WO2007006803A1 - Procede de diminution de la rugosite d'une couche epaisse d'isolant - Google Patents

Procede de diminution de la rugosite d'une couche epaisse d'isolant Download PDF

Info

Publication number
WO2007006803A1
WO2007006803A1 PCT/EP2006/064169 EP2006064169W WO2007006803A1 WO 2007006803 A1 WO2007006803 A1 WO 2007006803A1 EP 2006064169 W EP2006064169 W EP 2006064169W WO 2007006803 A1 WO2007006803 A1 WO 2007006803A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
treatment
smoothing
layer
insulating layer
Prior art date
Application number
PCT/EP2006/064169
Other languages
English (en)
Inventor
Nicolas Daval
Sébastien Kerdiles
Cécile Aulnette
Original Assignee
S.O.I.Tec Silicon On Insulator Technologies
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S.O.I.Tec Silicon On Insulator Technologies filed Critical S.O.I.Tec Silicon On Insulator Technologies
Priority to AT06777736T priority Critical patent/ATE524828T1/de
Priority to JP2008520879A priority patent/JP4927080B2/ja
Priority to EP06777736A priority patent/EP1902463B1/fr
Publication of WO2007006803A1 publication Critical patent/WO2007006803A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • H01L21/31055Planarisation of the insulating layers involving a dielectric removal step the removal being a chemical etching step, e.g. dry etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Definitions

  • the present invention relates to a method of manufacturing substrates for use in the fields of electronics, optoelectronics or optics, which includes a step of smoothing a thick layer of insulator, that is, to say of decrease of its roughness.
  • the invention also relates to a manufacturing method that includes the aforementioned smoothing method and steps of bonding and transfer of layers.
  • the invention finds particular application in the production of composite substrates of "SOI” and "sSOI" type.
  • the substrates known by the acronym "SOI” correspond to substrates in which a layer of insulator, more specifically of silicon dioxide (SiO 2 ), is interposed between a support silicon layer and a superficial silicon layer.
  • a layer of insulator more specifically of silicon dioxide (SiO 2 )
  • SiO 2 silicon dioxide
  • the surface layer of silicon is strained ("strained Silicon On Insulator").
  • the method for obtaining this type of substrate comprises a step of bonding a substrate called “support” or “receiver” on the insulating layer and a layer transfer step.
  • Binding is here understood as a bonding by molecular adhesion, in which two perfectly flat surfaces adhere to each other without applying glue, this being possible at ambient temperature.
  • the quality of the bonding obtained is characterized in particular by the bonding energy, which is defined as the binding force existing between the two layers bonded together.
  • This quality can be improved by subjecting the surfaces to be glued, an appropriate treatment.
  • the insulators used in the aforementioned composite substrates are in particular: oxides, nitrides or oxynitrides.
  • Tetraethylorthosilicate This technique consists in depositing a silicon dioxide film, using as source material tetraethylorthosilicate, and a low pressure vapor deposition technique, known to those skilled in the art under the name of LPCVD.
  • This method has many advantages as regards the uniformity and the density of the oxide layer obtained, and above all makes it possible not to consume the substrate layer on which the silicon oxide thus formed rests, which does not is not the case when forming oxide by a thermal oxidation process.
  • the roughness of the silicon dioxide layers deposited by the "LPCVD TEOS" technique is much higher than that of layers that are thermally oxidized.
  • the surface roughness of a TEOS oxide 150 nm thick is greater than 5 ⁇ RMS over a scanning width ("scan" in English) of 1 micron per 1 micron, while that of a thermal oxide is close to about 1.50 ⁇ RMS on the same scan width.
  • an insulating layer for example oxide
  • the production of an insulating layer (for example oxide) thick that is to say greater than 20 nm - which is frequently the case during the manufacture of SOI products - generally leads to a level of roughness, incompatible with the constraints imposed by a bonding by molecular adhesion of very good quality.
  • the roughness it is preferable for the roughness to be less than 5 ⁇ RMS to allow bonding, or even less than 2 ⁇ RMS, over scanning widths ("scan" in English) of 1 ⁇ m per 1 ⁇ m.
  • Smart Cut ® the possibility of subjecting a substrate to plasma treatment is already known from the state of the art.
  • the "plasma treatment" of a surface to be bonded is defined as the exposure of this surface to a gaseous plasma - this can be done especially under vacuum or at atmospheric pressure - prior to contacting the surfaces to be bonded. This treatment is carried out by controlling various exposure parameters, such as the nature and the flow rate or pressure of the gas supplying the enclosure within which the operation is performed, as well as the power density.
  • Pulsma activation known to promote the bonding energy between two layers and the second, hereinafter referred to as “smoothing plasma”, which aims to reduce the surface roughness of the layer thus treated.
  • Plasma implementation parameters, including energy, may be different in both cases.
  • Borosilicate type glasses are alloys of boron trioxide
  • the results obtained reveal an improvement in the bonding and show that the roughness of the treated surface is not affected by this plasma activation treatment.
  • rough layer is meant here a layer whose roughness is greater than or equal to 3 RMS angstroms, preferably between 3 and 20 RMS angstroms approximately, for a scan of 2 microns x 2 microns.
  • the object of the invention is also to provide a method for manufacturing an intermediate substrate, which comprises an embrittlement zone obtained by implantation of atomic species and which is covered with a thick insulating layer whose roughness is high, this intermediate substrate can be used later in a process of bonding and layer transfer, to obtain a substrate whose reported layer has little or no defects.
  • the invention relates to a method for manufacturing a substrate suitable for use in the fields of electronics, optoelectronics and optics, characterized in that it comprises at least the following steps, carried out in this order : a) depositing, on a first so-called “donor" substrate, an insulating layer whose thickness is greater than or equal to 20 nm and whose roughness is greater than or equal to 3 RMS angstroms, for a scanning width of 2 ⁇ m x 2 ⁇ m, b) the smoothing treatment of the free surface of this insulating layer, using a gaseous plasma, formed in an enclosure inside which there is a gas pressure greater than 0.25 Pa, this plasma being created using a radio frequency generator, which operates with a power such that it allows to apply to said insulation layer, a power density greater than 0.6 W / cm 2 , the duration of this smoothing treatment being at least 10 seconds, c) the formation of an embrittlement zone by implantation of atomic species, inside said donor substrate, to de
  • the method comprises the following steps, carried out after step c): d) molecular adhesion bonding of a second substrate, called " receiver ", on said free surface of the insulation layer, e) the removal of said remainder.
  • the method comprises a densification annealing step of the insulation deposited in step a), this annealing being carried out at a temperature of between 700 and 1000 ° C., for a period of several minutes to several hours, in an oxidizing atmosphere or neutral. said densification annealing treatment is performed after step b) plasma smoothing and before step c) implanting atomic species.
  • the plasma smoothing treatment is carried out with a power density of between 0.6 and 10 W / cm 2 , a pressure of the gas inside the chamber of between 0.25 and 30 Pa and a duration of the treatment between 10 and 200 seconds.
  • the pressure of the gas inside the enclosure is between 3 and 13 Pa, preferably it is close to 7 Pa.
  • the duration of step b) plasma smoothing treatment is between 30 and 120 about seconds.
  • the gas used for the formation of the smoothing plasma is chosen from oxygen (O 2 ), argon (Ar), nitrogen (N 2 ) or a mixture of these gases.
  • the gas used for the formation of the smoothing plasma is chosen so that the nature of the atoms constituting it is the same as at least one of the atoms constituting said insulating layer (2) to be treated.
  • a plasma activation treatment is carried out of said insulating layer, using a gaseous plasma, formed in an enclosure inside which there is a gas pressure of about 7 Pa, this plasma being created using an RF radio frequency generator, which operates with a power such that it allows to apply to said insulation layer, a power density greater than 0.2 W / cm 2 , the duration of this smoothing treatment being at least 5 seconds.
  • the plasma activation treatment is carried out with a power density of between 0.2 and 3 W / cm 2 , and a treatment duration of between 5 and 60 seconds.
  • the thickness of the insulation layer is greater than or equal to 200 nm.
  • the insulation is obtained by a LPCVD low pressure chemical vapor deposition technique.
  • the insulation is an oxide.
  • the oxide is a silicon dioxide, obtained by a low pressure chemical vapor deposition technique, from tetraethylorthosilicate (LPCVD TEOS).
  • the silicon dioxide (SiO 2 ) is deposited at a pressure of between 40 and 200 Pa.
  • the insulator is a nitride or an oxynitride.
  • said active layer comprises silicon, said active layer comprises constrained silicon.
  • FIGS. 2A to 2H are diagrams illustrating the different steps of a second embodiment of the method according to the invention
  • FIG. 3 is a graph showing the roughness R of the edge of a silicon dioxide layer, after the plasma treatment according to the invention, as a function of the power applied, and for different durations of application
  • FIG. 4 is a graph showing the roughness R of the edge of a silicon dioxide layer, after the plasma treatment according to the invention, as a function of time, and for different power ranges of the plasma;
  • FIGS. 5 and 6 are graphs, similar respectively to those of FIGS. 3 and 4, but for measurements made in the center of the silicon dioxide layer;
  • FIG. 7 is a graph representing the number N of defects of different types, before and after the smoothing plasma treatment according to the invention
  • FIGS. 8 and 9 are graphs representing the duration t of a bonding wave, expressed in seconds, as a function of the number of bonding waves NO having this bonding duration, respectively layers of insulator (SiO 2 ) have not undergone plasma treatment or have undergone one, and
  • FIG. 10 is a graph representing the number of defects of different types observed on substrates obtained either at the end of the process according to the invention or at the end of a comparative process.
  • FIGS. 1A and 1B respectively represent a donor substrate 1, before and after it is covered by the deposition of a thick insulating layer 2.
  • the face of the donor substrate 1 opposite to that on which the insulating layer 2 has been deposited is called "back face” and has the reference 13.
  • the donor substrate 1 may be monolayer or multilayer. It is generally made of a semiconductor material, for example silicon.
  • the donor substrate 1 may also comprise a constrained material, such as constrained silicon. In the latter case, the substrate is generally multilayered, and the layer of constrained material is then obtained by epitaxy on a layer of support material.
  • the insulator 2 may be, for example, a nitride, oxynitride layer or preferably an oxide layer.
  • the thickness of the insulation is greater than or equal to 20 nm, preferably greater than or equal to 200 nm. Its roughness is greater than or equal to 3 angstroms RMS, for a scanning width of 2 ⁇ m x 2 ⁇ m.
  • a smoothing plasma step is then carried out, the details of which will be described later. This is shown in Figure IC.
  • the reference SP corresponds to the English terminology of "smoothing plasma" which designates a plasma smoothing.
  • embrittlement zone 10 which delimits an upper thin layer 11, of the remainder 12 of the substrate.
  • thin layer refers to a layer of a few tens or hundreds of nanometers in thickness.
  • Thin layer refers to a layer of a few tens or hundreds of nanometers in thickness.
  • Intermediate substrate suitable for use in bonding and layer transfer processes, implemented in the fields of electronics, optoelectronics and optics.
  • the receiving substrate 3 is made of semiconductor material.
  • the final composite substrate 5 shown in FIG. 1F is thus obtained, in which the insulating layer 2 is interposed inside two layers of semiconductor material 3, 11.
  • the receiving substrate 3 could be multilayer.
  • FIG. 2 illustrates an alternative embodiment of the above method. Identical elements bear the same numerical references.
  • This variant embodiment differs from the previous one in that it comprises two additional steps, one of densification heat treatment shown in FIG. 2D and the other of plasma activation processing illustrated in FIG. 2F.
  • the densification annealing step of the insulator 2 which has been deposited on the substrate 1 is optional but recommended.
  • This densification annealing step is performed before the step of implanting atomic species.
  • SP plasma smoothing step
  • AP plasma activation treatment is optional. It can be performed on the side having undergone the plasma smoothing treatment (SP), that is to say the face 20, as shown in Figure 2F. It can also be performed on the face 30 of the substrate 3 to be glued on the face 20. It can also be performed on both faces 20 and 30.
  • SP plasma smoothing treatment
  • the reference AP corresponds to the English terminology of "plasma activation" which designates a plasma activation treatment.
  • pre- and / or post-activation plasma (AP) cleaning treatment can be carried out, according to the modalities described later, after the implantation of atomic expectations and before plasma activation or after plasma activation and before bonding the recipient substrate 3.
  • AP post-activation plasma
  • the insulator layer 2 is formed on the donor substrate 1, by deposition, in particular by chemical vapor deposition, and preferably at low pressure, known by the acronym "LPCVD”.
  • LPCVD chemical vapor deposition
  • PECVD plasma enhanced chemical vapor deposition
  • This process step can be carried out with a reactor for chemical vapor deposition.
  • a reactor for chemical vapor deposition This comprises a treatment chamber, inside which is disposed the substrate.
  • the different chemical reactants, in the form of a gas stream, are then introduced inside this chamber, at an elevated temperature and under low pressure, so as to form the insulating layer 2, after chemical reaction between the different gaseous constituents. .
  • One of the applications referred to in the invention consists in the manufacture of an SOI type substrate.
  • a preferred embodiment variant of silicon dioxide consists in making a deposit known as TEOS LPCVD, using tetraethylorthosilicate (TEOS), according to the following chemical reaction:
  • the pressure inside the chamber of the LPCVD reactor is between 300 mTorr and 1.5 Torr (ie between 40 and 200 Pa), preferably close to 750 mTorr, (or close to 100 Pa).
  • the thickness of the silicon dioxide is adjusted to be at least 20 nm, or even greater than or equal to 200 nm and up to a few micrometers.
  • the treatment is carried out with an installation comprising a plasma chamber, within which the pressure and the composition of the gaseous atmosphere are controlled.
  • a plasma chamber within which the pressure and the composition of the gaseous atmosphere are controlled.
  • the invention can thus be implemented with an installation of the type "reactive ion etching", known under the abbreviation "RIE”.
  • the installation comprises a single RF (radio frequency) generator supplying, via a capacitive coupling, an electrode located inside the enclosure and which supports the substrate 1 covered with the insulating layer 2 to be smoothed and / or activate.
  • control of the power of this generator makes it possible both to excite the plasma, and to control the kinetic energy of the plasma ions, which bombard the surface of the insulating layer 2.
  • the plasma chamber further comprises a second electrode, not connected to the substrate to be treated. This second electrode is connected to ground.
  • the second RF generator (connected to the electrode with which the insulation layer to be treated is not in contact) which generates and maintains the plasma.
  • This second generator is thus controlled to control the density of the plasma. Controlling the power of the first generator makes it possible to regulate only the kinetic energy of the plasma ions, which bombard the surface of the layer to be treated. Smoothing plasma parameters:
  • the RF power of the plasma is high power. It varies from 200 to 3000 W for substrates 200 mm in diameter, a power density of at least 0.6 W / cm 2 and preferably between 0.6 to 10 W / cm 2 .
  • the Applicant has indeed found that the higher the plasma treatment is performed at high RF power, the roughness of the treated insulation layer 2 will be reduced.
  • the duration of this plasma treatment is advantageously at least 10 seconds, preferably between 10 and 200 seconds, typically between 30 and 60 seconds.
  • the Applicant has also found that the longer the plasma treatment time and the more the surface of the insulation layer is smoothed.
  • the gas used to form the plasma may be oxygen, nitrogen or argon or a combination of these gases (ArK) 2 ; ATfN 2 ; O2 + N2; Ar + ⁇ 2 + N2).
  • the smoothing treatment can also be carried out in two stages, namely for example 60s under high power Argon plasma, then 30s under O2 plasma at a more moderate power.
  • the plasma smoothing treatment is carried out with gas atoms of the same nature as at least one of those constituting the treated insulation layer.
  • gas atoms of the same nature as at least one of those constituting the treated insulation layer.
  • 2 mTorr preferably between 2 and 200 mTorr, preferably 20 to 100 mTorr, preferably still close to 50 mTorr, (that is to say, greater than 0.25
  • Pa preferably between 0.25 Pa and 30 Pa, preferably between 3 Pa and 13 Pa
  • the smoothing plasma treatment is conducted with a particularly high energy and duration, which are not necessarily compatible with obtaining a strong bond, it should not be excluded the situation where the initial roughness and the choice of the face to implant would have process parameters that work for both smoothing and activation, especially if the smoothing is performed in two steps as described above.
  • the plasma smoothing treatment can also be voluntarily stronger at the edge of the plate (respectively in the center), so as to to obtain a uniform final roughness, when one initially uses a rougher surface at the edge (respectively at the center).
  • the parameters allowing this type of differential correction are all those known to those skilled in the art to vary the uniformity of the plasma (pressure, center / edge power density differential), different flow rates between center and edge. , etc.).
  • Thorough cleaning of the surface to be activated can be achieved, for example by means of a treatment in a chemical bath called "RCA", in order to avoid any contamination.
  • the "RCA” treatment consists in treating the surfaces, successively with:
  • SCl a solution known under the acronym "SCl”, (according to the English terminology of "Standard Clean 1", which means “standard cleaning solution 1”), and which comprises a mixture of ammonium hydroxide (NH 4 OH), hydrogen peroxide (H2O2) and deionized water,
  • SC2 a second bath of a solution known under the acronym "SC2", (according to the English terminology of "Standard Clean 2", which means “standard cleaning solution 2"), and which comprises a mixture of hydrochloric acid (HCl), hydrogen peroxide (H2O2) and deionized water.
  • SC2 standard cleaning solution 2
  • H2O2 hydrochloric acid
  • H2O2 hydrogen peroxide
  • Assays were performed on several substrates, varying the various parameters of the smoothing plasma (SP) treatment, in order to study the roughness of the thus treated insulation layer, both at the center and at the edges.
  • SP smoothing plasma
  • This measurement of the roughness was carried out by atomic force microscopy (known by the acronym “AFM”, according to the English terminology “Atomic Force Microscopy”).
  • the tests were carried out on an insulating layer made of silicon dioxide, obtained by a LPCVD TEOS deposit.
  • the thickness of the SiO 2 layer of insulator was 145 nm and its initial roughness before smoothing plasma treatment, of the order of 4 to 4.5 ⁇ RMS for a sweep width of 2 ⁇ m x 2 ⁇ m .
  • Plasma powers of 250, 600 and 1000 W were used for durations of 10, 30 and 60 seconds, respectively.
  • the results are shown in the table below, in the case of an oxygen plasma, for plates 200 mm in diameter.
  • the roughness values are expressed in RMS angstroms for scanning widths of 2 ⁇ m by 2 ⁇ m.
  • the Applicant also found that the silicon dioxide retained a good uniformity.
  • the reduction of the roughness is real, is carried out at low temperature and avoids a subsequent step of mechanical-chemical polishing.
  • the thus treated layer of insulation can be used to perform a very good quality bonding on a receiving substrate and subsequently a layer transfer by a detachment of good quality, which avoids all appearance problems. blisters, exclusion zone
  • sSOI silicon on insulator
  • the smoothing power is about 1000 W for about 60 s, for plates of 200 mm diameter, a power density of 3 W / cm 2 .
  • the gas pressure used during the smoothing was 50 mTorr (about 7 Pa). The results obtained are shown in the table below.
  • N represents the number of defects and 0 and 1 respectively indicate the absence of smoothing plasma treatment, or on the contrary, its production.
  • references a to f have the following meaning: a: large area not transferred (diameter greater than 1.5 mm) b: small area not transferred (diameter between 0.5 and 1.5 mm) c: micro zones not transferred (smaller diameter at 0.5 mm) d: blisters e: microcloques f: spikes (zones not transferred at the edge of the plate).
  • a large area not transferred (diameter greater than 1.5 mm)
  • b small area not transferred (diameter between 0.5 and 1.5 mm)
  • c micro zones not transferred (smaller diameter at 0.5 mm)
  • d blisters
  • e microcloques
  • f spikes (zones not transferred at the edge of the plate).
  • the measurements carried out consisted in measuring the bonding time, that is to say the duration of a bonding wave between a silicon substrate, covered a layer of SiO 2 obtained by depositing LPCVD and TEOS, and a receiving substrate also made of silicon.
  • the tests were carried out with different batches of substrates 200 mm in diameter, the oxides of which had roughnesses of different surfaces, from 3 to 6 RMS angstroms for a scanning width of 2 ⁇ m ⁇ 2 ⁇ m. These oxides had undergone smoothing plasma treatment, using powers of between 1000 W and 1500 W, or power densities of between 3.2 W / cm 2 and 4.7 W / cm 2 for diameters of 200 mm. and for durations ranging from 60 to 120 seconds.
  • the gas pressure in the chamber was 50 mTorr (about 7 Pa).
  • FIG. 8 illustrates the results obtained for oxides which have not undergone smoothing plasma treatment. It represents the duration t of a bonding wave, expressed in seconds, as a function of the number of bonding waves NO exhibiting this bonding time.
  • FIG. 9 illustrates the results obtained for oxides having undergone the smoothing plasma treatment according to the invention.
  • the duration of the bonding wave or bonding time is on average 43.7 seconds with a standard deviation of 33 seconds, whereas after a plasma smoothing, the bonding time is reduced to 8.6 seconds with a standard deviation of 0.5 seconds.
  • Test 4 The substrates tested are sSOI plates 200 mm in diameter.
  • topology is to be distinguished from the notion of roughness. The latter is appreciated on a microscopic scale. On the contrary, the notion of topology is assessed on the macroscopic scale and refers to the differences between the highest and lowest points of a surface ("pick to valley" in English), over an area of about 1 cm. 2 .
  • the strong topology of the constrained silicon of the donor affects the topology of the insulating layer deposited thereon.
  • the initial roughness of the silicon oxide was 4 to 6 RMS angstroms, for a scan of 2 ⁇ m x 2 ⁇ m.
  • Standard smoothing was obtained using an oxygen plasma, formed in an enclosure within which there was a gas pressure of 50 mT (7 Pa). This plasma was created using an RF radio frequency generator that operates with a power density of the order of 3 watts per cm 2 and a processing time of 60 seconds. The flow of oxygen was 75 sccm. The smooth smoothing was obtained using an oxygen plasma, formed in a chamber within which there was a gas pressure of 150 mT (about 20 Pa). This plasma was created using an RF radiofrequency generator that operates with a power density of del, 5 watts per cm 2 and a processing time of 60 seconds. The oxygen flow was 200 sccm.
  • Thermal annealing densification of the oxide was achieved by heat treatment at about 850 ° C for 2 hours.
  • the implantation of the atomic species was carried out by an implantation of ions of approximately 30 keV, according to a dose of the order of 6.10 16 H + ZCm 2 .
  • the plasma activation (AP) of the recipient substrate was carried out under a pressure of 50 mTorr (about 7 Pa) at a power of 250 W, under a flow of oxygen of 75 sccm (scare cubic centimeter) for about 10 seconds.
  • the comparison of the D and E tests shows that the plasma activation (AP) of the receiving substrate makes it possible to reduce the number of defects observed after detachment.
  • the smoothing plasma (SP) treatment has the effect of reducing the roughness of the thick insulation and the fact that it is followed by a Smart Cut ® type implantation eliminates the chemical activation effect that he has otherwise on the insulator.
  • the method according to the invention is also particularly well suited to substrates with a strong topology, with significant "pick to valley” values, since it has been shown that the roughness of such substrates could also be reduced by this method.
  • the zones of strong topology are generally located on the edges and it is in these places that defects occur during the layer transfer, if the substrate has been activated.
  • the sequence of steps of the process according to the invention which avoids activation is therefore very appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Magnetic Heads (AREA)
  • Element Separation (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

L'invention concerne un procédé de fabrication d'un substrat apte à être utilisé dans les domaines de l'électronique, l'optoélectronique et l'optique, caractérisé en ce qu'il comprend au moins les étapes suivantes, réalisées dans cet ordre : a) le dépôt, sur un substrat donneur (1), d'une couche d'isolant (2) dont l'épaisseur est supérieure ou égale à 20 nm et dont la rugosité est supérieure ou égale à 3 angströms RMS, pour un balayage de 2 µm x 2 µm, b) traitement de lissage (SP) de la surface libre (20) de cette couche d'isolant (2), en utilisant un plasma gazeux, formé dans une enceinte sous une pression de gaz supérieure à 0,25 Pa, ce plasma étant créé à l'aide d'un générateur de radiofréquences RF, qui permet d'appliquer à ladite couche d'isolant (2), une densité de puissance supérieure à 0,6 W/cm2, la durée de ce traitement de lissage étant d'au moins 10 secondes, c) formation d'une zone de fragilisation (10) par implantation d'espèces atomiques, à l'intérieur dudit substrat donneur (1), pour y délimiter une couche (11), dite 'active' et un reste (12).

Description

PROCEDE DE DIMINUTION DE LA RUGOSITE D'UNE COUCHE EPAISSE
D'ISOLANT
La présente invention concerne un procédé de fabrication de substrats destinés à être utilisé dans les domaines de l'électronique, l'optoélectronique ou l'optique, qui inclut une étape de lissage d'une couche épaisse d'isolant, c'est-à-dire de diminution de sa rugosité. L'invention concerne également un procédé de fabrication qui inclut le procédé de lissage précité et des étapes de collage et de transfert de couches.
L'invention trouve une application particulière dans la réalisation de substrats composites de type "SOI" et "sSOI".
Pour mémoire, les substrats connus sous l'acronyme "SOI" (d'après la terminologie anglaise "Silicium On Insulator") correspondent à des substrats dans lesquels une couche d'isolant, plus précisément de dioxyde de silicium (SiO2), est intercalée entre une couche de silicium support et une couche de silicium superficielle. Dans les substrats "sSOI", la couche superficielle de silicium est contrainte ("strained Silicon On Insulator"). Le procédé d'obtention de ce type de substrat comprend une étape de collage d'un substrat dit "support" ou "receveur" sur la couche d'isolant et une étape de transfert de couche.
Le "collage" est ici compris comme un collage par adhésion moléculaire, au cours duquel deux surfaces parfaitement planes adhèrent l'une à l'autre sans application de colle, ceci étant possible à température ambiante.
La qualité du collage obtenu est caractérisée notamment par l'énergie de collage, qui se définie comme la force de liaison existant entre les deux couches collées ensemble.
Cette qualité peut être améliorée en faisant subir aux surfaces à coller, un traitement approprié.
Les isolants utilisés dans les substrats composites précités sont notamment : les oxydes, les nitrures ou les oxynitrures.
Afin d'obtenir ces différents isolants, on connaît déjà, dans l'état de la technique, une technique de dépôt d'une couche de dioxyde de silicium, connue de l'homme du métier sous l'acronyme "LPCVD TEOS", d'après la terminologie anglaise de "Low Pressure Chemical Vapor Déposition" et
" Tétraéthylorthosilicate" . Cette technique consiste à déposer un film de dioxyde de silicium, en utilisant comme matériau source du tétraéthylorthosilicate, et une technique de dépôt en phase vapeur sous faible pression, connue de l'homme du métier sous l'appellation anglaise de LPCVD. Ce procédé présente de nombreux avantages en ce qui concerne l'uniformité et la densité de la couche d'oxyde obtenue, et permet surtout de ne pas consommer la couche de substrat sur laquelle l'oxyde de silicium ainsi formé repose, ce qui n'est pas le cas lors de la formation d'oxyde par un procédé d'oxydation thermique. Cependant, la rugosité des couches de dioxyde de silicium déposées par la technique "LPCVD TEOS" est beaucoup plus élevée que celle de couches que l'on oxyde thermiquement. A titre indicatif, la rugosité de surface d'un oxyde TEOS de 150 nm d'épaisseur est supérieure à 5 Â RMS sur une largeur de balayage (« scan » en anglais) de 1 μm par 1 μm, alors que celle d'un oxyde thermique est voisine d'environ 1,50 Â RMS sur la même largeur de balayage.
On connaît également d'autres techniques de dépôt, telles que par exemple le dépôt par LPCVD utilisant le silane (SiH4) comme précurseur, le dépôt chimique en phase vapeur assisté par plasma (connu sous l'anonyme PECVD pour "Plasma Enhanced Chemical Vapor Déposition"). On pourra se référer à ce sujet à l'article de WoIf et Tauber « Chemical Vapor déposition of amorphous and polycrystalline films », Silicon processing for the VLSI ERA, vol 1, pp 189-207, Process Technology.
Toutefois, ces techniques de dépôt conduisent à l'obtention de couches d'isolant dont la rugosité est très élevée. De plus, la rugosité croît avec l'épaisseur de la couche déposée.
De ce fait, la réalisation d'une couche d'isolant (par exemple d'oxyde) épaisse, c'est-à-dire supérieure à 20 nm - ce qui est fréquemment le cas lors de la fabrication de produits de type SOI - conduit généralement à un niveau de rugosité, incompatible avec les contraintes imposées par un collage par adhésion moléculaire de très bonne qualité. En effet, dans ce cas, il est préférable que la rugosité soit inférieure à 5 Â RMS pour permettre un collage, voire même inférieure à 2 Â RMS, sur des largeurs de balayage (« scan » en anglais) de 1 μm par 1 μm, dans le cadre d'une application de transfert de couche, connue sous la dénomination commerciale « Smart Cut ®». On connaît déjà d'après l'état de la technique, la possibilité de soumettre un substrat à un traitement par plasma. Le « traitement par plasma » d'une surface à coller se définit comme l'exposition de cette surface à un plasma gazeux -ceci pouvant se faire notamment sous vide ou à pression atmosphérique- préalablement à la mise en contact des surfaces à coller. Ce traitement est réalisé en contrôlant divers paramètres d'exposition, tels que la nature et le débit ou la pression du gaz alimentant l'enceinte à l'intérieur de laquelle est réalisée l'opération, ainsi que la densité de puissance.
Il a pour effet de modifier la structure de la couche superficielle du substrat ainsi traité. On distingue deux types de traitement, le premier, dénommé ci-après
« activation plasma », réputé favoriser l'énergie de collage entre deux couches et le second dénommé ci-après « plasma lissant », qui vise à diminuer la rugosité de surface de la couche ainsi traitée.
Les paramètres de mise en œuvre du plasma, et notamment l'énergie, peuvent être différents dans les deux cas.
On connaît ainsi d'après l'article de D.M. HANSEN et al., "Chemical rôle of oxygen plasma in water bonding using borosilicate glasses", Applied Physics Letters, Volume 79, numéro 21, 19 novembre 2001, un procédé d'activation plasma d'une couche mince de borosilicates, déposée par LPCVD. Les verres de type borosilicate sont des alliages de trioxyde de bore
(B2O3) et de dioxyde de silicium (SiO2).
L'expérience reportée dans cet article concerne le traitement d'une couche de borosilicates d'environ 30 angstrôms (3 nm), par un plasma oxygène, en mode RIE ("Reactive Ion Etching"), pendant cinq minutes à 0,6 W/cm2, avec une pression à l'intérieur de l'enceinte de 30 mTorr (1 m Torr = 1,33.K)"1 Pa).
Les résultats obtenus révèlent une amélioration du collage et montrent que la rugosité de la surface traitée n'est pas affectée par ce traitement d'activation plasma.
D. PASQUARIELLO et al., dans l'article intitulé "Surface engergy as a function of self-bias voltage in oxygen plasma wafer bonding", Sensors and Actuators 82 (2000) 239-244, a étudié l'influence de l'énergie cinétique des ions d'un plasma oxygène, sur l'énergie de collage de plaques de silicium ainsi traitées.
Les essais ont montré qu'une plaque de silicium présentant une rugosité initiale de 0,9 Â RMS pouvait atteindre une rugosité voisine de 0,60 Â RMS, pour une largeur de balayage de 1 μm x 1 μm. L'auteur conclut en outre que l'énergie cinétique des ions plasma n'a pas la moindre influence sur la qualité du lissage des substrats ainsi traités.
Par ailleurs, l'article de MORICEAU et al. « Interest of a short plasma treatment to achieve high quality Si-Siθ2-Si bonded structures », Abrégé n° 1006, ECS 2003, a montré l'effet lissant d'un plasma sur des oxydes thermiques de SiO2. Toutefois cet article ne concerne que des oxydes dont la rugosité initiale est assez faible (2,3 Â RMS pour 0,5 μm x 0,5 μm à 20 μm x 20 μm de balayage). En outre, cet article n'évoque pas la possibilité de former une zone de fragilisation, par une implantation de type Smart Cut® dans le substrat supportant l'oxyde, ni en conséquence les potentiels effets bénéfiques du plasma lissant observés lors d'un report de couche ultérieur.
Enfin, on connaît également d'après le document US -2004/0124416 un procédé de diminution de la rugosité d'une couche de matériau diélectrique qui utilise un traitement plasma. Toutefois, ce document n'évoque pas la possibilité d'effectuer un traitement d'implantation d'espèces atomiques de type Smart Cut® entre un traitement de plasma lissant et un collage, suivi d'un report de couche. Les effets bénéfiques sur la diminution du nombre de défauts observés sur la couche reportée ne sont absolument pas envisagés. L'invention a au contraire pour but de diminuer sensiblement la rugosité d'une couche épaisse d'isolant, que l'on ne souhaite pas ou que l'on ne peut pas former par oxydation sur son substrat de départ et dont la rugosité initiale est importante.
Par couche "rugueuse", on entend ici une couche dont la rugosité est supérieure ou égale à 3 angstrôms RMS, de préférence comprise entre 3 et 20 angstrôms RMS environ, pour un balayage de 2 μm x 2 μm.
L'invention a également pour but de fournir un procédé de fabrication d'un substrat intermédiaire, qui comprend une zone de fragilisation obtenue par implantation d'espèces atomiques et qui est recouvert d'une couche d'isolant épaisse dont la rugosité est importante, ce substrat intermédiaire pouvant être utilisé ultérieurement dans un procédé de collage et de transfert de couche, afin d'obtenir un substrat dont la couche reportée présente peu ou pas de défauts.
A cet effet, l'invention concerne un procédé de fabrication d'un substrat apte à être utilisé dans les domaines de l'électronique, l'optoélectronique et l'optique, caractérisé en ce qu'il comprend au moins les étapes suivantes, réalisées dans cet ordre : a) le dépôt, sur un premier substrat dit « donneur », d'une couche d'isolant dont l'épaisseur est supérieure ou égale à 20 nm et dont la rugosité est supérieure ou égale à 3 angstrôms RMS, pour une largeur de balayage de 2 μm x 2 μm, b) le traitement de lissage de la surface libre de cette couche d'isolant, en utilisant un plasma gazeux, formé dans une enceinte à l'intérieur de laquelle règne une pression de gaz supérieure à 0,25 Pa, ce plasma étant créé à l'aide d'un générateur de radiofréquences, qui fonctionne avec une puissance telle, qu'il permet d'appliquer à ladite couche d'isolant, une densité de puissance supérieure à 0,6 W/cm2, la durée de ce traitement de lissage étant d'au moins 10 secondes, c) la formation d'une zone de fragilisation par implantation d'espèces atomiques, à l'intérieur dudit substrat donneur, pour y délimiter une couche, dite "active" et un reste.
Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou en combinaison : le procédé comprend les étapes suivantes, réalisées après l'étape c) : d) le collage par adhésion moléculaire d'un second substrat, dit « receveur », sur ladite surface libre de la couche d'isolant, e) le retrait dudit reste. le procédé comprend une étape de recuit de densification de l'isolant déposé à l'étape a), ce recuit étant effectué à une température comprise entre 700 et 1000°C, pendant une durée de plusieurs minutes à plusieurs heures, dans une atmosphère oxydante ou neutre. ledit traitement de recuit de densification est effectué après l'étape b) de lissage par plasma et avant l'étape c) d'implantation d'espèces atomiques. le traitement de lissage par plasma est effectué avec une densité de puissance comprise entre 0,6 et 10 W/cm2, une pression du gaz à l'intérieur de l'enceinte comprise entre 0,25 et 30 Pa et une durée du traitement comprise entre 10 et 200 secondes. la pression du gaz à l'intérieur de l'enceinte est comprise entre 3 et 13 Pa, de préférence elle est voisine de 7 Pa. - la durée de l'étape b) de traitement de lissage par plasma est comprise entre 30 et 120 secondes environ. le gaz utilisé pour la formation du plasma de lissage est choisi parmi l'oxygène (O2), l'argon (Ar), l'azote (N2) ou un mélange de ces gaz.
- le gaz utilisé pour la formation du plasma de lissage (SP) est choisi de façon que la nature des atomes le constituant soit la même qu'au moins l'un des atomes constituant ladite couche d'isolant (2) à traiter. entre les étapes c) et d), on procède à un traitement d'activation plasma de ladite couche d'isolant, en utilisant un plasma gazeux, formé dans une enceinte à l'intérieur de laquelle règne une pression de gaz d'environ 7 Pa, ce plasma étant créé à l'aide d'un générateur de radiofréquences RF, qui fonctionne avec une puissance telle, qu'il permet d'appliquer à ladite couche d'isolant, une densité de puissance supérieure à 0,2 W/cm2, la durée de ce traitement de lissage étant d'au moins 5 secondes. le traitement d'activation plasma est effectué avec une densité de puissance comprise entre 0,2 et 3 W/cm2, et une durée de traitement comprise entre 5 et 60 secondes. l'épaisseur de la couche d'isolant est supérieure ou égale à 200 nm. l'isolant est obtenu par une technique de dépôt chimique en phase vapeur sous faible pression LPCVD. - l'isolant est un oxyde. l'oxyde est un dioxyde de silicium, obtenu par une technique de dépôt chimique en phase vapeur sous faible pression, à partir de tétraéthylorthosilicate (LPCVD TEOS). le dioxyde de silicium (SiO2) est déposé à une pression comprise entre 40 et 200 Pa. l'isolant est un nitrure ou un oxynitrure. ladite couche active comprend du silicium, ladite couche active comprend du silicium contraint. D'autres caractéristiques et avantages de l'invention apparaîtront de la description qui va maintenant en être faite, en référence aux dessins annexés, qui en représentent, à titre indicatif mais non limitatif, un mode de réalisation possible. Sur ces dessins :
- les figures IA à IF sont des schémas illustrant les différentes étapes successives d'un premier mode de réalisation du procédé conforme à l'invention ; - les figures 2 A à 2H sont des schémas illustrant les différentes étapes d'un second mode de réalisation du procédé conforme à l'invention ; - la figure 3 est un graphique représentant la rugosité R du bord d'une couche de dioxyde de silicium, après le traitement plasma conforme à l'invention, en fonction de la puissance appliquée, et ce pour différentes durées d'application ; - la figure 4 est un graphique représentant la rugosité R du bord d'une couche de dioxyde de silicium, après le traitement plasma conforme à l'invention, en fonction du temps, et pour différentes gammes de puissances du plasma ;
- les figures 5 et 6 sont des graphiques, similaires respectivement à ceux des figures 3 et 4, mais pour des mesures effectuées au centre de la couche de dioxyde de silicium ;
- la figure 7 est un graphique représentant le nombre N de défauts de différents types, avant et après le traitement de plasma lissant conforme à l'invention ; - les figures 8 et 9 sont des graphiques représentant la durée t d'une onde de collage, exprimée en secondes, en fonction du nombre d'ondes de collage NO présentant cette durée de collage, respectivement des couches d'isolant (SiO2) n'ayant pas subi de traitement de plasma lissant ou en ayant subi un, et
- la figure 10 est un graphique représentant le nombre de défauts de différents types, observés sur des substrats obtenus soit à l'issue du procédé conforme à l'invention, soit à l'issue d'un procédé comparatif.
En se reportant à la figure 1, on peut voir les différentes étapes d'un premier mode de réalisation du procédé conforme à l'invention.
Les figures IA et IB représentent respectivement un substrat donneur 1, avant et après qu'il ne soit recouvert par le dépôt d'une couche d'isolant 2 épaisse. La face du substrat donneur 1 opposée à celle sur laquelle a été déposée la couche d'isolant 2 est dite « face arrière» et porte la référence 13.
Le substrat donneur 1 peut être monocouche ou multicouches. Il est généralement réalisé dans un matériau semi-conducteur, par exemple du silicium. Le substrat donneur 1 peut également comprendre un matériau contraint, tel que du silicium contraint. Dans ce dernier cas, le substrat est généralement multicouches, et la couche de matériau contraint est alors obtenue par épitaxie, sur une couche de matériau support.
L'isolant 2 peut être, par exemple, une couche de nitrure, d'oxy- nitrure ou de préférence une couche d'oxyde. L'épaisseur de l'isolant est supérieure ou égale à 20 nm, de préférence supérieure ou égale à 200 nm. Sa rugosité est supérieure ou égale à 3 angstrôms RMS, pour une largeur de balayage de 2 μm x 2 μm.
Conformément à l'invention, on réalise ensuite une étape de plasma lissant, dont les modalités seront décrites ultérieurement. Celle-ci est représentée sur la figure IC. La référence SP correspond à la terminologie anglaise de « smoothing plasma » qui désigne un plasma lissant.
Enfin, on réalise une étape d'implantation d'espèces atomiques, comme représenté sur la figure ID. Cette implantation permet de former à l'intérieur du substrat donneur
1 une zone de fragilisation 10, qui délimite une couche mince supérieure 11, du reste 12 du substrat.
L'expression "couche mince" désigne une couche de quelques dizaines ou centaines de nanomètres d'épaisseur. Pour une description générale de ces méthodes d'implantation, on pourra se reporter à l'ouvrage "Silicon on Insulator Technologies" ; Materials to VLSI, 2*°* Edition (Jean-Pierre COLINGE) ou à la littérature concernant le procédé de type "Smart Cut" (marque déposée).
Conformément à l'invention, les trois étapes qui viennent d'être décrites, à savoir le dépôt de l'isolant, le traitement de plasma lissant SP et l'implantation d'espèces atomiques, représentées respectivement sur les figures IB, IC et ID, sont effectuées impérativement dans cet ordre. Toutefois, comme cela sera décrit ultérieurement, des étapes complémentaires peuvent être intercalées entre ces trois étapes. A l'issue de l'étape d'implantation, on obtient un substrat 4, dit
"substrat intermédiaire", apte à être utilisé dans des procédés de collage et de report de couches, mis en œuvre dans les domaines de l'électronique, l'opto-électronique et l'optique.
Ces étapes sont illustrées sur les figures IE et IF. Comme illustré sur la figure IE, on peut poursuivre le procédé en collant sur la surface libre 20 de la couche d'isolant 2 du substrat intermédiaire 4, un substrat receveur 3.
Le substrat receveur 3 est en matériau semi-conducteur.
Puis, on procède au détachement du reste 12 du substrat donneur 1, le long de la zone de fragilisation 10. On obtient ainsi le substrat composite final 5 représenté sur la figure IF, dans lequel la couche d'isolant 2 est intercalée à l'intérieur de deux couches de matériau semi-conducteur 3, 11.
Bien que cela n'ait pas été représenté sur les figures, le substrat receveur 3 pourrait être multicouches.
La figure 2 illustre une variante de réalisation du procédé précédent. Les éléments identiques portent les mêmes références numériques.
Cette variante de réalisation se distingue de la précédente, en ce qu'elle comprend deux étapes supplémentaires, l'une de traitement thermique de densification représentée sur la figure 2D et l'autre de traitement d'activation plasma illustrée sur la figure 2F.
Les autres étapes du procédé sont identiques à ce qui a été décrit précédemment pour la figure 1 et portent les mêmes références numériques.
L'étape de recuit de densification de l'isolant 2 qui a été déposé sur le substrat 1 est optionnelle mais conseillée.
Cette étape de recuit de densification est effectuée avant l'étape d'implantation d'espèces atomiques.
De plus, elle est de préférence effectuée après l'étape de lissage par plasma (SP). Toutefois, et bien que cela ne soit pas représenté sur les figures, elle pourrait également être effectuée après le dépôt de l'isolant, mais avant l'étape de lissage par plasma.
Le traitement d'activation par plasma AP est optionnel. Il peut être effectué sur la face ayant subi le traitement de lissage plasma (SP), c'est-à-dire la face 20, comme représenté sur la figure 2F. Il peut également être effectué sur la face 30 du substrat 3 destinée à être collée sur la face 20. Il peut également être effectué sur les deux faces 20 et 30.
La référence AP correspond à la terminologie anglaise de « activation plasma » qui désigne un traitement d'activation plasma.
Enfin, bien que non représenté sur les figures, un traitement de nettoyage pré et/ou post-activation plasma (AP) peut être effectué, selon des modalités décrites ultérieurement, après l'implantation d'espères atomiques et avant l'activation plasma ou après l'activation plasma et avant le collage du substrat receveur 3.
Les modalités de mises en œuvre des différentes étapes précitées vont maintenant être décrites plus en détails. Modalités de dépôt de la couche d'isolant :
La couche d'isolant 2 est formée sur le substrat donneur 1, par dépôt, notamment par dépôt chimique en phase vapeur, et de préférence à faible pression, technique connue sous l'acronyme anglais de "LPCVD". Une autre technique peut également être utilisée, telle que le dépôt chimique en phase vapeur assisté par plasma, connu sous l'acronyme PECVD. On pourra se reporter à ce sujet à l'article précité de Wolff et Tauber.
Cette étape du procédé peut être mise en œuvre avec un réacteur pour le dépôt chimique en phase vapeur. Celui-ci comprend une enceinte de traitement, à l'intérieur de laquelle est disposé le substrat. Les différents réactifs chimiques, sous forme de flux gazeux, sont ensuite introduits à l'intérieur de cette enceinte, à une température élevée et sous faible pression, de façon à former la couche d'isolant 2, après réaction chimique entre les différents constituants gazeux.
L'une des applications visée dans l'invention consiste en la fabrication d'un substrat de type SOI.
Dans ce cas, une variante de réalisation préférentielle du dioxyde de silicium (SiO2) consiste à effectuer un dépôt connu sous l'appellation précitée TEOS LPCVD, en utilisant du tétraéthylorthosilicate (TEOS), selon la réaction chimique suivante :
Si(OC2H5)4(gaz) → SiO2(solide) + 2C2H4(gazeux)+ 2CH3CH20H(gazeux)
La pression à l'intérieur de l'enceinte du réacteur LPCVD est comprise entre 300 mTorr et 1,5 Torr (soit entre 40 et 200 Pa), de préférence voisine de 750 mTorr, (soit voisine de 100 Pa).
L'épaisseur du dioxyde de silicium est ajustée pour être d'au moins 20 nm, voire supérieure ou égale à 200 nm et jusqu'à quelques micromètres.
Recuit de densification :
II est effectué par un traitement thermique à une température comprise entre 700 et 1000°C, pendant une durée de plusieurs minutes à plusieurs heures, dans une atmosphère oxydante ou neutre.
Il a pour objet de rendre l'isolant plus dense et d'éliminer les espèces carbonées. Configuration de l'installation permettant la réalisation du traitement de lissage ou du traitement d'activation plasma :
Le traitement est mis en œuvre avec une installation comprenant une enceinte à plasma, à l'intérieur de laquelle la pression et la composition de l'atmosphère gazeuse sont contrôlées. Il existe plusieurs types de telles installations. L'invention peut ainsi être mise en œuvre avec une installation du type "par gravure ionique réactive", connue sous l'abréviation "RIE". L'installation comprend un générateur RF (radiofréquence) unique, alimentant, via un couplage capacitif, une électrode située à l'intérieur de l'enceinte et qui supporte le substrat 1 recouvert de la couche d'isolant 2 à lisser et/ou à activer.
C'est ce générateur RF unique qui permet de générer le plasma (c'est-à- dire d'exciter ses espèces).
Et la « puissance » dont il est question dans ce texte, et qui est un des paramètres de l'activation, correspond plus précisément à la puissance de ce générateur.
Le contrôle de la puissance de ce générateur permet à la fois d'exciter le plasma, et de contrôler l'énergie cinétique des ions du plasma, qui bombardent la surface de la couche d'isolant 2.
L'enceinte à plasma comporte en outre une deuxième électrode, non reliée au substrat à traiter. Cette deuxième électrode est reliée à la masse.
Selon une autre variante, il est également possible de mettre en œuvre l'invention, avec une installation similaire à celle qui vient d'être mentionnée, mais dans laquelle la deuxième électrode est reliée à un deuxième générateur RF.
Dans ce cas, c'est le deuxième générateur RF (relié à l'électrode avec laquelle la couche d'isolant à traiter n'est pas en contact) qui génère et entretient le plasma. Ce deuxième générateur est ainsi commandé pour contrôler la densité du plasma. Le contrôle de la puissance du premier générateur permet de réguler uniquement l'énergie cinétique des ions du plasma, qui bombardent la surface de la couche à traiter. Paramètres du plasma lissant :
La puissance RF du plasma est une puissance élevée. Elle varie de 200 à 3 000 W, pour des substrats de 200 mm de diamètre, soit une densité de puissance d'au moins 0,6 W/cm2 et de préférence comprise entre 0,6 à 10 W/cm2. La demanderesse a en effet constaté que plus le traitement plasma est réalisé à forte puissance RF, plus la rugosité de la couche d'isolant 2 traité sera diminuée.
Par ailleurs, la durée de ce traitement plasma est avantageusement d'au moins 10 secondes, de préférence comprise entre 10 et 200 secondes, typiquement entre 30 et 60 secondes. La demanderesse a également constaté que plus la durée du traitement plasma est longue et plus la surface de la couche d'isolant est lissée.
Le gaz utilisé pour former le plasma peut être de l'oxygène, de l'azote ou de l'argon ou une combinaison de ces gaz (ArK)2 ; ATfN2 ; O2+N2 ; Ar+θ2+N2 ). Le traitement de lissage peut également être effectué en deux temps, à savoir par exemple 60s sous plasma d'Argon à forte puissance, puis 30s sous plasma O2 à une puissance plus modérée.
D'une façon préférentielle, le traitement de lissage par plasma est effectué avec des atomes de gaz de même nature qu'au moins l'un de ceux constituant la couche d'isolant traitée. On aura ainsi, par exemple, un traitement de lissage par plasma d'oxygène pour lisser une couche d'oxyde de silicium, un plasma d'azote pour lisser une couche de nitrure de silicium.
Il est en effet préférable de ne pas modifier la stœchiométrie et donc la chimie du matériau traité lors de ce type de traitement plasma. Les valeurs de pression typiquement utilisées sont supérieures à
2 mTorr, de préférence comprises entre 2 et 200 mTorr, préférentiellement 20 à 100 mTorr, de préférence encore voisines de 50 mTorr, (c'est-à-dire, supérieures à 0,25
Pa, de préférence comprises entre 0,25 Pa et 30 Pa, de préférence entre 3 Pa et 13
Pa, de préférence encore voisines de 7 Pa). Bien que le traitement de plasma lissant soit mené avec une énergie et une durée particulièrement importantes, qui ne sont pas forcément compatibles avec l'obtention d'un collage fort, il ne faut toutefois pas exclure la situation où la rugosité initiale et le choix de la face à implanter permettrait d'avoir des paramètres de procédé qui fonctionnent à la fois pour le lissage et l'activation, en particulier si le lissage est pratiqué en deux temps comme décrit précédemment.
Le traitement de lissage par plasma peut également être volontairement plus fort en bord de plaque (respectivement au centre), de façon à obtenir une rugosité finale uniforme, lorsque l'on utilise au départ une surface plus rugueuse au bord (respectivement au centre). Les paramètres permettant ce type de correction différentielle (centre/bord) sont tous ceux connus de l'homme du métier pour faire varier l'uniformité du plasma (pression, différentiel de densité de puissance centre/bord), débits différents entre centre et bord, etc.).
Traitement de nettoyage pré et/ou post activation plasma :
Un nettoyage approfondi de la surface à activer peut être réalisé, par exemple à l'aide d'un traitement dans un bain chimique dénommé "RCA", afin d'éviter toute contamination. Le traitement "RCA" consiste à traiter les surfaces, successivement avec :
- un premier bain d'une solution connue sous l'acronyme "SCl", (d'après la terminologie anglo-saxonne de "Standard Clean 1", qui signifie "solution de nettoyage standard 1 "), et qui comprend un mélange d'hydroxyde d'ammonium (NH4OH), de peroxyde d'hydrogène (H2O2) et d'eau déionisée,
- un second bain d'une solution connue sous l'acronyme "SC2", (d'après la terminologie anglo-saxonne de "Standard Clean 2", qui signifie "solution de nettoyage standard 2"), et qui comprend un mélange d'acide chlorhydrique (HCl), de peroxyde d'hydrogène (H2O2) et d'eau déionisée. Paramètres de l'activation plasma :
Elle est avantageusement effectuée à plus faible puissance que le plasma lissant, par exemple, avec une densité de puissance RF comprise entre 0.2 et
3 W/cm2, de préférence voisine de 0.6 W/cm2, pour augmenter encore l'énergie de collage avec le substrat receveur. De préférence, on utilise une durée de traitement comprise entre 5 et
60 secondes et une pression de gaz à l'intérieur de l'enceinte d'environ 7 Pa (50 mTorr).
Différents essais ont été effectués afin de montrer l'efficacité du procédé conforme à l'invention. Essai 1 :
Des essais ont été effectués sur plusieurs substrats, en faisant varier les différents paramètres du traitement de plasma lissant (SP), afin d'étudier la rugosité de la couche d'isolant ainsi traitée, à la fois au centre et sur les bords. Cette mesure de la rugosité a été effectuée par microscopie à force atomique (connue sous l'acronyme "AFM", d'après la terminologie anglaise "Atomic Force Microscopy").
Les essais ont été effectués sur une couche d'isolant constituée de dioxyde de silicium, obtenue par un dépôt LPCVD TEOS. L'épaisseur de la couche de SiO2 d'isolant était de 145 nm et sa rugosité initiale avant le traitement de plasma lissant, de l'ordre de 4 à 4,5 Â RMS pour une largeur de balayage de 2 μm x 2 μm.
On a utilisé des puissances de plasma de 250, 600 et 1000 W, pendant des durées respectives de 10, 30 et 60 secondes. Les résultats sont reportés dans le tableau ci-dessous, dans le cas d'un plasma à l'oxygène, pour des plaques de 200 mm de diamètre.
Tableau 1
Figure imgf000015_0001
Les valeurs de rugosité sont exprimées en angstrôms RMS pour des largeurs de balayage (« scan ») de 2 μm par 2 μm.
Ces résultats ont par ailleurs été reportés sur les graphiques des figures 3 à 6. En les observant, on constate ainsi une amélioration de la rugosité initiale, cette amélioration étant renforcée par l'emploi d'un plasma lissant à haute puissance, (de préférence au moins 600 W ou mieux encore 1000 W) et de longue durée.
A l'issue de ce traitement plasma, la demanderesse a également constaté que le dioxyde de silicium conservait une bonne uniformité.
La diminution de la rugosité est réelle, s'effectue à basse température et permet d'éviter une étape ultérieure de polissage mécanico-chimique.
De ce fait, la couche d'isolant ainsi traitée peut être utilisée pour effectuer un collage de très bonne qualité sur un substrat receveur et, ultérieurement, un transfert de couche par un détachement également de bonne qualité, qui évite tous les problèmes d'apparition de cloques, de zone d'exclusion
(« couronne »), de picots ou de formation de zones non transférées.
Essai 2 :
D'autres essais complémentaires ont été réalisés sur des substrats en silicium contraint sur isolant (sSOI) incluant un oxyde TEOS lissé, intercalé entre une couche mince de silicium contraint et une couche support de silicium. Dans ce cas de figure, la puissance de lissage est d'environ 1000 W pendant environ 60 s, pour des plaques de 200 mm de diamètre, soit une densité de puissance de 3 W/cm2. La pression de gaz utilisée pendant le lissage était de 50 mTorr (environ 7 Pa). Les résultats obtenus sont reportés dans le tableau ci-dessous.
Tableau 2
Figure imgf000017_0001
Par ailleurs, des tests comparatifs ont également été effectués sur les substrats de type s SOI précités, après le report de la couche mince 11 de silicium contraint, certains de ces substrats ayant subi le traitement de plasma lissant précité, au cours de leur fabrication, d'autres substrats ne l'ayant pas subi.
Les résultats obtenus sont reportés sur la figure 7, sur laquelle N représente le nombre de défauts et 0 et 1 indiquent respectivement l'absence de traitement par plasma lissant, ou au contraire sa réalisation.
Les références a à f ont la signification suivante : a : grande zone non transférée (diamètre supérieur à 1,5 mm) b : petite zone non transférée (diamètre entre 0.5 et 1,5 mm) c : micro zones non transférées (diamètre inférieur à 0,5 mm) d : cloques e : microcloques f : picots (zones non transférées en bord de plaque). On passe ainsi d'une centaine de défauts par plaque à une dizaine, voire même moins, grâce au plasma lissant conforme à l'invention. Essai 3 :
D'autres essais ont été effectué afin d'étudier l'effet du plasma lissant sur le temps de collage.
Les mesures effectuées ont consisté à mesurer le temps de collage, c'est-à-dire la durée d'une onde de collage entre un substrat en silicium, recouvert d'une couche de SiO2 obtenue par dépôt LPCVD et TEOS, et un substrat receveur également en silicium.
Les essais ont été réalisés avec différents lots de substrats de 200 mm de diamètre, dont les oxydes présentaient des rugosités de surfaces différentes, de 3 à 6 angstrôms RMS pour une largeur de balayage de 2 μm x 2 μm. Ces oxydes avaient subi un traitement de plasma lissant, en utilisant des puissances comprises entre 1000 W et 1500 W, soit des densités de puissance comprises entre 3,2 W/cm2 et 4,7 W/cm2 pour des diamètres de 200 mm et pendant des durées allant de 60 à 120 secondes. La pression du gaz dans l'enceinte était de 50 mTorr (environ 7 Pa).
La figure 8 illustre les résultats obtenus pour des oxydes n'ayant pas subi le traitement de plasma lissant. Elle représente la durée t d'une onde de collage, exprimée en secondes, en fonction du nombre d'ondes de collage NO pr ésentant cette durée de collage. La figure 9 illustre les résultats obtenus pour des oxydes ayant subi le traitement de plasma lissant conforme à l'invention.
On observe que lorsque aucun traitement de plasma lissant n'est effectué, la durée de l'onde de collage ou temps de collage est en moyenne de 43,7 secondes avec un écart type de 33 secondes, tandis qu'après un plasma lissant, le temps de collage est réduit à 8,6 secondes avec un écart type de 0,5 seconde.
Le traitement de plasma lissant a donc pour effet de réduire le temps de collage et de ce fait, d'augmenter l'énergie de collage et de rendre ce collage beaucoup plus homogène et reproductible. Essai 4 : Les substrats testés sont des plaques de sSOI de 200 mm de diamètre.
Ils ont été fabriqués à partir d'un substrat donneur comprenant une couche de silicium contraint à forte topologie de surface, sur lequel une couche d'oxyde de silicium de l'ordre de 1650 angstrôms (165 nm) (entre 1600 et 1700 angstrôms, entre 160 et 170 nm) d'épaisseur a été déposée par dépôt TEOS LPCVD... La notion de topologie est à distinguer de la notion de rugosité. Cette dernière s'apprécie à l'échelle microscopique. Au contraire, la notion de topologie s'apprécie à l'échelle macroscopique et désigne les différences entre les points les plus haut et les plus bas d'une surface ("pick to valley" en anglais), sur une aire d'environ lcm2. La forte topologie du silicium contraint du donneur a une incidence sur la topologie de la couche d'isolant déposée sur celui-ci. La rugosité initiale de l'oxyde de silicium était de 4 à 6 angstrôms RMS, pour un balayage de 2 μm x 2 μm.
Différents traitements exposés ci-après ont été appliqués à différents lots de ces substrats donneurs, puis un substrat receveur en silicium a été appliqué sur la couche d'oxyde de chacun d'entre eux et la couche de silicium contraint a été détachée du substrat donneur pour être reportée sur le substrat receveur et former le substrat final.
Figure imgf000019_0001
Le lissage standard a été obtenu en utilisant un plasma d'oxygène, formé dans une enceinte à l'intérieur de laquelle régnait une pression de gaz de 50 mT (soit 7 Pa). Ce plasma a été créé à l'aide d'un générateur de radiofréquences RF qui fonctionne avec une densité de puissance de l'ordre de 3 watts par cm2 et une durée de traitement de 60 secondes. Le flux d'oxygène était de 75 sccm. Le lissage doux a été obtenu en utilisant un plasma d'oxygène, formé dans une enceinte à l'intérieur de laquelle régnait une pression de gaz de 150 mT (soit environ 20 Pa). Ce plasma a été créé à l'aide d'un générateur de radiofréquences RF qui fonctionne avec une densité de puissance de l'ordre del,5 watts par cm2 et une durée de traitement de 60 secondes. Le flux d'oxygène était de 200 sccm.
La densification par recuit thermique de l'oxyde a été obtenue par un traitement thermique à environ 850°C, pendant 2 heures. L'implantation des espèces atomiques a été effectuée par une implantation d'ions d'environ 30 keV, selon une dose de l'ordre de 6.1016 H+ZCm2.
L'activation plasma (AP) du substrat receveur a été effectuée sous une pression de 50 mTorr (environ 7 Pa) à une puissance de 250 W, sous un flux d'oxygène de 75 sccm (scare cubic centimeter) pendant environ 10 secondes.
Les résultats observés après le report de couche sont illustrés sur la figure 10.
Celle-ci représente, pour les différents substrats d'un même type d'essai, le nombre de défauts observés par catégorie de défauts. La légende des figures est la suivante :
+ : μZNT (micro zones non transférées ; taille <0,5 mm)
• : gZNT (grandes zones non transférées ; taille >0,5 mm) m :pZNT (petites zones non transférées ; taille 0,5 < taille < 1,5 mm) x : rayures (à ne pas prendre en compte. Au vu des résultats obtenus, notamment pour les essais A à C, on peut conclure que quelque soit le traitement plasma appliqué (standard ou doux), et que celui-ci soit appliqué avant ou après la densification, de bons résultats en termes de faible nombre de défauts peuvent être obtenus, à condition que le lissage par plasma soit réalisé avant l'implantation d'espèces atomiques. Au vu des essais D et E, on constate que lorsque le traitement de lissage est effectué après l'implantation d'espèces atomiques, les résultats obtenus sont nettement moins bons.
Par ailleurs, la comparaison des essais D et E montre que l'activation plasma (AP) du substrat receveur permet de diminuer le nombre de défauts observés après le détachement.
On en déduit que l'activation issue indirectement du lissage effectué avant l'implantation des substrats donneurs de type Si contraint est diminuée, voire éliminée, à cause des différents traitements successifs réalisés après le traitement de lissage plasma. Les différents essais effectués ont montré les avantages de l'invention.
Le traitement de plasma lissant (SP) a pour effet de diminuer la rugosité de l'isolant épais et le fait qu'il soit suivi d'une implantation de type Smart Cut ® permet d'éliminer l'effet chimique d'activation qu'il a sinon sur l'isolant. Le procédé conforme à l'invention est également particulièrement bien adapté aux substrats à forte topologie, avec des valeurs de "pick to valley" importantes, puisque l'on a montré que la rugosité de tels substrats pouvait également être diminuée par ce procédé.
De plus, dans ce type de substrat, les zones de forte topologie sont généralement situées sur les bords et ce sont à ces endroits que des défauts apparaissent lors du report de couche, si le substrat a été activé. L'enchaînement des étapes du procédé conforme à l'invention qui évite l'activation est donc bien approprié.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un substrat apte à être utilisé dans les domaines de l'électronique, l'optoélectronique et l'optique, caractérisé en ce qu'il comprend au moins les étapes suivantes, réalisées dans cet ordre : a) le dépôt, sur un premier substrat (1) dit « donneur », d'une couche d'isolant (2) dont l'épaisseur est supérieure ou égale à 20 nm et dont la rugosité est supérieure ou égale à 3 angstrôms RMS, pour une largeur de balayage de 2 μm x 2 μm, b) le traitement de lissage (SP) de la surface libre (20) de cette couche d'isolant (2), en utilisant un plasma gazeux, formé dans une enceinte à l'intérieur de laquelle règne une pression de gaz supérieure à 0,25 Pa, ce plasma étant créé à l'aide d'un générateur de radiofréquences RF, qui fonctionne avec une puissance telle, qu'il permet d'appliquer à ladite couche d'isolant (2), une densité de puissance supérieure à 0,6 W/cm2, la durée de ce traitement de lissage étant d'au moins 10 secondes, c) la formation d'une zone de fragilisation (10) par implantation d'espèces atomiques, à l'intérieur dudit substrat donneur (1), pour y délimiter une couche (11), dite "active" et un reste (12).
2. Procédé selon la revendication 1, caractérisé en ce qu'il comprend les étapes suivantes, réalisées après l'étape c) : d) collage par adhésion moléculaire d'un second substrat (3), dit
« receveur », sur ladite surface libre (20) de la couche d'isolant (2), e) retrait dudit reste (12).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'il comprend une étape de recuit de densification de l'isolant (2) déposé à l'étape a), ce recuit étant effectué à une température comprise entre 700 et 1000°C, pendant une durée de plusieurs minutes à plusieurs heures, dans une atmosphère oxydante ou neutre.
4. Procédé selon la revendication 3, caractérisé en ce que ledit traitement de recuit de densification est effectué après l'étape b) de lissage par plasma (SP) et avant l'étape c) d'implantation d'espèces atomiques.
5. Procédé selon l'une des revendications précédentes, caractérisé en ce que le traitement de lissage par plasma (SP) est effectué avec une densité de puissance comprise entre 0,6 et 10 W/cm2, une pression du gaz à l'intérieur de l'enceinte comprise entre 0,25 et 30 Pa et une durée du traitement comprise entre 10 et 200 secondes.
6. Procédé selon la revendication 5, caractérisé en ce que la pression du gaz à l'intérieur de l'enceinte est comprise entre 3 et 13 Pa.
7. Procédé selon la revendication 6, caractérisé en ce que la pression du gaz est voisine de 7 Pa.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la durée de l'étape b) de traitement de lissage par plasma (SP) est comprise entre 30 et 120 secondes environ.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz utilisé pour la formation du plasma de lissage (SP) est choisi parmi l'oxygène (O2), l'argon (Ar), l'azote (N2) ou un mélange de ces gaz.
10. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz utilisé pour la formation du plasma de lissage (SP) est choisi de façon que la nature des atomes le constituant soit la même qu'au moins l'un des atomes constituant ladite couche d'isolant (2) à traiter.
11. Procédé selon l'une des revendications 2 à 10, caractérisé en ce que entre les étapes c) et d), on procède à un traitement d'activation plasma (AP) de ladite couche d'isolant (2), en utilisant un plasma gazeux, formé dans une enceinte à l'intérieur de laquelle règne une pression de gaz d'environ 7 Pa, ce plasma étant créé à l'aide d'un générateur de radiofréquences RF, qui fonctionne avec une puissance telle, qu'il permet d'appliquer à ladite couche d'isolant (2), une densité de puissance supérieure à 0,2 W/cm2, la durée de ce traitement de lissage étant d'au moins 5 secondes.
12. Procédé selon la revendication 11, caractérisé en ce que le traitement d'activation plasma (AP) est effectué avec une densité de puissance comprise entre 0,2 et 3W/cm2, et une durée de traitement comprise entre 5 et 60 secondes.
13. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur de la couche d'isolant (2) est supérieure ou égale à 200 nm.
14. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'isolant (2) est obtenu par une technique de dépôt chimique en phase vapeur sous faible pression LPCVD.
15. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'isolant (2) est un oxyde.
16. Procédé selon la revendication 15, caractérisé en ce que l'oxyde est un dioxyde de silicium (SiO2), obtenu par une technique de dépôt chimique en phase vapeur sous faible pression, à partir de tétraéthylorthosilicate (LPCVD TEOS).
17. Procédé selon la revendication 16, caractérisé en ce que le dioxyde de silicium (SiO2) est déposé à une pression comprise entre 40 et 200 Pa.
18. Procédé selon l'une des revendications 1 à 14, caractérisé en ce que l'isolant (2) est un nitrure ou un oxynitrure.
19. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite couche active (11) comprend du silicium.
20. Procédé selon l'une des revendications précédentes, caractérisé en ce que ladite couche active (11) comprend du silicium contraint.
PCT/EP2006/064169 2005-07-13 2006-07-12 Procede de diminution de la rugosite d'une couche epaisse d'isolant WO2007006803A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT06777736T ATE524828T1 (de) 2005-07-13 2006-07-12 Verfahren zur verringerung der rauhigkeit einer dicken isolationsschicht
JP2008520879A JP4927080B2 (ja) 2005-07-13 2006-07-12 厚い絶縁層の粗さを減少させるための方法
EP06777736A EP1902463B1 (fr) 2005-07-13 2006-07-12 Procede de diminution de la rugosite d'une couche epaisse d'isolant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR05/07573 2005-07-13
FR0507573A FR2888663B1 (fr) 2005-07-13 2005-07-13 Procede de diminution de la rugosite d'une couche epaisse d'isolant

Publications (1)

Publication Number Publication Date
WO2007006803A1 true WO2007006803A1 (fr) 2007-01-18

Family

ID=36090950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/064169 WO2007006803A1 (fr) 2005-07-13 2006-07-12 Procede de diminution de la rugosite d'une couche epaisse d'isolant

Country Status (9)

Country Link
US (2) US7446019B2 (fr)
EP (1) EP1902463B1 (fr)
JP (1) JP4927080B2 (fr)
KR (1) KR100958467B1 (fr)
CN (1) CN100576462C (fr)
AT (1) ATE524828T1 (fr)
FR (1) FR2888663B1 (fr)
SG (1) SG151287A1 (fr)
WO (1) WO2007006803A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033124A (ja) * 2007-06-22 2009-02-12 Semiconductor Energy Lab Co Ltd 半導体基板及び半導体基板の作製方法、半導体装置、電子機器
JP2009111381A (ja) * 2007-10-26 2009-05-21 Soi Tec Silicon On Insulator Technologies 微細な埋め込み絶縁層を有するsoi基板
JP2009164197A (ja) * 2007-12-28 2009-07-23 Semiconductor Energy Lab Co Ltd 半導体基板製造装置および半導体基板製造システム
JP2009177155A (ja) * 2007-12-28 2009-08-06 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
KR20090085533A (ko) * 2008-02-04 2009-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판의 제작 방법
JP2009212502A (ja) * 2008-02-04 2009-09-17 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
WO2009157369A1 (fr) * 2008-06-25 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Procédé de fabrication d'un substrat silicium sur isolant
JP2010050444A (ja) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2010050446A (ja) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2010518639A (ja) * 2007-02-16 2010-05-27 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 2枚の基板を接合する方法
JP2010135764A (ja) * 2008-10-31 2010-06-17 Shin-Etsu Chemical Co Ltd シリコン薄膜転写絶縁性ウェーハの製造方法

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115530B2 (en) * 2003-12-03 2006-10-03 Texas Instruments Incorporated Top surface roughness reduction of high-k dielectric materials using plasma based processes
EP1789999B1 (fr) * 2004-09-16 2017-06-07 Soitec Procede de fabrication d'une couche de dioxyde de silicium
FR2911597B1 (fr) * 2007-01-22 2009-05-01 Soitec Silicon On Insulator Procede de formation et de controle d'interfaces rugueuses.
FR2911598B1 (fr) * 2007-01-22 2009-04-17 Soitec Silicon On Insulator Procede de rugosification de surface.
WO2008123116A1 (fr) 2007-03-26 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Substrat soi et procédé de réalisation d'un substrat soi
WO2008123117A1 (fr) * 2007-03-26 2008-10-16 Semiconductor Energy Laboratory Co., Ltd. Substrat soi et procédé de réalisation d'un substrat soi
CN101281912B (zh) 2007-04-03 2013-01-23 株式会社半导体能源研究所 Soi衬底及其制造方法以及半导体装置
CN101657882B (zh) * 2007-04-13 2012-05-30 株式会社半导体能源研究所 显示器件、用于制造显示器件的方法、以及soi衬底
KR101440930B1 (ko) * 2007-04-20 2014-09-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판의 제작방법
EP1993128A3 (fr) * 2007-05-17 2010-03-24 Semiconductor Energy Laboratory Co., Ltd. Procédé de fabrication d'un substrat SOI
US8513678B2 (en) * 2007-05-18 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
CN101842910B (zh) * 2007-11-01 2013-03-27 株式会社半导体能源研究所 用于制造光电转换器件的方法
FR2926674B1 (fr) * 2008-01-21 2010-03-26 Soitec Silicon On Insulator Procede de fabrication d'une structure composite avec couche d'oxyde de collage stable
JP5503876B2 (ja) * 2008-01-24 2014-05-28 株式会社半導体エネルギー研究所 半導体基板の製造方法
JP4577382B2 (ja) 2008-03-06 2010-11-10 信越半導体株式会社 貼り合わせウェーハの製造方法
CN101981654B (zh) 2008-04-01 2012-11-21 信越化学工业株式会社 Soi基板的制造方法
FR2931585B1 (fr) * 2008-05-26 2010-09-03 Commissariat Energie Atomique Traitement de surface par plasma d'azote dans un procede de collage direct
SG160295A1 (en) * 2008-09-29 2010-04-29 Semiconductor Energy Lab Method for manufacturing semiconductor device
US8741740B2 (en) * 2008-10-02 2014-06-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
FR2942911B1 (fr) * 2009-03-09 2011-05-13 Soitec Silicon On Insulator Procede de realisation d'une heterostructure avec adaptation locale de coefficient de dilatation thermique
FR2951026B1 (fr) 2009-10-01 2011-12-02 St Microelectronics Sa Procede de fabrication de resonateurs baw sur une tranche semiconductrice
FR2951023B1 (fr) 2009-10-01 2012-03-09 St Microelectronics Sa Procede de fabrication d'oscillateurs monolithiques a resonateurs baw
FR2951024B1 (fr) 2009-10-01 2012-03-23 St Microelectronics Sa Procede de fabrication de resonateur baw a facteur de qualite eleve
JP5917036B2 (ja) 2010-08-05 2016-05-11 株式会社半導体エネルギー研究所 Soi基板の作製方法
JP2012156495A (ja) 2011-01-07 2012-08-16 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP5955866B2 (ja) 2011-01-25 2016-07-20 エーファウ・グループ・エー・タルナー・ゲーエムベーハー ウエハの永久接合方法
US10825793B2 (en) 2011-04-08 2020-11-03 Ev Group E. Thallner Gmbh Method for permanently bonding wafers
US8802534B2 (en) 2011-06-14 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Method for forming SOI substrate and apparatus for forming the same
KR102148336B1 (ko) * 2013-11-26 2020-08-27 삼성전자주식회사 표면 처리 방법, 반도체 제조 방법 및 이에 의해 제조된 반도체 장치
RU2682901C2 (ru) * 2014-01-29 2019-03-22 Палваннанатан ГАНЕСАН Плавучий ядерный энергетический реактор с самоохлаждающейся конструкцией защитной оболочки реактора и системой аварийного теплообмена
WO2016007088A1 (fr) * 2014-07-08 2016-01-14 Massachusetts Institute Of Technology Procédé de fabrication de substrat
FR3036200B1 (fr) * 2015-05-13 2017-05-05 Soitec Silicon On Insulator Methode de calibration pour equipements de traitement thermique
NL2017915B1 (en) * 2015-12-18 2017-12-22 Asml Netherlands Bv A method of manufacturing a membrane assembly for euv lithography, a membrane assembly, a lithographic apparatus, and a device manufacturing method
FR3045939B1 (fr) * 2015-12-22 2018-03-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de collage direct entre deux structures
CN117293018A (zh) * 2017-07-24 2023-12-26 应用材料公司 改善在氧化硅上的超薄非晶硅膜的连续性的预处理方法
FR3079345B1 (fr) * 2018-03-26 2020-02-21 Soitec Procede de fabrication d'un substrat pour dispositif radiofrequence
JP7487659B2 (ja) 2020-12-25 2024-05-21 株式会社Sumco Soiウェーハの製造方法
CN114688950B (zh) * 2022-05-31 2022-08-23 陕西建工第一建设集团有限公司 一种建筑施工用铝合金板平整检测装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271101B1 (en) * 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US20040124416A1 (en) * 2002-12-30 2004-07-01 Knipp Dietmar P. Method for producing organic electronic devices on deposited dielectric materials
FR2857982A1 (fr) * 2003-07-24 2005-01-28 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiee
US20050079712A1 (en) * 2000-02-16 2005-04-14 Ziptronix, Inc. Method for low temperature bonding and bonded structure

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489255B1 (en) * 1995-06-05 2002-12-03 International Business Machines Corporation Low temperature/low dopant oxide glass film
US6051478A (en) * 1997-12-18 2000-04-18 Advanced Micro Devices, Inc. Method of enhancing trench edge oxide quality
US6489241B1 (en) * 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
US7749910B2 (en) * 2001-07-04 2010-07-06 S.O.I.Tec Silicon On Insulator Technologies Method of reducing the surface roughness of a semiconductor wafer
FR2827078B1 (fr) * 2001-07-04 2005-02-04 Soitec Silicon On Insulator Procede de diminution de rugosite de surface
JP4086272B2 (ja) * 2001-07-26 2008-05-14 株式会社東芝 半導体装置
FR2835095B1 (fr) * 2002-01-22 2005-03-18 Procede de preparation d'ensembles a semi-conducteurs separables, notamment pour former des substrats pour l'electronique, l'optoelectrique et l'optique
ATE426918T1 (de) * 2003-01-07 2009-04-15 Soitec Silicon On Insulator Recycling eines wafers mit einer mehrschichtstruktur nach dem abnehmen einer dunnen schicht
JP2004259970A (ja) * 2003-02-26 2004-09-16 Shin Etsu Handotai Co Ltd Soiウエーハの製造方法及びsoiウエーハ
US6723666B1 (en) * 2003-03-06 2004-04-20 Advanced Micro Devices, Inc. Method for reducing gate oxide surface irregularities
US6982210B2 (en) * 2003-07-10 2006-01-03 S.O.I.Tec Silicon On Insulator Technologies S.A. Method for manufacturing a multilayer semiconductor structure that includes an irregular layer
FR2857983B1 (fr) * 2003-07-24 2005-09-02 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiee
JP2005150686A (ja) * 2003-10-22 2005-06-09 Sharp Corp 半導体装置およびその製造方法
US20050250346A1 (en) * 2004-05-06 2005-11-10 Applied Materials, Inc. Process and apparatus for post deposition treatment of low k dielectric materials
US7349140B2 (en) * 2005-05-31 2008-03-25 Miradia Inc. Triple alignment substrate method and structure for packaging devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271101B1 (en) * 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US20050079712A1 (en) * 2000-02-16 2005-04-14 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US20040124416A1 (en) * 2002-12-30 2004-07-01 Knipp Dietmar P. Method for producing organic electronic devices on deposited dielectric materials
FR2857982A1 (fr) * 2003-07-24 2005-01-28 Soitec Silicon On Insulator Procede de fabrication d'une couche epitaxiee

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BECKER F S ET AL: "LOW-PRESSURE DEPOSITION OF HIGH-QUALITY SIO2 FILMS BY PYROLYSIS OF TETRAETHYLORTHOSILICATE", JOURNAL OF VACUUM SCIENCE AND TECHNOLOGY: PART B, AVS / AIP, MELVILLE, NEW YORK, NY, US, vol. 5, no. 6 INDEX, 1 November 1987 (1987-11-01), pages 1555 - 1563, XP000008339, ISSN: 1071-1023 *
GHYSELEN B ET AL: "Engineering strained silicon on insulator wafers with the Smart Cut<TM> technology", SOLID STATE ELECTRONICS, ELSEVIER SCIENCE PUBLISHERS, BARKING, GB, vol. 48, no. 8, August 2004 (2004-08-01), pages 1285 - 1296, XP004505229, ISSN: 0038-1101 *
MORICEAU H ET AL: "INTEREST OF A SHORT PLASMA TREATMENT TO ACHIEVE SI-SIO2-SI BONDED STRUCTURES", ELECTROCHEMICAL SOCIETY PROCEEDINGS, ELECTROCHEMICAL SOCIETY, PENNINGTON, NJ, US, vol. 2003-19, 2003, pages 110 - 117, XP009048675, ISSN: 0161-6374 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518639A (ja) * 2007-02-16 2010-05-27 エス. オー. アイ. テック シリコン オン インシュレーター テクノロジーズ 2枚の基板を接合する方法
JP2009033124A (ja) * 2007-06-22 2009-02-12 Semiconductor Energy Lab Co Ltd 半導体基板及び半導体基板の作製方法、半導体装置、電子機器
JP2009111381A (ja) * 2007-10-26 2009-05-21 Soi Tec Silicon On Insulator Technologies 微細な埋め込み絶縁層を有するsoi基板
JP2009164197A (ja) * 2007-12-28 2009-07-23 Semiconductor Energy Lab Co Ltd 半導体基板製造装置および半導体基板製造システム
JP2009177155A (ja) * 2007-12-28 2009-08-06 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2009212503A (ja) * 2008-02-04 2009-09-17 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2009212502A (ja) * 2008-02-04 2009-09-17 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
KR20090085533A (ko) * 2008-02-04 2009-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판의 제작 방법
KR101596454B1 (ko) 2008-02-04 2016-02-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Soi 기판의 제작 방법
WO2009157369A1 (fr) * 2008-06-25 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Procédé de fabrication d'un substrat silicium sur isolant
US8198173B2 (en) 2008-06-25 2012-06-12 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing SOI substrate
JP2010050444A (ja) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2010050446A (ja) * 2008-07-22 2010-03-04 Semiconductor Energy Lab Co Ltd Soi基板の作製方法
JP2010135764A (ja) * 2008-10-31 2010-06-17 Shin-Etsu Chemical Co Ltd シリコン薄膜転写絶縁性ウェーハの製造方法

Also Published As

Publication number Publication date
US20070020947A1 (en) 2007-01-25
KR100958467B1 (ko) 2010-05-17
CN100576462C (zh) 2009-12-30
FR2888663B1 (fr) 2008-04-18
KR20080031747A (ko) 2008-04-10
FR2888663A1 (fr) 2007-01-19
EP1902463A1 (fr) 2008-03-26
CN101243545A (zh) 2008-08-13
JP4927080B2 (ja) 2012-05-09
ATE524828T1 (de) 2011-09-15
US7446019B2 (en) 2008-11-04
SG151287A1 (en) 2009-04-30
JP2009501440A (ja) 2009-01-15
US20090023267A1 (en) 2009-01-22
US8183128B2 (en) 2012-05-22
EP1902463B1 (fr) 2011-09-14

Similar Documents

Publication Publication Date Title
EP1902463B1 (fr) Procede de diminution de la rugosite d&#39;une couche epaisse d&#39;isolant
EP1208589B1 (fr) Procede de traitement de substrats pour la micro-electronique
EP2304787B1 (fr) Traitement de surface par plasma d&#39;azote dans un procédé de collage direct
EP1811561A1 (fr) Procédé de fabrication d&#39;un substrat composite
EP1811560A1 (fr) Procédé de fabrication d&#39;un substrat composite à propriétés électriques améliorées
FR2911430A1 (fr) &#34;procede de fabrication d&#39;un substrat hybride&#34;
EP1879220A2 (fr) Procédé de collage hydrophobe direct de deux substrats utilisés en électronique, optique ou opto-électronique.
FR2816445A1 (fr) Procede de fabrication d&#39;une structure empilee comprenant une couche mince adherant a un substrat cible
WO2009087290A1 (fr) Procédé de fabrication d&#39;une structure micro-électronique impliquant un collage moléculaire
FR2910702A1 (fr) Procede de fabrication d&#39;un substrat mixte
FR2880988A1 (fr) TRAITEMENT D&#39;UNE COUCHE EN SI1-yGEy PRELEVEE
FR2923079A1 (fr) Substrats soi avec couche fine isolante enterree
FR2912259A1 (fr) Procede de fabrication d&#39;un substrat du type &#34;silicium sur isolant&#34;.
FR2907966A1 (fr) Procede de fabrication d&#39;un substrat.
FR2938118A1 (fr) Procede de fabrication d&#39;un empilement de couches minces semi-conductrices
FR2913528A1 (fr) Procede de fabrication d&#39;un substrat comportant une couche d&#39;oxyde enterree pour la realisation de composants electroniques ou analogues.
EP1631982B1 (fr) Procede d&#39;obtention d&#39;une couche tres mince par amincissement par auto-portage provoque
EP1936667B1 (fr) Traitement double plasma pour l&#39;obtention d&#39;une structure disposant d&#39;un oxyde enterré ultra-fin
FR2922360A1 (fr) Procede de fabrication d&#39;un substrat de type semi- conducteur sur isolant a plan de masse integre.
FR2926925A1 (fr) Procede de fabrication d&#39;heterostructures
WO2023084164A1 (fr) Procede de preparation d&#39;une couche mince en materiau ferroelectrique
EP4000090B1 (fr) Procédé de collage hydrophile de substrats
EP4030467A1 (fr) Procédé de collage direct hydrophile de substrats
EP1839332A2 (fr) Formation et traitement d&#39;une structure en sige
FR2915624A1 (fr) Procedes de collage et de fabrication d&#39;un substrat du type a couche enterree tres fine.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006777736

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008520879

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087001701

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680030390.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006777736

Country of ref document: EP