KR101019273B1 - 다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들 - Google Patents

다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들 Download PDF

Info

Publication number
KR101019273B1
KR101019273B1 KR1020087026072A KR20087026072A KR101019273B1 KR 101019273 B1 KR101019273 B1 KR 101019273B1 KR 1020087026072 A KR1020087026072 A KR 1020087026072A KR 20087026072 A KR20087026072 A KR 20087026072A KR 101019273 B1 KR101019273 B1 KR 101019273B1
Authority
KR
South Korea
Prior art keywords
silicon layer
layer
amorphous silicon
type
junction
Prior art date
Application number
KR1020087026072A
Other languages
English (en)
Other versions
KR20090035471A (ko
Inventor
슈란 셍
용 기 채
수 영 최
태 경 원
리웨이 리
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/110,120 external-priority patent/US20080223440A1/en
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20090035471A publication Critical patent/KR20090035471A/ko
Application granted granted Critical
Publication of KR101019273B1 publication Critical patent/KR101019273B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/047PV cell arrays including PV cells having multiple vertical junctions or multiple V-groove junctions formed in a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 실시예들은 일반적으로 태양 전지들과 이를 형성하기 위한 방법들 및 장치들에 관한 것이다. 보다 구체적으로는, 본 발명의 실시예들은 박막 다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들에 관한 것이다. 또한, 본 발명의 실시예들은 개선된 박막 실리콘 태양 전지, 및 이를 형성하기 위한 방법들과 장치들을 포함하고, 태양 전지의 하나 이상의 층들은 개선된 전기 특성들과 기계적 특성들을 갖는 적어도 하나의 비정질 실리콘층을 포함하며, 종래의 비정질 실리콘 증착 프로세스들 보다 더 신속하게 많은 횟수의 비율들로 증착될 수 있다.

Description

다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들{MULTI-JUNCTION SOLAR CELLS AND METHODS AND APPARATUSES FOR FORMING THE SAME}
본 발명의 실시예들은 일반적으로 태양 전지들 및 이를 형성하기 위한 방법들 및 장치들에 관한 것이다. 특히, 본 발명의 실시예들은 다중-접합 태양 전지들 및 이를 형성하기 위한 방법들 및 장치들에 관한 것이다.
태양 전지들은 태양광 및 다른 광을 사용가능한 전기 에너지로 변환한다. 에너지 변환은 광전지 효과의 결과로서 발생한다. 태양 전지들은 결정 물질 또는 비정질 또는 미세결정 물질들로부터 형성될 수 있다. 일반적으로, 오늘날 대량으로 생산되는 두 개의 주요한 태양 전지들의 타입이 존재하는데, 이는 결정 실리콘 태양 전지들 및 박막 태양 전지들이다. 결정 실리콘 태양 전지들은 통상적으로 단결정 기판들(즉, 순수한 실리콘의 단일-결정 기판들) 또는 다-결정 실리콘 기판들(즉, 다결정 또는 폴리실리콘) 중 하나를 사용한다. 부가적인 막 층들이 광 포착을 개선하기 위하여 실리콘 기판들로 증착되고, 전기 회로를 형성하며, 소자들을 보호한다. 박막 태양 전지들은 하나 이상의 p-n 접합부들을 형성하기에 적합한 기판들상에 증착된 물질들의 얇은 층을 사용한다. 적합한 기판들은 유리, 금속 및 중합체 기판들을 포함한다. 광에 노출시, 박막 태양 전지들의 특성들은 시간에 따 라 저하되고, 이는 원하는 것보다 낮은 소자 안정성을 야기할 수 있다는 것이 밝혀졌다. 저하될 수 있는 통상적인 태양 전지 특성들은 충전 팩터(FF: fill factor), 단락 회로 전류, 및 개방 회로 전압(Voc)이다.
현재 박막 태양 전지들의 문제점들은 낮은 효율 및 높은 비용을 포함한다. 따라서, 개선된 박막 태양 전지들 및 공장 환경에서 동일한 것을 형성하기 위한 방법들 및 장치들이 요구된다. 또한, 높은 충전 팩터, 높은 단락 회로 전류, 높은 개방 회로 전압 및 우수한 소자 안정성을 갖는 높은 안정성의 p-i-n 태양 전지들을 제조할 프로세스가 요구된다.
본 발명의 실시예들은 박막 다중-접합부 태양 전지들 및 이를 형성하기 위한 방법들 및 장치들에 관한 것이다. 일실시예에서, 기판 상부에 박막 다중-접합 태양 전지를 형성하는 방법은, 제 1 p-i-n 접합부를 형성하는 단계 및 제 1 p-i-n 접합부 위에 제 2 p-i-n 접합부를 형성하는 단계를 포함한다. 제 1 p-i-n 접합부를 형성하는 단계는, p-형 비정질 실리콘층을 형성하는 단계, p-형 비정질 실리콘층 위에 진성형 비정질 실리콘층을 형성하는 단계, 및 진성형 비정질 실리콘층 위에 n-형 미세결정(microcrystalline) 실리콘층을 형성하는 단계를 포함할 수 있다. 제 2 p-i-n 접합부를 형성하는 단계는, p-형 미세결정 실리콘층을 형성하는 단계, p-형 미세결정 실리콘층 위에 진성형 미세결정 실리콘층을 형성하는 단계, 및 진성형 미세결정 실리콘층 위에 n-형 비정질 실리콘층을 형성하는 단계를 포함한다. 일실시예에서, 박막 다중-접합부 태양 전지를 형성하기 위한 장치는, 제 1 p-i-n 접합부를 형성하도록 구성되는 적어도 하나의 제 1 시스템, 제 1 p-i-n 접합부 위에 제 2 p-i-n 접합부를 형성하도록 구성되는 적어도 하나의 제 2 시스템을 포함한다. 제 1 시스템은 p-형 비정질 실리콘층을 증착하도록 구성되는 단일 p-챔버 및 진성형 비정질 실리콘층 및 n-형 미세결정 실리콘층을 증착하도록 각각 구성되는 다수의 i/n-챔버들을 포함할 수 있다. 제 2 시스템은 p-형 미세결정 실리콘층을 증착하도록 구성된 단일 p-챔버, 및 진성형 미세결정 실리콘층과 n-형 비정질 실리콘층을 증착하도록 구성된 다수의 i/n-챔버들을 포함할 수 있다.
본 발명의 실시예들은, 기판 상부에 박막 다중-접합 태양 전지를 형성하는 방법을 더 제공할 수 있으며, 이러한 방법은, 기판 상에 제 1 광전지 접합부를 형성하는 단계, 및 제 1 광전지 접합부 상부에 제 2 광전지 접합부를 형성하는 단계를 포함하고, 상기 제 2 광전지 접합부를 형성하는 단계는, p-형 미세결정 실리콘층을 형성하는 단계, p-형 미세결정 실리콘층 상부에 진성형 미세결정 실리콘층을 형성하는 단계, 및 진성형 미세결정 실리콘층 상부에 n-형 비정질 실리콘층을 형성하는 단계를 포함하며, 진성형 미세결정 실리콘층이 형성될 때 진성형 미세결정 실리콘층의 두께 내의 2개 이상의 지점들에서 결정 분율(crystalline fraction)을 제어하기 위해 하나 이상의 프로세스 변수들이 조절된다.
본 발명의 실시예들은, 기판 상부에 박막 다중-접합 태양 전지를 형성하는 방법을 더 제공할 수 있으며, 이러한 방법은, 기판 상에 제 1 광전지 접합부를 형성하는 단계, 및 제 1 광전지 접합부 상부에 제 2 광전지 접합부를 형성하는 단계를 포함하고, 상기 제 1 광전지 접합부를 형성하는 단계는, p-형 비정질 실리콘층을 형성하는 단계, p-형 비정질 실리콘층 상부에 진성형 비정질 실리콘층을 형성하는 단계 - 진성형 비정질 실리콘층은 p-i 완충 진성형 비정질 실리콘층과 벌크 진성형 비정질 실리콘층을 포함함 - , 및 진성형 비정질 실리콘층 상부에 n-형 미세결정 실리콘층을 형성하는 단계를 포함하며, 상기 제 2 광전지 접합부를 형성하는 단계는, p-형 미세결정 실리콘층을 형성하는 단계, p-형 미세결정 실리콘층 상부에 진성형 미세결정 실리콘층을 형성하는 단계, 및 진성형 미세결정 실리콘층 상부에 n-형 비정질 실리콘층을 형성하는 단계를 포함한다.
본 발명의 실시예들은, 탠덤 접속 광전지 소자를 더 제공할 수 있으며, 이러한 소자는, 제 1 광전지 접합부 및 p-도핑된 미세결정 실리콘층을 포함하는 제 2 광전지 접합부, 다중 단계 증착 프로세스에 의해 형성되는 진성형 미세결정 실리콘층 - 각각의 증착 단계는 각각의 증착 단계에서 상이한 막 결정 분율(fraction)을 형성하기 위하여 상이한 수소 대 실란 비율을 갖는 가스 혼합물을 가짐 - , 및 진성형 미세결정 실리콘층에 인접한 n-도핑된 비정질 실리콘층을 포함한다. 일실시예에서, 상이한 수소 대 실란 비율은 진성형 미세결정 실리콘층의 전체 두께에 걸쳐 균일하게 형성되는 결정 분율을 제어한다.
본 발명의 상기 논의된 특징들이 상세히 이해될 수 있는 방식으로, 상기 간략히 요약된 본 발명의 보다 상세한 설명이 실시예들을 참조로 하여 얻어질 것이며, 몇몇 실시예들은 첨부 도면들에 개시된다.
도 1은 광 또는 태양광 쪽으로 배향된 다중-접합부 태양 전지의 특정 실시예 들의 개략도이다.
도 2는 n-형 비정질 실리콘 완충층을 더 포함하는 도 1의 다중-접합부 태양 전지의 개략도이다.
도 3은 p-형 미세결정 실리콘 접촉층을 더 포함하는 도 1의 다중-접합부 태양 전지의 개략도이다.
도 4는 태양 전지의 하나 이상의 막들이 증착될 수 있는 플라즈마 강화 화학 기상 증착(PECVD) 챔버의 일실시예의 개략적인 횡단면도이다.
도 5는 다수의 프로세스 챔버들을 갖는 프로세스 시스템의 일실시예의 최상부 개략도이다.
도 6은 탠덤(tandem) p-i-n 접합부 태양 전지를 형성하도록 설정된 증착 파라미터들을 도시한다.
도 7은 본 발명의 일실시예의 태양 전지의 특성들을 도시한다.
도 8A-C는 단일 접합부 태양 전지들의 상이한 실시예들의 개략도를 도시한다.
도 9는 단일 접합부 태양 전지들의 상이한 실시예들의 개략도를 도시한다.
도 10은 본 발명의 일실시예에 따른 단일 접합부 태양 전지의 개략도이다.
그러나, 첨부된 도면들은 단지 본 발명의 전형적 실시예들을 도시할 뿐이며, 따라서, 본 발명의 범위를 제한하는 것으로 여겨져서는 안되고, 본 발명은 다른 동일하게 유효한 실시예들을 수용할 수 있음에 유념하라.
이해를 용이하게 하기 위하여, 가능하면 도면들에 공통적인 동일한 엘리먼트 들을 지칭하기 위해서 동일한 참조 번호들이 사용되었다.
본 발명의 실시예들은 개선된 박막 다중-접합부 태양 전지 및 이를 형성하기 위한 방법들 및 장치들을 포함한다. 도 1은 광 또는 태양 광(101) 쪽으로 배향된 다중-접합부 태양 전지(100)의 특정 실시예의 개략도이다. 태양 전지(100)는 상부에 박막들이 형성되는, 유리 기판, 중합체 기판, 금속 기판, 또는 다른 적절한 기판과 같은 기판(102)을 포함한다. 태양 전지(100)는 기판(102) 위에 형성되는 제 1 투명 도전성 산화물(TCO)층(110), 제 1 TCO층(110) 위에 형성되는 제 1 p-i-n 접합부(120), 제 1 p-i-n 접합부(120) 위에 형성되는 제 2 p-i-n 접합부(130), 제 2 p-i-n 접합부(130) 위에 형성되는 제 2 TCO층(140), 및 제 2 TCO층(140) 위에 형성되는 금속 백(back)층(150)을 더 포함한다. 광 트랩핑(trapping)을 향상시킴으로써 광 흡수를 개선하기 위하여, 기판 및/또는 그 위에 형성된 하나 이상의 박막들은 습기, 플라즈마, 이온, 및/또는 기계적 프로세스들에 의해 선택적으로 텍스쳐링(texture)될 수 있다. 예를 들어, 도 1에 도시된 실시예에서, 제 1 TCO층(10)은 텍스쳐링될 것이며, 그 위에 증착된 후속하는 박막들은 일반적으로 그 아래의 표면의 토포그래피에 따를 것이다.
제 1 TCO층(110) 및 제 2 TCO층(140)은 각각 주석 산화물, 아연 산화물, 인듐 주석 산화물, 카드뮴 주석산염, 그들의 혼합물들 또는 다른 적절한 물질들을 포함할 수 있다. TCO 물질들은 부가적인 도펀트들 및 컴포넌트들을 더 포함할 수 있다. 예를 들어, 아연 산화물은 알루미늄, 갈륨, 붕소, 및 다른 적절한 도펀트들을 더 포함할 수 있다. 아연 산화물은 바람직하게는 5 원자% 이하의 도펀트들을, 보다 바람직하게는 2.5 원자% 이하의 알루미늄을 포함한다. 특정 실시예들에서, 기판(102)에는 유리 제조업자들에 의하여 미리 제공된 제 1 TCO층(110)이 제공될 수 있다.
제 1 p-i-n 접합부(120)는 p-형 비정질 실리콘층(122), p-형 비정질 실리콘츠ㅊ(122) 위에 형성된 진성형 비정질 실리콘층(124), 및 진성형 비정질 실리콘층(124) 위에 형성된 n-형 미세결정 실리콘층(125)을 포함할 수 있다. 특정 실시예들에서, p-형 비정질 실리콘층(122)은 약 60Å 내지 약 300Å의 두께로 형성될 수 있다. 특정 실시예들에서, 진성형 비정질 실리콘층(124)은 약 1,500Å 내지 약 3,500Å의 두께로 형성될 수 있다. 특정 실시예들에서, n-형 미세결정 반도체층(126)은 약 100Å 내지 약 400Å의 두께로 형성될 수 있다.
제 2 p-i-n 접합부(130)는 p-형 미세결정 실리콘층(132), p-형 미세결정 실리콘층(132) 위에 형성된 진성형 미세결정 실리콘층(134), 및 진성형 미세결정 실리콘층(134) 위에 형성된 n-형 비정질 실리콘층(136)을 포함할 수 있다. 특정 실시예들에서, p-형 미세결정 실리콘층(132)은 약 100Å 내지 약 400Å의 두께로 형성될 수 있다. 특정 실시예들에서, 진성형 미세결정 실리콘층(134)은 약 10,000Å 내지 약 30,000Å의 두께로 형성될 수 있다. 특정 실시예들에서, n-형 비정질 실리콘층(136)은 약 100Å 내지 약 500Å의 두께로 형성될 수 있다.
금속 백층(150)은 Al, Ag, Ti, Cr, Au, Cu, Pt, 그들의 합금들, 또는 그들의 조합물들로 구성된 그룹으로부터 선택된 물질을 포함할 수 있으나, 이에 제한되지 는 않는다. 레이저 식각 프로세스들과 같은 다른 프로세스들이 태양 전지(100)를 형성하기 위하여 수행될 수 있다. 다른 막들, 물질들, 기판들 및/또는 패키징이 태양 전지를 완성하기 위하여 금속 백층(150) 위에 제공될 수 있다. 태양 전지들은 어레이들을 형성하기 위하여 교대로 접속될 수있는 모듈들을 형성하기 위하여 상호접속될 수 있다.
태양광(101)은 p-i-n 접합부들(120, 130)의 진성층들에 의해 흡수되나, 전자-홀들 쌍들로 변환된다. 진성층에 걸쳐 뻗어나가는 p-형층과 n-형 층 사이에 생성된 전계는 전자들이 n-형 층들 쪽으로 흐르도록 하며, 홀들이 전류를 생성하는 p-형층들 쪽으로 흐르도록 한다. 제 1 p-i-n 접합부(120)는 진성형 비정질 실리콘층(124)을 포함하고, 제 2 p-i-n 접합부(130)는 진성형 미세결정 실리콘층(134)을 포함하는데, 이는 빕정질 실리콘 및 미세결정 실리콘이 태양광(101)의 상이한 파장들을 흡수하기 때문이다. 따라서, 태양 전지(100)는 태양광 스펙트럼의 큰 부분을 포착하기 때문에 보다 효율적이다. 비정질 실리콘의 진성층 및 미세결정의 진성층은 비정질 실리콘이 미세결정 실리콘보다 더 큰 밴드갭을 갖기 때문에, 태양광(101)이 먼저 진성형 비정질 실리콘층(124)과 충돌하고, 그 후 진성형 미세결정 실리콘층(134)과 충돌하는 방식으로 적층된다. 제 1 p-i-n 접합부(120)에 의해 흡수되지 않은 태양광은 계속해서 제 2 p-i-n 접합부(130)로 나아간다. 놀랍게도, 본 명세서에 도시된 제 1 p-i-n 접합부(120) 및 제 2 p-i-n 접합부(130)의 p-i-n 층들의 두께들이 태양 전지에 개선된 효율 및 동일한 것을 제조하기 위한 감소된 비용을 제공한다는 것이 발견되었다. 청구항들에 명쾌하게 기술되지 않는 한 이론 적으로 제한되지 않는 것으로 가정하고, 한편으로 더 두꺼운 진성층(124, 134)이 태양광 스펙트럼의 더 큰 양을 흡수하기에 이롭고, 다른 한편으로, 진성 층(124, 134) 및/또는 p-i-n 접합부들(120, 130)이 전자들이 너무 두꺼워, 관통하는 전자들의 흐름이 방해될 수 있는 것으로 여겨진다.
일측면에서, 태양 전지(100)는 제 1 p-i-n 접합부(120)와 제 2 p-i-n 접합부(130) 사이의 금속 터널층을 이용할 필요가 없다. 제 1 p-i-n 접합부(120)의 n-형 미세결정 실리콘층(126) 및 p-형 미세결정 실리콘층(132)은 제 1 p-i-n 접합부(120)로부터 제 2 p-i-n 접합부(130)로 전자들이 흐르게 하기 위하여 터널 접합부를 제공하기에 충분한 도전성을 갖는다.
일측면에서, 제 2 p-i-n 접합부(130)의 n-형 비정질 실리콘층(136)은 공기중에 산소와 같이 산소로부터의 공격에 보다 저항력이 있기 때문에 증가된 셀 효율을 제공한다. 산소는 실리콘 막들을 공격하고, 따라서 관통하는 전자/홀 수송에 참여하기 위하여 막들의 능력을 낮추는 불순물들을 형성할 수 있다. 형성된 태양 전지 구조물/소자의 결정 실리콘층 대 비정질 실리콘층의 낮춰진 전기 저항성은 형성된 제 2 p-i-n 접합부(130)의 전력 발생의 원치 않는 병렬(shunt) 경로들의 감소된 영향으로 인하여 개선된 전기 특성들을 가질 수 있다. 일반적으로 형성된 p-i-n 층들을 통해 수직으로 연장하는 병렬 경로들은 형성된 태양 전지 소자의 국소 측부 영역들을 단락시킴으로써 태양 전지 성능을 저하시킨다. 따라서, 비정질 n-형층의 측부 저항(즉, 수직 방향에 대하여 평행한)이 결정층보다 매우 크기 때문에, 병렬 타입 결함이 형성된 태양 전지의 나머지상에 갖는 영향이 낮아진다. 병렬 타입 결 함들의 영향의 감소는 태양 전지의 소자 성능을 개선할 것이다.
도 2는 진성형 비정질 실리콘층(124)과 n-형 미세결정 실리콘층(126) 사이에 형성된 n-형 비정질 실리콘 완충층(125)을 더 포함하는 도 1의 다중 접합부 태양 전지(100)의 개락도이다. 특정 실시예들에서, n-형 비정질 실리콘 완충층(125)은 약 10Å 내지 약 200Å의 두께로 형성될 수 있다. n-형 비정질 실리콘 완충층(125)은 진성형 비정질 실리콘층(124)과 n-형 미세결정 실리콘층(126) 사이에 존재하는 것으로 여겨지는 밴드갭 오프셋을 브릿징(bridge)하는 것을 돕는것으로 알려진다. 따라서, 셀 성능은 개선된 전류 수집으로 인하여 개선되는 것으로 여겨진다.
도 3은 제 1 TCO층(110)과 p-형 비정질 실리콘층(122) 사이에 형성된 p-형 미세결정 실리콘 접촉층(121)을 더 포함하는 도 1의 다중-접속부 태양 전지(100)의 개략도이다. 특정 실시예들에서, p-형 미세결정 실리콘 접촉부(121)는 약 20Å 내지 약 200Å의 두께로 형성될 수 있다. p-형 미세결정 실리콘 접촉층(121)은 TCO층과의 낮은 저항 접촉을 달성하는 것을 돕는 것으로 여겨진다. 따라서, 진성형 비정질 실리콘층(122)과 아연 산화물 제 1 TCO층(100) 사이의 전류 흐름이 개선되기 때문에 전지 효율이 개선되는 것으로 여겨진다. p-형 미세결정 실리콘 접촉층(121)은 많은 양의 수소가 접촉층을 형성하는데 사용되기 때문에, 아연 산화물과 같은 수소 플라즈마에 저항성인 물질을 포함하는 TCO층과 함께 사용되는 것이 바람직하다. 주석 산화물은 화학적으로 수소 플라즈마에 의해 감소되기 때문에, p-형 미세결정 실리콘 접촉층과 함께 사용되기에 적합하지 않은 것으로 밝혀졌다. 추가로, 태양 전지(100)는 도 2에 도시된 바와 같이 n-형 미세결정 반도체층(126)과 진성형 비정질 실리콘층(124) 사이에 형성된 선택적 n-형 비정질 실리콘 완충층을 더 포함할 수 있는 것으로 이해된다.
도 4는 도 1, 도 2 또는 도 3의 태양 전지(100)와 같은 태양 전지의 하나 이상의 막들이 증착될 수 있는 플라즈마 강화 화학 기상 증착(PECVD) 챔버(400)의 일실시예의 개략적인 횡단면도이다. 하나의 적합한 플라즈마 강화 화학 기상 증착 챔버는 캘리포니아 산타 클라라에 위치한 어플라이드 머티리얼스사로부터 이용가능하다. 다른 제조업자들로부터의 상기 챔버들을 포함하는 다른 증착 챔버들이 본 발명을 실행하기 위하여 이용될 수 있는 것다.
챔버(400)는 일반적으로 벽들(402), 바닥부(404), 및 샤워헤드(410), 및 프로세스 체적(406)을 형성하는 기판 지지부(430)를 포함한다. 프로세스 체적은 기판(100)과 같은 기판이 챔버(400)의 내외로 수송될 수 있도록 밸브(408)를 통해 애게스된다. 기판 지지부(430)는 기판을 지지하기 위한 기판 수용 표면(432), 및 기판 지지부(430)를 상승시키고 하강시키기 위한 승강 시스템(436)에 결합된 스템(434)을 포함한다. 433로부터의 섀도우(shadow)는 기판(100)의 주변부 위에 선택적으로 위치될 수 있다. 승강 핀들(438)은 기판 수용 표면(432)으로, 그리고 기판 수용 표면으로부터 기판을 이동시키기 위하여 기판 지지부(430)를 통해 이동가능하게 배치된다. 기판 지지부(430)는 원하는 온도로 기판 지지부(430)를 유지시키기 위하여 가열 및/또는 냉각 엘리먼트들(439)을 더 포함할 수 있다. 기판 지지부(430)는 또한 기판 지지부(430)의 주변부에 RF 접지를 제공하기 위하여 접지 스 트랩들(431)을 더 포함할 수 있다. 접지 스트랩들의 실시예들이 Law 등에 의해 2000년 2월 15일자로 발행된 미국 특허 제6,024,044호, 및 Park 등에 의해 2006년 12월 20일자로 출원된 미국 특허 출원 제 11/613,934호에 개시되며, 그 모든 내용은 본 명세서에 조화되는 범위까지 본 명세서에 참조로서 통합된다.
샤워헤드(410)는 서스펜션(suspension)(41)에 의해 그것의 주변부에서 백킹 플레이트(412)에 결합된다. 샤워헤드(410)는 또한 샤워헤드(410)의 직선/만곡부를 제어하기 위하여 및/또는 처짐을 방지하는 것을 돕기 위하여 하나 이상의 중앙 지지부들(416)에 의해 백킹 플레이트에 결합된다. 가스 소스(420)는 백킹 플레이트(412)를 통해, 그리고 샤워헤드(410)를 통해 기판 수용 표면(432)에 가스를 제공하기 위하여 백킹 플레이트(412)에 결합된다. 진공 펌프(409)는 원하는 압력으로 프로세스 체적(406)을 제어하기 위하여 챔버(400)에 결합된다. RF 전력 소스(422)는 전계가 길판 지지부와 샤워헤드 사이에 생성되어 플라즈마가 샤워헤드(410)와 기판 지지부(430) 사이에 가스들로부터 발생되도록, RF 전력을 샤워헤드(410)에 제공하기 위하여 백킹 플레이트(412) 및/또는 샤워헤드(410)에 결합된다. 약 0.3MHz 내지약 200MHz의 주파수와 같은 다양한 RF 주파수들이 사용될 수 있다. 일실시예에서, RF 전력 소스는 13.56MHz의 주파수에서 제공된다. 샤워헤드들의 실시예들은 White 등에 의해 2002년 11월 12일자로 발행된 미국 특허 제6,477,980호, Choi 등에 의해 2006년 11월 17일자로 발행된 미국 간행물 20050251990호, 및 Keller 등에 의해 2006년 3월 23일자로 발행된 미국 간행물 2006/0060138호에 개시되며, 그 모든 내용은 본 명세서에 조화되는 범위까지 본 명세서에 참조로서 통합된다.
유도적으로 결합된 원격 플라즈마와 같은 원격 플라즈마 소스(424)가 가스 소스와 백킹 플레이트(backing plate) 사이에 결합되 수 있다. 기판들을 처리하는 사이에, 원격 플라즈마 소스(424)에 세정 가스(cleaning gas)가 제공되어 원격 플라즈마가 발생되고 플라즈마 부품들(components)의 세정을 위해 제공될 수 있다. 세정 가스는 샤워헤드에 제공되는 RF 전력 소스(422)에 의해 추가로 여기될 수 있다. 제한되는 것은 아니지만, 적절한 세정 가스들로는 NF3, F2 및 SF6가 포함된다. 원격 플라즈마 소스들의 예는 샹(Shang) 등에 의해 1998년 8월 4일 허여된 미국 특허 5,788,778호에 개시되어 있으며, 상기 문헌은 본 발명의 설명과 모순되지 않는 범위내에서 참조된다.
도 1, 도 2 또는 도 3의 태양 전지(100)의 하나 이상의 실리콘층들과 같이, 하나 이상의 실리콘층들에 대한 증착 방법은 도 4의 프로세스 챔버 또는 다른 적절한 챔버에서 하기 증착 파라미터들을 포함할 수 있다. 10,000㎠ 이상, 바람직하게는 40,000㎠ 이상, 보다 더 바람직하게는 55,000㎠ 이상의 표면적을 갖는 기판이 챔버에 제공된다. 기판 처리 이후, 더 작은 태양 전지들이 형성되도록 기판이 절단될 수 있다는 것이 이해될 것이다.
일 실시예에서, 가열 및/또는 냉각 부재들(elements)(439)이 약 400℃ 이하, 바람직하게는 약 100℃ 내지 약 400℃ 사이, 보다 더 바람직하게는 약 150℃ 내지 약 300℃ 사이, 이를 테면 약 200℃의 증착 동안 기판 지지체 온도를 제공하도록 설정될 수 있다.
증착 동안 기판 수용 표면(432) 상에 위치되는 기판의 상부 표면과 샤워헤드(410) 간의 간격(spacing)은 400mil 내지 약 1,200mil 사이, 바람직하게는 400mil 내지 약 800mil 사이일 수 있다.
실리콘 막들의 증착을 위해, 실리콘-기반 가스 및 수소-기반 가스가 제공된다. 제한되는 것은 아니지만, 적절한 실리콘 기반 가스들로는 실란(SiH4), 디실란(Si2H6), 실리콘 테트라플루오라이드(SiF4), 실리콘 테트라클로라이드(SiCl4), 디클로로실란(SiH2Cl2) 및 이들의 조합물이 포함된다. 제한되는 것은 아니지만, 적절한 수소-기반 가스들로는 수소 가스(H2)가 포함된다. p-형 실리콘층들의 p-형 도펀트들은 각각 III족 원소, 이를 테면 붕소 또는 알루미늄을 포함할 수 있다. 바람직하게, 붕소는 p-형 도펀트로서 사용된다. 붕소-함유 소스들의 예로는 트리메틸보론(TMB(또는 B(CH3)3)), 디보란(B2H6), BF3, B(C2H5)3, 및 유사한 화합물들이 포함된다. 바람직하게, TMB가 p-형 도펀트로서 이용된다. n-형 실리콘층의 n-형 도펀트들은 각각 V족 원소, 이를 테면, 인, 비소 또는 안티몬을 포함할 수 있다. 바람직하게, n-형 도펀트로서 인이 사용된다. 인-함유 소스들의 예로는 포스핀 및 유사한 화합물들이 포함된다. 도펀트들에는 통상적으로 캐리어 가스, 이를 테면, 수소, 아르곤, 헬륨 및 다른 적절한 화합물들이 제공된다. 본 발명에 개시되는 프로세스 방법에서, 수소 가스의 전체 유량(flow rate)이 제공된다. 따라서, 이를 테면 도펀트에 대해 캐리어 가스로서 수소 가스가 제공되는 경우, 얼마나 많은 추가 의 수소 가스가 챔버에 제공될 수 있는지를 결정하기 위해 캐리어 가스 유량가 수소의 전체 유량으로부터 차감된다.
이를 테면 도 3의 콘택층(121)과 같은 p-형 미세결정 실리콘 콘택층을 증착하는 소정의 방법들은 약 200:1 이상의 비율로 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.1sccm/L 내지 약 0.8sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 60sccm/L 내지 약 500sccm/L 사이의 유량으로 제공될 수 있다. 트리메틸보론은 약 0.0002sccm/L 내지 약 0.0016sccm/L 사이의 유량으로 제공될 수 있다. 다른 말로, 트리메틸보론이 캐리어 가스의 0.5% 몰(molar) 또는 체적 농도로 제공되면, 도펀트/캐리어 혼합물은 약 0.04sccm/L 내지 약 0.32sccm/L 사이의 유량으로 제공될 수 있다. 본 발명에서 유량은 내부 챔버 볼륨당 sccm으로 표현된다. 내부 챔버 볼륨은 가스가 점유될 수 있는 챔버 내부의 볼륨으로 정의된다. 예를 들어, 챔버(400)의 내부 챔버 볼륨은 백킹 플레이트(412) 및 벽들(402)에 의해 한정되는 볼륨이며 챔버의 바닥부(404)는 샤워헤드 어셈블리(즉, 샤워헤드(410), 서스펜션(414), 중심 지지체(415) 포함)에 의해 그리고 기판 지지 어셈블리(즉, 기판 지지체(430), 접지 스트랩들(431) 포함)에 의해 그 안에 점유되는 볼륨에서 빠진다. 약 50milliWatts/㎠ 내지 약 700milliWatts/㎠ 사이의 RF 전력이 샤워헤드에 제공될 수 있다. 본 발명의 RF 전력들은 기판 면적당 전극에 공급되는 Watt로 표현된다. 예를 들어, 220x260cm의 치수를 갖는 기판을 처리하기 위해 샤워헤드에 공급되는 10,385Watts의 RF 전력에 대해, RF 전력은 10,385Watts/(220x260cm) = 180milliWatts/㎠이다. 챔버의 압력 은 약 1Torr 내지 약 100Torr, 바람직하게는 약 3Torr 내지 약 20Torr 사이, 보다 더 바람직하게는 약 4Torr 내지 약 12Torr 사이로 유지될 수 있다. p-형 미세결정 실리콘 콘택층의 증착 속도는 약 10Å/min 이상일 수 있다. p-형 미세결정 실리콘 콘택층은 약 20퍼센트 내지 약 80퍼센트 사이, 바람직하게는 약 50 퍼센트 내지 약 70퍼센트 사이의 결정 분율을 갖는다.
도 1, 도 2 또는 도 3의 실리콘층(122)과 같이 p-형 비정질 실리콘층을 증착하는 소정 실시예들은 약 20:1 이하의 비율로 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 1sccm/L 내지 약 10sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 5sccm/L 내지 약 60sccm/L 사이의 유량으로 제공될 수 있다. 트리메틸보론은 약 0.005sccm/L 내지 약 0.05sccm/L 사이의 유량으로 제공될 수 있다. 다른 말로, 트리메틸보론이 캐리어 가스에 0.5% 몰 또는 볼륨 농도로 제공되면, 도펀트/캐리어 가스 혼합물은 약 1sccm/L 내지 약 10sccm/L 사이의 유량으로 제공될 수 있다. 메탄은 약 1sccm/L 내지 약 15sccm/L 사이의 유량으로 제공될 수 있다. 약 15milliWatts/㎠ 내지 약 200milliWatts/㎠사이의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1Torr 내지 20Torr 사이, 바람직하게는 약 1Torr 내지 약 4Torr 사이로 유지된다. p-형 비정질 실리콘층의 증착 속도는 약 100Å/min 이상일 수 있다. 메탄 또는 다른 탄소 함유 화합물들, 이를 테면, C3H8, C4H10, C2H2가 p-형 비정질 실리콘층의 윈도우 특성들을 개선시키기 위해(예를 들어, 태양 복사선의 흡수를 낮추기 위해) 사용될 수 있다. 따라서, 증가된 양의 태양 복사선은 진성층들을 통해 흡수될 수 있어 전지 효율이 개선된다. 트리메틸보론이 p-형 비정질 실리콘층(122)에 붕소 도펀트들을 제공하기 위해 이용되는 실시예에서, 붕소 도펀트 농도는 약 1 x 1018 atoms/cm2 내지 약 1 x 1020 atoms/cm2 사이로 유지된다. 메탄 가스가 실리콘 카바이드층으로서 p-형 층을 형성하도록 제공하는데 이용되는 실시예에서, 탄소 도펀트 농도는 층의 약 10 원자 퍼센트 내지 약 20 원자 퍼센트 사이로 제어된다.
도 1, 도 2, 또는 도 3의 실리콘층(124)과 같이, 진성형(intrinsic type) 비정질 실리콘층을 증착하는 소정의 실시예들은 약 20:1 이하의 비율로 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.5 sccm/L 내지 약 7 sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 5 sccm/L 내지 60 sccm/L 사이의 유량으로 제공될 수 있다. 15 milliWatts/cm2 내지 약 250 milliWatts/cm2 사이의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1 Torr 내지 20 Torr 사이, 바람직하게는 약 0.5 Torr 내지 약 5 Torr 사이로 유지될 수 있다. 진성형 비정질 실리콘층의 증착 속도는 약 100Å/min 이상일 수 있다. 예시적인 실시예에서, 진성형 비정질 실리콘층은 약 12.5:1의 수소 대 실란 비율로 증착된다.
일 실시예에서, 도 1, 도 2, 또는 도 3의 실리콘층(124)과 같은 진성형 비정질 실리콘층의 증착은 하나 이상의 단계, 이를 테면 다단계 증착 프로세스를 포함 할 수 있다. 예를 들어, 벌크 진성형 비정질 실리콘층 증착 프로세스 이전에, 도 9a에 도시된 것처럼, p-i 완충 진성형 비정질 실리콘층(PIB 층)(904)은 p-형 비정질 실리콘층에 증착될 수 있다. PIB층(904)에 대한 상세한 설명은 도 9a를 참조로 하기에 보다 상세히 설명된다. p-i 완충 진성형 비정질 실리콘층(PIB층) 및 벌크 i-형 비정질 실리콘층(124)은 상이한 원하는 막 특성들을 갖는 층들을 형성하기 위해 증착 동안 프로세스 파라미터들을 평활하게 변화시킴으로써 단일 챔버에서 증착될 수 있다. p-i 완충 진성형 비정질 실리콘층(PIB층)은 하부에 놓인 p-형 비정질 실리콘층에 대한 손상을 최소화시키기 위해 비교적 낮은 RF 전력을 이용하는 방식으로 증착된다. 따라서, 하부에 놓인 p-형 비정질 실리콘층 및 벌크 i-형 비정질 실리콘층(124)은 각각 상이한 막 투과성 및 특성을 갖기 때문에, 완충 i-형 비정질 실리콘층은 각각의 층에서 막 특성들의 평활한 전이를 보조하여, 광학적 밴드갭(OBG)에서 상당한 변화를 최소화시켜, 약 20meV 내지 50meV 사이로 개방 회로 전압을 개선하고 보다 보다 넓은 밴드 갭을 제공한다.
일 실시예에서, p-i 완충 진성형 비정질 실리콘층(PIB층)은 약 40:1 이하, 예를 들어, 약 30:1 미만, 예를 들어 약 20:1 내지 약 30:1 사이, 이를 테면 약 25의 비율의 수소 가스 대 실란 가스의 가스 혼합물을 제공함으로써 증착될 수 있다. 실란 가스는 약 0.5 sccm/L 내지 약 5sccm/L 사이, 이를 테면 약 2.28sccm/L의 유량으로 제공될 수 있다. 수소 가스는 약 5sccm/L 내지 80sccm/L 사이, 이를 테면 약 20sccm/L 내지 약 65sccm/L 사이, 예를 들어 약 57sccm/L의 유량으로 제공될 수 있다. 15milliWatts/cm2 내지 약 250milliWatts/cm2 사이, 이를 테면 약 30milliWatts/cm2 사이의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1Torr 내지 20Torr 사이, 바람직하게는 약 0.5Torr 내지 약 5Torr 사이, 이를 테면 약 3Torr로 유지될 수 있다. p-i 완충 진성형 비정질층(PIB층)의 증착 속도는 약 100Å/min 이상일 수 있다. p-i 완충 진성형 비정질 실리콘층(PIB층)의 두께는 약 0Å 내지 약 500Å 사이, 이를 테면 약 0 Å 내지 약 200Å 사이, 예를 들어, 약 100Å이다. 주목할 것은 p-i 완충 진성형 비정질 실리콘층(PIB층) 및 벌크 진성형 비정질 실리콘층(124)이 단일 챔버에서 통합적으로 증착되거나 또는 개별 챔버들에서 개별적으로 증착될 수 있다는 것이다.
p-i 완충 진성 비정질 실리콘층(PIB층)이 원하는 두께에 도달함에 따라, 완충 진성형 비정질 실리콘층(124)에 공급되는 가스 혼합물은 벌크 진성형 비정질 실리콘층(124)을 증착하도록 변할 수 있다. p-i 완충 진성형 비정질 실리콘층(PIB층)을 벌크 진성형 비정질 실리콘층(124)으로 증착 변이하는 동안, 가스 혼합물에 공급된 수소 가스는 점차적으로 감소되고 실란 가스는 동일하게 유지되거나 또는 점차적으로 증가한다. 일 실시예에서, 가스 혼합물에서 수소 대 실란 가스 비율은 p-i 완충 진성형 비정질 실리콘층(PIB층) 증착을 벌크 진성형 비정질층(124)의 증착으로 변이시키기 위해 25:1 내지 12.5:1 사이로 변한다. RF 전력은 p-i 완충 진성형 비정질 실리콘층(PIB층) 증착에 대해 약 30 milliWatts/cm2에서 벌크 진성형 비정질 실리콘층 증착에 대해 약 50 milliWatts/cm2로 램핑업될 수 있다. 프로세스 압력은 실질적으로 동일하게 유지되거나 또는 약 3 Torr에서 약 2.5 Torr로 점차적으로 조절될 수 있다.
n-형 비정질 실리콘 완충층, 이를 테면 도 2의 실리콘층(125)을 증착하는 소정의 실시예들은 약 20:1 이하의 비율로 수소 가스 대 실란 가스를 제공하는 단계를 포함한다. 실란 가스는 약 1sccm/L 내지 약 10sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 4sccm/L 내지 약 50sccm/L의 유량으로 제공될 수 있다. 포스핀은 약 0.0005 sccm/L 내지 약 0.0075 sccm/L 사이의 유량으로 제공될 수 있다. 다른 말로, 포스핀이 캐리어 가스에 0.5% 몰 또는 볼륨 농도로 제공되는 경우, 도펀트/캐리어 가스 혼합물은 약 0.1 sccm/L 내지 약 1.5 sccm/L 사이의 유량으로 제공될 수 있다. 약 15 milliWatts/cm2 내지 약 250 milliWatts/cm2 사이의 RT 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1 Torr 내지 20 Torr 사이, 바람직하게는 약 0.5 Torr 내지 약 4 Torr 사이로 유지될 수 있다. n-형 비정질 실리콘 완충층의 증착 속도는 약 200Å/min 이상일 수 있다. n-형 비정질 실리콘층에 인 도펀트들을 제공하기 위해 포스핀이 사용되는 실시예에서, 인 도펀트 농도는 약 1 x 1018 atoms/cm2 내지 약 1 x 1020 atoms /cm2 사이로 유지된다.
n-형 미세결정 실리콘층, 이를 테면 도 1, 도 2 또는 도 3의 실리콘층(126)을 증착하는 소정 실시예들은 약 100:1 이상의 비율의 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.1 sccm/L 내지 약 0.8 sccm/L 사이, 이를 테면 약 0.35 sccm/L의 유량으로 제공될 수 있다. 수소 가스는 약 30 sccm/L 내지 약 250 sccm/L 사이, 이를 테면 약 71.43 sccm/L의 유량으로 제공될 수 있다. 포스핀은 약 0.0005 sccm/L 내지 약 0.006 sccm/L 사이의 유량으로 제공될 수 있다. 다른 말로, 포스핀이 캐리어 가스에 0.5% 몰 또는 볼륨 농도로 제공되는 경우, 도펀트/캐리어 가스는 약 0.1 sccm/L 내지 약 1.2 sccm/L 사이의 유량으로 제공될 수 있다. 약 100 milliWatts/cm2 내지 약 900 milliWatts/cm2 사이의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 1 Torr 내지 약 100 Torr 사이, 바람직하게는 약 3 Torr 내지 약 20 Torr 사이, 보다 바람직하게는 4 Torr 내지 약 12 Torr 사이로 유지될 수 있다. n-형 미세결정 실리콘층의 증착 속도는 약 50Å/min이상일 수 있다. n-형 미세결정 실리콘층은 약 20퍼센트 내지 약 80 퍼센트 사이, 바람직하게는 50 퍼센트 내지 약 70 퍼센트 사이의 결정 분율을 갖는다. 포스핀이 n-형 미세결정 실리콘층에 인 도펀트를 제공하는데 이용되는 실시예에서, 인 도펀트 농도는 약 1 x 1018 atoms/cm2 내지 약 1 x 1020 atoms/cm2 사이로 유지된다.
n-형 미세결정 실리콘층, 이를 테면 도 1, 도 2, 또는 도 3의 실리콘층(126)을 증착하는 또 다른 실시예에서, 증착 프로세스는 약 500:1 이하, 이를 테면 약 100:1 내지 약 400:1 사이, 예를 들면 약 304:1 또는 약 203:1의 비율의 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.1 sccm/L 내지 약 0.8 sccm/L 사이, 이를 테면 약 0.32 sccm/L 내지 약 0.45 sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 30 sccm/L 내지 약 250 sccm/L 사이, 이를 테면 약 68 sccm/L 내지 약 142.85 sccm/L 사이의 유량으로 제공될 수 있다. 인은 약 0.0005 sccm/L 내지 약 0.025 sccm/L 사이, 이를 테면 약 0.0025 sccm/L 내지 약 0.015 sccm/L 사이, 이를 테면 약 0.005 sccm/L의 유량으로 제공될 수 있다. 다른 말로, 포스핀이 캐리어 가스에 0.5% 몰 또는 볼륨 농도로 제공되는 경우, 도펀트/캐리어 가스는 약 0.1 sccm/L 내지 약 5 sccm/L 사이, 이를 테면 약 0.5 sccm/L 내지 약 3 sccm/L 사이, 이를 테면 약 0.9 sccm/L 내지 약 1.088 sccm/L 사이의 유량으로 제공될 수 있다. 약 100 milliWatts/cm2 내지 약 900 milliWatts/cm2 사이, 이를 테면 약 370 milliWatts/cm2의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 1 Torr 내지 약 100 Torr 사이, 바람직하게는 약 3 Torr 내지 약 20 Torr 사이, 보다 더 바람직하게는 4 Torr 내지 약 12 Torr 사이, 예를 들어, 약 6 Torr 또는 약 9 Torr로 유지될 수 있다. n-형 미세결정 실리콘층의 증착 속도는 약 150Å/min 이상일 수 있다.
p-형 미세결정층, 이를 테면 도 1, 도 2 또는 도 3의 실리콘층(132)을 증착하는 소정 실시예들은 약 200:1 이상의 비율의 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.1 sccm/L 내지 약 0.8 sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 60 sccm/L 내지 약 500 sccm/L 사이의 유량으로 제공될 수 있다. 트림틸보론은 약 0.0002 sccm/L 내지 약 0.0016 sccm/L 사이의 유량으로 제공될 수 있다. 다른 말로, 트리메틸보론이 캐리어 가스에 0.5% 몰 또는 볼륨 농도로 제공되는 경우, 도펀트/캐리어 가스 혼합물은 약 0.04 sccm/L 내지 약 0.32 sccm/L 사이의 유량으로 제공된다. 약 50 milliWatts/cm2 내지 약 700 milliWatts/cm2 사이의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 1 Torr 내지 약 100 Torr 사이, 바람직하게는 약 3 Torr 내지 약 20 Torr 사이, 보다 바람직하게는 4 Torr 내지 약 12 Torr로 유지될 수 있다. p-형 미세결정 실리콘층의 증착 속도는 약 10Å/min 이상일 수 있다. p-형 미세결정 실리콘 콘택층은 약 20 퍼센트 내지 약 80 퍼센트 사이, 바람직하게는 50 퍼센트 내지 약 70 퍼센트 사이의 결정 분율을 갖는다. 트리메틸보론이 p-형 미세결정 실리콘층에 붕소 도펀트를 제공하는데 이용되는 실시예에서, 붕소 도펀트 농도는 약 1 x 1018 atoms/cm2 내지 약 1 x 1020 atoms /cm2 사이로 유지된다.
p-형 미세결정 실리콘층, 이를 테면 도 1, 도 2 또는 도 3의 실리콘층을 증착하는 또 다른 실시예에서, 증착 프로세스는 약 1000:1 이하, 이를 테면 약 200:1 내지 약 800:1 사이, 예를 들면 약 601:1 또는 약 401:1 비율의 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.1 sccm/L 내지 약 0.8 sccm/L 사이, 이를 테면 약 0.2 sccm/L 내지 약 0.38 sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 60 sccm/L 내지 약 500 sccm/L 사이, 이를 테면 약 142.85 sccm/L의 유량으로 제공될 수 있다. 트리메틸보론은 약 0.0002 sccm/L 내지 약 0.0016 sccm/L 사이, 이를 테면 약 0.00115 sccm/L의 유 량으로 제공될 수 있다. 다른 말로, 트리메틸보론이 캐리어 가스에 0.5% 몰 또는 볼륨 농도로 제공될 경우, 도펀트/캐리어 가스 혼합물은 약 0.04 sccm/L 내지 약 0.32 sccm/L 사이, 이를 테면 약 0.23 sccm/L 사이로 제공될 수 있다. 약 50 milliWatts/cm2 내지 약 700 milliWatts/cm2 사이, 이를 테면 약 290 milliWatts/cm2 내지 약 440 milliWatts/cm2 사이의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버 압력은 약 1 Torr 내지 약 100 Torr 사이, 바람직하게 약 3 Torr 내지 약 20 Torr 사이, 보다 바람직하게는 4 Torr 내지 약 12 Torr, 이를 테면 약 9 Torr 또는 약 7 Torr로 유지될 수 있다. p-형 미세결정 실리콘층의 증착 속도는 143Å/min 이상일 수 있다.
진성형 미세결정 실리콘층, 이를 테면 도 1, 도 2 또는 도 3의 실리콘층(134)을 증착하는 소정 실시예들은 1:20 내지 1:200 사이의 비율의 실란 가스 대 수소 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.5 sccm/L 내지 약 5 sccm/L 사이의 유량으로 제공될 수 있다. 수소 가스는 약 40 sccm/L 내지 약 400 sccm/L 사이의 유량으로 제공될 수 있다. 소정 실시예들에서, 실란 유량은 증착 동안 제 1 유량에서 제 2 유량으로 램핑업될 수 있다. 소정 실시예들에서, 수소 가스 유량은 증착 동안 제 1 유량에서 제 2 유량으로 램핑다운될 수 있다. 약 300 milliWatts/cm2 이상, 바람직하게는 600 milliWatts/cm2 이상의 RF 전력이 샤워헤드에 제공될 수 있다. 소정 실시예들에서, 전력 밀도는 증착 동안 제 1 전력 밀도에서 제 2 전력 밀도로 램핑다운될 수 있다. 챔버의 압력은 약 1 Torr 내지 약 100 Torr 사이, 바람직하게는 약 3 Torr 내지 약 20 Torr 사이, 보다 더 바람직하게는 약 4 Torr 내지 약 12 Torr 사이로 유지된다. 진성형 미세결정 실리콘층의 증착 속도는 약 200Å/min 이상, 바람직하게는 500Å/min일 수 있다. 증착된 미세결정 진성층에 대한 방법 및 장치들은 "광기전성 소자를 위한 미세결정 실리콘막을 증착하는 방법 및 장치"란 제목으로 2006년 6월 23일자로 출원된 미국 특허 출원 11/426,127호에 개시되며, 상기 문헌은 본 발명과 모순되지 않는 범주로 참조된다. 미세결정 실리콘 진성층은 약 20 퍼센트 내지 약 80 퍼센트 사이, 바람직하게는 55 퍼센트 내지 약 75퍼센트 사이의 결정 분율을 갖는다. 놀랍게도 약 70% 이하의 결정 분율을 갖는 미세결정 실리콘 진성층은 개방 회로 전압의 증가를 제공하며 보다 높은 전지 효율을 유도한다는 것이 발견되었다.
진성형 마이크로 실리콘층, 이를 테면 도 1의 실리콘층(134)을 증착하는 또 다른 실시예에서, 진성형 미세결정 실리콘층은 하나 이상의 단계들, 예를 들면 다단계 증착에 의해 증착될 수 있다. 결정 분율이 증착된 막의 두께 증가와 함께 변할 수 있기 때문에, 증착 동안 공급되는 가스 비율은 전체 진성형 미세결정 실리콘층의 결정 분율을 유지하도록 변할 수 있다. 따라서, 증착은 최종 막에서 상이한 결정 분율이 형성되도록 상이한 프로세스 파라미터들 또는 프로세스 변수들을 사용하여 다단계로 수행될 수 있다. 다단계 증착은 막에서의 상이한 두께 레벨에서 원하는 상이한 막 특성을 갖는 그래디언트(gradient) 막으로서 진성형 미세결정 실리콘층이 형성되는 것을 가능케한다. 일 실시예에서, 각각의 증착 단계에서 변할 수 있는 프로세스 파라미터들 또는 프로세스 변수들로는 RF 전력, 증착 시간, 가스 혼합물에 공급되는 수소 대 실란 가스 비율, 가스 혼합물에 공급되는 가스 종들, 프로세스 압력, 가스 유량, 간격(spacing), RF 주파수, 및/또는 다른 적절한 프로세스 파라미터들이 포함된다. 일 실시예에서, 수소 가스 대 실란 가스 비율의 프로세스 변수들, 프로세스 압력, RF 전력, 또는 증착 시간은 형성된 진성형 미세결정 실리콘층의 상이한 부분들에 형성되는 결정 분율을 제어하도록 변할 수 있다. 또 다른 실시예에서, 수소 대 실란 가스 비율의 프로세스 변수는 형성된 진성형 미세결정 실리콘층의 상이한 부분들에 형성된 결정 분율을 제어하기 위해 각각의 증착 단계에서 변한다.
일 실시예에서, 증착 프로세스에서 수행되는 단계들의 개수는 진성형 마이크로 실리콘층의 원하는 두께에 따라 결정될 수 있다. 예를 들어, 진성형 마이크로 실리콘층이 5000Å 이상의 비교적 큰 두께로 증착되는 것이 요구된다면, 전체 프로세스는 막의 균일한 결정 분율을 유지하도록 보다 많은 단계들로 나뉠 수 있다. 반대로, 진성형 미세결정 실리콘층이 보다 얇은 두께로 증착되는 것이 바람직하다면, 증착 프로세스에서 단계들의 개수는 적절한 범위에서 제어될 수 있다.
진성형 미세결정 실리콘층이 약 17000Å의 두께로 형성되는 예시적인 실시예에서, 증착 프로세스는 4개의 증착 단계들로 분할될 수 있으며, 각각의 증착 단계에서는 가스 혼합물에 다른 수소 대 실란 가스비가 적용된다. 각각의 단계에서 형성된 두께는 각각의 단계에서 약 4250Å(예컨대, 단계당 17000Å 전체 두께/4개의 증착 단계들 = 4250Å)와 실질적으로 동일한 것으로 제어될 수 있다. 증착동안, 수소 가스 대 실란 가스의 가스 비는 전체 막의 두께가 증가할때 막의 전체 결정질 부분이 증가하는 것을 막기 위하여 미리 결정된 범위내에서 증착된 막의 전체 결정질 부분을 효율적으로 유지하기 위하여 각각의 연속 단계에서 점진적으로 감소된다. 수소 가스 대 실란 가스의 낮은 비(low ratio)는 가스 혼합물에 공급된 수소 가스량을 감소시키고 및/또는 가스 혼합물에 제공된 실란 가스량을 증가시킴으로서 달성될 수 있다. 여기에서 제시된 비(ratio)는 프로세스 챔버내에 공급된 유속비(예컨대, 부피비(volume ratio))이다. 하나의 특정 실시예에서, 수소 가스 대 실란 가스의 가스 비는 증착 프로세스의 제 1단계에서 약 100:1로, 증착 프로세스의 제 2단계에서 95:1로, 증착 프로세스의 제 3단계에서 90:1로 그리고 증착 프로세스의 제 4/최종 단계에서 85:1로 제어될 수 있다. 수소 가스 대 실란 가스의 가스 비는 여러 프로세스 방식들에 적합하도록 원하는 대로 약 20:1 내지 200:1로 조절될 수 있다는 것에 유의해야 한다. 일 실시예에서, 증착동안 가스 흐름을 조절할때, 실란 가스 흐름은 가스 혼합물에 공급된 수소 흐름을 점진적으로 감소시키는 동안 일정하게 유지될 수 있어서 가스 혼합물에서 수소 가스 대 실란 가스 비를 낮출 수 있으며, 이는 진성형 미세결정 실리콘층에 형성된 결정 분율(crystalline fraction)을 감소시킨다(반대의 경우도 가능함). 가스 압력, 기판 온도, RF 전력 등과 같은 다른 프로세스 파라미터들은 각각의 증착단계동안 실질적으로 동일하게 유지될 수 있다.
일 실시예에서, 실란 가스는 약 0.1 sccm/L 내지 약 5sccm/L의 유속, 예컨대 0.97 sccm/L의 유속으로 제공될 수 있다. 수소 가스는 약 10 sccm/L 내지 약 200 sccm/L의 유속, 예컨대 약 80 sccm/L 내지 약 105 sccm/L의 유속으로 제공될 수 있 다. 증착이 다중 단계들, 예컨대 4개의 단계를 가지는 예시적인 실시예에서, 수소 가스 흐름은 제 1 단계에서 약 97 sccm/L로 구성될 수 있으며, 다음 프로세스 단계들에서 각각 92 sccm/L, 87.5sccm/L, 및 82.6 sccm/L로 점진적으로 감소될 수 있다. 약 300 밀리와트/cm2 이상, 예컨대 약 490 밀리와트/cm2의 RF 전력은 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 1 Torr 내지 약 100 Torr, 예컨대 약 3 Torr 내지 약 20 Torr, 예컨대 약 4 Torr 내지 약 12 Torr, 예컨대 약 9 Torr로 유지된다. 진성형 미세결정 실리콘층의 증착율은 약 200 Å/min 이상, 예컨대 400 Å/min일 수 있다.
n-형 비정질 실리콘층, 예컨대 도 1, 도 2 또는 도 3의 실리콘층(136)을 증착하는 방법의 일부 실시예들은 제 1 실란 유속에서 선택적 제 1 n-형 비정질 실리콘층을 증착하는 단계, 및 제 1 실란 유속보다 느린 제 2 실란 유속에서 제 1 선택적 n-형 비정질 실리콘층위에 제 2 n-형 비정질 실리콘층을 증착하는 단계를 포함할 수 있다. 제 1 선택적 n-형 비정질 실리콘층은 약 20:1 이하, 예컨대 약 5:1:1의 비에서 실란 가스에 수소 가스의 가스 혼합물을 제공할 수 있다. 실란 가스는 약 1 sccm/L 내지 약 10 sccm/L, 예컨대 약 5.5 sccm/L의 유속으로 제공될 수 있다. 수소 가스는 약 4 sccm/L 내지 약 40 sccm/L, 예컨대 약 27 sccm/L의 유속으로 제공될 수 있다. 포스핀은 약 0.0005 sccm/L 내지 약 0.0015 sccm/L의 유속, 예컨대 약 0.0095 sccm/L의 유속으로 제공될 수 있다. 다시 말해서, 만일 포스핀이 캐리어 가스에서 0.5% 몰 또는 부피 농도로 제공되면, 도펀트/캐리어 가스 혼합 물은 약 0.1 sccm/L 내지 약 3 sccm/L의 유속, 예컨대 약 1.9 sccm/L의 유속으로 제공될 수 있다. 25 밀리와트/cm2 내지 약 250 밀리와트/cm2, 예컨대 약 80 밀리와트/cm2의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1 Torr 내지 약 20 Torr, 바람직하게 약 0.5 Torr 내지 약 4 Torr, 예컨대 약 1.5 Torr로 유지될 수 있다. 제 1 n-형 비정질 실리콘층의 증착율은 약 200Å/min 이상, 예컨대 561 Å/min일 수 있다. 포스핀이 n-형 비정질 실리콘층에 인 도펀트들을 제공하기 위하여 사용되는 실시예에서, 인 도펀트 농도는 약 1×1018 원자/cm2 내지 약 1×1020 원자/cm2로 유지된다.
제 2 n-형 비정질 실리콘층 증착 단계는 약 20:1 이하의 비, 예컨대 약 7.8:1의 비로 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함할 수 있다. 실란 가스는 약 0.1 sccm/L 내지 약 5 sccm/L, 예컨대 약 0.5 sccm/L 내지 약 3 sccm/L, 예컨대 약 1.42 sccm/L의 유속으로 제공될 수 있다. 수소 가스는 약 1 sccm/L 내지 약 10 sccm/L, 예컨대 약 6.42 sccm/L의 유속으로 제공될 수 있다. 포스핀은 0.01 sccm/L 내지 약 0.075 sccm/L, 예컨대 약 0.015 sccm/L 내지 약 0.03 sccm/L, 예컨대 약 0.023 sccm/L의 유속으로 제공될 수 있다. 다시 말해서, 만일 포스핀이 캐리어 가스에서 0.5% 몰 또는 부피 농도로 제공되면, 도펀트/캐리어 가스 혼합물은 약 2 sccm/L 내지 약 15 sccm/L, 예컨대 약 3 sccm/L 내지 약 6 sccm/L, 예컨대 약 4.71 sccm/L의 유속으로 제공될 수 있다. 25 밀리와트/cm2 내지 약 250 밀리와트/cm2, 예컨대 약 60 밀리와트/cm2의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1 Torr 내지 약 20 Torr, 바람직하게 약 0.5 Torr 내지 약 4 Torr, 예컨대 약 1.5 Torr로 유지될 수 있다. 제 2 n-형 비정질 실리콘층의 증착율은 약 100 Å/min 이상, 예컨대 약 300Å/min일 수 있다. 제 2 n-형 비정질 실리콘층의 두께는 약 300 Å 이하, 예컨대 20 Å 내지 150Å, 예컨대 약 80 Å이다. 제 2 n-형 비정질 실리콘층은 고농도로 도핑되며, 약 500Ohm-cm 이하의 저항을 가진다. 고농도(예컨대, 축퇴(degenerately)) n-형 도핑된 비정질 실리콘이 TCO 층, 예컨대 층 TCO 층(140)와의 개선된 오옴 접촉을 제공한다. 따라서, 전지의 효율성이 개선된다. 선택적 제 1 n-형 비정질 실리콘은 전체 n-형 비정질 실리콘층에 대한 증착율을 증가시키기 위하여 사용된다. n-형 비정질 실리콘층은 선택적 n-형 비정질 실리콘없이 형성될 수 있으며, 주로 고농도(예컨대, 축퇴) 도핑된 제 2 n-형 비정질층으로 형성될 수 있다는 것을 이해해야 한다.
n-형, 진성형, 및 p-형 실리콘 함유 층들을 포함하는 층들의 각각의 증착전에 선택적 수소 또는 아르곤 플라즈마 가스 처리 프로세스가 수행될 수 있다는 것에 유의해야 한다. 수소 처리 프로세스는 표면 오염을 억제하기 위하여 하부 층을 처리하는데 수행될 수 있다. 게다가, 플라즈마 처리 프로세스는 표면 결함들이 처리 프로세스동안 제거될 수 있기 때문에 인터페이스의 전기 특성들을 개선시킬 수 있다. 일 실시예에서, 플라즈마 처리 프로세스는 수소 가스 또는 아르곤 가스를 프로세스 챔버내에 공급함으로서 수행될 수 있다. 수소 가스 또는 아르곤 가스를 공급하기 위한 가스 흐름은 약 10 sccm/L 내지 약 45 sccm/L, 예컨대 약 15 sccm/L 내지 약 40 sccm/L, 예컨대 약 20 sccm/L 내지 약 36 sccm/L이다. 일례로, 수소 가스는 약 21.42 sccm/L로 공급될 수 있거나 또는 아르곤 가스는 약 35.7 sccm/L로 공급될 수 있다. 처리 프로세스를 수행하기 위하여 공급된 RF 전력은 약 25 밀리와트/cm2 내지 약 250 밀리와트/cm2, 예컨대 약 60 밀리와트/cm2로 제어될 수 있으며, 샤워헤드 수소 처리를 위하여 10 밀리와트/cm2 내지 약 250 밀리와트/cm2, 예컨대 약 80 밀리와트/cm2 로 그리고 아르곤 처리를 위하여 약 25 밀리와트/cm2 로 샤워헤드에 제공될 수 있다.
일 실시예에서, 아르곤 처리 프로세스는 p-형 비정질 실리콘층의 증착전에 수행된다. 일 실시예에서, 수소 처리 프로세스는 유리한 경우에 진성형 비정질 실리콘층, n-형 미세결정 실리콘층, p-형 미세결정 실리콘층, 및 진성형 미세결정 실리콘층 및 다른 층들 각각의 증착전에 수행될 수 있다.
도 8a-c는 태양전지의 다양한 실시예들을 개략적으로 도시한다. 비록 도 8a-c에 도시된 실시예들이 단일 접합 태양전지를 기술할지라도, 도시된 층들이 폴리실리콘, 비정질 실리콘, 미세결정 실리콘 또는 여기에 기술된 방법들에 의하여 형성된 상기 재료들의 조합을 포함하는(그러나, 이에 제한되지 않음) 여러 재료들을 사용하여 형성된 탠덤(tandem), 3중 또는 그 이상 접합 태양전지의 일부일 수 있다는 것에 유의해야 한다.
도 8a는 TCO 층(110)상에 배치된 태양전지(850)를 가진 기판(102)을 도시한 다. 태양전지(850)는 p-형 비정질 실리콘층(122), 진성형 비정질층(124) 및 n-형 비정질층(804)을 가진다. p-형 비정질 실리콘층(122)을 증착하기전에, 예비 p-형 비정질 실리콘층(802)이 기판(102)사에 형성될 수 있다. 예비 p-형 비정질 실리콘층(802)은 p-형 비정질 실리콘층 증착 프로세스동안 실란 유속을 제어함으로서 형성된다. 증착동안, 제 1 실란 유속은 예비 p-형 비정질 실리콘층(802)을 증착하기 위하여 제공될 수 있고, 제 2 실란 유속은 예비 p-형 비정질 실리콘층(802)위에 p-형 비정질 실리콘층(122)을 증착하기 위하여 제공될 수 있다. 제 2 실란 유속은 제 1 실란 유속보다 빠른 유속으로 제어될 수 있다.
결과적인 예비 p-형 비정질 실리콘층(802)은 고농도(예컨대, 축퇴) 도핑된 p-형 비정질 실리콘층이며, 약 105Ohm-cm 이하의 저항을 가진다. 고농도(예컨대, 축퇴) 도핑된 예비 p-형 비정질 실리콘층(802)은 TCO 층(110)과 같은 TCO층과의 개선된 오옴 접촉을 제공한다. 고농도 도핑된 예비 p-형 비정질 실리콘층(802)은 감소된 공핍 영역 폭(예컨대, TCO 층(110) 및 태양전지(850)사이의 전위 장벽)을 제공하여 전류 이송 터널링(tunneling)이 향상된다. 더욱이, 고농도 도핑된 예비 p-형 비정질 실리콘층(802)에 존재하는 대량의 억셉터형 성분들은 TCO층(110) 및 태양전지(850)의 인터페이스의 전위 장벽을 낮춘다. 따라서, p-형 비정질 실리콘층(122)은 넓은 밴드갭(bandgap) 층으로서 사용된다. 따라서, 전지의 효율성이 개선된다. p-형 비정질 실리콘층(122)은 전체 p-형 실리콘 형성 프로세스에 대한 증착율을 증가시키기 위하여 사용된다. p-형 비정질 실리콘층(122)이 동일하게 고농 도 도핑된 예비 p-형 비정질 실리콘(802) 재료로 형성될 수 있다는 것이 이해되어야 한다.
고농도 도핑된 예비 p-형 비정질 실리콘층(802) 증착 프로세스는 약 20:1 이하의 비로 수소 가스 대 실란 가스의 가스 혼합물을 제공하는 단계를 포함한다. 실란 가스는 약 0.5 약 0.5 sccm/L 내지 약 5 sccm/L의 유속으로 제공될 수 있다. 수소는 약 1 sccm/L 내지 약 50 sccm/L의 유속으로 제공될 수 있다. 트리메틸보론은 0.0025 sccm/L 내지 약 0.15 sccm/L의 유속으로 제공될 수 있다. 다시 말해서, 만일 트리메틸보론이 캐리어 가스에서 0.5% 몰 또는 부피농도로 제공되면, 도펀트/캐리어 가스 혼합물은 약 0.5 sccm/L 내지 약 30 sccm/L의 유속으로 제공될 수 있다. 15 밀리와트/cm2 내지 약 250 밀리와트/cm2의 RF 전력이 샤워헤드에 제공될 수 있다. 챔버의 압력은 약 0.1 Torr 내지 약 20 Torr, 예컨대 약 0.5 Torr 내지 약 4Torr로 유지될 수 있다. 예비 p-형 비정질 실리콘층(802)의 증착율은 약 100 Å/min 이상일 수 있다. 일 실시예에서, 고농도 도핑된 p-형 비정질 실리콘층(802)은 입방 센티미터당 약 1020 원자 내지 입방 센티미터당 1021 원자의 도펀트 농도를 가진다.
일 실시예에서, p-형 비정질 실리콘층(122)은 도 1-3을 참조하여 기술된 방식과 유사한 방식으로 형성될 수 있다.
유사하게, n-형 비정질 실리콘층(804) 증착 프로세스에 대하여, 프로세스는 고농도 도핑된 비정질 실리콘층(806)과 함께 n-형 비정질 실리콘층(804)을 증착하 기 위한 2 단계 증착 프로세스를 포함할 수 있다. 2 단계 증착 프로세스는 도 1-3을 참조로 하여 기술된 n-형 비정질 실리콘층(136)의 증착 프로세스와 유사하다. 대안적으로, n-형 비정질 실리콘층(804)은 TCO층(140)과 같은 TCO 층과의 개선된 오옴 접촉을 제공하기 위하여 고농도 도핑된 n-형 비정질 실리콘층(806)으로서 주로 형성될 수 있다. 일 실시예에서, 고농도 도핑된 n-형 비정질 실리콘층(806)은 입방 센티미터당 약 1020 원자 내지 입방 센티미터당 약 1021 원자의 도펀트 농도를 가진다.
일 실시예에서, p-형 비정질 실리콘층(122)은 약 50Å 내지 약 200Å의 두께를 가지고, 고농도 도핑된 p-형 비정질 실리콘층(820)은 약 10Å 내지 약 50 Å의 두께를 가진다. n-형 비정질 실리콘층(804)은 약 100Å 내지 약 400Å의 두께를 가지며, 고농도 도핑된 n-형 비정질 실리콘층(806)은 약 50Å 내지 약 200Å의 두께를 가진다.
도 8b는 기판(102)상에 배치된 태양전지(852)의 다른 실시예를 도시한다. 도 8a의 태양전지(850)와 유사하게, 태양전지(852)는 도 8a에 도시된 고농도 도핑된 p-형 비정질 실리콘층(802), p-형 비정질 실리콘층(122) 및 진성형 비정질 실리콘층(124)을 포함하고, 더불어 n-형 비정질 실리콘 완충층(820) 및 n-형 미세결정 실리콘층(808)을 포함한다. n-형 비정질 실리콘 완충층(820)은 도 2의 완충층(125)과 유사한 층이며, 진성형 비정질 실리콘층(124) 및 n-형 미세결정 실리콘층(808)사이에 형성될 수 있다. n-형 비정질 실리콘 완충층(820)은 진성형 실리콘 층(124) 및 n-형 실리콘층(808)사이에서 발생할 수 있는 밴드갭 오프셋을 브리징(bridging)하는 것을 돕는다. 따라서, 강화된 전류 수집으로 인하여 전지의 효율성이 개선된다. 이들 층들(802, 122, 124, 808)은 앞서 기술된 프로세스들과 같은 임의의 적절한 프로세스에 의하여 형성될 수 있다.
도 8c는 기판(102)상에 배치된 태양전지(854)의 또 다른 실시예를 도시한다. 앞서 기술된 전지들의 구조와 유사하게, 태양전지(854)는 p-형 미세결정 실리콘층(810), 진성형 미세결정 실리콘층(812), n-형 비정질 실리콘 장벽층(821) 및 n-형 미세결정 실리콘층(814)을 포함한다. n-형 비정질 실리콘 장벽층(821)은 진성형 미세결정 실리콘층(812) 및 n-형 미세결정 실리콘층(814)사이에 형성된 장벽층으로서 사용된다. n-형 비정질 실리콘 장벽층(821)은 막 측면 저항율을 증가시키고 주변 전류 문제들을 막는데 도움을 준다. 일 실시예에서, n-형 비정질 실리콘 장벽층(821)은 도 8b의 n-형 비정질 실리콘 완충층(820) 및 도 2의 완충층(125)의 증착 방식들과 유사한 방식으로 증착될 수 있다. n-형 비정질 실리콘 장벽층(821)은 완충층들(820, 125)과 유사한 막 컴포넌트들을 가진 방식으로 형성될 수 있다. 장벽층(821)이 완충층들(820, 125)과 접촉하는 비정질 실리콘막들 대신에 미세결정 기반 실리콘막(예컨대, 진성형 미세결정 실리콘층(812) 및 n-형 미세결정 실리콘층(814))과 접촉하기 때문에, 장벽층(821)은 막 측면 저항율을 증가시키고 주변 전류 문제들을 막는데 도움을 준다.
하나 이상, 예컨대 다중 접합들이 적절한 실시예들에서, 도 8a의 태양전지(850)는 기판과 접촉하는 상부 전지로서 구성될 수 있으며, 도 8c의 태양전 지(854)는 상부 태양전지(850)상에 배치된 하부 전지로서 구성될 수 있다. 상부 전지가 높은 밴드갭을 제공하는데 적절하기 때문에, 태양전지(850)의 진성형 비정질 실리콘층(124)은 태양전지(854)의 진성형 미세결정 실리콘층(812)보다 높은 밴드갭을 제공할 수 있다. 대안적으로, 셀들의 구조는 원하는 셀 성능을 달성하기 위하여 임의의 적절한 방식으로 구성될 수 있다.
도 9는 다중-접합 태양 전지(900)의 다른 예시적인 실시예를 도시하며, 태양전지(900)는 다수의 다른 접촉층, 완충층 또는 셀(900)내에 배치된 계면층들을 포함한다. 셀(900)은 TCO층(110)을 가진 기판(102)상에 배치된 제 1 접합(910) 및 제 2 접합(902)을 포함하며, TCO층(110)은 기판(102)상에 배치된다. 계면층(908)은 제 1 접합(910) 및 제 2접합(920)사이에 배치될 수 있다. 계면층(908)은 인터페이스 접촉 저항 및 도전성을 개선하기 위하여 증착되며, 넓은 광학 밴드갭을 제공한다. 부가적으로, 계면층(908)의 재료는 여러 장치 요건들에 대하여 여러 전기 특성들 및 광 포획 효율성들을 제공하기 위하여 층(908)의 굴절률(RI) 및 광흡수율이 조절될 수 있도록 선택된다. 일 실시예에서, 계면층(908)을 형성하기에 적절한 재료들은 SiON, SiN, SiC, SiO SiOC, SiCN 및 다른 적절한 탄소, 산소, 또는 질소 함유 실리콘 기반 재료들 또는 실리콘 합금들을 포함한다. 일 실시예에서, 계면층(908)은 실리콘 탄소(SiC), 실리콘 산화물(SiO) 또는 실리콘 옥시나이트라이드(SiON) 층이다. 계면층(908)의 굴절률(RI)은 증착동안 층(908)을 증착하기 위하여 공급된 가스 혼합물을 변화시킴으로서 조절될 수 있다. 증착을 위하여 공급된 가스 혼합물이 변화할때, 증착된 계면층(908)에 형성된 탄소 또는 질소 도펀트들은 결과적인 막이 원하는 막 밴드갭, 광 흡수율 및 결정 분율을 가질 수 있도록 다를 수 있다. 막 밴드갭 및 광 흡수율이 개선됨에 따라, 전지 전환 효율성이 향상된다. 게다가, 계면층(908)은 또한 접합이 TCO 층, 금속 백 플레이트(metal back plate) 및/또는 기판과 접촉하는 임의의 인터페이스에서 사용될 수 있다.
도 9에 도시된 실시예에서, 계면층(908)은 제 1 접합(910) 및 제 2 접합(920)사이에 배치된다. 제 1 접합은 제 1 상부 계면층(902), p-형 비정질 실리콘층(233), PIB 층(904), i-형 비정질 실리콘층(124), n-형 비정질 실리콘 완충층(906) 및 n-형 미세결정 실리콘층(126)을 포함한다. 일 실시예에서, 제 1 상부 계면층(902)은 앞서 기술된 계면층(908)과 유사한 막 특성들을 가질 수 있다. 대안적으로, 제 1 상부 계면층(902)은 p-형 미세결정 실리콘 접촉층(121), 고농도(예컨대, 축퇴) 도핑된 예비 p-형 비정질 실리콘층(802), p-형 미세결정 실리콘층(810), 또는 도 1-3 및 도 8a-c를 참조로하여 앞서 기술된 p-형 비정질 실리콘층과 유사할 수 있다. 다른 실시예에서, PIB 층(904)은 앞서 기술된 p-i 완충 진성형 비정질 실리콘층(PIB 층)과 유사할 수 있다. n-형 비정질 실리콘 완충층(906)은 도 8b-c 및 도 2를 참조로 하여 앞서 기술된 비정질 실리콘 완충층(820, 821) 또는 완충층(125)과 유사할 수 있다.
제 2접합(920)은 p-형 미세결정 실리콘층(132), 선택적 PIB 층(912), 진성형 미세결정 실리콘층(914), n-형 비정질 실리콘층(916), 및 제 2 하부 계면층(918)을 포함한다. 제 2 하부 계면층(918)은 앞서 기술된 계면층(908)과 유사할 수 있다. 대안적으로, 제 2 하부 계면층(918)은 도 8b-c를 참조로 하여 앞서 기술된 고농도 (예컨대, 축퇴) 도핑된 비정질 실리콘층(806) 또는 n-형 미세결정 실리콘층(814) 또는 앞서 기술된 다른 유사한 n-형 접촉층과 유사할 수 있다. p-형 미세결정 실리콘층(132)은 도 1-3을 참조로하여 앞서 기술되었다. 선택적 PIB층(912)은 앞서 기술된 p-i 완충 진성형 비정질 실리콘층(PIB층)과 유사할 수 있다. 대안적으로, PIB층(912)이 p-형 미세결정 실리콘층(예컨대, p-형 미세결정 실리콘층(132))과 접촉하기 때문에, 선택적 PIB 층(912)은 필요한 경우에 미세결정 실리콘 기반 또는 비정질 실리콘 기반 재료로서 증착될 수 있다. 선택적 PIB층(912)을 증착하기 위한 증착 프로세스는 미세결정 실리콘 기반 또는 비정질 실리콘 기반 재료가 앞서 기술된 임의의 진성형 실리콘 기반 증착 프로세스로부터 선택될 수 있기 때문에 증착될 수 있다. 진성형 미세결정 실리콘층(914)은 앞서 기술된 바와같이 단일 단계 또는 다중 단계들로서 증착될 수 있다. 하나의 특정 실시예에서, 진성형 미세결정 실리콘층(914)은 앞서 기술된 바와같이 결과적인 막에 형성된 균일한 결정 분율(crystalline fraction)을 제공하기 위하여 가스 혼합물에서 수소 대 실란 비를 점진적으로 동조시킴으로서 4 단계 프로세스를 사용하여 증착된다. n-형 비정질 실리콘층(916)은 도 1-3 및 도 8a를 참조로 하여 앞서 기술된 n-형 비정질 실리콘층(136, 804)과 유사할 수 있다.
제 2 TCO 층(140) 및 후면 전극층(150)은 접합 형성 프로세스를 완료하기 위하여 제 2 접합(920)위에 배치될 수 있다.
도 5는 PECVD 챔버들, 도 4의 챔버(400) 또는 실리콘 막들을 증착할 수 있는 다른 적절한 챔버들과 같은 다수의 프로세스 챔버들(531-537)을 가진 프로세스 시 스템(500)의 일 실시예를 도시한 상부 개략도이다. 프로세스 시스템(500)은 로드 락 챔버(load lock chamber)(510) 및 프로세스 챔버들(531-537)에 결합된 이송 챔버(520)를 포함한다. 로드 락 챔버(510)는 기판들이 시스템 외부의 대기 환경 및 이송 챔버(520) 및 프로세스 챔버들(531-537) 내의 진공 환경사이에서 이송되도록 한다. 로드 락 챔버(510)는 하나 이상의 기판을 유지하는 하나 이상의 배기가능 영역들을 포함한다. 배기가능 영역들은 시스템(500)내로의 기판들의 입력동안 펌핑-다운(pump-down)되며, 시스템(500)으로부터 기판들의 출력동안 배출된다. 이송 챔버(520)의 내부에는 로드 락 챔버(510) 및 프로세스 챔버들(531-537)사이에서 기판들을 이송하기에 적합한 적어도 하나의 진공 로봇(522)이 배치되어 있다. 7개의 프로세스 챔버들이 도 5에 도시되나, 시스템은 임의의 적절한 수의 프로세스 챔버들을 가질 수 있다.
본 발명의 일부 실시예들에서, 시스템(500)은 다중-접합 태양전지의 진성형 비정질 실리콘층(들)을 포함하는 제 1 p-i-n 접합, 예컨대 제 1 p-i-n 접합(120)을 증착하도록 구성된다. 프로세스 챔버들(531-537)중 하나는 제 1 p-i-n 접합의 p-형 실리콘층(들)을 증착하도록 구성되는 반면에, 나머지 프로세스 챔버들(531-537)은 각각 진성형 비정질 실리콘층(들) 및 n-형 실리콘층(들)을 증착하도록 구성된다. 제 1 p-i-n 접합의 n-형 실리콘층(들) 및 진성형 비정질 실리콘층(들)은 증착단계들사이에서 임의의 패시베이션(passivation) 프로세스없이 동일한 챔버내에서 증착될 수 있다. 따라서, 로드 락 챔버(510)를 통해 시스템내에 들어간 기판은 진공 로봇에 의하여 p-형 실리콘층(들)을 증착하도록 구성된 전용 프로세스 챔버내로 이송되고, 진공 로봇에 의하여 진성형 실리콘층(들) 및 n-형 실리콘층(들) 모두를 증착하도록 구성된 나머지 프로세스 챔버들중 하나의 챔버내로 이송되며, 진공 로봇에 의하여 다시 로드 락 챔버(510)로 이송된다. 특정 실시예들에서, p-형 실리콘층(들)을 형성하기 위하여 프로세스 챔버로 기판을 처리하기 위한 시간은 단일 챔버에서 진성형 비정질 실리콘층(들) 및 n-형 실리콘층(들)을 형성하기 위한 시간 보다 약 6배 또는 그 이상 빠른 것과 같은 대략 4배 또는 그 이상 빠르다. 그러므로, 제 1 p-i-n 접합을 증착하기 위한 시스템의 특정 실시예들에서, p 챔버들 대 i/n 챔버들의 비율은 1:4 또는 그 이상, 바람직하게 1:6 또는 그 이상이다. 프로세스 챔버들의 플라즈마 세정을 제공하기 위한 시간을 포함하는 시스템의 작업 처리량은 약 10개의 기판들/시간 또는 그 이상, 바람직하게 20 기판들/시간 또는 그 이상일 수 있다.
본 발명의 특정 실시예들에서, 하나의 시스템(500)은 제 2 p-i-n 접합(130) 같은 다중 접합 태양 전지의 진성형 미세결정 실리콘층(들)을 포함하는 제 2 p-i-n 접합을 증착하기 위하여 구성된다. 프로세스 챔버들(531-537) 중 하나는 제 1 p-i-n 접합의 p-형 실리콘층(들)을 증착하기 위하여 구성되고, 나머지 프로세스 챔버들(531-537)은 진성형 미세결정 실리콘층(들) 및 n-형 실리콘층(들) 양쪽을 증착하기 위하여 각각 구성된다. 제 2 p-i-n 접합의 진성형 미세결정 실리콘층(들) 및 n-형 실리콘층(들)은 증착 단계들 사이에서 임의의 패시베이션 처리 없이 동일한 챔버에서 증착될 수 있다. 특정 실시예들에서, p-형 실리콘층(들)을 형성하기 위하여 프로세스 챔버로 기판을 처리하기 위한 시간은 단일 챔버에서 진성형 미세결정 실리콘층(들) 및 n-형 실리콘층(들)을 형성하기 위한 시간 보다 대략 4배 또는 그 이상 빠르다. 그러므로, 제 2 p-i-n 접합을 증착하기 위한 시스템의 특정 실시예들에서, p 챔버들 대 i/n 챔버들의 비율은 약 1:6 또는 그 이상 같은 1:4 또는 그 이상이다. 프로세스 챔버들의 플라즈마 세정을 제공하기 위한 시간을 포함하는 시스템의 작업 처리량은 약 5 기판들/시간 또는 그 이상 같은 약 3 기판들/시간 또는 그 이상일 수 있다.
특정 실시예들에서, 진성형 비정질 실리콘층을 포함하는 제 1 p-i-n 접합을 증착하기 위한 시스템(500)의 작업 처리량은 진성형 미세결정 실리콘층(들)의 두께가 진성형 비정질 실리콘층(들)보다 두껍기 때문에, 진성형 미세결정 실리콘층을 포함하는 제 2 p-i-n 접합을 증착하기 위한 시스템(500)의 대략 2배 또는 그 이상의 작업 처리량을 가진다. 그러므로, 진성형 비정질 실리콘층(들)을 포함하는 제 1 p-i-n 접합 증착하기 위하여 제공된 단일 시스템(500)은 진성형 미세결정 실리콘층(들)을 포함하는 제 2 p-i-n 접합을 증착하기 위하여 제공된 둘 또는 그 이상의 시스템들(500)과 매칭될 수 있다. 일단 제 1 p-i-n 접합이 하나의 시스템상에서 하나의 기판상에 형성되었다면, 기판은 주변 환경(즉, 진공 파괴)에 노출될 수 있고 제 2 시스템으로 전달될 수 있다. 제 1 p-i-n 접합 및 제 2 p-i-n 접합을 증착하는 제 1 시스템 사이에서 기판의 습식 또는 건식 세정은 필요하지 않다.
실시예들
여기에 개시된 실시예들은 자연히 예시적이고 청구항들에 구체적으로 설정되지 않으면 본 발명의 범위를 제한하지 않는다.
4,320 cm2의 표면 영역을 가진 기판들은 130 리터의 내부 챔버 체적을 가진 캘리포니아 산타 클라라 주의 AKT America, Inc.에서 판매되는 AKT 4300 PECVD 시스템에서 처리되었다. 층 1은 PECVD 시스템의 제 1 챔버에서 증착되었다. 층들(2-4)은 PECVD 시스템의 제 2 챔버에서 증착되었다. 층(5)은 PECVD 시스템의 제 3 챔버에서 증착되었다. 층들(6-11)은 PECVD 시스템의 제 4 챔버에서 증착되었다. 층들(1-11)의 증착 동안 간격은 550 mil로 설정되고 기판 지지부의 온도는 200℃로 설정되었다. 증착 파라미터들은 탠덤 p-i-n 접합 태양 전지를 형성하기 위하여 도 6에 나타난다. 포스핀은 수소 캐리어 가스에 0.5% 혼합물로 제공되었다. 트리메틸보론은 수소 캐리어 가스에서 0.5% 혼합물로 제공되었다. 도 6의 수소 가스 유속들은 도판트 캐리어 가스로부터 분리된 수소 가스 유속들을 도시한다. 태양 전지는 도 7에 나타난 다음 특성들을 가진다.
비정질 증착 처리들
본 발명의 일측면은 개선된 박막 실리콘 태양 전지, 상기 태양 전지를 형성하기 위한 방법들 및 장치를 포함하고, 여기서 태양 전지의 하나 또는 그 이상의 층들은 개선된 전기 특성들 및 기계적 특성들을 가지며 종래 비정질 실리콘 증착 처리들보다 다수 배 빠른 속도로 증착될 수 있는 적어도 하나의 비정질 실리콘층을 포함한다. 여기에 기술된 방법들을 사용하여 달성되는 개선된 증착 속도는 태양 전지 기판 처리 시스템을 통하여 기판 작업 처리량을 크게 개선시킬 수 있다. 일 실시예에서, 여기에 기술된 처리들은 박막 p-i-n 태양 전지 내에 비정질 진성형 층을 형성하기 위하여 사용되고, 비정질 진성형 층의 증착 속도는 약 60Å/min보다 높다. 일 실시예에서, 비정질 진성 층 증착 속도는 적어도 2200 mm X 2600 mm 크기의 기판상에 약 150 Å/min 및 약 400Å/min 사이이다.
여기에 기술된 방법들은, 비정질 실리콘 증착 처리 동안 고압의 사용이 생성된 플라즈마에서 이온 에너지 및 전자 온도를 낮춤으로써 성장하는 막의 표면에 대한 이온 충돌을 감소시키는 경향을 가지는 것으로 믿어지기 때문에, 형성된 박막 태양 전지의 광 안정성을 개선한다는 것이 놀랍게도 밝혀졌다. 게다가, 처리 동안 높은 수소 가스 대 시란 가스 비율을 사용할 때, 형성된 태양 전지 장치의 광 안정성의 품질을 떨어뜨리는 것으로 발견된 보다 높은 차수의 실란 관련 화학 종들의 생성이 억제되는 것이 믿어진다. 일반적으로 하기 논의가 단일 접합 태양 전지를 형성하는 방법을 논의하고, 이 구성은 하기 논의되는 하나 또는 그 이상의 처리 단계들이 이전에 논의된 하나 또는 그 이상의 단계들과 결합하기 위하여 사용될 수 있기 때문에, 이 구성이 본 발명의 범위로 제한되는 것이 의도되지 않는다. 일 실시예에서, 배리어 층 증착 처리 단계, 진성 층 증착 단계, 전력 상승 단계, 온도 안정화 단계, 및 플라즈마 세정 단계는 도 1-9와 관련하여 상기된 하나 또는 그 이상의 단계들에 사용된다.
도 10은 여기에 기술된 처리들을 사용하여 형성된 태양 전지(1000)의 일 실시예를 도시한다. 태양 전지(1000)는 그 위에 형성되는 막들을 가지는 유리 기판, 폴리머 기판, 또는 다른 적당한 기판을 포함한다. 태양 전지(1000)는 기판(102) 상에 형성된 제 1 투명 도전성 산화물(TCO) 층(110), 제 1 TCO 층(110) 상에 형성 되는 p-i-n 접합(1020), p-i-n 접합(1020) 상에 형성된 제 2 TCO 층(1032), 및 제 2 TCO 층(1032) 상에 형성되는 금속 후면 층(1034)을 더 포함할 수 있다. 상기 논의된 바와 같이, 광 트랩핑을 증가시킴으로써 광 흡수를 개선하기 위하여, 기판 및/또는 하나 또는 그 이상의 그 위에 형성된 박막들은 습기, 플라즈마, 이온, 및/또는 기계적 처리들에 의해 선택적으로 직조될 수 있다. 예를들어, 태양 전지(1000)의 제 1 TCO 층(110)은 직조되어 그 위에 증착되는 추후 박막들은 일반적으로 그 아래 표면의 토포그래피를 따를 것이다. 제 1 TCO 층(110) 및 제 2 TCO 층(1032)은 각각 주석 옥사이드(SnxOy), 아연 옥사이드(ZnxOy), 인듐 주석 옥사이드(InxSnyOz), 카드뮴 주석산염, 이들의 결합들, 또는 다른 적당한 재료들을 포함할 수 있고, 또한 상기된 바와 같이 부가적인 도판트들 및 구성요소들을 포함할 수 있다.
p-i-n 접합(1020)은 p-형 비정질 실리콘층(1022), p-형 비정질 실리콘층(1022)상에 형성된 진성형 비정질 실리콘층(1024), 및 진성형 비정질 실리콘층(1024) 상에 형성된 n-형 비정질 실리콘층(1026)을 포함할 수 있다. 특정 실시예들에서, p-형 비정질 실리콘층(1022)은 약 60 옴스트롱(Å) 및 약 200Å 사이의 두께로 형성될 수 있다. 특정 실시예들에서, 진성형 비정질 실리콘층(1024)은 약 1,500Å 및 약 5,000Å 사이의 두께로 형성될 수 있다. 특정 실시예들에서, n-형 비정질 반도체 층(1026)은 약 100Å 및 약 400Å 사이의 두께로 형성될 수 있다. 특정 실시예들에서, 도 10에 도시된 바와 같이, p-i-n 접합(1020)은 약 50Å 및 약 150Å 사이의 두께로 형성될 수 있는 축퇴되어(예를들어 심하게) 도핑된 n++ 형 비정질 반도체 층(1027)을 포함할 수 있다.
금속 후면 층(1034)은 Al, Ag, Ti, Cr, Au, Cu, Pt, 이들의 합금, 또는 이들의 결합들로 구성된 그룹으로부터 선택된 재료를 포함하지만, 이것으로 제한되지 않는다. 다른 처리들, 즉 레이저 스크라이빙 처리들은 태양 전지(1000)를 형성하기 위하여 수행될 수 있다. 다른 막들, 재료들, 기판들, 및/또는 패키징은 태양 전지를 완성하기 위하여 금속 후면 층(150) 상에 제공될 수 있다.
도 4를 참조하여, 비록 단일 챔버가 도시되었지만, 도 5에 도시된 바와 같은 시스템(500)은 기판 유도 로봇(522) 주변에 배열된 다수의 챔버들을 포함할 수 있다. 상기 시스템에서, 하나 또는 그 이상의 비정질 실리콘층들은 부가적인 층들이 증착된 다른 챔버로 기판이 이동되기 전에 하나의 챔버에서 증착될 수 있다. 통상적으로, p-형 층들은 제 1 챔버에서 기판상에 증착되고 그 다음 기판은 i 형 층 및 n-형 층이 기판상에 증착되는 다른 챔버로 이동된다.
일 실시예에서, 가열 및/또는 냉각 엘리먼트들(439)은 섭씨 약 250 도 또는 그 미만의 증착 동안 기판 지지 온도를 제공하기 위하여 설정될 수 있다. 일 실시예에서, 기판 지지부는 섭씨 약 150도 및 약 250 도 사이의 온도에서 유지된다. 일 실시예에서, 기판 지지부는 섭씨 약 200 도의 온도에서 유지된다. 기판 지지부(430)의 기판 수신 표면(432) 상에 증착된 기판(102)의 상부 표면, 및 샤워헤드(410)(즉, RF 전극) 사이의 다양한 증착 단계들 동안 간격은 600 밀 및 약 6,000 밀 사이일 수 있다. 태양 응용을 위한 유리 기판들의 통상적인 두께는 약 40 밀 및 200 밀 사이이다.
일 실시예에서, p-i-n 비정질 실리콘 태양 전지는 다음 하기된 단계들을 사용하여 형성된다. 하기되는 처리 값들 및 예들은 여기에 기술된 본 발명의 범위를 제한하는 것으로 의도되지 않고, 몇몇 경우들에서 약 2900 리터의 챔버 체적을 가지며 2200 mm x 2600 mm 기판을 처리하기 위하여 제공된 60k 처리 시스템에 관한 것이다. 첫째, 적어도 하나의 표면상에 증착된 TCO 층(110)을 가진 기판은 PECVD 챔버(400) 내에 삽입되고 기판 지지부(430) 상에 배치되어, TCO(110)는 p-i-n 접합(1020)에 포함된 하나 또는 그 이상의 층들을 수용할 수 있다.
일 실시예에서, p-i-n 접합(1020)에 하나 또는 그 이상의 층을 증착하기 전에, 기판의 온도는 통상적으로 3mm 내지 5mm 두께의 유리 기판 온도가 약 200℃ 같은 목표된 온도로 상승되게 하도록 약 3 내지 약 5 분 사이의 기간 동안 프로세스 챔버를 통하여, 아르곤, 수소 또는 헬륨 같은 가스 흐름에 의해 안정화된다. 일 실시예에서, 온도 안정화 단계는 약 5 분 내의 목표된 레벨에서 샤워헤드(410)로부터 약 640 밀 정도에 배치된 기판 온도를 안정화하기 위하여 약 2.0 및 약 2.5 사이의 챔버 압력을 달성하기 위하여 약 25.8 sccm/L(예를들어, 75,000 sccm)의 유속으로 아르곤 가스를 제공하는 것을 포함한다. 이 경우 기판 지지부는 약 200℃의 온도에서 유지될 수 있다.
다음 단계, 또는 플라즈마 세정 단계에서, 플라즈마는 아르곤, 수소 또는 헬륨 가스가 TCO 층(110)의 표면을 세정하고 TCO 층(110)의 전기 특성들을 개선하기 위하여 챔버를 통하여 전달되는 동안 처리 체적(406) 내에서 생성된다. 일 실시예에서, 처리 체적을 통한 가스 흐름은, 수소 함유 플라즈마들이 주석 옥사이드를 포함하는 TCO 층들 같은 TCO 층과 활발하게 반응할 수 있기 때문에 아르곤을 포함한다. 일 실시예에서, 아연 옥사이드를 포함하는 TCO 층 상에 수소 가스를 포함하는 세정 가스를 사용하는 플라즈마 세정 단계를 수행하는 것은 바람직하다.
다음 단계에서, 일반적으로 TCO 층(110)의 표면을 세정한 후, p-형 도핑 비정질 층은 TCO 표면상에 증착된다. 일 실시예에서, p-형 도핑 비정질 층은 두 개의 상들로 증착되고, 제 1 상 처리는 약 0 및 약 6.0 사이의 실란 희석 비율의 수소를 사용할 수 있다. 이런 낮은 수소 희석 비율은 TCO 층 및 생성된 플라즈마의 반응으로 인해 발생할 수 있는 TCO 층에 대한 손상을 방지하기 위하여 사용된다. 일 실시예에서, 제 1 p-형 도핑 비정질 층은 약 2 및 약 2.5 토르 사이의 압력에서 약 2:1 및 약 6:1 사이의 TMB:실란 프리커서 가스 혼합 비율을 사용하여 형성된 층과 등가의 도핑 농도를 가진 축퇴적으로(예를들어, 심하게) 도핑된 p++ 형 비정질 실리콘층이다. 일 실시예에서, 제 1 p-형 도핑 비정질 층은 약 45 밀리와트/cm2(2400 와트) 및 약 91 밀리와트/cm2(4800 와트) 사이의 플라즈마 전력으로 형성된다. 일 실시예에서, 도 10에 도시된 층(1022)의 일부 같은 p-형 비정질 실리콘층의 제 1 상은, 기판 지지 온도가 약 200℃에서 유지되고, 플라즈마 전력이 약 57 밀리와트/cm2(3287 와트) 사이에서 제어되고 챔버 압력이 약 10-50Å 막을 형성하기 위하여 약 2-10 초 동안 약 2.5 토르로 유지되는 동안, 약 2.1 sccm/L(예를들어, 6000 sccm) 내지 약 3.1 sccm/L(예를들어 9000 sccm)의 유속의 실란, 수소 가스 대 실란 가스 혼합 비율이 약 6.0이도록 임의의 유속에서 수소 가스, 6:1의 0.5% TMB 가스 대 실란 가스 혼합 비율과 동일한 유속의 도핑 프리커서를 제공함으로써 형성될 수 있다. 이 실시예에서, 기판은 샤워헤드(410)로부터 약 640 mils로 배치될 수 있다. 이 도핑 농도로 형성된 비정질 p-형 도핑된 실리콘층들은 실리콘 태양전지의 정공(hole) 이동을 향상시키는 것으로 생각된다.
제 1 p-형 도핑된 비정질 층을 증착한 후에, 제 2 p-형 도핑된 비정질 층이 증착될 수 있다. 제 2 p-형 도핑된 비정질 층은 약 80 내지 150Å의 두께를 RR가질수 있으며, 약 1:1 내지 약 2:3의 TMB:실란 프리커서 혼합비와, 약 5 내지 약 10 사이의 수소 실란 희석비를 이용하여 형성된 층과 동등한 도핑 농도를 이용하여 일반적으로 증착된다. 일 실시에에서, 제 2 p-형 도핑된 비정질 층은 약 45 milliwatts/㎠ (2400Watts) 내지 약 91 milliwatts/㎠ (4800Watts)의 플라즈마 파워에서 형성된다. 또한, 일 실시예에서, 증착된 막의 도전성을 증가시키기 위하여 메탄(CH4)과 같은 탄소 함유 프리커서 가스를 제 2 비정질 실리콘 p-형 도핑된 층 증착 프로세스 도중에 프로세싱 영역 내로 제공함에 의해 증착된 막에 일정 양의 탄소를 제공하는 것이 바람직하다. 일 실시예에서, 실란에 대한 순수 메탄의 비율은 약 1:1 내지 약 2:3 (메탄:실란)에서 변화하며, 여기서 실란 유속는 약 2.1 sccm/L (6000 sccm) 내지 3.1 sccm/L (9000 sccm)에서 변화된다. 일 실시예에서, p-형 비정질 실리콘층의 제 2 상(phase)은, 약 2.3 sccm/L (6702 sccm) 사이의 유속의 실란, 실란 가스에 대한 수소 가스의 혼합 비가 약 10.0이 되도록 하는 유속의 수소 가스, 실란 가스에 대한 0.5% TMB 가스의 혼합비가 5.8:1과 동등한 유속의 도핑 프리커서, 실란 가스에 대한 메탄 가스 혼합비가 약 1:1이 되도록 하는 유속의 메탄 가스를 제공하고, 기판 지지대(support) 온도가 약 200℃로 유지되고, 플라즈마 파워가 약 56 milliwatts/㎠ (3217Watts) 로 제어되고, 약 21초 동안 120Å을 형성하도록 챔버 압력이 유지되도록 함으로써 형성될 수 있다. 이 실시예에서, 기판은 샤워헤드(410)로부터 640mils 위치될 수 있다. 제 1 p-형 도핑된 비정질 층에 바로 뒤이어 제 2 p-형 도핑된 비정질 층을 사용하는 것은 박형의 높은 농도로 도핑된 (예를들어, 축퇴적으로(degenerately)) 제 1 p-형 층의 사용과 두텁고 넓은 밴드 갭의 제 2 p-형 비정질 층 물질의 사용으로 인한 광학적 흡수(absorption) 손실을 감소시키는 것으로 생각된다.
p-형 층 증착 단계 도중과 같은 하나 이상의 PECVD 증착 단계들 도중에, 정전하(static charge)가 기판 상에 만들어 질 수 있다. 기계적 표면 리프트(lift) 메커니즘에 의해 기판 수용 표면(432)으로부터 기판이 강제로 제거되는 때에 정전하가 기판에 손상을 야기할 수 있을 정도로 충분히 커질 수 있다. 상기 정전하를 제거하기 위하여, 기판의 상부 표면과 샤워헤드 사이의 간격이 변화되면서 수소 플라즈마가 챔버 내에 형성된다. 따라서, 일 실시예에서, 태양전지 소자를 형성하는데 사용되는 일부 증착 단계들(예를들어, p-형 증착단계, i-형 증착단계, n-형 증착 단계)은 상이한 챔버에서 수행되기 때문에, 선택적인 처리 단계, 또는 파워 리프트(lift) 단계가 프로세스 챔버로부터 기판을 이송하기 전에 기판 지지대(430)로 부터 기판(102)을 분리시키는 것을 돕기 위해 이용된다. 발생된 플라즈마는 이전 처리 단계 도중에 절연 기판에 수집된 전하가 방전(discharge)되는 것을 허용한다. 이 단계에서, 아르곤, 수소 또는 헬륨 가스가 프로세스 챔버를 통과하여 기판에 트랩된(trapped) 전하에 대한 소산(dissipate)될 경로를 형성할 때 플라즈마가 처리 볼륨(406) 내에 형성된다. 기판 지지대는 또한 약 200℃와 같은 목적하는 온도로 유지될 수 있다. 일 실시예에서, 파워 리프트 단계는, 정전하를 완전하게 제거하기 위하여, 상기 한 6개의 이격들에서의 6 단계와 같은, 상이한 기판 대 샤워헤드 이격에서의 다중 단계들을 포함한다. 일 실시예에서, 주로 수소를 함유하는 가스가 약 5.2 sccm/L (15,000 sccm) 내지 약 15.5 sccm/L (45000 sccm)의 유속, 약 38 milliwatts/㎠ (1000Watts) 내지 약 76 milliwatts/㎠ (4000Watts)의 RF 파워에서 처리 볼륨을 통하여 제공된다. 일 실시예에서, 파워 리프트 단계는, 기판이 샤워헤드(410)로부터 약 1400 mils 위치하고 약 57 milliwatts/㎠의 RF 파워가 약 3초 동안 공급되면서 약 2.0 Torr의 챔버 압력이 달성되도록 약 10.3 sccm/L (30,000 sccm)의 유속로 수소 가스를 제공하는 단계를 포함한다. 다른 실시예에서, 파워 리프트 단계는, 기판이 샤워헤드(410)로부터 약 1400 mils 위치하고 약 57 milliwatts/㎠의 RF 파워가 약 3초 동안 공급되면서 약 2.0 Torr의 챔버 압력이 달성되도록 약 10.3 sccm/L (30,000 sccm)의 유속로 수소 가스를 제공하는 제 1 단계와, 기판이 샤워헤드(410)로부터 약 6000 mils 위치하고 약 57 milliwatts/㎠의 RF 파워가 약 5초 동안 공급되면서 약 2.0 Torr의 챔버 압력이 달성되도록 약 10.3 sccm/L (30,000 sccm)의 유속로 수소 가스를 제공하는 제 2 단계를 포함한다.
다음 단계에서, 선택적으로 약 200℃와 같은 목적하는 온도에서 기판이 안정화되도록 수소 가스가 약 20초의 기간 동안 프로세스 챔버를 통하여 제공될 수 있다. 일부 경우에, p-형 물질이 증착된 기판은 다중-챔버 PECVD 시스템 내의 한 챔버에서 다른 챔버로 진공 환경 내에서 이송될 때 상당한 정도의 온도를 잃치 않는 것으로 여겨지기 때문에, 이 단계를 완결하기 위해 사용되는 시간 기간은 짧을 수 있다. 일 실시예에서, 온도 안정 단계는, 샤워헤드(410)으로부터 약 640mils 위치하는 기판의 온도를 약 20-60 초 후에 안정화시키기 위하여 2.5 Torr의 챔버 압력을 달성하도록 약 25.9 sccm/L (75,000 sccm)의 유속의 아르곤을 제공하는 단계를 포함한다. 기판 지지대는 약 200℃의 온도로 유지될 수 있다.
다음 단계는 기판이 제 2 프로세스 챔버 내로 일단 로딩된 후에 기판 상에 통상적으로 수행되는 플라즈마 세정(clean) 단계이다. 이 단계에서, 수소 플라즈마가 제 2 프로세스 챔버의 처리 볼륨 내에 발생되어 베리어(barrier) 층과 같은 다음 물질 층의 증착 전에 증착된 p-형 층의 표면을 적절하게 세정한다. 수소 플라즈마 처리는 p-형 층을 보호하고, 그 위에 형성되었을 수 있는 어떠한 표면 결합도 제거하고, 또한 수소 플라즈마 처리가 없었다면 i-형 층으로 확산되었을 탄소 및 보론 오염을 억제할 수 있다. 일 실시예에서, 수소 플라즈마 세정 단계는 35 milliwatts/㎠ (2000 Watts) 내지 약 136 milliwatts/㎠ (7200 Watts)의 플라즈마 파워와 약 0 내지 약 60초 동안 약 2 내지 약 2.5 Tor의 챔버 압력을 얻는데 충분한 수소 가스를 제공하는 단계를 포함한다. 일 실시예에서, 수소 플라즈마 세정 단계는, 기판이 샤워헤드(410)로부터 약 640 mils 위치하면서 약 2.5 Torr의 챔버 압력을 얻기 위하여 약 52 milliwatts/㎠ (3000 Watts)의 플라즈마 파워와 약 10.3 sccm/L (30,000 sccm)의 유속로 수소 가스를 제공하는 단계를 포함한다.
p-i 층들 사이의 계면에서의 베리어 층(1023)은 태양전지의 전기적 성능을 향상시킬 수 있는 것으로 알려져 왔다. 일 실시예에서, 베리어 층(1023)은 위에서 설명된 PIB 층과 유사하다. 일부 실시예에서, 베리어 층(1023)은, 약 50 내지 300Å의 두께를 갖는 베리어 층을 형성하도록, 이전 i-층 증착 프로세스에서와 동일한 압력 내지 약 0.5 Torr 더 큰 압력에서 약 38 내지 약 225 초동안 약 20 내지 약 50의 비율로 수소로 희석된 실란 프리커서를 이용한 플라즈마 증착에 의해 형성된다. 베리어 층은 태양전지의 개방 회로 전압이 약 50 meV까지 향상시킬 수 있는 넓은 밴드 갭을 제공하는 것으로 생각된다. 베리어 층은, 이전에 증착된 층(들)과 아래에서 설명될 다음에 증착된 높은 증착 율 진성(intrinsic) 층 사이에 위치하기 때문에, 이전에 증착된 층들의 이온 타격(bombardment)을 최소화하는데 이용될 수 있다. 베리어 층 증착 단계 도중에 이전에 증착된 층들의 이온 타격을 최소화하기 위하여, 상기 증착 단계는 낮은 RF 플라즈마 증착 파워를 통상 사용한다. 일 실시예에서, 베리어 층은, 약 20 내지 약 50의 희석비율을 갖는 수소-희석 실란 가스, i-층 증착 프로세스에서와 동일하거나 더 큰 챔버 압력, 약 18 내지 약 3600 초의 시간 기간 동안에 약 23 milliwatts/㎠ (1200 Watts) 내지 약 61 milliwatts/㎠ (3240 Watts)를 이용하여 기판 상에 형성된 진성 비정질 물질이다. 일 구성에서 챔버 압력은 i-층 증착 프로세스와 동일하거나 0.5 Torr 더 크다. 일 실시예에서, 진성 비정질 실리콘층을 갖는 베리어 층은, 기판 지지대의 온도가 약 200℃로 유지되고 챔버 파워가 약 27 milliwatts/㎠ (1525 Watts)로 제어되고 챔버 압력이 약 35초동안 약 3.0 Torr로 유지되면서, 실란 가스에 대한 소소 가스의 혼합 비율이 약 25가 되는 유속의 수소 가스, 약 1.5 sccm/L (4235 sccm) 유속의 실란을 제공함에 의해 형성된다. 일 구성에서, 여기서 설명된 프로세스를 이용하여 형성된 베리어 층 막의 물성으로 인하여, 베리어 층은 형성된 태양전지 소자 내에서서 청색광 흡수를 향상시키고, 나아가 태양전지의 효율을 향상시키는 것을 돕는데 이용될 수 있는 것으로 생각된다. 약 20 내지 약 50의 실란에 대한 수소 희석 비율과 37.9 sccm/L (110,000 sccm) 이상의 유속에서의 베리어 층의 증착은 매립 인자(fill factor) 및 종래 제조된 태양전지 소자보다 향상된 광 안정성과 같은, 전기적 특성을 향상시키는 것으로 생각된다.
다음 단계에서, 진성 층(1024)이 기판 표면 상에 증착된다. 버퍼 층의 증착에 뒤이어, 약 300 내지 약 1800 초의 시간 기간 동안에 약 27 milliwatts/㎠ (1440 Watts) 내지 약 91 milliwatts/㎠ (3240 Watts)의 RF 플라즈마 파워, 약 2 내지 약 3 Torr의 챔버 압력의, 약 8 내지 약 15의 희석 비를 갖는 수소-희석 실란 가스를 이용하여, 2000 내지 3000Å 두께의 진성 비정질 물질의 층이 기판 상에 형성된다. 일 실시예에서, 기판 지지대의 온도가 약 200℃로 유지되고 챔버 파워가 약 55 milliwatts/㎠ (3168 Watts)로 제어되고 챔버 압력이 약 736초동안 약 2.5 Torr로 유지되면서, 약 9000 sccm의 유속의 실란과, 실란 가스에 대한 수소 가스의 혼합비가 약 12.5가 되는 유속의 수소 가스를 제공함으로써 2600Å 진성 비정질 층이 형성될 수 있다.
다음 단계에서, n-형 도핑된 비정질 층(1026)이, 약 5.0 내지 약 9.0의 수소 대 실란 희석 비, 약 1:1 내지 약 1:3 도판트(dopant): 실란 비의 0.5% 포스핀(PH3) 가스 대 실란 가스 혼합비에 동등한 유속의 도핑 프리커서, 약 68 milliwatts/㎠ (3600 Watts) 내지 약 114 milliwatts/㎠ (6000 Watts)의 RF 플라즈마 파워, 약 24 내지 약 36 초의 시간 기간 동안에 약 1 내지 약 3 Torr의 챔버 압력을 이용하여, i-형 진성 층(1024) 상에 증착된다. 일 실시예에서, 기판 지지대의 온도가 약 200℃로 유지되고 챔버 파워가 약 81 milliwatts/㎠ (4678 Watts)로 제어되고 챔버 압력이 약 25초 동안 약 1.5 Torr로 유지되면서, 수소 가스 대 실란 가스 혼합 비가 약 5.0이 되도록 하는 유속의 수소 가스와 약 1.0 sccm/L (3000 sccm) 유속의 실란, 200-300Å n-형 비정질 실리콘층이, 1:3의 0.5% 포스핀(PH3) 가스 대 실란 가스 혼합비에 동등한 유속의 도핑 프리커서를 제공함에 의해 형성된다. 이 실시예에서, 기판은 샤워헤드(410)로부터 약 640 mils 위치할 수 있다.
다음 단계에서, 약 5.0 내지 약 9.0의 수소 대 실란 희석비, 약 1:2 내지 약 1:5 (포스핀:실란 비)의 0.5% 포스핀(PH3) 가스 대 실란 혼합비에 동등한 유속의 도핑 프리커서, 약 68 milliWatts/㎠ (3600 Watts) 내지 약 113 milliWatts/㎠ (6000 Watts)의 RF 플라즈마 파워, 50 내지 150Å 두께 층을 형성하도록 약 8초 내지 약 25초 동안 약 1 내지 약 3 Torr의 챔버 압력으로, 축퇴적으로(degenerately) 도핑된 (예를들어 n++) n-형 도핑된 비정질 층(1027)이 n-형 층(1026) 표면 상에 증착된다. 일 실시예에서, 80Å n++- 형 비정질 실리콘층이, 기판 지지대의 온도가 약 200℃로 유지되고 챔버 파워가 약 72 milliwatts/㎠ (4153 Watts)로 제어되고 챔버 압력이 약 10초 동안 약 1.5 Torr로 유지되면서, 약 0.5 sccm/L (1500 sccm) 내지 약 3.1 sccm/L (6000 sccm) 유속의 실란, 수소 가스 대 실란 가스 혼합 비가 약 8.3이 되도록하는 유속의 수소 가스, 5:1의 포스핀(PH3) 가스 대 실란 가스 혼합 비에 동등한 유속의 도핑 프리커서를 제공함에 의해 형성된다. 이 실시예에서, 기판은 샤워헤드(410)로부터 약 640 mils 위치할 수 있다.
n 및 n+ 층들이 형성된 후에, 위에서 설명된 바와 같이, 기판 상의 정전하를 제거하기 위하여 처리 볼륨 내에 플라즈마가 다시 발생될 수 있다. 일 실시예에서, 상기 단계는 정전하를 완벽하게 제거하기 위하여, 상이한 이격들에서의 6 단계와 같은, 상이한 기판 대 샤워헤드 이격에서의 다중 서브-단계들을 포함한다. 일 실시예에서, 처리 볼륨을 통해 흐르는 가스는 수소를 포함한다. 일 실시예에서, 소위 "파워 리프트 단계"는, 기판이 샤워헤드(410)로부터 약 1400 mils 위치하고 약 57milliwatts/㎠가 약 3초동안 제공되면서, 약 2.0 Torr의 챔버 압력을 달성하기 위하여 약 10.3 sccm/L (30,000 sccm) 유속의 수소 가스를 제공하는 것을 포함한다. 다른 실시예에서, 파워 리프트 단계는, 기판이 샤워헤드(410)로부터 약 1400 mils 위치하고 약 57 milliwatts/㎠의 RF 파워가 약 3초 동안 공급되면서 약 2.0 Torr의 챔버 압력이 달성되도록 약 10.3 sccm/L (30,000 sccm)의 유속로 수소 가스를 제공하는 제 1 단계와, 기판이 샤워헤드(410)로부터 약 6000 mils 위치하고 약 57 milliwatts/㎠의 RF 파워가 약 5초 동안 공급되면서 약 2.0 Torr의 챔버 압력이 달성되도록 약 10.3 sccm/L (30,000 sccm)의 유속로 수소 가스를 제공하는 제 2 단계를 포함한다.
이상 본 발명의 실시예들이 설명되었으나, 본 발명의 다른 또는 추가적인 실시예들이 본 발명의 기본 사상을 벗어남 없이 유추될 수 있으며, 본 발명의 범위는 청구범위에 의해 결정되어야 한다. 예를들어, 도4의 프로세스 챔버는 수평 위치로 도시되었다. 본 발명의 다른 실시예들에서 상기 프로세스 챔버는 수직과 같은 비-수평 방향일 수 있다. 예를들어, 본 발명의 실시예들은 도5의 다중-프로세스 챔버 클러스터 툴을 참조하여 설명되었다. 본 발명의 실시예들이 또한 인-라인 시스템과 하이브리드 인-라인/클러스터 시스템 상에서 수행될 수 있다는 점이 이해되어야 한다. 예를들어, 본 발명의 실시예들은 제 1 p-i-n 접합부(junction)과 제 2 p-i-n 접합부를 형성하도록 구성된 제 1 시스템을 참조하여 설명되었다. 본 발명의 다른 실시예에서, 상기 제 1 p-i-n 접합부 및 상기 제 2 p-i-n 접합부는 단일 시스템에서 형성될 수 있다는 점이 이해되어야 한다. 예를들어, 본 발명의 실시예들이 진성형 층과 n-형 층 양자를 증착하기에 적합한 프로세스 챔버를 참조하여 설명되었다. 본 발명의 다른 실시예에서, 개별 챔버들이 진성형 층과 n-형 층을 증착하도록 적합화될 수 있다. 본 발명의 다른 실시예에서, 프로세스 챔버는 p-형 층과 진성형 층 양자를 증착하도록 적합화될 수 있다.

Claims (46)

  1. 박막 다중-접합(multi-junction) 태양 전지를 형성하는 방법으로서,
    기판 상에 제 1 광전지 접합부를 형성하는 단계; 및
    상기 제 1 광전지 접합부 상부에 제 2 광전지 접합부를 형성하는 단계
    를 포함하고,
    상기 제 2 광전지 접합부를 형성하는 단계는,
    p-형 미세결정(microcrystalline) 실리콘층을 형성하는 단계;
    상기 p-형 미세결정 실리콘층 상부에 진성형(intrinsic type) 미세결정 실리콘층을 형성하는 단계 ― 상기 진성형 미세결정 실리콘층이 형성됨에 따라 상기 진성형 미세결정 실리콘층의 두께 내의 2개 이상의 지점들에서 결정 분율(crystalline fraction)을 제어하기 위해 하나 이상의 프로세스 변수들이 조절됨 ―; 및
    상기 진성형 미세결정 실리콘층 상부에 n-형 비정질 실리콘층을 형성하는 단계
    를 포함하는,
    박막 다중-접합 태양 전지를 형성하는 방법.
  2. 제 1 항에 있어서,
    상기 제 1 광전지 접합부를 형성하는 단계는,
    p-형 비정질 실리콘층을 형성하는 단계;
    상기 p-형 비정질 실리콘층 상부에 진성형 비정질 실리콘층을 형성하는 단계;
    상기 진성형 비정질 실리콘층 상부에 n-형 미세결정 실리콘층을 형성하는 단계;
    상기 p-형 비정질 실리콘층과 상기 진성형 비정질 실리콘층 사이에 p-i 완충 진성형 비정질 실리콘층을 형성하는 단계; 및
    상기 진성형 비정질 실리콘층과 상기 n-형 미세결정 실리콘층 사이에 n-형 비정질 실리콘 완충층을 형성하는 단계
    를 더 포함하는, 박막 다중-접합 태양 전지를 형성하는 방법.
  3. 제 1 항에 있어서,
    상기 진성형 미세결정 실리콘층을 형성하는 단계는,
    상기 진성형 미세결정 실리콘층의 형성 동안 제 1 가스와 실란 가스 간의 비율을 조절하는 단계를 더 포함하고, 상기 제 1 가스는 수소를 포함하는, 박막 다중-접합 태양 전지를 형성하는 방법.
  4. 제 3 항에 있어서,
    상기 제 1 가스 대 상기 실란 가스의 비율은 20:1 내지 200:1로 제어되는, 박막 다중-접합 태양 전지를 형성하는 방법.
  5. 제 1 항에 있어서,
    상기 제 2 광전지의 상기 n-형 비정질 실리콘층 상부에 고도핑된 n-형 비정질 실리콘층을 형성하는 단계를 더 포함하고,
    상기 고도핑된 n-형 비정질 실리콘층은 300Å 미만의 두께를 갖는, 박막 다중-접합 태양 전지를 형성하는 방법.
  6. 제 2 항에 있어서,
    상기 기판의 표면 상부에 상기 p-형 미세결정 실리콘층, 상기 진성형 미세결정 실리콘층 및 상기 p-형 비정질 실리콘층을 형성하기 이전에, 상기 기판 상에 수소 또는 아르곤 처리 프로세스를 수행하는 단계를 더 포함하는, 박막 다중-접합 태양 전지를 형성하는 방법.
  7. 제 1 항에 있어서,
    상기 제 1 광전지 접합부와 상기 제 2 광전지 접합부 사이에 계면층을 형성하는 단계를 더 포함하고,
    상기 계면층은 SiON, SiN, SiC, SiO, SiOC, SiCN, 및 탄소, 산소 또는 질소 함유 실리콘 기질의 재료들 또는 실리콘 합금들 중 적어도 하나로부터 선택되는, 박막 다중-접합 태양 전지를 형성하는 방법.
  8. 제 2 항에 있어서,
    상기 기판과 상기 p-형 비정질 실리콘층 사이에 제 1 상부 계면층을 형성하는 단계를 더 포함하고,
    상기 제 1 상부 계면층은 고도핑된 p-형 비정질 실리콘층, p-형 미세결정 실리콘층, p-형 비정질 실리콘층, SiON, SiN, SiC, SiO, SiOC, SiCN, 및 탄소, 산소 또는 질소 함유 실리콘 기질의 재료들 또는 실리콘 합금들 중 적어도 하나인, 박막 다중-접합 태양 전지를 형성하는 방법.
  9. 탠덤(tandem) 접합 광전지 소자로서,
    제 1 광전지 접합부와 제 2 광전지 접합부를 포함하고,
    상기 제 1 광전지 접합부는,
    p-형 비정질 실리콘층;
    p-i 완충 진성형 비정질 실리콘층;
    벌크 진성형 비정질 실리콘층; 및
    n-형 미세결정 실리콘층을 포함하며,
    상기 제 2 광전지 접합부는,
    p-도핑된 미세결정 실리콘층;
    진성형 미세결정 실리콘층; 및
    상기 진성형 미세결정 실리콘층에 인접한 n-도핑된 비정질 실리콘층
    을 포함하는,
    탠덤 접합 광전지 소자.
  10. 제 9 항에 있어서,
    상기 제 1 광전지 접합부와 상기 제 2 광전지 접합부 사이에 배치된 계면층을 더 포함하는, 탠덤 접합 광전지 소자.
  11. 제 9 항에 있어서,
    상기 제 1 광전지 접합부와 기판 사이에 배치된 제 1 상부 계면층을 더 포함하고,
    상기 제 1 상부 계면층은 고도핑된 p-형 비정질 실리콘층, p-형 미세결정 실리콘층, p-형 비정질 실리콘층, SiON, SiN, SiO, SiC, SiOC, SiCN, 및 탄소, 산소 또는 질소 함유 실리콘 기질의 재료들 또는 실리콘 합금들 중 적어도 하나인, 탠덤 접합 광전지 소자.
  12. 제 11 항에 있어서,
    상기 제 1 상부 계면층은 1020 atoms/cm3 내지 1021 atoms/cm3의 도핑 농도를 갖는 고도핑된 p-형 미세결정 실리콘층 또는 고도핑된 p-형 비정질 실리콘인, 탠덤 접합 광전지 소자.
  13. 제 9 항에 있어서,
    상기 진성형 미세결정 실리콘층에 인접한 상기 n-도핑된 비정질 실리콘층과 접촉하게 상기 제 2 광전지 접합부 상부에 배치된 제 2 하부 계면층을 더 포함하고,
    상기 제 2 하부 계면층은 고도핑된 n-형 비정질 실리콘층, n-형 미세결정 실리콘층, n-형 비정질 실리콘층, SiON, SiN, SiC, SiO, SiOC, SiCN, 및 탄소, 산소 또는 질소 함유 실리콘 기질의 재료들 또는 실리콘 합금들 중 적어도 하나인, 탠덤 접합 광전지 소자.
  14. 제 13 항에 있어서,
    상기 제 2 하부 계면층은 1020 atoms/cm3 내지 1021 atoms/cm3의 도핑 농도를 갖는 고도핑된 n-형 미세결정 실리콘층 또는 고도핑된 n-형 비정질 실리콘인, 탠덤 접합 광전지 소자.
  15. 제 9 항에 있어서,
    상기 p-도핑된 미세결정 실리콘층은 1×1018 atoms/cm3 내지 1×1020 atoms/cm3의 붕소 농도를 갖는, 탠덤 접합 광전지 소자.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
KR1020087026072A 2007-07-24 2008-07-23 다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들 KR101019273B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US95160807P 2007-07-24 2007-07-24
US60/951,608 2007-07-24
US98240007P 2007-10-24 2007-10-24
US60/982,400 2007-10-24
US12/110,120 2008-04-25
US12/110,120 US20080223440A1 (en) 2007-01-18 2008-04-25 Multi-junction solar cells and methods and apparatuses for forming the same

Publications (2)

Publication Number Publication Date
KR20090035471A KR20090035471A (ko) 2009-04-09
KR101019273B1 true KR101019273B1 (ko) 2011-03-07

Family

ID=40281799

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020087026072A KR101019273B1 (ko) 2007-07-24 2008-07-23 다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들

Country Status (6)

Country Link
EP (1) EP2171759A1 (ko)
JP (1) JP2010534938A (ko)
KR (1) KR101019273B1 (ko)
CN (1) CN101542745B (ko)
TW (1) TW200913292A (ko)
WO (1) WO2009015213A1 (ko)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101842875A (zh) * 2007-11-02 2010-09-22 应用材料股份有限公司 在沉积处理间实施的等离子处理
FR2949237B1 (fr) * 2009-08-24 2011-09-30 Ecole Polytech Procede de nettoyage de la surface d'un substrat de silicium
KR100989615B1 (ko) 2009-09-02 2010-10-26 엘지전자 주식회사 태양전지
TWI405343B (zh) * 2009-09-09 2013-08-11 Univ Nat Pingtung Sci & Tech 具有高光電轉換效率之可撓式太陽能電池及其製備方法
TWI415137B (zh) * 2009-12-17 2013-11-11 Macronix Int Co Ltd 區域字元線驅動器
TWI459571B (zh) * 2009-12-29 2014-11-01 Epistar Corp 太陽能光電元件
TWI407578B (zh) * 2009-12-31 2013-09-01 Metal Ind Res Anddevelopment Ct Chemical vapor deposition process
CN102741451A (zh) * 2010-02-10 2012-10-17 欧瑞康太阳能股份公司(特吕巴赫) 制造太阳能电池板的方法
TWI415278B (zh) * 2010-02-11 2013-11-11 Nexpower Technology Corp 具有多層結構的薄膜太陽能電池
CN102194903B (zh) * 2010-03-19 2013-07-31 晶元光电股份有限公司 一种具有渐变缓冲层太阳能电池
JP5540431B2 (ja) * 2010-07-30 2014-07-02 国立大学法人東北大学 光電変換部材
KR101143477B1 (ko) * 2011-01-28 2012-05-22 (재)나노소자특화팹센터 유기 태양전지 및 그 제조 방법
KR101573029B1 (ko) * 2011-02-23 2015-12-03 한국전자통신연구원 박막 태양전지 및 그의 제조방법
JP5409675B2 (ja) * 2011-03-08 2014-02-05 三菱電機株式会社 薄膜太陽電池およびその製造方法
TWI467782B (zh) * 2011-06-21 2015-01-01 Asiatree Technology Co Ltd 薄膜太陽能電池
US20150136210A1 (en) * 2012-05-10 2015-05-21 Tel Solar Ag Silicon-based solar cells with improved resistance to light-induced degradation
CN105470339A (zh) * 2014-08-08 2016-04-06 上海建冶环保科技股份有限公司 一种纳米硅薄膜多结太阳能电池
TWI511316B (zh) * 2015-02-13 2015-12-01 Neo Solar Power Corp 異質接面太陽能電池及其製造方法
CN105489669B (zh) * 2015-11-26 2018-10-26 新奥光伏能源有限公司 一种硅异质结太阳能电池及其界面处理方法
JP6612359B2 (ja) * 2015-12-24 2019-11-27 株式会社カネカ 光電変換装置の製造方法
KR101879363B1 (ko) * 2017-01-17 2018-08-16 엘지전자 주식회사 태양 전지 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252493A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2002033499A (ja) 2000-07-18 2002-01-31 Sanyo Electric Co Ltd 光起電力装置
KR20060035751A (ko) * 2003-07-24 2006-04-26 가부시키가이샤 가네카 실리콘계 박막 태양전지
JP2006269607A (ja) * 2005-03-23 2006-10-05 Canon Inc 光起電力素子の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256887A (en) * 1991-07-19 1993-10-26 Solarex Corporation Photovoltaic device including a boron doping profile in an i-type layer
US5730808A (en) * 1996-06-27 1998-03-24 Amoco/Enron Solar Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
JP3581546B2 (ja) * 1997-11-27 2004-10-27 キヤノン株式会社 微結晶シリコン膜形成方法および光起電力素子の製造方法
JPH11354820A (ja) * 1998-06-12 1999-12-24 Sharp Corp 光電変換素子及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252493A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2002033499A (ja) 2000-07-18 2002-01-31 Sanyo Electric Co Ltd 光起電力装置
KR20060035751A (ko) * 2003-07-24 2006-04-26 가부시키가이샤 가네카 실리콘계 박막 태양전지
JP2006269607A (ja) * 2005-03-23 2006-10-05 Canon Inc 光起電力素子の製造方法

Also Published As

Publication number Publication date
JP2010534938A (ja) 2010-11-11
EP2171759A1 (en) 2010-04-07
CN101542745B (zh) 2013-03-06
TW200913292A (en) 2009-03-16
WO2009015213A1 (en) 2009-01-29
KR20090035471A (ko) 2009-04-09
CN101542745A (zh) 2009-09-23

Similar Documents

Publication Publication Date Title
KR101019273B1 (ko) 다중-접합 태양 전지들과 이를 형성하기 위한 방법들 및 장치들
US8203071B2 (en) Multi-junction solar cells and methods and apparatuses for forming the same
US7582515B2 (en) Multi-junction solar cells and methods and apparatuses for forming the same
US7741144B2 (en) Plasma treatment between deposition processes
US20080173350A1 (en) Multi-junction solar cells and methods and apparatuses for forming the same
US7919398B2 (en) Microcrystalline silicon deposition for thin film solar applications
US20080223440A1 (en) Multi-junction solar cells and methods and apparatuses for forming the same
KR20100031090A (ko) 태양 전지 분야용 웨이퍼 및 박막을 위한 미세결정질 실리콘 합금
US20130112264A1 (en) Methods for forming a doped amorphous silicon oxide layer for solar cell devices
WO2013123225A1 (en) Passivation film stack for silicon-based solar cells
US20100258169A1 (en) Pulsed plasma deposition for forming microcrystalline silicon layer for solar applications
US20080245414A1 (en) Methods for forming a photovoltaic device with low contact resistance
KR20110106889A (ko) 박막 및 웨이퍼 기반의 태양 전지 분야용 미세결정질 실리콘 합금
US20090130827A1 (en) Intrinsic amorphous silicon layer
US20110275200A1 (en) Methods of dynamically controlling film microstructure formed in a microcrystalline layer
KR101100109B1 (ko) 광기전력 장치의 제조 방법
US20110171774A1 (en) Cleaning optimization of pecvd solar films
TW202337041A (zh) 太陽能電池及其形成方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee