WO2007010892A1 - 新規なリン脂質加工剤 - Google Patents

新規なリン脂質加工剤 Download PDF

Info

Publication number
WO2007010892A1
WO2007010892A1 PCT/JP2006/314160 JP2006314160W WO2007010892A1 WO 2007010892 A1 WO2007010892 A1 WO 2007010892A1 JP 2006314160 W JP2006314160 W JP 2006314160W WO 2007010892 A1 WO2007010892 A1 WO 2007010892A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
phospholipid
phosphatidylinositol
activity
processing agent
Prior art date
Application number
PCT/JP2006/314160
Other languages
English (en)
French (fr)
Inventor
Shinji Koga
Shigeyuki Imamura
Original Assignee
Asahi Kasei Pharma Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Pharma Corporation filed Critical Asahi Kasei Pharma Corporation
Priority to AU2006270921A priority Critical patent/AU2006270921A1/en
Priority to EP06781181A priority patent/EP1918371A4/en
Priority to JP2007526011A priority patent/JP4933432B2/ja
Publication of WO2007010892A1 publication Critical patent/WO2007010892A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/10Foods or foodstuffs containing additives; Preparation or treatment thereof containing emulsifiers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6481Phosphoglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P9/00Preparation of organic compounds containing a metal or atom other than H, N, C, O, S or halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to a novel phospholipid processing agent having high phospholipase B (PLB) activity and substrate specificity for phospholipids.
  • PLB phospholipase B
  • Phospholipase is a general term for enzymes that hydrolyze phospholipids.
  • Phospholipids (glycerophospholipids) have fatty acids esterified to the hydroxyl groups at the ⁇ -position and j8-position of glycerol.
  • choline, ethanolamine, inositol, etc. are bonded to the hydroxyl group at the position via a phosphate group.
  • phospholipase A1 The enzyme that hydrolyzes the fatty acid ester bond at the ⁇ - position of the glycerol group in glycerol phospholipids is called phospholipase A1
  • phospholipase ⁇ 2 An enzyme having both phospholipase A1 activity and phospholipase 2 activity is referred to as phospholipase B (PLB).
  • a phospholipid from which only one of the ⁇ -position or ⁇ -8-position fatty acid acyl group in the phospholipid is removed is called lysophospholipid, and an enzyme that acts on the lysophospholipid to hydrolyze the remaining fatty acid ester bond. Since the decomposition product is the same as in the case of PLB, PLB is included.
  • PLC phospholipase C
  • PLD phospholipase D
  • PLB also has lysophos lipase activity, and its presence is known in animals and plants, filamentous fungi of the genus Bacillus, Escherichia coli, or yeast, but it has strong activity against lysolecithin.
  • these known PLBs have been reported to act widely on phospholipids such as phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, or phosphatidylinositol. (Non-Patent Documents 1 and 2).
  • Non-patent Document 3 Its physiological action has been noted with certain lysophosphatidylinositols and glycerylphosphorylinositols.
  • Patent Document 1 lysophosphatidylinositol has been reported to have an antifungal action.
  • Non-Patent Document 2 it is also described in Non-Patent Document 2 that when PLC is allowed to act on phospholipids other than phosphatidylinositol, the reaction stops at a hydrolysis rate of about 30%.
  • Patent Document 1 JP-A-6-256366
  • Patent Document 2 JP-A 62-48390
  • Non-patent literature l Biochimica Biophysica Acta (1974) 369, 245-253
  • Non-Patent Document 2 Biochimica Biophysica Acta (1975) 403, 412-424
  • Non-Patent Document 3 Biochem. J (2004) 382, 441-449
  • Non-Patent Document 4 Jim W. Burgess et al., Journal of Lipid Research (46) 350-355 Disclosure of Invention
  • An object of the present invention is to efficiently use a novel phospholipid coating agent having high PLB activity and substrate specificity for phospholipids, and high-purity phosphatidylinositol and glyceryl phosphorylcholine. It is to provide a method of manufacturing well.
  • an enzyme derived from the genus Candida has a high PLB activity against phospholipids of the diacyl body. It has specificity for phospholipids that selectively hydrolyze phospholipids other than phosphatidylinositol in soybean phospholipid, in which the enzyme is a phospholipid mixture, and by using this specificity, high purity phosphatidylinositol and A method for efficiently producing glyceryl phosphorylcholine has been found and the present invention has been completed.
  • Enzymes derived from the genus Candida are widely used as lipases for the food industry and the production of pharmaceutical raw materials, but the enzymes have only been reported to have so-called lipase activity that acts on neutral lipids, and have PLB activity. I haven't been reported at all.
  • the present invention relates to the following.
  • PLB phospholipase B
  • a phospholipid processing agent comprising an enzyme having a phospholipase B (PLB) activity that does not substantially decompose only phosphatidylinositol in a phospholipid mixture.
  • PLB phospholipase B
  • phospholipid cacher according to ⁇ 1> or ⁇ 2> above, wherein the enzyme having phospholipase B (PLB) activity further has lipase activity.
  • PLB phospholipase B
  • ⁇ 4> The phospholipid processing agent according to any one of ⁇ 1> to ⁇ 3>, wherein the enzyme having PLB activity has the following physical and physical properties.
  • Action Action to hydrolyze phospholipids into 2 molar ratio of free fatty acids and equimolar ratio of glyceryl phosphorylcholine
  • Substrate specificity The activity ratio to phosphatidylinositol is less than 10% of phosphatidylcholine.
  • Candida cylindrasse culture fluid A phospholipid processing agent characterized by containing an enzyme obtained.
  • a phospholipid processing agent obtained by the following process. 1) Process of culturing Candida 'Cylindrasse
  • Step of separating and purifying the enzyme obtained in the step of 4) by ion exchange chromatography Enzyme having the amino acid sequence of SEQ ID NO: 1 in the sequence listing and homology with the amino acid sequence of SEQ ID NO: 1 in the sequence listing Either an enzyme having a PLB activity of 75% or more, or an enzyme having a PLB activity that has one or several amino acids deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 1 A phospholipid processing agent containing one or more enzymes.
  • An enzyme having the amino acid sequence of SEQ ID NO: 2 in the Sequence Listing, an enzyme having 75% or more homology with the amino acid sequence of SEQ ID NO: 2 in the Sequence Listing, having PLB activity, or the amino acid of SEQ ID NO: 2 in the Sequence Listing A phospholipid processing agent comprising any one or more of the enzymes having PLB activity and having an amino acid sequence ability in which one or several amino acids are deleted, substituted or added in the sequence.
  • ⁇ 9> A method for producing phosphatidylinositol and glyceryl phosphorylcholine, wherein the phospholipid processing agent according to any one of ⁇ 1> to ⁇ 8> above is allowed to act on a phospholipid mixture.
  • a method for producing phosphatidylinositol which comprises allowing the phospholipid carochemical agent according to any one of the above items 1 to ⁇ 8> to act on a phospholipid mixture.
  • a method for producing phosphatidylinositol comprising the following steps 1) to 3).
  • ⁇ 12> The method for producing phosphatidylinositol according to any one of the above ⁇ 9> to ⁇ 11>, wherein the phospholipid mixture is derived from soybeans. ⁇ 13> above ⁇ 10> - obtained by the production method according to any one of ⁇ 12>, the purity in the total phospholipid is 50 mole 0/0 or phosphatidylinositol.
  • ⁇ 14> A method for producing glyceryl phosphorylcholine, characterized in that the phospholipid caloric agent according to any one of ⁇ 1> to ⁇ 8> is allowed to act on a phospholipid mixture.
  • a method for producing glyceryl phosphorylcholine comprising the following steps 1) to 3):
  • ⁇ 16> The method for producing glyceryl phosphorylcholine according to the above ⁇ 9>, ⁇ 14> or ⁇ 15>, wherein the phospholipid mixture is derived from soybeans.
  • Glyceryl phosphorylcholine obtained by the production method according to any one of ⁇ 14> to ⁇ 16>, having a purity of 55% by weight or more.
  • a food, pharmaceutical or cosmetic containing phosphatidylinositol produced by the production method according to any one of 10> to 12> above.
  • a food, medicine or cosmetic containing dalyserylphosfolylcholine produced by the production method according to any one of 14 to 16 above.
  • ⁇ 22> Obtained by allowing an enzyme having phospholipase A1 or phospholipase A2 activity to act on phosphatidylinositol produced by the production method described in any one of 10> to 12> above. Lysophosphatidylinositol.
  • Lysophosphatidylinositol which causes an enzyme having phospholipase A1 or phospholipase A2 activity to act on phosphatidylinositol produced by the production method according to any one of 10> to 12> above.
  • Manufacturing method. ⁇ 24> A food, medicine or cosmetic containing lysophosphatidylinositol produced by the production method described in 23 above.
  • Glyceryl phosphine obtained by reacting phosphatidylinositol produced by any one of the above methods 10> to 12> with an enzyme having phosphalipase B activity that acts well on phosphatidylinositol. Orilinositol.
  • Glyceryl phosphorylinositol which causes phosphatidylinositol produced by the production method according to any one of the above 10> to ⁇ 12> to act on an enzyme having a B activity that acts well on phosphatidylinositol. Manufacturing method.
  • phospholipid processing agent of the present invention By using the phospholipid processing agent of the present invention, high-purity phosphatidylinositol, lysophosphatidylinositol, glyceryl phosphorylcholine, and glyceryl phosphoryl useful as functional phospholipids or functional phospholipid raw materials Inositol and the like can be produced efficiently.
  • Phospholipase B as a phospholipid coating agent
  • PLB means an enzyme that hydrolyzes, synthesizes fatty acid esters, or exchanges fatty acid esters of fatty acid esters at the ⁇ -position and ⁇ -position of phospholipids.
  • an enzyme that acts on lysophospholipid and hydrolyzes the remaining fatty acid ester bond is also included in the PLB of the present invention.
  • Phospholipid processing means hydrolysis of phospholipids, fatty acid ester synthesis. This means a reaction such as synthesis or fatty acid transesterification, preferably hydrolysis or fatty acid ester synthesis, and more preferably hydrolysis. There is also another preferred embodiment that means fatty acid ester synthesis.
  • the processing agent of the present invention includes, in addition to PLB alone, a material to which, for example, a saccharide or a pH buffer solution is added as an enzyme stabilizer.
  • the phospholipid processing agent is provided in the same manner as ordinary enzymes such as dry powder and liquid.
  • a phospholipid processing agent having PLB activity characterized by substantially not decomposing only phosphatidylinositol in a phospholipid mixture.
  • “Substantially no degradation of phosphatidylinositol alone” means that the activity ratio (relative activity) force of phosphatidylinositol to phosphatidylcholine contained in the phospholipid mixture as a substrate is 10% as the upper limit in the phospholipid processing agent of the present invention. Means less than 7%, preferably less than 5%, more preferably less than 5%, particularly preferably less than 3%, most preferably 1%.
  • the lower limit means 0.01% or more, and more preferably 0.1% or more.
  • the activity ratio (relative activity) of phospholipids other than phosphatidylinositol and phosphatidylcholine, such as phosphatidylethanolamine, phosphatidylserine, or phosphatidic acid (PA), to phosphatidylcholine is 15% or more as a lower limit, Preferably it means 20% or more, more preferably means 25% or more, particularly preferably means 30% or more, and most preferably 40% or more. This means that the upper limit is 200% or less, preferably 150% or less, and more preferably 100% or less.
  • PLB as the phospholipid processing agent of the present invention preferably has the following properties.
  • Substrate specificity The activity ratio to phosphatidylinositol is less than 10% of phosphatidylcholine.
  • the origin (origin) of PLB as the phospholipid processing agent of the present invention is not particularly limited as long as it has the above properties.
  • the origin is a natural product, it is preferably derived from a microorganism, more preferably from the genus Candida, and still more preferably from Candida cilindrasse.
  • PLB as a phospholipid processing agent of the present invention is produced by a gene recombination technique that may be an enzyme genetically modified on the basis of an enzyme derived from a natural product as described above.
  • the PLB thus prepared is also included in the PLB as the phospholipid processing agent of the present invention, and preferably has the above-mentioned characteristics.
  • the homology with the enzyme itself having the amino acid sequence represented by SEQ ID NO: 1 or 2 or the amino acid sequence represented by SEQ ID NO: 1 or 2 is 75% or more
  • An enzyme having an amino acid sequence and having PLB activity is also included in PLB as the phospholipid processing agent of the present invention, and is not particularly limited as long as it has the PLB activity, but the amino acid sequence represented by SEQ ID NO: 1
  • the homology of 80% or more is preferably 85% or more, more preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more. Most preferably it is.
  • the phospholipid strength additive does not substantially decompose only phosphatidylinositol. “Does not substantially decompose only phosphatidylinositol” has the same meaning as described above.
  • homology means homology at the amino acid sequence or DNA level, which can be determined by a known method, for example, sequence comparison using a computer.
  • GENETEX WIN 5.2 Software Co., Ltd. was used as the analysis software.
  • Computer programs used to determine homology include GCG program packages including GAP (Devereux, J. et al., Nucleic Acids Research 12 (12): 387 (1984)), BLAST packages (NCBI, or Altschul, SF J. Mol. Biol., 215: 403-410 (1990)), or Smith Examples include, but are not limited to, the Smith-Waterman algorithm!
  • the modified enzyme is also included in the PLB as the phospholipid processing agent of the present invention, and is not particularly limited as long as it has the PLB activity.
  • the number of amino acids deleted, substituted or added is as a lower limit. Preferably it is 1 or more, more preferably 2 or more, and the upper limit is preferably 25 or less, more preferably 20 or less, more preferably 15 or less It is more preferable that the number is 10 or less, and it is most preferable that the number is 5 or less.
  • the phospholipid strength additive does not substantially decompose only phosphatidylinositol. “Does not substantially decompose only phosphatidylinositol” has the same meaning as described above.
  • lipases There are five known amino acid sequences of lipases derived from Candida cylindrasse. Any natural lipase can be used as the phospholipid coating agent of the present invention. If an enzyme having an amino acid sequence in which one or several amino acids have been deleted, substituted or added has PLB activity, Can be used for the applications described.
  • the phospholipid processing agent in the present invention further has lipase activity. It acts on triglycerides and can be hydrolyzed into 3 molar ratios of free fatty acids and equimolar glycerin, and when applied to a mixture of phospholipids and triglycerides, it can simultaneously hydrolyze triglycerides and phospholipids. it can.
  • PLB as a phospholipid processing agent of the present invention can be easily obtained and used as a commercially available enzyme product derived from the genus Candida. It can also be manufactured.
  • the preference of microorganisms belonging to the genus Candida, for example, is the ability to include Candida cilindrasse strains, but is not limited thereto.
  • the PLB-producing strain used is a mutant strain treated with ultraviolet light or an idiopathic mutagen. Further, a recombinant gene in which the PLB gene described later is incorporated into the host in a form capable of high expression may be used.
  • the medium components and culture conditions for culturing the microorganism are not particularly limited as long as the strain produces PLB.
  • Suitable culture conditions for enzyme production are generally moderate culture temperatures under aerobic conditions in nutrient rich media. When the strain is cultured under such conditions, the cells grow well and produce enzymes.
  • the carbon source used in the medium include glucose, sucrose, fructose, ratatoose, maltose, corn starch, and potato starch.
  • the nitrogen source include bran, peptone, yeast extract, soybean flour, Examples include defatted soybean powder, casein, cottonseed powder, defatted cottonseed powder, various amino acids such as gelatin and glutamic acid, ammonium sulfate, and urea.
  • a combination of a power soybean powder and glucose, or a combination of defatted soybean powder and glucose, which can be used by appropriately combining these carbon source and nitrogen source, is mentioned as an example.
  • a salt, phosphate, or magnesium salt is exemplified as an inorganic salt such as sodium chloride, sodium phosphate, magnesium sulfate, or calcium chloride. It is preferable to use it.
  • Candida yeast is inoculated in a sterile medium containing a carbon source, nitrogen source, and inorganic salts, and cultured under aerobic conditions.
  • the culture temperature is a force that can be used in the range of 22 to 33 ° C, preferably 26 to 30 ° C, particularly preferably 27 to 28 ° C.
  • the culture time varies depending on the aeration, agitation, or culture temperature, but is 30 to 60 hours.
  • the culture supernatant may be terminated by monitoring the PLB activity of the culture supernatant and measuring the time when it reaches a steady state.
  • the microorganism used in the present invention secretes and produces the enzyme as the phospholipid processing agent of the present invention, that is, PLB, in the culture solution under the culture conditions as described above.
  • the culture supernatant as a material for producing this enzyme can be obtained by separating it from the cells.
  • PLB contained in the culture supernatant obtained by centrifugation or filtration is preferably purified by acetone precipitation, among which it can be purified by salting out precipitation with ammonium sulfate and precipitation with organic solvents such as acetone and ethanol. .
  • the enzyme may be concentrated by ultrafiltration.
  • a purified enzyme can be obtained by purification and Z or concentration to a required level by a known method such as ion exchange chromatography, gel filtration, hydrophobic chromatography, and affinity chromatography.
  • a known method such as ion exchange chromatography, gel filtration, hydrophobic chromatography, and affinity chromatography.
  • Phospholipids can be efficiently degraded, but can also be used in the crude enzyme stage depending on the purpose, and is a mixture of enzyme fractions A and B fractionated by ion exchange chromatography. Can also be used.
  • PLB as the phospholipid processing agent of the present invention is an enzyme that has been modified while being functionally equivalent
  • those skilled in the art have the amino acid sequence represented by SEQ ID NO: 1 in the sequence listing.
  • the enzyme can be obtained based on the information of the nucleotide sequence of the gene of SEQ ID NO: 3 in the sequence listing.
  • the gene recombination technique was performed according to a known method (eg, Sambrook, J .; genetic engineering experiment manuals such as “Molecular and loning—A Laboratory Manual J” and “old Spring Harbor Laboratory, NY, 1989”). It is possible to do.
  • an appropriate primer or probe is designed based on the gene sequence information of SEQ ID NO: 3 in the sequence listing, and a polymerase chain reaction (PCR) using the primer or probe and a sample derived from the target organism.
  • Method or hybridisation method to obtain the gene of interest, followed by methods commonly used to modify the gene, such as site-directed mutagenesis (Mark, DF et al., Proc. Natl. Acad. Sci. USA, 81, 5662-5666, 1984) and modified enzymes by expressing the modified genes using an appropriate expression system, for example, Saccharomyces pica as a host. Can be acquired. Whether the modified enzyme has PLB activity can be confirmed by the method shown in Example 2.
  • the phospholipid processing agent containing the modified enzyme does not substantially decompose only phosphatidylinositol in the phospholipid mixture! /.
  • the present invention provides a method for producing high-purity PI and GPC simultaneously and efficiently. Also provided is a method for efficiently and independently producing high purity PI or GPC.
  • the phospholipid processing agent of the present invention has specificity for phospholipids that selectively hydrolyzes phospholipids other than PI in a phospholipid mixture, and selectively produces high-purity PI. be able to.
  • soybean phospholipids containing PC as the main component PI can be produced by decomposing using the inventive phospholipid processing agent, and at the same time, GPC can be produced with high purity. Obtaining high-purity PI and GPC is very useful as a functional phospholipid or a functional phospholipid raw material.
  • PI can also be obtained by allowing PLC to act on phospholipids (see Patent Document 2 above), but GPC is not generated.
  • GPC produced as a reaction product according to the present invention is a material expected to prevent dementia and the like, and the present invention in which PLB is allowed to act is also advantageous in this respect.
  • PLB as the phospholipid processing agent of the present invention is extremely useful for natural phospholipid processing, and the present invention provides a method for efficiently producing high-purity PI.
  • Phospholipids are components of cell membranes and have important physiological functions. In particular, PI is deeply involved in signal transduction inside and outside the cell membrane. Sources of phospholipids for pharmaceutical use are mainly soybeans, egg yolks, and fish eggs. These phospholipids are obtained as a mixture of a plurality of molecular species such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidic acid (PA) phosphatidylinositol (PI).
  • PC phosphatidylcholine
  • PE phosphatidylethanolamine
  • PS phosphatidylserine
  • PA phosphatidic acid
  • PI phosphatidylinositol
  • the phospholipid processing agent of the present invention By allowing the phospholipid processing agent of the present invention to act on a phospholipid mixture, only PI of the phospholipid mixture remains selectively, and PI can be obtained efficiently.
  • the phospholipid mixture may be dispersed in water in advance using a homogenizer or the like, or a uniform aqueous solution can be prepared by forced stirring.
  • the phospholipid concentration may be a concentration that allows PLB to act on a phospholipid mixture dispersed in water, but it is in the range of 1 to 20%, preferably 5 to 10%, particularly preferably. It is preferably 6-8%.
  • the pH of the reaction may be any pH as long as PLB can act on the phospholipid mixture, but is preferably adjusted to pH 3 to 10 and pH 5.5 to 6.5 where the activity of PLB is maximized. Particularly preferred is pH around 6.
  • a buffer it is preferable to use a buffer to keep the reaction pH constant.
  • the type of the buffer is not particularly limited as long as it has a buffer capacity in the range of pH 5.5 to 6.5. From this point of view, the use of an acetate buffer is particularly preferred.
  • a NaOH solution can be appropriately added during the reaction to control the pH of the reaction solution within a preferable range.
  • the concentration of PLB used as the phospholipid processing agent of the present invention is a force that can be used in the range of 1000 to 100 million units per kg of phospholipid.
  • the form of PLB to be used may be a form fixed in an insoluble carrier such as celite or ion exchange resin that may be added in the form of an aqueous solution.
  • the temperature of the enzyme reaction can be used within the range where PLB is not inactivated, but the upper limit is preferably 60 ° C or lower, more preferably 45 ° C or lower, and the lower limit is 10 ° C. It is preferable that the temperature is not lower than ° C. It is more preferable that the temperature is not lower than 30 ° C.
  • the reaction time varies depending on the enzyme reaction conditions described above and is usually 1 to 150 hours. However, the reaction may be stopped by qualitatively grasping the remaining amount of the substrate.
  • TLC Silica gel thin layer chromatography
  • Free fatty acids and PI are soluble in organic solvents, and GPC and GPE are insoluble in organic solvents such as hexane and soluble in water.
  • the PI and free fatty acids recovered in the organic solvent layer are distilled off by operations such as concentration under reduced pressure. Since PI is insoluble in water-soluble or water-miscible alkyl carboxylic solvents and free fatty acids are soluble in these solvents, PI can be recovered as a precipitate.
  • the water-soluble or water-miscible alkylcarbonyl solvent include acetone, methyl ethyl ketone and the like. A preferable example is acetone.
  • PI can be recovered by centrifugation, solid-liquid separation by filtration, or misalignment.
  • the phospholipid mixture is not particularly limited. Chicken egg yolk-derived phospholipids, fish egg-derived phospholipids such as salmon roe, or soybean-derived phospholipids can be used, but chicken egg yolk-derived phospholipids or soybean-derived in terms of stable supply of raw material phospholipids Particularly preferred are phospholipids derived from soybeans, which are preferred.
  • the phospholipid processing agent of the present invention preferably has strong lipase activity in addition to PLB activity, but having lipase activity has no problem in producing soybean phospholipid and PI or groserylphosphorylcholine. .
  • Soybean phospholipids are also supplied in a mixture with triglycerides, and it is significant to have both lipase and PLB activity in that triglycerides and phospholipids can be hydrolyzed simultaneously when the mixture is used as a raw material. It is. When PLB activity is high but lipase activity is low or absent, triglyceride and phospholipid can be decomposed simultaneously by adding lipase separately.
  • the above method of the present invention provides high purity PI.
  • the purity of PI is not particularly limited as long as it is high purity, but the lower purity limit of PI in all phospholipids is preferably 50 mol% or more, more preferably 60 mol% or more. More preferably, it is 70 mol% or more. Most preferably, it is 80 mol%. Most preferably, it is 85 mol% or more.
  • High purity PI is useful as a functional phospholipid. Since PI has inositol that contains abundant hydroxyl groups in its molecule, it is better dispersed or dissolved in water or extremely soluble in other lipid components than other phospholipids such as PC or PE. However, there is an advantage that the range of application as phospholipids can be expanded.
  • Mouth Manufacture of glyceryl phosphorylcholine (GPC)
  • PLB as a phospholipid processing agent of the present invention is extremely useful for natural phospholipid processing, and the present invention provides a method for efficiently producing high-purity GPC.
  • the method for allowing the phospholipid processing agent of the present invention to act on the phospholipid mixture is the same as the method in the above-mentioned PI production method.
  • the reaction time is usually in the range of 5 to 20 hours. Since it depends on the enzyme concentration used, the reaction should be stopped when the GPC concentration in the reaction reaches a maximum.
  • GPC, GPE, GP, or free enzyme is contained in the aqueous layer remaining after extraction and removal of lipid components.
  • the aqueous solution containing the GPC, GPE, and GP is treated with activated carbon to produce the coloring component and the present invention. This is preferable in that the phospholipid processing agent can be removed.
  • a cation exchange resin may be used.
  • the phospholipid mixture used in the method for producing GPC of the present invention is not particularly limited as long as it has a high PC content.
  • Chicken egg yolk-derived phospholipids, fish egg-derived phospholipids such as salmon roe, soybean-derived phospholipids can be used, but chicken egg yolk-derived phospholipids and soybean-derived phospholipids in terms of stable supply of raw material phospholipids Particularly preferred are phospholipids derived from soybeans where lipids are preferred.
  • the above method of the present invention provides high purity GPC.
  • the purity of GPC is not particularly limited as long as it is high purity, but the lower limit is preferably 45% by weight or more, more preferably 50% by weight or more.
  • the method for producing high-purity lysophosphatidylinositol according to the present invention comprises the following steps.
  • Step 1) Hydrolysis reaction of high-purity PI with an enzyme having phospholipase A1 or phospholipase A2 activity
  • Step 2) Free fatty acid dissolves and lysophosphatidylinositol does not dissolve Free fatty acid is washed and removed with one or a mixed solvent of two or more solvents, and the reaction product free fatty acid and lysophosphatidylinositol And recovering lysophosphatidylinositol.
  • the enzyme having phospholipase A1 or phospholipase A2 activity used for the production of lysophosphatidylinositol of the present invention is not limited as long as it is an enzyme that acts on PI and converts it into lysophosphatidylinositol.
  • phospholipase A2 contained in the pancreatin an enzyme derived from porcine spleen (Novozym's lecitase or Dienecore Kyowa's Lipomod 699L), Streptomyces violosorba's phospholipase A2
  • Examples include Phospholipase A1 derived from Aspergillus oryzae (Phospholipase A1 from Sankyo Lifetech Co., Ltd.).
  • Lipase A2 (Novozyme lecitase) or Aspergillus oli Preferred is phospholipase A1 derived from sesame (phospholipase A1 manufactured by Sankyo Lifetech Co., Ltd.).
  • the enzymatic reaction in the production of lysophosphatidylinositol according to the present invention may be performed by bringing the enzyme and the substrate into contact with each other in an aqueous medium or in a wet state.
  • the pH of the reaction is not particularly limited as long as the enzyme reaction is carried out, but for example, pH 6.5 to 9.0 is shown as a preferred range.
  • the reaction temperature is not limited as long as the enzyme reaction is performed, but for example, 10 to 70 ° C is a preferable range, and 30 to 60 ° C is a more preferable range. It is done.
  • the reaction is preferred to follow the reaction, such as a decrease in PI or an increase in lysophosphatidylinositol, and the reaction can be traced using a compound such as high performance liquid chromatography or thin layer chromatography. If it stops when it is in the desired state.
  • the desired state includes, for example, a state in which the reaction has been completed, a steady state, a state in which a sufficient amount of lysophosphatidylinositol has been generated, and the like. Examples of reaction time include 1 hour to 10 days.
  • the amount of the enzyme used for the reaction may be an amount that allows the reaction to proceed sufficiently, but there is no advantage in using more than the necessary amount from the viewpoint of industrial production.
  • a preferred example when lOOOUZg enzyme is used, 0.05 to 50% by weight with respect to the substrate is a preferred example.
  • calcium ions salt calcium
  • the enzyme may be deactivated by a usual means.
  • Examples of the deactivation means include heat treatment (50 to 90 ° C. for 10 minutes to 2 hours), 11 111 to 4 or H8 to 12 for 10 minutes to 2 hours, and the like. Furthermore, after the reaction is completed or the enzyme is deactivated, the produced free fatty acid is dissolved in a fatty acid such as acetone and lysophosphatidylinositol.
  • the solution does not dissolve, it can be removed by washing with a solvent.
  • the method for producing high-purity glyceryl phosphorylinositol according to the present invention comprises the following steps.
  • Step 1) A step of hydrolyzing high purity PI with an enzyme having phospholipase B activity
  • Step 2) A step of separating free fatty acid and glyceryl phosphorylinositol, which are reaction products, and recovering glyceryl phosphorylinositol.
  • the enzyme having phospholipase B activity used for the production of glyceryl phosphorylinositol of the present invention is not limited as long as it is an enzyme that acts well on PI and converts it into glyceryl phosphorylinositol. Examples include enzymes derived from Penicillium sp.
  • the enzyme and the substrate may be contacted in an aqueous medium or in a wet state.
  • the pH of the reaction is not particularly limited as long as the enzyme reaction is carried out.
  • a preferable range is pH 3.5 to 8.0.
  • pH around 4.0 to 5.0 is particularly preferred. That's right.
  • the reaction temperature is not limited as long as the enzyme reaction is performed, but for example, 10 to 70 ° C is a preferable range, and 30 to 60 ° C is a more preferable range. It is done.
  • the reaction can be performed using a compound that is preferable to follow the reaction, such as a decrease in PI or an increase in glyceryl phosphorylinositol, such as high performance liquid chromatography or thin layer chromatography. If it stops when it reaches the state, The desired state includes, for example, a state in which the reaction has been completed, a steady state, a state in which a sufficient amount of glyceryl phosphorylinositol has been generated, and the like, and various viewpoints in industrial production may be determined.
  • the reaction time is 1 hour to 10 days.
  • the amount of the enzyme used for the reaction may be an amount that allows the reaction to proceed sufficiently, but there is no advantage in using more than the necessary amount from the viewpoint of industrial production.
  • 0.05 to 5% by weight with respect to the substrate is a preferable example.
  • calcium ions such as calcium chloride
  • the enzyme may be deactivated by a usual means. Examples of the deactivation means include heat treatment (50 to 90 ° C. for 10 minutes to 2 hours), 11 111 to 4 or 118 to 12 minutes for 10 minutes to 2 hours, and the like.
  • the free fatty acid produced is extracted and removed with a solvent such as hexane, and the aqueous layer is concentrated under reduced pressure, and then contains high-concentration glyceryl phosphoroylinosite. Even if it is stored in an aqueous solution, it can be stored in a freeze-dried powder. Even if the aqueous layer is further purified by adsorbing glyceryl phosphorylinositol directly on ion-exchanged rosin and washing it with high-concentration salt, the pH can be changed. Furthermore, if necessary, the coloring component can be adsorbed on activated carbon and decolorized.
  • the PI obtained by the method for producing PI of the present invention is a high-purity PI, which is a hydrolyzed PI using PB from Pacyllium which not only hydrolyzes PI, but PLB derived from Notatumum dioctiosrelium discoidum. Used as a raw material in the production of glyceryl phosphorilinositol be able to.
  • the GPC obtained by the GPC production method of the present invention is a high-purity choline phospholipid containing any fatty acid by chemical or enzymatic ester synthesis between this and a free fatty acid or fatty acid ester, that is, a functional phospholipid. It can be used as a raw material when manufacturing.
  • the content of PI, GPC, lysophosphatidylinositol or glyceryl phosphorylinositol in foods and pharmaceuticals is not limited in any way, but daily PI, GPC, lysophosphatidylinositol, or glyceryl phosphoryl.
  • the amount of inositol intake is 1 to 10000 mg, preferably 10 to 5000 mg, more preferably 30 to: LOOO mg.
  • the food containing PI, GPC, lysophosphatidylinositol, or glyceryl phosphorylinositol of the present invention is not limited as long as it contains these, for example, supplements containing these (scattered, Granules, soft capsules, hard capsules, tablets, chewable tablets, fast-disintegrating tablets, syrups, liquids, etc.), beverages (tea, carbonated drinks, lactic acid drinks, sports drinks, etc.), confectionery (gummy, jelly, gum, chocolate, Cookies, Kiyande etc.), oil, oil and fat foods (mayonnaise, dressing, butter, cream, margarine, etc.), ketchup, sauce, liquid food, dairy products (milk, yogurt, cheese, etc.), breads, potatoes (udon) , Buckwheat noodles, ramen, nosta, yakisoba, kishimen, soichi noodles, hiyamugi, rice noodles), soups (flavors) Juice, corn soup, consomme soup,
  • Foods containing PI, GPC, lysophosphatidylinositol, or glyceryl phosphylourinositol used in the present invention include various nutrients and various vitamins as necessary (vitamin A, vitamin Bl, vitamin B2, vitamin B6, vitamin B12, vitamin C, vitamin D, vitamin E, vitamin K, etc.), various minerals (magnesium, zinc, iron, sodium, potassium, selenium, titanium oxide, etc.), dietary fiber, various sugars (cellulose) , Dextrin, chitin, etc.), various polyunsaturated fatty acids (arachidonic acid, docosahexaenoic acid, eicosapen Taenoic acid, docosapentaenoic acid, etc.), conjugated fatty acids (conjugated linoleic acid, conjugated linolenic acid, conjugated arachidonic acid, conjugated DHA, conjugated EPA, conjugated DPA, etc.), various phosphoric acid
  • the pharmaceuticals containing PI, GPC, lysophosphatidylinositol or glyceryl phosphorylinositol of the present invention are not limited as long as they contain these.
  • the pharmaceutical dosage forms include scattered, granule, pill, soft capsule, hard capsule, tablet, chewable tablet, quick disintegrating tablet, syrup, solution, suspension, suppository, ointment, cream, gel, sticky Agents, inhalants, injections and the like. These preparations are prepared according to a conventional method. Since PI is poorly soluble in water, it can be dissolved in non-hydrophilic organic solvents such as vegetable oils and animal oils, or emulsifiers, dispersants or surfactants.
  • a homogenizer (high pressure homogenizer) may be used by dispersing and emulsifying in an aqueous solution.
  • a homogenizer high pressure homogenizer
  • additives that can be used for formulation include animal oils such as soybean oil, safflower oil, olive oil, germ oil, sunflower oil, beef tallow, sardine oil, polyethylene glycol, propylene glycol , Surfactants such as polyhydric alcohols such as glycerin and sorbitol, sorbitan fatty acid ester, sucrose fatty acid ester, glycerin fatty acid ester, polyglycerin fatty acid ester, purified water, lactose, starch, crystalline cellulose, D-man- Examples include excipients such as tall, maltose, lecithin, gum arabic, dextrin, sorbitol solution, sugar solution, sweeteners, coloring agents, pH adjusting agents, and fragrances.
  • the liquid preparation may be dissolved or suspended in water or other appropriate medium when taken. Tablets and granules may be coated by a known method.
  • Intravenous administration When administered in the form of an injection, it is administered intravenously, intraperitoneally, intramuscularly, subcutaneously, transdermally, intraarticularly, within the bursa, intravesicular, intraperiosteally, sublingually, intraorally, etc.
  • intravenous administration or intraperitoneal administration is preferred.
  • Intravenous administration may be either drip administration or porous administration.
  • Examples of the cosmetics containing PI, GPC, lysophosphatidylinositol or glyceryl phosphorylinositol according to the present invention include creams, emulsions, lotions, microemulsion essences, haptics, bathing agents, and the like. May be.
  • the obtained culture solution was centrifuged at 5000 rpm for 10 minutes to obtain 16 liters of supernatant.
  • the supernatant was concentrated by ultrafiltration. 9 liters of cold water is added to 3 liters of the resulting concentrate.
  • the precipitate formed by adding acetone is centrifuged at 5000 rpm for 10 minutes to collect the precipitate, and 10 mM Tris-HCl buffer solution (hereinafter abbreviated as Tris—HC1) containing 2 M sodium chloride (pH 7). 5) Dissolved in 2 liters. Insoluble matter was removed by centrifugation, and PLB was adsorbed through octyl sepharose (bed volume; 300 ml) packed in advance in a column.
  • the column was washed with 10 mM Tris-HCl (pH 7.5) containing 2M sodium chloride and lOmMTris-HC1 (pH 7.5).
  • the PLB adsorbed on the column was eluted with 10 mM Tris—HCl (pH 7.5) containing 2% Ade Torr SO120 (purification by hydrophobic chromatography).
  • the eluate (1 liter) was passed through a DEAE-Sepharose column (bed volume; 200 ml) pre-equilibrated with 10 mM Tris-HCl (pH 7.5) to adsorb PLB.
  • the enzyme was eluted by applying a 0 to 0.3 M sodium chloride concentration gradient.
  • PLB enzyme fraction A was obtained at about 0.1 M sodium chloride salt
  • PL B enzyme fraction B was obtained at about 0.25 M sodium chloride sodium salt (separation and purification by ion exchange chromatography).
  • the enzyme activity of PLB can be confirmed by measuring GPC produced by phosphatidylcholine using an enzymatic method.
  • 1M MES-NaOH buffer hereinafter abbreviated as MES-NaOH (pH6) 0.05ml, 3mM Triton X100 in 10mM egg yolk phosphatidinorecholine 0.05ml, 1M salt ⁇ canorecum 0.05ml, 0. 2% TODB 0. 05ml, 0.2% 4--aminoaminopyrine 0.
  • the activity for releasing 1 micromole of GPC per minute was defined as 1 unit.
  • the lipase activity was measured by converting the monoglyceride produced using diglyceride as a substrate into glycerin with monoglyceride lipase, and then measuring by enzymatic method.
  • 1M MES-Na OH (pH 6.0) 0. lml, lOmMl, 2 diglyceride dissolved in 3% lyeline X100, 0.05 ml, 0.05M salt ⁇ canorecium 0.025ml, 0.05M salt
  • the PLB active enzyme fraction A obtained in Example 1 was concentrated using a centrifugal ultrafiltration apparatus.
  • the concentrated solution was applied to a gel filtration chromatograph (Super Dettas 75) pre-equilibrated with 10 mM Tris—HCl (pH 7.5) containing 0.5 M sodium chloride and separated at a flow rate of 0.5 ml per minute. ! ⁇ active fraction was obtained.
  • Fig. 1 shows the results of PLB activity, lipase activity, and protein concentration in each fraction.
  • acetate buffer hereinafter abbreviated as Acetate
  • PIPES-NaOH buffer hereinafter abbreviated as PIPES-NaOH
  • MES-NaO H to measure the enzyme activity of enzyme fraction A at each pH, and when using MES-NaOH pH 6.0 Relative activity in each buffer for activity was determined. The results are shown in Fig. 2.
  • Bicine e-NaOH Acetate ⁇ MES—NaOH, Tris—HC1, or Bicine—NaOH buffer (hereinafter abbreviated as “Bicine e-NaOH”) 10 mM in various buffer solutions to dissolve enzyme fraction A to 5 UZml at 37 ° After standing at C for 90 minutes, PLB activity was measured based on the method of Example 2, and relative residual activity at various pHs relative to activity at acetate pH 5 was determined. The results are shown in Fig. 3.
  • the results are shown in FIG.
  • the relative residual activity of Refrigerated Enzyme Fraction A with a PLB activity of 100% was 90% or higher when treated up to 55 ° C, indicating that the enzyme is stable to heat.
  • the purified enzyme fraction A obtained by the method described in Example 1 gave a single band by SDS polyacrylamide electrophoresis.
  • the molecular weight obtained using a protein of known molecular weight as a marker was 53 kilodaltons.
  • the isoelectric point for enzyme fraction A is measured by isoelectric focusing performed by preparing a pH gradient using carrier ampholite.
  • the protein concentration was measured by absorbance at 280 nm.
  • the relationship between the isoelectric point of enzyme fraction A and the enzyme concentration is shown in FIG.
  • the pH, lipase activity, and PLB activity of the protein measured at an absorbance of 280 nm completely coincided, and the pH value (isoelectric point) was 4.21.
  • PLB, lipase, and protein showed exactly the same peak, and it became clear that PLB and lipase are the same enzyme protein.
  • the aqueous layer obtained by performing organic solvent extraction from the PLB reactant according to the method described in Example 8 includes GPC, GPE, and GP.
  • a colorless passing liquid was obtained by passing 380 ml of the aqueous layer through a column (bed volume; 50 ml) packed with activated carbon. This was concentrated under reduced pressure to obtain 40 ml of GPC solution. According to the GPC determination method shown in Example 2, the purity of GPC was 55% by weight.
  • Pecyllium-notatum force Phospholipase B was produced as follows. Medium sterilized by autoclaving 100 ml of Pecyllium 'notatum (IFO-4640) pre-cultured in a 500 ml Erlenmeyer flask (Corn steep liquor 3.5%, 5.5% lactose, 0.7% phosphate I Potassium, 0.3% magnesium sulfate, 0.5% calcium carbonate, 0.25% soybean oil, pH 5.4) transplanted to 20 liters and cultured at 26 ° C for 4 days under aerobic conditions. After completion of the cultivation, filtration was performed to obtain bacterial cells.
  • Pecyllium 'notatum IFO-4640
  • the enzyme was eluted with 10 mM phosphate buffer pH 7.0 containing 0.2 M NaCl and 2 mM EDTA. Dialyzed with 10 mM phosphate buffer (pH 7.0) containing 2 mM EDTA and then freeze-dried to obtain enzyme powder (3800 UZ g) o
  • Example 8 The PI obtained in Example 8 was added to vegetable oil so as to be 5% by weight of margarine, and then stirred together with an emulsifying agent and the like to prepare margarine by a conventional method.
  • the lg of PI obtained in Example 8 15 g of sugar, 2 g of salt and 5 g of fat milk powder were dissolved in 70 g of hot water, and 2 chicken eggs were added and mixed well. This was added to a mixture of 130g of flour and 2g of dry yeast, kneaded by hand, then kneaded with about 30g of butter, and 30 dough rolls were made. Next, after fermenting, a beaten egg was applied on the surface, and an oven-baked roll was obtained at 180 ° C. for 15 minutes.
  • Example 8 30 g of PI obtained in Example 8 was suspended in 5 times the amount of olive oil and heated to 50 ° C. to obtain an oil phase. 10 g of glycerol fatty acid ester as an emulsifier was added to 90 g of glycerin and dissolved by heating to 70 ° C. The previous oil phase was gradually added to this solution with stirring. The mixed solution was subjected to high-pressure emulsification using an emulsifier to obtain an emulsified composition. To 20 g of this emulsified composition, 180 ml of water was added and stirred to obtain a PI-containing beverage.
  • Purified water 60ml The above composition was formulated and dried by a conventional method, 10 g of magnesium stearate was added, and tableting was performed to obtain lOOmg tablets containing 20 mg of PI per tablet.
  • Example 8 The PI obtained in Example 8 was suspended in 5 times the amount of olive oil and mixed well so as to be homogeneous, and then filled in a capsule filling machine to obtain a capsule having a content of about 300 mg.
  • Example 8 The PI obtained in Example 8 was added to white petrolatum so as to be 10% by weight and stirred uniformly with a fragrance and the like to prepare a cream by a conventional method.
  • Example 10 After adding lysophosphatidylinositol obtained in Example 10 to vegetable oil so that it might become 5 weight% of margarine, it stirred uniformly with the emulsifier etc., and margarine was produced by the normal method.
  • Lg of lysophosphatidylinositol obtained in Example 10 15 g of sugar, 2 g of sodium chloride and 5 g of milk powdered milk were dissolved in 70 g of hot water, and 2 eggs were added and mixed well. This was mixed into a mixture of 130 g of flour and 2 g of dry yeast, kneaded by hand, then kneaded with about 30 g of butter, and 30 dough rolls were made. Next, after fermenting, a beaten egg was applied to the surface and baked at 180 ° C for 15 minutes in an oven to obtain a roll.
  • Example 10 To 400 g of wheat flour, 2 g of lysophosphatidylinositol obtained in Example 10 and 20 g of sodium chloride were added to 200 g of water and kneaded well to sleep. Thereafter, the dough was stretched and cut into widths of about 6 mm to produce udon.
  • Example 10 30 g of lysophosphatidylinositol obtained in Example 10 was suspended in 5 times the amount of olive oil and heated to 50 ° C. to obtain an oil phase. 10 g of glycerol fatty acid ester as an emulsifier was added to 90 g of glycerin and heated to 70 ° C. to dissolve. The previous oil phase was gradually added to this solution while stirring. The mixture was subjected to high-pressure emulsification using an emulsifier to obtain an emulsified composition. Add 180 ml of water to 20 g of this emulsified composition, stir and mix with lysophosphatidylinositol A beverage containing sucrose was obtained.
  • the lysophosphatidylinositol obtained in Example 10 was suspended in 5 times the amount of olive oil.
  • the mixture was sufficiently mixed to be homogeneous and then filled with a capsule filling machine to obtain a capsule having a content of about 300 mg.
  • Example 10 The lysophosphatidylinositol obtained in Example 10 was added to white petrolatum so as to be 10% by weight and stirred uniformly with a fragrance and the like to prepare a tailoring agent by a usual method.
  • the glyceryl phosphorylinositol obtained in Example 12 was added to vegetable oil so as to be 5% by weight of margarine, and then stirred uniformly with an emulsifier and the like, and margarine was produced by a conventional method.
  • Example 12 To 400 g of wheat flour, 2 g of glyceryl phosphoroylinositol obtained in Example 12 and 20 g of sodium chloride were added to 200 g of water and kneaded well to sleep. Thereafter, the dough was stretched and cut into widths of about 6 mm to produce udon.
  • [0071] Beverage Containing Glyceryl Phosphorylinositol 30 g of glyceryl phosphoroylinositol obtained in Implementation 12 is suspended in 5 times the amount of olive oil and heated to 50 ° C, and the oil phase is Obtained. 10 g of glycerol fatty acid ester as an emulsifier was added to 90 g of glycerin and dissolved by heating to 70 ° C. The previous oil phase was gradually added to this solution with stirring. The mixed solution was subjected to high-pressure emulsification using an emulsifier to obtain an emulsified composition. To 20 g of this emulsified composition, 180 ml of water was added and stirred to obtain a beverage containing glyceryl phosphorylinositol
  • the glyceryl phosphorylinositol obtained in Example 12 is suspended in 5 times the amount of olive oil, mixed well to be homogeneous, and then filled in a capsule filling machine to give a capsule of about 300 mg. Got.
  • Example 12 The glyceryl phosphoroylinositol obtained in Example 12 was added to white petrolatum so as to be 10% by weight and stirred uniformly with a fragrance and the like to prepare a cream agent by a usual method.
  • the phospholipid processing agent of the present invention is suitable for producing functional phospholipids using soybean-derived phospholipids as a raw material.
  • FIG. 1 shows a chromatographic pattern obtained by gel filtration chromatography of PLB as a phospholipid coating agent of the present invention based on Example 4.
  • FIG. 2 shows the optimum pH of PLB as a phospholipid processing agent of the present invention based on Example 5.
  • FIG. 3 shows the results of pH stability of PLB as a phospholipid processing agent of the present invention based on Example 5.
  • FIG. 4 shows the results of thermal stability of PLB as a phospholipid processing agent of the present invention based on Example 5.
  • FIG. 5 shows the results of isoelectric focusing of PLB as a phospholipid processing agent of the present invention based on Example 5.

Abstract

【課題】ジアシル体のリン脂質の中でホスファチジルイノシトール(PI)に対して加水分解活性の低い新規なホスフォリパーゼB(PLB)を提供する。また、本酵素の基質特異性を利用してリン脂質混合物からPI、グリセリルホスフォリルコリン(GPC)を効率的に製造する方法を提供する。 【解決手段】ホスファチジルコリン(レシチン)等のPI以外のリン脂質に良く作用し、PIに対して低いPLB活性を有する酵素を含有するリン脂質加工剤の提供。

Description

新規なリン脂質加工剤
技術分野
[0001] 本発明は、高いホスフォリパーゼ B (PLB)活性を有し、リン脂質に対して基質特異 性を有する新規なリン脂質加工剤に関する。
背景技術
[0002] ホスフォリパーゼはリン脂質を加水分解する酵素の総称であり、リン脂質 (グリセロー ルリン脂質)は、グリセロールの α位及び j8位のヒドロキシル基に脂肪酸がエステル 結合しており、他方の α位のヒドロキシル基にリン酸基を介してコリン、エタノールアミ ン、イノシトール等が結合している化合物である。
グリセロールリン脂質中のグリセロール基の α位の脂肪酸エステル結合を加水分解 する酵素をホスフオリパーゼ A1と称し、グリセロール基の |8位の脂肪酸エステル基 を加水分解する酵素をホスフオリパーゼ Α2と称し、また、ホスフォリパーゼ A1活性 及びホスフォリパーゼ Α2活性を併有する酵素をホスフオリパーゼ B (PLB)と称する。 また、リン脂質中の α位又は ι8位の脂肪酸ァシル基の内一方のみが除去されたリ ン脂質をリゾリン脂質と称し、リゾリン脂質に作用して残っている脂肪酸エステル結合 を加水分解する酵素も、分解生成物が前記 PLBの場合と同じであるため、 PLB〖こ含 められる。
他方、リン脂質のグリセロール基とリン酸基との間のエステル結合を加水分解する 酵素をホスフオリパーゼ C (PLC)と称し、リン酸基とコリンやエタノールァミン等との間 の結合を加水分解する酵素をホスフオリパーゼ D (PLD)と称する。
上記のように PLBはリゾホスフオリパーゼ活性も併せ持っており、動植物やべ-シリ ゥム属の糸状菌、大腸菌、又は酵母などにその存在が知られているが、リゾレシチン に対する活性は強い一方でジァシル体であるリン脂質に対する作用は極めて弱ぐ 通常のリン脂質を効率よく加水分解する点においては実用的でな力つた。また、これ ら公知の PLBはホスファチジルコリン、ホスファチジルエタノールァミン、ホスファチジ ルセリン、又はホスファチジルイノシトール等のリン脂質に幅広く作用することが報告 されているのみである(非特許文献 1、 2)。
ホスファチジルイノシトールは、大豆レシチンに含まれ、細胞の情報伝達と深く関与 していることが数多く報告されてきた。近年、ホスファチジルイノシトールの摂取が血 中のトリァシルグリセロール (TG)濃度を減少させ、 HDL— C (高比重リポタンパク質 コレステロール)濃度を上昇させることが報告され (非特許文献 3)、その代謝誘導体 であるリゾホスファチジルイノシトールおよびグリセリルホスフオリルイノシトールと共に その生理作用が注目されて 、る。
また、リゾホスファチジルイノシトールは抗カビ作用を持つことも報告されている(特 許文献 1)。
リン脂質に PLCあるいは PLDを作用させてホスファチジルイノシトールを酵素特異 的に得ようとする試みはなされている力 得られるホスファチジルイノシトールの純度 は低ぐより選択的なホスファチジルイノシトール製造法が望まれる(特許文献 2)。 PL Cをホスファチジルイノシトール以外のリン脂質に作用させたとき、加水分解率 30% 程度で反応が止まってしまうことは非特許文献 2にも記載されている。
特許文献 1:特開平 6 - 256366号公報
特許文献 2 :特開昭 62— 48390号公報
非特許文献 l : Biochimica Biophysica Acta (1974) 369, 245-253
非特許文献 2 : Biochimica Biophysica Acta (1975) 403, 412-424
非特許文献 3 : Biochem. J (2004) 382, 441-449
非特許文献 4 : Jim W. Burgessら、 Journal of Lipid Research (46) 350-355 発明の開示
発明が解決しょうとする課題
[0003] 本発明の課題は、高!ヽ PLB活性を有し、リン脂質に対して基質特異性を有する新 規なリン脂質カ卩工剤、及び高純度のホスファチジルイノシトール並びにグリセリルホス フオリルコリンを効率良く製造する方法を提供することにある。
課題を解決するための手段
[0004] 本発明者は鋭意検討を重ねた結果、驚くべき事にキャンディダ属由来の酵素がジ ァシル体のリン脂質に対して高い PLB活性を持つことを見出すとともに、意外にも該 酵素がリン脂質混合物である大豆リン脂質においてホスファチジルイノシトール以外 のリン脂質を選択的に加水分解するというリン脂質に対する特異性を有しており、こ の特異性を利用して高純度のホスファチジルイノシトール及びグリセリルホスフォリル コリンを効率良く製造する方法を見出し、本発明を完成するに至った。キャンディダ 属由来の酵素はリパーゼとして食品工業、医薬品原料製造用に汎用されているが、 該酵素は中性脂質に作用するいわゆるリパーゼ活性を有することが報告されている のみであり、 PLB活性を持つことは全く報告されて 、な 、。
すなわち、本発明は以下のものに関する。
< 1 > キャンディダ属由来のホスフォリパーゼ B (PLB)活性を有する酵素を含有 するリン脂質加工剤。
< 2> リン脂質混合物中ホスファチジルイノシトールのみを実質的に分解しない ホスフォリパーゼ B (PLB)活性を有する酵素を含有するリン脂質加工剤。
< 3 > ホスフォリパーゼ B (PLB)活性を有する酵素が、さらにリパーゼ活性を有 するものである、上記く 1 >又は < 2>に記載のリン脂質カ卩ェ剤。
<4> PLB活性を有する酵素が下記の物理ィ匕学的性質を有する上記 < 1 >〜 < 3 >の 、ずれかに記載のリン脂質加工剤。
1)作用:リン脂質を 2モル比の遊離脂肪酸と等モル比のグリセリルホスフオリルコリンと に加水分解する作用
2)分子量: 53, 000± 3, 000 (SDS電気泳動法による)
3)等電点: pH4. 21 ±0. 2
4)至適 pH :pH5. 5力も 6. 5付近
5) pH安定性: pH5から 9付近(37°C、 90分間処理)
6)安定性: 55°C (pH5で 10分間処理)
7)基質特異性:ホスファチジルイノシトールに対する活性比がホスファチジルコリンの 場合の 10%以下
< 5 > キャンディダ ·シリンドラッセの培養液力 得られる酵素を含有することを特 徴とするリン脂質加工剤。
< 6 > 下記工程により得られるリン脂質加工剤。 1)キャンディダ 'シリンドラッセを培養する工程
2)キャンディダ ·シリンドラッセの培養液を濃縮する工程
3)有機溶媒により酵素を沈殿させる工程
4) 3)の工程により得られる粗酵素液を疎水クロマトグラフィーで精製する工程
5) 4)の工程で得られる酵素をイオン交換クロマトグラフィーで分離精製する工程 < 7> 配列表配列番号 1のアミノ酸配列を有する酵素、配列表配列番号 1のアミ ノ酸配列との相同性が 75%以上であり PLB活性を有する酵素、あるいは配列表配 列番号 1のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しくは付加 されたアミノ酸配列力 なり PLB活性を有する酵素のいずれか一つ以上の酵素を含 有するリン脂質加工剤。
< 8 > 配列表配列番号 2のアミノ酸配列を有する酵素、配列表配列番号 2のアミ ノ酸配列との相同性が 75%以上であり PLB活性を有する酵素、あるいは配列表配 列番号 2のアミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しくは付加 されたアミノ酸配列力 なり PLB活性を有する酵素のいずれか一つ以上の酵素を含 有するリン脂質加工剤。
< 9 > リン脂質混合物に上記く 1 >〜< 8 >の 、ずれかに記載のリン脂質加工 剤を作用させることを特徴とするホスファチジルイノシトール及びグリセリルホスフオリ ルコリンの製造方法。
< 10> リン脂質混合物に上記く 1 >〜< 8 >のいずれかに記載のリン脂質カロ 工剤を作用させることを特徴とするホスファチジルイノシトールの製造方法。
< 11 > 下記の 1)〜3)の工程を含むホスファチジルイノシトールの製造方法。
1)リン脂質混合物に請求項 1〜8のいずれか〖こ記載のリン脂質加工剤を作用させる 工程
2)有機溶媒を用いてホスファチジルイノシトールを抽出する工程
3)水溶性又は水混和性アルキルカルボニルアルキル溶媒処理により、ホスファチジ ルイノシトールを沈殿回収する工程
< 12> リン脂質混合物が大豆由来である上記 < 9 >〜< 11 >のいずれかに記 載のホスファチジルイノシトールの製造方法。 < 13 > 上記 < 10>〜< 12 >のいずれかに記載の製造方法によって得られる 、全リン脂質中の純度が 50モル0 /0以上であるホスファチジルイノシトール。
< 14> リン脂質混合物に上記く 1 >〜< 8 >のいずれかに記載のリン脂質カロ 工剤を作用させることを特徴とするグリセリルホスフオリルコリンの製造方法。
< 15 > 下記の 1)〜3)の工程を含むグリセリルホスフオリルコリンの製造方法。
1)リン脂質混合物に請求項 1〜8のいずれか〖こ記載のリン脂質加工剤を作用させる 工程
2)有機溶媒を含有する溶媒で脂質成分を抽出除去し、水層にグリセリルホスフォリル コリンを回収する工程
3)活性炭に 1)の工程で作用させたリン脂質加工剤を吸着させて除去する工程
< 16 > リン脂質混合物が大豆由来である上記く 9 >、く 14>又はく 15 >に記 載のグリセリルホスフオリルコリンの製造方法。
< 17> 上記 < 14>〜< 16 >のいずれかに記載の製造方法によって得られる 、純度が 55重量%以上であるグリセリルホスフオリルコリン。
< 18 > 高純度なグリセ口ホスフォイノシトールを製造するための、上記く 13 >に 記載のホスファチジルイノシトールの使用。
< 19 > 高純度なコリンリン脂質を製造するための、上記く 17>に記載のグリセ リルホスフオリルコリンの使用。
< 20> 上記く 10>〜く 12>のいずれかに記載の製造法により製造されたホ スファチジルイノシトールを含有する食品、医薬品又は化粧料。
< 21 > 上記く 14>〜く 16 >のいずれかに記載の製造法により製造されたダリ セリルホスフオリルコリンを含有する食品、医薬品又は化粧料。
< 22> 上記く 10>〜く 12>のいずれかに記載の製造法により製造されたホ スファチジルイノシトールにホスフォリパーゼ A1又はホスフォリパーゼ A2活性を有す る酵素を作用させて得られるリゾホスファチジルイノシトール。
< 23 > 上記く 10>〜く 12>のいずれかに記載の製造法により製造されたホ スファチジルイノシトールにホスフォリパーゼ A1又はホスフォリパーゼ A2活性を有す る酵素を作用させるリゾホスファチジルイノシトールの製造方法。 < 24> 上記く 23 >に記載の製造方法によって製造されたリゾホスファチジルイ ノシトールを含有する食品、医薬品又は化粧料。
< 25 > 上記く 10>〜く 12>のいずれかに記載の製造法により製造されたホ スファチジルイノシトールにホスファチジルイノシトールによく作用するホスフオリパー ゼ B活性を有する酵素を作用させて得られるグリセリルホスフオリルイノシトール。
< 26 > 上記く 10>〜く 12>のいずれかに記載の製造法により製造されたホ スファチジルイノシトールにホスファチジルイノシトールによく作用するホスフオリパー ゼ B活性を有する酵素を作用させるグリセリルホスフオリルイノシトールの製造方法。
< 27> 上記く 26 >に記載の製造方法によって製造されたグリセリルホスフオリ ルイノシトールを含有する食品、医薬品又は化粧料。
(28 > 上記 < 10 >〜 < 12 >の 、ずれかに記載の製造方法によって製造された ホスファチジルイノシトール、上記く 14>〜< 16 >のいずれかに記載の製造法によ り製造されたグリセリルホスフオリルコリン、上記く 23 >に記載の製造方法によって製 造されたリゾホスファチジルイノシトール、及び上記く 26 >に記載の製造方法によつ て製造されたグリセリルホスフオリルイノシトール力 なる群力 選択される 2種以上を 含有する食品、医薬品又は化粧料。
発明の効果
[0005] 本発明のリン脂質加工剤を用いることにより、機能性リン脂質又は機能性リン脂質 原料として有用な高純度のホスファチジルイノシトール、リゾホスファチジルイノシトー ル、グリセリルホスフオリルコリン、及びグリセリルホスフオリルイノシトール等を効率良く 製造することができる。
発明を実施するための最良の形態
[0006] 以下、本発明の構成及び好ましい形態について更に詳しく説明する。
1. リン脂質カ卩工剤としてのホスフォリパーゼ B (PLB)
本明細書において、 PLBとはリン脂質の α位及び β位の脂肪酸エステルを加水分 解、脂肪酸エステル合成、又は脂肪酸エステル交換を行う酵素を意味する。また、リ ゾリン脂質に作用し、残っている脂肪酸エステル結合を加水分解する酵素も本発明 の PLB〖こ含まれる。また、リン脂質加工とはリン脂質の加水分解、脂肪酸エステル合 成、又は脂肪酸エステル交換等の反応を意味し、好ましくは加水分解又は脂肪酸ェ ステル合成を意味し、より好ましくは加水分解を意味する。また、脂肪酸エステル合 成を意味するより好ましい別の態様もある。なお、本発明の加工剤には、 PLB単独か らなる場合の他、酵素の安定化剤として例えば糖類、また pH緩衝液などを添加した ものも含まれる。また、リン脂質加工剤は、乾燥粉末や液体などの通常の酵素と同じ ように提供される。
本発明により、リン脂質混合物中のホスファチジルイノシトールのみを実質的に分 解しな ヽことを特徴とする、 PLB活性を有するリン脂質加工剤が提供される。
「ホスファチジルイノシトールのみを実質的に分解しない」とは、本発明のリン脂質加 工剤において、基質であるリン脂質混合物中に含まれるホスファチジルイノシトール のホスファチジルコリンに対する活性比 (相対活性)力 上限として 10%以下であるこ とを意味し好ましくは 7%以下であることを意味し、さらに好ましくは 5%以下であること を意味し、特に好ましくは 3%以下であることを意味し、最も好ましくは 1%以下である ことを意味し、下限として 0. 01%以上であることを意味し、より好ましくは 0. 1%以上 を意味する。さらにホスファチジルイノシトールとホスファチジルコリン以外のリン脂質 、例えばホスファチジルエタノールァミン、ホスファチジルセリン、又はホスファチジン 酸 (PA)等の、ホスファチジルコリンに対する活性比 (相対活性)が、下限として 15% 以上であることを意味し、好ましくは 20%以上であることを意味し、さらに好ましくは 2 5%以上であることを意味し、特に好ましくは 30%以上であることを意味し、最も好ま しくは 40%以上であることを意味し、上限として 200%以下であることを意味し、好ま しくは 150%以下であることを意味し、さらに好ましくは 100%以下であることを意味 する。
また、本発明のリン脂質加工剤としての PLBは以下の諸性質を有することが好まし い。
1)作用:レシチン等のリン脂質から 2モル比の遊離脂肪酸と等モル比のグリセリルホ スフオリルコリンとに加水分解する作用とトリグリセリドに作用し 3モル比の遊離脂肪酸 と等モルのグリセリンとに加水分解する作用
2)分子量: 53, 000± 3, 000 (SDS電気泳動法による) 3)等電点電気泳動法による等電点: pH4. 21 ±0. 2
4)最適反応 pH :pH5. 5から 6. 5付近
5) pH安定性: pH5から 9付近(37°C、 90分間処理)
6)熱安定性: 55°C (pH5で 10分間処理)
7)基質特異性:ホスファチジルイノシトールに対する活性比がホスファチジルコリンの 場合の 10%以下
[0008] 本発明のリン脂質加工剤としての PLBは、上記の特性を有する限り特にその起源 ( 由来)は限定されない。由来が天然物である場合、好ましくは微生物由来であり、より 好ましくはキャンディダ属由来であり、さらに好ましくはキャンディダ ·シリンドラッセ由 来である。また、本発明のリン脂質加工剤としての PLBは上記のような天然物由来の 酵素に基づ 1ヽて遺伝的に改変された酵素であってもよぐ遺伝子組換え技術によつ て生産された PLBも本発明のリン脂質加工剤としての PLBに含まれ、上記の特性を 有していることが好ましい。
[0009] また、配列表配列番号 1又は 2で表されるアミノ酸配列を有する酵素それ自体、ある いは配列表配列番号 1又は 2で表されるアミノ酸配列との相同性が 75%以上である アミノ酸配列を有し、 PLB活性を有する酵素も本発明のリン脂質加工剤としての PLB に含まれ、該 PLB活性を有していれば特に限定されないが、配列番号 1で表される アミノ酸配列との相同性が 80%以上であることが好ましぐ 85%以上であることがより 好ましぐ 90%以上であることがさらに好ましく 95%以上であることが特に好ましぐ 9 8%以上であることが最も好ましい。また、該リン脂質力卩工剤はホスファチジルイノシト ールのみを実質的に分解しな 、ことが好まし 、。「ホスファチジルイノシトールのみを 実質的に分解しない」とは前記と同義である。
[0010] 本発明における「相同性」とはアミノ酸配列、 DNAレベルにおける相同性を意味し 、これは既知の方法、例えばコンピュータを用いた配列比較で決定することができる 。解析ソフトとしては GENETEX WIN 5.2 (ソフトウェア株式会社製)を使用した。相同 性決定に用いられるコンピュータープログラムには、 GAP(Devereux,J.ら、 Nucleic Aci ds Research 12 (12):387 (1984))を含む GCGプログラムパッケージ、 BLASTパッケ ージ(NCBI,又は Altschul,S.F.ら、 J.Mol.Biol., 215:403- 410(1990))、又はスミス—ゥ オーターマン(Smith-Waterman)アルゴリズムが例示されるが、これらに限定されな!ヽ
[0011] さらに、配列表配列番号 1又は 2で表されるアミノ酸配列の 1若しくは数個のアミノ酸 が欠失、置換若しくは付加されたアミノ酸配列を有し、 PLB活性を有する機能的に等 価のまま改変された酵素も本発明のリン脂質加工剤としての PLBに含まれ、該 PLB 活性を有していれば特に限定されないが、欠失、置換若しくは付加されたアミノ酸の 個数は、下限としては 1個以上であることが好ましぐ 2個以上であることがより好ましく 、上限としては 25個以下であることが好ましぐ 20個以下であることがより好ましぐ 1 5個以下であることがさらに好ましぐ 10個以下であることが特に好ましぐ 5個以下で あることが最も好ましい。また、該リン脂質力卩工剤はホスファチジルイノシトールのみを 実質的に分解しな 、ことが好まし 、。「ホスファチジルイノシトールのみを実質的に分 解しない」とは前記と同義である。
[0012] キャンディダ'シリンドラッセ由来のリパーゼのアミノ酸配列は 5種類について公知で ある。いずれの天然のリパーゼも本発明のリン脂質カ卩工剤として使用できる力 一つ 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列の酵素であって も PLB活性があれば以下に記載する用途に使用することができる。
また、本発明におけるリン脂質加工剤はリパーゼ活性をさらに有していることが好ま しい。トリグリセリドに作用し、 3モル比の遊離脂肪酸と等モルのグリセリンとに加水分 解することができ、リン脂質とトリグリセリドとの混合物に適用すれば、トリグリセリドとリ ン脂質を同時に加水分解することができる。
[0013] 2. PLBの製造法
本発明のリン脂質加工剤としての PLBは、市販のキャンディダ属由来の酵素製品と しても簡単に入手でき利用することができるが、キャンディダ属の微生物を培養しそ の培養物力も酵素を製造することもできる。キャンディダ属の微生物の好ま 、例とし てはキャンディダ'シリンドラッセ株が挙げられる力 これに限定されることはない。使 用する PLB生産菌株は紫外線やィ匕学的変異剤で処理した変異株でも 、 、。更に後 述する PLB遺伝子を高発現可能な形で宿主に組み込んだ遺伝子組換え体を使用し てもよい。 微生物の培養のための培地成分及び培養条件は、菌株が PLBを生産するようなも のであれば特に限定されない。酵素の生産に適した培養条件は、一般的には、栄養 豊富な培地中で、好気的条件下、中程度の培養温度である。このような条件で菌株 を培養すると菌体の良好な生育および酵素の産生がみられる。具体的には培地に用 いる炭素源としては、例えばグルコース、蔗糖、フルクトース、ラタトース、マルトース、 コーンスターチ、又はジャガイモ澱粉が挙げられ、窒素源としては、例えばフスマ、ぺ プトン、酵母エキス、大豆粉、脱脂大豆粉、カゼイン、綿実粉、脱脂綿実粉、ゼラチン 、グルタミン酸等の各種アミノ酸類、硫安、又は尿素等が挙げられる。これら炭素源及 び窒素源を適宜組み合わせて使用することができる力 大豆粉及びグルコースの組 み合わせ、又は脱脂大豆粉及びグルコースの組み合わせが好ま 、例として挙げら れる。上記の炭素源及び窒素源の他に培地に使用するものとして、食塩、燐酸ナトリ ゥム、硫酸マグネシウム、又は塩ィ匕カルシウム等の無機塩類が例示される力 食塩、 燐酸塩、又はマグネシウム塩を使用することが好ましい。炭素源、窒素源、及び無機 塩類を含有した無菌培地にキャンディダ属の酵母を植菌し、好気的条件下で培養を 行う。培養温度は 22〜33°Cの範囲で使用できる力 好ましくは 26〜30°C、特に好ま しくは 27〜28°Cである。培養時間は通気、攪拌、又は培養温度によって異なるが 30 〜60時間である。培養上清の PLB活性をモニタリングし定常に達した時期を見計ら つて培養を終了させればよい。
本発明において用いる微生物は、上記のような培養条件下で培養液中に本発明の リン脂質加工剤としての酵素、すなわち PLBを分泌生産する。本酵素を製造するた めの材料としての培養液上清は、菌体と分離することによって得ることができる。遠心 分離や濾過操作により得られた培養液上清に含有される PLBは、硫酸アンモ-ゥム による塩析沈殿、アセトンやエタノール等の有機溶媒による沈殿によって精製できる 力 中でもアセトン沈殿による精製が好ましい。これらの沈殿操作に先立ち限外濾過 による酵素の濃縮を行ってもょ 、。更に必要に応じてイオン交換クロマトグラフィーや ゲル濾過、疎水クロマトグラフィー、ァフィユティークロマトグラフィー等公知の手法で 必要な程度にまで精製及び Z又は濃縮することによって精製酵素を得ることができる 。本発明で用いるリン脂質加工剤に含まれる酵素の精製の度合いは、高ければそれ だけ効率よくリン脂質を分解することができるが、目的に応じて粗酵素の段階でも用 いることができ、イオン交換クロマトグラフィーによって分画される酵素画分 Aと Bの混 合物であっても用いることができる。
[0015] 本発明のリン脂質加工剤としての PLBが、機能的に等価のまま改変された酵素で ある場合については、当業者であれば配列表配列番号 1で表されるアミノ酸配列を 有する酵素をコードする配列表配列番号 3の遺伝子の塩基配列の情報を基にして該 酵素を取得することができる。なお、遺伝子組換え技術については、公知の方法 (例 ば、 Sambrook, j.り;「Molecularし loning— A Laboratory ManualJ , し old Spring Harb or Laboratory, NY, 1989等の遺伝子操作実験マニュアル)に従って実施することが 可能である。
[0016] 例えば、配列表配列番号 3の遺伝子配列の情報を基にして適当なプライマー又は プローブを設計し、前記プライマー又はプローブと、目的とする生物由来の試料とを 用いてポリメラーゼ連鎖反応 (PCR)法又はハイブリダ一ゼーシヨン法を実施すること により目的の遺伝子を取得し、続いて遺伝子を改変するために通常用いられる方法 、例えば部位特異的突然変異誘発法(Mark, D. F.ら、 Proc. Natl. Acad. Sci. USA, 81, 5662-5666, 1984)により遺伝子を改変し、その改変された遺伝子を適当な発現 系、例えばサッカロマイセスゃピシァを宿主として用いて発現させることにより改変さ れた酵素を取得することができる。該改変された酵素が PLB活性を有する力否かは 実施例 2に示す方法で確認することができる。また該改変酵素を含有するリン脂質加 工剤は、リン脂質混合物中において、ホスファチジルイノシトールのみを実質的に分 解しな 、ことが好まし!/、。さらにはリパーゼ活性を持つことが好まし!/、。
[0017] 3.ホスファチジルイノシトール(PI)及び Z又はグリセリルホスフオリルコリン(GPC)の 製造方法
本発明により、高純度の PI及び GPCを同時に、かつ効率的に製造する方法が提 供される。また、高純度の PI又は GPCを別個独立に、効率的に製造する方法も提供 される。本発明のリン脂質加工剤は、リン脂質混合物において PI以外のリン脂質を選 択的に加水分解する、というリン脂質に対する特異性を有しており、高純度の PIを選 択的に製造することができる。また、 PCを主成分として含有する大豆リン脂質を、本 発明のリン脂質加工剤を用いて分解することにより PIを製造することができると同時 に、 GPCを高純度で製造することができる。高純度の PI及び GPCを取得することは 機能性リン脂質又は機能性リン脂質原料として非常に有用である。
なお、リン脂質に PLCを作用させることによつても PIを得ることはできるが(前記の特 許文献 2参照)、 GPCは生成されない。本発明により反応生成物として生じる GPCは 、認知症予防等が期待される素材であり、 PLBを作用させる本発明はこの点におい ても有利である。
[0018] 以下にそれぞれの製造方法を具体的に説明する。
ィ)ホスファチジルイノシトール(PI)の製造法
本発明のリン脂質加工剤としての PLBは天然型リン脂質加工の用途に極めて有用 であり、本発明により、高純度の PIを効率的に製造する方法が提供される。リン脂質 は細胞膜の構成成分であり重要な生理機能を担って 、る。特に PIは細胞膜中の細 胞内外のシグナル伝達に深く関っている。医薬'食品用途でのリン脂質の給源は主 に大豆、鶏卵卵黄、魚卵等である。これらのリン脂質はホスファチジルコリン (PC)、ホ スファチジルエタノールァミン(PE)、ホスファチジルセリン(PS)、ホスファチジン酸(P A)ホスファチジルイノシトール (PI)等複数の分子種の混合物として得られる。これら のリン脂質混合物から PIを分離するには有機溶媒分画、シリカゲル、アルミナ等の担 体でのクロマトによる分離などが汎用される。比較的含量の多い PCや PEはこれらの 方法でも効率良く取得できるが含量の少ない PIなどのリン脂質成分を取得するには 極めて効率が悪 、。またクロ口ホルムのようなハロゲン系の有機溶媒を大量に使用す る必要があり製品の用途が限定される。 PC、 PE、 PS、 PA、 PI等を含有するリン脂質 力 PIを効率よく製造するためには PI以外の PC、 PE、 PA、 PS等のリン脂質を選択 的に加水分解し PIを残存させればょ ヽ。
[0019] 本発明のリン脂質加工剤をリン脂質混合物に作用させることにより、リン脂質混合物 のうち PIのみを選択的に残存させ、効率良く PIを取得することができる。リン脂質混 合物は予めホモゲナイザー等を使用して水に分散させてもいいし強制的な攪拌によ つて均一な水溶液を調製できる。リン脂質濃度は水に分散したリン脂質混合物に PL Bが作用しうる濃度であれば良いが、 1〜20%の範囲、好ましくは 5〜10%、特に好 ましくは 6〜8%である。反応の pHは PLBがリン脂質混合物に作用しうる pHであれば 良いが、 pH3〜10、 PLBの活性が最大になる pH5. 5〜6. 5付近に調整することが 好ましい。特に好ましくは pH6付近である。
反応の pHを一定に保っために緩衝液を使用することが好ましぐ pH5. 5〜6. 5の 範囲で緩衝能を有する緩衝液であればその種類は特に限定されな ヽが、食品用途 の観点からは酢酸緩衝液の使用が特に好ましい。また、反応中に NaOH溶液を適宜 添カロして反応液の pHを好ましい範囲にコントロールすることもできる。
本発明のリン脂質加工剤としての PLBの使用濃度は、リン脂質 lkgあたり 1000〜1 00000000単位の範囲で使用すること力 Sできる力 S2000〜5000000位の範囲力 S好 ましい。
使用する PLBの形態は水溶液の形で添加してもよぐセライト又はイオン交換榭脂 等の不溶性担体に固定化された形態でもよい。
酵素反応の温度は PLBが失活しない範囲で使用することができるが、上限としては 60°C以下であることが好ましぐ 45°C以下であることがより好ましぐまた下限としては 10°C以上であることが好ましぐ 30°C以上であることがより好ましい。
反応時間は上記の酵素反応条件によって異なり、通常 1〜150時間であるが、基 質の残存量を定性的に把握して反応を止めればよい。
反応終了後、熱処理、 pH処理などにより PLBを失活させても何ら問題は無い。 加水分解反応の状態を確認するにはシリカゲル薄層クロマト (TLC)法が最も簡便 である。 TLCを用い、ヨウ素発色して基質の残存量を定性的に確認する場合、 PI以 外のリン脂質を示すスポットが TLC上でほぼ確認できなくなった時点で反応を止める のが好ましい。
反応後の生成物中には遊離の脂肪酸、グリセリルホスフオリルコリン (GPC)、グリセ リルホスフォリルエタノールァミン(GPE)、グリセ口リン酸(GP)と反応せずに残った PI が混合して存在している。該混合物から PIを回収するにはクロ口ホルム、エタノール、 メタノール、又はへキサン等の有機溶媒を使用することができるが、食品用途の観点 力もはエタノール又はへキサン、あるいはこれらの混合溶媒の使用が特に好ましい。 また、抽出工程での液液分離をよくする目的で抽出前に反応の pHを変化させること ちでさる。
遊離脂肪酸と PIは有機溶媒に可溶であり GPC、 GPEなどはへキサン等の有機溶 媒に不溶であり水に可溶性である。有機溶媒層に回収された PIと遊離脂肪酸は減圧 濃縮等の操作により溶媒を留去する。 PIは水溶性又は水混和性アルキルカルボ- ル溶剤に不溶性であり、遊離脂肪酸はこれらの溶剤に可溶性であるので、 PIは沈殿 物として回収することができる。水溶性又は水混和性アルキルカルボニル溶剤として は、アセトン又はメチルェチルケトン等が例示される力 アセトンが好ましい例として挙 げられる。 PIの回収は遠心分離法でも濾過法の固液分離操作 、ずれの方法をとつ てもよい。
[0021] リン脂質混合物は特に限定されない。鶏卵卵黄由来のリン脂質、イクラ等の魚卵由 来リン脂質、又は大豆由来のリン脂質等を使用することができるが、原料リン脂質の 安定供給の面で鶏卵卵黄由来のリン脂質又は大豆由来のリン脂質が好ましぐ大豆 由来のリン脂質が特に好ましい。本発明のリン脂質加工剤は PLB活性の他に強いリ パーゼ活性を有することが好ましいが、リパーゼ活性を有することは大豆リン脂質力も PIやグロセリルホスフオリルコリンを製造する上では全く問題はない。大豆リン脂質は トリグリセリドとの混合物でも供給されており、該混合物を原料とした場合に、トリグリセ リドとリン脂質を同時に加水分解することができる点で、リパーゼと PLB活性を併せ持 つことは有意である。なお、 PLB活性は高いが、リパーゼ活性が低い、あるいは有さ ない場合には、別途リパーゼを添加することでトリグリセリドとリン脂質を同時に分解す ることがでさる。
[0022] 本発明の上記方法により、高純度の PIが提供される。 PIの純度は高純度であれば 特に限定されないが、全リン脂質中の PIの純度力 下限としては 50モル%以上であ ることが好ましぐ 60モル%以上であることがより好ましぐ 70モル%以上であることが さらに好ましぐ 80モル%であることが特に好ましぐ 85モル%以上であることが最も 好ましい。 高純度の PIは機能性リン脂質として有用である。 PIは分子中に水酸基を 豊富に含むイノシトールを有するため、 PC又は PE等の他のリン脂質と比較して水へ の分散又は溶解が良好であったり、他の脂質成分の溶解性等が極端に異なりリン脂 質としての応用範囲が広げられるという利点が考えられる。 [0023] 口)グリセリルホスフオリルコリン(GPC)の製造
本発明のリン脂質加工剤としての PLBは天然型リン脂質加工の用途に極めて有用 であり、本発明により、高純度の GPCを効率的に製造する方法が提供される。
リン脂質混合物に本発明のリン脂質加工剤を作用させる方法は、上記 PIの製造方 法における方法と同様である。反応の時間は、通常 5〜20時間の範囲で行えばいい 力 使用する酵素濃度にもよるため反応物中の GPC濃度が最大になった時に反応 を止めればよい。
リン脂質混合物に本発明のリン脂質加工剤を作用させることにより得られた PLBの 反応液に、クロ口ホルム、エタノール、メタノール、又はへキサン等上記と同様の有機 溶媒を添加し、遊離脂肪酸を含む脂質成分を抽出除去して残った水層には、 GPC、 GPE、 GP、又は遊離の酵素が含有される。これら GPC、 GPE、 GPを含む水溶液を 直接減圧濃縮しシロップ状の溶液を得ることができる力 濃縮に先立ち、該 GPC、 G PE、 GPを含む水溶液を活性炭処理することは、着色成分や本発明のリン脂質加工 剤を除去することができる点で好ましい。更に高純度の GPCを得るには陽イオン交 換榭脂等を使用してもよい。
[0024] 本発明の GPCの製造方法において用いるリン脂質混合物は、 PC含量が多いもの であれば特に限定されない。鶏卵卵黄由来のリン脂質、イクラ等の魚卵由来リン脂質 、大豆由来のリン脂質等を使用することができるが原料リン脂質の安定供給の面で鶏 卵卵黄由来のリン脂質や大豆由来のリン脂質が好ましぐ特に大豆由来のリン脂質 が特に好ましい。本発明の上記方法により、高純度の GPCが提供される。 GPCの純 度は高純度であれば特に限定されないが、下限としては 45重量%以上であることが 好ましぐ 50重量%以上であることがより好ましい。
[0025] 4.リゾホスファチジルイノシトールの製造法
次にリゾホスファチジルイノシトールの製造方法について説明する。
本発明の、高純度のリゾホスファチジルイノシトールの製造方法は、次の工程からな る。
工程 1)高純度の PIをホスフオリパーゼ A1又はホスフォリパーゼ A2活性を有する酵 素によって加水分解反応する工程、 工程 2)遊離の脂肪酸が溶解し、且つ、リゾホスファチジルイノシトールが溶解しない 溶媒の 1種又は 2種以上の混合溶媒で遊離の脂肪酸を洗浄除去し、反応生成物で ある遊離の脂肪酸とリゾホスファチジルイノシトールを分離しリゾホスファチジルイノシ トールを回収する工程。
以下に詳細に説明する。
[0026] 本発明のリゾホスファチジルイノシトール製造に用いるホスフォリパーゼ A1又はホス フォリパーゼ A2活性を有する酵素としては、 PIに作用してリゾホスファチジルイノシト ールに変換する酵素であれば何ら限定されるものではなぐ例えば豚脾臓由来の酵 素剤パンクレアチンに含まれるホスフォリパーゼ A2 (ノボザィム社製のレシターゼ又 はジエネンコア協和社製のリポモッド 699L)、ストレプトマイセス 'ビオラセォルバ一由 来のホスフォリパーゼ A2 (ジエネンコア協和社製のリゾマックス PF)、ァスペルギルス 'ォリゼ由来のホスフォリパーゼ A1 (三共ライフテック社製のホスフォリパーゼ A1)な どが挙げられ、豚脾臓由来の酵素剤パンクレアチンに含まれるホスフォリパーゼ A2 ( ノボザィム社製のレシターゼ)又はァスペルギルス ·ォリゼ由来のホスフォリパーゼ A1 (三共ライフテック社製のホスフォリパーゼ A1)が好まし 、例として挙げられる。
[0027] 本発明のリゾホスファチジルイノシトール製造における酵素反応は、酵素と基質を 水性媒体中または湿潤状態で接触させればょ 、。反応の pHは酵素反応が行われる 範囲であれば何ら限定されることはないが、例えば pH6. 5〜9. 0が好ましい範囲と して ί列示でさる。
反応温度は酵素反応が行われる範囲であれば何ら限定されることはな 、が、例え ば 10〜70°Cが好適な範囲として挙げられ、 30〜60°Cがさらに好適な範囲として挙 げられる。
反応は、 PIの減少やリゾホスファチジルイノシトールの増加など、反応を追跡するの に好まし 、ィ匕合物を、例えば高速液体クロマトグラフィーや薄層クロマトグラフィー等 の分析を用いて反応を追跡して所望の状態となった時点で停止すればょ 、。所望の 状態としては、例えば、反応が終了した状態、定常状態、或いは十分量のリゾホスフ ァチジルイノシトールが生成した状態等が挙げられる力 工業生産上の様々な観点 力も決定すればよい。 反応時間を例示すれば、例えば 1時間から 10日間が挙げられる。
反応に使用する酵素量は反応が十分に進行する量であればよいが、工業生産上 の観点からは必要量以上に用いることは利点がない。一例として lOOOUZgの酵素 を用いる場合、基質に対して 0. 05〜50重量%が好適な例として挙げられる。また、 酵素の安定化剤としてカルシウムイオン (塩ィ匕カルシウム)などを添加しても良 、。ま た、酵素反応が終了した後、通常の手段で酵素を失活させても良い。
失活手段としては加熱処理(50〜90°Cで 10分間〜 2時間)、 11 111〜4または H8〜12で 10分間〜 2時間)処理などが挙げられる。更に、反応終了後、又は酵素 を失活させた後、生成した遊離脂肪酸を、アセトンなどの脂肪酸が溶解し、且つ、リゾ ホスファチジルイノシト
ールが溶解しな 、溶媒で洗浄することにより除去してもよ 、。
[0028] 5.グリセリルホスフオリルイノシトールの製造方法
次にグリセリルホスフオリルイノシトールの製造方法について述べる。
本発明の、高純度のグリセリルホスフオリルイノシトールの製造方法は、次の工程か らなる。
工程 1)高純度の PIを、ホスフォリパーゼ B活性を有する酵素によって加水分解反応 する工程、
工程 2)反応生成物である遊離の脂肪酸とグリセリルホスフオリルイノシトールを分離し グリセリルホスフオリルイノシトールを回収する工程。
以下に詳細に説明する。
[0029] 本発明のグリセリルホスフオリルイノシトール製造に用いるホスフォリパーゼ B活性を 有する酵素としては、 PIによく作用してグリセリルホスフオリルイノシトールに変換する 酵素であれば何ら限定されるものではなぐ例えばぺニシリウム属ゃ酵母由来の酵素 などが挙げられる。
本発明における酵素反応は、酵素と基質を水性媒体中または湿潤状態で接触させ ればよ 、。反応の pHは酵素反応が行われる範囲であれば何ら限定されることはな ヽ 力 例えば pH3. 5〜8. 0が好ましい範囲として例示できる。ぺ-シリウム 'ノタツム由 来ホスフオリパーゼ Bを酵素として使用する場合には pH4. 0〜5. 0付近が特に好ま しい。
反応温度は酵素反応が行われる範囲であれば何ら限定されることはな 、が、例え ば 10〜70°Cが好適な範囲として挙げられ、 30〜60°Cがさらに好適な範囲として挙 げられる。
反応は、 PIの減少ゃグリセリルホスフオリルイノシトールの増加など、反応を追跡す るのに好ましい化合物を、例えば高速液体クロマトグラフィーや薄層クロマトグラフィ 一等の分析を用いて反応を追跡して所望の状態となった時点で停止すればょ 、。所 望の状態としては、例えば、反応が終了した状態、定常状態、或いは十分量のグリセ リルホスフオリルイノシトールが生成した状態等が挙げられる力 工業生産上の様々 な観点力も決定すればよい。反応時間を例示すれば、例えば 1時間から 10日間が挙 げられる。
反応に使用する酵素量は反応が十分に進行する量であればよいが、工業生産上 の観点からは必要量以上に用いることは利点がない。一例として 3800UZgの酵素 を用いる場合、基質に対して 0. 05〜5重量%が好適な例として挙げられる。また、酵 素の安定化剤としてカルシウムイオン (塩ィ匕カルシウムなど)を添加しても良 、。また、 酵素反応が終了した後、通常の手段で酵素を失活させても良い。失活手段としては 加熱処理(50〜90°Cで 10分間〜 2時間)、 11 111〜4または 118〜12で10分間 〜2時間)処理などが挙げられる。
更に、反応終了後、又は酵素を失活させた後、生成した遊離脂肪酸を、へキサンな どの溶媒で抽出除去し水層を減圧濃縮した後高濃度のグリセリルホスフオリルイノシト ールを含有する水溶液で保存しても ヽし、凍結乾燥粉末にして保存しても 、。 水層を直接イオン交換榭脂などにグリセリルホスフオリルイノシトールを吸着させ洗浄 後高濃度の塩ある 、は pH変動させることにより更に精製を行っても 、 、。更に必要 に応じて着色成分を活性炭に吸着させ脱色操作を行っても ヽ。
6.高純度 PI及び高純度 GPCの使用
本発明の PIの製造方法により得られる PIは、 PIを良好に加水分解するぺ-シリウム •ノタツムゃジクティオスレリウム ·ディスコイデゥム由来の PLBを用 V、て加水分解を行 V、、高純度のグリセリルホスフオリルイノシトールを製造する際の原料として使用する ことができる。また、本発明の GPCの製造方法によって得られる GPCは、これと遊離 脂肪酸あるいは脂肪酸エステルとの化学的または酵素的なエステル合成により任意 の脂肪酸を含有する高純度のコリンリン脂質、すなわち機能性リン脂質を製造する際 の原料として使用することができる。
[0031] 7.ホスファチジルイノシトール(PI)、グリセリルホスフオリルコリン(GPC)、リゾホスファ チジルイノシトール、又はグリセリルホスフオリルイノシトール含有する食品、医薬又は 化粧品
PI、 GPC、リゾホスファチジルイノシトール、又はグリセリルホスフオリルイノシトール の食品及び医薬中の含有量は、何ら限定されるものではないが、 1日の PI、 GPC、リ ゾホスファチジルイノシトール、又はグリセリルホスフオリルイノシトールの摂取量が 1 〜10000mgとなるような量、好ましくは 10〜5000mg、さらに好ましくは 30〜: LOOO mgとなるような量が良い。
本発明の PI、 GPC、リゾホスファチジルイノシトール、又はグリセリルホスフオリルイノ シトールを含有する食品としては、これらを含有するものであれば何ら限定されるもの では無ぐ例えばこれらを含有するサプリメント(散在、顆粒剤、ソフトカプセル、ハー ドカプセル、錠剤、チユアブル錠、速崩錠、シロップ、液剤等)、飲料 (お茶、炭酸飲 料、乳酸飲料、スポーツ飲料等)、菓子 (グミ、ゼリー、ガム、チョコレート、クッキー、キ ヤンデ一等)、油、油脂食品(マヨネーズ、ドレッシング、バター、クリーム、マーガリン 等)、ケチャップ、ソース、流動食、乳製品(牛乳、ヨーグルト、チーズ等)、パン類、麵 類(うどん、そば、ラーメン、ノスタ、やきそば、きしめん、そ一めん、ひやむぎ、ビーフ ン等)、スープ類(味噌汁、コーンスープ、コンソメスープ等)、ふりかけ等が挙げられ る。
[0032] 本発明に用いられる PI、 GPC、リゾホスファチジルイノシトール、又はグリセリルホス フオリルイノシトールを含有する食品には、必要に応じて各種栄養素、各種ビタミン類 (ビタミン A、ビタミン Bl、ビタミン B2、ビタミン B6、ビタミン B 12、ビタミン C、ビタミン D 、ビタミン E、ビタミン K等)、各種ミネラル類 (マグネシウム、亜鉛、鉄、ナトリウム、カリ ゥム、セレン、酸化チタニウム等)、食物繊維、各種糖類 (セルロース、デキストリン、キ チン等)、各種多価不飽和脂肪酸 (ァラキドン酸、ドコサへキサェン酸、エイコサペン タエン酸、ドコサペンタエン酸等)、各種共役脂肪酸類 (共役リノール酸、共役リノレン 酸、共役ァラキドン酸、共役 DHA、共役 EPA、共役 DPA等)、各種リン脂質 (レシチ ン、 PA、 PS、 PE、ホスファチジルグリセロール、 PC、ホスファチジル DHA等)、各種 糖脂質類 (セレブロシド等)、各種カロチノイド類( j8 -カロチン、リコピン、ァスタキサン チン、 13 クリプトキサンチン、カプサンチン、ルティン、ゼアキサンチン等)、各種フ ラボノイド類 (ケルセチン、ルテオリン、イソフラボン等)、各種アミノ酸類 (グリシン、セリ ン、ァラニン、グルタミン、ノ リン、ロイシン、イソロイシン、リジン、アルギニン、ァスパラ ギン酸、グルタミン酸、トリプトファン、フエ-ルァラニン、ヒスチジン、プロリン、メチォ- ン、システィン等)、その他の各種栄養素(酸ィ匕型コェンザィム Q 10、還元型コェンザ ィム Q 10、カルニチン、セサミン、 atーリポ酸、イノシトール、 D—力イロイノシトール、 ピュトール、タウリン、ダルコサミン、コンドロイチン硫酸、 S アデノシルメチォニン、ク ルクミン、 y—オリザノール、ダルタチオン、 γ—ァミノ酪酸、シネフリン、ピロ口キノリン キノン、カテキン、カブサイシン等)、各種分散剤、各種乳化剤等の安定化剤、各種 甘味料 (ソルビトール、ショ糖等)、各種呈味成分 (タエン酸、リンゴ酸等)、フレーバー 、ローヤルゼリー、蜂蜜、蜜ロウ、プロポリス、ァガリタス、高麗人参、バイオペリン等を 配合することができる。また、ペパーミント、ベルガモット、力モンミール、ラベンダーな どのハーブ類を配合してもよい。また、テアニン、デヒドロェピアンドステロン、メラトニ ンなどの素材を配合してもよ 、。
本発明の PI、 GPC、リゾホスファチジルイノシトール、又はグリセリルホスフオリルイノ シトールを含有する医薬としては、これらを含有するものであれば何ら限定されな!、。 該医薬の剤型としては、散在、顆粒剤、丸剤、ソフトカプセル、ハードカプセル、錠剤 、チユアブル錠、速崩錠、シロップ、液剤、懸濁剤、座剤、軟膏、クリーム剤、ゲル剤、 粘付剤、吸入剤、注射剤等が挙げられる。これらの製剤は常法に従って調製される 力 PIは水に難溶性であるため、植物性油、動物性油等の非親水性有機溶媒に溶 解するか又は、乳化剤、分散剤もしくは界面活性剤等とともに、ホモジナイザー (高圧 ホモジナイザー)を用いて水溶液中に分散、乳化させて用いてもよい。更に、 PIの吸 収性を高めるために、賦型剤(アラビアガム、デキストリン、カゼイン等)の存在化又は 非存在化、平均粒子系を 1ミクロン程度まで微粉砕して用いることも可能である。 [0034] 製剤化のために用いることができる添加剤には、例えば大豆油、サフラー油、オリ ーブ油、胚芽油、ひまわり油、牛脂、いわし油等の動物性油、ポリエチレングリコール 、プロピレングリコール、グリセリン、ソルビトール等の多価アルコール、ソルビタン脂 肪酸エステル、ショ糖脂肪酸エステル、グリセリン脂肪酸エステル、ポリグリセリン脂肪 酸エステル等の界面活性剤、精製水、乳糖、デンプン、結晶セルロース、 D—マン- トール、マルトース、レシチン、アラビアガム、デキストリン、ソルビトール液、糖液等の 賦形剤、甘味料、着色料、 PH調整剤、香料などをあげることができる。尚、液体製剤 は、服用時に水又は他の適当な媒体に溶解又は懸濁する形であってもよい。また、 錠剤、顆粒剤は周知の方法でコーティングしても良 、。
[0035] 注射剤の形で投与する場合には、静脈内、腹腔内、筋肉内、皮下、経皮、関節内、 滑液嚢内、胞膜内、骨膜内、舌下、口腔内等に投与することが好ましぐ特に静脈内 投与又は腹腔内投与が好ましい。静脈内投与は、点滴投与、ポーラス投与のいずれ であってもよい。
本発明の、 PI、 GPC、リゾホスファチジルイノシトール、又はグリセリルホスフオリルイ ノシトール含有化粧料としては、クリーム、乳液、ローション、マイクロエマルジヨンエツ センス、ハツプ剤、入浴剤などが挙げられ、香料等を混合してもよい。
次に、実施例によって本発明を説明するが本発明は以下の例によって限定される ものではない。
実施例
[0036] [実施例 1]PLBの製造方法
30リットル容積のジャーファメンターに 3%脱脂綿実粉、 0. 3%食塩、 0. 2%リン酸 2カリウム、 0. 2%リン酸 1カリウム、 0. 1%硫酸マグネシウム、消泡剤 0. 3%から成る 滅菌した培地 20リットルに、同一培地で前培養(28°C、 4日間)したキャンディダ 'シリ ンドラッセ ATCC14830株の培養液 100mlを無菌的に植菌した。 1分間 20リットル の無菌空気を通気し 1分間 300回転で攪拌しながら 28°Cで培養を行った。 50時間 後の PLBは最大の活性 (0. 2U/ml)が確認された。
得られた培養液を 5000回転、 10分間遠心分離を行い、 16リットルの上清を得た。 この上清を限外濾過法により濃縮を行った。得られた濃縮液 3リットルに 9リットルの冷 アセトンを添加し生じた沈殿物について、 5000回転、 10分間遠心分離を行って沈 殿物を回収し、 2M塩ィ匕ナトリウムを含む 10mMトリス塩酸緩衝液 (以下、 Tris— HC1 と略す)(pH7. 5) 2リットルに溶解した。不溶物を遠心分離により除去し、予めカラム に充填したォクチルセファロース(ベッド容積; 300ml)に通し PLBを吸着させた。次 いで、 2M塩化ナトリウムを含む 10mM Tris— HCl(pH7. 5)、 lOmMTris— HC1 ( pH7. 5)でカラムを洗浄した。カラムに吸着された PLBは 2%アデ力トール SO120を 含む 10mM Tris— HCl (pH7. 5)で溶出された (疎水クロマトによる精製)。次いで 、溶出液(1リットル)を 10mM Tris-HCl (pH7. 5)で予め平衡化した DEAE—セ ファロースカラム(ベッド容積; 200ml)に通して PLBを吸着させ、前記の緩衝液で力 ラムを洗浄後、 0〜0. 3M塩ィ匕ナトリウムの濃度勾配をかけて酵素を溶出した。塩ィ匕 ナトリウムが約 0. 1M付近で PLB酵素画分 A、塩ィ匕ナトリウムが約 0. 25M付近で PL B酵素画分 Bを得た (イオン交換クロマトによる分離精製)。
酵素画分 A及び酵素画分 Bの N末端アミノ酸配列をアミノ酸シークェンサ一により 特定したところ、酵素画分 Aのアミノ酸配列は配列番号 1に示す配列であることが、ま た、酵素画分 Bのアミノ酸配列は配列番号 2に示す配列であることがわ力つた。さらに 、 GENETEX WIN 5.2 (ソフトウェア株式会社製)による相同性解析により、酵素画分 B の酵素画分 Aに対する相同性を解析したところ、 88. 5%であることがわ力つた。
[実施例 2] PLB活性の測定法
PLBの酵素活性は、ホスファチジルコリンカ 生成される GPCを酵素法により測定 することによって確認できる。すなわち、 1M MES— NaOH緩衝液(以下、 MES— NaOHと略す)(pH6) 0. 05ml, 3%トリトン X100に溶解した 10mM卵黄ホスファチ ジノレコリン 0. 05ml、 1M塩ィ匕カノレシゥム 0. 025ml, 0. 2%TODB0. 05ml, 0. 2% 4—ァミノアンチピリン 0. 05ml、 50U/mlモノグリセリドリパーゼ 0. lml、 300U/m 1グリセ口リン酸ォキシダーゼ 0. lml、 6UZmlGPCホスフォジエステラーゼ 0. 025m 1、 lOOUZndパーォキシダーゼ 0. 05mlからなる反応液 0. 5mlを 37°Cで 2〜3分間 予備加温した後、 0. 05%BSAを含む 10mM Tris— HCl (pH7. 5)に溶解し同一 緩衝液で希釈した PLB溶液(0. 03-0. 15UZml) 25 1を添カ卩して反応を始め、 正確に 10分後に 0. 5%SDSlmlを加えて反応を止め、 550nmにおける吸光度を 測定した。
なお、 1分間に 1マイクロモルの GPCを遊離する活性を 1単位とした。
[0038] [実施例 3]リパーゼ活性の測定法
リパーゼ活性測定は、ジグリセリドを基質にして生成されるモノグリセリドをモノグリセリ ドリパーゼでグルセリンに変換後、酵素法により測定した。すなわち 1M MES-Na OH (pH6. 0) 0. lml、 3%卜リ卜ン X100に溶解した lOmMl, 2ジグリセリド 0. 05ml 、 0. 05M塩ィ匕カノレシゥム 0. 025ml、 0. 05M塩ィ匕マグネシウム 0. 025ml, 0. 05M ATPO. 05ml, lOUZmlモノグリセリドリパーゼ 0. 05ml, 5UZmlグリセ口キナーゼ 0. 05ml, 400UZmlグリセ口リン酸ォキシダーゼ 0. 025ml, ΙΟθυΖπ パーォキ シダーゼ 0. 025ml, 0. 3%TOOS0. 025ml, 0. 3%4—アミノアンチピリン 0. 025 mlから成る反応液 0. 5mlに 0. 05%BSAを含む 10mM Tris— HC1で希釈した酵 素液(0. 03-0. 15υΖπι1) 25 /ζ 1を添カ卩し反応を 37°Cで 10分間行った後 0. 5%S DSで反応を止め 550nmにおける吸光度を測定した。なおリパーゼ活性 1単位は 1 分間に 1マイクロモルのグリセリンを遊離する活性とした。
[0039] [実施例 4] PLB画分 Aのゲル濾過クロマトによる精製
実施例 1で得た PLB活性酵素画分 Aを遠心型の限外濾過装置にかけ濃縮を行った 。濃縮した液を 0. 5M塩化ナトリウムを含む 10mM Tris— HCl (pH7. 5)で予め平 衡化したゲル濾過クロマト(スーパーデッタス 75)に力け 1分間あたり 0. 5mlの流速で 分離を行!ゝ活性画分を得た。
各分画にお 1、て、実施例 2及び 3の方法により PLB活性及びリパーゼ活性をそれ ぞれ求め、さらに 280nmにおける吸光度により蛋白濃度を測定した。各分画におけ る PLB活性、リパーゼ活性、及び蛋白濃度の結果を図 1に示した。
その結果、 280nmで測定した蛋白濃度とリパーゼ活性及び PLB活性が一致した 溶出パターンが得られ、リパーゼ活性と PLB活性を有する蛋白は同一酵素蛋白であ ることがわかった。
[0040] [実施例 5]PLBの諸性質
5— 1 (反応の至適 pH)
実施例 2に示した反応液組成のうち、緩衝液として酢酸緩衝液 (以下、 Acetateと略 す)、 PIPES— NaOH緩衝液(以下、 PIPES— NaOHと略す)、又はMES— NaO Hを用いて各 pHにおける酵素画分 Aの酵素活性を測定し、 MES-NaOHpH6. 0 を使用したときの活性に対する各緩衝液での相対活性を求めた。その結果を図 2〖こ 示した。
図 2に示したように、 MES— NaOHについては pH6付近で最大の酵素活性を示し 、また PIPES— NaOH及び Acetateについても pH6付近で最大の酵素活性を示す ことが予想された。
[0041] 5— 2 (pH安定性)
Acetateゝ MES— NaOH、 Tris— HC1、又は Bicine— NaOH緩衝液(以下、 Bicin e— NaOHと略す)の 10mMの各種緩衝液に、 5UZmlになるように酵素画分 Aを溶 解して 37°Cに 90分間静置した後、実施例 2の方法に基づき PLB活性を測定し、 Ac etate pH5における活性に対する各種 pHでの相対残存活性を求めた。その結果 を図 3に示した。
図 3に示したように、 pH5から pH8の広い範囲で安定であることがわかった。
[0042] 5— 3 (熱安定性)
5UZmlになるように 10mMの MES— NaOH (pH6. 0)に酵素画分 Aを溶解し、実 施例 2の方法により 0〜70°Cの温度範囲で 10分間加温した後 PLB活性を測定した。 その結果を図 4に示した。冷蔵保存した酵素画分 Aの PLB活性を 100%とした時の 相対残存活性は、 55°Cまでの処理で 90%以上であり、熱に対して安定な酵素であ ることがわかった。
[0043] 5— 4 (基質特異性)
実施例 2に記載の PLB活性測定法により、実施例 1のイオン交換クロマトで得られた 2種類のリン脂質加工剤としての PLB (酵素画分 A及び酵素画分 B)の、 PC対する各 種リン脂質にっ ヽての活性を測定した。すなわち実施例 2に示した反応組成のレシ チンの代わりに PE、 PI、 PAを使用して活性測定を行い PCに対する相対活性を求め た。その結果を表 1に示した。その結果、酵素画分 A及び酵素画分 Bともに PCに対 する PIの相対活性は他のリン脂質に比べて低ぐ本発明のリン脂質加工剤は、リン脂 質の中でも PIに対する活性力 S小さいという基質特異性があることがわ力つた。表 1の 結果より、いずれの画分も PLB活性を有することからリン脂質加工剤としては両画分 の混合物を用いることもできることがわかる。
[0044] [表 1]
Figure imgf000026_0001
[0045] 5— 5 (分子量)
実施例 1に記載した方法によって得られた精製酵素画分 Aは SDSポリアクリルアミド 電気泳動法で単一のバンドが得られた。分子量既知の蛋白をマーカーにして得られ た分子量は 53キロダルトンであった。
[0046] 5— 6 (等電点)
実施例 1に記載した方法によって得られた精製酵素画分 Aについて、キャリアアンフ オライトを用いた pH勾配を作製して行う等電点電気泳動法により酵素画分 Aについ ての等電点を測定し、さらに 280nmにおける吸光度により蛋白濃度を測定した。酵 素画分 Aの等電点及び酵素濃度との関係を図 5に示した。その結果、 280nmの吸 光度で測定した蛋白が示す pHとリパーゼ活性及び PLB活性は完全に一致し、その pH値 (等電点)は 4. 21であった。図 5からわ力るように PLB、リパーゼと蛋白は全く 同じピークを示したことから PLBとリパーゼは同じ酵素蛋白であることが明ら力となつ た。
[0047] [実施例 6] PIの定量法
1M Tris— HCl (pH8) 0. lml、 10mM NAD 0. 05ml, lOmM塩化マグネシゥ ム 0. 05ml, 2%トリトン X100 0. 05ml, 50U/ml PI特異的ホスフオリパーゼ C 0. 05ml, 50U/mlアルカリホスファターゼ 0. 05ml, 50U/mlイノシトールデヒドロ ゲナーゼ 0. 05ml、 5%-トロテトラゾリゥムブルー 0. 05ml、精製水 0. 15mlから構 成される発色液 0. 5mlに、 PIを含有する被検体(l〜3mgZml)を 2%トリトン X100 に溶解してできた PI溶液 0. 02mlを添カ卩し、 37°Cで 10分間反応を行い 0. 5%SDS 0. 5mlで反応を止め、 550nmにおける吸光度を測定した。既知濃度のイノシトール 水溶液をキヤリブレーターに用いて PI量を定量した。
[0048] [実施例 7]GPCの定量法
1M Tris-HCl (pH7. 5) 0. lml、 1M塩化カルシウム 0. 025ml, 0. 2%TODB0 . 05ml, 0. 2%4—ァミノアンチピリン 0. 05ml, 6U/mlグリセリルホスフオリルコリン ホスフォジエステラーゼ 0. 025ml、 lOOUZndパーォキシダーゼ 0. 05ml, 200U Zmlコリンォキシダーゼ 0. 05ml、精製水 0. 15mlから構成される反応液 0. 5mlに GPCを含有する試料 25 1 (0. 3〜0. 9mgZml)を添カ卩し、 37°Cで 10分間反応後 0. 5%SDS0. 5mlをカ卩ぇ 550nmにおける吸光度を測定した。既知濃度のコリン水 溶液をキヤリブレーターに用いて GPCを定量した。
[0049] [実施例 8] PIの製造方法
40グラムの大豆由来リン脂質を 400mlの 10mM Acetate (pH5. 8)に攪拌し懸濁 させた後 1400単位の本発明のリン脂質加工剤としての PLB (実施例 1で得た酵素画 分 A)を添カ卩して 45°Cで反応を開始した。 20時間後に反応を止めエタノール 200ml 、へキサン 400mlを加え 1時間攪拌した。へキサン層と水層とを遠心分離により分離 して有機溶媒層を回収した。回収した有機溶媒を減圧下で濃縮を行った後、濃縮物 にアセトン 150mlをカ卩ぇ生じた沈殿物を集め乾燥させ 8. 2グラムの PIを高濃度に含 有する粉末を得た。得られたリン脂質の純度を基準油脂分析試験法(日本油化学会 制定、 1996年)により測定した結果、全リン脂質中 86. 8モル%であった。
[0050] [実施例 9] GPCの製造方法
実施例 8に記載した方法にぉ ヽて PLB反応物カゝら有機溶媒抽出を行 ヽ得られた水 層には GPC、 GPE、 GPが含まれる。水層 380mlを活性炭を充填したカラム(ベッド 容積; 50ml)に通し無色の通過液を得た。これを減圧下で濃縮を行い 40mlの GPC 溶液を得た。実施例 2に示した GPCの定量法により GPCの純度は 55重量%であつ た。
[0051] [実施例 10]リゾホスファチジルイノシトールの製造方法
実施例 8により得られた PllOgに 20mlの水を加えよく撹拌した後、三共ライフテック 社製ホスフォリパーゼ A1 (11, 900U/g) lOOmgをカ卩ぇ 50°Cで撹拌させながら酵 素反応を行わせた。反応開始から 24時間後、反応液を 80°Cで 30分間処理すること により、反応を終了させた。反応液を乾燥後、 100mlのアセトンを加え、よく撹拌させ た後、ろ過して固形物を得た。この固形物を乾燥させ、 6gのリゾホスファチジルイノシ トールを得た。 TLC分析にて未反応の PI及び反応副生成物の遊離脂肪酸は除去さ れて 、ることが確認された。
TLC担体; Silica Gel60、層厚 2mm (メルク社製)、展開液;クロ口ホルム:メタノー ル:水 =65 : 35 :4、発色方法;ョード発色、 Rf値;リゾホスファチジルイノシトール(0. 12)、PI (0. 28)、遊離脂肪酸 (0. 81) )。
[0052] [実施例 11 ]ぺ -シリゥム ·ノタツム力 ホスフォリパーゼ Bを製造する方法
公知方法に準じて以下のようにぺ-シリウム ·ノタツム力 ホスフォリパーゼ Bを製造し た。 500ml容三角フラスコで前培養したぺ-シリウム 'ノタツム(IFO— 4640) 100ml をオートクレーブにより殺菌した培地(コーンスティプリカ一 3. 5%、5. 5%ラクト -ス、 0. 7%リン酸 Iカリウム、 0. 3%硫酸マグネシウム、 0. 5%炭酸カルシウム、 0. 25%で 大豆油、 pH5. 4) 20リットルに移植し 26°Cで 4日間好気的条件で培養を行った。培 養終了後、濾過を行い菌体を得た。この菌体に 10リットルの精製水を加えホモゲナイ ザ一で 10分間処理し酵素を可溶ィ匕した後、濾過を行!、8リットルの粗製の酵素液を 得た。この濾液を 2Kgのノルミトイルイ匕したセルロース繊維を充填したカラムに通して 酵素を吸着させ精製水でカラムを洗浄後、 0. 5%アデ力トール SO120、 0. 2mM EDTAを含む ImMリン酸緩衝液 pH7. 0で酵素を溶出させた。この溶出液(10リット ル)を Q—セファロースイオン交換カラムにかけ酵素を吸着させた。カラムを 0. 2mM EDTAを含む ImMリン酸緩衝液 pH7. 0で洗浄した後 0. 2M NaCl、 2mM ED TAを含む 10mMリン酸緩衝液 pH7. 0で酵素を溶出した。 2mM EDTAを含む 10 mMリン酸緩衝液 (pH7. 0)で透析脱塩後凍結乾燥して酵素粉末を得た(3800UZ g) o
[0053] [実施例 12]グリセリルホスフオリルイノシトールの製造方法
実施例 8により得られた PllOgに 100mlの 2mM Acetate (pH4. 0)を加えよく撹拌 した後、実施例 11に記載したぺ-シリウム ·ノタツム力も得たホスフォリパーゼ B200m gを加え 40°Cで撹拌させながら酵素反応を行わせた。反応開始力も 24時間後、反応 液を 80°Cで 30分間処理することにより、反応を終了させた。反応液に 50mlのへキサ ンを添加攪拌を行った後、静置しへキサン層を除去し水層を回収した。この水槽を予 め活性炭を充填したカラムに通して通過した液を回収後、凍結乾燥し 8gのグリセリル ホスフオリルイノシトールを得た。
[0054] [食品製造例 1]ホスファチジルイノシトール (PI)含有マーガリン
実施例 8で得た PIを、マーガリンの 5重量%になるように植物油に添加した後、乳化 剤などとともに均一になるよう攪拌し、通常の方法によりマーガリンを作製した。
[0055] [食品製造例 2]ホスファチジルイノシトール (PI)含有パン
実施例 8で得た PIの lg、砂糖 15g、食塩 2g、脂肪粉乳 5gを湯 70gに溶かし、鶏卵 2 個を添加してよく混ぜた。これを小麦粉 130gとドライイースト 2gを混合した混合物に 加え、手でこねた後、バター約 30gをカ卩えて更にこね、 30個のロールパン生地を作つ た。ついで、発酵させた後、表面に溶き卵を塗り、オーブンにて 180°Cで 15分間焼き ゝロールパンを得た。
[0056] [食品製造例 3]ホスファチジルイノシトール(PI)含有うどん
小麦粉 400gに対して、水 200gに実施例 8で得た PIを 2g、食塩 20gを添加して、よく こねて寝かした。この後、生地を延伸し、幅約 6mmで切断してうどんを製造した。
[0057] [食品製造例 4]ホスファチジルイノシトール (PI)含有飲料
実施例 8で得た PI30gを 5倍量のオリーブオイルに懸濁して 50°Cに加温し、油相を 得た。グリセリン 90gに乳化剤としてグリセロール脂肪酸エステル 10gを添加し、 70°C に加温して溶解させた。この溶液に先の油相を撹拌しながら徐々に添加した。混合 液を、乳化機を用いて高圧乳化処理して乳化組成物を得た。この乳化組成物 20gに 水 180mlを添加、撹拌して PI含有飲料を得た。
[0058] [製剤例 1]ホスファチジルイノシトール (PI)含有錠剤
実施例 8で得た PI 120g
結晶セルロース 330g
カルメロース一カルシウム I5g
ヒドロキシプロピノレセノレロース lOg
精製水 60ml 上記組成物を通常の方法にて配合、乾燥した後、 10gのステアリン酸マグネシウムを 添加し、打錠を行い、 1錠あたり PIを 20mg含有する lOOmgの錠剤を得た。
[0059] [製剤例 2]ホスファチジルイノシトール(PI)含有ソフトカプセル
実施例 8で得た PIを、 5倍量のオリーブォィルに懸濁し、均質になる様に十分に混合 した後、カプセル充填機にてカプセル充填し、内容物約 300mgのカプセルを得た。
[0060] [化粧品製造例]ホスファチジルイノシトール (PI)含有クリーム剤 (化粧品)
実施例 8で得た PIを、白色ワセリンに 10重量%になるように添加し、芳香剤などととも に、均一になるように攪拌し、通常の方法によりクリーム剤を作製した。
[0061] [食品製造例 5]リゾホスファチジルイノシトール含有マーガリン
実施例 10で得たリゾホスファチジルイノシトールを、マーガリンの 5重量%になるよう に植物油に添加した後、乳化剤などとともに均一になるよう攪拌し、通常の方法により マーガリンを作製した。
[0062] [食品製造例 6]リゾホスファチジルイノシトール含有パン
実施例 10で得たリゾホスファチジルイノシトールの lg、砂糖 15g、食塩 2g、脂肪粉乳 5gを湯 70gに溶かし、鶏卵 2個を添加してよく混ぜた。これを小麦粉 130gとドライイ 一スト 2gを混合した混合物にカ卩え、手でこねた後、バター約 30gをカ卩えて更にこね、 30個のロールパン生地を作った。ついで、発酵させた後、表面に溶き卵を塗り、ォー ブンにて 180°Cで 15分間焼き、ロールパンを得た。
[0063] [食品製造例 7]リゾホスファチジルイノシトール含有うどん
小麦粉 400gに対して、水 200gに実施例 10で得たリゾホスファチジルイノシトールを 2g、食塩 20gを添カ卩して、よくこねて寝力した。この後、生地を延伸し、幅約 6mmで 切断してうどんを製造した。
[0064] [食品製造例 8]リゾホスファチジルイノシトール含有飲料
実施例 10で得たリゾホスファチジルイノシトール 30gを 5倍量のオリーブオイルに懸 濁して 50°Cに加温し、油相を得た。グリセリン 90gに乳化剤としてグリセロール脂肪酸 エステル 10gを添カ卩し、 70°Cに加温して溶解させた。この溶液に先の油相を撹拌し ながら徐々に添加した。混合液を、乳化機を用いて高圧乳化処理して乳化組成物を 得た。この乳化組成物 20gに水 180mlを添加、撹拌してリゾホスファチジルイノシトー ル含有飲料を得た。
[0065] [製剤例 3]リゾホスファチジルイノシトール含有錠剤
実施例 10で得たリゾホスファチジルイノシトール 120g
結晶セルロース 330g
カルメロース一カルシウム 15g
ヒドロキシプロピノレセノレロース lOg
精製水 60ml
上記組成物を通常の方法にて配合、乾燥した後、 10gのステアリン酸マグネシウム を添カ卩し、打錠を行い、 1錠あたりリゾホスファチジルイノシトールを 20mg含有する 10
Omgの錠剤を得た。
[0066] [製剤例 4]リゾホスファチジルイノシトール含有ソフトカプセル
実施例 10で得たリゾホスファチジルイノシトールを、 5倍量のオリーブオイルに懸濁し
、均質になる様に十分に混合した後、カプセル充填機にてカプセル充填し、内容物 約 300mgのカプセルを得た。
[0067] [化粧品製造例]リゾホスファチジルイノシトール含有クリーム剤 (化粧品)
実施例 10で得たリゾホスファチジルイノシトールを、白色ワセリンに 10重量%になる ように添加し、芳香剤などとともに、均一になるように攪拌し、通常の方法によりタリー ム剤を作製した。
[0068] [食品製造例 9]グリセリルホスフオリルイノシトール含有マーガリン
実施例 12で得たグリセリルホスフオリルイノシトールを、マーガリンの 5重量%になるよ うに植物油に添加した後、乳化剤などとともに均一になるよう攪拌し、通常の方法によ りマーガリンを作製した。
[0069] [食品製造例 10]グリセリルホスフオリルイノシトール含有パン
実施例 12で得たグリセリルホスフオリルイノシトールの lg、砂糖 15g、食塩 2g、脂肪 粉乳 5gを湯 70gに溶かし、鶏卵 2個を添加してよく混ぜた。これを小麦粉 130gとドラ ィイースト 2gを混合した混合物にカ卩え、手でこねた後、バター約 30gを加えて更にこ ね、 30個のロールパン生地を作った。ついで、発酵させた後、表面に溶き卵を塗り、 オーブンにて 180°Cで 15分間焼き、ロールパンを得た。 [0070] [食品製造例 11 ]グリセリルホスフオリルイノシトール含有うどん
小麦粉 400gに対して、水 200gに実施例 12で得たグリセリルホスフオリルイノシトー ルを 2g、食塩 20gを添カ卩して、よくこねて寝力した。この後、生地を延伸し、幅約 6m mで切断してうどんを製造した。
[0071] [食品製造例 12]グリセリルホスフオリルイノシトール含有飲料 実施 12で得たグリセリ ルホスフオリルイノシトール 30gを 5倍量のオリーブオイルに懸濁して 50°Cに加温し、 油相を得た。グリセリン 90gに乳化剤としてグリセロール脂肪酸エステル 10gを添加し 、 70°Cに加温して溶解させた。この溶液に先の油相を撹拌しながら徐々に添加した 。混合液を、乳化機を用いて高圧乳化処理して乳化組成物を得た。この乳化組成物 20gに水 180mlを添加、撹拌してグリセリルホスフオリルイノシトール含有飲料を得た
[0072] [製剤例 5]グリセリルホスフオリルイノシトール含有錠剤
実施例 12で得たグリセリルホスフオリルイノシトール 120g
結晶セルロース 330g
カルメロース一カルシウム I5g
ヒドロキシプロピノレセノレロース lOg
精製水 60ml
上記組成物を通常の方法にて配合、乾燥した後、 10gのステアリン酸マグネシウム を添カ卩し、打錠を行い、 1錠あたりグリセリルホスフオリルイノシトールを 20mg含有す る lOOmgの錠剤を得た。
[0073] [製剤例 6]グリセリルホスフオリルイノシトール含有ソフトカプセル
実施例 12で得たグリセリルホスフオリルイノシトールを、 5倍量のオリーブオイルに懸 濁し、均質になる様に十分に混合した後、カプセル充填機にてカプセル充填し、内 容物約 300mgのカプセルを得た。
[0074] [化粧品製造例]グリセリルホスフオリルイノシトール含有クリーム剤 (化粧品)
実施例 12で得たグリセリルホスフオリルイノシトールを、白色ワセリンに 10重量%に なるように添加し、芳香剤などとともに、均一になるように攪拌し、通常の方法によりク リーム剤を作製した。 産業上の利用可能性
[0075] 本発明のリン脂質加工剤は大豆由来リン脂質を原料とする機能性リン脂質製造用 として好適である。
図面の簡単な説明
[0076] [図 1]実施例 4に基づく本発明のリン脂質カ卩工剤としての PLBのゲル濾過クロマトによ るクロマトパターンを示す。
[図 2]実施例 5に基づく本発明のリン脂質加工剤としての PLBの最適 pHを示す。
[図 3]実施例 5に基づく本発明のリン脂質加工剤としての PLBの pH安定性の結果を 示す。
[図 4]実施例 5に基づく本発明のリン脂質加工剤としての PLBの熱安定性の結果を示 す。
[図 5]実施例 5に基づく本発明のリン脂質加工剤としての PLBの等電点電気泳動の 結果を示す。

Claims

請求の範囲
[1] キャンディダ属由来のホスフォリパーゼ B (PLB)活性を有する酵素を含有するリン 脂質加工剤。
[2] リン脂質混合物中ホスファチジルイノシトールのみを実質的に分解しないホスフオリ パーゼ B (PLB)活性を有する酵素を含有するリン脂質加工剤。
[3] ホスフォリパーゼ B (PLB)活性を有する酵素力 さらにリパーゼ活性を有するもので ある、請求項 1又は 2に記載のリン脂質加工剤。
[4] PLB活性を有する酵素が下記の物理ィ匕学的性質を有する請求項 1〜3のいずれ 力に記載のリン脂質加工剤。
1)作用:リン脂質を 2モル比の遊離脂肪酸と等モル比のグリセリルホスフオリルコリンと に加水分解する作用
2)分子量: 53, 000± 3, 000 (SDS電気泳動法による)
3)等電点: pH4. 21 ±0. 2
4)至適 pH :pH5. 5力も 6. 5付近
5) pH安定性: pH5から 9付近(37°C、 90分間処理)
6)安定性: 55°C (pH5で 10分間処理)
7)基質特異性:ホスファチジルイノシトールに対する活性比がホスファチジルコリンの 場合の 10%以下
[5] キャンディダ'シリンドラッセの培養液力 得られる酵素を含有することを特徴とする ジン脂質加工剤 c
[6] 下記工程により得られるリン脂質加工剤。
1)キャンディダ 'シリンドラッセを培養する工程
2)キャンディダ ·シリンドラッセの培養液を濃縮する工程
3)有機溶媒により酵素を沈殿させる工程
4) 3)の工程により得られる粗酵素液を疎水クロマトグラフィーで精製する工程
5) 4)の工程で得られる酵素をイオン交換クロマトグラフィーで分離精製する工程
[7] 配列表配列番号 1のアミノ酸配列を有する酵素、配列表配列番号 1のアミノ酸配列 との相同性が 75%以上であり PLB活性を有する酵素、あるいは配列表配列番号 1の アミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミ ノ酸配列からなり PLB活性を有する酵素のいずれか一つ以上の酵素を含有するリン 脂質加工剤。
[8] 配列表配列番号 2のアミノ酸配列を有する酵素、配列表配列番号 2のアミノ酸配列 との相同性が 75%以上であり PLB活性を有する酵素、あるいは配列表配列番号 2の アミノ酸配列において 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミ ノ酸配列からなり PLB活性を有する酵素のいずれか一つ以上の酵素を含有するリン 脂質加工剤。
[9] リン脂質混合物に請求項 1〜8のいずれかに記載のリン脂質加工剤を作用させるこ とを特徴とするホスファチジルイノシトール及びグリセリルホスフオリルコリンの製造方 法。
[10] リン脂質混合物に請求項 1〜8のいずれかに記載のリン脂質加工剤を作用させるこ とを特徴とするホスファチジルイノシトールの製造方法。
[11] 下記の 1)〜3)の工程を含むホスファチジルイノシトールの製造方法。
1)リン脂質混合物に請求項 1〜8のいずれか〖こ記載のリン脂質加工剤を作用させる 工程
2)有機溶媒を用いてホスファチジルイノシトールを抽出する工程
3)水溶性又は水混和性アルキルカルボニルアルキル溶媒処理により、ホスファチジ ルイノシトールを沈殿回収する工程
[12] リン脂質混合物が大豆由来である請求項 9〜11のいずれかに記載のホスファチジ ルイノシトールの製造方法。
[13] 請求項 10〜12のいずれかに記載の製造方法によって得られる、全リン脂質中の 純度が 50モル0 /0以上であるホスファチジルイノシトール。
[14] リン脂質混合物に請求項 1〜8のいずれかに記載のリン脂質加工剤を作用させるこ とを特徴とするグリセリルホスフオリルコリンの製造方法。
[15] 下記の 1)〜3)の工程を含むグリセリルホスフオリルコリンの製造方法。
1)リン脂質混合物に請求項 1〜8のいずれか〖こ記載のリン脂質加工剤を作用させる 工程 2)有機溶媒を含有する溶媒で脂質成分を抽出除去し、水層にグリセリルホスフォリル コリンを回収する工程
3)活性炭に 1)の工程で作用させたリン脂質加工剤を吸着させて除去する工程
[16] リン脂質混合物が大豆由来である請求項 9、 14又は 15に記載のグリセリルホスフォ リルコリンの製造方法。
[17] 請求項 14〜16のいずれかに記載の製造方法によって得られる、純度が 55重量% 以上であるグリセリルホスフオリルコリン。
[18] 高純度なグリセ口ホスフォイノシトールを製造するための、請求項 13に記載のホスフ ァチジルイノシトールの使用。
[19] 高純度なコリンリン脂質を製造するための、請求項 17に記載のグリセリルホスフオリ ルコリンの使用。
[20] 請求項 10〜 12のいずれかに記載の製造法により製造されたホスファチジルイノシ トールを含有する食品、医薬品又は化粧料。
[21] 請求項 14〜16のいずれかに記載の製造法により製造されたグリセリルホスフォリル コリンを含有する食品、医薬品又は化粧料。
[22] 請求項 10〜 12のいずれかに記載の製造法により製造されたホスファチジルイノシ トールにホスフォリパーゼ A1又はホスフォリパーゼ A2活性を有する酵素を作用させ て得られるリゾホスファチジルイノシトール。
[23] 請求項 10〜 12のいずれかに記載の製造法により製造されたホスファチジルイノシ トールにホスフォリパーゼ A1又はホスフォリパーゼ A2活性を有する酵素を作用させ るリゾホスファチジルイノシトールの製造方法。
[24] 請求項 23に記載の製造方法によって製造されたリゾホスファチジルイノシトールを 含有する食品、医薬品又は化粧料。
[25] 請求項 10〜 12のいずれかに記載の製造法により製造されたホスファチジルイノシ トールにホスファチジルイノシトールによく作用するホスフオリパーゼ B活性を有する 酵素を作用させて得られるグリセリルホスフオリルイノシトール。
[26] 請求項 10〜 12のいずれかに記載の製造法により製造されたホスファチジルイノシ トールにホスファチジルイノシトールによく作用するホスフオリパーゼ B活性を有する 酵素を作用させるグリセリルホスフオリルイノシトールの製造方法。
[27] 請求項 26に記載の製造方法によって製造されたグリセリルホスフオリルイノシトール を含有する食品、医薬品又は化粧料。
[28] 請求項 10〜 12のいずれかに記載の製造方法によって製造されたホスファチジルイ ノシトール、請求項 14〜16のいずれかに記載の製造法により製造されたグリセリルホ スフオリルコリン、請求項 23に記載の製造方法によって製造されたリゾホスファチジル イノシトール、及び請求項 26に記載の製造方法によって製造されたグリセリルホスフ オリルイノシトール力 なる群力 選択される 2種以上を含有する食品、医薬品又は化 粧料。
PCT/JP2006/314160 2005-07-19 2006-07-18 新規なリン脂質加工剤 WO2007010892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2006270921A AU2006270921A1 (en) 2005-07-19 2006-07-18 Novel phospholipid processing agent
EP06781181A EP1918371A4 (en) 2005-07-19 2006-07-18 NEW PHOSPHOLIPID PROCESSING AGENCY
JP2007526011A JP4933432B2 (ja) 2005-07-19 2006-07-18 新規なリン脂質加工剤

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-208913 2005-07-19
JP2005208913 2005-07-19
JP2006-057141 2006-03-03
JP2006057141 2006-03-03

Publications (1)

Publication Number Publication Date
WO2007010892A1 true WO2007010892A1 (ja) 2007-01-25

Family

ID=37668772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314160 WO2007010892A1 (ja) 2005-07-19 2006-07-18 新規なリン脂質加工剤

Country Status (4)

Country Link
EP (1) EP1918371A4 (ja)
JP (1) JP4933432B2 (ja)
AU (1) AU2006270921A1 (ja)
WO (1) WO2007010892A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062559A1 (fr) * 2006-11-22 2008-05-29 Asahi Kasei Pharma Corporation Supplément diététique, agent anti-fatigue, activateur d'endurance physique, aliment fonctionnel, ou produit cosmétique
WO2008093826A1 (ja) * 2007-02-02 2008-08-07 Asahi Kasei Pharma Corporation アディポネクチン上昇剤
JP2008187943A (ja) * 2007-02-02 2008-08-21 Fiburo Seiyaku Kk 糖衣チューインガム用糖衣組成物および該糖衣組成物を使用した糖衣チューインガム
US20110130586A1 (en) * 2008-06-02 2011-06-02 University Of Saskatchewan Recovery of multiple compounds and recyclable water from thin stillage
WO2012086406A1 (ja) * 2010-12-22 2012-06-28 花王株式会社 Glp-1分泌促進剤
WO2014010667A1 (ja) * 2012-07-12 2014-01-16 学校法人帝京大学 認知機能検査法、及びそのキット
WO2015059697A1 (en) 2013-10-21 2015-04-30 Enzymotec Ltd. Compositions comprising choline and derivatives thereof, uses thereof and processes for their preparation
WO2016170388A1 (en) 2015-04-21 2016-10-27 Enzymotec Ltd. Compositions comprising choline and derivatives thereof, uses thereof and processes for their preparation
WO2020137017A1 (ja) * 2018-12-26 2020-07-02 日本精化株式会社 美白剤、ヒアルロン酸産生促進剤、コラーゲン産生促進剤、細胞内活性酸素消去剤、刺激緩和剤、シワ改善剤、複合体、化粧料、及び皮膚外用剤
JP2020105076A (ja) * 2018-12-26 2020-07-09 日本精化株式会社 ホスファチジルイノシトール含有生理活性組成物
CN112137971A (zh) * 2019-06-28 2020-12-29 北京万全德众医药生物技术有限公司 一种甘磷酸胆碱的口腔崩解片及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223189A1 (en) * 2022-05-17 2023-11-23 Plantarei Biotech S.R.L. Glycerophosphoinositol in preventing and treating covid-19 infections and method for obtaining it

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105685A (ja) * 1986-10-24 1988-05-10 Nippon Oil & Fats Co Ltd グリセロホスホリルコリンの製造方法
JPS63157993A (ja) * 1986-12-23 1988-06-30 Nippon Oil & Fats Co Ltd 混合酸型1,2−ジアシル−3−グリセリルホスフアチジルイノシト−ルの製造法
JPH0387191A (ja) * 1989-08-30 1991-04-11 Nisshin Oil Mills Ltd:The ホスファチジルイノシトールの製造方法
JPH08169891A (ja) * 1994-12-19 1996-07-02 Api Kk デセン酸・グリセロリン脂質複合体及びその製造方法並びに食品組成物
JP2004532857A (ja) * 2001-05-03 2004-10-28 エンジモテック リミテッド リン脂質の製造方法
JP2005058017A (ja) * 2003-08-14 2005-03-10 Taiyo Kagaku Co Ltd リン脂質含有組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105685A (ja) * 1986-10-24 1988-05-10 Nippon Oil & Fats Co Ltd グリセロホスホリルコリンの製造方法
JPS63157993A (ja) * 1986-12-23 1988-06-30 Nippon Oil & Fats Co Ltd 混合酸型1,2−ジアシル−3−グリセリルホスフアチジルイノシト−ルの製造法
JPH0387191A (ja) * 1989-08-30 1991-04-11 Nisshin Oil Mills Ltd:The ホスファチジルイノシトールの製造方法
JPH08169891A (ja) * 1994-12-19 1996-07-02 Api Kk デセン酸・グリセロリン脂質複合体及びその製造方法並びに食品組成物
JP2004532857A (ja) * 2001-05-03 2004-10-28 エンジモテック リミテッド リン脂質の製造方法
JP2005058017A (ja) * 2003-08-14 2005-03-10 Taiyo Kagaku Co Ltd リン脂質含有組成物

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LONGHI S. ET AL.: "Cloning and nucleotide sequences of two lipase genes from Candida cylindracea", BIOCHIM. BIOPHYS. ACTA, vol. 1131, no. 2, 1992, pages 227 - 232, XP009005513 *
LOTTI M. ET AL.: "Cloning and analysis of Candida cylindracea lipase sequences", GENE, vol. 124, no. 1, 1993, pages 45 - 55, XP001084201 *
See also references of EP1918371A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008062559A1 (fr) * 2006-11-22 2008-05-29 Asahi Kasei Pharma Corporation Supplément diététique, agent anti-fatigue, activateur d'endurance physique, aliment fonctionnel, ou produit cosmétique
JP5273722B2 (ja) * 2007-02-02 2013-08-28 国立大学法人佐賀大学 アディポネクチン上昇剤
WO2008093826A1 (ja) * 2007-02-02 2008-08-07 Asahi Kasei Pharma Corporation アディポネクチン上昇剤
JP2008187943A (ja) * 2007-02-02 2008-08-21 Fiburo Seiyaku Kk 糖衣チューインガム用糖衣組成物および該糖衣組成物を使用した糖衣チューインガム
US20110130586A1 (en) * 2008-06-02 2011-06-02 University Of Saskatchewan Recovery of multiple compounds and recyclable water from thin stillage
US8835665B2 (en) * 2008-06-02 2014-09-16 University Of Saskatchewan Recovery of multiple compounds and recyclable water from thin stillage
WO2012086406A1 (ja) * 2010-12-22 2012-06-28 花王株式会社 Glp-1分泌促進剤
JP2012144518A (ja) * 2010-12-22 2012-08-02 Kao Corp Glp−1分泌促進剤
WO2014010667A1 (ja) * 2012-07-12 2014-01-16 学校法人帝京大学 認知機能検査法、及びそのキット
JPWO2014010667A1 (ja) * 2012-07-12 2016-06-23 学校法人帝京大学 認知機能検査法、及びそのキット
WO2015059697A1 (en) 2013-10-21 2015-04-30 Enzymotec Ltd. Compositions comprising choline and derivatives thereof, uses thereof and processes for their preparation
WO2016170388A1 (en) 2015-04-21 2016-10-27 Enzymotec Ltd. Compositions comprising choline and derivatives thereof, uses thereof and processes for their preparation
WO2020137017A1 (ja) * 2018-12-26 2020-07-02 日本精化株式会社 美白剤、ヒアルロン酸産生促進剤、コラーゲン産生促進剤、細胞内活性酸素消去剤、刺激緩和剤、シワ改善剤、複合体、化粧料、及び皮膚外用剤
JP2020105076A (ja) * 2018-12-26 2020-07-09 日本精化株式会社 ホスファチジルイノシトール含有生理活性組成物
KR20210107772A (ko) 2018-12-26 2021-09-01 니폰 세이카 가부시키가이샤 미백제, 히알루론산 생성 촉진제, 콜라겐 생성 촉진제, 세포내 활성 산소 소거제, 자극 완화제, 주름 개선제, 복합체, 화장료 및 피부 외용제
JP7178257B2 (ja) 2018-12-26 2022-11-25 日本精化株式会社 ホスファチジルイノシトール含有生理活性組成物
CN112137971A (zh) * 2019-06-28 2020-12-29 北京万全德众医药生物技术有限公司 一种甘磷酸胆碱的口腔崩解片及其制备方法

Also Published As

Publication number Publication date
JP4933432B2 (ja) 2012-05-16
EP1918371A1 (en) 2008-05-07
AU2006270921A1 (en) 2007-01-25
EP1918371A4 (en) 2009-07-22
JPWO2007010892A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4933432B2 (ja) 新規なリン脂質加工剤
US5538874A (en) Phospholipase A1, process for its preparation and the use thereof
EP1740708B1 (en) Enzymatic production of hydrolyzed lecithin products
JPWO2008062559A1 (ja) 栄養補助食品、抗疲労作用剤又は持久力増強剤、機能性食品又は化粧料
Choojit et al. Efficient phosphatidylserine synthesis by a phospholipase D from Streptomyces sp. SC734 isolated from soil‐contaminated palm oil
Molina-Gutiérrez et al. Green synthesis of β-sitostanol esters catalyzed by the versatile lipase/sterol esterase from Ophiostoma piceae
Pernas et al. Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation
JP5118651B2 (ja) 新規のリパーゼおよびその使用
JP6096179B2 (ja) ラクターゼ活性を有するタンパク質、該タンパク質をコードする遺伝子、該遺伝子を含有する組み換えベクター、形質転換体、及びその製造方法並びに用途
JP5592648B2 (ja) リパーゼの製造方法、該リパーゼを産生できる形質転換されたヤロウィアリポリティカ細胞およびその使用
CN101223274A (zh) 新型的磷脂加工剂
WO2012077614A1 (ja) 油脂のランダムエステル交換法及びランダムエステル交換用リパーゼ
KR20030033014A (ko) 인지질의 제조법
JP2015027260A (ja) ホスファチジルイノシトールの製造方法及びホスファチジルイノシトールを含有する組成物
JP2000245492A (ja) 微生物抽出脂質
JP2000106873A (ja) 熱安定性酵素およびその製造法
US8637278B2 (en) Method for the enzymatic production of emulsifiers containing mono- and diacylglycerides
JP2003033195A (ja) テトラヒドロクルクミン類の製造方法
JP5273722B2 (ja) アディポネクチン上昇剤
ES2395582B1 (es) Procedimiento de acilación para la obtención de compuestos de interés alimenticio y/o farmacéutico utilizando esterol esterasas fúngicas.
BRPI0710694A2 (pt) métodos para extrair um ou mais componentes de levedura e para produzir um extrato de levedura, e, uso de uma fosfolipase purificada
JP3022131B2 (ja) ホスホリパーゼa1とその利用
JP4426664B2 (ja) ホスホリパーゼdおよびその製造法
JPH088866B2 (ja) ホスホリパ−ゼdおよびその製造法
Golovastov et al. Depletion of Phosphatidylethanolamine—the Major Membrane Phospholipid of Escherichia coli—Depresses Posttranslocational Modification of Alkaline Phosphatase in the Periplasm

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680026371.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007526011

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006270921

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006781181

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006270921

Country of ref document: AU

Date of ref document: 20060718

Kind code of ref document: A