side of the photoelectric conversion layer, and It may be on the back side.
  • the thickness of the amorphous silicon photoelectric conversion layer is increased.
  • the current generated by the front photoelectric conversion unit can be increased.
  • the thickness of the amorphous silicon photoelectric conversion layer required to obtain the same current value can be reduced compared with the case where the intermediate transmission / reflection layer is not included. It is possible to suppress the deterioration of the characteristics of the amorphous silicon photoelectric conversion unit due to the photodegradation (Sraebler-Wronsky effect) that becomes noticeable as the thickness of the crystalline silicon layer increases.
  • Patent Document 1 describes a stacked photoelectric conversion device in which a low refractive index layer is an n-type SiO layer.
  • This n-type SiO 2 layer has 25 atomic% or less in order to achieve both conductivity and low refractive index.
  • silicon-rich phase in an amorphous alloy phase composed of silicon and oxygen.
  • silicon rich literally means that the silicon concentration is high. Therefore, including a silicon-rich phase means a state in which a phase having a high silicon concentration exists partially. Then, the n-type Si O layer has a refractive index at 1.7 to 2.5, dark conductivity is 10- 8 ⁇ 10- / cm.
  • this silicon-rich phase preferably includes a silicon crystal phase. ing. This is because the current path through this silicon crystal phase in the thickness direction of the n-type SiO layer is
  • the silicon rich phase should also include doped amorphous silicon.
  • the impurity is sufficiently doped, it is possible to obtain a film having a sufficiently low resistance to form an ohmic contact with both n-type and p-type amorphous silicon.
  • Patent Document 1 discloses that an n-type SiO layer is an intermediate transmission / reflection layer of a stacked photoelectric conversion device.
  • Patent Document 1 describes the relationship between the i-type amorphous silicon photoelectric conversion layer and the n-type SiO layer in order to reduce the contact resistance at the interface and improve the fill factor (FF) of the photoelectric conversion device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-045129
  • the present inventors have studied in detail a photoelectric conversion device including a structure in which an i-type amorphous silicon photoelectric conversion layer, a Zn-type microcrystalline silicon layer, and a Zn-type Si 2 O layer are sequentially stacked as described above.
  • the resistance of the 1-x X layer is reduced and the generation of the silicon crystal phase is insufficient.
  • the problem to be solved by the present invention is to provide an improved photoelectric conversion in a silicon-based thin film photoelectric conversion device in which a conductive SiO layer is inserted in order to obtain a light confinement effect.
  • the present invention has been made in view of the above-described problems, and the silicon-based thin film photoelectric conversion device of the present invention includes hydrogenated amorphous silicon or hydrogenated amorphous silicon alloy, which are sequentially stacked.
  • Force i-type photoelectric conversion layer mainly hydrogenated amorphous silicon force i-type buffer layer, and n-type SiO layer (X is 0.25-0.6) Silicon-based thin film light
  • the buffer layer wherein the buffer layer has a hydrogen concentration higher than that of the photoelectric conversion layer at the interface on the photoelectric conversion layer side, and has a film thickness of 5 nm or more and 50 nm or less.
  • -Based thin film photoelectric conversion device Since the hydrogen concentration at the interface of the buffer layer on the photoelectric conversion layer side is high, it is in a state immediately before the generation of the silicon crystal phase, that is, a state just before crystallization. Using this buffer layer as an underlayer, n-type Si O
  • the n-type SiO layer can reduce the refractive index while maintaining a low resistance by forming a noffer layer as an underlayer.
  • the JSC improves, and a photoelectric conversion device with improved characteristics can be provided.
  • the buffer layer has a sufficient thickness and the state just before crystallization can be formed.
  • the low resistance of the O layer can be sufficiently obtained, and the characteristics of the photoelectric conversion device can be improved.
  • the thickness of the first layer By reducing the thickness of the first layer to 50 nm or less, the decrease in Jsc due to the light absorption loss of the koffa layer can be suppressed, so that the characteristics of the photoelectric conversion device can be improved.
  • the silicon-based thin film photoelectric conversion device of the present invention is the same even in a hydrogenated amorphous silicon alloy in which the photoelectric conversion layer contains elements such as carbon, oxygen, nitrogen, germanium in addition to silicon. Further, by increasing the hydrogen concentration at the interface of the buffer layer on the photoelectric conversion layer side, the FF or the sc is improved.
  • the buffer layer contains a high hydrogen concentration that preferably has a hydrogen concentration measured by SIMS of 1 ⁇ 10 22 atoms Zcc or more at the interface on the photoelectric conversion side, whereby the photoelectric conversion phase of the buffer layer Since the state just before crystallization can be formed at the side interface, the resistance of the n-type SiO layer formed with the buffer layer as the base is lowered, and further crystallization is promoted. , It is possible to improve the FF there have «J SC of the photoelectric conversion device.
  • the buffer layer has a hydrogen concentration at the interface on the n-type SiO 2 layer side.
  • the photoelectric conversion layer It is preferably lower than the photoelectric conversion layer.
  • the crystal phase is likely to occur at the 1-x X interface, and the low resistance of the n-type SiO layer formed as a base
  • the buffer layer includes a crystal phase at the interface on the n-type SiO 2 layer side.
  • the n-type Si 2 O layer force is silicon-rich in the amorphous alloy phase of silicon and oxygen.
  • the silicon-rich phase which preferably contains a phase, provides a current path in the cross-sectional direction of the n-type SiO layer.
  • the n-type SiO layer has a high in-film oxygen concentration and a low refractive index.
  • the silicon-rich phase can be further reduced in resistance by forming a current path in the cross-sectional direction of the silicon crystal phase, which preferably includes a silicon crystal phase.
  • An improved photoelectric conversion device can be provided.
  • the buffer layer uses a mixed gas containing at least hydrogen and silane as a source gas, and the flow ratio of hydrogen Z silane is 40 to 300. In this range, the silicon thin film photoelectric conversion device is formed.
  • the flow rate ratio of hydrogen Z silane in the range of 40 to 300, the hydrogen concentration at the interface of the notifier layer on the photoelectric conversion layer side can be increased, and the photoelectric conversion layer is formed by the hydrogen atoms generated during film formation.
  • the photoelectric conversion layer and the buffer layer are formed in the same film forming chamber.
  • a film forming chamber for forming the n-type layer is formed. The outside can be shortened, the manufacturing tact of the photoelectric conversion device can be shortened, and the manufacturing cost can be reduced.
  • the silicon-based thin film photoelectric conversion device of the present invention comprises a substantially i-type photoelectric conversion layer, mainly hydrogenated non-crystalline silicon or hydrogenated amorphous silicon alloy, which is sequentially stacked.
  • the contact resistance at the interface is reduced, the FF of the photoelectric conversion device is improved, and a photoelectric conversion device with improved characteristics can be provided.
  • the buffer layer as an underlayer, the n-type SiO layer can lower the refractive index while maintaining a low resistance.
  • FIG. 1 Distribution of hydrogen concentration in the depth direction of a sample in which a plurality of buffer layers and photoelectric conversion layers are stacked.
  • FIG. 2 Raman scattering spectrum of a sample in which a photoelectric conversion layer and a buffer layer are sequentially formed.
  • FIG. 3 Correlation diagram of hydrogen concentration at the interface on the photoelectric conversion layer side of the buffer layer to the hydrogen Z silane flow rate ratio.
  • FIG. 5 is a structural cross-sectional view of a stacked photoelectric conversion device according to another embodiment of the present invention.
  • FIG. 6 is a structural cross-sectional view of a single-junction photoelectric conversion device of Comparative Example 1 of the prior art.
  • FIG. 7 is a structural cross-sectional view of a single-junction photoelectric conversion device of Comparative Example 2 of the prior art.
  • the inventors have developed a silicon-based thin film using an n-type SiO layer.
  • the film photoelectric conversion device was studied intensively, and i-type amorphous silicon photoelectric conversion layer and n-type Si 2 O 3 It was found that these problems can be solved by inserting an i-type nofer layer between the layers.
  • the buffer layer is substantially i-type, mainly made of hydrogenated amorphous silicon, and characterized in that the hydrogen concentration at the interface on the photoelectric conversion layer side is higher than that of the photoelectric conversion layer.
  • FIG. 1 shows the depth direction distribution of hydrogen concentration of a sample formed continuously on a glass substrate under the conditions of an i-type buffer layer and an i-type amorphous silicon photoelectric conversion layer.
  • the inset in Fig. 1 shows a sample structure.
  • silane diluted with hydrogen was used as a raw material gas, and the flow rate ratio of hydrogen Z silane was 40 times, 80 times, and 200 times, respectively.
  • this sample was placed on a glass substrate by (1) photoelectric conversion layer Z (2) 40-fold hydrogen dilution buffer layer Z (3) photoelectric conversion layer Z (4) 80-fold hydrogen dilution buffer layer Z (5 ) Photoelectric conversion layer Z (6) 20
  • 0-fold hydrogen diluted buffer layer Z (7) A film formed successively in the order of the photoelectric conversion layer.
  • the thickness of each layer of (1) to (7) was set to 50 nm.
  • SIMS Secondary ion mass spectrometry
  • Cs + ions at an acceleration voltage of 3 keV.
  • the hydrogen concentration was measured at two points in the sample. In Fig. 1, the average value of the two points is shown along with the measurement results of the two points.
  • the hydrogen concentration is 1 ⁇ 10 22 atoms Zcc or more.
  • the 200-fold hydrogen dilution buffer layer in (6) has a higher peak in hydrogen concentration than the photoelectric conversion layer at the interface on the photoelectric conversion layer side in (5), and then the hydrogen concentration decreases as the film thickness increases. In addition, the hydrogen concentration is lower than that of the photoelectric conversion layer. At that time, the hydrogen concentration was 3.5 ⁇ 10 21 atoms / cc. In an actual photoelectric conversion device, when the film thickness of the 200-fold hydrogen dilution buffer layer is 20 ⁇ m or more, the hydrogen concentration of the buffer layer at the interface on the n-type SiO 2 layer side is higher than that of the photoelectric conversion layer.
  • the interface on the photoelectric conversion layer side of the buffer layer corresponds to the initial film-forming layer attached with the buffer layer. This portion is in a state immediately before the generation of a silicon crystal phase in which the hydrogen concentration is higher than that of the photoelectric conversion layer, that is, a state immediately before crystallization.
  • the film thickness is sufficiently increased under the buffer layer formation conditions, crystallization starts and the hydrogen concentration becomes lower than that of the photoelectric conversion layer.
  • the film thickness at which crystallization begins is thicker when H / SiH is smaller and thinner when H / SiH is larger.
  • the H / SiH power is 40 times (2) and 80 times (4).
  • the hydrogen concentration is higher than that of the photoelectric conversion layer, and is in a state immediately before crystallization.
  • the hydrogen concentration decreases as the film thickness increases, and the hydrogen concentration becomes lower than that of the photoelectric conversion layer. At this time, a crystalline silicon phase is generated in the noffer layer.
  • FIG. 2 shows a sample Raman sample in which a layer formed under the conditions of an i-type amorphous silicon photoelectric conversion layer and a layer formed under the conditions of a buffer layer are sequentially formed by plasma CVD on a glass substrate. Scattering vector.
  • the film thickness of the photoelectric conversion layer is 300 nm.
  • Buffer layer is H / Si
  • FIG. 3 shows the hydrogen concentration at the interface on the photoelectric conversion layer side of the buffer layer with respect to the hydrogen Z silane flow rate ratio. Hydrogen concentration increases almost linearly with respect to the flow ratio of hydrogen to silane.
  • the hydrogen Z silane flow ratio is about 20 or more and the hydrogen concentration is 1 ⁇ 10 22 atoms Zcc or more.
  • FIG. 4 shows a cross-sectional view of a single-junction silicon-based thin film photoelectric conversion device according to an example of the embodiment of the present invention.
  • a transparent electrode layer 2, an amorphous photoelectric conversion unit 3, and a back electrode layer 4 are arranged on the transparent substrate 1 in this order.
  • a plate-like member made of glass, transparent resin, or the like is used for the transparent substrate 1 used in the photoelectric conversion device of the type in which light is incident on the substrate side force.
  • the transparent electrode layer 2 is preferably formed of a conductive metal oxide such as SnO or ZnO.
  • the transparent electrode layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities on its surface.
  • the amorphous photoelectric conversion unit 3 includes a p-type layer 31, a substantially i-type photoelectric conversion layer 32 that also has hydrogenated amorphous silicon force, and mainly a hydrogenated amorphous silicon force that substantially i A pin junction consisting of an n-type buffer layer 33, an n-type SiO 2 layer (X is 0.25-0.6) 34, and an n-type layer 35.
  • the material of the photoelectric conversion layer 32 is an alloy material including elements such as carbon, oxygen, nitrogen, germanium instead of hydrogenated amorphous silicon that uses only silicon as a main element constituting a semiconductor. There may be.
  • the main constituent material of the conductive type layer is not necessarily the same as that of the i-type layer.
  • amorphous silicon carbide can be used for the p-type layer, and crystalline silicon is used for the n-type layer.
  • a high-frequency plasma CVD method is suitable for forming an amorphous photoelectric conversion unit.
  • a substrate temperature of 100 to 300 ° C., a pressure of 30 to 1500 Pa, a power supply frequency of 10 to 100 MHz, and a high frequency power density of 0.01 to 0.5 WZcm 2 are preferably used.
  • a silicon-containing gas such as silane or disilane, or a mixture of these gases and hydrogen is used.
  • dopant gas for forming P-type or n-type layer in photoelectric conversion unit BH or PH
  • the nother layer 33 which is one important component of the present invention, is mainly composed of hydrogenated amorphous silicon, and the hydrogen concentration at the interface on the photoelectric conversion layer side is higher than that of the photoelectric conversion layer. And the film thickness is 5 nm or more and 50 nm or less.
  • the interface on the photoelectric conversion layer side of the noffer layer corresponds to the initial film-forming layer with the buffer layer. This portion is in a state immediately before the generation of a silicon crystal phase in which the hydrogen concentration is higher than that of the photoelectric conversion layer, that is, a state immediately before crystallization.
  • the n-type SiO layer can reduce the refractive index while maintaining a low resistance by forming a noffer layer as an underlayer.
  • the JSC improves, and a photoelectric conversion device with improved characteristics can be provided.
  • the buffer layer has a sufficient thickness and the state just before crystallization can be formed.
  • the low resistance of the O layer can be sufficiently obtained, and the characteristics of the photoelectric conversion device can be improved.
  • the thickness of the first layer By reducing the thickness of the first layer to 50 nm or less, the decrease in Jsc due to the light absorption loss of the koffa layer can be suppressed, so that the characteristics of the photoelectric conversion device can be improved.
  • the buffer layer 33 is formed by using SiH, H as a reactive gas, and an H / SiH ratio of 40-30.
  • the plasma CVD conditions at this time are, for example, using a capacitively coupled parallel plate electrode, power supply frequency 10 to: LOOMHz, high frequency power density 0.01 to 0. Pressure 50 ⁇ 1500Pa, substrate temperature 150 ⁇ 250.
  • C. H / SiH Its preferred more than 40 instrument case, as shown in FIG. 2, in the field plane of the photoelectric conversion layer side of the buffer layer, the hydrogen concentration becomes 1 X 10 22 at O msZcc above, a state of crystallization immediately before .
  • the photoelectric conversion layer is formed by hydrogen atoms generated during film formation where H / SiH is preferably 300 or less.
  • the noffer layer is manufactured in an i-type layer forming chamber for forming a photoelectric conversion layer. Since the noffer layer is substantially an i-type layer, it can be fabricated in the same chamber as the photoelectric conversion layer, and the tact of the n-type layer deposition chamber is no longer rate-determined, shortening the manufacturing tact of the photoelectric conversion device. Manufacturing cost can be reduced. If the nuffer layer is produced in the n-type layer deposition chamber, the defect density increases due to the influence of impurities such as phosphorus adhering to the wall surface, leading to a decrease in FF. In this respect as well, it is preferable that the noffer layer is produced in the i-type deposition chamber.
  • the n-type SiO 2 layer is 25 atomic% or more and 60 atomic% in order to achieve both conductivity and low refractive index.
  • the silicon-rich phase which preferably includes a silicon-rich phase in the amorphous alloy phase of silicon and oxygen, is a silicon crystal phase.
  • the n-type SiO layer has a wavelength of 600 ⁇ to obtain a sufficient reflection effect.
  • the refractive index with respect to light of m is 1.7 or more and 2.5 or less. More preferably, it is 8 or more and 2.1 or less.
  • the n-type SiO layer affects the series resistance of the solar cell.
  • the intensity ratio of the TO mode peak of the crystalline silicon component to the TO (optical transverse vibration) mode peak of the amorphous silicon component measured by Raman scattering is 0.5 or more and 10 or less It is preferable that The dopant atom concentration in the silicon composite layer is preferably in the range of 3 ⁇ 10 2 ° to 1.8 ⁇ 10 21 cm ⁇ 3 .
  • n-type Si 2 O layer uses SiH, CO, H, and PH as reaction gases, and H ZSiH
  • the conditions for plasma CVD at this time are, for example, using a capacitively coupled parallel plate electrode, power supply frequency 10 to: L00 MHz, high frequency power density 0. 01-0./SiH
  • the back electrode layer 4 it is preferable to form at least one metal layer having at least one material force selected from Al, Ag, Au, Cu, Pt and Cr by sputtering or vapor deposition.
  • conductive materials such as ITO, SnO, and ZnO
  • a layer made of a conductive oxide may be formed! / ⁇ (not shown).
  • FIG. 5 shows a cross-sectional view of a laminated silicon thin film photoelectric conversion device according to another example of the embodiment of the present invention.
  • the transparent electrode layer 2, the front photoelectric conversion unit 5, the rear photoelectric conversion unit 6, and the back electrode layer 4 are arranged on the transparent substrate 1 in this order.
  • the transparent substrate 1, the transparent electrode layer 2, and the back electrode layer 4 have the same structure as that shown in FIG.
  • the front photoelectric conversion unit 5 includes a p-type layer 51, a substantially i-type photoelectric conversion layer 52 having hydrogenated amorphous silicon force, and a substantially i-type noffer layer mainly having hydrogenated amorphous silicon force. 53, n-type Si
  • It is preferably constituted by a pin junction composed of an O layer (X is 0.25-0.6) 54. This
  • the n-type SiO 2 layer serves as both the intermediate transmission / reflection layer and the n-type layer.
  • the method for producing each layer of the knit 5 is the same as that in the embodiment of FIG.
  • the rear photoelectric conversion unit 6 is formed by stacking each semiconductor layer by a plasma CVD method in the order of pin type, for example.
  • a p-type microcrystalline silicon layer doped with 0.01 atom% or more of boron, which is a conductivity-determining impurity atom is defined as one conductivity-type layer 61, and a substantially i-type crystalline silicon layer is photoelectrically converted.
  • an n-type microcrystalline silicon layer doped with 0.01 atomic% or more of phosphorus, which is a conductivity-determining impurity atom may be deposited as the reverse conductivity type layer 63 in this order.
  • the force with which two-stage photoelectric conversion units are stacked may be stacked with three or more stages as will be described later.
  • FIG. 6 shows a cross-sectional view of the amorphous photoelectric conversion device of Comparative Example 1.
  • a glass substrate was used as the transparent substrate 1.
  • a SnO film including minute pyramidal surface irregularities and having an average thickness of 700 nm was formed as a transparent electrode layer 2 by a thermal CVD method. Obtained transparent electricity
  • the sheet resistance of the polar layer 2 was about 9 ⁇ gloss.
  • the haze ratio measured with a C light source was 12%, and the average height difference d of the surface irregularities was about lOOnm.
  • An amorphous photoelectric conversion unit 3 was produced on the transparent electrode layer 2 using a plasma CVD apparatus having five film forming chambers.
  • the film forming chamber is composed of one p-type layer film forming chamber (P1 room), three i-type film forming chambers (P2 room, P3 room, P4 room), and one n-type layer film forming chamber (P5 room). ).
  • a p-type amorphous silicon carbide layer 31 having a thickness of 15 nm is formed in the P1 chamber, and a photoelectric conversion layer 32 of substantially i-type hydrogenated amorphous silicon having a thickness of 300 nm is formed in the P2 to P4 chambers.
  • an n-type microcrystalline silicon layer 36 having a thickness of 30 nm was formed in the P5 chamber to form an amorphous photoelectric conversion unit 3.
  • the tact in the P5 room was 6 minutes and 30 seconds compared to 12 minutes for the production tact of the CVD apparatus, and the tact in the P5 room was powerful without limiting the production tact.
  • the back electrode layer 4 an A1-doped ZnO film having a thickness of 30 nm and an Ag film having a thickness of 300 nm were sequentially formed by sputtering.
  • Comparative Example 2 an amorphous photoelectric conversion device as shown in FIG. 7 was produced.
  • the apparatus of Comparative Example 2 shown in FIG. 7 uses an n-type layer forming chamber P5 chamber instead of the n-type microcrystalline silicon layer 36 of FIG. Type Si O layer 34Zn type
  • n-type microcrystalline silicon layer 37 is 20 nm thick
  • n-type Si O layer is 60 nm thick
  • the layer 35 is 5 nm thick.
  • the deposition conditions for the n-type Si O layer are: gas flow rate is SiH / CO / P
  • H / H 80/180/2 / 20000sccm
  • power frequency is 13.56MHz
  • power density is 8.56MHz
  • the refractive index for light with a wavelength of 600 nm measured by spectroscopic ellipsometry was 2.0.
  • the conductivity was 1 X 10- 4 SZcm.
  • the intensity ratio of the TO mode peak of the crystalline silicon component to the TO mode peak of the amorphous silicon component measured by Raman scattering was 2.0.
  • the oxygen concentration measured by X-ray photoelectron spectroscopy was 42 atomic%.
  • the tact time in the P5 chamber was 17 minutes, and the rate was controlled by the tact time in the P5 chamber, and the manufacturing tact time of the CVD device was extended to 17 minutes.
  • Jsc is due to the increase in photocurrent due to the optical confinement effect of the n-type SiO layer.
  • Example 1 a single-junction amorphous photoelectric conversion device as shown in FIG. 4 was produced.
  • the apparatus of Example 1 shown in FIG. 4 uses a buffer layer 33 having substantially i-type mainly hydrogenated amorphous silicon force instead of the n-type microcrystalline silicon layer 37 of FIG. Comparative Example 2
  • the device is different.
  • the thickness of the noffer layer 33 is 5 nm.
  • H ZSiH 12800Zl60sccm
  • the power frequency is 13.56MHz
  • the power density is 1
  • the photoelectric conversion device of Example 1 has an increase in Jsc and FF and an improvement in Eff.
  • Example 1 the hydrogen concentration at the interface on the photoelectric conversion layer side of the buffer layer 33 which is an i-type layer is high, so that it is amorphous just before crystallization. To the n-type Si O layer 34 and the continuity of the interface
  • FF improves and FF improves.
  • the n-type microcrystalline silicon layer 37 was replaced with the i-type buffer layer 33, impurity defects due to phosphorus were reduced, carrier recombination loss in the layer was reduced, and FF was considered improved.
  • the FF is improved, when the notch layer 33 is used as a base layer, the low resistance of the n-type SiO layer formed thereon is reduced.
  • the 1-x X resistance and the generation of the silicon crystal phase are sufficiently promoted, and the contact resistance at the interface is thought to be reduced.
  • Example 2 a photoelectric conversion device having the same structure as that of Example 1 was produced. However, the force differs from Example 1 only in that the nofer layer 33 was produced in the P4 chamber, which is the i-type layer deposition chamber. .
  • the photoelectric conversion layer 32 was formed in the P2, P3, and P4 chambers, and the buffer layer 33 was formed within the time remaining in the P4 chamber, so the tact time in the P4 chamber was 10 minutes.
  • a 1-x X-type microcrystalline silicon layer 35 was formed, and the takt time in the P5 chamber was 11 minutes. For this reason, the manufacturing tact of both P4 and P5 chambers is not rate-determined, and the manufacturing tact of the CVD apparatus is 12 minutes, the same as in Comparative Example 1.
  • Example 3 in an amorphous photoelectric conversion device having the same structure and manufacturing method as in Example 1, only the film thickness of the notch layer 33 was changed to manufacture a photoelectric conversion device. At this time, H / SiH of the buffer layer was 80 times.
  • Figures 8 to 11 show various photoelectric conversion devices of Example 3.
  • a correlation diagram between the output characteristics and the buffer layer thickness is shown as a relative value to the output characteristics of the photoelectric conversion device of Comparative Example 2.
  • FIG. 8 is a correlation diagram showing the relationship between the thickness of the buffer layer and the conversion efficiency (Eff) of the photoelectric conversion device of Example 3. As the thickness of the noffer layer increases, Eff increases rapidly.
  • FIG. 9 is a correlation diagram showing the relationship between the film thickness of the buffer layer and the fill factor (FF) of the photoelectric conversion device of Example 3. As the film thickness of the noffer layer increases, FF increases rapidly, reaches its maximum value at a film thickness of 20 nm, and then gradually decreases.
  • FF fill factor
  • FIG. 10 is a correlation diagram showing the relationship between the thickness of the buffer layer and the short-circuit current density Cisc of the photoelectric conversion device of Example 3. As the thickness of the noffer layer increases, Jsc increases rapidly, has a maximum value at lOnm, and then decreases.
  • FIG. 11 shows the relationship between the thickness of the buffer layer and the open circuit voltage (Voc) of the photoelectric conversion device of Example 3.
  • FIG. Voc increases as the thickness of the noffer layer increases, and is almost saturated at a thickness of 20 ⁇ m or more.
  • Fig. 8 ⁇ As can be seen from L1, when the thickness of the notch layer is made smaller than 5 nm, the Eff drastically decreases because all of FF, Jsc and Voc are decreased. This is because the state of the buffer layer just before crystallization cannot be formed at the interface on the photoelectric conversion layer side of the buffer layer due to insufficient film thickness of the buffer layer. This is thought to be due to insufficient habit.
  • the moderate decrease in Eff with a buffer layer thickness of 20 nm or more is mainly due to the decrease in Jsc and FF. If the film thickness of the noffer layer is too thick, the optical absorption loss of the noffer layer increases and Jsc decreases. On the other hand, if the buffer layer is too thick, the resistance loss of the buffer layer butter will increase and the FF will decrease. It is preferable to set the thickness of the noffer layer to 5 nm or more and 50 nm or less because the Ef of Comparative Example 2 is increased. It is more preferable that the thickness of the nofer layer be 10 nm or more and 20 nm or less because Eff is higher than that of Comparative Example 2 by 5% or more.
  • Example 4 a photoelectric conversion device was manufactured by changing the H / SiH flow rate ratio of the notch layer 33 in the amorphous photoelectric conversion device having the same structure and manufacturing method as in Example 1.
  • the thickness of the noffer layer 33 is lOnm and the H / SiH flow ratio is changed.
  • FIG. 12 shows the H / SiH flow ratio of the buffer layer and the conversion efficiency of the photoelectric conversion device of Example 4 (
  • Eff is a correlation diagram showing the relationship. For an increase in the H / SiH flow ratio in the noffer layer,
  • FIG. 13 shows the H / SiH flow ratio of the buffer layer and the fill factor of the photoelectric conversion device of Example 4 (
  • FIG. 14 shows the H / SiH flow ratio of the buffer layer and the short-circuit current density of the photoelectric conversion device of Example 4. It is a correlation diagram which shows the relationship with degree (Jsc). For increasing H / SiH flow ratio in buffer layer
  • FIG. 15 shows the H / SiH flow rate ratio of the buffer layer and the open circuit voltage of the photoelectric conversion device of Example 4 (
  • Examples 5 to 6 and Comparative Example 3 below hybrid stacked photoelectric conversion devices each including an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit were produced, and experiments were performed while changing the structure.
  • an i-type thin film polycrystalline silicon layer, a Zn-type microcrystalline silicon layer, and a Z back electrode layer were sequentially stacked, and the same structure and manufacturing method were used except for the “structure change portion”.
  • Table 2 summarizes the output characteristics of the photoelectric conversion devices of Examples 5 and 6 and Comparative Example 3.
  • FIG. 5 shows a cross-sectional view of the stacked photoelectric conversion device of Example 5.
  • Transparent substrate 1 and transparent electrode layer 2 were produced in the same manner as Comparative Example 1.
  • a p-type amorphous silicon carbide layer 51 having a thickness of 15 nm
  • a photoelectric conversion layer 52 of substantially i-type hydrogenated amorphous silicon having a thickness of 350 nm, and substantially having a thickness of 20 nm.
  • the front photoelectric conversion unit of the amorphous photoelectric conversion unit consisting of a buffer layer 53 mainly composed of i-type hydrogenated amorphous silicon and an n-type SiO 2 layer 54 having a thickness of 50 nm.
  • the back photoelectric conversion unit 6 of the crystalline silicon photoelectric conversion layer unit composed of the microcrystalline silicon layer 63 was sequentially formed by the plasma CVD method. Thereafter, as the back electrode layer 4, an A1-doped ZnO film having a thickness of 90 nm and an Ag film having a thickness of 300 nm were sequentially formed by sputtering to produce a stacked photoelectric conversion device.
  • the film forming conditions for the n-type Si 2 O layer were the same as in Comparative Example 2. At this time, it is necessary to
  • the refractive index for light with a wavelength of 600 nm of an n-type Si O layer deposited at 200 nm on a glass is 2.0.
  • the pressure was 1100 Pa and the substrate temperature was 200 ° C.
  • the hydrogen concentration measured by SIMS at the interface of the buffer layer on the photoelectric conversion layer side is 2. 05 X 10 22 atoms Zcc, and n-type Si O
  • the hydrogen concentration at the interface on the 1-x X layer side was 5.
  • Example 6 a stacked photoelectric conversion device having an n-type SiO 2 layer refractive index of 1.9 was produced.
  • the photoelectric conversion device of Example 6 is the same as that of Example 5 except for the condition of the n-type SiO layer.
  • the structure and manufacturing method were the same as those of the electric conversion device.
  • the deposition conditions for the n-type Si O layer are as follows:
  • Example 1 was the same as Example 5 except that the 1-x X 2 flow rate was changed to 220 sccm.
  • the characteristics of the n-type SiO layer deposited 200 nm on glass under the same film forming conditions are as follows.
  • the refractive index for light with a wavelength of 600 nm measured by spectroscopic ellipsometry was 1.9.
  • the conductivity was 1 X 10- 5 SZcm.
  • the intensity ratio of the TO mode peak of the crystalline silicon component to the TO mode peak of the amorphous silicon component measured by Raman scattering was 1.5.
  • the oxygen concentration measured by X-ray photoelectron spectroscopy was 47 atomic%.
  • a stacked photoelectric conversion device was produced, which was different only in that the buffer layer 53 of the photoelectric conversion device in FIG. 5 was replaced with an n-type microcrystalline silicon having a thickness of 20 nm.
  • FF and Voc mainly increased and Eff improved. This is because the use of a buffer layer instead of the n-type microcrystalline silicon layer reduces impurity defects due to phosphorus, and the interface continuity from the buffer layer 33 to the n-type SiO layer 34 is good.
  • Example 6 compared to Example 5, Jsc increased and Eff improved. This is n-type Si
  • the reflection characteristics are improved and the X of the front photoelectric conversion unit is improved.
  • the n-type Si O layer 53 of the stacked photoelectric conversion device is intermediate to the n-type layer of the front photoelectric conversion unit.
  • the structure also serves as a transmission / reflection layer.
  • the n-type SiO 2 layer was mainly important for the reflection characteristics.
  • the transmittance of long-wavelength light as well as the reflection characteristics is important.
  • the refractive index is lower and the oxygen concentration is higher than in the case of a single junction photoelectric conversion device.
  • the refractive index of the n-type Si O layer is lowered, the conductivity suddenly increases.
  • Example 6 by using a buffer layer, the n-type SiO layer is maintained while maintaining almost the same FF as in Example 5.
  • the refractive index of 1-x X is reduced from 2.0 to 1.9.
  • FIG. 16 is a bright-field image of a cross section of the stacked photoelectric conversion device of Example 6 obtained by transmission electron microscopy (TEM). The part that appears white in Fig. 16 is the n-type SiO layer. Noffa
  • a fine silicon crystal phase is observed at the interface of the n-type SiO 2 layer side of the layer.
  • Fig. 17 is a dark field image of the same part as Fig. 16 by TEM.
  • the B sound field image is an image of an electron beam diffracted on a specific crystal plane. That is, diffraction does not occur in the amorphous part, and only crystals including a crystal plane that forms a specific Bragg angle with respect to the electron beam diffract. Therefore, a brightly formed region in the dark field image always represents a crystal phase. In other words, in Fig. 17, a bright part is clearly recognized at the interface of the noffer layer on the n-type SiO layer side.
  • Example 6 it can be said that Eff can be increased by lowering the refractive index of the n-type Si 2 O 3 layer. Also
  • the interface of the buffer layer on the n-type SiO 2 layer side is the photoelectric conversion of hydrogenated amorphous silicon.
  • the hydrogen concentration is lower than that of the exchange layer, and corresponds to the generation part of the silicon crystal phase.
  • hydrogenated amorphous silicon, hydrogenated amorphous silicon germanium, and crystalline silicon each provided with a photoelectric conversion unit using a photoelectric conversion layer as a three-layer stacked type A photoelectric conversion device was fabricated and experimented with changing its structure.
  • Table 3 summarizes the output characteristics of the photoelectric conversion devices of Examples 7 and 8 and Comparative Example 4. The output characteristics were measured by irradiating AMI. 5 of the light at a light quantity of lOOmWZcm 2.
  • the abbreviations in the columns of “Structure Change Part (Part 1)” and “Structure Change Part (Part 2)” in Table 3 are the same as in Table 1.
  • FIG. 18 shows a cross-sectional view of the stacked photoelectric conversion device of Example 7.
  • Transparent substrate 1 and transparent electrode layer 2 were produced in the same manner as Comparative Example 1.
  • a p-type amorphous silicon carbide layer 71 having a thickness of 15 nm
  • a substantially i-type hydrogenated amorphous silicon photoelectric conversion layer 72 having a thickness of lOOnm, and substantially having a thickness of 20 nm.
  • the first photoelectric conversion unit of an amorphous photoelectric conversion unit comprising an i-type buffer layer 73 mainly having hydrogenated amorphous silicon force and an n-type SiO layer 74 having a thickness of 30 nm.
  • Knit 7 was formed by plasma CVD.
  • the second photoelectric conversion unit of an amorphous photoelectric conversion unit comprising a buffer layer 83 having a thickness of 20 nm and substantially i-type mainly hydrogenated amorphous silicon, and an n-type SiO layer 84 having a thickness of 50 nm.
  • the substrate was formed by plasma CVD. Subsequently, a p-type microcrystalline silicon layer 91 having a thickness of 15 nm, a photoelectric conversion layer 92 of a substantially i-type crystalline silicon layer having a thickness of 2.O / zm, and an n-type microcrystalline silicon layer having a thickness of 15 nm.
  • the third photoelectric conversion unit 9 of the crystalline silicon photoelectric conversion layer unit consisting of 93 was sequentially formed by the plasma CVD method.
  • an A1-doped ZnO film having a thickness of 90 nm and an Ag film having a thickness of 300 nm were sequentially formed and formed by a sputtering method, and a stacked photoelectric conversion device was manufactured.
  • n-type SiO layers 74 and 84 were prepared in the same manner as in Example 5, and were formed on the glass under the same film forming conditions.
  • the refractive index of the deposited OOnm film with respect to 600nm light was 2.0.
  • the film formation condition of the photoelectric conversion layer 82 that also has germanium force is that the gas flow rate is SiH / GeH / H
  • the silicon germanium hydride layer deposited 300 nm on glass under the same film forming conditions had a germanium concentration of 30 atomic% and an optical gap of 1.57 eV.
  • Example 8 a stacked photoelectric conversion device was produced which was different only in that the buffer layer 73 of the photoelectric conversion device in FIG. 18 was replaced with an n-type microcrystalline silicon having a thickness of 20 nm.
  • a stacked photoelectric conversion device was produced in which only the buffer layer 73 and the buffer layer 83 of the photoelectric conversion device in FIG. 18 were replaced with n-type microcrystalline silicon each having a thickness of 20 nm.
  • Example 8 shows an increase in FF and Voc and an improvement in Eff. This is because the buffer layer is used instead of the n-type microcrystalline silicon layer of the second photoelectric conversion unit. Impurity defects due to phosphorus are reduced, and the buffer layer 83 is forced into the n-type SiO layer 84.
  • Example 7 FF and Voc further increased compared to Example 8. Eff is improved. Since the buffer layer is included in two places, the first photoelectric conversion unit and the second photoelectric conversion unit, the effect of the buffer layer appears remarkably and the characteristics of the photoelectric conversion device are improved. It can be said that the introduction of a buffer layer is more effective in a three-stage stacked photoelectric conversion device than in a type photoelectric conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光閉じ込め効果を得るために導電性SiOX層が挿入されてなるシリコン系薄膜光電変換装置において、改善された光電変換特性を得るために、本発明のシリコン系薄膜光電変換装置は、順に積層された、水素化非晶質シリコンまたはその合金からなるi型光電変換層、水素化非晶質シリコンからなるi型バッファ層、及びn型Si1-XOX層(Xは0.25~0.6)を含むシリコン系薄膜光電変換装置であって、前記バッファ層は、前記光電変換層側の界面において水素濃度が前記光電変換層より高く、かつ、その膜厚が5nm以上、50nm以下であることを特徴としており、n型Si1-xOX層の低抵抗化、さらにはシリコン結晶相の発生が促進され、界面の接触抵抗が低減して光電変換装置のFFが向上し、特性の改善された光電変換装置となる。                                                                               

Description

明 細 書
シリコン系薄膜光電変換装置、及びその製造方法
技術分野
[0001] 本発明は水素化非晶質シリコンまたは水素化非晶質シリコン合金力もなる実質的 に i型の光電変換層、及び導電性 SiO層を含むシリコン系薄膜光電変換装置および
X
その製造方法に関する。なお、本願明細書における「結晶質」および「微結晶」の用 語は、当該技術分野において用いられているように、部分的に非晶質を含む場合に も用いられている。
背景技術
[0002] 近年、半導体内部の光電効果を用いて光を電気に変換する光電変換装置が注目 され、開発が精力的行われているが、その光電変換装置の中でもシリコン系薄膜光 電変換装置は、低温で大面積のガラス基板やステンレス基板上に形成できることから 、低コストィ匕が期待できる。
[0003] このようなシリコン系薄膜光電変換装置は、一般に透明絶縁基板上に順に積層さ れた透明電極層と、 1つ以上の光電変換ユニットと、及び裏面電極層とを含んでいる 。ここで、光電変換ユニットは一般に p型層、 i型層、及び n型層がこの順、またはその 逆順に積層されてなり、その主要部を占める i型の光電変換層が非晶質のものは非 晶質光電変換ユニットと呼ばれ、 i型層が結晶質のものは結晶質光電変換ユニットと 呼ばれている。
[0004] 光電変換層は、光を吸収して電子 ·正孔対を発生させる層である。一般に、シリコン 系薄膜光電変換装置では、 pin接合のうち i型層が光電変換層である。光電変換層 である i型層が、光電変換ユニットの主要な膜厚を占める。
[0005] i型層は、理想的には導電型決定不純物を含まない真性の半導体層である。しかし 、微量の不純物を含んでいても、フェルミ準位が禁制帯のほぼ中央にあれば、 pin接 合の i型層として機能するので、これを実質的に i型の層と呼ぶ。一般に、実質的に i 型の層は、導電型決定不純物を原料ガスに添加せずに作製する。この場合、 i型層と して機能する許容範囲で導電型決定不純物を含んでも良い。また、実質的に i型の 層は、大気や下地層に起因する不純物がフェルミ準位に与える影響を取り除くため に、微量の導電型決定不純物を意図的に添加して作製しても良い。
[0006] 光電変換層として非晶質シリコンまたは非晶質シリコン合金を用いる場合、その膜 中に水素を 5〜20原子%含む水素化非晶質シリコンまたは水素化非晶質シリコン合 金が用いられる。良く知られているように、水素を含まない非晶質シリコンは、未結合 手 (ダングリングボンド)に由来する欠陥密度が 1019〜102Qcm 3と高いため、光電変 換装置などの半導体デバイスに用いることができない。これに対して、水素化非晶質 シリコンは、膜中水素が未結合手を終端するので、欠陥密度が 1015〜1017cm 3に低 減されて、光電変換装置などの半導体デバイスに用いることができる。シリコンに加え て、炭素、酸素、窒素、ゲルマニウムなどの元素を含む水素化非晶質シリコン合金に おいても、膜中に水素を含むことによって、欠陥密度が低減されて、光電変換装置な どの半導体デバイスに用いることができる。
[0007] また、光電変換装置の変換効率を向上させる方法として、 2つ以上の光電変換ュニ ットを積層した、積層型と呼ばれる構造を採用した光電変換装置が知られている。こ の方法においては、光電変換装置の光入射側に大きな光学的禁制帯幅を有する光 電変換層を含む前方光電変換ユニットを配置し、その後ろに順に小さな光学的禁制 帯幅を有する光電変換層を含む後方光電変換ユニットを配置することにより、入射光 の広い波長範囲にわたる光電変換を可能にし、入射する光を有効利用することによ り装置全体としての変換効率の向上が図られている。(本願では、相対的に光入射側 に配置された光電変換ユニットを前方光電変換ユニットと呼び、これよりも相対的に 光入射側から遠い側に隣接して配置された光電変換ユニットを後方光電変換ュニッ トと呼ぶ。 )
積層型薄膜光電変換装置の中でも、非晶質光電変換ユニットと結晶質光電変換ュ ニットを積層したものはハイブリッド型光電変換装置と称される。ハイブリッド型光電変 換装置においては、非晶質シリコンが光電変換し得る光の波長は長波長側において 800nm程度である力 結晶質シリコンはそれより長い約 l lOOnm程度までの光を光 電変換することが可能であるため、入射光のより広い範囲を有効に光電変換すること が可能になる。 [0008] 非晶質シリコン単層の光電変換装置にせよ、前述のハイブリッド型光電変換装置に せよ、光電変換層の厚さをできるだけ小さく保つことが生産性向上すなわち低コスト 化の点力 は望ましい。このため、光入射側から見て光電変換層の後方に光電変換 層よりも屈折率の小さな層を配置して特定波長の光を有効に反射させる、いわゆる光 閉じ込め効果を利用した構造が一般的に用いられている。光入射側から見て光電変 換層の後方に配置するとは、光電変換層に接してその裏面側にあってもよいし、光 電変換層の裏面に他の層を配置し、その層の裏面側にあつてもよい。
[0009] 上述した低屈折率層による光閉じ込めを、より効果的に利用する方法として、積層 型光電変換装置において、薄膜光電変換ユニット間に、導電性を有しかつ薄膜光電 変換ユニットを形成する材料よりも低 ヽ屈折率を有する材料からなる中間透過反射 層を形成する方法がある。このような中間透過反射層を有することで、短波長側の光 は反射し、長波長側の光は透過させる設計が可能となり、より有効に各薄膜光電変 換ュニットでの光電変換が可能となる。たとえば、前方の非晶質シリコン光電変換ュ ニットと後方の結晶質シリコン光電変換ユニットからなるハイブリッド型光電変換装置 に中間透過反射層を挿入した場合、非晶質シリコン光電変換層の膜厚を増やすこと なぐその前方光電変換ユニットによって発生する電流を増加させることができる。ま た、中間透過反射層を含む場合には、それを含まない場合に比べて、同一の電流値 を得るために必要な非晶質シリコン光電変換層の厚さを小さくし得ることから、非晶質 シリコン層の厚さの増加に応じて顕著となる光劣化(Sraebler-Wronsky効果)による非 晶質シリコン光電変換ユニットの特性低下を抑制することが可能となる。
[0010] 特許文献 1には、低屈折率層を n型 Si O層とした積層型光電変換装置が記載さ
1
れている。この n型 Si O層は、導電性と低屈折率を両立するために、 25原子%以
1
上 60原子%以下の酸素濃度を有しており、シリコンと酸素とからなる非晶質合金相 中にシリコンリッチな相を含むことを特徴としている。なお、「シリコンリッチ」の用語は、 文字通りシリコン濃度が高いことを意味する。したがって、シリコンリッチな相を含むと は、部分的にシリコン濃度が高い相が存在する状態を意味している。そして、この n型 Si O層は、その屈折率が 1. 7〜2. 5で、暗導電率が 10— 8〜10— /cmである。さ
1 X
らに、このシリコンリッチな相は、シリコン結晶相を含むことが望ましいことが記載され ている。それは、 n型 Si O層の厚さ方向にこのシリコン結晶相を介した電流経路が
1-x X
構成されると考えられ、それが良好なォーミックコンタクトの形成に寄与すると考えら れるからである。代替的に、シリコンリッチな相は、ドーピングされた非晶質シリコンを 含むことも望ましい。よく知られているように、不純物が十分にドーピングされていれ ば、 n型と p型の非晶質シリコンともにォーミックコンタクトを形成するのに十分低抵抗 な膜が得られる力 である。
[0011] また、特許文献 1には、 n型 Si O層が、積層型光電変換装置の中間透過反射層
1-x X
として用いられた、 p型非晶質炭化シリコン層 Zi型非晶質シリコン光電変換層 Zn型 微結晶シリコン層 Zn型 Si O ン
1-x X層 Zp型微結晶シリコ 層 Zi型結晶質シリコン光電変 換層 Zn型微結晶シリコン層を順次積層した構造が記載されている。つまり、特許文 献 1には、界面の接触抵抗を低減して光電変換装置の曲線因子 (FF)を改善するた めに、 i型非晶質シリコン光電変換層と n型 Si O層との間に n型微結晶シリコン層を
1-x X
挿入することが有効である、と記載されている。
特許文献 1 :特開 2005— 045129号公報
発明の開示
発明が解決しょうとする課題
[0012] 本発明者らは、上述したような i型非晶質シリコン光電変換層 Zn型微結晶シリコン 層 Zn型 Si O層を順次積層した構造を含む光電変換装置につき、詳細に検討し
1-x X
た。その結果この構造では、 n型 Si O
1-x X層の低抵抗化、さらにはシリコン結晶相の発 生が不十分で、低い抵抗を保ったまま、 n型 Si O
1-x X層の屈折率を 2未満にすることが 困難で、光電変換装置の FF、及び Zまた Wscに改善の余地があることを見出した。 また、 n型微結晶シリコンのリンが不純物として光を吸収することにより光電流が減ると 考えられ、光電変換装置の Jscに改善の余地があるのではと考えた。さらに、 n型層製 膜室で、 n型微結晶シリコン層と n型 Si O層を製膜する必要があり、 n型層製膜室
1-x X
のタ外が長くなり、製造コストが高くなるという課題があると考えた。
[0013] すなわち、本発明が解決しょうとする課題は、光閉じ込め効果を得るために導電性 SiO層が挿入されてなるシリコン系薄膜光電変換装置において、改善された光電変
X
換特性を得ることである。 課題を解決するための手段
[0014] 本発明は、上述した課題に鑑みなされたものであって、本発明のシリコン系薄膜光 電変換装置は、順に積層された、水素化非晶質シリコンまたは水素化非晶質シリコン 合金力 なる実質的に i型の光電変換層、主に水素化非晶質シリコン力 なり実質的 に i型のバッファ層、及び n型 Si O層(Xは 0. 25-0. 6)を含むシリコン系薄膜光
1-X X
電変換装置であって、前記バッファ層は、前記光電変換層側の界面において水素濃 度が前記光電変換層より高ぐかつ、その膜厚が 5nm以上、 50nm以下であることを 特徴とするシリコン系薄膜光電変換装置である。バッファ層の光電変換層側の界面 の水素濃度が高いため、シリコン結晶相が発生する直前の状態、いわゆる結晶化直 前の状態になっている。このバッファ層を下地層として、 n型 Si O
1-x X層を形成すると、 n型 Si O
1-x X層の低抵抗化、さらにはシリコン結晶相の発生が促進され、界面の接触 抵抗が低減して光電変換装置の FFが向上し、特性の改善された光電変換装置を提 供することが出来る。あるいは、ノ ッファ層を下地層として形成することによって、 n型 Si O層は低い抵抗を保ったまま屈折率を下げることができ、反射率および透過率
1-x X
の増加による光閉じ込め効果が高まり、 JSCが向上して、特性の改善された光電変換 装置を提供することが出来る。ノ ッファ層の膜厚を 5nm以上とすることで、バッファ層 の膜厚が充分となり結晶化直前の状態が形成できるので、その上に製膜する n型 Si
1-
O層の低抵抗ィ匕が十分可能となり、光電変換装置の特性の向上が得られる。ノ ッフ X
ァ層の膜厚を 50nm以下とすることで、ノッファ層の光吸収損失による Jscの減少が抑 えられるので光電変換装置の特性を向上することができる。
[0015] また、本発明のシリコン系薄膜光電変換装置は、光電変換層がシリコンに加えて、 炭素、酸素、窒素、ゲルマニウムなどの元素を含む水素化非晶質シリコン合金にお いても、同様にバッファ層の光電変換層側の界面の水素濃度を高くすることによって 、 FFあるい ίお scが向上する。
[0016] 前記バッファ層は、前記光電変換側の界面において SIMSで測定した水素濃度が 1 X 1022atomsZcc以上であることが好ましぐ高い水素濃度を含有することによって 、バッファ層の光電変換相側の界面に結晶化直前の状態を形成できるので、バッフ ァ層を下地として形成する n型 Si O層が低抵抗化され、さらには結晶化が促進され 、光電変換装置の FFあるい «JSCを向上することが出来る。
[0017] また、前記バッファ層は、前記 n型 Si O層側の界面において、水素濃度が前記
1-X X
光電変換層より低いことが好ましい。こうすることで、ノ ッファ層の n型 Si O層側の
1-x X 界面に結晶相が発生しやすくなり、それを下地として形成する n型 Si O層の低抵
1-x X 抗化、シリコン結晶相の発生が容易になる。
[0018] さらに、前記バッファ層は、前記 n型 Si O層側の界面において結晶相を含むこと
1-X X
が好ましぐ結晶相を含むバッファ層を下地とすることによって、 n型 Si O層中の低
1-x X 抵抗化、シリコン結晶相の発生がさらに容易になる。
[0019] ここで、前記 n型 Si O層力 シリコンと酸素の非晶質合金相中にシリコンリッチな
1-X X
相を含むことが好ましぐシリコンリッチな相が n型 Si O層の断面方向に電流経路を
1-x X
形成することによって、 n型 Si O層が高い膜中酸素濃度と低い屈折率を有するに
1-x X
もかかわらず、低い抵抗を実現でき、特性の改善された光電変換装置を提供すること が出来る。
[0020] また、前記シリコンリッチな相は、シリコン結晶相を含むことがさらに好ましぐシリコ ン結晶相が断面方向に電流経路を形成することによって、さらに低抵抗化することが でき、特性の改善された光電変換装置を提供することが出来る。
[0021] このような本発明のシリコン系薄膜光電変換装置の製造方法は、前記バッファ層を 、原料ガスとして少なくとも水素とシランを含む混合ガスを用い、その水素 Zシランの 流量比が 40〜300の範囲で製膜するシリコン系薄膜光電変換装置の製造方法とな る。水素 Zシランの流量比を 40〜300の範囲にすることによって、ノッファ層の光電 変換層側の界面の水素濃度を高くすることができ、また、製膜時に発生する水素原 子によって光電変換層がエッチングあるいはダメージを受けて光電変換層の界面に 欠陥が増加して FFが低下したりすることが無 、ので、特性の改善された光電変換装 置を製造することが出来る。
[0022] また、前記光電変換層の少なくとも一部と前記バッファ層とを同一の製膜チャンバ 一内で製膜することが好ましぐその結果、 n型層を製膜する製膜室のタ外が短くな り、光電変換装置の製造タクトを短縮して製造コストを下げることができる。
発明の効果 [0023] 本発明のシリコン系薄膜光電変換装置は、順に積層された、水素化非晶質シリコン または水素化非晶質シリコン合金力もなる実質的に i型の光電変換層、主に水素化 非晶質シリコン力もなり実質的に i型のバッファ層、及び n型 Si O
1-X X層(Xは 0. 25〜0
. 6)を含むシリコン系薄膜光電変換装置であって、バッファ層の光電変換層側の界 面の水素濃度が高いため、シリコン結晶相が発生する直前の状態、いわゆる結晶化 直前の状態になっているため、 n型 Si O層の低抵抗化、さらにはシリコン結晶相の
1-x X
発生が促進され、界面の接触抵抗が低減して光電変換装置の FFが向上し、特性の 改善された光電変換装置を提供することが出来る。あるいは、バッファ層を下地層と して形成することによって、 n型 Si O層は低い抵抗を保ったまま屈折率を下げるこ
1-x X
とができ、反射率および透過率の増加による光閉じ込め効果が高まり、 Jscが向上し て、特性の改善された光電変換装置を提供することが出来る。
図面の簡単な説明
[0024] [図 1]バッファ層および光電変換層を複数積層したサンプルの水素濃度の深さ方向 分布。
[図 2]光電変換層、バッファ層を順次製膜したサンプルのラマン散乱スペクトル。
[図 3]水素 Zシラン流量比に対するバッファ層の光電変換層側の界面の水素濃度の 相関図。
圆 4]本発明の 1つの実施形態に係る単接合の光電変換装置の構造断面図。
[図 5]本発明の別の実施形態に係る積層型光電変換装置の構造断面図。
[図 6]従来技術の比較例 1の単接合の光電変換装置の構造断面図。
[図 7]従来技術の比較例 2の単接合の光電変換装置の構造断面図。
[図 8]単接合の光電変換装置のバッファ層の膜厚に対する変換効率 (Eff)の相関図
[図 9]単接合の光電変換装置のバッファ層の膜厚に対する曲線因子 (FF)の相関図 圆 10]単接合の光電変換装置のバッファ層の膜厚に対する短絡電流密度 Cisc)の相 関図。
圆 11]単接合の光電変換装置のバッファ層の膜厚に対する開放電圧 (Voc)の相関 図。
圆 12]単接合の光電変換装置のバッファ層製膜時の水素 Zシラン流量比に対する 変換効率 (Eff)の相関図。
圆 13]単接合の光電変換装置のバッファ層製膜時の水素 Zシラン流量比に対する 曲線因子 (FF)の相関図。
圆 14]単接合の光電変換装置のバッファ層製膜時の水素 Zシラン流量比に対する 短絡電流密度 Cisc)の相関図。
圆 15]単接合の光電変換装置のバッファ層製膜時の水素 Zシラン流量比に対する 開放電圧 (Voc)の相関図。
圆 16]本発明の実施例 6の積層型光電変換装置の透過型電子顕微鏡法 (TEM)に よる断面の明視野像。
圆 17]本発明の実施例 6の積層型光電変換装置の透過型電子顕微鏡法 (TEM)に よる断面の暗視野像。
圆 18]本発明の実施例 7の 3段の積層型光電変換装置の構造断面図。
符号の説明
1 透明基板
2 透明電極層
3 非晶質光電変換ユニット
31 P型非晶質炭化シリコン層
32 水素化非晶質シリコンの実質的に i型の光電変換層
33 ノッファ層
34 n型 Si O層
l-x X
35 n型微結晶シリコン層
36 n型微結晶シリコン層
37 n型微結晶シリコン層
4 裏面電極層
5 前方光電変換ユニット
51 P型非晶質炭化シリコン層 52 水素化非晶質シリコンの実質的に i型の光電変換層
53 バッファ層
54 n型 Si O層
l-x X
6 後方光電変換ユニット
61 p型微結晶シリコン層
62 実質的に i型の結晶質シリコン層の光電変換層
63 n型微結晶シリコン層
7 第一光電変換ユニット
71 p型非晶質炭化シリコン層
72 水素化非晶質シリコンの実質的に i型の光電変換層
73 バッファ層
74 n型 Si O層
l-x X
8 第二光電変換ユニット
81 p型非晶質炭化シリコン層
82 水素化非晶質シリコンゲルマニウムの実質的に i型の光電変換層
83 バッファ層
84 n型 Si O層
l-x X
9 第三光電変換ユニット
91 p型微結晶シリコン層
92 実質的に i型の結晶質シリコン層の光電変換層
93 n型微結晶シリコン層
発明を実施するための最良の形態
[0026] 以下において本発明の好ましい実施の形態について図面を参照しつつ説明する。
なお本願の各図において、厚さや長さなどの寸法関係については図面の明瞭化と簡 略化のため適宜変更されており、実際の寸法関係を表してはいない。また、各図に お!、て、同一の参照符号は同一部分または相当部分を表して 、る。
[0027] 前述した課題を解決するために、発明者らは、 n型 Si O層を用いたシリコン系薄
l-x X
膜光電変換装置について鋭意検討し、 i型非晶質シリコン光電変換層と n型 Si O 層との間に i型のノ ッファ層を挿入する構造で、これらの課題を解決することができる ことを見出した。ここで、バッファ層は、実質的に i型で、主に水素化非晶質シリコンか らなり、光電変換層側の界面において水素濃度が光電変換層よりも高いことを特徴と する。
[0028] 図 1は、ガラス基板上に i型バッファ層および i型非晶質シリコン光電変換層の条件 で連続して製膜したサンプルの、水素濃度の深さ方向分布である。図 1中の挿入図 に、サンプル構造を示す。
[0029] このサンプルにおいて i型非晶質シリコン光電変換層の条件で製膜した層(図 1中 の H /SiH =0の層)については、プラズマ CVDを用い、シランのみを原料ガスに
2 4
用いて製膜した。
[0030] このサンプルにおいて i型バッファ層の条件で製膜した層(図 1中の H /SiH =40
2 4
、 80、 200の層)については、水素で希釈したシランを原料ガスに用い、水素 Zシラ ンの流量比を、各々、 40倍、 80倍、 200倍として製膜した。
[0031] つまりこのサンプルは、ガラス基板上に、(1)光電変換層 Z(2) 40倍水素希釈バッ ファ層 Z (3)光電変換層 Z (4) 80倍水素希釈バッファ層 Z (5)光電変換層 Z (6) 20
0倍水素希釈バッファ層 Z (7)光電変換層の順に連続して製膜したものである。ここ で(1)〜(7)の各層の膜厚は 50nmにした。
[0032] 水素濃度の測定には、 2次イオン質量分析 (セカンダリー 'イオン 'マス'スぺタトロス コピー、略称 SIMS)を用いた。 SIMSの測定条件は、 Cs+イオンを用い、加速電圧 3 keVで測定した。水素濃度はサンプル中で 2点測定した。図 1において、その 2点の 測定結果とともに、 2点の平均値が示されている。
[0033] (1)、 (3)、 (5)、 (7)の各 i型非晶質シリコン光電変換層の条件で製膜した層(図 1 中の H /SiH =0の層)の水素濃度は、各層の中央で ± 10%の誤差で一致し、平
2 4
均で 8. S X lC^atoms/ccであった。
[0034] (2)の 40倍水素希釈のバッファ層は、下地となる(1)の光電変換層よりも高い水素 濃度を示し、 1. 26 X 1022atoms/ccであった。同様に、(4)の 80倍水素希釈のバッ ファ層は、下地となる(3)の光電変換層よりも高い水素密度を示し、 1. 37 X 1022ato msZccであった。(6)の 200倍水素希釈のバッファ層は、下地となる(5)の光電変換 層に近い側の界面で、(5)の光電変換層よりも高い水素密度を示し、 2. 05 X 1022at omsZccであった。 40倍、 80倍、 200倍水素希釈のバッファ層に共通して言えること は、いずれも、下地となる光電変換層に近い側の界面で、下地となる光電変換層より も高い水素濃度となり、その水素濃度は 1 X 1022atomsZcc以上あることである。
[0035] また、(6)の 200倍水素希釈バッファ層は、(5)の光電変換層側の界面で水素濃度 が光電変換層より高いピークを持ち、その後膜厚の増加とともに水素濃度が減少し、 光電変換層より水素濃度が低くなる。そのとき、水素濃度は 3. 5 X 1021atoms/cc であった。実際の光電変換装置において、 200倍水素希釈バッファ層の膜厚を 20η m以上にすると、 n型 Si O層側の界面でバッファ層の水素濃度が光電変換層よりも
1-x X
低くなることに相当する。
[0036] バッファ層の光電変換層側の界面は、バッファ層の付き始めの製膜初期層に相当 する。この部分の水素濃度が光電変換層より高ぐシリコン結晶相が発生する直前の 状態、いわゆる結晶化直前の状態になっている。バッファ層の形成条件で十分に膜 厚を厚くしていくと、結晶化が始まり、水素濃度が光電変換層より低くなる。結晶化が 始まる膜厚は、 H /SiHが小さいときは厚くなり、 H /SiHが大きいときは薄くなる。
2 4 2 4
図 1の例では、 H /SiHカ 40倍(2)と 80倍 (4)の場合は、 50nmの膜厚において、
2 4
水素濃度が光電変換層より高くなつており、結晶化直前の状態になっている。 H ZS
2 iH力 S200倍の場合は、バッファ層の光電変換層側で水素濃度が 80倍の場合に比
4
ベて高くなつており、その後、膜厚が厚くなるにしたがって水素濃度が低下して、光電 変換層より水素濃度が低くなる。このとき、ノ ッファ層中で結晶シリコン相が発生する
[0037] 図 2は、ガラス基板上に、 i型非晶質シリコン光電変換層の条件で製膜した層、バッ ファ層の条件で製膜した層を順次プラズマ CVDで製膜したサンプルのラマン散乱ス ベクトルである。ここで光電変換層の膜厚は、 300nmである。バッファ層は、 H /Si
2
H = 200倍の条件で製膜し、バッファ層の膜厚を変化させた。
4
[0038] 図 2において、バッファ層の膜厚が 20nmのときは、 480cm— 1付近にピークをもつ非 晶質シリコンの光学的横振動モード (TOモード)のピークのみが認められる。ノ ッファ 層の膜厚を 50nmにすると、 520cm 1付近にわずかに変曲点が認められる。バッファ 層の膜厚を lOOnmにすると、 520cm— 1付近に明らかなショルダーが認められる。これ は、結晶シリコンの光学的横振動モード (TOモード)のピークに相当する。したがって 、バッファ層の膜厚を厚くすると、シリコン結晶相が発生することがわかる。また、バッ ファ層が薄いときには結晶化直前の状態にあるといえる。ただし、この測定方法にお いては、バッファ層の下にある光電変換層の水素化非晶質シリコンの信号も含めて 検知されているので、 480cm— 1のピークの信号が強めに出ていることに、注意が必要 である。後述する図 16、 17に示すように、実際には、ノ ッファ層の膜厚が 50nmより 薄くてもシリコン結晶相が発生している場合もある。
[0039] 図 3は、水素 Zシラン流量比に対するバッファ層の光電変換層側の界面の水素濃 度である。水素 Zシラン流量比に対して、ほぼ線形に水素濃度が増加する。水素 Z シラン流量比が約 20以上で水素濃度が 1 X 1022atomsZcc以上となる。
[0040] 図 4に、本発明の実施形態の一例による単接合シリコン系薄膜光電変換装置の断 面図を示す。透明基板 1上に、透明電極層 2、非晶質光電変換ユニット 3、および裏 面電極層 4の順に配置されて 、る。
[0041] 基板側力ゝら光を入射するタイプの光電変換装置にて用いられる透明基板 1には、ガ ラス、透明榭脂等から成る板状部材ゃシート状部材が用いられる。
[0042] 透明電極層 2は SnO、 ZnO等の導電性金属酸ィ匕物力 成ることが好ましぐ CVD
2
、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極層 2はその表 面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが 望ましい。
[0043] 非晶質光電変換ユニット 3は、 p型層 31、水素化非晶質シリコン力もなる実質的に i 型の光電変換層 32、主に水素化非晶質シリコン力 なり実質的に i型のバッファ層 33 、 n型 Si O層(Xは 0. 25-0. 6) 34、および n型層 35から成る pin接合によって構
1-X X
成されるのが好ましい。なお、光電変換層 32の材料としては、半導体を構成する主 要元素としてシリコンのみを用いる水素化非晶質シリコンに代えて、炭素、酸素、窒 素、ゲルマニウムなどの元素をも含む合金材料であってもよい。また、導電型層の主 要構成材料としては、必ずしも i型層と同質のものである必要はなぐ例えば p型層に 非晶質炭化シリコンを用い得るし、 n型層に結晶質を含むシリコン層 c— Siとも呼 ばれる)ち用い得る。
[0044] 非晶質光電変換ユニットの形成には高周波プラズマ CVD法が適している。光電変 換ユニットの形成条件としては、基板温度 100〜300°C、圧力 30〜1500Pa、電源 周波数 10〜100MHz、高周波パワー密度 0. 01〜0. 5WZcm2が好ましく用いられ る。光電変換ユニット形成に使用する原料ガスとしては、シラン、ジシラン等のシリコン 含有ガスまたは、それらのガスと水素を混合したものが用いられる。光電変換ユニット における P型または n型層を形成するためのドーパントガスとしては、 B Hまたは PH
2 6 3 等が好ましく用いられる。
[0045] 本発明の一つの重要な構成要素であるノ ッファ層 33は、主に水素化非晶質シリコ ン力 なり、前記光電変換層側の界面において水素濃度が前記光電変換層より高く 、かつ、その膜厚が 5nm以上、 50nm以下であることを特徴とする。ノ ッファ層の光電 変換層側の界面は、バッファ層の付き始めの製膜初期層に相当する。この部分の水 素濃度が光電変換層より高ぐシリコン結晶相が発生する直前の状態、いわゆる結晶 化直前の状態になっている。このバッファ層を下地として n型 Si O
1-x X層を形成すると、 n型 Si O コン
1-x X層の低抵抗化、さらにはシリ 結晶相の発生が促進され、界面の接触 抵抗が低減して光電変換装置の FFが向上し、特性の改善された光電変換装置を提 供することが出来る。あるいは、ノ ッファ層を下地層として形成することによって、 n型 Si O層は低い抵抗を保ったまま屈折率を下げることができ、反射率および透過率
1-x X
の増加による光閉じ込め効果が高まり、 JSCが向上して、特性の改善された光電変換 装置を提供することが出来る。ノ ッファ層の膜厚を 5nm以上とすることで、バッファ層 の膜厚が充分となり結晶化直前の状態が形成できるので、その上に製膜する n型 Si
1-
O層の低抵抗ィ匕が十分可能となり、光電変換装置の特性の向上が得られる。ノ ッフ X
ァ層の膜厚を 50nm以下とすることで、ノッファ層の光吸収損失による Jscの減少が抑 えられるので光電変換装置の特性を向上することができる。
[0046] バッファ層 33の形成は、反応ガスとして、 SiH、 Hを用い、 H /SiH比を 40〜30
4 2 2 4
0の範囲で作製するのが好ましい。このときのプラズマ CVDの条件は、例えば容量結 合型の平行平板電極を用いて、電源周波数 10〜: LOOMHz、高周波パワー密度 0. 01〜0.
Figure imgf000015_0001
圧力 50〜1500Pa、基板温度 150〜250。Cである。 H /SiH は 40以上が好ましぐそのとき、図 2に示したように、バッファ層の光電変換層側の界 面で、水素濃度は 1 X 1022atOmsZcc以上となり、結晶化直前の状態になる。また、 H /SiHが 300以下が好ましぐ製膜時に発生する水素原子によって光電変換層
2 4
がエッチングあるいはダメージを受けて光電変換層の界面に欠陥が増加して FFが低 下したりすることを防止できる。
[0047] ノ ッファ層は、光電変換層を製膜する i型層製膜チャンバ一で作製することが好まし い。ノ ッファ層は実質的に i型層なので、光電変換層と同じチャンバ一で作製すること ができ、 n型層製膜チャンバ一のタクトが律速しなくなり、光電変換装置の製造タクト を短縮して製造コストを下げることができる。ノ ッファ層を n型層製膜チャンバ一で作 製すると、壁面に付着したリンなどの不純物の影響で欠陥密度が増加し、 FFの低下 につながる。この点でも、ノ ッファ層は i形層製膜チャンバ一で作製することが好まし い。
[0048] n型 Si O層は、導電性と低屈折率を両立するために、 25原子%以上 60原子%
1-x X
以下の酸素濃度を有することが好ましい。その際、シリコンと酸素との非晶質合金相 中にシリコンリッチな相を含むことが好ましぐシリコンリッチな相がシリコン結晶相であ ることがさらに好ましい。 n型 Si O層は、十分な反射効果を得るために、波長 600η
1-x X
mの光に関する屈折率が 1. 7以上 2.5以下であることが好ましぐ 1. 8以上 2. 1以下 であることがより好ましい。 n型 Si O層は、その層が太陽電池の直列抵抗に影響を
1-x X
与えな 、程度の導電性を有することが好ましく、具体的には導電率が少なくとも 10— 8 SZcm以上であることが望ましい。最適な暗導電率を実現するために、ラマン散乱で 測定した非晶質シリコン成分の TO (光学的横振動)モードピークに対する結晶シリコ ン成分の TOモードピークの強度比が 0. 5以上 10以下であることが好ましい。また、 シリコン複合層中におけるドーパント原子濃度は、 3 X 102°〜1. 8 X 1021cm— 3の範囲 内にあることが好ましい。
[0049] n型 Si O層の形成は、反応ガスとして、 SiH、 CO、 H、 PHを用い、 H ZSiH
1-x X 4 2 2 3 2 4 比が大きい、いわゆる微結晶作製条件で、かつ CO /SiH比が 2以上の範囲を用い
2 4
てプラズマ CVD法で作製できる。このときのプラズマ CVDの条件は、例えば容量結 合型の平行平板電極を用いて、電源周波数 10〜: L00MHz、高周波パワー密度 0. 01〜0. /SiH
Figure imgf000017_0001
4比を増カロさせると膜中酸素濃度が単調に増加する。
[0050] 裏面電極層 4としては、 Al、 Ag、 Au、 Cu、 Ptおよび Crから選ばれる少なくとも一つ の材料力 なる少なくとも一層の金属層をスパッタ法または蒸着法により形成すること が好ましい。また、光電変換ユニットと金属層との間に、 ITO、 SnO、 ZnO等の導電
2
性酸化物からなる層を形成しても構わな!/ヽ(図示せず)。
[0051] 図 5に、本発明の実施形態の別の一例による積層型シリコン系薄膜光電変換装置 の断面図を示す。透明基板 1上に、透明電極層 2、前方光電変換ユニット 5、後方光 電変換ユニット 6、および裏面電極層 4の順に配置されて ヽる。
[0052] 透明基板 1、透明電極層 2、および裏面電極層 4は図 4と同様の構造である。前方 光電変換ユニット 5は、 p型層 51、水素化非晶質シリコン力もなる実質的に i型の光電 変換層 52、主に水素化非晶質シリコン力もなり実質的に i型のノ ッファ層 53、 n型 Si
1-
O層(Xは 0. 25-0. 6) 54から成る pin接合によって構成されるのが好ましい。この
X X
場合、 n型 Si O層が中間透過反射層と、 n型層を兼用している。前方光電変換ュ
1-x X
ニット 5の各層の作製方法は、図 4の実施形態と同様である。
[0053] 後方光電変換ユニット 6は、例えば pin型の順にプラズマ CVD法により各半導体層 を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが 0 . 01原子%以上ドープされた p型微結晶シリコン層を一導電型層 61とし、実質的に i 型の結晶質シリコン層を光電変換層 62とし、導電型決定不純物原子であるリンが 0. 01原子%以上ドープされた n型微結晶シリコン層を逆導電型層 63としてこの順に堆 積すればよい。なお、図 5では 2段の光電変換ユニットが積まれている力 後述される ように 3段以上積まれてもよ 、ことは言うまでもな!/、。
実施例
[0054] 以下、本発明による実施例と、従来技術による比較例に基づいて詳細に説明する。
各図において同様の部材には同一の参照符号を付し、重複する説明は省略する。ま た、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。
[0055] 以下の実施例 1〜2および比較例 1〜2において、単接合の非晶質光電変換変換 装置を作製し、その構造を変えて実験した。その際、透明基板 Z透明電極層 Zp型 非晶質炭化シリコン層 Z実質的に i型の水素化非晶質シリコンの光電変換層 z「構 造変更部分」 Z裏面電極層を順次積層した構造とし、「構造変更部分」以外は同一 の構造、作製方法とした。表 1に、実施例 1〜2および比較例 1〜2の光電変換装置 の出力特性をまとめて示す。出力特性は、 AMI. 5の光を lOOmWZcm2の光量で 照射して室温で測定した。表 1の「構造変更部分」の欄の略称は、 n型微結晶シリコン 層(uc— Si (n) )、 n型 Si O層(SiO (n) )、バッファ層(i buf)とした。
1-x X
[0056] [表 1]
Figure imgf000018_0002
(比較例 1)
図 6に、比較例 1の非晶質光電変換装置の断面図を示す。透明基板 1は、ガラス基 板を用いた。透明基板 1の上に、微小なピラミッド状の表面凹凸を含みかつ平均厚さ 700nmの SnO膜が透明電極層 2として熱 CVD法にて形成された。得られた透明電
2
極層 2のシート抵抗は約 9 Ωグロであった。また C光源で測定したヘイズ率は 12%で あり、表面凹凸の平均高低差 dは約 lOOnmであった。
[0057] この透明電極層 2の上に、製膜チャンバ一を 5室備えるプラズマ CVD装置を用いて 、非晶質光電変換ユニット 3を作製した。製膜チャンバ一は、 p型層製膜チャンバ一( P1室)、 i型層製膜チャンバ一 3室 (P2室、 P3室、 P4室)、 n型層製膜チャンバ一 1室 (P5室)から成る。 P1室で厚さ 15nmの p型非晶質炭化シリコン層 31を製膜し、 P2〜 P4室で厚さ 300nmの実質的に i型の水素化非晶質シリコンの光電変換層 32を製膜 し、 P5室で厚さ 30nmの n型微結晶シリコン層 36を製膜し、非晶質光電変換ユニット 3を形成した。このとき、 CVD装置の製造タクト 12分に対して、 P5室のタクトは 6分 30 秒で、 P5室のタクトは製造タクトを律速していな力つた。その後、裏面電極層 4として 、厚さ 30nmの A1ドープされた ZnO膜と厚さ 300nmの Ag膜がスパッタ法にて順次形 成された。
[0058] 表 1に示すように、比較例 1の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 0. 876V、短絡電流密度 (Jsc)が 14.
Figure imgf000018_0001
曲線因子(FF)が 0 . 684、変換効率 (Eff)が 8. 49%であった。
[0059] (比較例 2)
比較例 2として、図 7に示すような非晶質光電変換装置が作製された。この図 7に示 された比較例 2の装置は、図 6の n型微結晶シリコン層 36に代えて、 n型層製膜チヤ ンバーである P5室を用いて、 n型微結晶シリコン層 37Zn型 Si O層 34Zn型微結
1-x X
晶シリコン層 35を順次積層した構造にしたことが、比較例 1の装置と異なっている。 n 型微結晶シリコン層 37は厚さ 20nm、 n型 Si O層は厚さ 60nm、 n型微結晶シリコ
1-x X
ン層 35は厚さ 5nmである。 n型 Si O層の製膜条件は、ガス流量は SiH /CO /P
1-x X 4 2
H /H = 80/180/2/20000sccm,電源周波数は 13. 56MHz、パワー密度
3 2
は 100mWZcm2、圧力は 350Pa、そして基板温度は 200°Cであった。
[0060] また、これと同一の製膜条件でガラス上に 200nm堆積した n型 Si O層の諸特性
1-x X
は、以下の通りであった。分光エリプソメトリにより測定した波長 600nmの光に対する 屈折率が 2. 0であった。導電率は、 1 X 10—4SZcmであった。さらに、ラマン散乱で 測定した非晶質シリコン成分の TOモードピークに対する結晶シリコン成分の TOモー ドピークの強度比が 2. 0であった。 X線光電子分光法で測定した酸素濃度は 42原子 %であった。このとき、 P5室のタクトは 17分で、 P5室のタクトに律速されて CVD装置 の製造タクトが 17分に延びてしまった。
[0061] 表 1に示すように、比較例 2の光電変換装置の出力特性は、 Voc = 0. 884V、Jsc
= 14. 26mAZcm2、 FF = 0. 693、Eff= 8. 73%であった。
[0062] 比較例 1に比べて、 Voc、 Jsc、 FFいずれも増加して、 Effが向上している。
Jscの増加は、 n型 Si O層による光閉じ込め効果によって、光電流が増えたためと
1-x X
いえる。 Vocと FFの増加の原因は定かではないが、 n型微結晶シリコン層 37、 n型 Si O層 34、 n型微結晶シリコン層 35の 3層を合計した n型層の膜厚が厚くなつて光電
1-x X
変換ユニットの内部電界が強くなつたためと考えられる。
[0063] (実施例 1)
実施例 1として、図 4に示すような単接合の非晶質光電変換装置が作製された。こ の図 4に示された実施例 1の装置は、図 7の n型微結晶シリコン層 37に代えて、実質 的に i型の主に水素化非晶質シリコン力もなるバッファ層 33を用いたことが、比較例 2 の装置と異なっている。ノ ッファ層 33の膜厚は 5nmである。ノ ッファ層 33の製膜条 件は、 n型層製膜チャンバ一である P5室を用いて、 H /SiH流量比 = 80、ガス流
2 4
量は H ZSiH = 12800Zl60sccm、電源周波数は 13. 56MHz、パワー密度は 1
2 4
OOmW/cm2,圧力は 600Pa、そして基板温度は 200°Cであった。バッファ層の光 電変換層側の界面で、 SIMSで測定した水素濃度は 1. 37 X 1022atomsZccであつ た。また、光電変換層の水素密度は 8. 5 X 1022atomsZccであった。このとき、 P5室 のタクトは 15分で、 P5室のタクトに律速されて CVD装置の製造タクトが 15分になつ た。
[0064] 表 1に示すように、実施例 1の光電変換装置の出力特性は、 Voc = 0. 884V、 Jsc
= 14. 34mA/cm2、 FF = 0. 700、 Eff=8. 87%であった。比較例 2に比べて、実 施例 1の光電変換装置は、 Jscと FFが増加して、 Effが向上している。
[0065] Jscの向上は、 n型微結晶シリコン層 37をバッファ層 34に代えたことによって、リンに よる不純物の光吸収が減少して、光電流が増えたためと考えられる。比較例 2に比べ て実施例 1の FFが良くなる理由は定かでは無いが、比較例 2ではホスフィン追カ卩によ り n型微結晶シリコン層 37内で急激に結晶化しようとするので、非晶質の光電変換層 32と n型微結晶層 37の界面が不連続になるため、界面でのキャリア再結合損失が大 きいと考えられる。これに対して、実施例 1では、 i型層であるバッファ層 33の光電変 換層側の界面の水素濃度が高いことによって、結晶化直前の非晶質になっており、 ノ ッファ層 33から n型 Si O層 34にかけて結晶化しようとすることにより界面の連続
1-x X
性が良くなり FFが向上する、といったことが考えられる。また、 n型微結晶シリコン層 3 7を i型のバッファ層 33に代えたため、リンによる不純物欠陥が低減して、層内のキヤ リア再結合損失が低減して、 FFが向上したと考えられる。また、 FFが向上しているこ とから、ノ ッファ層 33を下地層とした場合に、その上に形成した n型 Si O層の低抵
1-x X 抗化、さらにはシリコン結晶相の発生が十分促進されて、界面の接触抵抗が低減し ていると考えられる。
[0066] (実施例 2)
実施例 2として、実施例 1と同様の構造の光電変換装置を作製した。ただし、ノ ッフ ァ層 33を、 i型層製膜チャンバ一である P4室で作製した点のみ力 実施例 1と異なる 。光電変換層 32を P2室、 P3室、 P4室で製膜し、 P4室の余った時間内でバッファ層 33を製膜したので P4室のタクトは 10分であった。また、 P5室で n型 Si O層 34と n
1-x X 型微結晶シリコン層 35を製膜し、 P5室のタクトは 11分であった。このため、 P4室、 P 5室ともに製造タクトを律速せず、 CVD装置の製造タクトは比較例 1と同じ 12分であ つた o
[0067] 表 1に示すように、実施例 2の光電変換装置の出力特性は、 Voc = 0. 883V、 Jsc
= 14. 37mAZcm2、 FF = 0. 711、 Eff= 9. 02%であった。実施例 1に比べて、実 施例 2の光電変換装置は、主に FFが増加して、 Effがさらに向上している。バッファ 層 33を i型層製膜チャンバ一である P4室で製膜したことにより、ノ ッファ層 33中のリ ンが実施例 1に比べて低減して、不純物欠陥がさらに低減して、層内のキャリア再結 合損失が低減して、 FFが向上したと考えられる。
[0068] (実施例 3)
実施例 3として、実施例 1と同様の構造および作製方法の非晶質光電変換装置に おいて、ノ ッファ層 33の膜厚のみを変化させて光電変換装置を作製した。このとき、 バッファ層の H /SiHは 80倍とした。図 8〜11に、実施例 3の光電変換装置の各種
2 4
出力特性とバッファ層の膜厚の相関図を、比較例 2の光電変換装置の出力特性に対 する相対値で示す。
[0069] 図 8は、バッファ層の膜厚と、実施例 3の光電変換装置の変換効率 (Eff)との関係 を示す相関図である。ノ ッファ層の膜厚の増加に対して、 Effは急激に増加し、膜厚
10〜20nmで最大値を持ち、その後緩やかに減少する。ノ ッファ層の膜厚が 5nmか ら 50nmの範囲で、比較例 2よりも Effが高くなつている。
[0070] 図 9は、バッファ層の膜厚と、実施例 3の光電変換装置の曲線因子 (FF)との関係を 示す相関図である。ノッファ層の膜厚の増加に対して、 FFは急激に増加し、膜厚 20 nmで最大値をもち、その後緩やかに減少する。
[0071] 図 10は、バッファ層の膜厚と、実施例 3の光電変換装置の短絡電流密度 Cisc)との 関係を示す相関図である。ノ ッファ層の膜厚の増加に対して、 Jscは急激に増加し、 膜厚 lOnmで最大値をもち、その後減少する。
[0072] 図 11は、バッファ層の膜厚と、実施例 3の光電変換装置の開放電圧 (Voc)との関 係を示す相関図である。ノ ッファ層の膜厚の増加に対して、 Vocは増加し、膜厚 20η m以上でほぼ飽和する。
[0073] 図 8〜: L 1からわかるように、ノ ッファ層の膜厚を 5nmより小さくすると Effが急激に低 下するのは、 FF、 Jsc、 Vocいずれも低下していることによる。これは、ノ ッファ層の膜 厚が不充分なためにバッファ層の光電変換層側の界面に結晶化直前の状態が形成 できず、その上に製膜する n型 Si O層の低抵抗ィ匕が不十分なためと考えられる。
1-x X
バッファ層の膜厚 20nm以上で Effが緩やかに減少するのは、主に Jscと FFの低下に よる。ノッファ層の膜厚が厚すぎると、ノ ッファ層の光吸収損失が増加して Jscが低下 する。また、バッファ層が厚すぎると、バッファ層のバルタの抵抗損失が増加して FF が低下する。ノ ッファ層の膜厚を 5nm以上 50nm以下にすると比較例 2の Efはり高く なるので、好ましい。ノ ッファ層の膜厚を 10nm以上 20nm以下にすると、比較例 2よ りも 5%以上 Effが高くなるので、より好ましい。
[0074] (実施例 4)
実施例 4として、実施例 1と同様の構造および作製方法の非晶質光電変換装置に おいて、ノ ッファ層 33の H /SiH流量比を変化させて光電変換装置を作製した。
2 4
ノ ッファ層 33の膜厚は lOnmとしたことと、 H /SiH流量比を変化させたこと以外は
2 4
、実施例 1と同様の構造および作製方法とした。図 12〜15に、実施例 4の光電変換 装置の各種出力特性とバッファ層の H /SiH流量比の相関図を、比較例 2の光電
2 4
変換装置の出力特性に対する相対値で示す。
[0075] 図 12は、バッファ層の H /SiH流量比と、実施例 4の光電変換装置の変換効率(
2 4
Eff)との関係を示す相関図である。ノッファ層の H /SiH流量比の増加に対して、
2 4
Effは急激に増加し、 H /SiH流量比 40倍以上で緩やかに変化し、 H /SiH流量
2 4 2 4 比が 200倍で最大値を持ち、その後緩やかに減少する。バッファ層の H /SiH流量
2 4 比が 40倍から 300倍の範囲で、比較例 2よりも Effが高くなつて!/、る。
[0076] 図 13は、バッファ層の H /SiH流量比と、実施例 4の光電変換装置の曲線因子(
2 4
FF)との関係を示す相関図である。ノッファ層の H /SiH流量比に対して、 Effと類
2 4
似の変化を示し、 H /SiH流量比が 200倍で FFが最大値をもつ。
2 4
[0077] 図 14は、バッファ層の H /SiH流量比と、実施例 4の光電変換装置の短絡電流密 度 (Jsc)との関係を示す相関図である。バッファ層の H /SiH流量比の増加に対し
2 4
て、 Jscは急激に増加し、 H /SiH流量比が 40倍から 200倍でほぼ一定になり、そ
2 4
の後減少する。
[0078] 図 15は、バッファ層の H /SiH流量比と、実施例 4の光電変換装置の開放電圧(
2 4
Voc)との関係を示す相関図である。ノッファ層の H /SiH流量比の増加に対して、
2 4
Vocは増加し、 H /SiH流量比が 80倍から 200倍でほぼ一定になり、その後減少
2 4
する。
[0079] 図 12〜15からわかるように、バッファ層の H /SiH流量比を 40倍より小さくすると
2 4
Effが急激に低下するのは、 FF、 Jsc、 Vocいずれも低下していることによる。これは、 図 3に示したように、バッファ層の H /SiH流量比が低いとき、バッファ層の光電変
2 4
換層側の界面の水素量が低くなることによって、結晶化直前の状態が形成できず、 その上に製膜する n型 Si O層の低抵抗ィ匕が不十分なためと言える。ノ ッファ層の
1-x X
H /SiH流量比が 200倍より大きくすると Effが減少するのは、主に Jscと FFの低下
2 4
による。 H /SiH流量比が大きすぎると、製膜時に発生する水素原子によって、光
2 4
電変換層がエッチングあるいはダメージを受けて、光電変換層の界面に欠陥が増加 して、 FFが低下したと考えられる。また、製膜時の水素原子によるエッチングによって 、光電変換層の膜厚が薄くなり、 Jscが低下したと考えられる。バッファ層の H /SiH
2 4 流量比を 40倍以上 300倍以下にすると比較例 2の Efはり高くなるので、好ましい。 ノ ッファ層の膜厚を 80倍以上 200倍以下にすると、比較例 2よりも 5%以上 Effが高く なるので、より好ましい。
以下の実施例 5〜6および比較例 3において、非晶質光電変換ユニットおよび結晶 質光電変換ユニットを備えるハイブリッド型の積層型光電変換変換装置を作製し、そ の構造を変えて実験した。その際、透明基板 Z透明電極層 Zp型非晶質炭化シリコ ン層 Z実質的に i型の水素化非晶質シリコンの光電変換層 Z「構造変更部分」 Zp型 微結晶シリコン層 Z実質的に i型の薄膜多結晶シリコン層 Zn型微結晶シリコン層 Z 裏面電極層を順次積層した構造とし、「構造変更部分」以外は同一の構造、作製方 法とした。表 2に、実施例 5, 6、及び比較例 3の光電変換装置の出力特性をまとめて 示す。出力特性は、 AMI. 5の光を lOOmWZcm2の光量で照射して室温で測定し た。表 2の「構造変更部分」の欄の略称は、表 1と同様とした。
[0080] [表 2]
Figure imgf000024_0002
(実施例 5)
図 5に、実施例 5の積層型光電変換装置の断面図を示す。透明基板 1、透明電極 層 2は、比較例 1と同様に作製した。透明電極層 2の上に、厚さ 15nmの p型非晶質 炭化シリコン層 51、厚さ 350nmの実質的に i型の水素化非晶質シリコンの光電変換 層 52、厚さ 20nmの実質的に i型の主に水素化非晶質シリコン力もなるバッファ層 53 、厚さ 50nmの n型 Si O層 54からなる非晶質光電変換ユニットの前方光電変換ュ
1-x X
ニット 5を形成し、さらに、厚さ 15nmの p型微結晶シリコン層 61、厚さ 2. 5 mの実質 的に i型の結晶質シリコン層の光電変換層 62、及び厚さ 15nmの n型微結晶シリコン 層 63からなる結晶質シリコン光電変換層ユニットの後方光電変換ユニット 6を順次プ ラズマ CVD法で形成した。その後、裏面電極層 4として、厚さ 90nmの A1ドープされ た ZnO膜と厚さ 300nmの Ag膜がスパッタ法にて順次形成形成し、積層型光電変換 装置を作製した。
[0081] n型 Si O層の製膜条件は、比較例 2と同様とした。このとき、同一の製膜条件でガ
1-x X
ラス上に 200nm堆積した n型 Si O層の波長 600nmの光に対する屈折率は 2. 0
1-x X
であった。バッファ層 53の製膜条件は、 H /SiH流量比 = 200、ガス流量は H /S
2 4 2 iH = 16000/80sccm,電源周波数は 13. 56MHz、パワー密度は 200mW/cm
4
圧力は 1100Pa、そして基板温度は 200°Cであった。バッファ層の光電変換層側 の界面で、 SIMSで測定した水素濃度は 2. 05 X 1022atomsZccであり、 n型 Si O
1-x X 層側の界面の水素濃度は 5. 03 X 1021atoms/ccであった。
[0082] 表 2に示すように、実施例 5の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 1. 331V、短絡電流密度 (Jsc)が 12.
Figure imgf000024_0001
曲線因子(FF)が 0 . 712、変換効率 (Eff)が 12. 28%であった。 [0083] (実施例 6)
実施例 6として、 n型 Si O層の屈折率を 1. 9にした積層型光電変換装置が作製
1-x X
された。実施例 6の光電変換装置は、 n型 Si O層の条件を除いて、実施例 5の光
1-x X
電変換装置と同一の構造、作製方法とした。 n型 Si O層の製膜条件は、 COのガ
1-x X 2 ス流量を 220sccmに変更した点を除いて、実施例 5と同一にした。また、これと同一 の製膜条件でガラス上に 200nm堆積した n型 Si O層の諸特性は、以下の通りで
1-x X
あった。分光エリプソメトリにより測定した波長 600nmの光に対する屈折率が 1. 9で あった。導電率は、 1 X 10— 5SZcmであった。さらに、ラマン散乱で測定した非晶質シ リコン成分の TOモードピークに対する結晶シリコン成分の TOモードピークの強度比 が 1. 5であった。 X線光電子分光法で測定した酸素濃度は 47原子%であった。
[0084] 表 2に示すように、実施例 5の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 1. 336V、短絡電流密度 (Jsc)が 13.
Figure imgf000025_0001
曲線因子(FF)が 0 . 711、変換効率 (Eff)が 12. 57%であった。
[0085] (比較例 3)
比較例 3として、図 5の光電変換装置のバッファ層 53を厚さ 20nmの n型微結晶シリ コンに代えたことのみが異なる積層型光電変換装置を作製した。
[0086] 表 2に示すように、比較例 3の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 1. 319V、短絡電流密度 (Jsc)が 12.
Figure imgf000025_0002
曲線因子(FF)が 0 . 699、変換効率 (Eff)力 1. 96%であった。
比較例 3に比べて、実施例 5は主に FFと Vocが増加して、 Effが向上している。これ は、 n型微結晶シリコン層に代えてバッファ層を用いたことにより、リンによる不純物欠 陥が減少したこと、バッファ層 33から n型 Si O層 34にかけての界面の連続性が良
1-x X
く成ったためと考えられる。
[0087] 実施例 6は、実施例 5に比べて Jscが増加して、 Effが向上している。これは、 n型 Si
1
O層の屈折率を下げたことにより、反射特性が改善されて前方光電変換ユニットの X
光電流が増えるとともに、 n型 Si O層の透過率が高くなり、後方光電変換ユニットの
1-x X
光電流も増えたためといえる。
[0088] 積層型光電変換装置の n型 Si O層 53は、前方光電変換ユニットの n型層と中間 透過反射層とを兼ねた構造となっている。実施例 1〜4の場合の単接合光電変換装 置場合は、 n型 Si O層は主に反射特性が重要であった。これに対して、積層型光
1-x X
電変換装置の n型 Si O層は、反射特性とともに長波長の光の透過率が重要なの
1-x X
で、単接合光電変換装置の場合に比べて、より屈折率が低ぐ酸素濃度が高いこと が求められる。し力しながら、 n型 Si O層の屈折率を低くすると、急激に導電率が
1-x X
低下し、接触抵抗の増力 tlから FFの低下を抑制するのが困難になる。実施例 6ではバ ッファ層を用いることによって、実施例 5とほぼ同じ FFを維持しながら、 n型 Si O層
1-x X の屈折率を 2. 0から 1. 9に下げることを実現している。
図 16は、実施例 6の積層型光電変換装置の透過型電子顕微鏡法 (TEM)による 断面の明視野像である。図 16で白く見えている部分が n型 Si O層である。ノ ッファ
1-x X
層の n型 Si O層側の界面で微粒子状のシリコン結晶相が認められる。
1-x X
図 17は、図 16と同じ部分の TEMによる暗視野像である。 B音視野像は、特定の結 晶面で回折された電子線による映像である。すなわち、非晶質部分では回折は起こ らず、電子線に対して特定のブラッグ角をなす結晶面を含む結晶だけが回折を起こ す。したがって、暗視野像で明るく結像した領域は必ず結晶相を表している。すなわ ち、図 17は、ノッファ層の n型 Si O層側の界面に明るい部分が明確に認められ、
1-x X
シリコン結晶相が発生していることが確認できる。ノ ッファ層の n型 Si O層側の界
1-x X 面にシリコン結晶相が存在することにより、 n型 Si O層の低抵抗ィ匕が容易になり、
1-x X
実施例 6で n型 Si O層の屈折率を下げて Effを増加することができたといえる。また
1-x X
、このとき、バッファ層の n型 Si O層側の界面は、水素化非晶質シリコンの光電変
1-x X
換層より、水素濃度が低くなつており、シリコン結晶相の発生部分と対応している。 以下の実施例 7〜8および比較例 4において、水素化非晶質シリコン、水素化非晶 質シリコンゲルマニウム、結晶質シリコンを、それぞれ光電変換層に用いた光電変換 ユニットを備える 3段の積層型光電変換変換装置を作製し、その構造を変えて実験し た。その際、透明基板 Z透明電極層 Zp型非晶質炭化シリコン層 Z実質的に i型の 水素化非晶質シリコンの光電変換層 Z「構造変更部分 (その 1)」 Zp型非晶質炭化 シリコン層 Z実質的に i型の水素化非晶質シリコンゲルマニウムの光電変換層 Z「構 造変更部分 (その 2)」Zp型微結晶シリコン層 Z実質的に i型の薄膜多結晶シリコン 層 Zn型微結晶シリコン層 Z裏面電極層を順次積層した構造とし、「構造変更部分( その 1)」と「構造変更部分 (その 2)」以外は同一の構造、作製方法とした。表 3に、実 施例 7、 8、及び比較例 4の光電変換装置の出力特性をまとめて示す。出力特性は、 AMI. 5の光を lOOmWZcm2の光量で照射して測定した。表 3の「構造変更部分( その 1)」、「構造変更部分 (その 2)」の欄の略称は、表 1と同様とした。
[表 3]
Figure imgf000027_0001
(実施例 7)
図 18に、実施例 7の積層型光電変換装置の断面図を示す。透明基板 1、透明電極 層 2は、比較例 1と同様に作製した。透明電極層 2の上に、厚さ 15nmの p型非晶質 炭化シリコン層 71、厚さ lOOnmの実質的に i型の水素化非晶質シリコンの光電変換 層 72、厚さ 20nmの実質的に i型の主に水素化非晶質シリコン力もなるバッファ層 73 、厚さ 30nmの n型 Si O層 74からなる非晶質光電変換ユニットの第一光電変換ュ
1-x X
ニット 7をプラズマ CVDで形成した。さらに、厚さ 15nmの p型非晶質炭化シリコン層 8
1、厚さ 350nmの実質的に i型の水素化非晶質シリコンゲルマニウムの光電変換層 8
2、厚さ 20nmの実質的に i型の主に水素化非晶質シリコン力もなるバッファ層 83、厚 さ 50nmの n型 Si O層 84からなる非晶質光電変換ユニットの第二光電変換ュ-ッ
1-x X
トをプラズマ CVDで形成した。続けて、厚さ 15nmの p型微結晶シリコン層 91、厚さ 2 . O /z mの実質的に i型の結晶質シリコン層の光電変換層 92、及び厚さ 15nmの n型 微結晶シリコン層 93からなる結晶質シリコン光電変換層ユニットの第三光電変換ュニ ット 9を順次プラズマ CVD法で形成した。その後、裏面電極層 4として、厚さ 90nmの A1ドープされた ZnO膜と厚さ 300nmの Ag膜がスパッタ法にて順次形成形成し、積 層型光電変換装置を作製した。
n型 Si O層 74、 84は、実施例 5と同様に作製し、同一の製膜条件でガラス上に 2
1-x X
OOnm堆積した膜の 600nmの光に対する屈折率は 2. 0であった。また、ノ ッファ層 7
3、 83も、実施例 5と同様に作製し、 H2ZSiH4流量比 = 200、バッファ層の光電変 換層側の界面で、 SIMSで測定した水素濃度は 2. 05 X 1022atomsZccであり、 n型 Si O層側の界面の水素濃度は 5. 03 X 1021atomsZccであった。水素化非晶質
1-x X
ゲルマニウム力もなる光電変換層 82の製膜条件は、ガス流量は SiH /GeH /H
4 4 2
= 200/30/2000sccm,電源周波数は 13. 56MHz、ノ ヮ一密度は 20mWZc 圧力は 200Pa、そして基板温度は 200°Cであった。また、これと同一の製膜条 件でガラス上に 300nm堆積した水素化シリコンゲルマニウム層は、ゲルマニウム濃 度 30原子%、光学ギャップ 1. 57eVであった。なお、光学ギャップは、光エネルギー (E)に対して、吸収係数( ex )と Eの積の平方根 ( (ひ E) )をプロットし、その直線部 分の延長線が a = 0の軸と交わるエネルギーとして求めた(いわゆるタウップロットか ら光学ギャップを求めた)。
[0092] 表 3に示すように、実施例 5の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 2. 21 IV、短絡電流密度 (Jsc)が 8.
Figure imgf000028_0001
曲線因子(FF)が 0. 741、変換効率 (Eff)が 14. 02%であった。
[0093] (実施例 8)
実施例 8として、図 18の光電変換装置のバッファ層 73を厚さ 20nmの n型微結晶シ リコンに代えたことのみが異なる積層型光電変換装置を作製した。
[0094] 表 3に示すように、実施例 8の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 2. 185V、短絡電流密度 (Jsc)が 8.
Figure imgf000028_0002
曲線因子(FF)が 0. 722、変換効率 (Eff)力 S 13. 53%であった。
[0095] (比較例 4)
比較例 4として、図 18の光電変換装置のバッファ層 73およびバッファ層 83を、それ ぞれ厚さ 20nmの n型微結晶シリコンに代えたことのみが異なる積層型光電変換装置 を作製した。
[0096] 表 3に示すように、実施例 8の光電変換装置の出力特性を測定したところ、開放電 圧 (Voc)が 2. 163V、短絡電流密度 (Jsc)が 8.
Figure imgf000028_0003
曲線因子(FF)が 0. 707、変換効率 (Eff)力 S 13. 05%であった。
比較例 4に比べて、実施例 8は FFと Vocが増加して、 Effが向上している。これは、 第二光電変換ユニットの n型微結晶シリコン層に代えてバッファ層を用いたことにより 、リンによる不純物欠陥が減少したこと、バッファ層 83から n型 Si O層 84に力けて
1-x X
の界面の連続性が良く成ったためと考えられる。また、光電変換層 82が水素化非晶 質シリコンゲルマニウムのシリコン合金層であっても、バッファ層が有効であるといえる 実施例 7は、実施例 8に比べて、さらに FFと Vocが増加して、 Effが向上している。 第一光電変換ユニットと第二光電変換ユニットの二箇所にバッファ層を含むことによ つて、バッファ層の効果が顕著に現れて、光電変換装置の特性が向上したといえる ので、二段の積層型光電変換装置に比べて、三段の積層型光電変換装置でバッフ ァ層の導入はより効果的であるといえる。

Claims

請求の範囲
[1] 順に積層された、水素化非晶質シリコンまたは水素化非晶質シリコン合金力もなる 実質的に i型の光電変換層、主に水素化非晶質シリコン力もなり実質的に i型のバッ ファ層、及び n型 Si O層(Xは 0. 25
1-X X 〜0. 6)を含むシリコン系薄膜光電変換装置 であって、該バッファ層は、該光電変換層側の界面において水素濃度が前記光電変 換層より高ぐかつ、その膜厚が 5nm以上、 50nm以下であることを特徴とするシリコ ン系薄膜光電変換装置。
[2] 請求項 1に記載のシリコン系薄膜光電変換装置であって、前記バッファ層は、前記 光電変換層側の界面において SIMSで測定した水素濃度が 1 X 1022atomsZcc以 上であることを特徴とするシリコン系薄膜光電変換装置。
[3] 請求項 1または 2に記載のシリコン系薄膜光電変換装置であって、前記バッファ層 は、前記 n型 Si O層側の界面において水素濃度が前記光電変換層より低いことを
1-X X
特徴とするシリコン系薄膜光電変換装置。
[4] 請求項 1〜3のいずれかに記載のシリコン系薄膜光電変換装置であって、前記バッ ファ層は、前記 n型 Si O層側の界面において結晶相を含むことを特徴とするシリコ
1-X X
ン系薄膜光電変換装置。
[5] 請求項 1〜4のいずれかに記載のシリコン系薄膜光電変換装置であって、前記 n型 Si o層力 シリコンと酸素の非晶質合金相中にシリコンリッチな相を含むことを特
1-X X
徴とするシリコン系薄膜光電変換装置。
[6] 請求項 1〜5のいずれかに記載のシリコン系薄膜光電変換装置であって、前記シリ コンリッチな相は、シリコン結晶相を含むことを特徴とするシリコン系薄膜光電変換装 置。
[7] 請求項 1〜6のいずれかに記載のシリコン系薄膜光電変換装置の製造方法であつ て、前記バッファ層を、原料ガスとして少なくとも水素とシランを含む混合ガスを用い、 その水素 Zシランの流量比が 40〜300の範囲で製膜することを特徴とするシリコン 系薄膜光電変換装置の製造方法。
[8] 請求項 7に記載のシリコン系薄膜光電変換装置の製造方法であって、さらに、前記 光電変換層の少なくとも一部と前記バッファ層とを同一の製膜チャンバ一内で製膜 することを特徴とするシリコン系薄膜光電変換装置の製造方法。
PCT/JP2006/314605 2005-08-30 2006-07-25 シリコン系薄膜光電変換装置、及びその製造方法 WO2007026480A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007533134A JP5156379B2 (ja) 2005-08-30 2006-07-25 シリコン系薄膜光電変換装置、及びその製造方法
US11/991,141 US7960646B2 (en) 2005-08-30 2006-07-25 Silicon-based thin-film photoelectric converter and method of manufacturing the same
EP06781517.5A EP1939947B1 (en) 2005-08-30 2006-07-25 Silicon-based thin-film photoelectric converter and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-249551 2005-08-30
JP2005249551 2005-08-30

Publications (1)

Publication Number Publication Date
WO2007026480A1 true WO2007026480A1 (ja) 2007-03-08

Family

ID=37808583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314605 WO2007026480A1 (ja) 2005-08-30 2006-07-25 シリコン系薄膜光電変換装置、及びその製造方法

Country Status (5)

Country Link
US (1) US7960646B2 (ja)
EP (1) EP1939947B1 (ja)
JP (1) JP5156379B2 (ja)
KR (1) KR100976010B1 (ja)
WO (1) WO2007026480A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186811A1 (en) * 2008-08-26 2010-07-29 Sixtron Advanced Materials, Inc. Silicon Carbonitride Antireflective Coating
US20110048533A1 (en) * 2009-09-02 2011-03-03 Lee Hongcheol Solar cell
JP2012023317A (ja) * 2010-07-16 2012-02-02 Kaneka Corp 積層型光電変換装置
WO2012099198A1 (ja) * 2011-01-21 2012-07-26 三洋電機株式会社 太陽電池
WO2013022086A1 (ja) * 2011-08-11 2013-02-14 株式会社カネカ 積層型光電変換装置の製造方法
JP2019155544A (ja) * 2018-03-14 2019-09-19 株式会社東芝 Mems素子及びその製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100876613B1 (ko) * 2008-05-27 2008-12-31 한국철강 주식회사 탄뎀 박막 실리콘 태양전지 및 그 제조방법
TWI381534B (zh) * 2009-03-24 2013-01-01 Au Optronics Corp 光學感測器與其製作方法以及具有光學感測器之顯示面板
JP5430677B2 (ja) * 2010-01-08 2014-03-05 三菱電機株式会社 エピタキシャルウエハ及び半導体素子
WO2011105160A1 (ja) * 2010-02-24 2011-09-01 株式会社カネカ 薄膜光電変換装置およびその製造方法
KR101084984B1 (ko) * 2010-03-15 2011-11-21 한국철강 주식회사 플렉서블 기판 또는 인플렉서블 기판을 포함하는 광기전력 장치의 제조 방법
US9048327B2 (en) * 2011-01-25 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Microcrystalline semiconductor film, method for manufacturing the same, and method for manufacturing semiconductor device
US20130224899A1 (en) 2012-02-28 2013-08-29 International Business Machines Corporation Enhancing efficiency in solar cells by adjusting deposition power
US9214577B2 (en) 2012-02-28 2015-12-15 International Business Machines Corporation Reduced light degradation due to low power deposition of buffer layer
US20140217408A1 (en) * 2013-02-06 2014-08-07 International Business Machines Corporaton Buffer layer for high performing and low light degraded solar cells
KR102045001B1 (ko) * 2013-06-05 2019-12-02 엘지전자 주식회사 태양 전지 및 이의 제조 방법
IT201700004876A1 (it) * 2017-01-18 2018-07-18 Enel Green Power Spa Apparato a cella solare e relativo metodo di produzione per celle singole, tandem e sistemi a eterogiunzione
CN110301034B (zh) * 2017-02-20 2023-07-11 株式会社博迈立铖 碳化硅层叠基板及其制造方法
CN109755257A (zh) * 2017-11-03 2019-05-14 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置
DE112019003868T5 (de) * 2018-07-30 2021-04-22 Sony Semiconductor Solutions Corporation Festkörper-bildgebungselement und elektronische vorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258279A (ja) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd 多接合型薄膜太陽電池とその製造方法
WO2005011001A1 (ja) * 2003-07-24 2005-02-03 Kaneka Corporation 積層型光電変換装置
WO2005011002A1 (ja) * 2003-07-24 2005-02-03 Kaneka Corporation シリコン系薄膜太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910007465B1 (ko) * 1988-10-27 1991-09-26 삼성전관 주식회사 비정질 실리콘 태양전지의 제조방법
KR930020744A (ko) * 1992-03-17 1993-10-20 장진 수소화된 비정질 규소와 그 제조방법 및 그를 이용한 태양전지와 액정표시장치의 박막트랜지스터
KR950009906A (ko) * 1993-09-28 1995-04-26 엄길용 수소화된 비정질 실리콘 박막 제조방법
US5824566A (en) * 1995-09-26 1998-10-20 Canon Kabushiki Kaisha Method of producing a photovoltaic device
BR9907023A (pt) * 1998-01-22 2000-10-17 Citizen Watch Co Ltd "dispositivo de célula solar e método de fabricação do mesmo"
TWI313059B (ja) 2000-12-08 2009-08-01 Sony Corporatio
JP4063735B2 (ja) 2003-07-24 2008-03-19 株式会社カネカ 積層型光電変換装置を含む薄膜光電変換モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003258279A (ja) * 2002-03-04 2003-09-12 Fuji Electric Co Ltd 多接合型薄膜太陽電池とその製造方法
WO2005011001A1 (ja) * 2003-07-24 2005-02-03 Kaneka Corporation 積層型光電変換装置
WO2005011002A1 (ja) * 2003-07-24 2005-02-03 Kaneka Corporation シリコン系薄膜太陽電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHANDAN BANERJEE ET AL.: "Reduction of Thickness of N-Type Microcrystalline Hydrogenated Silicon Oxide Film Using Different Types of Seed Layer", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 41, no. 7A, PART 2, 1 July 2002 (2002-07-01), pages L787 - L789, XP001163112 *
FARAJI M. ET AL.: "Photovoltaic, I-V and C-V Characteristics of SnO2/SiO2/a-Si:H/mc-Si:H Structures", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 29, no. 11, PART 2, 20 November 1990 (1990-11-20), pages L2080 - L2081, XP000224063 *
ICHIKAWA Y. ET AL.: "12% two-stacked a-Si: H tandem cells with a new p-layer structure", CONFERENCE RECORD OF THE 22ND IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, vol. 2, 7 October 1991 (1991-10-07) - 11 October 1991 (1991-10-11), pages 1296 - 1301, XP010039121 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100186811A1 (en) * 2008-08-26 2010-07-29 Sixtron Advanced Materials, Inc. Silicon Carbonitride Antireflective Coating
US20110048533A1 (en) * 2009-09-02 2011-03-03 Lee Hongcheol Solar cell
JP2012023317A (ja) * 2010-07-16 2012-02-02 Kaneka Corp 積層型光電変換装置
WO2012099198A1 (ja) * 2011-01-21 2012-07-26 三洋電機株式会社 太陽電池
WO2013022086A1 (ja) * 2011-08-11 2013-02-14 株式会社カネカ 積層型光電変換装置の製造方法
JP2019155544A (ja) * 2018-03-14 2019-09-19 株式会社東芝 Mems素子及びその製造方法

Also Published As

Publication number Publication date
JP5156379B2 (ja) 2013-03-06
EP1939947B1 (en) 2018-11-21
EP1939947A4 (en) 2017-03-29
US7960646B2 (en) 2011-06-14
JPWO2007026480A1 (ja) 2009-03-26
EP1939947A1 (en) 2008-07-02
KR20080050449A (ko) 2008-06-05
KR100976010B1 (ko) 2010-08-17
US20090133753A1 (en) 2009-05-28

Similar Documents

Publication Publication Date Title
WO2007026480A1 (ja) シリコン系薄膜光電変換装置、及びその製造方法
JP5383792B2 (ja) 太陽電池
JPWO2005011002A1 (ja) シリコン系薄膜太陽電池
JP5374250B2 (ja) 結晶シリコン太陽電池
JP5222434B2 (ja) 薄膜光電変換装置およびその製造方法
JP2010283161A (ja) 太陽電池及びその製造方法
JP2004260014A (ja) 多層型薄膜光電変換装置
JP5400322B2 (ja) シリコン系薄膜太陽電池およびその製造方法
WO2005109526A1 (ja) 薄膜光電変換装置
WO2008059857A1 (fr) Dispositif de conversion photoélectrique en film mince
JP6047494B2 (ja) 薄膜光電変換装置およびその製造方法
CN110383496B (zh) 太阳能电池装置及用于形成单个、串联和异质结系统太阳能电池装置的方法
WO2006006368A1 (ja) 薄膜光電変換装置の製造方法
JP2010267885A (ja) シリコン系薄膜光電変換装置とその製造方法
JP2011014618A (ja) 太陽電池及びその製造方法
US20120060906A1 (en) Photovoltaic device including flexible or inflexible substrate and method for manufacturing the same
JP2013536991A (ja) a−Si単接合および多接合薄膜シリコン太陽電池のための向上したa−Si:H吸収体層
JP2010283162A (ja) 太陽電池及びその製造方法
JP2003142705A (ja) 光起電力素子
CN116454169A (zh) 制备太阳电池的方法和太阳电池
JP4098386B2 (ja) 薄膜シリコン系光電変換装置とその製造方法
JP2000068533A (ja) 微結晶シリコン薄膜太陽電池及びその製造方法
JP2012009685A (ja) 積層型光電変換装置の製造方法
JP2013041955A (ja) 光電変換素子およびその製造方法
JP2001177133A (ja) ハイブリッド型薄膜光電変換装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007533134

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11991141

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781517

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087007516

Country of ref document: KR