WO2007007558A1 - 燃料供給装置における電磁リリーフ弁の診断装置 - Google Patents

燃料供給装置における電磁リリーフ弁の診断装置 Download PDF

Info

Publication number
WO2007007558A1
WO2007007558A1 PCT/JP2006/312991 JP2006312991W WO2007007558A1 WO 2007007558 A1 WO2007007558 A1 WO 2007007558A1 JP 2006312991 W JP2006312991 W JP 2006312991W WO 2007007558 A1 WO2007007558 A1 WO 2007007558A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
relief valve
fuel pressure
valve
pressure
Prior art date
Application number
PCT/JP2006/312991
Other languages
English (en)
French (fr)
Inventor
Shunsuke Fushiki
Naoto Suzuki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to US11/988,212 priority Critical patent/US7706962B2/en
Priority to EP06767608.0A priority patent/EP1903210B1/en
Priority to CN200680024332.7A priority patent/CN101213364B/zh
Publication of WO2007007558A1 publication Critical patent/WO2007007558A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/003Measuring variation of fuel pressure in high pressure line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/061Introducing corrections for particular operating conditions for engine starting or warming up the corrections being time dependent

Definitions

  • the present invention relates to an apparatus for diagnosing the operating state of an electromagnetic relief valve used in a fuel supply device that supplies fuel to a fuel injection valve.
  • Vehicles and the like are provided with a fuel supply device that sucks and pressurizes fuel in a fuel tank by a fuel pump, pumps the fuel into a delivery pipe, and distributes the fuel to a fuel injection valve for each cylinder of an internal combustion engine.
  • the delivery pipe is provided with a relief valve that opens when the fuel pressure (fuel pressure) inside the delivery pipe exceeds a predetermined value, and the fuel is relieved when the fuel pressure rises transiently. To reduce the fuel pressure.
  • an electromagnetic relief valve that opens and closes according to the energized state is used as the relief valve.
  • the valve is opened for a certain period. This is because if the fuel pressure continues to be high even after the internal combustion engine is stopped, fuel leaks from the fuel injection valve, which can cause exhaust emissions at the next engine start. Therefore, opening the electromagnetic relief valve after stopping the engine as described above reduces the fuel pressure in the delivery pipe and reduces the amount of fuel leaking from the fuel injection valve. Try to solve it.
  • the fuel bypass valve corresponding to the electromagnetic relief valve is closed and controlled, and the fuel temperature in the vicinity of the delivery pipe and the fuel bypass valve in the vicinity of the fuel bypass valve are controlled.
  • the deviation from the fuel temperature in the fuel return pipe is obtained, and when the deviation is less than the specified value, it is determined that the fuel bino lev is stuck open. This is because the fuel heated by the internal combustion engine in the vicinity of the delivery pipe flows into the fuel bypass valve sequentially when the fuel bypass valve is fixed open, and as a result, This was thought to focus on the fact that the fuel temperature in the vicinity of the lube increases and approaches the fuel temperature in the vicinity of the delivery pipe (the deviation between the two fuel temperatures becomes smaller).
  • the diagnostic device described in the above-mentioned Patent Document 1 has an electromagnetic relief valve that is opened when the internal combustion engine is started and is closed during normal operation as the object of diagnosis.
  • the electromagnetic relief valve that is sometimes closed and opened when the engine is stopped is not intended for diagnosis. Therefore, the emergence of a diagnostic device suitable for diagnosing such an electromagnetic relief valve that is controlled to open after the engine is stopped is desired.
  • Patent Document 1 JP 2003-97374 A
  • An object of the present invention is to provide a diagnostic device that can appropriately diagnose the presence or absence of an abnormality in an electromagnetic relief valve of a fuel supply device that is controlled to open after the internal combustion engine is stopped.
  • the present invention provides a diagnostic device for an electromagnetic relief valve in a fuel supply device for an internal combustion engine.
  • the fuel supply device has a high-pressure fuel passage for supplying fuel to a fuel injection valve of the engine, and the relief valve relieves fuel from the passage in response to a valve opening command to lower the fuel pressure in the passage.
  • the diagnostic device includes a control unit that outputs the valve opening command to the relief valve in response to a stop command for stopping the engine, and the control unit receives the passage after the stop command is output. The presence or absence of abnormality of the relief valve is determined on the basis of the fuel pressure change mode.
  • the present invention also provides another diagnostic device for an electromagnetic relief valve.
  • the fuel supply device has a high-pressure fuel passage for supplying fuel to the fuel injection valve of the engine, and the relief valve relieves fuel from the passage in response to a valve opening command to thereby adjust the fuel pressure in the passage.
  • the fuel relief is stopped according to the valve closing command.
  • the diagnostic device includes a control unit that outputs a valve closing command to the relief valve at the time of starting the engine and performs control for setting the fuel pressure in the passage to a target value, the control unit including the target value
  • the presence or absence of abnormality of the relief valve is determined on the basis of the degree of deviation of the actual fuel pressure with respect to.
  • the present invention also provides a diagnostic method for an electromagnetic relief valve.
  • the method includes high pressure fuel flow. Supplying fuel to the fuel injection valve of the internal combustion engine through a passage, causing the electromagnetic relief valve to relieve the passage force also in response to a valve opening command, lowering the fuel pressure in the passage, and stopping the engine
  • the valve opening command is output to the relief valve in response to a stop command for causing the relief valve, and whether there is an abnormality in the relief valve based on the change in the fuel pressure in the passage after the stop command is output. Determining.
  • the present invention also provides still another method for diagnosing an electromagnetic relief valve.
  • fuel is supplied to a fuel injection valve of an internal combustion engine through a high-pressure fuel passage, and in response to a valve opening command, the electromagnetic relief valve also relieves the passage force to reduce the fuel pressure in the passage. Stopping the relief of the fuel in response to the valve closing command, outputting the valve closing command to the relief valve when starting the engine, and setting the fuel pressure in the passage to a target value. And control for determining whether or not there is an abnormality in the relief valve based on the degree of deviation of the actual fuel pressure from the target value.
  • FIG. 1 is a schematic configuration diagram of a fuel supply device and a diagnostic device for an electromagnetic relief valve in a first embodiment that embodies the present invention.
  • FIG. 2 is a flowchart for explaining a diagnostic routine executed by the electronic control unit.
  • FIG. 3 is a timing chart for explaining changes in fuel pressure, post-off power-on counter, and relief valve operation counter.
  • FIG. 4 is a flowchart for explaining a diagnostic routine executed by the electronic control unit in the second embodiment of the present invention.
  • FIG. 5 is a timing chart for explaining changes in fuel pressure, engine rotation speed, and internal combustion engine status.
  • FIG. 6 is a schematic configuration diagram of a hybrid vehicle to which a diagnostic device for an electromagnetic relief valve is applied.
  • a cylinder injection type internal combustion engine that directly injects fuel into a cylinder via a fuel injection valve Is installed.
  • a fuel supply device is provided to supply the fuel in the fuel tank to each fuel injection valve.
  • the fuel supply device 11 includes a low pressure pump 12 and a high pressure pump 13.
  • the low-pressure pump 12 is an electric pump fixed inside the fuel tank 14, and sucks and discharges the fuel 15 in the fuel tank 14.
  • the discharged fuel 15 is pumped to the high pressure pump 13 through the low pressure fuel passage 16.
  • the low pressure fuel passage 16 is provided with a pressure regulator 17 for reducing the pressure (fuel pressure) of the fuel 15 inside thereof to a predetermined pressure or less.
  • the high-pressure pump 13 is drivingly connected to the internal combustion engine 10, operates in accordance with the operation of the internal combustion engine 10, and sucks and pressurizes the fuel 15 pumped from the low-pressure pump 12 through the low-pressure fuel passage 16.
  • the high pressure pump 13 discharges a necessary amount of the fuel 15 by closing the solenoid valve at an optimal timing during the pressurizing (pressure feeding) process of the fuel 15.
  • the discharged high-pressure fuel 15 is supplied to a high-pressure fuel passage constituted by a delivery pipe 18 and the like.
  • the delivery pipe 18 is connected to a fuel injection valve 21 for each cylinder, and distributes and supplies the fuel 15 pumped from the high-pressure pump 13 to each fuel injection valve 21.
  • the delivery pipe 18 is provided with an electromagnetic relief valve 22 for reducing the fuel pressure by relieving the fuel 15 inside the delivery pipe 18.
  • the electromagnetic relief valve 22 is connected to the low-pressure fuel passage 16 through a return passage 23.
  • the electromagnetic relief valve 22 is a so-called electromagnetic valve, and is opened and closed by energizing the electromagnetic solenoid. Then, through the valve opening operation of the electromagnetic relief valve 22, the high pressure fuel 15 in the delivery pipe 18 is relieved by the low pressure fuel passage 16.
  • the delivery pipe 18 is provided with a fuel pressure sensor 24 for detecting the fuel pressure P inside the delivery pipe 18.
  • the vehicle is equipped with a battery 25 as a power source for various electric devices.
  • the supply of electric power from the battery 25 to various electric devices is stopped in accordance with the operation of the idling switch 26 by the driver.
  • the idle switch 26 is movable between an off position and an on position and between an on position and a start position. Basically, electric power is supplied to various electric devices during the period when the idling switch 26 is operated to the on position, and the supply is stopped when operated to the off position.
  • the starter is operated by operating the idle switch 26 to the start position, and the internal combustion engine 1 A rotational force is applied to 0.
  • an electronic control unit 27 is provided in the vehicle in order to control the operation of the internal combustion engine 10 and the like based on signals of various sensor forces including the fuel pressure sensor 24.
  • the electronic control unit 27 is connected to the battery 25 via the main relay 28 and the idling switch 26.
  • the main relay 28 is provided with a contact 29 and an exciting coil 31 for controlling the opening and closing of the contact 29!
  • the electronic control unit 27 as a control unit is configured mainly with a microcomputer.
  • the central processing unit (CPU) performs arithmetic processing according to the control program and initial data stored in the read-only memory (ROM) based on the detection values of various sensors including the fuel pressure sensor 24. And execute various controls based on the calculation results.
  • the calculation results by the CPU are temporarily stored in random access memory (RAM).
  • Various controls include control of the main relay 28, the high pressure pump 13, and the electromagnetic relief valve 22.
  • the electronic control unit 27 excites the excitation coil 31 of the main relay 28 in a situation where the idling switch 26 is in the on position. This excitation closes contact 29 (main relay 28 is turned on), and power is supplied from battery 25 to electronic control unit 27.
  • the exciting coil 31 is demagnetized after a predetermined condition is satisfied. The operation of the idling switch 26 to the off position at this time corresponds to a stop command for the internal combustion engine 10.
  • the predetermined condition is that a predetermined time elapses after the idling switch 26 is operated to the off position.
  • the elapsed time after the operation of the idle switch 26 to the off position is measured by, for example, a post-off power-on counter C1 shown in FIG.
  • the counter C1 starts counting on the condition that the idling switch 26 is operated to turn the on-position force to the off-position (see timing tl in FIG. 3), and counts up every time a fixed time elapses. Then, when the count value of the power-on counter C1 reaches a predetermined value after this turn-off (see timing t5 in FIG.
  • the predetermined value a is set to a value reached after completion of the valve opening operation of the electromagnetic relief valve 22, which will be described later, of the count value force of the power-on counter C1 after being turned off.
  • Electric power is supplied to the electronic control unit 27 for a while (after the count value reaches the predetermined value a) after the idling switch 26 is operated to the OFF position by the control of the main relay 28. Is done.
  • the count value reaches the predetermined value ⁇ (see timing t5 in FIG. 3)
  • the contact point 29 is opened (the main relay 28 is turned off), and the power supply from the battery 25 to the electronic control unit 27 is cut off.
  • the electronic control unit 27 controls the power supply to the electronic control unit 27 itself by controlling the main relay 28 according to the operation of the idle switch 26.
  • the electronic control unit 27 controls the discharge amount (fuel pressure feed amount) of the high pressure pump 13, so that the fuel pressure P in the delivery pipe 18, in other words, the fuel injection valve.
  • the injection pressure of the fuel 15 injected from 21 is set to a value suitable for the operating state of the internal combustion engine 10.
  • the fuel pressure P in the delivery pipe 18 is set to be higher than that in the intake port injection type internal combustion engine.
  • the fuel 15 In the in-cylinder internal combustion engine 10, the fuel 15 must be injected against the internal pressure of the cylinder that has become high pressure, and the fuel spray is appropriately atomized to ensure a good combustion state. Because it is necessary to do.
  • the electronic control unit 27 uses a target value related to the fuel pressure P in the delivery pipe 18 (hereinafter referred to as target fuel pressure Pt) based on the operating state of the internal combustion engine 10. calculate . Then, the fuel pumping amount is adjusted through control of the closing timing of the solenoid valve so that the fuel pressure P in the delivery pipe 18 detected by the fuel pressure sensor 24 approaches the target fuel pressure Pt.
  • target fuel pressure Pt a target value related to the fuel pressure P in the delivery pipe 18
  • the electronic control unit 27 performs a valve closing instruction for closing the electromagnetic relief valve 22 during operation of the internal combustion engine 10 in which the idling switch 26 is in the ON position. Is output. The energization state of the electromagnetic relief valve 22 is controlled according to this valve closing command, and the electromagnetic relief valve 22 is closed.
  • a valve opening command is output over a period until a predetermined time elapses immediately after that.
  • the energization state of the electromagnetic relief valve 22 is controlled, and the electromagnetic relief valve 22 is opened.
  • the fuel 15 in the delivery pipe 18 is relieved, and the fuel pressure P decreases. Due to this decrease, the amount of fuel 15 leaking from the fuel injection valve 21 after the engine is stopped is reduced, and the phenomenon that the exhaust emission is deteriorated due to combustion at the next engine start is suppressed.
  • the elapsed time from the start of output of the valve opening command is measured, for example, by a relief valve operation counter C2 shown in FIG.
  • This counter C2 starts counting on the condition that the output of the valve opening command starts (see timing t2 in Fig. 3), and counts up at regular intervals. Then, when the count value of the relief valve operation counter C2 reaches the predetermined value ⁇ (see timing t4 in FIG. 3), the valve opening command output starting force is stopped as the predetermined time has elapsed. Is done.
  • the predetermined value ⁇ corresponds to a time required for the normal electromagnetic relief valve 22 in the closed state to be fully opened in response to the valve opening command, or a time slightly longer than that. Is set to Therefore, when the count value of the relief valve operation counter C2 reaches the predetermined value
  • the electronic control unit 27 diagnoses the operating state of the electromagnetic relief valve 22.
  • diagnosis procedure will be described according to the “diagnosis routine” shown in the flowchart of FIG. This diagnosis routine is performed on the assumption that the fuel pressure sensor 24, the high pressure pump 13, the fuel system (for example, the fuel injection valve 21), and the deviation are normal.
  • step 110 the electronic control unit 27 determines whether or not the idling switch 26 has been operated to the on position force off position. The process proceeds to step 120 only when this judgment condition is satisfied.
  • step 120 the fuel pressure P in the delivery pipe 18 by the fuel pressure sensor 24 is read on the assumption that the following conditions ⁇ to condition C are all satisfied. In order to distinguish this fuel pressure P from the fuel pressure P at other timings, it is expressed as “fuel pressure Pl”.
  • Condition A The internal combustion engine 10 is stopped in response to the operation of the idle switch 26 to the off position.
  • Condition B Power supply from the battery 25 to the electronic control unit 27 by the control of the main relay 28 Is continued.
  • Condition C The electromagnetic relief valve 22 is still open.
  • the fuel pressure P1 read in step 120 is the fuel pressure immediately before the electromagnetic relief valve 22 is actuated (closed state). This fuel pressure P1 is the same regardless of whether the electromagnetic relief valve 22 operates normally and opens, or does not operate normally and remains fully closed or half-open. is there.
  • a command signal (opening command) for opening the electromagnetic relief valve 22 is output. If the electromagnetic relief valve 22 operates normally in response to this valve opening command, the electromagnetic relief valve 22 opens and the fuel 15 in the delivery pipe 18 is relieved to the fuel tank 14. Due to this relief, after the electromagnetic relief valve 22 is actuated, the fuel pressure P in the delivery pipe 18 is greatly reduced than before the actuating operation. On the other hand, if the electromagnetic relief valve 22 is fixed in a closed state and does not operate normally (open) regardless of the valve opening command, the amount of fuel 15 to be relieved is small. After the relief valve 22 is activated, the fuel pressure P in the delivery pipe 18 does not decrease as in the normal operation.
  • the amount of change which is a change mode of the fuel pressure P, before and after the operation of the electromagnetic relief valve 22 differs depending on whether the electromagnetic relief valve 22 operates normally or not.
  • step 140 the fuel pressure sensor 24 in the delivery pipe 18 at that time Read the fuel pressure P. In order to distinguish this fuel pressure P from the above fuel pressure P1, it is expressed as “fuel pressure P2.”
  • Condition D The internal combustion engine 10 is stopped.
  • Condition E The idle switch 26 is in the off position.
  • Condition F The power supply from the battery 25 to the electronic control unit 27 is continued by the control of the main relay 28 after the idling switch 26 is operated to the off position.
  • Condition G The operation of the electromagnetic relief valve 22 is completed.
  • the fuel pressure P2 read in Step 140 is the fuel pressure at or immediately after the operation of the electromagnetic relief valve 22 is completed.
  • step 160 it is determined whether or not the amount of change ⁇ ⁇ 1 (> 0) is greater than a predetermined determination value RVPD.
  • the judgment value RVPD is smaller than the value that can be taken when the electromagnetic relief valve 22 is normally operated and opened by the valve opening command with respect to the change amount ⁇ 1, and is larger than the value that can be taken when the electromagnetic relief valve 22 does not operate normally. Is also set to a large value.
  • step 160 Based on the determination result of step 160 above, it is determined whether the electromagnetic relief valve 22 is normal or abnormal. If the determination condition of step 160 is satisfied ( ⁇ PI> RVPD), it is determined in step 170 that the electromagnetic relief valve 22 is normally operated and opened. On the other hand, if the judgment condition in step 160 is satisfied! /, Na! /, ( ⁇ PI ⁇ RVPD), it is judged in step 180 that the electromagnetic relief valve 22 is stuck and closed. To do. Then, after making a determination in steps 170 and 180, a series of processes of this diagnostic routine is finished.
  • the idling switch 26 is in the ON position during the period before the timing tl in FIG. 3 (step 110: NO). At this time, since the high pressure fuel 15 is supplied from the high pressure pump 13 into the delivery pipe 18 and the electromagnetic relief valve 22 is closed, the fuel pressure P in the delivery pipe 18 is increased. Yes.
  • the count values of the power-on counter C1 after turn-off and the relief valve operation counter C2 are both initial values.
  • step 110 When the timing switch 26 is operated by the driver to the ON position force OFF position (step 110: YES), the fuel pressure P at that time is Read as fuel pressure P1 before operation (step 120). At this time, the operation of the internal combustion engine 10 is stopped and the high-pressure fuel supply from the high-pressure pump 13 is stopped, but since the electromagnetic relief valve 22 has not been opened yet, the fuel pressure P in the delivery pipe 18 is Stays high. Also, the power-on counter C1 after turning off according to the operation of the idle switch 26 to the off position Counting operation is started.
  • a valve opening command is output (step 130).
  • the valve is opened in accordance with the valve opening command.
  • the fuel 15 remaining in the delivery pipe 18 is relieved and returned to the fuel tank 14 through the return passage 23 and the low-pressure fuel passage 16. Therefore, after timing t2, the fuel pressure P in the delivery pipe 18 decreases with time. In Fig. 3, the fuel pressure P becomes the minimum value that can be taken at the timing t3, and then does not change.
  • the electromagnetic relief valve 22 is fixed in a closed state, and the valve is not opened regardless of the valve opening command or is opened by an amount corresponding to the valve opening command. If not, the fuel pressure P decreases more slowly than when the electromagnetic relief valve 22 operates normally, or does not decrease as much as during normal operation.
  • the count operation of the relief valve operation counter C2 is started in response to the valve opening command.
  • the count value of this counter C2 increases after timing t2.
  • the fuel pressure P is read at the timing t4 when the count value reaches the predetermined value j8, and this is set as the fuel pressure P2 after the electromagnetic relief valve 22 is activated (step 140).
  • the amount of change ⁇ ⁇ 1 is calculated (step 150), the amount of change ⁇ 1 is compared with the judgment value RVPD (step 160), and normal / abnormal judgment based on the comparison result (steps 170, 180) is performed. Is called.
  • timing t5 when the count value of the power-on counter C1 after turning off reaches the predetermined value a (timing t5), the main relay 28 is turned off, and the power supply from the battery 25 to the electronic control unit 27 is cut off. Is done.
  • the electromagnetic relief valve 22 is opened when a valve opening command is issued in response to the operation of the idling switch 26 to the OFF position (stop command for the internal combustion engine 10). Therefore, the electromagnetic relief valve 22 is closed when the same operation is performed. Therefore, the fuel pressure P in the delivery pipe 18 when the idling switch 26 is operated can be said to be the fuel pressure P1 immediately before the electromagnetic relief valve 22 operates.
  • the electromagnetic relief valve 22 when the idling switch 26 is operated to the off position (when a stop command is issued), the electromagnetic relief valve 22 operates on the fuel pressure P in the delivery pipe 18.
  • the previous fuel pressure P1 is used to determine abnormality. For this reason, it is possible to accurately grasp the fuel pressure P1 before the electromagnetic relief valve 22 is operated, and to accurately calculate the amount of change ⁇ P1 of the fuel pressure P before and after the operation of the electromagnetic relief valve 22.
  • the electromagnetic relief valve 22 is actuated when a valve opening command is issued in response to an operation of the idling switch 26 to the off position (stop command for the internal combustion engine 10). If the electromagnetic relief valve 22 operates normally, the electromagnetic relief valve 22 starts to operate according to the valve opening command and starts to open. Then, as the operation time elapses from the start, the electromagnetic relief valve 22 is opened and fully opened to complete the operation.
  • the output pressure of the valve opening command when the predetermined time has elapsed (when the relief valve operation counter C2 has reached a predetermined value)
  • the fuel pressure P is set to the electromagnetic relief valve 22 It is used as the fuel pressure P2 after the operation. Therefore, it is possible to accurately grasp the fuel pressure P2 after the operation of the electromagnetic relief valve 22 is completed, and to calculate the change amount ⁇ P1 of the fuel pressure P before and after the operation of the electromagnetic relief valve 22 with high accuracy.
  • a valve closing command for closing the electromagnetic relief valve 22 is issued, and the fuel pressure P is set to a target value (a constant value) for a predetermined time after the start.
  • the electromagnetic relief valve 22 is diagnosed for abnormality.
  • the fuel supply device 11 issues a valve opening command in response to a stop command for the internal combustion engine 10 to relieve the fuel 15 from the delivery pipe 18 and reduce the fuel pressure P as in the first embodiment.
  • the post-startup fuel pressure control is for making the fuel pressure P, which has been reduced by the valve opening control of the electromagnetic relief valve 22 while the internal combustion engine 10 is stopped, a stable value early after the start, This is performed as one mode of control of the high-pressure pump 13 described above (see FIG. 5).
  • this control when electric power is supplied from the battery 25 to the electronic control unit 27 in accordance with the operation of the idling switch 26 from the off position to the on position, a constant value is calculated as the target fuel pressure Pt.
  • the fuel pumping amount is adjusted through control of the closing timing of the solenoid valve in the high-pressure pump 13 so that the fuel pressure P detected by the fuel pressure sensor 24 approaches the target fuel pressure Pt.
  • This post-startup fuel pressure control is also performed until the predetermined time elapses for the starting force of the internal combustion engine 10.
  • the electromagnetic relief valve 22 is normally operated because it is stuck in the opened state. However, if the valve is not closed regardless of the valve closing command, the fuel 15 is relieved through the electromagnetic relief valve 22, and the fuel pressure P deviates greatly from the target fuel pressure Pt. The degree of deviation of the fuel pressure P from the target fuel pressure Pt is larger than that during normal operation of the electromagnetic relief valve 22. Thus, the magnitude of the degree of deviation differs between when the electromagnetic relief valve 22 operates normally and when it does not operate normally.
  • the operating state of the electromagnetic relief valve 22 is diagnosed according to the “diagnosis routine” shown in the flowchart of FIG.
  • This diagnosis routine is performed on the assumption that the fuel pressure sensor 24, the high-pressure pump 13, and the fuel system are all normal, as in the first embodiment.
  • the electronic control unit 27 first determines in step 210 whether or not the idling switch 26 is operated to the ON position. Only when this judgment condition is satisfied, the routine proceeds to step 220.
  • the target fuel pressure Pt in the post-startup fuel pressure control is calculated.
  • step 220 it is determined whether the internal combustion engine 10 has been started and a predetermined delay time Td has elapsed since the start. Whether or not the internal combustion engine 10 has been started can be determined based on, for example, the engine speed, the fuel pressure P, or the like.
  • post-startup fuel pressure control for converging the fuel pressure P to the fixed target fuel pressure Pt is started over a fixed time after the start.
  • a period in which the fuel pressure P fluctuates greatly after the engine starts due to the fuel pressure control after starting see FIG. 5
  • the delay time Td is set to be slightly longer than this period. The fluctuation period of this fuel pressure P will be described later. Then, the process proceeds to the next step 230 only when the determination condition of step 220 is satisfied.
  • step 230 the fuel pressure P in the delivery pipe 18 at that time is read by the fuel pressure sensor 24 on the assumption that all of the following conditions H to J are satisfied.
  • Condition H The internal combustion engine 10 is operating.
  • Condition I A valve closing command is issued.
  • Condition J Fuel 15 is injected from the fuel injection valve 21.
  • step 240 it is determined whether or not the post-startup fuel pressure control is finished. If this judgment condition is not satisfied, the process returns to Step 230. If the condition is satisfied, the process proceeds to Step 250. Therefore, during the post-startup fuel pressure control period, the process of reading the fuel pressure P (step 230) is repeated during the period excluding the delay time Td.
  • step 250 the average fuel pressure Pave, which is the arithmetic average value of the plurality of fuel pressures P read in step 230 as described above, is calculated.
  • step 270 it is determined whether or not the deviation degree ⁇ 2 is smaller than a predetermined determination value RVPDS.
  • the judgment value RVPDS is taken when the degree of deviation ⁇ ⁇ 2 is larger than the value that can be taken when the electromagnetic relief valve 22 is normally operated and closed by the valve closing command and does not operate normally. Set to a value smaller than the value to get
  • step 270 Based on the determination result of step 270, it is determined whether the electromagnetic relief valve 22 is normal or abnormal. If the determination condition in step 270 is satisfied ( ⁇ 2 ⁇ RVPDS), it is determined in step 280 that the electromagnetic relief valve 22 is operating normally and closed. On the other hand, if the determination condition in step 270 is not satisfied (AP2 ⁇ RVPDS), it is determined in step 290 that the electromagnetic relief valve 22 is stuck and the abnormality is fixed. Then, after making a determination in steps 280 and 290, a series of processing of this diagnostic routine is terminated.
  • step 210 the force innovation switch 26 in which the internal combustion engine 10 is stopped is operated to the ON position (step 210: YES). During this period, electric power is supplied from the battery 25 to the electronic control unit 27, and the target fuel pressure Pt (—constant value) in the post-startup fuel pressure control is calculated.
  • Pt target fuel pressure
  • the internal combustion engine 10 is started by the operation of the idling switch 26 to the start position at the timing ti l, the engine speed starts to increase. Further, the high-pressure pump 13 is driven by the internal combustion engine 10 that has started operation, and the intake and pressurization of the fuel 15 are started.
  • control of the high pressure pump 13 is started to converge the fuel pressure P to the target fuel pressure Pt.
  • Fuel 15 is discharged from the high-pressure pump 13, and the fuel 15 is distributed and supplied to the fuel injection valve 21 through the delivery pipe 18 and injected into the combustion chamber.
  • a period in which the fuel pressure P greatly fluctuates occurs.
  • FIG. 5 shows a mode in which the fuel pressure P decreases and decreases rapidly immediately after starting, and then increases rapidly.
  • the decrease in the former is due to the fact that a large amount of fuel 15 is injected from the fuel injection valve 21 at the time of starting under the condition that the pressure of the fuel 15 pressurized by the high-pressure pump 13 whose engine speed is low is low. Is. In the latter increase, the engine speed increases and the pressure of the fuel 15 pressurized by the high pressure pump 13 increases, and in addition, a large amount of fuel pressure P is brought close to the target fuel pressure Pt in the post-startup fuel pressure control. This is because the fuel 15 is discharged from the high-pressure pump 13. After a period in which the fluctuation amount of the fuel pressure P is large, the fluctuation amount is reduced until the fuel pressure control after the start is finished (timing tl3) (the fuel pressure P is stabilized).
  • the relationship between the fuel pressure P and the target fuel pressure Pt when the fluctuation amount decreases is as follows: when the electromagnetic relief valve 22 operates normally (closes) and when it operates normally. It is different from the case where the valve is not open (without opening with little force). If the electromagnetic relief valve 22 is operating normally, less fuel 15 is relieved from the electromagnetic relief valve 22. Therefore, the fuel pressure P is close to the target fuel pressure Pt (the degree of deviation of the fuel pressure P from the target fuel pressure Pt is small). On the other hand, if the electromagnetic relief valve 22 does not operate normally and is stuck in a state where it is opened with little force, even if the discharge amount of the fuel 15 from the high pressure pump 13 is increased, the The fuel 15 is relieved through the electromagnetic relief valve 22.
  • the fuel pressure P in the delivery pipe 18 does not become a value close to the target fuel pressure Pt (degree of deviation of the fuel pressure P from the target fuel pressure Pt: large). At this time, the fuel pressure P is larger than the target fuel pressure Pt when the electromagnetic relief valve 22 is stuck in a small open state and stuck in a large open state! It is far below.
  • Step 230 processing for reading the fuel pressure P (Ste 230) is started. This process is repeated during the period in which the post-startup fuel pressure control is performed (time period tl2 to tl3).
  • step 240 When the post-startup fuel pressure control ends at timing tl3 (step 240: YES), the average fuel pressure Pave is calculated based on the fuel pressure P read so far (step 250). In addition, calculation of deviation degree ⁇ ⁇ 2 (step 260), comparison between deviation degree ⁇ 2 and judgment value RVPDS (step 270), and normal / abnormal judgment based on the comparison result (steps 280, 290) are performed. .
  • the target fuel pressure Pt corresponding to the operating state of the internal combustion engine 10 at that time is calculated, and the high pressure pump so that the fuel pressure P approaches the target fuel pressure Pt.
  • the valve closing timing of the solenoid valve in 13 is controlled to adjust the fuel pumping amount.
  • a value smaller than the target fuel pressure P in the post-startup fuel pressure control is calculated as the target fuel pressure Pt.
  • the fuel pressure P changes (decreases) under the control of the high-pressure pump 13.
  • the deviation degree ⁇ P2 is larger than a possible value and does not operate normally.
  • a value smaller than the possible value of the deviation degree ⁇ P2 it is possible to appropriately determine whether or not the electromagnetic relief valve 22 is abnormal.
  • the fuel pressure P is read during at least a part of the time when the fuel pressure control is performed after starting, and the average value (average fuel pressure Pave) is used to determine whether there is an abnormality. Therefore, it is possible to improve the determination accuracy compared to the case where the fuel pressure P is read at a specific time of fuel pressure control after starting and the fuel pressure is used for the determination.
  • the timing for reading the fuel pressure P1 is a period from the time when the idling switch 26 is operated to the OFF position until the time when the electromagnetic relief valve 22 starts to operate. Good. Therefore, the timing for reading the fuel pressure P1 may be changed as appropriate on the condition that it is within this period.
  • the timing for reading the fuel pressure P2 does not necessarily have to be after the electromagnetic relief valve 22 has completed its operation. This is because the fuel pressure P changes (decreases) if the electromagnetic relief valve 22 operates normally in response to the valve opening command and opens to some extent. Therefore, for example, the fuel pressure P2 may be read when a predetermined time has elapsed after the output of the valve opening command.
  • the end of the period during which the fuel pressure P is read may be changed before the end of the control. For example, a certain time after the delay time Td has elapsed The timing at which the time elapses may be the end of the period during which the fuel pressure P is read.
  • the actual fuel pressure with respect to the target fuel pressure Pt is the same as in the second embodiment.
  • the presence or absence of abnormality of the electromagnetic relief valve 22 may be determined based on the degree of deviation of P and ⁇ P2.
  • the present invention is also applicable to the hybrid vehicle 41 shown in FIG.
  • This hybrid vehicle 41 is a type of vehicle that has two types of power sources with different characteristics, ie, an internal combustion engine and an electric motor, and travels in an optimal combination of driving forces according to the situation.
  • the driving device 42 of the hybrid vehicle 41 includes a first motor generator (MG1), a power dividing mechanism 43, and a second motor generator (MG2).
  • MG1 mainly functions as a generator.
  • the power split mechanism 43 is a planetary gear mechanism and splits the power generated in the internal combustion engine 10 into MG1 and drive wheels 44.
  • MG2 mainly functions as an electric motor and generates auxiliary power for driving the drive wheels 44 separately from the power of the internal combustion engine 10.
  • one of the powers divided by the power split mechanism 43 is mechanically transmitted to the drive wheels 44, and the drive wheels 44 are rotated.
  • the other of the divided power is transmitted to MG1.
  • MG1 functions as a generator, and the generated power is supplied to MG2.
  • MG2 functions as an electric motor in response to this supply, the power generated in MG2 is added to one power divided by power split mechanism 43 described above, and the output of internal combustion engine 10 is assisted.
  • the internal combustion engine 10 includes a fuel injection valve 47 that injects fuel into the intake port 46 in addition to the fuel injection valve 21 that directly injects fuel into the cylinder 45. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

 燃料供給装置11は、内燃機関10の燃料噴射弁21に燃料を供給するデリバリパイプ18を有し、電磁リリーフ弁22は開弁指令に応じて前記デリバリパイプ18から燃料をリリーフさせて該デリバリパイプ18の燃料圧力を低下させる。前記リリーフ弁22の診断装置は、前記機関10を停止させるための停止指令に応じて前記リリーフ弁22に前記開弁指令を出力する電子制御装置27を備え、該装置27は、前記停止指令が出力された後における前記デリバリパイプ18内の燃料圧力の変化態様に基づき前記リリーフ弁22の異常の有無を判定する。その結果、電磁リリーフ弁22の異常の有無を適切に診断することができる。

Description

明 細 書
燃料供給装置における電磁リリーフ弁の診断装置
技術分野
[0001] 本発明は、燃料噴射弁に燃料を供給する燃料供給装置に用いられる電磁リリーフ 弁について、その作動状態を診断する装置に関するものである。
背景技術
[0002] 車両等には、燃料タンク内の燃料を燃料ポンプによって吸入'加圧してデリバリパイ プに圧送し、内燃機関の気筒毎の燃料噴射弁に分配供給する燃料供給装置が設け られている。この燃料供給装置では、デリバリパイプに、その内部の燃料の圧力 (燃 圧)が所定の値を超えた場合に開弁するリリーフ弁を設け、同燃圧が過渡に高くなつ たときに燃料をリリーフさせて、燃圧を低下させるようにしている。
[0003] 特に、気筒内に高圧の燃料を直接噴射する筒内噴射式の内燃機関では、上記リリ ーフ弁として、通電状態に応じて開閉する電磁リリーフ弁を用い、これを機関停止後 の一定期間開弁させるようにしている。これは、内燃機関の停止後も燃圧の高い状態 が続くと、燃料噴射弁から燃料が漏出し、次回の機関始動時の排気ェミッションを悪 ィ匕させる原因となり得るからである。そこで、上記のように機関停止後に電磁リリーフ 弁を開弁させることでデリバリパイプ内の燃圧を低下させ、燃料噴射弁から漏出する 燃料の量を少なくして、排気ェミッション悪ィ匕の問題を解消しょうとして 、る。
[0004] ところで、上記燃料供給装置では電磁リリーフ弁が固着した場合、正常に開閉作動 しなくなり、上記デリバリパイプ内の燃料のリリーフが適切に行われなくなる。そこで、 電磁リリーフ弁の作動状態を診断する技術が従来より種々提案されている。
[0005] 例えば、特許文献 1に記載された診断装置では、上記電磁リリーフ弁に相当する燃 料バイパスバルブを閉制御して 、るときのデリバリパイプ近傍での燃料温度と、燃料 バイパスバルブ近傍の燃料戻し配管での燃料温度との偏差を求め、その偏差が所 定値以下である場合に、燃料バイノ スノ レブが開固着である旨判定している。これ は、燃料バイパスノ レブが開固着していると、デリバリパイプの近傍で内燃機関によ つて加熱された燃料が、燃料バイパスバルブに逐次流れ来む結果、燃料バイパスバ ルブ近傍での燃料温度が高くなつてデリバリパイプ近傍の燃料温度に近づく(両燃 料温度の偏差が小さくなる)ことに着目して考えられたものである。
[0006] ところが、上記特許文献 1に記載された診断装置は、内燃機関の始動時に開弁さ れ、通常運転時に閉弁される電磁リリーフ弁を診断の対象としており、上述したような 通常運転時に閉弁され、機関停止時に開弁される電磁リリーフ弁を診断の対象とし たものではない。そのため、こうした機関停止後に開弁制御される電磁リリーフ弁の 診断に適した診断装置の出現が望まれて ヽる。
特許文献 1:特開 2003 - 97374号公報
発明の開示
[0007] 本発明の目的は、内燃機関の停止後に開弁制御される燃料供給装置の電磁リリー フ弁について、その異常の有無を適切に診断することのできる診断装置を提供する ことにある。
[0008] 上記の目的を達成するため、本発明は、内燃機関の燃料供給装置における電磁リ リーフ弁の診断装置を提供する。前記燃料供給装置は、前記機関の燃料噴射弁に 燃料を供給する高圧燃料通路を有し、前記リリーフ弁は開弁指令に応じて前記通路 から燃料をリリーフさせて該通路の燃料圧力を低下させる。前記診断装置は、前記機 関を停止させるための停止指令に応じて前記リリーフ弁に前記開弁指令を出力する 制御部を備え、該制御部は、前記停止指令が出力された後における前記通路内の 燃料圧力の変化態様に基づき前記リリーフ弁の異常の有無を判定する。
[0009] 本発明はまた、さらに別の電磁リリーフ弁の診断装置を提供する。前記燃料供給装 置は、前記機関の燃料噴射弁に燃料を供給する高圧燃料通路を有し、前記リリーフ 弁は、開弁指令に応じて前記通路から燃料をリリーフさせて該通路の燃料圧力を低 下させるとともに、閉弁指令に応じて前記燃料のリリーフを停止する。前記診断装置 は、前記機関の始動に際して、前記リリーフ弁に閉弁指令を出力し且つ前記通路内 の燃料圧力を目標値にするための制御を行う制御部を備え、該制御部は前記目標 値に対する実際の燃料圧力の乖離度合いに基づき前記リリーフ弁の異常の有無を 判定する。
[0010] 本発明はまた、電磁リリーフ弁の診断方法を提供する。前記方法は、高圧燃料通 路を通じて内燃機関の燃料噴射弁に燃料を供給することと、開弁指令に応じて電磁 リリーフ弁に前記通路力も燃料をリリーフさせて、該通路の燃料圧力を低下させること と、前記機関を停止させるための停止指令に応じて前記リリーフ弁に前記開弁指令 を出力することと、前記停止指令が出力された後における前記通路内の燃料圧力の 変化態様に基づき前記リリーフ弁の異常の有無を判定することとを備える。
[0011] 本発明はまた、さらに別の電磁リリーフ弁の診断方法を提供する。前記方法は、高 圧燃料通路を通じて内燃機関の燃料噴射弁に燃料を供給することと、開弁指令に応 じて電磁リリーフ弁に前記通路力も燃料をリリーフさせて、該通路の燃料圧力を低下 させることと、閉弁指令に応じて前記リリーフ弁に前記燃料のリリーフを停止させること と、前記機関の始動に際して前記リリーフ弁に閉弁指令を出力し且つ前記通路内の 燃料圧力を目標値にするための制御を行うことと、前記目標値に対する実際の燃料 圧力の乖離度合いに基づき前記リリーフ弁の異常の有無を判定することとを備える。 図面の簡単な説明
[0012] [図 1]本発明を具体化した第 1実施形態における燃料供給装置、及び電磁リリーフ弁 の診断装置の概略構成図。
[図 2]電子制御装置によって実行される診断ルーチンを説明するフローチャート。
[図 3]燃圧、オフ後電源オンカウンタ、及びリリーフ弁作動カウンタについて、それぞ れの変化態様を説明するタイミングチャート。
[図 4]本発明の第 2実施形態において、電子制御装置によって実行される診断ルー チンを説明するフローチャート。
[図 5]燃圧、機関回転速度、及び内燃機関の状態について、それぞれの変化態様を 説明するタイミングチャート。
[図 6]電磁リリーフ弁の診断装置が適用されるハイブリッド車両の概略構成図。
発明を実施するための最良の形態
[0013] (第 1実施形態)
以下、本発明を具体ィ匕した第 1実施形態について、図 1〜図 3を参照して説明する
[0014] 車両には、燃料噴射弁カゝら気筒内に燃料を直接噴射する筒内噴射式の内燃機関 が搭載されている。また、燃料タンク内の燃料を各燃料噴射弁に供給するための燃 料供給装置が設けられて!/、る。
[0015] 図 1に示すように、燃料供給装置 11は低圧ポンプ 12及び高圧ポンプ 13を備えて いる。低圧ポンプ 12は、燃料タンク 14の内部に固定される電動式のポンプであり、同 燃料タンク 14内の燃料 15を吸入し吐出する。吐出された燃料 15は、低圧燃料通路 16を通じて高圧ポンプ 13へ圧送される。低圧燃料通路 16には、その内部の燃料 15 の圧力(燃圧)を所定圧以下にするためのプレツシャレギユレータ 17が設けられてい る。高圧ポンプ 13は、内燃機関 10に駆動連結されており、同内燃機関 10の運転に 伴い作動し、上記低圧燃料通路 16を通じて低圧ポンプ 12から圧送された燃料 15を 吸入及び加圧する。この高圧ポンプ 13は、燃料 15の加圧 (圧送)行程中の最適なタ イミングで電磁弁が閉じられることにより、必要な量の燃料 15を吐出する。この吐出さ れた高圧の燃料 15は、デリバリパイプ 18等によって構成される高圧燃料通路に供給 される。デリバリパイプ 18は気筒毎の燃料噴射弁 21に接続されており、上記高圧ポ ンプ 13から圧送された燃料 15を各燃料噴射弁 21に分配供給する。
[0016] デリバリパイプ 18には、その内部の燃料 15をリリーフさせて燃圧を低下させるため の電磁リリーフ弁 22が設けられて 、る。電磁リリーフ弁 22はリターン通路 23を通じて 上記低圧燃料通路 16に接続されている。電磁リリーフ弁 22はいわゆる電磁弁であり 、電磁ソレノイドへの通電を通じて開弁及び閉弁される。そして、この電磁リリーフ弁 2 2の開弁動作を通じて、デリバリパイプ 18内の高圧の燃料 15が低圧燃料通路 16ヘリ リーフされる。デリバリパイプ 18には、その内部の燃圧 Pを検出するための燃圧セン サ 24が設けられている。
[0017] また、車両には、各種電気機器の電源としてバッテリ 25が搭載されて 、る。バッテリ 25から各種電気機器への電力の供給'停止は、運転者によるイダ-シヨンスィッチ 2 6の操作に応じて行われる。イダ-シヨンスィッチ 26は、周知のようにオフ位置とオン 位置との間、及びオン位置とスタート位置との間を移動自在とされている。そして、基 本的には、イダ-シヨンスィッチ 26がオン位置に操作されて ヽる期間は各種電気機 器に電力が供給され、オフ位置に操作されるとその供給が停止される。また、イダ- シヨンスィッチ 26がスタート位置に操作されることによりスタータが作動し、内燃機関 1 0に回転力が付与される。
[0018] さらに、上記燃圧センサ 24をはじめとする各種センサ力もの信号等に基づき、内燃 機関 10等の作動を制御するために、車両には電子制御装置 27が設けられている。 電子制御装置 27は、メインリレー 28及び上記イダ-シヨンスィッチ 26を介して上記バ ッテリ 25に接続されている。メインリレー 28は、接点 29と、この接点 29を開閉制御す るための励磁コイル 31とを備えて!/ヽる。
[0019] 制御部としての電子制御装置 27は、マイクロコンピュータを中心として構成されて いる。電子制御装置 27では、中央処理装置 (CPU)が前記燃圧センサ 24を含む各 種センサの検出値等に基づき、読出し専用メモリ (ROM)に記憶されている制御プロ グラムや初期データに従って演算処理を行い、その演算結果に基づいて各種制御 を実行する。 CPUによる演算結果は、ランダムアクセスメモリ(RAM)において一時 的に記憶される。
[0020] 各種制御には、メインリレー 28、高圧ポンプ 13及び電磁リリーフ弁 22の各制御が 含まれる。
[0021] メインリレー 28の制御では、電子制御装置 27は、イダ-シヨンスィッチ 26がオン位 置にある状況では、メインリレー 28の励磁コイル 31を励磁する。この励磁により接点 2 9が閉成 (メインリレー 28がオン)され、電子制御装置 27にバッテリ 25から電力が供 給される。一方、イダ-シヨンスィッチ 26がオン位置力もオフ位置に操作されると、所 定の条件が満たされた後に励磁コイル 31を消磁する。この際のイダ-シヨンスィッチ 26のオフ位置への操作が、内燃機関 10の停止指令に相当する。
[0022] 所定の条件は、ここではイダ-シヨンスィッチ 26のオフ位置への操作後、所定時間 が経過することである。イダ-シヨンスィッチ 26のオフ位置への操作後の経過時間は 、例えば図 3に示すオフ後電源オンカウンタ C1により計時される。このカウンタ C1は 、イダ-シヨンスィッチ 26がオン位置力もオフ位置に操作されることを条件にカウント を開始し(図 3のタイミング tl参照)、一定時間が経過する毎にカウントアップする。そ して、このオフ後電源オンカウンタ C1のカウント値が所定値ひに達すると(図 3のタイ ミング t5参照)、イダ-シヨンスィッチ 26のオフ位置への操作後に所定の時間が経過 したとして、上記励磁コイル 31を消磁する。 [0023] なお、上記所定値 aは、オフ後電源オンカウンタ C1のカウント値力 後述する電磁 リリーフ弁 22の開弁作動が完了した後に達する値に設定されている。
[0024] 上記メインリレー 28の制御により、イダ-シヨンスィッチ 26がオフ位置へ操作された 後もしばらくの期間 (カウント値が所定値 aに達するまでの期間)は電子制御装置 27 に電力が供給される。カウント値が所定値 αに達すると(図 3のタイミング t5参照)、接 点 29が開成 (メインリレー 28がオフ)され、バッテリ 25から電子制御装置 27への電力 供給が遮断される。このように、電子制御装置 27は、イダ-シヨンスィッチ 26の操作 に応じてメインリレー 28を制御することにより、電子制御装置 27自身への電力供給を 制御する。
[0025] また、高圧ポンプ 13の制御では、電子制御装置 27は高圧ポンプ 13の吐出量 (燃 料圧送量)を制御することにより、デリバリパイプ 18内の燃圧 P、換言すれば燃料噴 射弁 21から噴射される燃料 15の噴射圧を、内燃機関 10の運転状態に適した値に する。
[0026] ここで、デリバリパイプ 18内の燃圧 Pは、吸気ポート噴射式の内燃機関と比較して 高圧に設定されている。筒内噴射式の内燃機関 10においては、高圧となった気筒の 内圧に抗して燃料 15を噴射しなければならず、また、良好な燃焼状態を確保すべく 燃料噴霧を適度に微粒ィ匕する必要があるからである。
[0027] 高圧ポンプ 13の制御では、電子制御装置 27は、デリバリパイプ 18内の燃圧 Pに係 る目標値 (以下、目標燃圧 Ptと 、う)を内燃機関 10の運転状態に基づ 、て算出する 。そして、燃圧センサ 24によって検出されるデリバリパイプ 18内の燃圧 Pが上記目標 燃圧 Ptに近づくように、上記電磁弁の閉弁時期の制御を通じて燃料圧送量を調整 する。
[0028] 電磁リリーフ弁 22の制御では、電子制御装置 27は、イダ-シヨンスィッチ 26がオン 位置にある内燃機関 10の運転中には、電磁リリーフ弁 22を閉弁させるための閉弁指 令を出力する。この閉弁指令に応じて電磁リリーフ弁 22に対する通電状態が制御さ れ、同電磁リリーフ弁 22が閉弁する。
[0029] これに対し、内燃機関 10の停止のためにイダ-シヨンスィッチ 26がオフ位置に操作 されると、その直後から所定時間が経過するまで期間にわたり開弁指令を出力する。 この開弁指令に応じて電磁リリーフ弁 22に対する通電状態が制御され、同電磁リリー フ弁 22が開弁する。この開弁により、デリバリパイプ 18内の燃料 15がリリーフされ、 燃圧 Pが低下する。この低下により、機関停止後に燃料噴射弁 21から漏出する燃料 15の量が少なくなり、次回の機関始動時に燃焼して排気ェミッションが悪ィ匕する現象 が抑制される。
[0030] 上記開弁指令の出力開始からの経過時間は、例えば、図 3に示すリリーフ弁作動 カウンタ C2により計時される。このカウンタ C2は、開弁指令の出力開始を条件にカウ ントを開始し(図 3のタイミング t2参照)、一定時間毎にカウントアップする。そして、こ のリリーフ弁作動カウンタ C2のカウント値が所定値 βに達すると(図 3のタイミング t4 参照)、開弁指令の出力開始力 所定の時間が経過したとして、開弁指令の出力が 停止される。
[0031] なお、上記所定値 βは、閉弁状態にある正常な電磁リリーフ弁 22が、開弁指令に 応じて全開状態になるまでに要する時間、又はそれよりも若干長い時間に対応する 値に設定されている。従って、リリーフ弁作動カウンタ C2のカウント値が所定値 |8に 達したときには、電磁リリーフ弁 22の開弁作動が完了していることになる。
[0032] さらに、電子制御装置 27は、上記電磁リリーフ弁 22の作動状態の診断を行う。次に 、この診断の手順について、図 2のフローチャートに示す「診断ルーチン」に従って説 明する。この診断ルーチンは、燃圧センサ 24、高圧ポンプ 13、燃料系システム (例え ば燃料噴射弁 21)カ^、ずれも正常であることを前提に行われる。
[0033] 電子制御装置 27は、まずステップ 110において、イダ-シヨンスィッチ 26がオン位 置力 オフ位置へ操作されたかどうかを判定する。この判定条件が満たされて 、る場 合にのみステップ 120へ移行する。
[0034] ステップ 120では、次の条件 Α〜条件 Cが全て満たされていることを前提に、燃圧 センサ 24によるデリバリパイプ 18内の燃圧 Pを読込む。この燃圧 Pを他のタイミングで の燃圧 Pと区別するために、「燃圧 Pl」と表現する。
[0035] 条件 A:イダ-シヨンスィッチ 26のオフ位置への操作に応じて内燃機関 10が停止し ていること。
[0036] 条件 B:メインリレー 28の制御によりバッテリ 25から電子制御装置 27への電力供給 が継続していること。
[0037] 条件 C:電磁リリーフ弁 22が未だ開弁されて 、な 、こと。
[0038] 従って、ステップ 120で読込まれる燃圧 P1は、電磁リリーフ弁 22が作動する直前( 閉弁状態)の燃圧である。この燃圧 P1は、電磁リリーフ弁 22が正常に作動して開弁 状態となるものであっても、正常に作動せず全閉状態を維持する又は半開状態とな るものであっても同じである。
[0039] 続いて、ステップ 130において、電磁リリーフ弁 22を開弁させるための指令信号(開 弁指令)を出力する。この開弁指令に応じて電磁リリーフ弁 22が正常に作動すれば 、同電磁リリーフ弁 22が開弁して、デリバリパイプ 18内の燃料 15が燃料タンク 14にリ リーフされる。このリリーフにより、電磁リリーフ弁 22の作動後には、デリバリパイプ 18 内の燃圧 Pは上記作動前よりも大きく低下する。これに対し、電磁リリーフ弁 22が閉 弁した状態で固着していて、上記開弁指令に拘わらず正常に作動(開弁)しなけれ ば、リリーフされる燃料 15の量が少ないことから、電磁リリーフ弁 22の作動後には、デ リパリパイプ 18内の燃圧 Pは上記正常作動時ほど低下しない。
[0040] このように、電磁リリーフ弁 22が正常に作動する場合と正常に作動しない場合とで は、電磁リリーフ弁 22の作動前後における燃圧 Pの一変化態様である変化量が異な る。
[0041] この点に着目し、第 1実施形態では、ステップ 140において、次の条件 D〜条件 G が全て満たされて 、ることを前提に、燃圧センサ 24によるそのときのデリバリパイプ 1 8内の燃圧 Pを読込む。この燃圧 Pを上記燃圧 P1と区別するために、「燃圧 P2」と表 現する。
[0042] 条件 D:内燃機関 10が停止中であること。
[0043] 条件 E:イダ-シヨンスィッチ 26がオフ位置にあること。
[0044] 条件 F:イダ-シヨンスィッチ 26がオフ位置へ操作された後、メインリレー 28の制御 によりバッテリ 25から電子制御装置 27への電力供給が継続していること。
[0045] 条件 G:電磁リリーフ弁 22の作動が完了して 、ること。
[0046] 従って、ステップ 140で読込まれる燃圧 P2は、電磁リリーフ弁 22が作動を完了した 時点又はその直後の燃圧となる。 [0047] 次に、ステップ 150において、前記ステップ 120での燃圧 PIに対するステップ 140 での燃圧 P2の変化量 Δ PI ( = P1 -P2)を算出する。
[0048] ステップ 160において、上記変化量 Δ Ρ1 ( >0)が予め設定された判定値 RVPDよ りも多いかどうかを判定する。ここで、判定値 RVPDは、変化量 Δ Ρ1について、電磁 リリーフ弁 22が開弁指令により正常に作動して開弁した場合に採り得る値よりも小さく 、正常に作動しない場合に採り得る値よりも大きな値に設定されている。
[0049] 上記ステップ 160の判定結果に基づき、電磁リリーフ弁 22が正常であるか異常であ るかを判定する。ステップ 160の判定条件が満たされて 、る( Δ PI >RVPD)と、ステ ップ 170において、電磁リリーフ弁 22が正常に作動して開弁していると判定する。こ れに対し、ステップ 160の判定条件が満たされて!/、な!/、 ( Δ PI≤RVPD)と、ステップ 180において、電磁リリーフ弁 22が閉弁した状態で固着した異常であると判定する。 そして、ステップ 170, 180で判定を行った後、この診断ルーチンの一連の処理を終 了する。
[0050] ところで、イダ-シヨンスィッチ 26の操作に応じた電磁リリーフ弁 22の作動により、デ リパリパイプ 18内の燃圧 P等が図 3に示すように変化した場合、上記診断ルーチンの 各処理は次のように行われる。
[0051] 内燃機関 10の運転中、図 3ではタイミング tlよりも前の期間には、イダ-シヨンスィ ツチ 26がオン位置にある(ステップ 110 : NO)。このときには、高圧ポンプ 13からデリ ノ リパイプ 18内に高圧の燃料 15が供給されていることに加え、電磁リリーフ弁 22が 閉弁していることから、デリバリパイプ 18内の燃圧 Pが高くなつている。オフ後電源ォ ンカウンタ C1、及びリリーフ弁作動カウンタ C2のカウント値はいずれも初期値となつ ている。
[0052] タイミングおにお!/、て、イダ-シヨンスィッチ 26が運転者によりオン位置力 オフ位 置に操作されると (ステップ 110: YES)、そのときの燃圧 Pが電磁リリーフ弁 22の作 動前の燃圧 P1として読込まれる (ステップ 120)。このときには、内燃機関 10の運転 が停止されて高圧ポンプ 13からの高圧の燃料供給が停止されるが、電磁リリーフ弁 2 2が未だ開弁していないことから、デリバリパイプ 18内の燃圧 Pは高いままである。ま た、イダ-シヨンスィッチ 26のオフ位置への操作に応じ、オフ後電源オンカウンタ C1 のカウント動作が開始される。
[0053] 上記イダ-シヨンスィッチ 26がオフ位置へ操作された直後のタイミング t2では、開 弁指令が出力される (ステップ 130)。このとき、電磁リリーフ弁 22が正常であれば上 記開弁指令に応じて開弁する。この開弁により、デリバリパイプ 18内に残存している 燃料 15がリリーフされ、リターン通路 23及び低圧燃料通路 16を通じて燃料タンク 14 に戻される。従って、タイミング t2以降、デリバリパイプ 18内の燃圧 Pが時間の経過と ともに低下する。図 3では、燃圧 Pはタイミング t3において、採り得る最小の値となり、 その後は変化しなくなる。
[0054] これに対し、電磁リリーフ弁 22が閉弁状態で固着する等していて、上記開弁指令に 拘わらず開弁しない、あるいは開弁するものの開弁指令に対応する量だけ開弁しな い場合には、燃圧 Pが上記電磁リリーフ弁 22の正常作動時よりもゆっくり低下する、 あるいは正常作動時ほど低下しな 、。
[0055] また、上記開弁指令に応じてリリーフ弁作動カウンタ C2のカウント動作が開始され る。このカウンタ C2のカウント値はタイミング t2以降増加してゆく。そして、このカウント 値が所定値 j8となるタイミング t4において燃圧 Pが読込まれ、これが電磁リリーフ弁 2 2の作動後の燃圧 P2とされる (ステップ 140)。さらに、タイミング t4では変化量 Δ Ρ1 の算出(ステップ 150)、変化量 Δ Ρ1と判定値 RVPDとの比較 (ステップ 160)、及び 比較結果に基づく正常 ·異常の判定 (ステップ 170, 180)が行われる。
[0056] 上記タイミング t4の後にオフ後電源オンカウンタ C1のカウント値が所定値 aに達す ると(タイミング t5)、メインリレー 28がオフされ、バッテリ 25から電子制御装置 27への 電力供給が遮断される。
[0057] 以上詳述した第 1実施形態によれば、次の効果が得られる。
[0058] (1)開弁指令により電磁リリーフ弁 22が作動する前 (イダ-シヨンスィッチ 26のオフ 位置への操作時)の燃圧 P1と、電磁リリーフ弁 22が作動した後の燃圧 P2との変化量 Δ Ρ1 ( >0)を求め、これと判定値 RVPDとを比較する。そして、比較の結果、変化量 Δ Ρ1が判定値 RVPDよりも少ない場合には電磁リリーフ弁 22が異常であると判定し 、そうでない場合に正常であると判定するようにしている。表現を変えると、イダ-ショ ンスィッチ 26のオフ位置への操作後(内燃機関 10の停止指令後)の燃圧 Pの変化態 様に基づき電磁リリーフ弁 22の異常の有無を判定するようにして 、る。
[0059] 従って、上記判定値 RVPDとして適正に設定された値、ここでは電磁リリーフ弁 22 が正常に作動した場合に変化量 Δ P1が取り得る値よりも小さぐ正常に作動しない 場合に変化量 Δ P1が取り得る値よりも大きな値を用いることにより、電磁リリーフ弁 22 が異常であるかどうかを適正に判定することができる。
[0060] (2)電磁リリーフ弁 22は、イダ-シヨンスィッチ 26のオフ位置への操作(内燃機関 1 0の停止指令)に応じて開弁指令が出された場合に開弁するものであることから、同 操作がされた時点では電磁リリーフ弁 22は閉弁している。このため、イダ-シヨンスィ ツチ 26が操作されたときのデリバリパイプ 18内の燃圧 Pは、電磁リリーフ弁 22が作動 する直前の燃圧 P1といえる。
[0061] この点、第 1実施形態では、イダ-シヨンスィッチ 26がオフ位置へ操作されたとき( 停止指令が出されたとき)デリバリパイプ 18内の燃圧 Pを、電磁リリーフ弁 22が作動 する前の燃圧 P1として異常の判定に用いるようにしている。このため、電磁リリーフ弁 22が作動する前の燃圧 P1を正確に把握し、もって、電磁リリーフ弁 22の作動前後に おける燃圧 Pの変化量 Δ P1を精度よく算出することができる。
[0062] (3)電磁リリーフ弁 22は、イダ-シヨンスィッチ 26のオフ位置への操作(内燃機関 1 0の停止指令)に応じて開弁指令が出された場合に作動する。電磁リリーフ弁 22が正 常に作動するものであれば、同電磁リリーフ弁 22は上記開弁指令によって作動を開 始し、開弁し始める。そして、この開始からの作動時間の経過に伴い電磁リリーフ弁 2 2の開弁が進み、全開状態となって作動を完了する。
[0063] この点、第 1実施形態では、開弁指令の出力開始力 所定時間が経過したとき (リリ ーフ弁作動カウンタ C2が所定値 に達したとき)の燃圧 Pを、電磁リリーフ弁 22が作 動した後の燃圧 P2として用いるようにしている。このため、電磁リリーフ弁 22が作動を 完了した後の燃圧 P2を正確に把握し、もって、電磁リリーフ弁 22の作動前後におけ る燃圧 Pの変化量 Δ P1を精度よく算出することができる。
[0064] (4)内燃機関 10の停止後に電磁リリーフ弁 22が作動して開弁し燃圧 Pが変化する ことに着目し、その作動の前後の燃圧 PI, P2を読込み、それらの変化量 Δ Ρ1と判 定値 RVPDとの比較により異常の有無を判定するようにしている。そのため、異常の 有無の判定に際し、特別に電磁リリーフ弁 22を開弁させたり閉弁させたりしなくても すむ。
[0065] (5)内燃機関 10の停止後に電磁リリーフ弁 22が開弁制御される燃料供給装置 11 について、その開弁制御中に電磁リリーフ弁 22の異常の有無を診断することができ る。
[0066] (第 2実施形態)
次に、本発明を具体ィ匕した第 2実施形態について、図 4及び図 5を参照して説明す る。
[0067] 第 2実施形態では、内燃機関 10の始動に際し電磁リリーフ弁 22を閉弁させるため の閉弁指令が出され、始動後の所定時間にわたり燃圧 Pを目標値 (一定値)にするた めの制御 (以下、「始動後燃圧制御」という)が行われる燃料供給装置 11を対象とし、 その電磁リリーフ弁 22について異常の有無を診断する。上記燃料供給装置 11が、 内燃機関 10の停止指令に応じて開弁指令を出してデリバリパイプ 18から燃料 15をリ リーフさせて燃圧 Pを低下させるものである点については、第 1実施形態と同様である
[0068] ここで、始動後燃圧制御は、内燃機関 10の停止中に電磁リリーフ弁 22の開弁制御 により低下した燃圧 Pを、始動後の早期に安定した値にするためのものであり、上述 した高圧ポンプ 13の制御の一態様として行われる(図 5参照)。この制御では、イダ- シヨンスィッチ 26のオフ位置からオン位置への操作に応じて電子制御装置 27にバッ テリ 25から電力が供給されると、目標燃圧 Ptとして一定の値が算出される。そして、 内燃機関 10の始動後に、燃圧センサ 24によって検出される燃圧 Pが上記目標燃圧 Ptに近づくように、高圧ポンプ 13における電磁弁の閉弁時期の制御を通じて燃料圧 送量が調整される。この始動後燃圧制御は、内燃機関 10の始動力も所定の時間が 経過するまで行われる。
[0069] この始動後燃圧制御の実行中、電磁リリーフ弁 22が正常に作動し、上記閉弁指令 に従って閉弁していれば、デリバリパイプ 18からリリーフされる燃料 15が少なく(0を 含む)、燃圧 Pが目標燃圧 Ptに近づく。燃圧 Pは目標燃圧 Ptからあまり乖離しない。
[0070] これに対し、電磁リリーフ弁 22が開弁した状態で固着している等して正常に作動せ ず、上記閉弁指令に拘わらず閉弁していなければ、電磁リリーフ弁 22を通じて燃料 1 5がリリーフされ、燃圧 Pが目標燃圧 Ptから大きく乖離する。目標燃圧 Ptに対する燃 圧 Pの乖離度合いは、上記電磁リリーフ弁 22の正常作動時よりも大きい。このように、 電磁リリーフ弁 22が正常に作動する場合と正常に作動しない場合とでは、乖離度合 いの大きさが異なる。
[0071] この現象に着目し、第 2実施形態では、図 4のフローチャートに示す「診断ルーチン 」に従って電磁リリーフ弁 22の作動状態を診断するようにしている。この診断ルーチ ンは、第 1実施形態と同様に、燃圧センサ 24、高圧ポンプ 13、燃料系システムがい ずれも正常であることを前提に行われる。
[0072] 電子制御装置 27は、まずステップ 210においてイダ-シヨンスィッチ 26がオン位置 に操作されて ヽるかどうかを判定する。この判定条件が満たされて 、る場合にのみス テツプ 220へ移行する。
[0073] ここで、イダ-シヨンスィッチ 26がオン位置に操作されると、上記始動後燃圧制御に おける目標燃圧 Ptが算出される。
[0074] ステップ 220では、内燃機関 10が始動され、かつその始動後に所定のディレイ時 間 Tdが経過したカゝどうかを判定する。内燃機関 10が始動されたカゝどうかについては 、例えば、機関回転速度、燃圧 P等に基づいて判断することができる。なお、内燃機 関 10が始動すると、上述したように、始動後の一定時間にわたり、燃圧 Pを上記一定 の目標燃圧 Ptに収束させるための始動後燃圧制御が開始される。また、上記始動後 燃圧制御により機関始動後に燃圧 Pが大きく変動する期間が生ずる(図 5参照)が、 ディレイ時間 Tdはこの期間よりもわずかに長い時間に設定されている。この燃圧 Pの 変動期間については後述する。そして、ステップ 220の判定条件が満たされている場 合にのみ次のステップ 230へ移行する。
[0075] ステップ 230では、次の条件 H〜条件 Jが全て満たされて ヽることを前提に、燃圧セ ンサ 24によるそのときのデリバリパイプ 18内の燃圧 Pを読込む。
[0076] 条件 H :内燃機関 10が作動中であること。
[0077] 条件 I:閉弁指令が出されていること。
[0078] 条件 J :燃料噴射弁 21から燃料 15が噴射されていること。 [0079] 次に、ステップ 240において、上記始動後燃圧制御が終了した力どうかを判定する 。この判定条件が満たされていないとステップ 230へ戻り、満たされていると次のステ ップ 250へ移行する。従って、始動後燃圧制御の期間中、ディレイ時間 Tdを除く期 間において燃圧 Pを読込む処理 (ステップ 230)が繰り返されることとなる。そして、ス テツプ 250では、上記のようにステップ 230で読込んだ複数の燃圧 Pの相加平均値で ある平均燃圧 Paveを算出する。
[0080] 次に、ステップ 260において、上記始動後燃圧制御において用いられた目標燃圧 Ptに対する前記ステップ 250での平均燃圧 Paveの乖離度合!/、 Δ P2 ( = Pt— Pave) を算出する。
[0081] ステップ 270において、上記乖離度合い Δ Ρ2が予め設定された判定値 RVPDSよ りも小さいかどうかを判定する。ここで、判定値 RVPDSは、乖離度合い Δ Ρ2につい て、電磁リリーフ弁 22が閉弁指令により正常に作動して閉弁している場合に採り得る 値よりも大きぐ正常に作動しない場合に採り得る値よりも小さな値に設定されている
[0082] 上記ステップ 270の判定結果に基づき、電磁リリーフ弁 22が正常であるか異常であ るかを判定する。ステップ 270の判定条件が満たされている( Δ Ρ2< RVPDS)と、ス テツプ 280において電磁リリーフ弁 22が正常に作動して閉弁していると判定する。こ れに対し、ステップ 270の判定条件が満たされていない( A P2≥RVPDS)と、ステツ プ 290において、電磁リリーフ弁 22が開弁した状態で固着した異常であると判定する 。そして、ステップ 280, 290で判定を行った後、この診断ルーチンの一連の処理を 終了する。
[0083] ところで、イダ-シヨンスィッチ 26の操作に応じた電磁リリーフ弁 22の作動によりデリ バリパイプ 18内の燃圧 P等が図 5に示すように変化した場合、上記診断ルーチンの 各処理は次のように行われる。
[0084] 図 5中、タイミング ti lよりも前の期間は、内燃機関 10が停止している力 イダニショ ンスィッチ 26がオン位置に操作されている(ステップ 210 : YES)ものとする。この期 間にはバッテリ 25から電子制御装置 27へ電力が供給されており、始動後燃圧制御 における目標燃圧 Pt (—定値)が算出される。 [0085] タイミング ti lで、イダ-シヨンスィッチ 26のスタート位置への操作により内燃機関 1 0が始動されると、機関回転速度が上昇し始める。また、作動を開始した内燃機関 10 により高圧ポンプ 13が駆動されて、燃料 15の吸入及び加圧が開始される。さら〖こ、 始動後燃圧制御において燃圧 Pを目標燃圧 Ptに収束させるための高圧ポンプ 13の 制御が開始される。高圧ポンプ 13から燃料 15が吐出され、この燃料 15がデリバリパ イブ 18を通じて燃料噴射弁 21に分配供給されて燃焼室へ噴射される。こうした燃料 15の噴射が開始される内燃機関 10の始動後には、燃圧 Pが大きく変動する期間が 生ずる。図 5では、始動直後に燃圧 Pがー且低下し、その後に急激に上昇する態様 が示されている。前者の低下は、機関回転速度が低ぐ高圧ポンプ 13にて加圧され る燃料 15の圧力が低い状況下で、始動時用として燃料噴射弁 21から多めの燃料 1 5が噴射されることによるものである。後者の上昇は、機関回転速度が上昇し、高圧ポ ンプ 13で加圧される燃料 15の圧力が高くなることに加え、始動後燃圧制御において 燃圧 Pを目標燃圧 Ptに近づけるべく多くの量の燃料 15が高圧ポンプ 13から吐出さ れることによる。上記燃圧 Pの変動量の大きな期間を過ぎると、その後、始動後燃圧 制御が終了するまで (タイミング tl3)は、変動量が少なくなる (燃圧 Pが安定する)。
[0086] 上記のように変動量が少なくなつたときの燃圧 Pと目標燃圧 Ptとの関係は、電磁リリ ーフ弁 22が正常に作動(閉弁)している場合と、正常に作動していない (少な力もず 開弁している)場合とで異なる。電磁リリーフ弁 22が正常に作動していれば、この電 磁リリーフ弁 22からリリーフされる燃料 15が少ない。そのため、燃圧 Pは目標燃圧 Pt に近い値となる (燃圧 Pの目標燃圧 Ptに対する乖離度合い:小)。これに対し、電磁リ リーフ弁 22が正常に作動せず、少な力 ず開弁したままの状態で固着していると、高 圧ポンプ 13からの燃料 15の吐出量を多くしても、その燃料 15は電磁リリーフ弁 22を 通じてリリーフする。そのため、デリバリパイプ 18内の燃圧 Pは目標燃圧 Ptに近い値 とならない (燃圧 Pの目標燃圧 Ptに対する乖離度合い:大)。この際、電磁リリーフ弁 2 2が小さく開弁した状態で固着して 、る場合よりも、大きく開弁した状態で固着して!/、 る場合の方が、燃圧 Pは目標燃圧 Ptに対し大きく下回る。
[0087] タイミング ti lから、上記燃圧 Pの変動量の大きな期間を考慮して設定されたディレ ィ時間 Tdが経過 (ステップ 220: YES)したタイミング tl 2では、燃圧 Pを読込む処理( ステップ 230)が開始される。この処理は、始動後燃圧制御が実施されている期間(タ イミング tl2〜tl3の期間)中繰り返される。
[0088] そして、タイミング tl 3において始動後燃圧制御が終了する (ステップ 240 : YES)と 、それまで読込まれた燃圧 Pに基づき平均燃圧 Paveが算出される (ステップ 250)。さ らに、乖離度合い Δ Ρ2の算出(ステップ 260)、乖離度合い Δ Ρ2と判定値 RVPDSと の比較 (ステップ 270)、及びその比較結果に基づく正常 ·異常の判定 (ステップ 280 , 290)力行われる。
[0089] なお、始動後燃圧制御が終了したタイミング tl3以降は、そのときの内燃機関 10の 作動状態に応じた目標燃圧 Ptが算出され、燃圧 Pがその目標燃圧 Ptに近づくように 、高圧ポンプ 13における電磁弁の閉弁時期が制御されて燃料圧送量が調整される 。図 5では、目標燃圧 Ptとして、始動後燃圧制御における目標燃圧 P りも小さな値 が算出される。そして、この高圧ポンプ 13の制御により燃圧 Pが変化 (低下)する。
[0090] 以上詳述した第 2実施形態によれば、次の効果が得られる。
[0091] (6)内燃機関 10の始動に際し、電磁リリーフ弁 22を閉弁させるための閉弁指令が 出され、かつ燃圧 Pを一定の目標燃圧 Ptに収束させるための始動後燃圧制御が行 われる燃料供給装置 11にお 、て、目標燃圧 Ptに対する燃圧 P (平均燃圧 Pave)の 乖離度合い Δ Ρ2を求めて判定値 RVPDと比較する。そして、比較の結果、乖離度 合い Δ Ρ2が判定値 RVPDよりも大きい場合には、電磁リリーフ弁 22が異常であると 判定し、そうでな 、場合には正常であると判定するようにして 、る。
[0092] 従って、上記判定値 RVPDSとして適正に設定された値、ここでは電磁リリーフ弁 2 2が正常に作動した場合に乖離度合い Δ P2が取り得る値よりも大きぐ正常に作動し ない場合に乖離度合い Δ P2が取り得る値よりも小さな値を用いることにより、電磁リリ ーフ弁 22が異常であるかどうかを適正に判定することができる。
[0093] (7)始動後燃圧制御が行われて 、るときの少なくとも一部の期間中における燃圧 P を読込み、それらの平均値 (平均燃圧 Pave)を異常の有無の判定に用いている。そ のため、始動後燃圧制御の特定の時期に燃圧 Pを読込み、その燃圧を判定に用いる 場合に比べて判定精度を高めることができる。
[0094] (8)始動後燃圧制御の実施期間のうち、内燃機関 10の始動から所定のディレイ時 間 Tdが経過した後の期間を、上記(7)において燃圧 Pを読込む期間としている。そ のため、内燃機関 10の始動直後には燃圧 Pが大きく変動する場合があるが、この変 動が平均燃圧 Paveの算出に及ぼす影響を小さくし、もって平均燃圧 Paveの算出精 度を高めることができる。
[0095] (9)始動後燃圧制御中、燃圧 Pが安定したとき、目標燃圧 Ptに対する燃圧 Pの乖離 度合い Δ Ρ2は、電磁リリーフ弁 22の固着の状態に応じて異なる。電磁リリーフ弁 22 が小さく開弁した状態で固着して 、る場合よりも、大きく開弁した状態で固着して 、る 場合の方力 乖離度合い Δ Ρ2が大きくなる。このため、判定値 RVPDSとして適切な 値を用いることにより、単に異常の有無を判定するにとどまらず、異常の程度、例えば 全開状態で固着しているの力 異物の詰まり等により半開状態で固着しているのかを 判定することが可能となる。
[0096] (10)内燃機関 10の始動直後の一定期間に行われる始動後燃圧制御において、 目標燃圧 Ptとして一定の値が算出されることに着目し、そのときの目標燃圧 Ptに対 する燃圧 (平均燃圧 Pave)の乖離度合 、 Δ P2を求め、その乖離度合 、 Δ P2と判定 値 RVPDSとの比較により異常の有無を判定するようにしている。そのため、異常の 有無の判定のために、特別に電磁リリーフ弁 22を開弁させたり閉弁させたりしなくて もすむ。
[0097] なお、本発明は次に示す別の実施形態に具体ィ匕することができる。
[0098] '第 1実施形態において、燃圧 P1を読込むタイミングとしては、イダ-シヨンスィッチ 26がオフ位置へ操作された時点から、電磁リリーフ弁 22が作動を開始する時点まで の期間であればよい。従って、この期間内であることを条件に、燃圧 P1を読込むタイ ミングを適宜変更してもよ 、。
[0099] '第 1実施形態において、燃圧 P2を読込むタイミングは、必ずしも電磁リリーフ弁 22 が作動を完了した後でなくてもよい。開弁指令に応じて電磁リリーフ弁 22が正常に作 動してある程度開弁すれば、燃圧 Pが変化 (低下)するからである。従って、例えば開 弁指令の出力後、所定の時間が経過したときに燃圧 P2を読込むようにしてもよい。
[0100] ·第 2実施形態において、始動後燃圧制御中、燃圧 Pを読込む期間の終期を、同制 御の終期よりも前に変更してもよい。例えば、ディレイ時間 Tdの経過後、一定の時間 が経過したタイミングを、燃圧 Pを読込む期間の終期としてもよい。
[0101] ·内燃機関 10の始動に際し、燃圧 Pを目標燃圧 Pt (可変値)にするための制御が行 われているときに、上記第 2実施形態と同様、その目標燃圧 Ptに対する実際の燃圧 Pの乖離度合 、 Δ P2に基づき、電磁リリーフ弁 22の異常の有無を判定するようにし てもよい。
[0102] ·本発明は、図 6に示すノ、イブリツド車両 41にも適用可能である。このハイブリッド車 両 41は、内燃機関と電動機という特性の異なる 2種類の動力源を備え、状況に応じ 駆動力を最適に組合わせて走行するようにしたタイプの車両である。
[0103] このハイブリッド車両 41の駆動装置 42は、第 1モータジェネレータ(MG1)、動力分 割機構 43及び第 2モータジェネレータ (MG2)を備える。 MG1は主に発電機として 機能する。動力分割機構 43は遊星歯車機構カゝらなり、内燃機関 10で発生する動力 を MG1及び駆動輪 44に分割する。 MG2は主に電動機として機能し、内燃機関 10 の動力とは別に駆動輪 44を駆動するための補助動力を発生する。この駆動装置 42 では、動力分割機構 43によって分割された動力の一方が機械的に駆動輪 44に伝 達されて、その駆動輪 44が回転される。また、分割された動力の他方が MG1に伝達 される。この伝達に応じて MG1が発電機として機能し、発電された電力が MG2に供 給される。この供給に応じて MG2が電動機として機能すると、その MG2で発生した 動力が、前述した動力分割機構 43によって分割された一方の動力に加わり、内燃機 関 10の出力がアシストされる。
[0104] このようなハイブリッド車両 41においては、電動機のみで走行するように仕様を設 計することで車両走行中も内燃機関 10を停止する場合があり、そのような場合に本 発明を適用することが可能である。
[0105] また、内燃機関 10としては、同図 6に示すように、気筒 45内に燃料を直接噴射する 燃料噴射弁 21に加え、吸気ポート 46に燃料を噴射する燃料噴射弁 47を備えるもの であってもよい。

Claims

請求の範囲
[1] 内燃機関の燃料供給装置における電磁リリーフ弁の診断装置であって、前記燃料 供給装置は前記機関の燃料噴射弁に燃料を供給する高圧燃料通路を有し、前記リ リーフ弁は開弁指令に応じて前記通路力も燃料をリリーフさせて該通路の燃料圧力 を低下させ、
前記機関を停止させるための停止指令に応じて前記リリーフ弁に前記開弁指令を 出力する制御部を備え、該制御部は、前記停止指令が出力された後における前記 通路内の燃料圧力の変化態様に基づき前記リリーフ弁の異常の有無を判定すること を特徴とする診断装置。
[2] 前記制御部は、前記開弁指令に応じて前記リリーフ弁が作動する前後における前 記燃料圧力の変化量に基づき、前記リリーフ弁の異常の有無を判定することを特徴 とする請求項 1に記載の診断装置。
[3] 前記制御部は、前記リリーフ弁が作動する前の前記燃料圧力として前記停止指令 が出力された時の前記燃料圧力を前記判定に用いることを特徴とする請求項 2に記 載の診断装置。
[4] 前記制御部は、前記リリーフ弁が作動した後の前記燃料圧力として前記開弁指令 が出力された時力 所定期間が経過した時の前記燃料圧力を前記判定に用いること を特徴とする請求項 2又は 3に記載の診断装置。
[5] 前記所定期間は、正常な電磁リリーフ弁が開弁指令に応じて閉状態から全開状態 になるまでに要する期間又は同期間よりも若干長い期間であることを特徴とする請求 項 4に記載の診断装置。
[6] 前記制御部は、前記変化量が所定の判定値よりも少ないとき、前記リリーフ弁が異 常である旨判定することを特徴とする請求項 2〜5のいずれか 1つに記載の診断装置
[7] 前記所定の判定値は、前記リリーフ弁が前記開弁指令に応じて開いたときにおける 前記燃料圧力の変化量よりも小さぐ且つ前記リリーフ弁が前記開弁指令に応じて開 力ないときにおける前記燃料圧力の変化量よりも大きいことを特徴とする請求項 6に 記載の診断装置。
[8] 内燃機関の燃料供給装置における電磁リリーフ弁の診断装置であって、前記燃料 供給装置は前記機関の燃料噴射弁に燃料を供給する高圧燃料通路を有し、前記リ リーフ弁は、開弁指令に応じて前記通路力も燃料をリリーフさせて該通路の燃料圧力 を低下させるとともに、閉弁指令に応じて前記燃料のリリーフを停止し、
前記機関の始動に際して、前記リリーフ弁に閉弁指令を出力し且つ前記通路内の 燃料圧力を目標値にするための制御を行う制御部を備え、該制御部は前記目標値 に対する実際の燃料圧力の乖離度合いに基づき前記リリーフ弁の異常の有無を判 定することを特徴とする診断装置。
[9] 前記制御部は、前記実際の燃料圧力として前記燃料圧力を一定の目標値にする ための制御が行われている期間のうち一部の期間における前記燃料圧力の平均値 を前記判定に用いることを特徴とする請求項 8に記載の診断装置。
[10] 前記一部の期間は、前記機関の始動力 所定の期間が経過した後の期間であるこ とを特徴とする請求項 9に記載の診断装置。
[11] 前記所定の期間は、前記機関の始動後に前記燃料圧力が大きく変動する期間又 は同期間よりもわずかに長い期間であることを特徴とする請求項 10に記載の診断装 置。
[12] 前記一部の期間は、前記所定の期間が経過した時から前記燃料圧力を一定の目 標値にするための制御が終了した時までの期間であることを特徴とする請求項 10又 は 11に記載の診断装置。
[13] 前記電子制御装置は、前記目標値に対する実際の燃料圧力の乖離度合いが所定 の判定値よりも大きいとき、前記リリーフ弁が異常である旨判定する請求項 8〜12の いずれか 1つに記載の診断装置。
[14] 前記所定の判定値は、前記リリーフ弁が前記閉弁指令に応じて閉じたときにおける 前記燃料圧力の乖離度合いよりも大きぐ且つ前記リリーフ弁が前記閉弁指令に応じ て閉じないときにおける前記燃料圧力の乖離度合いよりも小さいことを特徴とする請 求項 13に記載の診断装置。
[15] 高圧燃料通路を通じて内燃機関の燃料噴射弁に燃料を供給することと、
開弁指令に応じて電磁リリーフ弁に前記通路から燃料をリリーフさせて、該通路の 燃料圧力を低下させることと、
前記機関を停止させるための停止指令に応じて前記リリーフ弁に前記開弁指令を 出力することと、
前記停止指令が出力された後における前記通路内の燃料圧力の変化態様に基づ き前記リリーフ弁の異常の有無を判定することと
を備えることを特徴とする電磁リリーフ弁の診断方法。
高圧燃料通路を通じて内燃機関の燃料噴射弁に燃料を供給することと、 開弁指令に応じて電磁リリーフ弁に前記通路から燃料をリリーフさせて、該通路の 燃料圧力を低下させることと、
閉弁指令に応じて前記リリーフ弁に前記燃料のリリーフを停止させることと、 前記機関の始動に際して、前記リリーフ弁に閉弁指令を出力し且つ前記通路内の 燃料圧力を目標値にするための制御を行うことと、
前記目標値に対する実際の燃料圧力の乖離度合いに基づき前記リリーフ弁の異 常の有無を判定することと
を備えることを特徴とする電磁リリーフ弁の診断方法。
PCT/JP2006/312991 2005-07-13 2006-06-29 燃料供給装置における電磁リリーフ弁の診断装置 WO2007007558A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/988,212 US7706962B2 (en) 2005-07-13 2006-06-29 Diagnosis device for electromagnetic relief valve in fuel delivery device
EP06767608.0A EP1903210B1 (en) 2005-07-13 2006-06-29 Diagnosis device for electromagnetic relief valve in fuel delivery device
CN200680024332.7A CN101213364B (zh) 2005-07-13 2006-06-29 燃料供给装置中的电磁溢流阀的诊断装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-204646 2005-07-13
JP2005204646A JP4508020B2 (ja) 2005-07-13 2005-07-13 燃料供給装置における電磁リリーフ弁の診断装置

Publications (1)

Publication Number Publication Date
WO2007007558A1 true WO2007007558A1 (ja) 2007-01-18

Family

ID=37636954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312991 WO2007007558A1 (ja) 2005-07-13 2006-06-29 燃料供給装置における電磁リリーフ弁の診断装置

Country Status (5)

Country Link
US (1) US7706962B2 (ja)
EP (1) EP1903210B1 (ja)
JP (1) JP4508020B2 (ja)
CN (1) CN101213364B (ja)
WO (1) WO2007007558A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961954A1 (en) * 2007-02-23 2008-08-27 Derossi Massimo S.r.l. A multipurpose diagnostics apparatus for a direct-injection petrol or diesel engine preferably with common-rail technology
EP2011997A1 (en) * 2007-07-05 2009-01-07 MAGNETI MARELLI POWERTRAIN S.p.A. Control method for an overpressure valve in a commonrail fuel supply system
JP2009180158A (ja) * 2008-01-31 2009-08-13 Hino Motors Ltd 蓄圧式燃料供給装置の異常診断装置
JP2009270511A (ja) * 2008-05-08 2009-11-19 Toyota Motor Corp 燃料システムの異常診断装置および異常診断方法
WO2012053055A1 (ja) * 2010-10-19 2012-04-26 トヨタ自動車 株式会社 内燃機関におけるリーク機構診断装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006053950B4 (de) * 2006-11-15 2008-11-06 Continental Automotive Gmbh Verfahren zur Funktionsüberprüfung einer Druckerfassungseinheit eines Einspritzsystems einer Brennkraftmaschine
JP4976318B2 (ja) * 2008-01-30 2012-07-18 日立オートモティブシステムズ株式会社 内燃機関の燃料噴射装置
JP2009270510A (ja) * 2008-05-08 2009-11-19 Toyota Motor Corp 燃料システムの異常診断装置および異常診断方法
DE102008036122B4 (de) * 2008-08-01 2014-07-10 Continental Automotive Gmbh Verfahren zur Adaption der Leistung einer Kraftstoffvorförderpumpe eines Kraftfahrzeugs
FR2943721B1 (fr) * 2009-03-26 2016-02-19 Renault Sas Procede de diagnostic d'un composant de vannage d'un vehicule automobile
JP5246003B2 (ja) * 2009-04-14 2013-07-24 株式会社デンソー 燃料供給制御装置およびそれを用いた燃料供給システム
US7950371B2 (en) * 2009-04-15 2011-05-31 GM Global Technology Operations LLC Fuel pump control system and method
US8291889B2 (en) * 2009-05-07 2012-10-23 Caterpillar Inc. Pressure control in low static leak fuel system
US7987704B2 (en) * 2009-05-21 2011-08-02 GM Global Technology Operations LLC Fuel system diagnostic systems and methods
JP2011064100A (ja) * 2009-09-16 2011-03-31 Hitachi Automotive Systems Ltd 内燃機関の燃料供給系診断装置
DE102010013602B4 (de) * 2010-03-31 2015-09-17 Continental Automotive Gmbh Verfahren zur Erkennung eines Fehlverhaltens eines elektronisch geregelten Kraftstoffeinspritzsystems eines Verbrennungsmotors
JP5370685B2 (ja) * 2010-05-06 2013-12-18 株式会社デンソー 筒内噴射式内燃機関の燃料供給システムの故障診断装置
DE102010031220A1 (de) * 2010-07-12 2012-01-12 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Kraftstoffeinspritzsystems
JP5099191B2 (ja) * 2010-09-09 2012-12-12 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP5454522B2 (ja) * 2011-07-11 2014-03-26 トヨタ自動車株式会社 エンジンの異常検出装置
JP5459302B2 (ja) * 2011-12-26 2014-04-02 株式会社デンソー 内燃機関制御システムの異常診断装置
KR101905553B1 (ko) * 2012-10-31 2018-11-21 현대자동차 주식회사 가솔린 직분사 엔진의 제어 시스템 및 제어 방법
JP6074058B2 (ja) 2012-12-20 2017-02-01 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置およびその装置で使用するためのテーブル
US9376989B2 (en) * 2013-07-17 2016-06-28 Ford Global Technologies, Llc Fuel tank pressure relief valve cleaning
JP6050219B2 (ja) * 2013-11-28 2016-12-21 愛三工業株式会社 燃料供給装置
DE102014206717B4 (de) 2014-04-08 2022-10-20 Vitesco Technologies GmbH Druckspeichereinrichtung für ein Kraftfahrzeug-Kraftstoff-Einspritzsystem, sowie Verfahren zum Betrieb einer derartigen Druckspeichereinrichtung
JP6330516B2 (ja) * 2014-06-27 2018-05-30 トヨタ自動車株式会社 減量弁の異常判定装置
US9828930B2 (en) * 2014-09-19 2017-11-28 General Electric Company Method and systems for diagnosing an inlet metering valve
JP6217680B2 (ja) 2015-03-26 2017-10-25 トヨタ自動車株式会社 車両
JP6394464B2 (ja) * 2015-03-30 2018-09-26 トヨタ自動車株式会社 ハイブリッド車両
JP6532741B2 (ja) * 2015-04-13 2019-06-19 本田技研工業株式会社 電磁弁の駆動制御装置
DE102015215691B4 (de) * 2015-08-18 2017-10-05 Continental Automotive Gmbh Betriebsverfahren zum Betreiben eines Kraftstoffeinspritzsystems sowie Kraftstoffeinspritzsystem
JP6439739B2 (ja) * 2016-04-19 2018-12-19 トヨタ自動車株式会社 燃圧センサ診断装置
JP6714537B2 (ja) * 2017-04-24 2020-06-24 株式会社デンソー 高圧燃料供給システムのリリーフ弁判定装置
FR3074851B1 (fr) * 2017-12-08 2021-09-10 Continental Automotive France Procede d'alerte en vue d'une maintenance predictive d'une pompe haute pression dans un moteur a combustion interne
CN113047975B (zh) * 2021-03-23 2023-06-09 无锡威孚高科技集团股份有限公司 一种柴油机燃油系统中电控泄压阀的控制方法
CN115832370A (zh) * 2023-02-22 2023-03-21 佛山市清极能源科技有限公司 一种燃料电池氢气系统的安全阀故障诊断方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158536A (ja) * 1993-12-03 1995-06-20 Nippondenso Co Ltd 高圧燃料噴射装置
JP2002256943A (ja) * 2001-02-28 2002-09-11 Toyota Motor Corp 内燃機関の燃料供給制御装置
JP2003097374A (ja) 2001-09-25 2003-04-03 Hitachi Unisia Automotive Ltd エンジンの燃料供給装置における診断装置
JP2005139975A (ja) * 2003-11-05 2005-06-02 Denso Corp コモンレール式燃料噴射装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5996400A (en) * 1996-03-29 1999-12-07 Mazda Motor Corporation Diagnostic system for detecting leakage of fuel vapor from purge system
US6148803A (en) * 1997-12-04 2000-11-21 Denso Corporation Leakage diagnosing device for fuel evaporated gas purge system
JP3465641B2 (ja) * 1999-07-28 2003-11-10 トヨタ自動車株式会社 燃料ポンプの制御装置
JP2003083190A (ja) * 2001-09-14 2003-03-19 Hitachi Unisia Automotive Ltd エンジンの燃料供給装置における診断装置
DE10305012A1 (de) * 2003-02-07 2004-08-19 Robert Bosch Gmbh Kraftstoffeinspritzvorrichtung für eine Brennkraftmaschine
JP4127188B2 (ja) 2003-10-30 2008-07-30 トヨタ自動車株式会社 内燃機関の燃料供給装置
JP2005337031A (ja) * 2004-05-24 2005-12-08 Mitsubishi Electric Corp 筒内燃料噴射式内燃機関の高圧燃料系異常診断装置
JP4438553B2 (ja) * 2004-07-30 2010-03-24 トヨタ自動車株式会社 内燃機関の高圧燃料系統の制御装置
JP4088627B2 (ja) * 2005-01-24 2008-05-21 三菱電機株式会社 内燃機関の燃料圧力制御装置
JP4438712B2 (ja) * 2005-07-25 2010-03-24 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07158536A (ja) * 1993-12-03 1995-06-20 Nippondenso Co Ltd 高圧燃料噴射装置
JP2002256943A (ja) * 2001-02-28 2002-09-11 Toyota Motor Corp 内燃機関の燃料供給制御装置
JP2003097374A (ja) 2001-09-25 2003-04-03 Hitachi Unisia Automotive Ltd エンジンの燃料供給装置における診断装置
JP2005139975A (ja) * 2003-11-05 2005-06-02 Denso Corp コモンレール式燃料噴射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1903210A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1961954A1 (en) * 2007-02-23 2008-08-27 Derossi Massimo S.r.l. A multipurpose diagnostics apparatus for a direct-injection petrol or diesel engine preferably with common-rail technology
EP2011997A1 (en) * 2007-07-05 2009-01-07 MAGNETI MARELLI POWERTRAIN S.p.A. Control method for an overpressure valve in a commonrail fuel supply system
US7779819B2 (en) 2007-07-05 2010-08-24 Magneti Marelli Powertrain S.P.A. Control method for an overpressure valve in a common-rail fuel supply system
JP2009180158A (ja) * 2008-01-31 2009-08-13 Hino Motors Ltd 蓄圧式燃料供給装置の異常診断装置
JP2009270511A (ja) * 2008-05-08 2009-11-19 Toyota Motor Corp 燃料システムの異常診断装置および異常診断方法
WO2012053055A1 (ja) * 2010-10-19 2012-04-26 トヨタ自動車 株式会社 内燃機関におけるリーク機構診断装置
JP5163810B2 (ja) * 2010-10-19 2013-03-13 トヨタ自動車株式会社 内燃機関におけるリーク機構診断装置
US8613218B2 (en) 2010-10-19 2013-12-24 Toyota Jidosha Kabushiki Kaisha Diagnosis apparatus for leakage mechanism in internal combustion engine

Also Published As

Publication number Publication date
EP1903210B1 (en) 2019-01-16
CN101213364B (zh) 2010-12-08
EP1903210A4 (en) 2015-04-15
EP1903210A1 (en) 2008-03-26
CN101213364A (zh) 2008-07-02
US7706962B2 (en) 2010-04-27
US20090240417A1 (en) 2009-09-24
JP2007023833A (ja) 2007-02-01
JP4508020B2 (ja) 2010-07-21

Similar Documents

Publication Publication Date Title
JP4508020B2 (ja) 燃料供給装置における電磁リリーフ弁の診断装置
CN101498264B (zh) 内燃机的燃料喷射装置
JP4297129B2 (ja) 内燃機関の始動制御装置
JP4179333B2 (ja) 内燃機関の始動制御装置
US7698931B2 (en) Fuel pressure sensor diagnosing device and method
JP3966130B2 (ja) 蓄圧式燃料噴射装置
JP5212546B2 (ja) 燃料供給装置
KR101518946B1 (ko) 커먼 레일 디젤 엔진의 진단 방법 및 시스템
JP2008286160A (ja) 内燃機関の制御装置
JP5965384B2 (ja) 燃料圧力センサの特性異常診断装置
US20130340721A1 (en) Abnormality detection apparatus for a fuel supply system
JP6134608B2 (ja) 燃料圧力センサの特性異常診断装置
JP2006329033A (ja) 蓄圧式燃料噴射装置
JP2009138593A (ja) 蓄圧式燃料噴射装置
JP4985673B2 (ja) 燃料圧力制御装置
JP4985674B2 (ja) 燃料圧力制御装置
CN108386286B (zh) 内燃机的燃料喷射装置
JP5370685B2 (ja) 筒内噴射式内燃機関の燃料供給システムの故障診断装置
JP5344312B2 (ja) 内燃機関の燃料供給システムの異常診断装置
US10865729B2 (en) Method and device for operating an internal combustion engine comprising a high-pressure fuel injection system
JP5295909B2 (ja) 内燃機関の運転制御方法
JP2009243286A (ja) エンジンの燃料供給システム
JP5760695B2 (ja) 蓄圧式燃料噴射装置
JP2018123789A (ja) 内燃機関の燃料噴射装置
JP2020148199A (ja) 燃圧センサ異常診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680024332.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006767608

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11988212

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE