WO2013022086A1 - 積層型光電変換装置の製造方法 - Google Patents

積層型光電変換装置の製造方法 Download PDF

Info

Publication number
WO2013022086A1
WO2013022086A1 PCT/JP2012/070448 JP2012070448W WO2013022086A1 WO 2013022086 A1 WO2013022086 A1 WO 2013022086A1 JP 2012070448 W JP2012070448 W JP 2012070448W WO 2013022086 A1 WO2013022086 A1 WO 2013022086A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
layer
conversion unit
silicon
power density
Prior art date
Application number
PCT/JP2012/070448
Other languages
English (en)
French (fr)
Inventor
高洋 松田
哲史 大谷
後藤 雅博
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2013528077A priority Critical patent/JP5675993B2/ja
Priority to EP12821765.0A priority patent/EP2743992B1/en
Priority to CN201280039241.6A priority patent/CN103733356B/zh
Publication of WO2013022086A1 publication Critical patent/WO2013022086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a stacked photoelectric conversion device.
  • the present invention relates to a method for manufacturing a stacked photoelectric conversion device capable of improving flexibility in a manufacturing process and production efficiency in addition to providing a high-performance photoelectric conversion device.
  • a thin film photoelectric conversion device includes one or more photoelectric conversion units between a pair of electrodes.
  • Each photoelectric conversion unit has a configuration in which an i-type (intrinsic) photoelectric conversion layer is sandwiched between a p-type layer and an n-type layer.
  • the photoelectric conversion layer (i-type layer) occupying the main part of the photoelectric conversion unit is amorphous regardless of whether the conductive layer (p-type layer and n-type layer) is amorphous or crystalline.
  • a thing with an amorphous photoelectric conversion layer is called an amorphous photoelectric conversion unit, and a thing with a crystalline photoelectric conversion layer is called a crystalline photoelectric conversion unit.
  • a stacked photoelectric conversion device in which two or more photoelectric conversion units are stacked is known.
  • a front photoelectric conversion unit including a photoelectric conversion layer having a relatively large band gap is disposed on the light incident side, and a photoelectric conversion layer having a relatively small band gap is included behind the photoelectric conversion layer.
  • a rear photoelectric conversion unit is disposed.
  • the photoelectric conversion unit relatively disposed on the light incident side is referred to as a front photoelectric conversion unit
  • the photoelectric conversion unit disposed adjacent to the side far from the light incident side of the front photoelectric conversion unit is referred to as a front photoelectric conversion unit. It is called a rear photoelectric conversion unit.
  • front and rear mean front and rear as viewed from the light incident side.
  • a conductive intermediate reflection layer having light transmittance and light reflectivity between a plurality of photoelectric conversion units.
  • a part of the light that has reached the intermediate reflection layer is reflected, and the amount of light absorption in the photoelectric conversion layer of the front photoelectric conversion unit located on the light incident side of the intermediate reflection layer is increased, whereby the front photoelectric conversion unit
  • a hybrid thin film photoelectric conversion device having an amorphous silicon photoelectric conversion unit as a front photoelectric conversion unit and a crystalline silicon photoelectric conversion unit as a rear photoelectric conversion unit has an intermediate reflection layer between the photoelectric conversion units.
  • the current generated in the amorphous silicon photoelectric conversion unit can be increased without increasing the film thickness of the amorphous silicon layer. Furthermore, since the film thickness of the amorphous silicon layer can be reduced, it is possible to suppress deterioration of the characteristics of the amorphous silicon photoelectric conversion unit due to light degradation that becomes noticeable as the film thickness of the amorphous silicon layer increases. Become.
  • Patent Document 1 discloses a stacked photoelectric conversion device having a conductive silicon composite layer in which a silicon crystal phase is mixed in an amorphous alloy of silicon and oxygen as an intermediate reflection layer.
  • a conductive silicon composite layer can be formed by a plasma CVD method as in the case of the amorphous photoelectric conversion unit and the crystalline photoelectric conversion unit.
  • the conversion characteristics may be deteriorated. Even when the photoelectric conversion device exhibits high conversion characteristics immediately after manufacture, the conversion characteristics may deteriorate when the photoelectric conversion device is exposed to a high temperature / high humidity environment.
  • Patent Document 2 after a part of the n-type silicon composite layer which is an intermediate reflection layer is formed, the substrate is once taken out into the atmosphere, and the outermost surface of the silicon composite layer is exposed to the atmosphere. A method for forming the remainder of the composite layer is disclosed. According to the method of Patent Document 2, the film quality of the rear photoelectric conversion unit formed on the silicon composite layer is improved by exposure to the atmosphere, evacuation, and reheating, and conversion characteristics and durability are improved.
  • initial exposure of the stacked photoelectric conversion device is performed by performing atmospheric exposure and reheating between the step of forming the front photoelectric conversion unit and the step of forming the rear photoelectric conversion unit. Properties and durability are improved.
  • a plurality of CVD apparatuses are required.
  • a process of temporarily unloading the substrate from the CVD apparatus, loading it into another CVD apparatus, and reheating is required. And manufacturing costs need to be sacrificed.
  • atmospheric elements may be mixed into the CVD apparatus, or film may be peeled off from the electrodes due to a decrease in temperature in the CVD apparatus, leading to deterioration in film quality. is there.
  • an object of the present invention is to provide a method for producing a stacked photoelectric conversion device having high performance and excellent durability while improving production efficiency while increasing flexibility of a production process.
  • the present invention includes a front photoelectric conversion unit having a one conductivity type layer, a substantially intrinsic amorphous silicon photoelectric conversion layer, and a reverse conductivity type layer in this order from the light incident side, and a crystalline material from the light incident side. It is related with the manufacturing method of a laminated photoelectric conversion apparatus provided with the back photoelectric conversion unit which has one conductivity type layer of this, a substantially intrinsic crystalline silicon type photoelectric converting layer, and a reverse conductivity type layer in this order.
  • the reverse conductivity type layer of the front photoelectric conversion unit is a silicon composite layer in which a silicon crystal phase is mixed in an amorphous alloy containing silicon and oxygen on the side in contact with the rear photoelectric conversion unit.
  • the reverse conductivity type layer of the front photoelectric conversion unit may be entirely a silicon composite layer.
  • the manufacturing method of the present invention includes a step of forming a front photoelectric conversion unit by a plasma CVD method and a step of forming a rear photoelectric conversion unit by a plasma CVD method on the front photoelectric conversion unit.
  • the silicon composite layer of the front photoelectric conversion unit is formed, the crystalline one-conductivity type layer and the crystalline silicon system of the rear photoelectric conversion unit are formed in the same film forming chamber without being taken out into the atmosphere.
  • a photoelectric conversion layer is formed.
  • the crystalline silicon photoelectric conversion layer of the rear photoelectric conversion unit is manufactured to have a carbon concentration of 1 ⁇ 10 17 atm / cm 3 or less and an oxygen concentration of 2 ⁇ 10 18 atm / cm 3 or less. It is preferred to be membraned.
  • the power density at the start of the formation of the crystalline silicon-based photoelectric conversion layer of the rear photoelectric conversion unit is in the range of 0.1 to 1 times the power density at the time of forming the silicon composite layer. It is preferable that
  • the film formation pressure at the start of the formation of the crystalline silicon-based photoelectric conversion layer of the rear photoelectric conversion unit is higher than the film formation pressure at the time of forming the silicon composite layer of the front photoelectric conversion unit.
  • the initial formation portion of the crystalline silicon-based photoelectric conversion layer is formed at a power density of 0.1 to 1 times the power density at the time of forming the silicon composite layer of the front photoelectric conversion unit. After that, the remaining bulk portion is formed at a higher power density than at the start of formation. In this case, it is more preferable that the bulk portion is formed at a power density equal to or higher than that at the time of forming the silicon composite layer of the front photoelectric conversion unit.
  • the production method of the present invention it is possible to obtain a stacked photoelectric conversion device that is excellent in initial conversion characteristics and has little deterioration in conversion characteristics even when exposed to a high temperature and high humidity environment. Further, in the manufacturing method of the present invention, after the silicon composite layer of the front photoelectric conversion unit is formed, it is not necessary to take out the substrate from the film forming apparatus and expose to the atmosphere. Efficiency can be improved.
  • 1 is a schematic cross-sectional view of a stacked photoelectric conversion device according to an embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a stacked photoelectric conversion device according to an embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view of a stacked photoelectric conversion device according to an example of an embodiment of the present invention.
  • the stacked photoelectric conversion device of FIG. 1 has a two-junction stacked photoelectric that has a transparent electrode layer 2, a front photoelectric conversion unit 3, a rear photoelectric conversion unit 4, and a back electrode layer 5 in this order on a transparent insulating substrate 1. It is a conversion device.
  • the transparent insulating substrate 1 a plate-like member or a sheet-like member made of glass or transparent resin is used.
  • the transparent electrode layer 2 is preferably made of a conductive metal oxide such as SnO 2 or ZnO, and is preferably formed using a method such as CVD, sputtering, or vapor deposition.
  • the transparent electrode layer 2 desirably has the effect of increasing the scattering of incident light by having fine irregularities on its surface.
  • a plurality of photoelectric conversion units 3 and 4 are arranged behind the transparent electrode layer 2.
  • Each of the photoelectric conversion units 3 and 4 is configured by a pin junction including one conductivity type layers 31 and 41, substantially intrinsic (i-type) photoelectric conversion layers 32 and 42, and reverse conductivity type layers 33 and 43.
  • As the photoelectric conversion layer 42 of the rear photoelectric conversion unit 4 a material having a relatively narrow band gap than the photoelectric conversion layer 32 is used.
  • the stacked photoelectric conversion device of the present invention includes an amorphous photoelectric conversion unit using an amorphous silicon-based material as the photoelectric conversion layer 32 of the front photoelectric conversion unit 3 and a crystal as the photoelectric conversion layer 42 of the rear photoelectric conversion unit 4. And a crystalline photoelectric conversion unit using a crystalline silicon material.
  • the amorphous or crystalline silicon-based material may be an alloy material containing elements such as carbon, oxygen, nitrogen and germanium in addition to those containing only silicon as a main element constituting a semiconductor.
  • the one-conductivity-type layers 31 and 41 on the light incident side of each of the front photoelectric conversion unit 3 and the rear photoelectric conversion unit 4 are p-type layers (or n-type layers). Is an n-type layer (or p-type layer).
  • the main constituent material of the conductive layer is not necessarily the same as that of the photoelectric conversion layers 32 and 42.
  • amorphous silicon carbide may be used for the p-type (or n-type) layer of the amorphous photoelectric conversion unit, and silicon containing crystal in the n-type (or p-type) layer (also referred to as microcrystalline silicon).
  • a silicon composite material containing a silicon crystal phase in an amorphous alloy may be used.
  • the one-conductivity-type layer and the reverse-conductivity-type layer play a role of generating a diffusion potential in the photoelectric conversion unit.
  • one of the characteristics of the thin film photoelectric conversion device is an open circuit.
  • the end voltage (Voc) is affected.
  • these conductive layers are inactive layers that do not directly contribute to photoelectric conversion, and the light absorbed here hardly contributes to power generation. Therefore, the conductive layer is preferably as thin and transparent as possible within a range that generates a sufficient diffusion potential.
  • a silicon composite layer containing a silicon crystal phase in an amorphous alloy of silicon and oxygen is used as an intermediate reflection layer of a stacked photoelectric conversion device.
  • the photoelectric conversion layer 32 In order to function as an intermediate reflection layer, it is necessary to arrange the photoelectric conversion layer 32 at any position between the photoelectric conversion layer 32 in the front photoelectric conversion unit 3 and the photoelectric conversion layer 42 in the rear photoelectric conversion unit 4.
  • a silicon composite layer as an intermediate reflective layer is used on the side of the reverse photoelectric layer 33 of the front photoelectric conversion unit 3 that is in contact with the rear photoelectric conversion unit 4.
  • the reverse conductivity type layer 33 of the front photoelectric conversion unit may be entirely a silicon composite layer.
  • the reverse conductivity type layer 33 may have a multilayer structure of a silicon composite layer and conductive microcrystalline silicon, conductive silicon oxide, or the like.
  • the reverse conductivity type layer 33 may have a multilayer structure in which silicon composite layers having different physical properties such as a refractive index are stacked, and is a silicon composite layer in which physical properties are continuously changed in the stacking direction. Also good.
  • the silicon composite layer is formed by, for example, a plasma CVD method using SiH 4 , CO 2 , H 2 , PH 3 (or B 2 H 6 ) as a reaction gas. It is preferable that the reaction gas supply amount is a so-called microcrystal production condition in which the H 2 / SiH 4 ratio (hydrogen dilution ratio) is large, and the CO 2 / SiH 4 ratio is 2 or more.
  • the conditions for plasma CVD are, for example, using a capacitively coupled parallel plate electrode, a power frequency of 10 MHz to 100 MHz, a power density of 50 mW / cm 2 to 500 mW / cm 2 , a pressure of 50 Pa to 1500 Pa, and a substrate temperature of 150 ° C.
  • Power density during the silicon composite layer deposition is more preferably 70mW / cm 2 ⁇ 300mW / cm 2, more preferably from 100mW / cm 2 ⁇ 250mW / cm 2.
  • the film forming pressure at the time of forming the silicon composite layer is more preferably 300 Pa to 1200 Pa, further preferably 500 Pa to 1100 Pa, and particularly preferably 700 Pa to 1000 Pa.
  • the silicon composite layer preferably has a refractive index of 2.5 or less for light having a wavelength of 600 nm, and preferably has an oxygen concentration in the film of 25 atomic% or more.
  • the relationship between the refractive index and the oxygen concentration in the film has a relatively high correlation. The lower the refractive index, the higher the function and effect as the intermediate reflection layer.
  • the refractive index of the silicon composite layer can be evaluated by a spectroscopic ellipsometry method.
  • the oxygen concentration in the silicon composite layer is analyzed by SIMS, ESCA, EPMA, Auger electron spectroscopy, etc. while changing the detection position (depth) by, for example, wet etching, plasma etching, ion sputtering, or the like. Can be measured.
  • the rear photoelectric conversion unit 4 is formed immediately above the silicon composite layer (directly above the reverse conductivity type layer 33) without being taken out into the atmosphere.
  • the manufacturing method of the present invention will be described using the two-junction stacked photoelectric conversion device of FIG. 1 as an example.
  • a transparent electrode layer 2 made of a transparent conductive oxide (TCO) film is formed on a transparent insulating substrate 1 such as glass.
  • This substrate with electrodes is introduced into a plasma CVD apparatus, and on the transparent electrode layer 2, a reverse conductivity type including a one-conductivity type layer 31, a substantially intrinsic amorphous silicon-based photoelectric conversion layer 32, and a silicon composite layer.
  • the layer 33 is sequentially formed by a plasma CVD method.
  • the one-conductivity-type layer 31, the amorphous silicon-based photoelectric conversion layer 32, and the reverse-conductivity-type layer 33 can be formed under appropriate film forming conditions by plasma CVD.
  • at least the surface of the reverse conductivity type layer 33 in contact with the rear photoelectric conversion unit 4 is a silicon composite layer.
  • the silicon composite layer can be formed by the film forming conditions exemplified above.
  • the film thickness of the silicon composite layer in the reverse conductivity type layer 33 is preferably 20 nm or more and 130 nm or less. By setting the film thickness within this range, functions and effects as the intermediate reflection layer tend to increase.
  • the reverse-conductivity type layer 33 of the front photoelectric conversion unit 3 After the reverse-conductivity type layer 33 of the front photoelectric conversion unit 3 is formed, the one-conductivity type layer 41 of the rear photoelectric conversion unit 4 and the photoelectric conversion layer are formed in the same film-forming chamber without the substrate being taken out into the atmosphere. 42 is formed. Thus, the production efficiency of the stacked photoelectric conversion device is increased by forming the rear photoelectric conversion unit without the substrate being once taken out into the atmosphere.
  • the reverse conductivity type layer 43 is preferably formed.
  • One conductivity type layer 41 of the rear photoelectric conversion unit 4 is a crystalline silicon-based semiconductor layer.
  • This crystalline one conductivity type layer 41 is formed by, for example, a plasma CVD method using SiH 4 , H 2 , B 2 H 6 (or PH 3 ) as a reaction gas. It is preferable that the reaction gas supply amount is a so-called microcrystal production condition in which the H 2 / SiH 4 ratio (hydrogen dilution ratio) is large.
  • the conditions for plasma CVD are, for example, a power supply frequency of 10 MHz to 100 MHz, a power density of 50 mW / cm 2 to 500 mW / cm 2 , a pressure of 50 Pa to 1500 Pa, and a substrate temperature of 150 ° C.
  • both the reverse conductivity type layer 33 of the front photoelectric conversion unit and the one conductivity type layer 41 of the rear photoelectric conversion unit are intermediate reflection layers. It can be made to act as.
  • a crystalline silicon photoelectric conversion layer 42 made of a substantially intrinsic crystalline silicon material is formed on the one conductivity type layer 41.
  • the power density of plasma CVD at the initial stage of formation of the crystalline silicon-based photoelectric conversion layer is preferably 0.1 times or more and less than 1.0 times the power density at the time of forming the silicon composite layer.
  • the power density at the initial stage of crystalline silicon-based photoelectric conversion layer formation smaller than the power density at the time of silicon composite layer formation, even if no air exposure is performed after the silicon composite layer is formed, Impurity atoms are prevented from entering the crystalline silicon-based photoelectric conversion layer 42. Therefore, according to the manufacturing method of the present invention, even when exposed to a high-temperature and high-humidity environment, a deterioration in photoelectric conversion characteristics is suppressed, and a stacked photoelectric conversion device having excellent durability can be obtained.
  • the power density at the initial stage of formation of the crystalline silicon-based photoelectric conversion layer is set to be 0.1 times or more of the pressure at the time of forming the silicon composite layer, crystallization is likely to proceed and excessive productivity is lowered. Is suppressed.
  • the power density at the initial stage of formation of the crystalline silicon-based photoelectric conversion layer 42 is more preferably 0.4 to 0.9 times, more preferably 0.45 to 0.85 times the power density when the silicon composite layer is formed. More preferably, it is 0.5 to 0.8 times.
  • the power density at the initial stage of formation of the crystalline silicon-based photoelectric conversion layer 42 may be in the above range, and the power density of the bulk portion of the crystalline silicon-based photoelectric conversion layer 42 is You may exceed the said range.
  • the initial film formation portion 421 of the photoelectric conversion layer 42 is formed at a relatively low power density, and the subsequent bulk portion 422 is formed at a higher power density.
  • the film forming speed of the photoelectric conversion layer 42 can be increased.
  • the initial film formation is performed.
  • a part having a thickness of 100 nm or more is formed at a relatively low power density, more preferably 250 nm or more, and further preferably a part having a thickness of 400 nm or more is formed at a relatively low power density. It is preferred that
  • the crystalline silicon photoelectric conversion is performed in order to match the current values of the amorphous photoelectric conversion unit that is the front photoelectric conversion unit and the crystalline photoelectric conversion unit that is the rear photoelectric conversion unit.
  • the film thickness of the layer needs to be about 1 ⁇ m to 5 ⁇ m. Since this film thickness is about 10 to 100 times the film thickness of the silicon composite layer, the film formation speed of the crystalline photoelectric conversion layer is a bottleneck in improving the productivity of the stacked photoelectric conversion device. Therefore, the crystalline photoelectric conversion layer is generally formed at a high speed and a high power density.
  • the present invention forms a crystalline silicon-based photoelectric conversion layer at a low power density at a lower speed than the silicon composite layer, and adopts a film forming condition in the opposite direction to the conventional technique. This is based on the new knowledge that the diffusion of impurity atoms is suppressed and the durability of the stacked photoelectric conversion device is improved.
  • the film formation speed may be relatively reduced, but the substrate on which the silicon composite layer is formed is exposed to the atmosphere. Since no process is required, the productivity is improved compared to the prior art. Further, the productivity can be further improved by forming the bulk portion 422 of the crystalline silicon-based photoelectric conversion layer 42 at a relatively high power density.
  • the bulk portion 422 of the crystalline silicon-based photoelectric conversion layer 42 When the bulk portion 422 of the crystalline silicon-based photoelectric conversion layer 42 is formed at a relatively high power density, the bulk portion has a high power density equal to or higher than that at the time of forming the silicon composite layer of the front photoelectric conversion unit 3. More preferably, it is formed into a film. More specifically, the deposition power density of the bulk portion 422 of the crystalline silicon-based photoelectric conversion layer 42 is preferably 1 to 2 times the power density when forming the silicon composite layer of the front photoelectric conversion unit 3. 1.1 to 1.5 times is more preferable.
  • the ratio of the deposition power density at the time of forming the silicon composite layer is more important than the absolute value of the deposition power density of the crystalline silicon-based photoelectric conversion layer. Therefore, it is possible to improve the durability by increasing the film formation power density at the time of forming the silicon composite layer without changing the film formation power density of the crystalline photoelectric conversion layer.
  • the reason why the effect of preventing the diffusion of impurities depends on the power density ratio is not clear, but the film formation is performed at a relatively low power density, so that the silicon composite layer previously formed can be formed. It is considered that one of the reasons is that plasma etching and plasma etching of deposits on the apparatus wall surface during silicon composite layer deposition are suppressed. That is, by suppressing the plasma etching of the silicon composite layer (or deposits on the device wall), carbon, oxygen, and conductivity determining impurities (phosphorus, boron, etc.) that are constituent elements of the silicon composite layer are crystallized. It is considered that the film quality of the crystalline photoelectric conversion layer is improved because it is difficult to be taken in as impurities in the crystalline photoelectric conversion layer.
  • the stacked photoelectric conversion device of the present invention preferably has a low impurity concentration in the crystalline photoelectric conversion layer 42.
  • the carbon concentration is preferably 2 ⁇ 10 17 atm / cm 3 or less, and more preferably 1 ⁇ 10 17 atm / cm 3 or less.
  • the oxygen concentration is preferably 3 ⁇ 10 18 atm / cm 3 or less, and more preferably 2 ⁇ 10 18 atm / cm 3 or less.
  • the phosphorus concentration and boron concentration are preferably 2 ⁇ 10 17 atm / cm 3 or less, and more preferably 1 ⁇ 10 17 atm / cm 3 or less.
  • the impurity concentration in the film can be quantified by secondary ion mass spectrometry (SIMS).
  • the film formation pressure at the start of the formation of the crystalline silicon-based photoelectric conversion layer 42 of the rear photoelectric conversion unit 4 is the same as that when the silicon composite layer of the reverse conductivity type layer 33 of the front photoelectric conversion unit 3 is formed. It is set equal to or higher than the film forming pressure.
  • the film forming pressure at the start of the formation of the crystalline silicon-based photoelectric conversion layer 42 is more preferably 1 to 5 times, and further preferably 1.1 to 2 times the film forming pressure at the time of forming the silicon composite layer.
  • the ratio of the film forming pressure to the power density at the start of formation of the crystalline silicon-based photoelectric conversion layer 42 is the silicon composite layer.
  • the ratio is preferably 0.1 to 1 times, more preferably 0.4 to 0.9 times the ratio of the film forming pressure and the power density at the time of formation.
  • the power density when the crystalline one conductivity type layer 41 of the rear photoelectric conversion unit 4 is formed is 0.1 times or more and less than 1 time the power density when forming the silicon composite layer.
  • a range is preferable.
  • the power density when forming the one conductivity type layer 41 is more preferably 0.1 to 0.9 times, more preferably 0.4 to 0.8 times the power density when forming the silicon composite layer.
  • the film forming pressure when the crystalline one conductivity type layer 41 of the rear photoelectric conversion unit 4 is formed is equal to or higher than the film forming pressure when the silicon composite layer is formed.
  • the film forming pressure at the time of forming the one conductivity type layer 41 is preferably 1 to 5 times, more preferably 1.1 to 2 times the film forming pressure at the time of forming the silicon composite layer.
  • the crystalline one-conductivity-type layer 41 of the rear photoelectric conversion unit 4 is formed with a relatively low power density and high pressure, so that the silicon composite layer of the reverse-conductivity type layer 33 and the crystalline of the rear photoelectric conversion unit 4 As a result, the diffusion of impurities into the crystalline photoelectric conversion layer 42 tends to be suppressed.
  • the ratio of the film formation pressure to the power density (power density / film formation pressure, unit: mW / cm 2 ⁇ Pa) at the time of forming the crystalline one-conductivity type layer 41 is the silicon composite layer formation. It is preferably 0.1 to 1 time, more preferably 0.4 to 0.9 times the ratio of the film forming pressure to the power density.
  • a reverse conductivity type layer 43 is formed by a plasma CVD method under appropriate film forming conditions.
  • a crystalline material such as crystalline silicon or composite silicon in which a silicon crystalline phase is mixed in an amorphous alloy such as SiO, SiC, or SiN is suitable.
  • the reverse conductivity type layer 43 may be a laminate of a plurality of conductivity type layers.
  • a back electrode layer 5 is formed on the rear photoelectric conversion unit 4.
  • the back electrode layer 5 it is preferable to form a metal layer made of Al, Ag, Au, Cu, Pt, Cr or the like by sputtering, vapor deposition or the like.
  • a layer made of a conductive oxide such as ITO, SnO 2 , or ZnO between the photoelectric conversion unit and the metal layer from the viewpoint of increasing the light confinement effect.
  • the back electrode layer can be made of a single layer of a conductive oxide not including a metal layer by appropriately adjusting the thickness of the conductive oxide layer to optimize reflection characteristics.
  • the two-junction stacked photoelectric conversion device having the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 has been described above as an example, but the present invention is a multi-junction laminate having three or more photoelectric conversion units.
  • the present invention can also be applied to a type photoelectric conversion device.
  • the first photoelectric conversion unit and the second photoelectric conversion unit are As each of the front photoelectric conversion unit and the rear photoelectric conversion unit, a configuration having a conductive silicon composite layer at the boundary between these photoelectric conversion units can be given.
  • the 2nd photoelectric conversion unit and the 3rd photoelectric conversion unit are each made into the front photoelectric conversion unit and the back photoelectric conversion unit, respectively, and the structure which has a conductive silicon composite layer in the boundary of both is mentioned.
  • a silicon composite layer may be provided on both the boundary between the first photoelectric conversion unit and the second photoelectric conversion unit, and the boundary between the second photoelectric conversion unit and the third photoelectric conversion unit.
  • an amorphous silicon photoelectric conversion unit is used as the first photoelectric conversion unit
  • an amorphous silicon germanium or crystalline silicon photoelectric conversion unit is used as the second photoelectric conversion unit
  • a third photoelectric conversion unit is used.
  • the case where an amorphous silicon germanium or a crystalline silicon type photoelectric conversion unit is applied to the unit can be mentioned.
  • the combination of the photoelectric conversion units of the multi-junction stacked photoelectric conversion device is not limited to the above, and may be various other combinations.
  • Example 1 a stacked photoelectric conversion device schematically shown in FIG. 1 was produced.
  • a transparent electrode layer 2 containing SnO 2 as a main component was formed on a transparent glass substrate 1.
  • a substrate with a transparent electrode layer is introduced into the first plasma CVD apparatus, and after raising the temperature, as the amorphous photoelectric conversion unit 3, a p-type amorphous silicon carbide layer 31, an amorphous silicon photoelectric conversion layer 32, and n
  • a type silicon composite layer 33 was formed with thicknesses of 15 nm, 300 nm, and 50 nm, respectively.
  • the film forming pressure is 990 Pa
  • the power frequency is: The measurement was performed under the conditions of 13.56 MHz, power density: 163.7 mW / cm 2 , and substrate temperature: 180 ° C.
  • the obtained n-type silicon composite layer 33 had a refractive index of 2.0 with respect to 600 nm light.
  • the first plasma CVD apparatus was evacuated. Thereafter, the p-type microcrystalline silicon layer (one conductivity type layer) 41 of the crystalline photoelectric conversion unit 4 was formed to a thickness of 15 nm without taking the substrate into the atmosphere.
  • a crystalline silicon photoelectric conversion layer 42 was formed to a thickness of 2.5 ⁇ m.
  • n-type microcrystalline silicon layer 43 having a thickness of 15 nm was formed as a reverse conductivity type layer.
  • an Al-doped ZnO layer having a thickness of 90 nm and an Ag layer having a thickness of 200 nm were sequentially formed as the back electrode layer 5 by a sputtering method.
  • the CO 2 flow rate ratio was changed from Example 1 in order to compensate for changes in the optimum values of the SiH 4 and / CO 2 flow rate ratios as the film-forming pressure changes.
  • the refractive index of the n-type silicon composite layer 33 with respect to light of 600 nm was 2.0.
  • the impurity (C, O and P) concentration in the crystalline silicon photoelectric conversion layer of the stacked photoelectric conversion device of each of the above examples and comparative examples was quantified by secondary ion mass spectrometry (SIMS), and from the initial stage of film formation The average value in the film thickness range of 500 nm was defined as the impurity amount.
  • the film forming conditions (power density) are different between the initial film forming part 421 and the bulk part 422 of the crystalline photoelectric conversion layer 42, but there is no clear difference in the amount of impurities between the two. I could't.
  • power density ratio is the ratio of the power density when forming the crystalline photoelectric conversion layer between the silicon composite layer and the rear photoelectric conversion unit, and the power density when forming the photoelectric conversion layer of the rear photoelectric conversion unit. Represents a value obtained by dividing (divided) by the power density at the time of forming the silicon composite layer.
  • the “pressure ratio” in Table 1 is the ratio of the film formation pressure when forming the crystalline photoelectric conversion layer of the silicon composite layer and the rear photoelectric conversion unit, and the film formation pressure when forming the photoelectric conversion layer of the rear photoelectric conversion unit. Represents a value obtained by dividing (divided) by the film forming pressure at the time of forming the silicon composite layer.
  • the power density ratio and pressure ratio being greater than 1 indicate that the photoelectric conversion layer of the rear photoelectric conversion unit was formed at a higher power density and higher pressure than the silicon composite layer.
  • each of the stacked photoelectric conversion devices of each example has an initial conversion efficiency Eff 0 equal to or higher than that of the comparative example of the stacked photoelectric conversion device, and is exposed to a high temperature and high humidity environment. After that, the conversion efficiency Eff 1 also maintains a high value.
  • Comparative Example 1 in which the crystalline silicon photoelectric conversion layer was formed at a power density twice that of the silicon composite layer showed a significant performance degradation after exposure to a high temperature and high humidity environment. Comparing Comparative Example 1, Comparative Example 2, Comparative Example 4, Example 1 and Example 3, it can be seen that as the power density ratio decreases, the performance degradation rate after exposure to a high temperature and high humidity environment decreases. Recognize. In Example 1 and Comparative Example 1, the film-forming pressure of the crystalline photoelectric conversion layer is the same, but in Example 1 where the power density ratio is small, the performance degradation rate is small (the durability is improved). ing).
  • the power density ratio at the time of film formation of the silicon composite layer and the crystalline photoelectric conversion layer is within a predetermined range rather than the power density value at the time of film formation of the crystalline photoelectric conversion layer. It can be seen that this contributes to
  • Example 4 has a power density ratio smaller than that of Example 3, but the performance degradation rate is the same. Considering the productivity of the stacked photoelectric conversion device, it is preferable that the power density ratio is high. From the viewpoint of achieving both productivity and durability, it can be said that the power density ratio is particularly preferably 0.5 or more.
  • the initial part of the silicon composite layer and the crystalline photoelectric conversion layer is formed at the same film forming power density as in Example 1, and the bulk part of the crystalline photoelectric conversion layer is manufactured at the same high power density as in Comparative Example 2.
  • the filmed Example 5 had an initial conversion efficiency Eff 0 equivalent to that of Comparative Example 2, but the conversion efficiency Eff 1 after the heating and humidification test was higher than that of Comparative Example 2 and was excellent in durability. From the above, the initial part of the crystalline photoelectric conversion layer is formed at a low power density, and the remaining bulk part is formed by increasing the power density, thereby maintaining the high durability and the stacked photoelectric conversion device. It can be seen that the productivity of can be improved.
  • the durability can also be increased by increasing the pressure ratio during film formation of the silicon composite layer and the crystalline photoelectric conversion layer. It can be seen that the property is improved.
  • the reduction in the power density ratio acts more significantly due to the improvement in the durability than the increase in the pressure ratio.
  • Example 3 The impurity concentration in the crystalline silicon photoelectric conversion layer of each Example and Comparative Example is shown in Table 2 (however, Example 3 is not measured).
  • Table 2 in addition to the values of carbon (C), oxygen (O), and phosphorus (P) atoms in the film, the relative values of the atoms in Comparative Example 1 with respect to the film concentration are shown. .
  • the impurity concentration (especially carbon atom concentration and oxygen atom concentration) in the crystalline photoelectric conversion layer is smaller than that in each comparative example, and the impurity concentration and the performance degradation rate are reduced.
  • the durability is improved as a result of suppressing the contamination of the silicon composite layer into the rear photoelectric conversion unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、前方光電変換ユニット3と後方光電変換ユニット4とを備える積層型光電変換装置の製造方法に関する。前方光電変換ユニットの逆導電型層33は、後方光電変換ユニット4と接する側が、シリコンと酸素とを含有する非晶質合金中にシリコン結晶相が混在するシリコン複合層である。本発明においては、前方光電変換ユニットのシリコン複合層が形成された後、大気中に取り出されることなく同一の製膜室内で、後方光電変換ユニット4の結晶質の一導電型層41および結晶質シリコン系光電変換層42が形成される。結晶質シリコン系光電変換層42の形成開始時のパワー密度は、前方光電変換ユニットのシリコン複合層形成時のパワー密度の0.1倍以上、1倍未満の範囲であることが好ましい。

Description

積層型光電変換装置の製造方法
 本発明は、積層型光電変換装置の製造方法に関する。特に、本発明は、高性能の光電変換装置を提供することに加えて、製造工程への融通性、および生産効率を改善し得る積層型光電変換装置の製造方法に関する。
 近年、光電変換装置の低コスト化と高効率化とを両立するために、薄膜光電変換装置が注目され、精力的に開発が行われている。一般に、薄膜光電変換装置は、一対の電極間に、1以上の光電変換ユニットを有する。各光電変換ユニットは、i型(真性)の光電変換層がp型層とn型層で挟持された構成を有する。光電変換ユニットは、導電型層(p型層およびn型層)が非晶質か結晶質かにかかわらず、光電変換ユニットの主要部を占める光電変換層(i型層)が非晶質のものは非晶質光電変換ユニットと称され、光電変換層が結晶質のものは結晶質光電変換ユニットと称される。
 光電変換装置の変換効率を向上させる方法として、2つ以上の光電変換ユニットが積層された積層型光電変換装置が知られている。積層型光電変換装置では、光入射側に、相対的に大きなバンドギャップを有する光電変換層を含む前方光電変換ユニットが配置され、その後方に、相対的に小さなバンドギャップを有する光電変換層を含む後方光電変換ユニットが配置される。当該構成により、入射光の広い波長範囲にわたって光電変換が可能となり、光電変換装置全体としての変換効率の向上が図られる。
 以降、本明細書において、相対的に光入射側に配置された光電変換ユニットを前方光電変換ユニットと称し、前方光電変換ユニットの光入射側から遠い側に隣接して配置された光電変換ユニットを後方光電変換ユニットと称する。また、特に断りのない限り、「前方」および「後方」との用語は、光入射側からみて前方、および後方であることを意味する。
 積層型光電変換装置において、複数の光電変換ユニットの間に、光透過性および光反射性を有する導電性の中間反射層を設けることが提案されている。当該構成では、中間反射層に到達した光の一部が反射し、中間反射層の光入射側に位置する前方光電変換ユニットの光電変換層における光吸収量が増加することにより、前方光電変換ユニットで発生する電流値を増大させることができる。例えば、前方光電変換ユニットとして非晶質シリコン光電変換ユニットを有し、後方光電変換ユニットとして結晶質シリコン光電変換ユニットとを有するハイブリッド型薄膜光電変換装置は、光電変換ユニット間に中間反射層を有することで、非晶質シリコン層の膜厚を増やすことなく非晶質シリコン光電変換ユニット内で発生する電流を増加させることができる。さらには、非晶質シリコン層の膜厚を小さくできることから、非晶質シリコン層の膜厚増加に応じて顕著となる光劣化による非晶質シリコン光電変換ユニットの特性低下を抑えることが可能となる。
 特許文献1では、中間反射層として、シリコンと酸素の非晶質合金中にシリコン結晶相が混在する導電型のシリコン複合層を有する積層型光電変換装置が開示されている。このような導電型のシリコン複合層は、非晶質光電変換ユニットや結晶質光電変換ユニットと同様にプラズマCVD法により形成可能である。しかしながら、導電型のシリコン複合層を製膜後に、同一の製膜装置内で後方光電変換ユニットが形成されると、変換特性の低下を招く場合がある。また、光電変換装置の製造直後は高い変換特性を示す場合でも、光電変換装置が高温・高湿環境に曝されると変換特性が低下する場合がある。
 特許文献2では、中間反射層であるn型のシリコン複合層の一部が形成された後に、基板が一旦大気中に取り出され、該シリコン複合層の最外表面を大気に暴露した後、シリコン複合層の残部を形成する方法が開示されている。特許文献2の方法によれば、大気暴露、真空排気、再加熱によって、シリコン複合層上に形成される後方光電変換ユニットの膜質が向上し、変換特性および耐久性の向上が図られる。
 また、特許文献3では、シリコン複合層の全部を形成後に基板が一旦大気中に取り出され、その後に、後方光電変換ユニットの一導電型層が低パワー密度で形成されることにより、前方光電変換ユニットと後方光電変換ユニットとの接合を良好とできることが開示されている。
特開2005-45129号公報 特開2005-277303号公報 特開2010-267860号公報
 特許文献2、3のように、前方光電変換ユニットを形成する工程と後方光電変換ユニットを形成する工程との間に、大気暴露および再加熱が行われることにより、積層型光電変換装置の初期変換特性や耐久性が改善される。しかしながら、大気暴露および再加熱を行うためには、複数のCVD装置が必要となる上に、基板を一旦CVD装置から搬出し、別のCVD装置に搬入、再加熱する工程を要するため、生産性や製造コストを犠牲にする必要がある。また、大気暴露後に同一CVD装置で製膜が行われると、CVD装置内への大気元素の混入や、CVD装置内の温度低下による電極からの膜剥離が生じ、膜品質の低下につながる場合がある。
 このように、従来技術では、光電変換特性および耐久性の向上と、生産性の向上および製造コストの低減とを両立することは困難であった。本発明はかかる課題に鑑み、製造工程の融通性を高めつつ生産効率を改善しながら、高性能かつ、耐久性に優れる積層型光電変換装置を製造する方法の提供を目的とする。
 上記に鑑みて、本発明者らが積層型光電変換装置を構成する各層の製膜条件を検討した結果、大気暴露が行われない場合でも、後方光電変換ユニットの結晶質光電変換層中の不純物濃度が低い場合に、耐久性に優れる積層型光電変換装置が得られることを見出した。また、後方光電変換ユニットの結晶質光電変換層が、前方光電変換ユニットのシリコン複合層よりも相対的に低パワー密度で製膜されることにより、大気暴露を行わずとも、耐久性に優れる積層型光電変換装置が得られることを見出した。
 本発明は、光入射側から、一導電型層、実質的に真性の非晶質シリコン系光電変換層、および逆導電型層をこの順に有する前方光電変換ユニットと、光入射側から、結晶質の一導電型層、実質的に真性の結晶質シリコン系光電変換層、および逆導電型層をこの順に有する後方光電変換ユニットとを備える積層型光電変換装置の製造方法に関する。前方光電変換ユニットの逆導電型層は、後方光電変換ユニットと接する側が、シリコンと酸素とを含有する非晶質合金中にシリコン結晶相が混在するシリコン複合層である。なお、前方光電変換ユニットの逆導電型層は、全体がシリコン複合層であってもよい。
 本発明の製造方法は、プラズマCVD法により前方光電変換ユニットが形成される工程、および前記前方光電変換ユニット上に、プラズマCVD法により後方光電変換ユニットが形成される工程を有する。本発明においては、前方光電変換ユニットのシリコン複合層が形成された後、大気中に取り出されることなく同一の製膜室内で、後方光電変換ユニットの結晶質の一導電型層および結晶質シリコン系光電変換層が形成される。
 本発明の製造方法において、後方光電変換ユニットの結晶質シリコン系光電変換層は、炭素濃度が1×1017atm/cm以下、かつ、酸素濃度が2×1018atm/cm以下に製膜されることが好ましい。
 また、本発明の製造方法において、後方光電変換ユニットの結晶質シリコン系光電変換層の形成開始時のパワー密度は、シリコン複合層形成時のパワー密度の0.1倍以上、1倍未満の範囲であることが好ましい。
 本発明の一実施形態では、後方光電変換ユニットの結晶質シリコン系光電変換層の形成開始時の製膜圧力が、前方光電変換ユニットのシリコン複合層形成時の製膜圧力よりも高いことが好ましい。
 本発明の一実施形態では、結晶質シリコン系光電変換層の形成初期部分が前方光電変換ユニットのシリコン複合層形成時のパワー密度の0.1倍以上、1倍未満のパワー密度で製膜された後、残部のバルク部分が、形成開始時よりも高パワー密度で製膜される。この場合、バルク部分は、前方光電変換ユニットのシリコン複合層形成時と同等またはそれ以上のパワー密度で製膜されることがより好ましい。
 本発明の製造方法によれば、初期変換特性に優れ、かつ高温高湿環境に暴露された場合でも変換特性の低下が少ない積層型光電変換装置が得られる。また、本発明の製造方法では、前方光電変換ユニットのシリコン複合層が製膜された後、基板を製膜装置から取り出して大気暴露する必要がないため、製造工程の融通性を高めつつ、生産効率を改善することができる。
本発明の一実施形態による積層型光電変換装置の模式的断面図である。 本発明の一実施形態による積層型光電変換装置の模式的断面図である。
 以下において、本発明の好ましい実施の形態について図面を参照しつつ説明する。なお各図において、厚さや長さなどの寸法関係は、図面の明瞭化と簡略化のため適宜変更されており、実際の寸法関係を表してはいない。
 図1に、本発明の実施形態の一例による積層型光電変換装置の模式的断面図を示す。図1の積層型光電変換装置は、透明絶縁基板1上に、透明電極層2、前方光電変換ユニット3、後方光電変換ユニット4、および裏面電極層5をこの順に有する2接合型の積層型光電変換装置である。
 透明絶縁基板1としては、ガラスや透明樹脂等からなる板状部材やシート状部材が用いられる。透明電極層2は、SnO、ZnO等の導電性金属酸化物からなることが好ましく、CVD、スパッタ、蒸着等の方法を用いて形成されることが好ましい。透明電極層2はその表面に微細な凹凸を有することにより、入射光の散乱を増大させる効果を有することが望ましい。
 透明電極層2の後方に、複数の光電変換ユニット3,4が配置される。各々の光電変換ユニット3,4は、一導電型層31,41、実質的に真性な(i型の)光電変換層32,42、および逆導電型層33,43からなるpin接合によって構成される。図1に示すような2接合型光電変換装置では、光入射側に配置される前方光電変換ユニット3の光電変換層32として、相対的にバンドギャップの広い材料が用いられる。後方光電変換ユニット4の光電変換層42として、光電変換層32よりも相対的にバンドギャップの狭い材料が用いられる。本発明の積層型光電変換装置は、前方光電変換ユニット3の光電変換層32として非晶質シリコン系材料を用いた非晶質光電変換ユニットと、後方光電変換ユニット4の光電変換層42として結晶質シリコン系材料を用いた結晶質光電変換ユニットとを備える。非晶質あるいは結晶質のシリコン系材料は、半導体を構成する主要元素としてシリコンのみを含有するものの他、炭素、酸素、窒素、ゲルマニウム等の元素をも含む合金材料であってもよい。
 前方光電変換ユニット3、および後方光電変換ユニット4それぞれの光入射側の一導電型層31,41はp型層(またはn型層)であり、これに対応して逆導電型層33,43はn型層(またはp型層)である。導電型層の主要構成材料は、必ずしも光電変換層32,42と同質のものである必要はない。例えば非晶質光電変換ユニットのp型(またはn型)層に非晶質シリコンカーバイドが用いられてもよく、n型(またはp型)層に結晶質を含むシリコン(微結晶シリコンとも呼ばれる)や、非晶質合金中にシリコン結晶相を含むシリコン複合材料が用いられてもよい。
 各光電変換ユニットにおいて、一導電型層および逆導電型層は、光電変換ユニット内に拡散電位を生じさせる役割を果たし、この拡散電位の大きさによって薄膜光電変換装置の特性の一つである開放端電圧(Voc)が左右される。一方、これらの導電型層は光電変換に直接寄与しない不活性な層であり、ここで吸収される光はほとんど発電に寄与しない。従って、導電型層は十分な拡散電位を生じさせる範囲内で可能な限り薄く、透明なものであることが好ましい。
 本発明では、シリコンと酸素の非晶質合金中にシリコン結晶相を含むシリコン複合層が、積層型光電変換装置の中間反射層として用いられる。中間反射層として機能させるためには、前方光電変換ユニット3内の光電変換層32と後方光電変換ユニット4内の光電変換層42との間のいずれかの位置に配置させる必要がある。本発明においては、前方光電変換ユニット3の逆導電型層33の後方光電変換ユニット4と接する側に、中間反射層としてのシリコン複合層が用いられる。なお、前方光電変換ユニットの逆導電型層33は、全体がシリコン複合層であってもよい。
 逆導電型層33は、シリコン複合層と、導電型微結晶シリコンや導電型酸化シリコン等との多層構造であってもよい。また、逆導電型層33は、屈折率等の物性値の異なるシリコン複合層が積層された多層構造であってもよく、物性値を積層方向に連続的に変化させたシリコン複合層であってもよい。
 シリコン複合層は、例えば、反応ガスとして、SiH、CO、H、PH(またはB)を用いるプラズマCVD法により形成される。反応ガス供給量は、H/SiH比(水素希釈倍率)が大きい、いわゆる微結晶作製条件で、かつCO/SiH比を2以上とすることが好ましい。プラズマCVDの条件は、例えば、容量結合型の平行平板電極を用いて、電源周波数10MHz~100MHz、パワー密度50mW/cm~500mW/cm、圧力50Pa~1500Pa、基板温度150℃~250℃である。シリコン複合層製膜時のパワー密度は、より好ましくは70mW/cm~300mW/cm、さらに好ましくは100mW/cm~250mW/cmである。また、シリコン複合層製膜時の製膜圧力は、より好ましくは、300Pa~1200Pa、さらに好ましくは500Pa~1100Pa、特に好ましくは700Pa~1000Paである。
 シリコン複合層は、波長600nmの光に対する屈折率が2.5以下であることが好ましく、膜中酸素濃度が25原子%以上であることが好ましい。屈折率と膜中酸素濃度の関係は比較的高い相関がある。屈折率が低い方が、中間反射層としての機能や効果が高まる。シリコン複合層製膜時のCO/SiH比を増加させると、膜中酸素濃度が単調に増加し、屈折率が低下する傾向がある。なお、シリコン複合層の屈折率は、分光エリプソメトリ法により評価できる。また、シリコン複合層中の酸素濃度は、例えば、ウェットエッチング、プラズマエッチング、イオンスパッタリング等により検知位置(深さ)を変化させながら、SIMS、ESCA、EPMA、オージェ電子分光法等により組成を分析することにより測定可能である。
 本発明では、このシリコン複合層が形成された後に、基板が大気中に取り出されることなく、シリコン複合層の直上(逆導電型層33の直上)に後方光電変換ユニット4が形成される。以下、本発明の製造方法の具体的実施形態の一例を、図1の2接合の積層型光電変換装置を例として説明する。
 まず、ガラス等の透明絶縁基板1上に透明導電性酸化(TCO)膜からなる透明電極層2が形成される。この電極付き基板が、プラズマCVD装置に導入され、透明電極層2上に、一導電型層31、実質的に真性の非晶質シリコン系光電変換層32、およびシリコン複合層を含む逆導電型層33がプラズマCVD法により順次形成される。
 一導電型層31、非晶質シリコン系光電変換層32、および逆導電型層33は、プラズマCVD法により、適宜の製膜条件により形成可能である。なお、前述のごとく、逆導電型層33は、少なくとも後方光電変換ユニット4と接する側の表面がシリコン複合層である。シリコン複合層は、先に例示した製膜条件により形成され得る。逆導電型層33におけるシリコン複合層の膜厚は、20nm以上130nm以下が好ましい。膜厚をこの範囲とすることで、中間反射層としての機能や効果が大きくなる傾向がある。
 前方光電変換ユニット3の逆導電型層33が製膜された後、基板が大気中に取り出されることなく、同一の製膜室内で後方光電変換ユニット4の一導電型層41、および光電変換層42が製膜される。このように基板が一旦大気中に取り出されることなく後方光電変換ユニットが形成されることにより、積層型光電変換装置の生産効率が高められる。本発明においては、逆導電型層33が製膜された後、基板が大気中に取り出されることなく同一の製膜室内で、後方光電変換ユニット4の一導電型層41、光電変換層42、および逆導電型層43が製膜されることが好ましい。
 後方光電変換ユニット4の一導電型層41は、結晶質のシリコン系半導体層である。この結晶質の一導電型層41は、例えば、反応ガスとして、SiH、H、B(またはPH)を用いるプラズマCVD法により形成される。反応ガス供給量は、H/SiH比(水素希釈倍率)が大きい、いわゆる微結晶作製条件とすることが好ましい。プラズマCVDの条件は、例えば、電源周波数10MHz~100MHz、パワー密度50mW/cm~500mW/cm、圧力50Pa~1500Pa、基板温度150℃~250℃である。また、本発明においては、一導電型層41としてシリコン複合層を製膜することで、前方光電変換ユニットの逆導電型層33および後方光電変換ユニットの一導電型層41の両方を中間反射層として作用させることもできる。
 一導電型層41上には、実質的に真性の結晶質シリコン系材料からなる結晶質シリコン系光電変換層42が形成される。本発明では、この結晶質シリコン系光電変換層の形成初期のプラズマCVDのパワー密度が、前記シリコン複合層形成時のパワー密度の0.1倍以上、1.0倍未満であることが好ましい。
 結晶質シリコン系光電変換層形成初期のパワー密度を、シリコン複合層形成時のパワー密度よりも小さくすることにより、シリコン複合層の製膜後に大気暴露が行われない場合でも、シリコン複合層中の不純物原子が結晶質シリコン系光電変換層42へ混入することが抑制される。そのため、本発明の製造方法によれば、高温・高湿環境に曝された場合でも、光電変換特性の低下が抑制され、耐久性に優れる積層型光電変換装置が得られる。また、結晶質シリコン系光電変換層の形成初期のパワー密度を、シリコン複合層形成時の圧力の0.1倍以上とすることで、結晶化が進行し易くなるとともに、過度の生産性の低下が抑止される。
 結晶質シリコン系光電変換層42の形成初期のパワー密度は、シリコン複合層形成時のパワー密度の0.4倍~0.9倍であることがより好ましく、0.45倍~0.85倍であることがさらに好ましく、0.5倍~0.8倍であることが特に好ましい。
 なお、本発明においては、結晶質シリコン系光電変換層42の形成初期、すなわち製膜開始時のパワー密度が前記範囲であればよく、結晶質シリコン系光電変換層42のバルク部分のパワー密度が上記範囲を上回っていてもよい。例えば、図2に示すように、光電変換層42の製膜初期部分421は相対的に低パワー密度で製膜が行われ、その後のバルク部分422はパワー密度を上げて製膜が行われることにより、光電変換層42の製膜速度を大きくすることができる。
 このように、結晶質シリコン系光電変換層42の製膜初期部分421とバルク部分422とでパワー密度が変更される場合、不純物の拡散による耐久性の低下を抑止する観点からは、製膜初期の膜厚100nm以上の部分が、前述のごとく相対的に低パワー密度で製膜されることが好ましく、より好ましくは250nm以上、さらに好ましくは400nm以上の部分が相対的に低パワー密度で製膜されることが好ましい。
 一般に、中間反射層としてのシリコン複合層は、前方光電変換ユニットに光を反射させるために、膜厚および屈折率の面内の均一性の緻密な制御が重要であり、低パワー密度で製膜される。低パワー密度での製膜は、膜質の均一性が高められる一方で、製膜速度が減少するため、生産性の低下を招く。しかしながら、中間反射層の膜厚は、高々100nm程度であるため、一般には製膜速度よりも膜質が優先される。
 一方、積層型光電変換装置において、前方光電変換ユニットである非晶質光電変換ユニットと、後方光電変換ユニットである結晶質光電変換ユニットの電流値をマッチングさせるためには、結晶質シリコン系光電変換層の膜厚は1μm~5μm程度とする必要がある。この膜厚は、シリコン複合層の膜厚の10倍から100倍程度であるため、結晶質光電変換層の製膜速度は、積層型光電変換装置の生産性向上におけるボトルネックである。そのため、結晶質光電変換層は、高パワー密度で高速製膜されるのが一般的である。
 これに対して、本発明は、結晶質シリコン系光電変換層を、シリコン複合層よりも低パワー密度で低速製膜するものであり、従来技術とは逆方向の製膜条件を採用することによって、不純物原子の拡散が抑制され、積層型光電変換装置の耐久性が向上するとの新たな知見に基づいてなされたものである。
 本発明の製造方法では、結晶質シリコン系光電変換層の製膜開始時において、相対的に製膜速度が低下する場合があるが、シリコン複合層が製膜された基板を大気中に暴露する工程を必要としないため、従来技術に比してむしろ生産性は向上する。また、結晶質シリコン系光電変換層42のバルク部分422を相対的に高パワー密度で製膜することにより、生産性をより向上することができる。
 結晶質シリコン系光電変換層42のバルク部分422が相対的に高パワー密度で製膜される場合、バルク部分は、前方光電変換ユニット3のシリコン複合層形成時と同等またはそれ以上の高パワー密度で製膜されることがより好ましい。より具体的には、結晶質シリコン系光電変換層42のバルク部分422の製膜パワー密度は、前方光電変換ユニット3のシリコン複合層形成時のパワー密度の1倍~2倍であることが好ましく、1.1倍~1.5倍であることがより好ましい。
 本発明において、不純物原子の拡散を抑制するには、結晶質シリコン系光電変換層の製膜パワー密度の絶対値よりも、シリコン複合層形成時の製膜パワー密度との比が重要である。そのため、結晶質光電変換層の製膜パワー密度を変更することなく、シリコン複合層形成時の製膜パワー密度を高めることによっても、耐久性を向上することが可能である。
 このように、パワー密度の比によって不純物の拡散防止効果が左右される理由は定かではないが、相対的に低パワー密度で製膜が行われることによって、先に製膜されたシリコン複合層のプラズマエチングや、シリコン複合層製膜時の装置壁面への付着物のプラズマエッチングが抑制されることが一因であると考えられる。すなわち、シリコン複合層(あるいはその装置壁面への付着物)のプラズマエッチングが抑制されることにより、シリコン複合層の構成元素である炭素、酸素、導電型決定不純物(リン、ホウ素等)が、結晶質光電変換層内に不純物として取り込まれ難くなるために、結晶質光電変換層の膜質が向上すると考えられる。
 本発明の積層型光電変換装置は、結晶質光電変換層42の膜中不純物濃度が小さいことが好ましい。具体的には、炭素濃度は、2×1017atm/cm以下であることが好ましく、1×1017atm/cm以下であることがより好ましい。酸素濃度は、3×1018atm/cm以下であることが好ましく、2×1018atm/cm以下であることがより好ましい。リン濃度およびホウ素濃度は、2×1017atm/cm以下であることが好ましく、1×1017atm/cm以下であることがより好ましい。膜中不純物濃度は、二次イオン質量分析法(SIMS)により定量可能である。
 さらに、本発明の好ましい形態において、後方光電変換ユニット4の結晶質シリコン系光電変換層42の形成開始時の製膜圧力は、前方光電変換ユニット3の逆導電型層33のシリコン複合層形成時の製膜圧力と同等またはそれ以上に設定される。結晶質シリコン系光電変換層42の形成開始時の製膜圧力は、シリコン複合層形成時の製膜圧力の1倍~5倍がより好ましく、1.1倍~2倍がさらに好ましい。製膜圧力が高められることで、シリコン複合層中の不純物原子の結晶質シリコン系光電変換層42への混入が、より抑制される傾向がある。一方、パワー密度が同一である場合、製膜圧力が高められると、製膜速度は低下する傾向がある。そのため、本発明においては、結晶質シリコン系光電変換層42の形成開始時における製膜圧力とパワー密度の比(パワー密度/製膜圧力、単位:mW/cm・Pa)が、シリコン複合層形成時の製膜圧力とパワー密度の比の0.1倍~1倍であることが好ましく、0.4倍~0.9倍であることがさらに好ましい。
 さらに、本発明においては、後方光電変換ユニット4の結晶質の一導電型層41が形成される時のパワー密度が、シリコン複合層形成時のパワー密度の0.1倍以上、1倍未満の範囲であることが好ましい。一導電型層41形成時のパワー密度は、シリコン複合層形成時のパワー密度の0.1倍~0.9倍がより好ましく、0.4倍~0.8倍がさらに好ましい。また、後方光電変換ユニット4の結晶質の一導電型層41が形成される時の製膜圧力は、シリコン複合層形成時の製膜圧力と同等またはそれ以上であることが好ましい。一導電型層41製膜時の製膜圧力は、シリコン複合層形成時の製膜圧力の1倍~5倍がより好ましく、1.1倍~2倍がさらに好ましい。
 後方光電変換ユニット4の結晶質の一導電型層41が相対的に低パワー密度・高圧で製膜されることにより、逆導電型層33のシリコン複合層と、後方光電変換ユニット4の結晶質の一導電型層41との接合を良好とすることができるとともに、結晶質光電変換層42への不純物の拡散が抑制される傾向がある。また、同様の観点から、結晶質の一導電型層41形成時の製膜圧力とパワー密度の比(パワー密度/製膜圧力、単位:mW/cm・Pa))は、シリコン複合層形成時の製膜圧力とパワー密度の比の0.1倍~1倍であることが好ましく、0.4倍~0.9倍であることがさらに好ましい。
 結晶質光電変換層42上には、適宜の製膜条件のプラズマCVD法により逆導電型層43が形成される。逆導電型層としては、結晶質シリコンや、SiO,SiC,SiN等の非晶質合金中にシリコン結晶相が混在する複合シリコン等の結晶質材料が好適である。また、逆導電型層43は、複数の導電型層が積層されたものであってもよい。
 後方光電変換ユニット4上に、裏面電極層5が形成される。裏面電極層5としては、Al、Ag、Au、Cu、Pt、Cr等からなる金属層をスパッタ法、蒸着法等により形成することが好ましい。また、光電変換ユニットと金属層との間に、ITO、SnO、ZnO等の導電性酸化物からなる層を形成することが、光閉じ込め効果を増大させる観点から好ましい。なお、裏面電極層は、導電性酸化物層の厚みを適宜に調整して反射特性を最適化することにより、金属層を含まない導電性酸化物の単層からなるものとすることもできる。
 以上、非晶質光電変換ユニット3と結晶質光電変換ユニット4とを有する2接合の積層型光電変換装置を例として説明したが、本発明は、3以上の光電変換ユニットを有する多接合の積層型光電変換装置にも適用し得る。例えば光入射側から第一光電変換ユニット、第二光電変換ユニット、第三光電変換ユニットの順に配置された3接合の積層型光電変換装置において、第一光電変換ユニットおよび第二光電変換ユニットを、それぞれ前方光電変換ユニットおよび後方光電変換ユニットとして、これらの光電変換ユニットの境界に導電型のシリコン複合層を有する構成が挙げられる。また、第二光電変換ユニットおよび第三光電変換ユニットを、それぞれ前方光電変換ユニットおよび後方光電変換ユニットとして、両者の境界に導電型のシリコン複合層を有する構成が挙げられる。3接合型の光電変換装置では、第一光電変換ユニットと第二光電変換ユニットの境界、および第二光電変換ユニットと第三光電変換ユニットの境界の両方にシリコン複合層が設けられていてもよい。
 3接合の積層型光電変換装置としては、例えば第一光電変換ユニットに非晶質シリコン光電変換ユニット、第二光電変換ユニットに非晶質シリコンゲルマニウムあるいは結晶質シリコン系光電変換ユニット、第三光電変換ユニットに非晶質シリコンゲルマニウムあるいは結晶質シリコン系光電変換ユニットを適用する場合などが挙げられる。なお、多接合型積層光電変換装置の光電変換ユニットの組み合わせは上記の限りではなく、その他各種の組合せであってもよい。
 以下においては、実施例として、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットとが積層された2接合型の積層型光電変換装置を挙げ、従来技術による比較例との対比により本発明を詳細に説明する。なお、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。
 (実施例1)
 実施例1では、図1に模式的に示す積層型光電変換装置が作製された。まず、透明なガラス基板1上にSnOを主成分とする透明電極層2が形成された。透明電極層付きの基板が第一プラズマCVD装置に導入され、昇温後に、非晶質光電変換ユニット3として、p型非晶質シリコンカーバイド層31、非晶質シリコン光電変換層32、およびn型シリコン複合層33が、それぞれ15nm、300nm、および50nmの厚さで製膜された。
 n型シリコン複合層33の製膜は、ガス流量比を、SiH/CO/PH/H=1/2.5/0.025/350とし、製膜圧力:990Pa、電源周波数:13.56MHz、パワー密度:163.7mW/cm、基板温度:180℃の条件で行われた。得られたn型シリコン複合層33は、600nmの光に対する屈折率が2.0であった。
 n型シリコン複合層33の製膜後、第一プラズマCVD装置の真空排気が行われた。その後、基板を大気中に取り出すことなく、結晶質光電変換ユニット4のp型微結晶シリコン層(一導電型層)41が15nmの厚さで製膜された。p型微結晶シリコン層41の製膜は、ガス流量比を、SiH/B/H=1/0.0028/222とし、製膜圧力:990Pa、電源周波数:13.56MHz、パワー密度:148.8mW/cm、基板温度:170℃の条件で行われた。
 その後、結晶質シリコン光電変換層42が、2.5μmの厚さで製膜された。結晶質シリコン光電変換層42の製膜は、ガス流量比をSiH/H=1/115とし、製膜圧力:990Pa、電源周波数:13.56MHz、パワー密度:148.8mW/cm、基板温度:160℃の条件で行われた。
 その後、逆導電型層としてn型微結晶シリコン層43が、15nmの厚さで製膜された。n型微結晶シリコン層43の製膜は、ガス流量比を、SiH/PH/H=1/0.015/200とし、製膜圧力:990Pa、電源周波数:13.56MHz、パワー密度:74.4mW/cm、基板温度:180℃の条件で行われた。
 このようにして形成された結晶質光電変換ユニット上に、裏面電極層5として、厚さ90nmのAlドープされたZnO層、および厚さ200nmのAg層が、スパッタ法により順次形成された。
 以上の各工程を経て、非晶質シリコン光電変換ユニットと結晶質シリコン光電変換ユニットとが積層された2接合型の積層型光電変換装置が作製された。なお、光電変換装置の素子として完成させるために、上記以外に、素子分離や電極取り出し部形成等の工程が、常法に従って実施されたが、これらの工程の詳細はここでは省略する。
 25℃の環境下で、ソーラーシミュレーターを用いて、AM1.5の光を100mW/cmの光量で照射して、実施例1の積層型光電変換装置の光電変換特性を測定したところ、開放端電圧(Voc)=1.38V、短絡電流密度(Isc)=11.13mA/cm、曲線因子(F.F.)=0.730、変換効率(Eff.)=11.18%であった。
 (実施例2)
 実施例2では、n型シリコン複合層33の製膜において、ガス流量比がSiH/CO/PH/H=1/2.0/0.025/350に変更され、製膜圧力が750Paに変更された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。実施例2において、CO流量比が実施例1から変更されたのは、製膜圧力の変更に伴ってSiHと/CO流量比の最適値が変化することを補うためである。実施例2においても、n型シリコン複合層33の、600nmの光に対する屈折率は2.0であった。
 実施例2の積層型光電変換装置の光電変換特性は、Voc=1.38V、Isc=11.27mA/cm、F.F.=0.723、Eff.=11.21%であった。
(実施例3)
 実施例3では、後方光電変換ユニット4の結晶質シリコン光電変換層42の製膜において、ガス流量比がSiH/H=1/150に変更され、パワー密度が110.0mW/cmに変更された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。実施例3において、SiH/H流量比が実施例1から変更されたのは、パワー密度を低下させたことによる結晶質シリコン光電変換層の結晶化度のずれを補正するためである。
 実施例3の積層型光電変換装置の光電変換特性は、Voc=1.39V、Isc=11.12mA/cm、F.F.=0.728、Eff.=11.24%であった。
(実施例4)
 実施例4では、後方光電変換ユニット4の結晶質シリコン光電変換層42の製膜において、パワー密度が70.0mW/cmに変更されるとともに、結晶化度のずれを補正するために、ガス流量比がSiH/H=1/250に変更された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。実施例4の積層型光電変換装置の光電変換特性は、Voc=1.37V、Isc=11.62mA/cm、F.F.=0.720、Eff.=11.44%であった。
(実施例5)
 実施例5では、後方光電変換ユニット4の結晶質シリコン光電変換層42の製膜において、実施例1と同様の製膜条件で厚み0.5μmの初期部分421の製膜が行われた。その後、プラズマ放電およびガス供給を止めることなく、パワー密度が208.3に変更されるとともに、水素ガス流量を減少させることによりガス流量比がSiH/H=1/97に変更され、結晶質シリコン光電変換層のバルク部分422が2.0μmの厚さで製膜された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。実施例4の積層型光電変換装置の光電変換特性は、Voc=1.34V、Isc=11.37mA/cm、F.F.=0.718、Eff.=10.99%であった。
(比較例1)
 比較例1では、n型シリコン複合層33の製膜において、パワー密度が163.7mW/cmに変更されるとともに、SiHと/CO流量比を最適化するために、ガス流量比がSiH/CO/PH/H=1/2.5/0.025/350に変更された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。比較例1においても、n型シリコン複合層33の、600nmの光に対する屈折率は2.0であった。比較例1の積層型光電変換装置の光電変換特性は、Voc=1.37V、Isc=11.03mA/cm、F.F.=0.725、Eff.=10.93%であった。
(比較例2)
 比較例2では、後方光電変換ユニット4の結晶質シリコン光電変換層42の製膜において、パワー密度が208.3mW/cmに変更されるとともに、結晶化度のずれを補正するために、ガス流量比がSiH/H=1/97に変更された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。比較例2の積層型光電変換装置の光電変換特性は、Voc=1.36V、Isc=11.14mA/cm、F.F.=0.729、Eff.=11.05%であった。
(比較例3)
 比較例3では、後方光電変換ユニット4の結晶質シリコン光電変換層42の製膜において、製膜圧力が1200Paに変更されるとともに、結晶化度のずれを補正するために、ガス流量比がSiH/H=1/108に変更された。それ以外は比較例2と同様にして、2接合型の積層型光電変換装置が作製された。比較例3の積層型光電変換装置の光電変換特性は、Voc=1.36V、Isc=11.35mA/cm、F.F.=0.726、Eff.=11.22%であった。
(比較例4)
 比較例4では、後方光電変換ユニット4の結晶質シリコン光電変換層42の製膜において、パワー密度が167.3mW/cmに変更されるとともに、結晶化度のずれを補正するために、ガス流量比がSiH/H=1/105に変更された。それ以外は実施例1と同様にして、2接合型の積層型光電変換装置が作製された。比較例4の積層型光電変換装置の光電変換特性は、Voc=1.37V、Isc=11.39mA/cm、F.F.=0.720、Eff.=11.20%であった。
[結晶質光電変換層中の不純物の定量]
 上記各実施例および比較例の積層型光電変換装置の結晶質シリコン光電変換層中の不純物(C,OおよびP)濃度を、二次イオン質量分析法(SIMS)により定量し、製膜初期から500nmの膜厚範囲における平均値を不純物量とした。なお、実施例5では、結晶質光電変換層42の製膜初期部分421とバルク部分422とで製膜条件(パワー密度)が異なっているが、両者の間に不純物量の明確な差はみられなかった。
[加熱加湿耐久試験]
 上記各実施例および比較例の積層型光電変換装置を、温度85℃、湿度85%の恒温恒湿環境に20時間暴露した後、ソーラーシミュレーターを用いて光電変換特性を測定し、加熱加湿試験前の初期変換効率Effに対する試験後の変換効率Effの変化率(性能低下率)(%)=(Eff-Eff)×100/Effを算出した。性能低下率が小さいほど耐久性に優れることを示す。
[評価結果]
 上記各実施例および比較例における、n型シリコン複合層の製膜条件(パワー密度および圧力)、結晶質シリコン光電変換層の製膜条件(パワー密度および圧力)、初期変換効率Eff、加熱加湿耐久試験後の変換効率Eff、ならびに加熱加湿耐久試験による性能低下率を表1に示す。
 なお、表1において、「パワー密度比」は、シリコン複合層と後方光電変換ユニットの結晶質光電変換層形成時のパワー密度の比であり、後方光電変換ユニットの光電変換層形成時のパワー密度をシリコン複合層形成時のパワー密度で除した(割った)値を表す。また、表1における「圧力比」は、シリコン複合層と後方光電変換ユニットの結晶質光電変換層形成時の製膜圧力の比であり、後方光電変換ユニットの光電変換層形成時の製膜圧力をシリコン複合層形成時の製膜圧力で除した(割った)値を表す。パワー密度比、圧力比が1より大きいことは、後方光電変換ユニットの光電変換層が、シリコン複合層よりも高パワー密度、高圧で製膜されたことを表す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、各実施例の積層型光電変換装置は、比較例の積層型光電変換装置と同等以上の初期変換効率Effを有しており、かつ高温・高湿環境に暴露された後の変換効率Effも高い値を維持している。
 性能低下率についてより詳細にみると、結晶質シリコン光電変換層が、シリコン複合層の2倍のパワー密度で製膜された比較例1は、高温高湿環境に暴露後の性能低下が著しい。比較例1,比較例2,比較例4,実施例1および実施例3を対比すると、パワー密度比が小さくなるにしたがって、高温高湿環境に暴露後の性能低下率が小さくなっていることがわかる。なお、実施例1と比較例1は、結晶質光電変換層の製膜圧力が同一であるが、パワー密度比が小さい実施例1では、性能低下率が小さくなっている(耐久性が向上している)。これらの結果から、結晶質光電変換層製膜時のパワー密度の値よりも、シリコン複合層と結晶質光電変換層の製膜時のパワー密度比を所定範囲とすることが、耐久性の向上に寄与していることがわかる。
 実施例4は、実施例3に比してパワー密度比がより小さくされているが、性能低下率は同等である。積層型光電変換装置の生産性を考慮すると、パワー密度比は高い方が好ましいことから、生産性と耐久性とを両立する観点から、パワー密度比は0.5以上が特に好ましいといえる。
 シリコン複合層および結晶質光電変換層の製膜初期部分が実施例1と同一の製膜パワー密度で製膜され、結晶質光電変換層のバルク部分が比較例2と同等の高パワー密度で製膜された実施例5は、初期変換効率Effは比較例2と同等であったが、加熱加湿試験後の変換効率Effは比較例2よりも高く、耐久性に優れていた、この結果から、結晶質光電変換層の製膜初期部分を低パワー密度で製膜し、残りのバルク部分はパワー密度を高めて製膜することによって、高い耐久性を維持しつつ、積層型光電変換装置の生産性が高められることがわかる。
 実施例1と実施例2との対比、および比較例2と比較例3との対比によれば、シリコン複合層と結晶質光電変換層の製膜時の圧力比を大きくすることによっても、耐久性が向上することがわかる。なお、各実施例、比較例の結果を総合すると、圧力比を大きくするよりも、パワー密度比を小さくする方が、耐久性の向上により顕著に作用する傾向がみられる。
 各実施例および比較例の結晶質シリコン光電変換層中の不純物濃度を、表2に示す(ただし、実施例3は未測定)。なお、表2では、炭素(C)、酸素(O)およびリン(P)の各原子の膜中濃度の値に加えて、比較例1における各原子の膜中濃度に対する相対値を示している。
Figure JPOXMLDOC01-appb-T000002
 表2によれば、各実施例では、各比較例に比して、結晶質光電変換層中の不純物濃度(特に炭素原子濃度および酸素原子濃度)が小さくなっており、不純物濃度と性能低下率との間に高い相関がみられる。これらの結果から、本発明においては、所定の製膜条件を採用することによって、後方光電変換ユニットへのシリコン複合層中不純物の混入が抑制される結果、耐久性が向上していると考えられる。
  1   透明絶縁基板
  2   透明電極層
  3   前方光電変換ユニット(非晶質光電変換ユニット)
  31  一導電型層(p型シリコン系層)
  32  光電変換層(i型非晶質シリコン系光電変換層)
  33  逆導電型層(シリコン複合層を含むn型層)
  4   後方光電変換ユニット(結晶質光電変換ユニット)
  41  一導電型層(p型結晶質シリコン系層)
  42  光電変換層(i型結晶質シリコン系光電変換層)
  421 製膜初期部分
  422 バルク部分
  43  逆導電型層(n型シリコン系層)
  5   裏面電極層

Claims (9)

  1.  光入射側から、前方光電変換ユニットおよび後方光電変換ユニットを少なくとも備える積層型光電変換装置の製造方法であって、
     プラズマCVD法により前方光電変換ユニットが形成される工程、および前記前方光電変換ユニット上に、プラズマCVD法により後方光電変換ユニットが形成される工程を有し、
     前記前方光電変換ユニット形成工程において、一導電型層、実質的に真性の非晶質シリコン系光電変換層、および逆導電型層がこの順に形成され、前方光電変換ユニットの逆導電型層は、少なくとも、後方光電変換ユニットと接する側が、シリコンと酸素とを含有する非晶質合金中にシリコン結晶相が混在するシリコン複合層であり、
     前記後方光電変換ユニット形成工程において、結晶質の一導電型層、実質的に真性の結晶質シリコン系光電変換層、および逆導電型層がこの順に形成され、
     前記シリコン複合層が形成された後、大気中に取り出されることなく同一の製膜室内で、後方光電変換ユニットの結晶質の一導電型層および結晶質シリコン系光電変換層が形成され、
     前記後方光電変換ユニットの結晶質シリコン系光電変換層の炭素濃度が1×1017atm/cm以下であり、酸素濃度が2×1018atm/cm以下である、積層型光電変換装置の製造方法。
  2.  前記後方光電変換ユニットの結晶質シリコン系光電変換層の形成開始時のパワー密度が、前記前方光電変換ユニットのシリコン複合層形成時のパワー密度の0.1倍以上、1倍未満の範囲である、請求項1に記載の積層型光電変換装置の製造方法。
  3.  前記後方光電変換ユニットの結晶質シリコン系光電変換層の形成開始時の製膜圧力が、前記前方光電変換ユニットのシリコン複合層形成時の製膜圧力よりも高いことを特徴とする、請求項1または2に記載の積層型光電変換装置の製造方法。
  4.  前記後方光電変換ユニットの結晶質シリコン系光電変換層は、形成初期部分が前方光電変換ユニットのシリコン複合層形成時のパワー密度の0.1倍以上、1倍未満のパワー密度で製膜された後、残部のバルク部分が、形成初期部分よりも高パワー密度で製膜される、請求項1~3のいずれか1項に記載の積層型光電変換装置の製造方法。
  5.  前記後方光電変換ユニットの結晶質シリコン系光電変換層の前記バルク部分形成時のパワー密度が、前記前方光電変換ユニットのシリコン複合層形成時のパワー密度以上である請求項4に記載の積層型光電変換装置の製造方法。
  6.  光入射側から、前方光電変換ユニットおよび後方光電変換ユニットを少なくとも備える積層型光電変換装置の製造方法であって、
     プラズマCVD法により前方光電変換ユニットが形成される工程、および前記前方光電変換ユニット上に、プラズマCVD法により後方光電変換ユニットが形成される工程を有し、
     前記前方光電変換ユニット形成工程において、一導電型層、実質的に真性の非晶質シリコン系光電変換層、および逆導電型層がこの順に形成され、前方光電変換ユニットの逆導電型層は、少なくとも、後方光電変換ユニットと接する側が、シリコンと酸素とを含有する非晶質合金中にシリコン結晶相が混在するシリコン複合層であり、
     前記後方光電変換ユニット形成工程において、結晶質の一導電型層、実質的に真性の結晶質シリコン系光電変換層、および逆導電型層がこの順に形成され、
     前記シリコン複合層が形成された後、大気中に取り出されることなく同一の製膜室内で、後方光電変換ユニットの結晶質の一導電型層および結晶質シリコン系光電変換層が形成され、
     後方光電変換ユニットの結晶質シリコン系光電変換層の形成開始時のパワー密度が、前方光電変換ユニットのシリコン複合層形成時のパワー密度の0.1倍以上、1倍未満の範囲である、積層型光電変換装置の製造方法。
  7.  前記後方光電変換ユニットの結晶質シリコン系光電変換層の形成開始時の製膜圧力が、前記前方光電変換ユニットのシリコン複合層形成時の製膜圧力よりも高いことを特徴とする、請求項6に記載の積層型光電変換装置の製造方法。
  8.  前記後方光電変換ユニットの結晶質シリコン系光電変換層は、形成初期部分が前方光電変換ユニットのシリコン複合層形成時のパワー密度の0.1倍以上、1倍未満のパワー密度で製膜された後、残部のバルク部分が、形成初期部分よりも高パワー密度で製膜される、請求項6または7に記載の積層型光電変換装置の製造方法。
  9.  前記後方光電変換ユニットの結晶質シリコン系光電変換層の前記バルク部分形成時のパワー密度が、前記前方光電変換ユニットのシリコン複合層形成時のパワー密度以上である請求項8に記載の積層型光電変換装置の製造方法。
PCT/JP2012/070448 2011-08-11 2012-08-10 積層型光電変換装置の製造方法 WO2013022086A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013528077A JP5675993B2 (ja) 2011-08-11 2012-08-10 積層型光電変換装置の製造方法
EP12821765.0A EP2743992B1 (en) 2011-08-11 2012-08-10 METHOD FOR PRODUCING A STACKABLE PHOTOELECTRIC CONVERTER DEVICE
CN201280039241.6A CN103733356B (zh) 2011-08-11 2012-08-10 叠层型光电转换装置的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-176400 2011-08-11
JP2011176400 2011-08-11

Publications (1)

Publication Number Publication Date
WO2013022086A1 true WO2013022086A1 (ja) 2013-02-14

Family

ID=47668588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070448 WO2013022086A1 (ja) 2011-08-11 2012-08-10 積層型光電変換装置の製造方法

Country Status (4)

Country Link
EP (1) EP2743992B1 (ja)
JP (1) JP5675993B2 (ja)
CN (1) CN103733356B (ja)
WO (1) WO2013022086A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045129A (ja) 2003-07-24 2005-02-17 Kaneka Corp 積層型光電変換装置及びその製造方法
JP2005277303A (ja) 2004-03-26 2005-10-06 Kaneka Corp 積層型光電変換装置の製造方法
WO2007026480A1 (ja) * 2005-08-30 2007-03-08 Kaneka Corporation シリコン系薄膜光電変換装置、及びその製造方法
JP2010267860A (ja) 2009-05-15 2010-11-25 Kaneka Corp 積層型光電変換装置の製造方法
JP2011135053A (ja) * 2009-11-30 2011-07-07 Sanyo Electric Co Ltd 光電変換装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004259485B2 (en) * 2003-07-24 2009-04-23 Kaneka Corporation Stacked photoelectric converter
JP4886746B2 (ja) * 2008-08-21 2012-02-29 株式会社カネカ 積層型光電変換装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005045129A (ja) 2003-07-24 2005-02-17 Kaneka Corp 積層型光電変換装置及びその製造方法
JP2005277303A (ja) 2004-03-26 2005-10-06 Kaneka Corp 積層型光電変換装置の製造方法
WO2007026480A1 (ja) * 2005-08-30 2007-03-08 Kaneka Corporation シリコン系薄膜光電変換装置、及びその製造方法
JP2010267860A (ja) 2009-05-15 2010-11-25 Kaneka Corp 積層型光電変換装置の製造方法
JP2011135053A (ja) * 2009-11-30 2011-07-07 Sanyo Electric Co Ltd 光電変換装置及びその製造方法

Also Published As

Publication number Publication date
EP2743992A4 (en) 2015-04-08
JPWO2013022086A1 (ja) 2015-03-05
CN103733356B (zh) 2016-05-11
EP2743992B1 (en) 2020-07-08
EP2743992A1 (en) 2014-06-18
CN103733356A (zh) 2014-04-16
JP5675993B2 (ja) 2015-02-25

Similar Documents

Publication Publication Date Title
KR100976010B1 (ko) 실리콘계 박막 광전 변환 장치, 및 그의 제조 방법
US8410355B2 (en) Thin film photoelectric conversion device having a stacked transparent oxide and carbon intermediate layer
JP2006310503A (ja) 積層型光起電力装置
JP4940290B2 (ja) 光電変換装置及びその製造方法
JP2008277387A (ja) 光電変換装置の製造方法
JP2010283161A (ja) 太陽電池及びその製造方法
JP2006147759A (ja) カルコパイライト型薄膜太陽電池の製造方法
JP4025744B2 (ja) 積層型光電変換装置の製造方法
JP4904311B2 (ja) 薄膜光電変換装置用透明導電膜付き基板の製造方法
JP5533448B2 (ja) 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
WO2008059857A1 (fr) Dispositif de conversion photoélectrique en film mince
JP5180574B2 (ja) 多接合型シリコン系薄膜光電変換装置
JP4565912B2 (ja) 多接合型半導体素子及びこれを用いた太陽電池素子
WO2011024867A1 (ja) 積層型光起電力素子および積層型光起電力素子の製造方法
WO2010104041A1 (ja) 薄膜太陽電池およびその製造方法
JP5675993B2 (ja) 積層型光電変換装置の製造方法
JP2011192896A (ja) 薄膜太陽電池およびその製造方法
JP2010267885A (ja) シリコン系薄膜光電変換装置とその製造方法
JP2011014618A (ja) 太陽電池及びその製造方法
JP4642126B2 (ja) 積層型光起電力素子および積層型光起電力素子の製造方法
JP5022246B2 (ja) 多接合型シリコン系薄膜光電変換装置
JP5409675B2 (ja) 薄膜太陽電池およびその製造方法
JP5373045B2 (ja) 光電変換装置
JP2011216586A (ja) 積層型光電変換装置および積層型光電変換装置の製造方法
JP2010267860A (ja) 積層型光電変換装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280039241.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE