WO2005011002A1 - シリコン系薄膜太陽電池 - Google Patents
シリコン系薄膜太陽電池 Download PDFInfo
- Publication number
- WO2005011002A1 WO2005011002A1 PCT/JP2004/010248 JP2004010248W WO2005011002A1 WO 2005011002 A1 WO2005011002 A1 WO 2005011002A1 JP 2004010248 W JP2004010248 W JP 2004010248W WO 2005011002 A1 WO2005011002 A1 WO 2005011002A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- layer
- refractive index
- solar cell
- photoelectric conversion
- Prior art date
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 137
- 239000010703 silicon Substances 0.000 title claims abstract description 137
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 136
- 239000010409 thin film Substances 0.000 title claims abstract description 60
- 238000006243 chemical reaction Methods 0.000 claims abstract description 90
- 229910021419 crystalline silicon Inorganic materials 0.000 claims abstract description 20
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 11
- 239000001301 oxygen Substances 0.000 claims abstract description 11
- 239000000470 constituent Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 12
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 11
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 237
- 239000010408 film Substances 0.000 description 23
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 17
- 239000004065 semiconductor Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 239000000758 substrate Substances 0.000 description 13
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 230000031700 light absorption Effects 0.000 description 9
- 239000011787 zinc oxide Substances 0.000 description 9
- 229910021417 amorphous silicon Inorganic materials 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- 238000000926 separation method Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000001678 irradiating effect Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 238000000391 spectroscopic ellipsometry Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910017875 a-SiN Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- XJKVPKYVPCWHFO-UHFFFAOYSA-N silicon;hydrate Chemical compound O.[Si] XJKVPKYVPCWHFO-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- HUAUNKAZQWMVFY-UHFFFAOYSA-M sodium;oxocalcium;hydroxide Chemical compound [OH-].[Na+].[Ca]=O HUAUNKAZQWMVFY-UHFFFAOYSA-M 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/0445—PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
- H01L31/077—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells the devices comprising monocrystalline or polycrystalline materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
- H01L31/056—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/075—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
- H01L31/076—Multiple junction or tandem solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
Definitions
- the present invention relates to a silicon-based thin-film solar cell, and in particular, a thin-film solar that exhibits a light confinement effect by disposing a layer having a smaller refractive index than the photoelectric conversion layer behind the photoelectric conversion layer viewed from the light incident side. It relates to batteries. Background art
- thin-film solar cells have also diversified, and in addition to conventional amorphous thin-film solar cells, crystalline thin-film solar cells have been developed, and hybrid thin-film solar cells in which these are stacked are also put into practical use.
- a thin film solar cell generally includes a first electrode, one or more semiconductor thin film photoelectric conversion units, and a second electrode, which are sequentially stacked on a substrate.
- One photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer.
- the i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit, and the photoelectric conversion action mainly occurs in the i-type layer. For this reason, this i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer.
- the photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped with a small amount of p-type or n-type as long as loss of light absorbed by a doped impurity does not cause a problem.
- the photoelectric conversion layer is preferably thicker for light absorption, but if it is thicker than necessary, the cost and time for film formation will increase.
- the p-type and n-type conductive layers play a role in generating a diffusion potential in the photoelectric conversion unit, and the open-circuit voltage, which is one of the important characteristics of thin-film solar cells, depends on the magnitude of this diffusion potential. The value of depends on.
- these conductive layers are inactive layers that do not directly contribute to photoelectric conversion, and the light absorbed by the impurities doped in the conductive layer is a loss that does not contribute to power generation. Therefore, p-type and n-type conductive layers can be used as long as they are within the range that can generate a sufficient diffusion potential. It is preferable to keep the thickness as small as possible.
- the pin (nip) type photoelectric conversion unit or thin film solar cell as described above has its main part regardless of whether the p-type and n-type conductive layers included therein are amorphous or crystalline.
- the photoelectric conversion layer occupying is amorphous, it is called an amorphous unit or an amorphous thin-film solar cell, and when the photoelectric conversion layer is crystalline, it is called a crystalline unit or a crystalline thin-film solar cell. .
- a method for improving the conversion efficiency of a thin-film solar cell there is a method in which two or more photoelectric conversion units are stacked to form a tandem type.
- a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed thereafter.
- This enables photoelectric conversion over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire solar cell.
- tandem solar cells those in which an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are laminated are referred to as hybrid thin film solar cells.
- the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline silicon has a longer wavelength of about 110 nm.
- an amorphous silicon photoelectric conversion layer with a large light absorption coefficient may have a thickness of about 0.3 ⁇ or less for light absorption, but a crystalline silicon photoelectric conversion layer with a small light absorption coefficient is long.
- Arranging behind the photoelectric conversion layer when viewed from the light incident side means that it is in contact with the photoelectric conversion layer and arranged on the back side of the photoelectric conversion layer, or another layer is arranged on the back side of the photoelectric conversion layer, and the layer is sandwiched between them. Means that it is placed on the back side.
- a transparent first electrode an amorphous silicon semiconductor thin film (hereinafter simply referred to as a semiconductor thin film), and an oxide having a thickness of less than 120 OA
- a semiconductor thin film an amorphous silicon semiconductor thin film
- an oxide having a thickness of less than 120 OA The structure of a solar cell in which a zinc film and an opaque second electrode (metal electrode) are sequentially laminated is disclosed.
- the zinc oxide film has a function of preventing an increase in absorption loss due to the formation of silicide at the interface between the semiconductor thin film and the metal electrode.
- the semiconductor thin film / zinc oxide It has the effect of improving the reflectance at the film interface. This improves the short-circuit current density of the solar cell and improves the conversion efficiency.
- the zinc oxide film is formed by sputtering, spraying, etc., it is necessary to use equipment that is separate from the semiconductor thin film that is generally formed by the plasma CVD method. The problem of lengthening occurs.
- the semiconductor thin film described above is composed of a p-type a-SiC: H film, a non-doped a_Si: H film, and an n-type a-Si: H film.
- the thickness of the n-type a _S i: H film generally requires 1 5 0 to 3 0 0 A
- the absorption loss of light when passing through the n-type a—S i: H film cannot be ignored.
- amorphous silicon oxide (hereinafter a-SiN or a_SiO) Z metal oxide layer / highly reflective metal layer / substrate structure is disclosed.
- this a—S i ON (a-S i O) layer has an amorphous semiconductor layer on the metal oxide layer.
- It is formed for the purpose of preventing an increase in absorption loss due to reduction of the metal oxide layer that may occur during the formation, and includes an a—S i ON (a-S i O) layer and an intrinsic amorphous semiconductor.
- optical confinement can be performed using the difference in refractive index with the layer.
- the thickness of the a—S i ON (a—S i O) layer is set as thin as 200 A, a sufficient light confinement effect cannot be expected.
- Japanese Patent Laid-Open No. 6-267868 includes a microcrystalline phase of silicon characterized by decomposition of a raw material gas having a value of 0 2 (SiH 4 + C0 2 ) of 0 ⁇ 6 or less.
- a—SiO film formation method is disclosed. The film is described as shows a low absorption coefficient and a high photoconductivity above 10- 6 SZc m, suitable for a window layer of amorphous silicon solar cell.
- the refractive index of the obtained film there is no description regarding the refractive index of the obtained film, and there is no description that the film can be disposed behind the photoelectric conversion layer of the solar cell when viewed from the light incident side.
- the present inventors have used Si H 4 , C 0 2 , H 2 and PH 3 as reactive gases in the n-type layer of pin-type silicon thin film solar cells.
- the application of a silicon oxide layer by high frequency plasma CVD was investigated.
- the silicon oxide layer is placed behind the photoelectric conversion layer and the C0 2 / SiH 4 ratio is increased to increase the amount of oxygen in the layer, resulting in a difference in refractive index from the photoelectric conversion layer. It was found that increasing the value increases the light confinement effect and increases the short-circuit current of the solar cell.
- silicon oxide simply using silicon oxide as the n-type layer has the problem that the series resistance of the solar cell increases and the conversion efficiency decreases. This is thought to be due to the contact resistance between silicon oxide and a metal oxide layer such as Z ⁇ that is part of the back electrode.
- the conventional technology has not solved the problem of the series resistance of solar cells, which is considered to be caused by the contact resistance generated between the silicon-based low refractive layer typified by silicon oxide and the back electrode.
- the present invention provides a layer having a refractive index lower than that of the photoelectric conversion layer as viewed from the light incident side without using a photoelectric conversion layer and other types of equipment. By arranging it rearward, it can exert a sufficient light confinement effect, and It is an object of the present invention to provide a silicon-based thin film solar cell with high efficiency and low cost, which can keep the series resistance of the solar cell small even when a layer having a low refractive index is disposed.
- a silicon-based thin-film solar cell according to the present invention is a silicon-based thin-film solar cell in which a silicon-based low refractive index layer and a silicon-based interface layer are sequentially disposed behind a photoelectric conversion layer as viewed from the light incident side. .
- the silicon-based low refractive index layer plays a role of generating a diffusion potential in the photoelectric conversion layer, and is a layer doped p-type or n-type with impurities.
- the silicon-based low-refractive index layer effectively reflects light on the surface to the photoelectric conversion layer side and keeps the light absorption loss in the layer as small as possible. Therefore, the refractive index at a wavelength of 60 nm is 2 It is preferable that the thickness is 5 or less and the thickness is 30 OA or more.
- the silicon-based low refractive index layer is an alloy layer composed of elements such as silicon and oxygen, represented by silicon oxide, and the ratio of the most abundant constituent elements excluding silicon in the layer is 25 atomic% or more.
- the silicon-based low refractive index layer preferably contains a crystalline silicon component in the layer in order to reduce the resistance in the thickness direction of the layer itself.
- the silicon-based interface layer is a conductive layer mainly composed of silicon. Since the silicon-based interface layer does not need to contribute to the generation of the diffusion potential in the photoelectric conversion layer, the thickness is preferably 15 OA or less in order to keep the light absorption loss in the layer as small as possible. More preferably, the thickness should be 10 OA or less. Further, in order to keep the contact resistance with the back electrode small, it is preferable that the layer contains a crystalline silicon component.
- the present inventors have intensively studied the structure of the optimal solar cell. did. As a result, a thin silicon-based interface layer is disposed behind the silicon-based low refractive index layer, and the contact resistance with the back electrode layer including the metal oxide layer disposed behind the thin silicon-based interface layer is improved. Series resistance is reduced and conversion efficiency is improved. I found out.
- the silicon-based interface layer disposed between the silicon-based low refractive index layer and the back electrode layer has a small contact resistance with both the silicon-based low refractive index layer and the back electrode layer, As a result, it is thought that the series resistance of the solar cell is reduced.
- the silicon-based low refractive index layer when silicon oxide is used as the silicon-based low refractive index layer and the amount of oxygen in the layer is increased to lower the refractive index to 2.5 or less, the silicon-based low refractive index layer Although it is difficult to lower the contact resistance between the back electrode layer and the back electrode layer, this problem can be solved by inserting a silicon-based interface layer.
- the silicon-based low refractive index layer can be designed to have an optimum thickness and refractive index for optical confinement.
- the refractive index of the silicon-based low-refractive index layer can be easily adjusted by simply changing the film-forming conditions, so the optical confinement effect is increased by more precise optical design, such as periodically changing the refractive index in the film thickness direction. You can also expect big.
- a transparent electrode layer 2 is formed on the translucent substrate 1.
- Transparency electrode layer 2 is rather preferably be composed of S n 0 2, Z n conductive metal oxides such as O, CVD, sputtering, it is preferably formed using a method such as vapor deposition.
- the transparent electrode layer 2 desirably has an effect of increasing the scattering of incident light by having fine irregularities on the surface.
- An amorphous photoelectric conversion unit 3 is formed on the transparent electrode layer 2.
- the amorphous photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 3 p, a non-doped amorphous i-type silicon photoelectric conversion layer 3 i, and an n-type silicon-based interface layer 3 n.
- a crystalline photoelectric conversion unit 4 is formed on the amorphous photoelectric conversion unit 3.
- a high-frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 (hereinafter, both units are collectively referred to as a photoelectric conversion unit).
- the formation conditions of the photoelectric conversion unit are as follows: substrate temperature 10 to 30 ° C., pressure 30 to 15 500 Pa, high frequency power density 0.0 1 to 0.5 cm 2 force S Preferably used.
- a silicon-containing gas such as Si H 4 or Si 2 H 6 or a mixture of these gases and H 2 is used.
- a dopant gas for forming the P-type or n-type layer in the photoelectric conversion unit B 2 H 6 or PH 3 is preferably used.
- Crystalline photoelectric conversion layer 4 consists of crystalline p-type silicon layer 4p, crystalline i-type silicon photoelectric conversion layer 4i, n-type silicon-based low refractive index layer 4on, and n-type silicon-based interface It consists of layers 4 n. Silicon oxide is typically used as the n-type silicon-based low refractive index layer 4 on. In this case, the source gas used is a mixture of Si H 4 , H 2 , C 0 2 , and PH 3 Gas is suitable.
- the silicon-based low refractive index layer 4 on may or may not contain a crystalline silicon component.
- the refractive index at a wavelength of 60 nm of the silicon-based low refractive index layer 4 on is preferably 2.5 or less.
- the thickness of the silicon-based low refractive index layer 4 on is preferably 30 OA or more, more preferably from 500 to 90 OA.
- silicon oxide is used as the silicon-based low-refractive index layer 4 on, the ratio of oxygen in the layer or the gas ratio of C 0 2 / Si H 4 is required to realize the refractive index. , About 2 to 10 are used.
- the silicon-based low refractive index layer 4 on may have a constant refractive index in the film thickness direction, or the refractive index may change along the way. Further, the refractive index may be periodically increased or decreased.
- the n-type silicon-based low refractive index layer 4 on is in contact with the crystalline i-type silicon photoelectric conversion layer 4 i behind the crystalline i-type silicon photoelectric conversion layer 4 i when viewed from the light incident side.
- another layer such as an n-type silicon layer is sandwiched between the crystalline i-type silicon photoelectric conversion layer 4 i and the n-type silicon-based low refractive index layer 4 on. It may be.
- the silicon-based low refractive index layer 4 on is replaced with silicon nitride, silicon carbide, silicon oxynitride, silicon oxyhydride, etc., instead of silicon oxide. It may be a layer containing one or more elements of elemental and oxygen.
- An n-type silicon-based interface layer 4 n is formed on the n-type silicon-based low refractive index layer 4 on.
- crystalline silicon is mainly used.
- the n-type silicon-based interface layer 4 n is used to improve the contact resistance between the n-type silicon-based low-refractive index layer 4 on and the back electrode 5, and minimizes the light absorption loss in this layer. Therefore, it is desirable to have the smallest possible thickness. Specifically, a thickness of 15 OA or less, more preferably 10 OA or less is used. Further, the n-type silicon-based interface layer 4 n may have a conductivity of about 1 to 10 2 S / cm.
- the n-type silicon-based interface layer 4 n may contain one or more elements of oxygen, carbon, and nitrogen to the extent that the contact resistance with the back electrode 5 is not increased.
- a back electrode 5 is formed on the n-type silicon-based interface layer 4 n.
- the back electrode 5 is composed of a transparent reflective layer 5 t and a back reflective layer 5 m.
- a metal oxide such as ZnO and ITO is used for the transparent reflective layer 5 t, and Ag, A 1 or an alloy thereof is preferably used for the back reflective layer 5 m.
- a method such as sputtering or vapor deposition is preferably used.
- the number of photoelectric conversion units 4 is not necessarily two, but an amorphous or crystalline single structure, a laminated type of three or more layers It may be a solar cell structure.
- FIG. 2 the number of photoelectric conversion units 4 is not necessarily two, but an amorphous or crystalline single structure, a laminated type of three or more layers It may be a solar cell structure. Furthermore, FIG.
- FIG. 2 shows a structure in which a photoelectric conversion layer, a silicon-based low refractive index layer, and an n-type silicon-based interface layer are arranged in this order on a light-transmitting substrate.
- a so-called reverse type structure in which an n-type silicon-based interface layer, a silicon-based low refractive index layer, and a photoelectric conversion layer are sequentially deposited on a substrate may be used.
- the present invention is based on patent applications related to the results of commissioned research by the government (Japan, Heisei 15 New Energy and Industrial Technology Development Organization "Solar Power Generation Technology Research and Development Contract Project" Applicable to Article 30 of the Act). Brief Description of Drawings
- FIG. 1 is a diagram showing the relationship between the amount of oxygen in the silicon-based low refractive index layer and the refractive index.
- FIG. 2 is a schematic cross-sectional view of a thin film solar cell including a silicon-based low refractive index layer according to the present invention.
- FIG. 3 is a schematic cross-sectional view of a hybrid thin film solar cell fabricated in each example and comparative example.
- FIG. 4 is a diagram showing a reflection spectrum measured by applying light from the exposed surface after etching away the back electrode of the solar cell fabricated in Example 1 and Comparative Example 1.
- Fig. 5 Silicon-based low refractive index
- FIG. 6 is a graph showing the relationship between the refractive index of a layer and the conversion efficiency of a hybrid thin film solar cell.
- Figure 6 shows the relationship between the thickness of the silicon-based low refractive index layer and the conversion efficiency of the hybrid thin film solar cell.
- FIG. 7 is an enlarged cross-sectional view of a transmission electron microscope (TEM) photograph of the silicon-based thin film solar cell of the present invention obtained in Example 1.
- TEM transmission electron microscope
- FIG. 3 is a cross-sectional view schematically showing a hybrid thin film solar cell produced in each example and each comparative example.
- the transparent substrate 1 on which the transparent electrode layer 2 is formed is introduced into a high-frequency plasma CVD apparatus, heated to a predetermined temperature, and then the thickness 1 6 OA amorphous! ) Type silicon carpide layer 3 p, thickness 3 0 0 OA
- An n-doped amorphous i-type silicon photoelectric conversion layer 3 i and an n-type silicon layer 3 n having a thickness of 30 OA were sequentially laminated.
- a plasma CVD apparatus is used to form a p-type crystalline silicon layer 4 p having a thickness of 15 OA and a crystalline i-type silicon photoelectric layer having a thickness of 1.4 / xm.
- a conversion layer 4 i, an n-type silicon-based low refractive index layer 4 on with a thickness of 60 OA, and an n-type crystalline silicon-based interface layer 4 n with a thickness of 50 to 70 A were sequentially stacked.
- the n-type silicon-based low-refractive-index layer 4 on is formed by the following conditions: substrate deposition surface-electrode distance 10 to 15 mm, pressure 350 to 1 300 Pa, high frequency power density 0.1 to 0. 1 3 W / cm 2 , Si H 4 / C 2 / PH 3 ZH 2 The flow rates were set to 1 5/1 20 / 0.5.
- the refractive index measured by spectroscopic ellipsometry of the n-type silicon-based low refractive index layer deposited on glass with 250 OA under the same film forming conditions was 1.9 at a wavelength of 600 nm.
- the deposition conditions for the n-type silicon-based interface layer 4 n are: substrate deposition surface-electrode distance 10 to 15 mm, pressure 350 to 1 300 Pa, high frequency power density 0.1 lW / cm 2 , S i H 4 / PH 3 / H 2 flow rate was 20 / 0.5 / 5/2500 sccm, respectively. Further, the conductivity of the n-type silicon-based interface layer deposited at 2500 A on glass under the same film forming conditions was 12 S / cm.
- a transparent reflective layer (not shown) made of Z ⁇ having a thickness of 300 A and a back reflective layer (not shown) made of Ag having a thickness of 2000 A were formed as the back electrode 5 by DC sputtering.
- the YAG second harmonic pulse laser is transmitted.
- a plurality of back electrode layer separation grooves 5a were formed.
- an island-shaped separation region was formed by forming a plurality of back surface electrode separation grooves perpendicularly intersecting the back surface electrode layer separation groove 5a.
- a back electrode layer separation groove is further formed outside the island-shaped separation region adjacent to one back electrode layer separation groove 5a, and solder is infiltrated into the inside to make contact with the transparent electrode layer 2.
- region 6 a hybrid thin film solar cell was fabricated. This hybrid thin-film solar cell has an effective area of 1 cm 2 , and in Example 1, the above-mentioned is formed on one substrate. A total of 25 solar cells were fabricated.
- the hybrid thin-film solar cell fabricated in Example 1 was subjected to simulated sunlight with a spectral distribution of AMI.5 and an energy density of 10 OmW / cm 2 under a measurement atmosphere and solar cell temperature of 25 ⁇ 1 ° C. Measure the output characteristics of the thin-film solar cell by measuring the voltage and current between the positive electrode probe 7 that was irradiated and contacted with the transparent electrode layer 2 through the contact region 6 and the negative electrode probe 8 that was in contact with the back electrode 5 did. Table 1 shows the average performance of the 25 hybrid thin film solar cells fabricated in Example 1.
- FIG. 4 shows the reflection spectrum measured by irradiating light from the n-type silicon-based interface layer 4n side in this state.
- the n-type silicon-based interface layer 4 n was removed by a reactive ion etching (R I E) method to expose the n-type silicon-based low refractive index layer 4 on.
- the refractive index of this silicon-based low refractive index layer measured by spectroscopic ellipsometry was 1.93 at a wavelength of 600 nm.
- the amount of oxygen in the silicon-based low refractive index layer measured by X-ray photoelectron spectroscopy (XP S) was 48 atomic%.
- Example 2 In Example 2, almost the same process as in Example 1 was performed, but only the film-forming conditions of the n-type silicon-based low refractive index layer 4 on were changed, and the refractive index at a wavelength of 600 nm was 1.65-2. . The point of change in the range of 5 to 5 was different from Example 1.
- Figure 5 shows the relationship between the refractive index of the silicon-based low refractive index layer and the conversion efficiency of the hybrid thin film solar cell.
- Example 3 almost the same process as in Example 1 was performed, except that the thickness of the n-type silicon-based low refractive index layer 4 on was changed in the range of 100 to 1 000 A as in Example 1. It was different.
- Figure 6 shows the relationship between the thickness of the silicon-based low-refractive index layer and the conversion efficiency of the obtained hybrid thin-film solar cell.
- Example 1 In Comparative Example 1, only the following points were different from Example 1.
- n-type silicon instead of laminating the low refractive index layer 4 on and the n-type crystalline silicon-based interface layer 4 n sequentially, an n-type crystalline silicon layer with a thickness of 15 OA and a Z ⁇ ⁇ layer with a thickness of 600 A Laminated sequentially.
- the ZnO layer was formed by DC sputtering.
- the refractive index measured by spectroscopic ellipsometry of the Z ⁇ ⁇ layer deposited on glass with 25 OA under the same film forming conditions was 1.9 at a wavelength of 60 nm.
- Table 1 shows the average performance of the 25 hybrid thin-film solar cells fabricated in Comparative Example 1.
- Comparative Example 2 was different from Example 1 only in that the formation of the n-type silicon-based interface layer 4 n on the n-type silicon-based low refractive index layer 4 on was omitted.
- Table 1 shows the average performance of the 25 integrated hybrid thin film solar cells fabricated in Comparative Example 2.
- Example 1 From comparison between Example 1 and Comparative Example 1, it can be seen that in Example 1, the short-circuit current is improved by 4% or more compared to Comparative Example 1. In Example 1, this is because most of the light that reaches behind the crystalline i-type silicon photoelectric conversion layer 4 i is composed of the crystalline i-type silicon photoelectric conversion layer 4 i and the n-type silicon-based low refractive index layer 4 on.
- Comparative Example 1 Whereas the ratio of light passing through the n-type crystalline silicon-based interfacial layer 4 n that is reflected to the i-side and has a large light absorption loss is 4 In crystalline i-type This is because an n-type crystalline silicon layer and a Z ⁇ layer are sequentially stacked behind the photoelectric conversion layer 4 i, and the ratio of light passing through the n-type crystalline silicon layer having a large light absorption loss is large. In addition, in Example 1, damage to the underlying crystalline silicon layer during sputtering of the ZnO layer, which occurs in the process of Comparative Example 1, can be prevented.
- Example 1 Next, from a comparison between Example 1 and Comparative Example 2, it can be seen that the curvature factor is improved by about 5% in Example 1 compared to Comparative Example 2.
- this is because the n-type crystalline silicon-based interface layer 4 n is inserted between the n- type silicon-based low-refractive index layer 4 on and the transparent reflective layer 5 t, so that the series resistance of the solar cell is reduced. This is because of the improvement.
- the crystalline i-type silicon photoelectric conversion layer It can be seen that it is possible to detect whether or not a silicon-based low refractive index layer 4 on having a smaller refractive index is disposed behind 4 i.
- the refractive index of the silicon-based low refractive index layer has an optimum value, and the refractive index is preferably 2.5 or less. It can be seen from Fig. 1 that this condition corresponds to an oxygen content of 25 atomic% or more in the layer. This is because when the refractive index exceeds 2.5, the refractive index difference from the adjacent crystalline i-type silicon photoelectric conversion layer is small and the light confinement effect is small.
- the results of Example 3 shown in FIG. 6 indicate that there is an optimum value for the thickness of the silicon-based low refractive index layer, and a thickness of 30 O A or more is preferable.
- the silicon-based low refractive index layer having a refractive index lower than that of the photoelectric conversion layer is viewed from the light incident side without using the photoelectric conversion layer formation and other types of equipment. Since it can be formed behind the photoelectric conversion layer, a sufficient light confinement effect can be exhibited at low cost. Furthermore, by arranging a thin silicon-based interface layer behind the silicon-based low refractive index layer, the series resistance of the solar cell can be kept small. As a result, a silicon-based thin film solar cell can be provided with high efficiency and low cost. Industrial applicability
- a silicon-based low-refractive index layer having a lower refractive index than that of the photoelectric conversion layer is formed behind the photoelectric conversion layer as viewed from the light incident side without using a separate type of equipment from the formation of the photoelectric conversion layer. Since it can be formed, a sufficient light confinement effect can be achieved at low cost. Furthermore, by arranging a thin silicon-based interface layer behind the silicon-based low refractive index layer, the series resistance of the solar cell can be kept small. As a result, a silicon-based thin film solar cell can be provided with high efficiency and low cost.
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04747712.0A EP1650812B2 (en) | 2003-07-24 | 2004-07-12 | Method for making a silicon based thin film solar cell |
AU2004259486A AU2004259486B2 (en) | 2003-07-24 | 2004-07-12 | Silicon based thin film solar cell |
AT04747712T ATE512467T1 (de) | 2003-07-24 | 2004-07-12 | Verfahren zur herstellung einer dünnschichtsiliziumsolarzelle |
JP2005512009A JP4257332B2 (ja) | 2003-07-24 | 2004-07-12 | シリコン系薄膜太陽電池 |
CN2004800210593A CN1826699B (zh) | 2003-07-24 | 2004-07-12 | 硅类薄膜太阳能电池 |
US10/563,009 US7847186B2 (en) | 2003-07-24 | 2004-07-12 | Silicon based thin film solar cell |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003-279491 | 2003-07-24 | ||
JP2003279491 | 2003-07-24 | ||
JP2003358362 | 2003-10-17 | ||
JP2003-358362 | 2003-10-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005011002A1 true WO2005011002A1 (ja) | 2005-02-03 |
Family
ID=34106897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/010248 WO2005011002A1 (ja) | 2003-07-24 | 2004-07-12 | シリコン系薄膜太陽電池 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7847186B2 (ja) |
EP (1) | EP1650812B2 (ja) |
JP (1) | JP4257332B2 (ja) |
KR (1) | KR101024288B1 (ja) |
CN (1) | CN1826699B (ja) |
AT (1) | ATE512467T1 (ja) |
AU (1) | AU2004259486B2 (ja) |
WO (1) | WO2005011002A1 (ja) |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007026480A1 (ja) * | 2005-08-30 | 2007-03-08 | Kaneka Corporation | シリコン系薄膜光電変換装置、及びその製造方法 |
JP2007273635A (ja) * | 2006-03-30 | 2007-10-18 | Kaneka Corp | 光電変換装置 |
JP2007305826A (ja) * | 2006-05-12 | 2007-11-22 | Kaneka Corp | シリコン系薄膜太陽電池 |
WO2009082137A2 (en) * | 2007-12-21 | 2009-07-02 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
JP2009290115A (ja) * | 2008-05-30 | 2009-12-10 | Kaneka Corp | シリコン系薄膜太陽電池 |
WO2010044378A1 (ja) * | 2008-10-14 | 2010-04-22 | 株式会社カネカ | シリコン系薄膜太陽電池およびその製造方法 |
JP2011003750A (ja) * | 2009-06-19 | 2011-01-06 | Kaneka Corp | 結晶シリコン系太陽電池 |
US7939454B1 (en) | 2008-05-31 | 2011-05-10 | Stion Corporation | Module and lamination process for multijunction cells |
DE112009002056T5 (de) | 2008-08-27 | 2011-07-14 | Mitsubishi Materials Corporation | Transparenter elektrisch leitfähiger Film für Solarzellen, Zusammensetzung für transparente elektrisch leitfähige Filme und Mehrfach-Solarzellen |
JP2011159934A (ja) * | 2010-02-04 | 2011-08-18 | Mitsubishi Chemicals Corp | 有機太陽電池セル、太陽電池モジュール及び有機太陽電池セルの製造方法 |
WO2012018237A2 (en) * | 2010-08-06 | 2012-02-09 | Korea Institute Of Science And Technology | Tandem solar cell using amorphous silicon solar cell and organic solar cell |
JP2012033565A (ja) * | 2010-07-28 | 2012-02-16 | Kaneka Corp | シリコン系薄膜光電変換装置の製造方法 |
USD662040S1 (en) | 2009-06-12 | 2012-06-19 | Stion Corporation | Pin striped thin film solar module for garden lamp |
US8263494B2 (en) | 2010-01-25 | 2012-09-11 | Stion Corporation | Method for improved patterning accuracy for thin film photovoltaic panels |
JP2012216640A (ja) * | 2011-03-31 | 2012-11-08 | Kaneka Corp | 薄膜太陽電池及びその製造方法 |
US8314326B2 (en) | 2006-05-15 | 2012-11-20 | Stion Corporation | Method and structure for thin film photovoltaic materials using bulk semiconductor materials |
US8318531B2 (en) | 2008-09-30 | 2012-11-27 | Stion Corporation | Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates |
JP2013008866A (ja) * | 2011-06-24 | 2013-01-10 | Kaneka Corp | 薄膜光電変換装置 |
US8383450B2 (en) | 2008-09-30 | 2013-02-26 | Stion Corporation | Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials |
WO2013027468A1 (ja) * | 2011-08-24 | 2013-02-28 | シャープ株式会社 | 光電変換素子 |
WO2013027469A1 (ja) * | 2011-08-25 | 2013-02-28 | シャープ株式会社 | 光電変換素子 |
US8394662B1 (en) | 2008-09-29 | 2013-03-12 | Stion Corporation | Chloride species surface treatment of thin film photovoltaic cell and manufacturing method |
US8398772B1 (en) | 2009-08-18 | 2013-03-19 | Stion Corporation | Method and structure for processing thin film PV cells with improved temperature uniformity |
US8425739B1 (en) | 2008-09-30 | 2013-04-23 | Stion Corporation | In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials |
US8461061B2 (en) | 2010-07-23 | 2013-06-11 | Stion Corporation | Quartz boat method and apparatus for thin film thermal treatment |
US8501507B2 (en) | 2007-11-14 | 2013-08-06 | Stion Corporation | Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration |
US8507786B1 (en) | 2009-06-27 | 2013-08-13 | Stion Corporation | Manufacturing method for patterning CIGS/CIS solar cells |
US8557625B1 (en) | 2008-10-17 | 2013-10-15 | Stion Corporation | Zinc oxide film method and structure for cigs cell |
US8617917B2 (en) | 2008-06-25 | 2013-12-31 | Stion Corporation | Consumable adhesive layer for thin film photovoltaic material |
US8628997B2 (en) | 2010-10-01 | 2014-01-14 | Stion Corporation | Method and device for cadmium-free solar cells |
US8674209B2 (en) | 2007-12-21 | 2014-03-18 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
US8673675B2 (en) | 2008-09-30 | 2014-03-18 | Stion Corporation | Humidity control and method for thin film photovoltaic materials |
US8691618B2 (en) | 2008-09-29 | 2014-04-08 | Stion Corporation | Metal species surface treatment of thin film photovoltaic cell and manufacturing method |
US8728200B1 (en) | 2011-01-14 | 2014-05-20 | Stion Corporation | Method and system for recycling processing gas for selenization of thin film photovoltaic materials |
US8741689B2 (en) | 2008-10-01 | 2014-06-03 | Stion Corporation | Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials |
US8772078B1 (en) | 2008-03-03 | 2014-07-08 | Stion Corporation | Method and system for laser separation for exclusion region of multi-junction photovoltaic materials |
US8809096B1 (en) | 2009-10-22 | 2014-08-19 | Stion Corporation | Bell jar extraction tool method and apparatus for thin film photovoltaic materials |
US8859880B2 (en) | 2010-01-22 | 2014-10-14 | Stion Corporation | Method and structure for tiling industrial thin-film solar devices |
US8871305B2 (en) | 2007-06-29 | 2014-10-28 | Stion Corporation | Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials |
US8941132B2 (en) | 2008-09-10 | 2015-01-27 | Stion Corporation | Application specific solar cell and method for manufacture using thin film photovoltaic materials |
JPWO2013031906A1 (ja) * | 2011-09-01 | 2015-03-23 | シャープ株式会社 | 光電変換装置およびその製造方法 |
US9087943B2 (en) | 2008-06-25 | 2015-07-21 | Stion Corporation | High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material |
US9096930B2 (en) | 2010-03-29 | 2015-08-04 | Stion Corporation | Apparatus for manufacturing thin film photovoltaic devices |
US9105776B2 (en) | 2006-05-15 | 2015-08-11 | Stion Corporation | Method and structure for thin film photovoltaic materials using semiconductor materials |
US9184320B2 (en) | 2010-06-21 | 2015-11-10 | Mitsubishi Electric Corporation | Photoelectric conversion device |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7361930B2 (en) * | 2005-03-21 | 2008-04-22 | Agilent Technologies, Inc. | Method for forming a multiple layer passivation film and a device incorporating the same |
US20080092947A1 (en) * | 2006-10-24 | 2008-04-24 | Applied Materials, Inc. | Pulse plating of a low stress film on a solar cell substrate |
US7704352B2 (en) * | 2006-12-01 | 2010-04-27 | Applied Materials, Inc. | High-aspect ratio anode and apparatus for high-speed electroplating on a solar cell substrate |
US7799182B2 (en) | 2006-12-01 | 2010-09-21 | Applied Materials, Inc. | Electroplating on roll-to-roll flexible solar cell substrates |
US20080128019A1 (en) * | 2006-12-01 | 2008-06-05 | Applied Materials, Inc. | Method of metallizing a solar cell substrate |
US7736928B2 (en) * | 2006-12-01 | 2010-06-15 | Applied Materials, Inc. | Precision printing electroplating through plating mask on a solar cell substrate |
US7821637B1 (en) | 2007-02-22 | 2010-10-26 | J.A. Woollam Co., Inc. | System for controlling intensity of a beam of electromagnetic radiation and method for investigating materials with low specular reflectance and/or are depolarizing |
KR101019273B1 (ko) * | 2007-07-24 | 2011-03-07 | 어플라이드 머티어리얼스, 인코포레이티드 | 다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들 |
CN101809759B (zh) * | 2007-10-30 | 2012-06-20 | 三洋电机株式会社 | 太阳能电池 |
TW201003941A (en) * | 2008-04-25 | 2010-01-16 | Ulvac Inc | Solar battery |
KR100876613B1 (ko) | 2008-05-27 | 2008-12-31 | 한국철강 주식회사 | 탄뎀 박막 실리콘 태양전지 및 그 제조방법 |
KR101025802B1 (ko) * | 2008-10-20 | 2011-04-04 | 주식회사 밀레니엄투자 | 태양 전지 및 이의 제조 방법 |
TW201021229A (en) * | 2008-11-21 | 2010-06-01 | Ind Tech Res Inst | Solar cell having reflective structure |
US20100126849A1 (en) * | 2008-11-24 | 2010-05-27 | Applied Materials, Inc. | Apparatus and method for forming 3d nanostructure electrode for electrochemical battery and capacitor |
KR101527516B1 (ko) * | 2008-12-16 | 2015-06-09 | 삼성전자주식회사 | 실리콘 성장방법 및 이를 이용한 태양전지 제조방법 |
TW201025648A (en) * | 2008-12-23 | 2010-07-01 | Ind Tech Res Inst | Transparent solar cell module and method of fabricating the same |
US8298852B2 (en) * | 2008-12-29 | 2012-10-30 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
MY152718A (en) * | 2009-03-30 | 2014-11-28 | Sanyo Electric Co | Solar cell |
WO2010126699A2 (en) | 2009-04-29 | 2010-11-04 | Hunter Douglas Industries B.V. | Architectural panels with organic photovoltaic interlayers and methods of forming the same |
KR101074290B1 (ko) * | 2009-09-04 | 2011-10-18 | 한국철강 주식회사 | 광기전력 장치 및 광기전력 장치의 제조 방법 |
DE102009042018A1 (de) * | 2009-09-21 | 2011-03-24 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Solarzelle |
KR101584376B1 (ko) * | 2010-02-10 | 2016-01-12 | 엘지전자 주식회사 | 실리콘 박막 태양전지 |
US8389377B2 (en) * | 2010-04-02 | 2013-03-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Sensor element isolation in a backside illuminated image sensor |
TWI436490B (zh) * | 2010-09-03 | 2014-05-01 | Univ Tatung | 光伏電池結構 |
DE102010053382A1 (de) | 2010-12-03 | 2012-06-06 | Forschungszentrum Jülich GmbH | Verfahren zur Herstellung einer Solarzelle und eine Solarzelle |
TWI488322B (zh) * | 2010-12-27 | 2015-06-11 | Nexpower Technology Corp | 薄膜太陽能電池堆疊製造方法及其薄膜太陽能電池 |
CN103430326A (zh) * | 2010-12-29 | 2013-12-04 | Tel太阳能公司 | 微晶PIN结的SiOxN型层 |
CN103078001A (zh) * | 2012-12-28 | 2013-05-01 | 福建铂阳精工设备有限公司 | 硅基薄膜叠层太阳能电池的制造方法 |
CN103296122A (zh) * | 2013-06-05 | 2013-09-11 | 福建铂阳精工设备有限公司 | 薄膜太阳能电池 |
CN107681020A (zh) * | 2017-09-26 | 2018-02-09 | 南开大学 | 一种提高平面硅异质结太阳电池长波长光响应的方法 |
US11721801B2 (en) | 2020-08-17 | 2023-08-08 | International Business Machines Corporation, Armonk | Low resistance composite silicon-based electrode |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62234379A (ja) * | 1986-04-04 | 1987-10-14 | Kanegafuchi Chem Ind Co Ltd | 半導体装置 |
JPS63120476A (ja) * | 1986-11-10 | 1988-05-24 | Sanyo Electric Co Ltd | 光起電力装置 |
JPH06267868A (ja) * | 1993-03-16 | 1994-09-22 | Fuji Electric Co Ltd | シリコンオキサイド半導体膜の成膜方法 |
JP2000138384A (ja) * | 1998-10-30 | 2000-05-16 | Sanyo Electric Co Ltd | 非晶質半導体素子及びその製造方法 |
JP2000269528A (ja) * | 1999-03-15 | 2000-09-29 | Fuji Electric Co Ltd | 非単結晶太陽電池 |
JP2001203374A (ja) * | 2000-01-21 | 2001-07-27 | Fuji Electric Corp Res & Dev Ltd | 非単結晶薄膜太陽電池およびその製造方法 |
JP2003258297A (ja) * | 2002-02-27 | 2003-09-12 | Shiro Sakai | 窒化ガリウム系化合物半導体装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5935016A (ja) * | 1982-08-18 | 1984-02-25 | Agency Of Ind Science & Technol | 含水素シリコン層の製造方法 |
US4718947A (en) * | 1986-04-17 | 1988-01-12 | Solarex Corporation | Superlattice doped layers for amorphous silicon photovoltaic cells |
US4776894A (en) * | 1986-08-18 | 1988-10-11 | Sanyo Electric Co., Ltd. | Photovoltaic device |
JPS6384075A (ja) * | 1986-09-26 | 1988-04-14 | Sanyo Electric Co Ltd | 光起電力装置 |
US5055141A (en) * | 1990-01-19 | 1991-10-08 | Solarex Corporation | Enhancement of short-circuit current by use of wide bandgap n-layers in p-i-n amorphous silicon photovoltaic cells |
US5419783A (en) * | 1992-03-26 | 1995-05-30 | Sanyo Electric Co., Ltd. | Photovoltaic device and manufacturing method therefor |
JPH11186574A (ja) † | 1997-12-24 | 1999-07-09 | Kanegafuchi Chem Ind Co Ltd | シリコン系薄膜光電変換装置 |
JP4284582B2 (ja) † | 2002-03-04 | 2009-06-24 | 富士電機システムズ株式会社 | 多接合型薄膜太陽電池とその製造方法 |
JP3955225B2 (ja) † | 2002-03-27 | 2007-08-08 | 日立ソフトウエアエンジニアリング株式会社 | 半導体ナノ粒子を用いる反応の反応測定方法及び該測定方法を用いる半導体ナノ粒子の品質評価方法 |
-
2004
- 2004-07-12 KR KR1020067000752A patent/KR101024288B1/ko not_active IP Right Cessation
- 2004-07-12 JP JP2005512009A patent/JP4257332B2/ja not_active Expired - Fee Related
- 2004-07-12 US US10/563,009 patent/US7847186B2/en not_active Expired - Fee Related
- 2004-07-12 EP EP04747712.0A patent/EP1650812B2/en not_active Expired - Lifetime
- 2004-07-12 AU AU2004259486A patent/AU2004259486B2/en not_active Ceased
- 2004-07-12 CN CN2004800210593A patent/CN1826699B/zh not_active Ceased
- 2004-07-12 AT AT04747712T patent/ATE512467T1/de not_active IP Right Cessation
- 2004-07-12 WO PCT/JP2004/010248 patent/WO2005011002A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62234379A (ja) * | 1986-04-04 | 1987-10-14 | Kanegafuchi Chem Ind Co Ltd | 半導体装置 |
JPS63120476A (ja) * | 1986-11-10 | 1988-05-24 | Sanyo Electric Co Ltd | 光起電力装置 |
JPH06267868A (ja) * | 1993-03-16 | 1994-09-22 | Fuji Electric Co Ltd | シリコンオキサイド半導体膜の成膜方法 |
JP2000138384A (ja) * | 1998-10-30 | 2000-05-16 | Sanyo Electric Co Ltd | 非晶質半導体素子及びその製造方法 |
JP2000269528A (ja) * | 1999-03-15 | 2000-09-29 | Fuji Electric Co Ltd | 非単結晶太陽電池 |
JP2001203374A (ja) * | 2000-01-21 | 2001-07-27 | Fuji Electric Corp Res & Dev Ltd | 非単結晶薄膜太陽電池およびその製造方法 |
JP2003258297A (ja) * | 2002-02-27 | 2003-09-12 | Shiro Sakai | 窒化ガリウム系化合物半導体装置 |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7960646B2 (en) | 2005-08-30 | 2011-06-14 | Kaneka Corporation | Silicon-based thin-film photoelectric converter and method of manufacturing the same |
WO2007026480A1 (ja) * | 2005-08-30 | 2007-03-08 | Kaneka Corporation | シリコン系薄膜光電変換装置、及びその製造方法 |
JP5156379B2 (ja) * | 2005-08-30 | 2013-03-06 | 株式会社カネカ | シリコン系薄膜光電変換装置、及びその製造方法 |
JP2007273635A (ja) * | 2006-03-30 | 2007-10-18 | Kaneka Corp | 光電変換装置 |
JP2007305826A (ja) * | 2006-05-12 | 2007-11-22 | Kaneka Corp | シリコン系薄膜太陽電池 |
US8314326B2 (en) | 2006-05-15 | 2012-11-20 | Stion Corporation | Method and structure for thin film photovoltaic materials using bulk semiconductor materials |
US9105776B2 (en) | 2006-05-15 | 2015-08-11 | Stion Corporation | Method and structure for thin film photovoltaic materials using semiconductor materials |
US8871305B2 (en) | 2007-06-29 | 2014-10-28 | Stion Corporation | Methods for infusing one or more materials into nano-voids of nanoporous or nanostructured materials |
US8501507B2 (en) | 2007-11-14 | 2013-08-06 | Stion Corporation | Method for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration |
US8512528B2 (en) | 2007-11-14 | 2013-08-20 | Stion Corporation | Method and system for large scale manufacture of thin film photovoltaic devices using single-chamber configuration |
US8623677B2 (en) | 2007-11-14 | 2014-01-07 | Stion Corporation | Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration |
US8642361B2 (en) | 2007-11-14 | 2014-02-04 | Stion Corporation | Method and system for large scale manufacture of thin film photovoltaic devices using multi-chamber configuration |
US8674209B2 (en) | 2007-12-21 | 2014-03-18 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
WO2009082137A2 (en) * | 2007-12-21 | 2009-07-02 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
KR101494153B1 (ko) | 2007-12-21 | 2015-02-23 | 주성엔지니어링(주) | 박막형 태양전지 및 그 제조방법 |
WO2009082137A3 (en) * | 2007-12-21 | 2009-10-08 | Jusung Engineering Co., Ltd. | Thin film type solar cell and method for manufacturing the same |
US8772078B1 (en) | 2008-03-03 | 2014-07-08 | Stion Corporation | Method and system for laser separation for exclusion region of multi-junction photovoltaic materials |
JP2009290115A (ja) * | 2008-05-30 | 2009-12-10 | Kaneka Corp | シリコン系薄膜太陽電池 |
US7939454B1 (en) | 2008-05-31 | 2011-05-10 | Stion Corporation | Module and lamination process for multijunction cells |
US8617917B2 (en) | 2008-06-25 | 2013-12-31 | Stion Corporation | Consumable adhesive layer for thin film photovoltaic material |
US9087943B2 (en) | 2008-06-25 | 2015-07-21 | Stion Corporation | High efficiency photovoltaic cell and manufacturing method free of metal disulfide barrier material |
DE112009002056T5 (de) | 2008-08-27 | 2011-07-14 | Mitsubishi Materials Corporation | Transparenter elektrisch leitfähiger Film für Solarzellen, Zusammensetzung für transparente elektrisch leitfähige Filme und Mehrfach-Solarzellen |
US8941132B2 (en) | 2008-09-10 | 2015-01-27 | Stion Corporation | Application specific solar cell and method for manufacture using thin film photovoltaic materials |
US8691618B2 (en) | 2008-09-29 | 2014-04-08 | Stion Corporation | Metal species surface treatment of thin film photovoltaic cell and manufacturing method |
US8394662B1 (en) | 2008-09-29 | 2013-03-12 | Stion Corporation | Chloride species surface treatment of thin film photovoltaic cell and manufacturing method |
US8425739B1 (en) | 2008-09-30 | 2013-04-23 | Stion Corporation | In chamber sodium doping process and system for large scale cigs based thin film photovoltaic materials |
US8318531B2 (en) | 2008-09-30 | 2012-11-27 | Stion Corporation | Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates |
US8383450B2 (en) | 2008-09-30 | 2013-02-26 | Stion Corporation | Large scale chemical bath system and method for cadmium sulfide processing of thin film photovoltaic materials |
US8673675B2 (en) | 2008-09-30 | 2014-03-18 | Stion Corporation | Humidity control and method for thin film photovoltaic materials |
US8741689B2 (en) | 2008-10-01 | 2014-06-03 | Stion Corporation | Thermal pre-treatment process for soda lime glass substrate for thin film photovoltaic materials |
WO2010044378A1 (ja) * | 2008-10-14 | 2010-04-22 | 株式会社カネカ | シリコン系薄膜太陽電池およびその製造方法 |
US8530267B2 (en) | 2008-10-14 | 2013-09-10 | Kaneka Corporation | Silicon-based thin film solar cell and method for manufacturing same |
JP5314697B2 (ja) * | 2008-10-14 | 2013-10-16 | 株式会社カネカ | シリコン系薄膜太陽電池およびその製造方法 |
US8557625B1 (en) | 2008-10-17 | 2013-10-15 | Stion Corporation | Zinc oxide film method and structure for cigs cell |
USD662040S1 (en) | 2009-06-12 | 2012-06-19 | Stion Corporation | Pin striped thin film solar module for garden lamp |
JP2011003750A (ja) * | 2009-06-19 | 2011-01-06 | Kaneka Corp | 結晶シリコン系太陽電池 |
US8507786B1 (en) | 2009-06-27 | 2013-08-13 | Stion Corporation | Manufacturing method for patterning CIGS/CIS solar cells |
US8398772B1 (en) | 2009-08-18 | 2013-03-19 | Stion Corporation | Method and structure for processing thin film PV cells with improved temperature uniformity |
US8809096B1 (en) | 2009-10-22 | 2014-08-19 | Stion Corporation | Bell jar extraction tool method and apparatus for thin film photovoltaic materials |
US8859880B2 (en) | 2010-01-22 | 2014-10-14 | Stion Corporation | Method and structure for tiling industrial thin-film solar devices |
US8263494B2 (en) | 2010-01-25 | 2012-09-11 | Stion Corporation | Method for improved patterning accuracy for thin film photovoltaic panels |
JP2011159934A (ja) * | 2010-02-04 | 2011-08-18 | Mitsubishi Chemicals Corp | 有機太陽電池セル、太陽電池モジュール及び有機太陽電池セルの製造方法 |
US9096930B2 (en) | 2010-03-29 | 2015-08-04 | Stion Corporation | Apparatus for manufacturing thin film photovoltaic devices |
US9184320B2 (en) | 2010-06-21 | 2015-11-10 | Mitsubishi Electric Corporation | Photoelectric conversion device |
US8461061B2 (en) | 2010-07-23 | 2013-06-11 | Stion Corporation | Quartz boat method and apparatus for thin film thermal treatment |
JP2012033565A (ja) * | 2010-07-28 | 2012-02-16 | Kaneka Corp | シリコン系薄膜光電変換装置の製造方法 |
WO2012018237A3 (en) * | 2010-08-06 | 2012-05-10 | Korea Institute Of Science And Technology | Tandem solar cell using amorphous silicon solar cell and organic solar cell |
WO2012018237A2 (en) * | 2010-08-06 | 2012-02-09 | Korea Institute Of Science And Technology | Tandem solar cell using amorphous silicon solar cell and organic solar cell |
US8628997B2 (en) | 2010-10-01 | 2014-01-14 | Stion Corporation | Method and device for cadmium-free solar cells |
US8728200B1 (en) | 2011-01-14 | 2014-05-20 | Stion Corporation | Method and system for recycling processing gas for selenization of thin film photovoltaic materials |
JP2012216640A (ja) * | 2011-03-31 | 2012-11-08 | Kaneka Corp | 薄膜太陽電池及びその製造方法 |
JP2013008866A (ja) * | 2011-06-24 | 2013-01-10 | Kaneka Corp | 薄膜光電変換装置 |
WO2013027468A1 (ja) * | 2011-08-24 | 2013-02-28 | シャープ株式会社 | 光電変換素子 |
JP2013045870A (ja) * | 2011-08-24 | 2013-03-04 | Sharp Corp | 光電変換素子 |
WO2013027469A1 (ja) * | 2011-08-25 | 2013-02-28 | シャープ株式会社 | 光電変換素子 |
JP2013045952A (ja) * | 2011-08-25 | 2013-03-04 | Sharp Corp | 光電変換素子 |
JPWO2013031906A1 (ja) * | 2011-09-01 | 2015-03-23 | シャープ株式会社 | 光電変換装置およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP1650812A1 (en) | 2006-04-26 |
ATE512467T1 (de) | 2011-06-15 |
JPWO2005011002A1 (ja) | 2006-09-14 |
EP1650812B1 (en) | 2011-06-08 |
CN1826699B (zh) | 2010-12-29 |
AU2004259486A1 (en) | 2005-02-03 |
KR20060035751A (ko) | 2006-04-26 |
CN1826699A (zh) | 2006-08-30 |
AU2004259486B2 (en) | 2010-02-18 |
US20060174935A1 (en) | 2006-08-10 |
US7847186B2 (en) | 2010-12-07 |
KR101024288B1 (ko) | 2011-03-29 |
EP1650812A4 (en) | 2009-08-12 |
EP1650812B2 (en) | 2019-10-23 |
JP4257332B2 (ja) | 2009-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4257332B2 (ja) | シリコン系薄膜太陽電池 | |
KR101247916B1 (ko) | 텐덤 반도체 층 스택을 구비한 광전지 모듈 및 광전지 모듈의 제작 방법 | |
EP1724840B1 (en) | Photoelectric cell | |
EP2110859B1 (en) | Laminate type photoelectric converter and method for fabricating the same | |
US6870088B2 (en) | Solar battery cell and manufacturing method thereof | |
JP4811945B2 (ja) | 薄膜光電変換装置 | |
EP2541614A1 (en) | Thin film photoelectric conversion device and process for production thereof | |
JP5291633B2 (ja) | シリコン系薄膜光電変換装置およびその製造方法 | |
JP2007305826A (ja) | シリコン系薄膜太陽電池 | |
JP2009290115A (ja) | シリコン系薄膜太陽電池 | |
JP2009141059A (ja) | 薄膜光電変換装置 | |
JP6047494B2 (ja) | 薄膜光電変換装置およびその製造方法 | |
JP5542025B2 (ja) | 光電変換装置 | |
JP5371284B2 (ja) | 薄膜光電変換装置 | |
JPWO2006006368A1 (ja) | 薄膜光電変換装置の製造方法 | |
TWI453928B (zh) | 太陽能模組及製造具有串聯半導體層堆疊之太陽能模組之方法 | |
JP2003008036A (ja) | 太陽電池及びその製造方法 | |
WO2005088734A1 (ja) | 薄膜光電変換装置 | |
US20120305053A1 (en) | Solar cell and manufacturing method thereof | |
JP2007250865A (ja) | 薄膜光電変換装置 | |
WO2013065538A1 (ja) | 光電変換装置 | |
JP2013012593A (ja) | 薄膜光電変換装置 | |
JP2013058554A (ja) | 積層型薄膜光電変換装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480021059.3 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005512009 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2006174935 Country of ref document: US Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10563009 Country of ref document: US Ref document number: 2742/KOLNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004259486 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004747712 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020067000752 Country of ref document: KR |
|
ENP | Entry into the national phase |
Ref document number: 2004259486 Country of ref document: AU Date of ref document: 20040712 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004259486 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 1020067000752 Country of ref document: KR Ref document number: 2004747712 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10563009 Country of ref document: US |