WO2007017976A1 - オゾン水生成方法及びオゾン水生成装置 - Google Patents

オゾン水生成方法及びオゾン水生成装置 Download PDF

Info

Publication number
WO2007017976A1
WO2007017976A1 PCT/JP2006/309157 JP2006309157W WO2007017976A1 WO 2007017976 A1 WO2007017976 A1 WO 2007017976A1 JP 2006309157 W JP2006309157 W JP 2006309157W WO 2007017976 A1 WO2007017976 A1 WO 2007017976A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
water
ozone
ozone water
high temperature
Prior art date
Application number
PCT/JP2006/309157
Other languages
English (en)
French (fr)
Inventor
Kazuki Arihara
Akira Fujishima
Original Assignee
Central Japan Railway Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Company filed Critical Central Japan Railway Company
Priority to EP06746007.1A priority Critical patent/EP1923357B1/en
Priority to US11/989,770 priority patent/US8431006B2/en
Publication of WO2007017976A1 publication Critical patent/WO2007017976A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/13Ozone
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/12Plate-type dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/22Constructional details of the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/20Electrodes used for obtaining electrical discharge
    • C01B2201/24Composition of the electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/30Dielectrics used in the electrical dischargers
    • C01B2201/34Composition of the dielectrics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • C01B2201/74Cooling of the discharger; Means for making cooling unnecessary by liquid
    • C01B2201/76Water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46115Electrolytic cell with membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46155Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4616Power supply
    • C02F2201/4617DC only

Definitions

  • Ozone water generation method and ozone water generation apparatus Ozone water generation apparatus
  • the present invention relates to an ozone water generation method and an ozone water generation device, and more specifically, an ozone that generates ozone water by electrolyzing water by disposing a cathode and an anode across a solid polymer film.
  • the present invention relates to a water generation method and an ozone water generation apparatus.
  • Ozone has a very strong acid scent and is used in various fields such as sterilization, disinfection, decolorization, deodorization, oxidative decomposition, and oxidation treatment. Ozone itself is easily decomposed into oxygen, so it can be said that it is a treatment method without worrying about secondary contamination. Ozone water in which ozone is dissolved is safer and easier to use than ozone gas. Oxidizing power of ozone coexisting with water or dissolved in water is further improved, and is generally used for sterilization and cleaning (for example, see Non-Patent Document 1). For these purposes, the development of simpler and more efficient generation methods of ozone water is required.
  • an ultraviolet lamp method As a method for generating gaseous ozone, an ultraviolet lamp method, a silent discharge method, and an electrolysis (electrolysis) method are known (for example, see Non-Patent Document 2).
  • the UV lamp method is often used to remove a small amount of bad odor sources such as deodorizing indoors where the amount of ozone generated is small.
  • the silent discharge method is a general method for generating ozone gas. For example, when air is used as a raw material, nitrogen oxides are also generated. In order to prevent this, it is necessary to provide an auxiliary device that concentrates only oxygen in the force air that uses oxygen gas as a raw material. In addition, contamination by metal impurities due to wear of the metal electrode is also a problem.
  • ozone gas can also be obtained by electrolysis of water. According to this electrolysis method, it is possible to easily obtain high-purity and high-concentration ozone gas that contains some moisture.
  • means for dissolving the ozone gas obtained by the above means in water or directly producing it by an electrolytic method is known.
  • Ozone gas generated by the silent discharge method or electrolytic method is dissolved in water through a gas-liquid dissolution tower. Force that can get the Zon water This will increase the size and complexity of the equipment.
  • an electrolytic cell is constructed by sandwiching a solid polymer membrane between a porous or net-like anode and cathode, and electrolysis of tap water or pure water using this is used to directly supply ozone water. Can be generated, and the size of the apparatus can be easily reduced.
  • an electrode material for ozone generation when generating ozone water by the electrolytic method platinum, gold, platinum-coated titanium, acid lead, etc. are generally used as the catalyst, which has an excellent function as a catalyst. It is used. These materials are molded into a porous shape or a mesh shape and used as the anode 3, and the solid polymer film 7 is sandwiched with an appropriate cathode 5, thereby forming an electrolytic cell 1 as shown in FIG. 12, for example. Ozone water is obtained by performing electrolysis while supplying pure water or tap water to the anode chamber 13 side of the electrolysis cell 1.
  • ozone water is generated by the electrolytic method in this way, medium-high temperature ozone water that can be used for whole body sterilization by shower etc. is generated by using, for example, warm water of 42 ° C as raw water. (For example, see Patent Document 1).
  • electrolysis is performed by supplying low-temperature water up to about 10 ° C, and the generated low-temperature ozone water is heated to, for example, between 25 ° C and 70 ° C.
  • High-temperature ozone water is also possible.
  • the solubility of gas decreases as the water temperature rises, and there is a risk that ozone gas dissolved at low water temperature will be excessively released as ozone gas in medium and high temperature water.
  • ozone water generation efficiency is also poor. Therefore, in order to efficiently generate medium-high temperature ozone water, it is desirable to keep the temperature of the supplied water in the medium-high temperature region and send it to the electrolysis cell.
  • a diamond thin film imparted with conductivity has recently been proposed as a new electrode material replacing platinum and the like.
  • the main characteristics of this conductive diamond thin film are its excellent mechanical strength, chemical stability, resistance to molecular adsorption, resistance to oxidative decomposition and reduction of solvents, and a wide potential window. Specific examples such as selectivity are not found in other electrode materials. Therefore, a conductive diamond thin film is formed on a network-like or porous substrate by a hot filament chemical vapor deposition (CVD) method or a microwave plasma CVD method, and a solid polymer film is sandwiched between the conductive diamond thin films. It is considered that an electrolytic cell is constructed and used for ozone generation (for example, see Patent Document 2).
  • Non-patent document 1 "New technology using ozone” Sanyu Shobo, February 1993
  • Non-Patent Document 2 Hidetoshi Sugimitsu "Ozone Basics and Applications” Korin, February 1996
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-60011
  • Patent Document 2 Japanese Patent Laid-Open No. 9-268395
  • the present invention provides an ozone water generation method and an ozone water generation apparatus that can generate medium-high temperature ozone water efficiently and stably by using conductive diamond as an electrode material. Was made for the purpose. Means for solving the problem
  • the ozone water generation method of the present invention made to achieve the above object includes an ozone water generation method in which a cathode and an anode are disposed with a solid polymer film sandwiched therebetween, and the water is electrolyzed to generate ozone water.
  • a method is characterized in that a medium or high temperature ozone water is generated by electrolyzing medium or high temperature water using a conductive diamond having a porous or network structure as the anode.
  • a cathode and an anode are disposed with a solid polymer film interposed therebetween, and medium-high temperature water is electrolyzed to generate medium-high temperature ozone water.
  • medium-high temperature ozone water is generated from the anode side, and the generation is also simple.
  • the conductive diamond having a porous or network structure is used as the anode, even when the water temperature is, for example, a medium to high temperature of 25 ° C to 70 ° C, It can stably produce medium-high temperature ozone water at 25 ° C to 70 ° C.
  • conductive diamond can be applied as the anode.
  • a self-stereoscopic conductive diamond is used as the anode, the following additional effects can be obtained. Arise. In other words, such a self-stereoscopic conductive diamond is different from the one in which a thin layer of diamond is formed on a substrate such as silicon, titanium, niobium, or graphite plate. Even if it is done, there is no concern such as peeling of the substrate force. Therefore, when the self-stereoscopic conductive diamond having a porous or network structure as described above is used as the anode, it is possible to more stably and more efficiently generate ozone water at a medium to high temperature.
  • the ozone water generating apparatus of the present invention includes an electrolytic cell in which a cathode and an anode are disposed with a solid polymer film sandwiched therebetween, and water is electrolyzed by the electrolytic cell to generate ozone water.
  • the present invention configured as described above, at least on the anode side of the electrolytic cell in which the cathode and the anode are disposed with the solid polymer film interposed therebetween, for example, from 25 ° C to 70 ° C by heating means. Water heated to high temperature is supplied. For this reason, the electrolysis by the electrolysis cell produces medium-high temperature ozone water on the anode side, and its production is also simple. Further, in the present invention, porous or reticulated conductive diamond is used as the anode, so that medium-high temperature ozone water is efficiently and stably generated even when the water temperature is medium-high as described above. Do be able to.
  • Various forms of the conductive anode can be used as the anode.
  • a self-stereoscopic conductive diamond is used as the anode, the following additional effects can be obtained.
  • Arise In other words, such a self-stereoscopic conductive diamond is different from the one in which a thin layer of diamond is formed on a substrate such as silicon, titanium, niobium, or graphite plate. Even if it is done, there is no concern such as peeling of the substrate force. Therefore, when the self-stereoscopic conductive diamond having a porous or network structure as described above is used as the anode, it is possible to more stably and more efficiently generate ozone water at a medium to high temperature.
  • FIG. 1 is a schematic diagram showing the configuration of an ozone water generator to which the present invention is applied.
  • FIG. 2 is a schematic diagram showing the configuration of the anode of the ozone water generator.
  • FIG. 3 (A) and (B) are graphs showing the water temperature dependence of the amount of ozone generated by the ozone water generating device when tap water is used as raw water, in comparison with a comparative example.
  • FIG. 4 (A) and (B) are graphs showing the water temperature dependence of the amount of ozone generated by the ozone water generator when pure water is used as raw water, in comparison with a comparative example.
  • FIG. 5 is an explanatory diagram showing that the reaction at the anode occurs near the three-phase interface.
  • FIG. 6 is an explanatory view showing the growth of bubbles in the hole of the anode.
  • FIG. 7 is a schematic diagram showing an example in which the hole of the anode is tapered.
  • FIG. 8 (A) and (B) are schematic views showing a modification in which the shape of the hole of the anode is changed.
  • FIGS. 9A and 9B are schematic views showing an example in which the periphery of the anode is separated from the outer periphery of the anode chamber.
  • FIG. 10 is a schematic diagram showing a modification using columnar diamond as the anode.
  • FIG. 11 is a schematic view showing a modified example using fragmented diamond as the anode.
  • FIG. 12 is a schematic diagram showing a configuration of a conventional electrolysis cell.
  • Electrolytic cell 3 ... Anode 3a ... Hole
  • FIG. 1 is a schematic diagram showing the configuration of an ozone water generator to which the present invention is applied.
  • the ozone water generating apparatus includes an electrolysis cell 1, and this electrolysis cell 1 is configured in the same manner as the electrolysis cell 1 of the above-described conventional example except for the configuration of the anode 3 described later. That is, as shown in FIG. 1, an anode 3 and a cathode 5 are arranged with a solid polymer film 7 (for example, trade name “Nafion” manufactured by DuPont) interposed therebetween, and the anode 3 and the cathode 5 are solid polymers.
  • the membrane 7 is fixed in close contact with the mutually facing surfaces.
  • An anode chamber 13 is formed on the surface of the anode 3 and a cathode chamber 15 is formed on the surface of the cathode 5, respectively.
  • the anode chamber 13 and the cathode chamber 15 have supply ports 13a and 15a and outlets 13b and 15b, respectively.
  • Have. 1 and 12, parts that are configured similarly are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the anode 3 has a diameter of a self-stereoscopic conductive diamond plate formed into a 15 mm ⁇ 50 mm rectangular plate shape having a thickness of 0.8 mm by a microwave plasma CVD method.
  • a 1 mm hole 3a is drilled so that the center-to-center distance is 2 mm (that is, the distance between the outer peripheries of the holes 3a is 1 mm).
  • the hole 3a can be formed by a laser carriage or a discharge carriage.
  • As the cathode 5 a 55 mesh net-like platinum electrode was used.
  • the electrolytic cell 1 configured as described above, when pure water (or tap water) is supplied from the supply ports 13a and 15a while a direct current is applied between the anode 3 and the cathode 5, the anode chamber 13 Ozone water is discharged from the outlet 1 3b.
  • the ozone water generating apparatus of the present embodiment includes a temperature control unit 30 as heating means connected to the supply port 13a via an electromagnetic valve 20.
  • the temperature control unit 30 is a known unit that heats the supplied pure water or tap water to a predetermined temperature set in advance. For this reason, in the ozone water generating apparatus of the present embodiment, pure water or tap water can be heated to a predetermined temperature and then supplied to the anode chamber 13 to generate ozone water.
  • the ozone water generation apparatus of the present embodiment may be provided with a deionizer, a flow sensor, an ozone water concentration monitor, an ozone gas alarm device, and the like as necessary.
  • FIGS 3 (A) and (B) are graphs showing the water temperature dependence of the amount of ozone generated when tap water is used as the raw water.
  • (A) is an example
  • (B) is a comparative example, Represents each.
  • Figures 4 (A) and (B) are graphs showing the water temperature dependence of the amount of ozone generated when pure water is used as the raw water.
  • (A) is an example and (B) is a comparison. Each example is shown. All graphs are the results of measurement while supplying 0.5 L of pure water or tap water from the supply port 13a per minute.
  • the amount of ozone produced was evaluated by measuring the concentration of ozone water using an ozone water concentration meter (UV method).
  • Fig. 3 (A) when conductive diamond was used as anode 3, it was found that ozone could be generated satisfactorily even in the middle to high temperature range of 25 ° C to 70 ° C. Therefore, in this embodiment, medium-high temperature ozone water can be efficiently generated.
  • Fig. 3 (B) the comparative example shows a large decrease in the amount of ozone generated as the water temperature rises. I got it.
  • the consumption of the electrode was very small compared to platinum or the like.
  • the use of the medium-high temperature ozone water generated in this way includes, for example, whole body sterilization by ozone shower at the time of infectious disease outbreak or bioterrorism.
  • such ozone-sharing is expected to be effective for the treatment of atopy, skin diseases, pressure ulcers and the like.
  • medium-to-high-temperature ozone water using pure water as raw material water has never been realized, and such power New water is expected to be used as cleaning water used in the semiconductor and electronics industries.
  • the cathode 5 may be composed of self-stereoscopic conductive diamond having a porous structure in the same manner as the anode 3.
  • the hole 3a may be formed in a slit shape that may have other shapes, or a large hole 3a may be formed so that the anode 3 has a net shape.
  • the force of using self-stereoscopic conductive diamond as the anode 3 The conductive diamond is deposited on the substrate by a hot filament chemical vapor deposition (CVD) method or a microwave plasma CVD method.
  • the synthesis method in which a thin film is used as the anode 3 is not limited to this.
  • the force substrate material in which silicon, titanium, niobium, molybdenum, or carbon is generally used as the substrate is not limited to this.
  • a conductive diamond free-standing film obtained by depositing a thick conductive diamond film on a substrate and then removing the substrate can be used as the anode 3 as described above. In this case, if a network or porous substrate is used, the porous anode 3 can be obtained without forming the holes 3a as described above.
  • the thickness of the anode 3 is 0.2 to 1. Omm (more desirably 0.4 to 0.8 mm) for the following reason. It is desirable that In other words, when a direct current is passed between the anode 3 and the cathode 5 of the electrolytic cell 1, the oxygen generation reaction due to the oxidative decomposition of water occurs on the inner wall surface of the hole 3a.
  • the hydrogen ions generated in the reaction processes (1) and (2) pass through the solid polymer membrane 7 having ion permeability and reach the cathode 5. At cathode 5, the hydrogen ions that have permeated receive a reduction reaction.
  • the generated hydrogen diffuses into the cathode chamber 15.
  • the reactions (1) and (2) are performed in the solid polymer film 7 in the hole 3a, the inner wall surface of the hole 3a, and the anode chamber 13. It occurs most efficiently at the interface where the three phases of the electrolyte (water) are in contact. This is because the movement distance of hydrogen ions is minimized when a reaction occurs in this part.
  • manufacturing a thick conductive diamond plate requires time and cost for film formation, and it is not preferable to use a conductive diamond plate that is thicker than necessary as the anode 3. Therefore, the thickness of the anode 3 is preferably 1. Omm or less (more preferably 0.8 mm or less).
  • the thickness of the anode 3 is desirably 0.2 mm or more (more desirably 0.4 mm or more).
  • the ease of removal of the bubbles B is closely related to the diameter of the hole 3a. If the diameter is less than 0.5 mm, the bubbles B are extremely difficult to escape. On the other hand, if the diameter of the hole 3a is as large as 3. Omm or more, for example, the three-phase interface per unit area is reduced, and the fields where the reactions (1) and (2) occur are relatively less. End up. For this reason, it is desirable that the diameter (diameter) of the hole 3a is 0.5 to 3.0 mm (more preferably 1.0 to 2. Omm). In this case, ozone is generated extremely efficiently. It becomes possible.
  • the distance between the outer circumferences of the holes 3a and 3a is 0.2 to 1.5 mm. From the viewpoint of increasing the number of three-phase interfaces, it is desirable that the number of holes 3a be large. However, if the distance between the outer peripheries of holes 3a and 3a is too narrow, for example, less than 0.2 mm, sufficient for anode 3 is sufficient. Strength cannot be obtained. For this reason, in the case where it is desirable to set the above-mentioned distance to 0.2 to 1.5 mm (more preferably 0.4 to 0.8 mm), the mechanical strength of the anode 3 can be efficiently secured while being sufficiently secured.
  • the inner wall surface of the hole 53a is tapered like the anode 53 shown in FIG. 7, and the hole 53a is directed outward from the solid polymer film 7. It is also effective to arrange it so that it expands (V, loose mortar type arrangement).
  • the periphery of the hole 63a can be configured in a wavy manner like the anode 63 shown in FIG. It is also effective to form the holes 73a in a star shape like the anode 73 shown partially enlarged.
  • the anode 3 is configured to be smaller than the solid polymer film 7 as shown in FIG. 9 (A), and the periphery of the anode 3 extends from the outer peripheral portion 13c of the anode chamber 13. It is also effective to form a three-phase interface around the anode 3 by separating them. That is, normally, as shown in FIG. 9 (B), the solid polymer film 7 and the anode 3 disposed inside the outer peripheral portion 13c are the same size, or the periphery of the anode 3 is a sealing material. Forces that are sealed in the same way as in Fig. 9 (B), forming a three-phase interface around anode 3 as shown in Fig. 9 (A), resulting in good ozone generation efficiency Can be improved.
  • anodes 83 made of columnar (here, square columnar) self-supporting conductive diamond are formed on the surface of the solid polymer film 7.
  • a large number of anodes 93 made of piece-like (in this case, cubic) self-supporting conductive diamond may be arranged on the surface of the solid polymer film 7. Good. In these cases, the efficiency of ozone generation can be improved by increasing the three-phase interface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

 導電性ダイヤモンドを電極材料として使用することにより、効率的にかつ安定して中高温のオゾン水を生成することのできるオゾン水生成方法及びオゾン水生成装置を提供すること。固体高分子膜(7)を挟んで陽極(3)と陰極(5)とを配設してなる電解セル(1)には、陽極(3)が設けられた陽極室(13)へ、温度制御ユニット(30)から中高温の純水または水道水が供給される。陽極(3)と陰極(5)との間に直流電流を通電すると、陽極室(13)の取出口(13b)から中高温のオゾン水が排出される。このようなオゾン水生成装置において、陽極(3)として多孔質または網状の構造を有する導電性ダイヤモンドを使用すると、高温領域においてもオゾンの生成能力の低下が小さく、効率的にかつ安定して中高温のオゾン水を生成することができる。

Description

明 細 書
オゾン水生成方法及びオゾン水生成装置
技術分野
[0001] 本発明は、オゾン水生成方法及びオゾン水生成装置に関し、詳しくは、固体高分 子膜を挟んで陰極と陽極とを配設し、水を電気分解してオゾン水を生成するオゾン水 生成方法及びオゾン水生成装置に関する。
背景技術
[0002] オゾンは非常に強い酸ィ匕カを有しており、殺菌、消毒、脱色、脱臭、酸化分解、酸 化処理等と ヽつた様々な分野で利用されて ヽる。オゾン自身が容易に自然分解して 酸素となるため、二次汚染の心配のない処理方法といえる。オゾンを溶解したオゾン 水は、オゾンガスに比べて安全で利用し易い。水分と共存した、或いは水に溶解した オゾンの酸化力は一層向上し、一般に殺菌 ·洗浄等に用いられている(例えば、非特 許文献 1参照)。これらの目的のために、オゾン水のより簡便かつ高効率な生成手法 の開発が求められている。
[0003] 気体状のオゾンを生成するための手法としては、紫外線ランプ法、無声放電法及 び電気分解 (電解)法が知られている(例えば、非特許文献 2参照)。紫外線ランプ法 は発生するオゾンの量が少なぐ室内'車内の消臭等、少量の悪臭源を除くために用 V、られることが多 、。無声放電法はオゾンガスを生成するための一般的な手法である 力 例えば原料として空気を用いた場合には同時に窒素酸ィ匕物も発生してしまう。こ れを防ぐためには、原料として酸素ガスを用いる力 空気中の酸素のみを濃縮するよ うな付属装置を備える必要がある。また、金属電極の消耗による金属不純物の混入も 問題となる。更に、水の電気分解によってもオゾンガスは得られる。この電解法によれ ば、水分を多少含むものの高純度かつ高濃度のオゾンガスを簡単に得ることができ る。
[0004] 一方、オゾン水を得るための手段としては、上記手段により得られたオゾンガスを水 中に溶解させるか、電解法により直接生成する手段が知られている。無声放電法或 いは電解法で発生させたオゾンガスを気液溶解塔に通じて水に溶解させることでォ ゾン水を得ることができる力 これは装置の大型化'複雑化の原因となる。これに対し 、固体高分子膜を多孔質状あるいは網状の陽極と陰極で挟むことで電解セルを構成 し、これを用いて水道水や純水を電気分解する電解法によればオゾン水を直接生成 することができ、装置の小型化も容易となる。
[0005] 電解法によりオゾン水を生成する際のオゾン生成用電極の材料としては、触媒とし ての機能が優れている点力も白金,金, 白金被覆チタン,酸ィ匕鉛等が一般的に用い られている。これらの材料を多孔質状或いは網目状に成型して陽極 3として用い、適 当な陰極 5と共に固体高分子膜 7を挟むことで、例えば図 12に示すような電解セル 1 が構成される。この電解セル 1の陽極室 13側に純水或いは水道水を供給しながら電 解を行うことでオゾン水が得られる。更に、このように電解法でオゾン水を生成する場 合、原料水として例えば 42°Cの温水を使用することにより、シャワー等による全身殺 菌等に利用可能な中高温のオゾン水を生成することも考えられている (例えば、特許 文献 1参照)。
[0006] し力しながら、特許文献 1のように白金等を電極として用いた場合、オゾン水生成の ための電解に伴って電極が消耗 ·溶出して 、く問題が指摘されて 、る。比較的耐久 性に優れると考えられている白金電極、或いは上記記載の電極であっても、オゾンを 生成するための大電流 '大電圧の条件下で使用していくと、陽極を構成する金属が イオンとして溶出する現象が生じる。この溶出した金属イオンが固体高分子膜に付着 して反応を阻害してしまうため、オゾンの生成効率が徐々に低下していく。本発明者 らも白金網電極を用いてオゾン温水を生成する比較試験を行ったところ、特に、高温 域でオゾン生成を連続的に行った場合、白金の消耗が激 、と 、う結果が得られて いる。従って、当該装置を用いてもオゾン温水を長期的 ·連続的に安定して得ること は困難であると考えられる。
[0007] 電解に伴う消耗を少しでも抑制するため、 10°C程度までの低温水を供給して電解 を行 、、生成した低温オゾン水を加熱して例えば 25°C〜70°Cの中高温オゾン水と することも可能ではある。し力しながら、水温が高くなるに従って気体の溶解性が低下 することは周知であり、低水温で溶解していたオゾンガスが中高温水中では過剰とな つてオゾンガスとして放出される危険がある。オゾン水を生成後に加熱する場合は、 このような放出によって無駄になるオゾンを生成しているため、オゾン水の生成効率 も悪い。従って、中高温のオゾン水を効率的に生成するためには、供給する水の温 度を中高温領域に保持して電解セルに送り込むことが望ましい。
[0008] 一方、最近では白金等に代わる新たな電極材料として、導電性を付与したダイヤモ ンド薄膜が提案されている。この導電性ダイヤモンド薄膜の主な特性としては、機械 的強度に優れる、化学的に安定である、分子が吸着し難い、溶媒の酸化分解及び還 元分解が起こり難く広い電位窓を示す、反応に選択性があるなど、他の電極材料に は見られない特異的なものが挙げられる。そこで、網目状或いは多孔質状の基板上 に熱フィラメント化学気相成長(CVD)法やマイクロ波プラズマ CVD法により導電性 のダイヤモンド薄膜を形成し、これを陽極として固体高分子膜を挟む形状の電解セ ルを構築することでオゾン生成に用いることが考えられている(例えば、特許文献 2参 照)。
非特許文献 1 :「新版オゾン利用の新技術」 サンユー書房、 1993年 2月
非特許文献 2 :杉光 英俊 著「オゾンの基礎と応用」 光琳、 1996年 2月
特許文献 1:特開 2004— 60011号公報
特許文献 2:特開平 9 - 268395号公報
発明の開示
発明が解決しょうとする課題
[0009] ところが、導電性ダイヤモンドを電極材料として使用した電解セルを中高温のォゾ ン水を生成するために使用することは、これまで検討されて来な力つた。これに対し て、本願出願人は、基礎的な検討を進めて行く中で、ダイヤモンド電極のオゾン発生 能力は白金の 2倍程度優れること、また高温領域においてもオゾンの生成能力の低 下が小さいことを見出した。そこで、本発明は、導電性ダイヤモンドを電極材料として 使用することにより、効率的にかつ安定して中高温のオゾン水を生成することのでき るオゾン水生成方法及びオゾン水生成装置を提供することを目的としてなされた。 課題を解決するための手段
[0010] 上記目的を達するためになされた本発明のオゾン水生成方法は、固体高分子膜を 挟んで陰極と陽極とを配設し、水を電気分解してオゾン水を生成するオゾン水生成 方法であって、上記陽極として多孔質状または網状の構造を有する導電性ダイヤモ ンドを使用し、中高温の水を電気分解することにより中高温のオゾン水を生成するこ とを特徴としている。
[0011] このように構成された本発明では、固体高分子膜を挟んで陰極と陽極とを配設し、 中高温の水を電気分解して中高温のオゾン水を生成している。このため、上記電気 分解により、陽極側より中高温のオゾン水が生成され、その生成も簡便である。また、 本発明では、陽極として多孔質状または網状の構造を有する導電性ダイヤモンドを 使用しているので、水温が、例えば 25°C〜70°Cの中高温であっても、効率的にかつ 安定して 25°C〜70°Cの中高温のオゾン水を生成することができる。
[0012] なお、上記陽極としては、導電性ダイヤモンドであれば種々の形態のものが適用で きるが、上記陽極として、自立体型の導電性ダイヤモンドを使用した場合、次のような 更なる効果が生じる。すなわち、このような自立体型の導電性ダイヤモンドは、シリコ ン,チタン,ニオブ,グラフアイト板等の基体上にダイヤモンドの薄層を形成したものと は異なり、高電圧 ·高電流を印加する電解処理等を行っても基板力もの剥離等の心 配がない。従って、上記のように多孔質状または網状の構造を有する自立体型の導 電性ダイヤモンドを陽極として使用した場合、一層安定してかつ一層効率的に中高 温のオゾン水を生成することができる。
[0013] また、本発明のオゾン水生成装置は、固体高分子膜を挟んで陰極と陽極とを配設 してなる電解セルを備え、該電解セルにより水を電気分解してオゾン水を生成するォ ゾン水生成装置であって、上記電解セルの少なくとも陽極側へ供給される水を中高 温に加熱する加熱手段を、更に備え、上記陽極として多孔質状または網状の構造を 有する導電性ダイヤモンドを使用したことを特徴として ヽる。
[0014] このように構成された本発明では、固体高分子膜を挟んで陰極と陽極とを配設して なる電解セルの少なくとも陽極側に、加熱手段によって例えば 25°C〜70°Cまでの中 高温に加熱された水が供給される。このため、上記電解セルによる電気分解によって 、陽極側に中高温のオゾン水が生成され、その生成も簡便である。また、本発明では 、陽極として多孔質状または網状の導電性ダイヤモンドを使用しているので、前述の ように水温が中高温であっても効率的にかつ安定して中高温のオゾン水を生成する ことができる。
[0015] なお、上記陽極としては、導電性ダイヤモンドであれば種々の形態のものが適用で きるが、上記陽極として、自立体型の導電性ダイヤモンドを使用した場合、次のような 更なる効果が生じる。すなわち、このような自立体型の導電性ダイヤモンドは、シリコ ン,チタン,ニオブ,グラフアイト板等の基体上にダイヤモンドの薄層を形成したものと は異なり、高電圧 ·高電流を印加する電解処理等を行っても基板力もの剥離等の心 配がない。従って、上記のように多孔質状または網状の構造を有する自立体型の導 電性ダイヤモンドを陽極として使用した場合、一層安定してかつ一層効率的に中高 温のオゾン水を生成することができる。
図面の簡単な説明
[0016] [図 1]本発明が適用されたオゾン水生成装置の構成を表す模式図である。
[図 2]そのオゾン水生成装置の陽極の構成を表す模式図である。
[図 3] (A)、(B)原料水として水道水を使用した場合の上記オゾン水生成装置による オゾン生成量の水温依存性を、比較例と対比して表すグラフである。
[図 4] (A)、(B)原料水として純水を使用した場合の上記オゾン水生成装置によるォ ゾン生成量の水温依存性を、比較例と対比して表すグラフである。
[図 5]上記陽極における反応が三相界面近傍で起こることを表す説明図である。
[図 6]上記陽極の孔における気泡の成長を表す説明図である。
[図 7]上記陽極の孔にテーパ加工を施した例を表す模式図である。
[図 8] (A)、 (B)上記陽極の孔の形状を変化させた変形例を表す模式図である。
[図 9] (A)、 (B)上記陽極の周囲を陽極室の外周部から離した例を表す模式図であ る。
[図 10]陽極として柱状のダイヤモンドを使用した変形例を表す模式図である。
[図 11]陽極として断片状のダイヤモンドを使用した変形例を表す模式図である。
[図 12]従来例の電解セルの構成を表す模式図である。
符号の説明
[0017] 1…電解セル 3…陽極 3a…孔
5…陰極 7…固体高分子膜 13· ··陽極室 15…陰極室 20· ··電磁弁 30…温度制御ユニット 発明を実施するための最良の形態
[0018] 次に、本発明の実施の形態を、図面と共に説明する。図 1は、本発明が適用された オゾン水生成装置の構成を表す模式図である。図 1に示すように、このオゾン水生成 装置は電解セル 1を備えており、この電解セル 1は、後述の陽極 3の構成以外は上記 従来例の電解セル 1と同様に構成されている。すなわち、図 1に示すように、固体高 分子膜 7 (例えば商品名「ナフイオン」:デュポン社製)を挟んで陽極 3と陰極 5とを配 設し、その陽極 3,陰極 5は固体高分子膜 7の互いに対向する面に密着して固定され ている。陽極 3の表面には陽極室 13が、陰極 5の表面には陰極室 15が、それぞれ形 成され、陽極室 13,陰極室 15は、それぞれ供給口 13a, 15aと取出口 13b, 15bとを 有している。なお、図 1,図 12において、同様に構成された部分には同一の符号を 付して、その構成の詳細な説明を省略する。
[0019] ここで、陽極 3は、図 2に示すように、マイクロ波プラズマ CVD法で厚さ 0. 8mmの 1 5mm X 50mmの矩形板状に形成された自立体型導電性ダイヤモンド板に、直径 1 mmの孔 3aを中心間距離が 2mm (すなわち、孔 3aの外周同士の間隔は lmm)とな るように穿設したものである。なお、孔 3aの穿設はレーザカ卩ェまたは放電カ卩ェによつ て行うことができる。また、陰極 5としては、 55メッシュの網状の白金電極を使用した。 このように構成された電解セル 1では、陽極 3と陰極 5との間に直流電流を通電しなが ら各供給口 13a, 15aから純水(水道水でもよい)を供給すると、陽極室 13の取出口 1 3bからオゾン水が排出される。
[0020] 更に、本実施の形態のオゾン水生成装置は、図 1に示すように、供給口 13aに電磁 弁 20を介して接続された加熱手段としての温度制御ユニット 30を備えて 、る。この温 度制御ユニット 30は、供給された純水または水道水を予め設定された所定の温度に 加熱する周知のユニットである。このため、本実施の形態のオゾン水生成装置では、 純水または水道水を所定の温度に加熱してから、陽極室 13に供給してオゾン水を生 成することができる。なお、本実施の形態のオゾン水生成装置には、この他必要に応 じて、純水器,流量センサ,オゾン水濃度モニタ,オゾンガス警報機などを備えてもよ い。 [0021] 次に、このオゾン水生成装置(以下、実施例ともいう)と、陽極 3として白金メッシュ電 極を用いた比較例とで、オゾン生成量を比較した。ここで、白金メッシュ電極の大きさ は 15mm X 50mmとした。図 3 (A)、(B)は、原料水として水道水を使用した場合の オゾン生成量の水温依存性を表すグラフであり、(A)は実施例を、(B)は比較例を、 それぞれ表している。また、図 4 (A)、(B)は、原料水として純水を使用した場合のォ ゾン生成量の水温依存性を表すグラフであり、(A)は実施例を、(B)は比較例を、そ れぞれ表している。なお、いずれのグラフも、毎分 0. 5Lの純水または水道水を供給 口 13aから供給しながら測定を行った結果である。また、オゾン生成量は、オゾン水 濃度計 (UV方式)によりオゾン水の濃度を測定することによって評価した。
[0022] 図 3 (A)に示すように、陽極 3として導電性ダイヤモンドを使用した場合、 25°C〜70 °Cの中高温領域でも良好にオゾンを生成できることが分力 た。従って、本実施例で は、効率的に中高温のオゾン水を生成することができる。これに対して、図 3 (B)に示 すように、比較例では水温の上昇に伴うオゾン生成量の減少幅が大きぐ特に、 40°C 以上のオゾン水は殆ど生成できないことが分力つた。
[0023] また、図 4 (A)に示すように、本実施例では原料水として純水を使用した場合にも、 効率的に中高温のオゾン水を生成することができた。これに対して、図 4 (B)に示す ように、原料水として純水を使用した場合、比較例では殆どオゾン水が生成できない ことが分力ゝつた。従って、原料水として純水を使用する場合には、陽極 3として導電性 ダイヤモンドを使用する効果が一層顕著に表れる。なお、この原因には不明な点もあ るが、水道水中に存在する含塩素イオンが純水には含まれな ヽことと関連があるもの と推定される。
[0024] 更に、陽極 3として導電性ダイヤモンドを使用した場合、その電極の消耗も、白金等 に比べて極めて少ないことが分力つた。このように、本実施の形態では、長期間に亘 つて安定して、しかも効率的に中高温のオゾン水を生成することができる。そして、こ のように生成された中高温のオゾン水の用途としては、例えば、伝染病発生時やバイ オテロ時のオゾンシャワーによる全身殺菌.净ィ匕などがある。また、このようなオゾンシ ャヮ一は、アトピーや皮膚病、褥瘡等の治療にも効果があると期待される。また、純水 を原料水とした中高温のオゾン水はこれまで実現されて 、なかった力 このようなォゾ ン水は半導体 ·電子産業で用いられる洗浄水としての新たな利用が期待される。
[0025] なお、本発明は上記実施の形態に何等限定されるものではなぐ本発明の要旨を 逸脱しない範囲で種々の形態で実施することができる。例えば、陰極 5も陽極 3と同 様に、多孔質状の構造を有する自立体型の導電性ダイヤモンドで構成してもよい。ま た、孔 3aは他の形状であってもよぐスリット状に構成したり、陽極 3が網状になるよう に大きな孔 3aを穿設してもょ 、。
[0026] また、上記実施の形態では、陽極 3として自立体型の導電性ダイヤモンドを使用し た力 熱フィラメント化学気相成長(CVD)法やマイクロ波プラズマ CVD法によって基 板上に導電性ダイヤモンドの薄膜を形成したものを陽極 3として使用してもよぐ合成 手法はこれに限定されるものではない。この場合、基板としてはシリコンやチタン、二 ォブ、モリブデン、カーボンが一般に用いられる力 基板材料はこれに限定されるも のではない。更に、基板上に厚く導電性ダイヤモンド膜を堆積させ、その後基板を除 去することで得られる導電性ダイヤモンド自立膜を、前述のように陽極 3として使用す ることもできる。そして、この場合、基板として網目状または多孔質状のものを使用す れば、前述のように孔 3aを穿設しなくても多孔質状の陽極 3を得ることができる。
[0027] 但し、上記のような陽極 3を用いてオゾンを生成する場合、以下の理由により、陽極 3の厚さは 0. 2〜1. Omm (より望ましくは 0. 4〜0. 8mm)であることが望ましい。す なわち、電解セル 1の陽極 3と陰極 5との間に直流電流を通電すると、孔 3a内壁面で は水の酸化分解反応による酸素発生反応
2H 0→0 +4H+ +4e— (1)
2 2
或いはオゾン発生反応
3H O→0 +6H+ +6e— (2)
2 3
が起きる。(1)及び(2)の反応過程で生成した水素イオンは、イオン透過性を有する 固体高分子膜 7を透過し、陰極 5に達する。陰極 5では透過してきた水素イオンが電 子を受け取る還元反応
2H+ + 2e"→H (3)
2
が起き、生成した水素は陰極室 15内へと拡散していく。しかしながら、(1)及び(2)の 反応は、図 5に示すように、孔 3a内の固体高分子膜 7、孔 3aの内壁面、陽極室 13内 の電解液 (水)の三相が接する界面で最も効率的に起こる。これは、この部分で反応 が起きた場合に水素イオンの移動距離が最短となるためである。また、厚い導電性ダ ィャモンド板を製造するには、成膜のための時間やコストもかかり、必要以上に厚い 導電性ダイヤモンド板を陽極 3として採用するのは好ましくない。そこで、陽極 3の厚 さは 1. Omm以下(より望ましくは 0. 8mm以下)とするのが望ましい。
[0028] 更に、上記(1)及び(2)の反応が起こると、上記三相界面でオゾンと酸素を含有す る気泡 Bが生成する。この気泡 Bは図 6の (A)→ (B)→ (C)に順次示すように電解に 伴って成長していき、ある大きさ以上になると気泡 Bが自身の浮力により孔 3aから抜 けていく。孔 3a内に留まる気泡 Bは電極反応を阻害するため、電解を更に進めるに はより大きな電圧を必要とする。従って、小さい電力で効率的にオゾンを生成しようと するならば、発生した気泡 Bを効率よく取り除ける電極構造であることが望ましい。気 泡 Bの抜け易さは陽極 3の厚さと密接に関連しており、この点からも、陽極 3の厚さは 1. Omm以下(より望ましくは 0. 8mm以下)とするのが望ましい。一方、上記陽極 3が あまり薄いと、充分な機械的強度が得られない。そこで、陽極 3の厚さは、 0. 2mm以 上(より望ましくは 0. 4mm以上)とするのが望ましい。
[0029] また、気泡 Bの抜け易さは孔 3aの径とも密接に関連しており、上記径が 0. 5mm未 満であると気泡 Bが極めて抜け難くなる。一方、孔 3aの径が例えば 3. Omm以上とあ まりにも大きいと、単位面積当りの上記三相界面が少なくなり、(1)及び(2)の反応が 起きる場が相対的に少なくなつてしまう。このため、孔 3aの径(直径)は、 0. 5〜3. 0 mm (より望ましくは 1. 0〜2. Omm)とするのが望ましぐこの場合、極めて効率的に オゾンを生成することが可能となる。
[0030] 更に、上記実施の形態のように孔 3aを複数穿孔する場合、その孔 3aと孔 3aとの外 周同士の間隔が 0. 2〜1. 5mmであるのが望ましい。上記三相界面を増やすという 観点からは、孔 3aの数は多い方が望ましいが、孔 3aと孔 3aとの外周同士の間隔が 例えば 0. 2mm未満とあまりにも狭いと、陽極 3に充分な強度が得られない。このため 、上記間隔は 0. 2〜1. 5mm (より望ましくは 0. 4〜0. 8mm)とするのが望ましぐこ の場合、陽極 3の機械的強度を充分に確保しつつ効率的にオゾンを生成することが 可能となる。 [0031] また、気泡 Bを抜け易くするためには、図 7に示す陽極 53のように、孔 53aの内壁面 にテーパ加工を施し、孔 53aが固体高分子膜 7から外側に向力つて広がるように配置 (V、わゆるすり鉢型配置)するのも有効である。
[0032] また、三相界面を増やすためには、図 8 (A)に一部を拡大して示す陽極 63のように 、孔 63aの周囲を波状に構成したり、図 8 (B)に一部を拡大して示す陽極 73のように 、孔 73aを星形に形成したりするのも有効である。
[0033] 更に、三相界面を増やすためには、図 9 (A)に示すように陽極 3を固体高分子膜 7 よりも小さく構成し、陽極 3の周囲を陽極室 13の外周部 13cから離すことでその陽極 3の周囲に三相界面を形成するのも有効である。すなわち、通常は、図 9 (B)に示す ように、外周部 13cの内側に配設される固体高分子膜 7と陽極 3とが同じ大きさであつ たり、或いは陽極 3の周囲がシーリング材でシーリングされ、実質的に図 9 (B)と同様 の状態であったりする力 図 9 (A)のように陽極 3の周囲に三相界面を形成することに より、オゾンの生成効率を良好に向上させることができる。
[0034] また更に、三相界面を増やすためには、図 10に示すように、柱状 (ここでは四角柱 状)の自立型導電性ダイヤモンドからなる陽極 83を固体高分子膜 7の表面に多数平 行に配設してもよぐ図 11に示すように、断片状 (ここでは立方体状)の自立型導電 性ダイヤモンドからなる陽極 93を固体高分子膜 7の表面に多数配設してもよい。これ らの場合も、三相界面を増やしてオゾンの生成効率を向上させることができる。

Claims

請求の範囲
[1] 固体高分子膜を挟んで陰極と陽極とを配設し、水を電気分解してオゾン水を生成 するオゾン水生成方法であって、
上記陽極として多孔質状または網状の構造を有する導電性ダイヤモンドを使用し、 中高温の水を電気分解することにより中高温のオゾン水を生成することを特徴とす るオゾン水生成方法。
[2] 上記陽極として、多孔質状または網状の構造を有する自立体型の導電性ダイヤモ ンドを使用することを特徴とする請求項 1記載のオゾン水生成方法。
[3] 固体高分子膜を挟んで陰極と陽極とを配設してなる電解セルを備え、該電解セル により水を電気分解してオゾン水を生成するオゾン水生成装置であって、
上記電解セルの少なくとも陽極側へ供給される水を中高温に加熱する加熱手段を 更に備え、
上記陽極として多孔質状または網状の構造を有する導電性ダイヤモンドを使用し たことを特徴とするオゾン水生成装置。
[4] 上記陽極として、多孔質状または網状の構造を有する自立体型の導電性ダイヤモ ンドを使用したことを特徴とする請求項 3記載のオゾン水生成装置。
PCT/JP2006/309157 2005-08-10 2006-05-02 オゾン水生成方法及びオゾン水生成装置 WO2007017976A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06746007.1A EP1923357B1 (en) 2005-08-10 2006-05-02 Method for producing ozone water and apparatus for producing ozone water
US11/989,770 US8431006B2 (en) 2005-08-10 2006-05-02 Method and apparatus for producing ozone-water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005232184A JP4903405B2 (ja) 2005-08-10 2005-08-10 オゾン水生成方法及びオゾン水生成装置
JP2005-232184 2005-08-10

Publications (1)

Publication Number Publication Date
WO2007017976A1 true WO2007017976A1 (ja) 2007-02-15

Family

ID=37727167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309157 WO2007017976A1 (ja) 2005-08-10 2006-05-02 オゾン水生成方法及びオゾン水生成装置

Country Status (4)

Country Link
US (1) US8431006B2 (ja)
EP (1) EP1923357B1 (ja)
JP (1) JP4903405B2 (ja)
WO (1) WO2007017976A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323461B2 (en) 2006-11-10 2012-12-04 Electrolytic Ozone, Inc. Electrochemical apparatus having a forced flow arrangement
US8361289B2 (en) 2006-11-10 2013-01-29 Andrew John Whitehead Diamond electrode
CN110123482A (zh) * 2019-05-27 2019-08-16 广州市德百顺电气科技有限公司 一种臭氧水活体注射装置
US11390957B2 (en) * 2016-11-29 2022-07-19 Oxi-Tech Solutions Limited Electrode and electrochemical cell comprising the same

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096054B2 (ja) * 2007-06-29 2012-12-12 東海旅客鉄道株式会社 オゾン生成方法
JP2012525504A (ja) * 2009-04-28 2012-10-22 エレクトロリティック オゾン インコーポレイテッド 電解槽のための廃棄可能なカートリッジ
US20110226634A1 (en) * 2009-06-19 2011-09-22 Sai Bhavaraju Bismuth metal oxide pyrochlores as electrode materials for electrolytic ozone and perchlorate generation
JP5480542B2 (ja) 2009-06-23 2014-04-23 クロリンエンジニアズ株式会社 導電性ダイヤモンド電極並びに導電性ダイヤモンド電極を用いたオゾン生成装置
JP5457810B2 (ja) * 2009-12-07 2014-04-02 クロリンエンジニアズ株式会社 オゾン生成装置
WO2011094886A1 (es) * 2010-02-03 2011-08-11 New Tech Copper Spa. Anodo para la depositación electrolítica
JP5437898B2 (ja) * 2010-04-26 2014-03-12 三井化学株式会社 フッ素ガス生成装置、フッ素ガス生成方法およびガス生成用炭素電極
EP3293289A1 (en) * 2010-12-03 2018-03-14 Electrolytic Ozone, Inc. Electrolytic cell for ozone production
JP2012144778A (ja) * 2011-01-12 2012-08-02 Kobe Steel Ltd 電解用電極及びその電解用電極を用いたオゾン生成装置
JP2012144779A (ja) * 2011-01-12 2012-08-02 Kobe Steel Ltd 電解用電極の製造方法
EP2697730A4 (en) 2011-04-15 2015-04-15 Advanced Diamond Technologies Inc ELECTROCHEMICAL SYSTEM AND METHOD FOR PROPORTION OF OXIDIZERS AT HIGH CURRENT DENSITY
JP5807218B2 (ja) * 2011-05-16 2015-11-10 パナソニックIpマネジメント株式会社 光電極およびその製造方法、光電気化学セルおよびそれを用いたエネルギーシステム、並びに水素生成方法
US20130183219A1 (en) * 2011-07-25 2013-07-18 Gene H. Irrgang Methods for reducing nitrogen oxides emissions
JP5975392B2 (ja) * 2012-10-05 2016-08-23 パナソニックIpマネジメント株式会社 オゾン水生成装置
US9486817B2 (en) * 2013-03-15 2016-11-08 Delta Faucet Company Ozone shower device
GB2519125A (en) * 2013-10-10 2015-04-15 Oceansaver As Water treatment
US11085122B2 (en) 2014-06-26 2021-08-10 Vapor Technologies, Inc. Diamond coated electrodes for electrochemical processing and applications thereof
US10239772B2 (en) 2015-05-28 2019-03-26 Advanced Diamond Technologies, Inc. Recycling loop method for preparation of high concentration ozone
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
CA2946465C (en) 2015-11-12 2022-03-29 Delta Faucet Company Ozone generator for a faucet
EP3529397A4 (en) 2016-10-20 2020-06-24 Advanced Diamond Technologies, Inc. OZONE GENERATORS, METHOD FOR PRODUCING OZONE GENERATORS AND METHOD FOR PRODUCING OZONE
JP6220956B1 (ja) * 2016-12-12 2017-10-25 日科ミクロン株式会社 ダイヤモンド電極、ダイヤモンド電極の製造方法及び電解水生成装置
JP6220957B1 (ja) * 2016-12-12 2017-10-25 日科ミクロン株式会社 ダイヤモンド電極、ダイヤモンド電極の製造方法及び電解水生成装置
FR3088543B1 (fr) * 2018-11-21 2021-03-19 Waterdiam France Traitement des affections de la peau à base d’eau électrolysée
US12012661B2 (en) 2020-06-27 2024-06-18 Aquamox Inc. Electrolytic generators
CN114751384A (zh) * 2022-03-31 2022-07-15 深圳市迈特智能有限公司 一种冲牙器用臭氧离子发生装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268395A (ja) 1996-04-02 1997-10-14 Permelec Electrode Ltd 電解用電極及び該電極を使用する電解槽
JP2000254650A (ja) * 1999-03-15 2000-09-19 Permelec Electrode Ltd 水処理方法及び水処理用装置
JP2003211104A (ja) 2002-01-28 2003-07-29 Permelec Electrode Ltd 洗浄装置
JP2004060011A (ja) 2002-07-30 2004-02-26 Neo Ozone Kk 電解式オゾン水製造装置
JP2004132592A (ja) * 2002-10-09 2004-04-30 Denkai Giken:Kk 電気化学的水処理方法及び水処理システム
JP2004202283A (ja) * 2002-12-20 2004-07-22 Kurita Water Ind Ltd 有機化合物含有水の処理方法および処理装置
JP2005046730A (ja) * 2003-07-29 2005-02-24 Permelec Electrode Ltd 電気化学的殺菌及び制菌方法
JP2005116466A (ja) * 2003-10-10 2005-04-28 Permelec Electrode Ltd 膜−電極接合体及びその製造方法
US20050110024A1 (en) 2003-11-25 2005-05-26 Board Of Trustees Of Michigan State University Boron-doped nanocrystalline diamond
JP2005246279A (ja) * 2004-03-05 2005-09-15 Denkai Giken:Kk 電気化学的水処理方法及び装置
JP2005336607A (ja) * 2004-04-28 2005-12-08 Central Japan Railway Co 電極、オゾン生成装置、及び、オゾン生成方法
EP1741676A2 (en) 2005-06-16 2007-01-10 Permelec Electrode Ltd. Method of sterilization and electrolytic water ejecting apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4629373A (en) * 1983-06-22 1986-12-16 Megadiamond Industries, Inc. Polycrystalline diamond body with enhanced surface irregularities
US6217725B1 (en) * 1994-01-10 2001-04-17 Electroplating Technologies Ltd. Method and apparatus for anodizing
US5599438A (en) * 1994-03-25 1997-02-04 Nec Corporation Method for producing electrolyzed water
KR100504412B1 (ko) * 1996-04-02 2005-11-08 페르메렉덴꾜꾸가부시끼가이샤 전해용전극및당해전극을사용하는전해조
DE19819325A1 (de) * 1998-04-30 1999-11-04 Emitec Emissionstechnologie Elektrode mit für ein Fluid durchgängigen Poren und Brennstoffzelle
US8591856B2 (en) * 1998-05-15 2013-11-26 SCIO Diamond Technology Corporation Single crystal diamond electrochemical electrode
JP2001104995A (ja) * 1999-10-07 2001-04-17 Teeiku Wan Sogo Jimusho:Kk 電解法によりオゾンを生成する方法、電解式オゾン生成装置、オゾン水製造装置
JP4145457B2 (ja) * 2000-02-08 2008-09-03 信越化学工業株式会社 プラズマエッチング装置用電極板
JP4792625B2 (ja) * 2000-08-31 2011-10-12 住友電気工業株式会社 電子放出素子の製造方法及び電子デバイス
EP1483428B1 (en) * 2002-02-05 2007-10-17 Element Six (PTY) Ltd Diamond electrode
US6802954B1 (en) * 2002-07-18 2004-10-12 Pacesetter, Inc. Creation of porous anode foil by means of an electrochemical drilling process

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268395A (ja) 1996-04-02 1997-10-14 Permelec Electrode Ltd 電解用電極及び該電極を使用する電解槽
JP2000254650A (ja) * 1999-03-15 2000-09-19 Permelec Electrode Ltd 水処理方法及び水処理用装置
US6547947B1 (en) 1999-03-15 2003-04-15 Permelec Electrode Ltd. Method and apparatus for water treatment
JP2003211104A (ja) 2002-01-28 2003-07-29 Permelec Electrode Ltd 洗浄装置
JP2004060011A (ja) 2002-07-30 2004-02-26 Neo Ozone Kk 電解式オゾン水製造装置
JP2004132592A (ja) * 2002-10-09 2004-04-30 Denkai Giken:Kk 電気化学的水処理方法及び水処理システム
JP2004202283A (ja) * 2002-12-20 2004-07-22 Kurita Water Ind Ltd 有機化合物含有水の処理方法および処理装置
JP2005046730A (ja) * 2003-07-29 2005-02-24 Permelec Electrode Ltd 電気化学的殺菌及び制菌方法
JP2005116466A (ja) * 2003-10-10 2005-04-28 Permelec Electrode Ltd 膜−電極接合体及びその製造方法
US20050110024A1 (en) 2003-11-25 2005-05-26 Board Of Trustees Of Michigan State University Boron-doped nanocrystalline diamond
JP2005246279A (ja) * 2004-03-05 2005-09-15 Denkai Giken:Kk 電気化学的水処理方法及び装置
JP2005336607A (ja) * 2004-04-28 2005-12-08 Central Japan Railway Co 電極、オゾン生成装置、及び、オゾン生成方法
EP1754804A1 (en) 2004-04-28 2007-02-21 Central Japan Railway Company Electrode, ozone generator and ozone generating method
EP1741676A2 (en) 2005-06-16 2007-01-10 Permelec Electrode Ltd. Method of sterilization and electrolytic water ejecting apparatus

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1923357A4
SUGIMITSU; HIDETOSHI, BASICS AND APPLICATIONS OF OZONE: KORIN, February 1996 (1996-02-01)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323461B2 (en) 2006-11-10 2012-12-04 Electrolytic Ozone, Inc. Electrochemical apparatus having a forced flow arrangement
US8361289B2 (en) 2006-11-10 2013-01-29 Andrew John Whitehead Diamond electrode
US11390957B2 (en) * 2016-11-29 2022-07-19 Oxi-Tech Solutions Limited Electrode and electrochemical cell comprising the same
CN110123482A (zh) * 2019-05-27 2019-08-16 广州市德百顺电气科技有限公司 一种臭氧水活体注射装置

Also Published As

Publication number Publication date
US8431006B2 (en) 2013-04-30
JP2007044630A (ja) 2007-02-22
US20100089765A1 (en) 2010-04-15
EP1923357B1 (en) 2014-06-25
EP1923357A1 (en) 2008-05-21
EP1923357A4 (en) 2012-08-22
JP4903405B2 (ja) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2007017976A1 (ja) オゾン水生成方法及びオゾン水生成装置
JP4220978B2 (ja) 電極、オゾン生成装置、及び、オゾン生成方法
CA2630792C (en) Diamond electrode, method for producing same, and electrolytic cell
JP5096054B2 (ja) オゾン生成方法
JP5506997B2 (ja) イオン水製造装置
JP3007137B2 (ja) 電解オゾン発生方法及び装置
TWI467057B (zh) 利用電解硫酸之清洗方法及半導體裝置之製造方法
TW201000678A (en) Electrolysis cell for the electrolysis of hydrogen chloride
JPH11333458A (ja) 電解水製造装置
JP5764474B2 (ja) 電解合成装置、電解処理装置、電解合成方法及び電解処理方法
KR101220199B1 (ko) 물로부터 직접 과산화수소의 전기분해 합성 및 이의 응용
CN111575734A (zh) 一种阴极氧还原臭氧发生器及其使用方法
JP2004292284A (ja) 水素発生装置
KR101900752B1 (ko) 실내 이산화탄소 처리 장치 및 방법
JP3228885B2 (ja) 水素酸素ガス添加水製造装置
JP5408653B2 (ja) オゾン生成方法及びオゾン生成装置
JP2014093200A (ja) 微生物燃料電池
JP4644272B2 (ja) オゾン生成装置、及び、オゾン生成方法
JP2007070701A (ja) 固体高分子電解質型オゾン生成装置
JPH09316675A (ja) 高純度酸素の製法および電解セル
JP7466582B2 (ja) 水電解装置および水電解方法
JP3041796B1 (ja) 上下部ガスチャンバ―を有する電解槽
JP2000107760A (ja) 洗浄用電解水の生成装置及びその生成方法
JPH11114564A (ja) 電解水生成装置
CN101643913B (zh) 嵌入式电化学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11989770

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006746007

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE