JP7487659B2 - Soiウェーハの製造方法 - Google Patents
Soiウェーハの製造方法 Download PDFInfo
- Publication number
- JP7487659B2 JP7487659B2 JP2020217849A JP2020217849A JP7487659B2 JP 7487659 B2 JP7487659 B2 JP 7487659B2 JP 2020217849 A JP2020217849 A JP 2020217849A JP 2020217849 A JP2020217849 A JP 2020217849A JP 7487659 B2 JP7487659 B2 JP 7487659B2
- Authority
- JP
- Japan
- Prior art keywords
- oxide film
- silicon oxide
- silicon
- wafer
- silicon wafer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 80
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 259
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 254
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 203
- 229910052710 silicon Inorganic materials 0.000 claims description 198
- 239000010703 silicon Substances 0.000 claims description 197
- 239000000758 substrate Substances 0.000 claims description 135
- 238000010438 heat treatment Methods 0.000 claims description 78
- 238000000280 densification Methods 0.000 claims description 34
- 229910021417 amorphous silicon Inorganic materials 0.000 claims description 28
- 238000005229 chemical vapour deposition Methods 0.000 claims description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 238000005498 polishing Methods 0.000 claims description 13
- 230000004913 activation Effects 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 238000010884 ion-beam technique Methods 0.000 claims description 7
- 238000000151 deposition Methods 0.000 claims description 6
- 150000002500 ions Chemical class 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910052681 coesite Inorganic materials 0.000 claims description 4
- 229910052906 cristobalite Inorganic materials 0.000 claims description 4
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 229910052682 stishovite Inorganic materials 0.000 claims description 4
- 230000003746 surface roughness Effects 0.000 claims description 4
- 229910052905 tridymite Inorganic materials 0.000 claims description 4
- 230000007935 neutral effect Effects 0.000 claims description 3
- 238000004544 sputter deposition Methods 0.000 claims description 3
- 239000013077 target material Substances 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 description 258
- 239000010408 film Substances 0.000 description 247
- 239000000523 sample Substances 0.000 description 54
- 238000011156 evaluation Methods 0.000 description 40
- 230000000052 comparative effect Effects 0.000 description 30
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 20
- 229910001882 dioxygen Inorganic materials 0.000 description 20
- 239000007789 gas Substances 0.000 description 19
- 238000001994 activation Methods 0.000 description 14
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 238000000560 X-ray reflectometry Methods 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 229910052786 argon Inorganic materials 0.000 description 7
- 238000005530 etching Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- -1 hydrogen ions Chemical class 0.000 description 5
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 4
- 238000000678 plasma activation Methods 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000011946 reduction process Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Landscapes
- Recrystallisation Techniques (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
- Element Separation (AREA)
Description
前記シリコン酸化膜を介して前記支持基板シリコンウェーハと前記活性層用シリコンウェーハを貼り合わせる接合工程と、を含むSOIウェーハの製造方法であって、
窒素、酸素又はそれらの混合雰囲気下で前記シリコン酸化膜に熱処理を施して前記シリコン酸化膜中のSiO2結合密度を増加させるシリコン酸化膜緻密化熱処理工程を更に含むことを特徴とするSOIウェーハの製造方法。
前記(7)に記載のSOIウェーハの製造方法。
前記(10)に記載のSOIウェーハの製造方法。
(i)KFM評価において測定端子と前記シリコン酸化膜とを50nm以上100nm以下の距離で変調電圧を3V印加した際に表面電位が5mV以下、かつ、
(ii)XRR評価において測定される前記シリコン酸化膜の密度が、2.2g/cm2以上、を満足する、SOIウェーハ。
以下、図面を参照しつつ、本発明に従うSOIウェーハを製造する方法の実施形態を詳細に説明する。なお、同一の構成要素には原則として数字下二桁で同一の参照番号を付して、重複する説明を省略する。また、図1~図5では図面の簡略化のため、各構成の厚さについて、実際の厚さの割合と異なり誇張して示す。本発明に従うSOIウェーハの製造方法は、支持基板シリコンウェーハ及び活性層用シリコンウェーハの少なくとも一方の表面上に、CVD法を用いてシリコン酸化膜を形成するシリコン酸化膜形成工程と、当該シリコン酸化膜を介して支持基板シリコンウェーハと活性層用シリコンウェーハを貼り合わせる接合工程と、を少なくとも含む。さらに、この製造方法において、窒素、酸素又はそれらの混合雰囲気下で前記シリコン酸化膜に熱処理を施して前記シリコン酸化膜中のSiO2結合密度を増加させるシリコン酸化膜緻密化熱処理工程を少なくとも行う。以下、実施形態ごとに本発明の各構成及び各工程の詳細を説明する。
本実施形態では、支持基板シリコンウェーハ及び活性層用シリコンウェーハのいずれか一方の表面上にのみシリコン酸化膜を形成する。一例として図1では、支持基板シリコンウェーハ110の表面にCVD法によりシリコン酸化膜112を形成し、さらにシリコン酸化膜112を緻密化する熱処理を施す場合を図示した。その後、支持基板シリコンウェーハ110と活性層用シリコンウェーハ120との間にシリコン酸化膜112が位置するように、真空常温接合法により支持基板シリコンウェーハ110と活性層用シリコンウェーハ120とを貼り合わせる。その後、活性層用シリコンウェーハ120を減厚して活性層125とし、SOIウェーハ100を得る。以下、第1の実施形態における各工程の詳細を順次説明する。
支持基板シリコンウェーハ110及び活性層用シリコンウェーハ120は、チョクラルスキ法(CZ法)や浮遊帯域溶融法(FZ法)により育成された単結晶シリコンインゴットをワイヤーソー等でスライスしたものを使用することができる。
次に、プラズマCVD法などの成膜(堆積)法を用いて、支持基板シリコンウェーハ110の表面上に酸化シリコンからなる絶縁層としてのシリコン酸化膜112を形成する。加速度センサなどでの使用を想定する場合、シリコン酸化膜112の厚さは5μm~50μmとすることが好ましい。原料ガスとしては特に限定されないが、シラン系(SiH4)ガスと酸素ガスを混入する場合、またTEOS(テトラエトキシシラン)ガスを用いる場合などを挙げることができる。なお図示しないが、CVD法により形成される酸化膜の表面を平坦にするため、形成したシリコン酸化膜112の表面を、片面研磨装置などを用いてCMP(chemical mechanical polishing)研磨を行うことも好ましい。ここで、研磨後の表面粗さRaを3nm未満とすることが好ましい。
そして、シリコン酸化膜112が形成された支持基板シリコンウェーハ110を熱処理炉内に導入し、窒素、酸素又はそれらの混合雰囲気の下で、シリコン酸化膜112中のSiO2結合密度を増加させるシリコン酸化膜緻密化熱処理工程を行う。処理温度を500℃~1000℃、処理時間は10分~60分としてシリコン酸化膜緻密化熱処理を実施することが好ましい。熱処理を施すことで、シリコン酸化膜中に存在する不完全な結合状態のシリコンが酸素と結合してシリコン酸化膜112中のSiO2の比率が増加することによりシリコン酸化膜112が緻密化される。なお、図1ではこのシリコン酸化膜緻密化熱処理工程を後述する接合工程の前に図示したが、接合工程の後に行ってもよい。
真空常温下で支持基板シリコンウェーハ110と活性層用シリコンウェーハ120とをシリコン酸化膜112を介して接合する。
図1及び図2を参照しつつ、真空常温接合法による接合を説明する。真空常温接合法とは、真空下で支持基板シリコンウェーハ110と、活性層用シリコンウェーハ120とを加熱することなく常温で貼り合わせる方法である。
本実施形態においては、活性層用シリコンウェーハ120の表面に、真空常温下でイオンビーム又は中性原子ビーム910を照射する活性化処理をして、上記活性層用シリコンウェーハ120の表面を活性化面120Aとする。活性化処理の方法は、プラズマ雰囲気でイオン化した元素を基板表面へ加速させる方法と、イオンビーム装置から加速したイオン化した元素を基板表面へ加速させる方法が挙げられる。図2を参照しつつ、この方法を実現する装置の一例を示す概念図を用いて活性化処理方法を説明する。真空常温接合装置930は、プラズマチャンバー931と、ガス導入口932と、真空ポンプ933と、パルス電圧印加装置934と、ウェーハ固定台935a,935bと、を有する。
そして、引き続き真空常温下で上記両方の活性化面を接触させると、支持基板シリコンウェーハ110に形成されたシリコン酸化膜上に吸着したシリコン原子のダングリングボンドと、活性化した活性層用シリコンウェーハ表面のダングリングボンドとが結合する。瞬時に接合力が働き、上記活性化面110A,120Aを貼合せ面として、支持基板シリコンウェーハ110と活性層用シリコンウェーハ120とをシリコン酸化膜112を介して強固に接合できる。
上記両方の活性化面110A、120Aを貼合せ面として支持基板シリコンウェーハ110及び活性層用シリコンウェーハ120を接合した後、減厚工程を行ってもよい。減厚工程において、活性層用シリコンウェーハ120を減厚して活性層125を得ることができる。こうして、SOIウェーハ100を得ることができる。なお、減厚工程において公知又は任意の化学エッチング、研削及び研磨法を好適に用いることができ、具体的には平面研削及び鏡面研磨法が挙げられる。また、接合工程前に活性層用シリコンウェーハ120に剥離目的で水素イオンなどを注入しておけば、本減厚工程において公知のスマートカット法を適用することもできる。
図3を参照して、本発明の第2の実施形態を説明する。本実施形態では、第1の実施形態と同様のシリコンウェーハを用いてCVD法により、支持基板シリコンウェーハ210と活性層用シリコンウェーハ220との両方の表面にシリコン酸化膜212a及び212bを形成する点が第1の実施形態と異なる。シリコン酸化膜212a及び212bを形成した後、真空常温接合を行う。ここで、本実施形態においては、接合面が両方ともシリコン酸化膜からなるため、これらを活性化処理するために、各表面にシリコン原子からなるアモルファスシリコン層218a及び218bを成膜(堆積)させることが好ましいものの、片方のみにアモルファスシリコン層を設けてもよい。以下ではアモルファスシリコン層218a及び218bを成膜(堆積)させる態様を説明する。
シリコン酸化膜形成工程において、プラズマCVD法などの成膜(堆積)法を用いて、支持基板シリコンウェーハ210及び活性層用シリコンウェーハ220の両方の表面上に酸化シリコンからなる絶縁層としての第1のシリコン酸化膜212a及び第2のシリコン酸化膜212bを形成する。この場合、片方のウェーハのみにシリコン酸化膜を形成する場合と比べて、ウェーハの片方の表面上のシリコン酸化膜の成膜(堆積)量(時間)が半分で済むため、より効率的にSOIウェーハを作製することが可能となる。
そして、支持基板シリコンウェーハ210と活性層用シリコンウェーハ220とを、第1のシリコン酸化膜212a及び第2のシリコン酸化膜212bを介して真空常温下で接合するが、本実施形態においては、各シリコンウェーハの接合界面にアモルファスシリコン層218を予め形成する。すなちわ、第1のシリコン酸化膜212a及び第2のシリコン酸化膜212bがアモルファスシリコン層218を介して接合されることになる。
支持基板シリコンウェーハ210及び活性層用シリコンウェーハ220に形成したシリコン酸化膜212a及び212bを活性化して活性化面210A及び220Aを形成するためには、図4に模式的に示すように真空常温下で、シリコンターゲット921をスパッタリングして支持基板シリコンウェーハ210のシリコン酸化膜212a及び活性層用シリコンウェーハ220のシリコン酸化膜212bの表面にアモルファスシリコンからなるアモルファスシリコン層218a及び218bを成膜(堆積)させる。
減厚工程は、第1の実施形態と同様にして行うことができる。
図5を参照して、本発明の第3の実施形態を説明する。本実施形態では、CVD法によるシリコン酸化膜の形成の後に、プラズマ活性処理による接合を行う。
第1、第2の実施形態と同様にして行うことができる。本実施形態では、支持基板シリコンウェーハ310及び活性層用シリコンウェーハ320の表面のいずれか一方、または両方の表面にシリコン酸化膜を形成すればよい。後者の方が生産性に優れることは、第2の実施形態において述べたとおりである。ただし説明の簡略のため、図5では支持基板シリコンウェーハ310にシリコン酸化膜を形成した。
支持基板シリコンウェーハ310と活性層用シリコンウェーハ320とを、シリコン酸化膜312を介して接合するが、本実施形態においては、各シリコンウェーハの接合界面に予めプラズマ活性処理を実施する。
第1の実施形態と同様のシリコンウェーハを用いて支持基板シリコンウェーハの表面上にCVD法によりシリコン酸化膜を形成し、シリコン酸化膜緻密化熱処理を施した後、支持基板シリコンウェーハ310の接合界面となるシリコン酸化膜312の表面と、活性層用ウェーハ320の接合界面となる表面とをSC1洗浄することが好ましい。洗浄条件は、例えば5分~15分間の洗浄を2~3回行うことができる。
減厚工程は、第1の実施形態と同様にして行うことができる。
本発明の一実施形態に従うSOIウェーハは、支持基板シリコンウェーハと、支持基板シリコンウェーハ上の単結晶シリコンからなる活性層と、支持基板シリコンウェーハと活性層との間に設けられたシリコン酸化膜とを備え、シリコン酸化膜は、(i)KFM評価において測定端子と当該シリコン酸化膜とを50nm以上100nm以下の距離で変調電圧を3V印加した際に表面電位が5mV以下、かつ、(ii)XRR評価において測定されるこのシリコン酸化膜の密度が、2.2g/cm2以上、を満足する。以下、各構成の詳細を順次説明する。
支持基板及び活性層の導電型は任意であり、支持基板の厚さは200μm以上であることがより好ましく、300μm以上であることがさらに好ましい。活性層の厚さは特に制限されないが、例えば10μmの厚さが挙げられる。また、それぞれの抵抗率は活性層の抵抗率が0.0010Ω・cm以上50Ω・cm以下であり、かつ支持基板の抵抗率が1000Ω・cm以上100000Ω・cm以下であることが好ましい。
支持基板シリコンウェーハの上に100nmの厚さで形成された場合に、KFM評価において測定端子とこのシリコン酸化膜とを50nm以上100nm以下の距離で変調電圧を3V印加した際に表面電位が5mV以下、かつ、XRR評価において測定される密度が、2.2g/cm2以上である。
シリコン酸化膜の表面電位の測定には、導電性のプローブを用いて、その探針と試料表面との間に電圧を印加し、試料表面の表面電位等を測定する顕微鏡として、KFM(Kelvin Probe Force Microscope)を用いる。ここで、探針と試料表面との間に印加するバイアス電圧に3Vの変調電圧を加えた場合に、測定した表面電位が5mV以下であるとき、固定電荷が存在しないものと判断した。絶縁層であるシリコン酸化膜に固定電荷が存在しない事は、デバイス形成時にリーク電流をより低減することができることを意味する。
また、シリコン酸化膜の密度は、平坦な薄膜にX線を極浅い角度で入射させ、薄膜表面及び薄膜と基板の界面で反射したX線が互いに干渉する現象を利用して測定を行うXRR(X-ray Reflectivity:X線反射率)により求める。測定される密度が、2.2g/cm2以上であることを判断基準とした。
SOIウェーハに対して、判定電流を1×10-4A/cm2とし、TZDB(Time Zero Dielectric Breakdown)法を用いて測定する。具体的な測定法として、ホトリソ及びエッチング処理により酸化膜上の活性層を1.8mm四方の島状に加工して、この加工した島を電極とし、支持基板側を0(ゼロ)Vにした状態で、電極へ電圧を0Vから0.1Vステップで印加していき、測定した電流値を電極面積で割った単位面積辺りの電流値を判定電流とした。単位面積当たりの電流が1×10-6A/cm2を流れた場合をBモード、1×10-4A/cm2を流れた場合をCモードとした。評価にあたり、Cモードの値を絶縁破壊した値と判断し、8.0MV/cm以上であることが好ましい。判定電流及び印加電圧について説明するグラフを図6に示す。
まず、支持基板及び活性層用基板として、CZ単結晶から得たp-型シリコンウェーハ(直径:300mm、厚み:750μm、ドーパント種類:ボロン、ドーパント濃度:1.3×1015atoms/cm3、抵抗率:10Ω・cm)を用意した。そして支持基板シリコンウェーハの表面に、プラズマCVD法により、基板温度を300℃に維持した状態で、CH3SiH3ガスを55sccm、O2ガスを110sccm流して、膜厚10μmのシリコン酸化膜を形成した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で1時間に変更した以外は、発明例1と同じ条件で発明例2に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において900℃の温度で1時間に変更した以外は、発明例1と同じ条件で発明例3に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において500℃の温度で1時間に変更した以外は、発明例1と同じ条件で発明例4に係るSOIウェーハを形成した。
まず、発明例4と同様にしてCVD法により支持基板シリコンウェーハ上にシリコン酸化膜を形成し、熱処理を行ってシリコン酸化膜を緻密化し、次いでシリコン酸化膜の表面を75℃の温度のSC1洗浄液に、浸漬した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で10分に変更した以外は、発明例1と同じ条件で発明例6に係るSOIウェーハを作製した。
まず、CVD法により支持基板及び活性層用基板のそれぞれの表面に膜厚5μmのシリコン酸化膜を形成した。また、支持基板シリコンウェーハ及び活性層用シリコンウェーハそれぞれの表面上に形成したシリコン酸化膜同士を接合するため、支持基板シリコンウェーハ及び活性層用シリコンウェーハをチャンバ内に導入し、真空度を1×10-5Pa以下に保持した後、シリコンターゲットをスパッタリングして、支持基板シリコンウェーハ及び活性層用シリコンウェーハのそれぞれの表面上のシリコン酸化膜にアモルファスシリコンからなるアモルファスシリコン層を成膜した。そして、それぞれシリコン酸化膜表面上に形成されたアモルファスシリコン層同士を接触させて両ウェーハを真空常温環境下で接合し、発明例7に係るSOIウェーハを作製した。シリコン酸化膜の成膜・熱処理条件、シリコン酸化膜成膜後の洗浄・研磨条件、及び接合後の活性層用基板の研磨条件は発明例1と同じ条件とした。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で1時間実施した後に、さらに追加で1100℃の温度で5分のシリコン酸化膜緻密化熱処理を実施した。その他は、発明例1と同じ条件で発明例7に係るSOIウェーハを形成した。
まず、支持基板及び活性層用基板として、発明例1と同様のp-型シリコンウェーハを用意した。そして支持基板シリコンウェーハの表面に、熱酸化法により1100℃で厚さ10μmのシリコン酸化膜を形成した。
従来例1と同様にして熱酸化法により支持基板シリコンウェーハ上にシリコン酸化膜を形成した。
シリコン酸化膜緻密化熱処理を実施しなかった以外は、発明例1と同じ条件で比較例1に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において300℃の温度で1時間に変更した以外は、発明例5と同じ条件で比較例2に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において300℃の温度で1時間に変更した以外は、発明例1と同じ条件で比較例3に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において1100℃の温度で1時間に変更した以外は、発明例1と同じ条件で比較例4に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において1100℃の温度で1時間に変更した以外は、発明例1と同じ条件で比較例5に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理をアルゴンガス雰囲気下においてで500℃の温度で1時間に変更した以外は、発明例1と同じ条件で比較例6に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で5分に変更した以外は、発明例1と同じ条件で比較例7に係るSOIウェーハを形成した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で1時間実施した後、さらに1100℃の温度で1時間実施した以外は、発明例1と同じ条件で比較例8に係るSOIウェーハを形成した。
上記の要領で作製したSOIウェーハについて、ボイドの有無の評価し、また活性層をホトリソ工程によりパターニングした後、水酸化カリウム溶液に含浸することにより、エッチングストップ層としての機能を評価した。さらに、フッ化水素酸によりシリコン酸化膜が選択的にエッチングできるかどうかを評価した。評価においては、透過型電子顕微鏡(TEM:Transmission Electron Microscope)によるウェーハ断面観察を通してボイドの有無、活性層及びシリコン酸化膜の残厚を調べた。その結果、全てのサンプルにおいて1nm以上のサイズのボイドは発生せず、活性層のエッチングの際にすべてのサンプルのシリコン酸化膜はエッチングストップ層として機能し、シリコン酸化膜のエッチングに対しては、全てのサンプルのシリコン酸化膜はエッチングされた。結果を表1に示す。
(実験概要)
次に、SOIウェーハに対してTZDB測定(評価1)を行い、SOIウェーハの酸化膜の絶縁耐圧特性の評価を行った。TZDBを評価するために、シリコン酸化膜の膜厚を100nmとした以外は、上記実施例と同一条件でSOIウェーハを製造した。また、緻密化処理したシリコン酸化膜の物性評価のため、シリコン酸化膜の膜厚を同じく100nmと薄く成膜しシリコン酸化膜を露出させた状態の試料1~16を作製しXRRの評価(評価2)を行い、またそれとは別にシリコン酸化膜の固定電荷の評価としてKFM評価(評価3)を行った。実験には、実施例と同様にCZ単結晶から得たp-型シリコンウェーハを支持基板シリコンウェーハとして用いた。
発明例1~8、従来例1、2及び比較例1~8に係るSOIウェーハについて、活性層へ電極を形成し、TZDB(タイムゼロ絶縁破壊:Time Zero Dielectric Breakdown)測定を行い、図6で説明するとおり、単位面積当たりの電流が1×10-6A/cm2を流れた場合をBモード、1×10-4A/cm2を流れた場合をCモードとした。評価にあたり、Cモードの値を絶縁破壊した値と判断し、そのときの絶縁耐圧特性を求めた。結果を表2に示す。
(試料1)
支持基板シリコンウェーハの表面に、プラズマCVD法により、基板温度を300℃に維持した状態で、CH3SiH3ガスを55sccm、O2ガスを110sccm流して、膜厚100nmのシリコン酸化膜を形成した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、発明例2に対応する評価用試料2を作製した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において900℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、発明例3に対応する評価用試料3を作製した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において500℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、発明例4、5に対応する評価用試料4を作製した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で10分に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、発明例6に対応する評価用試料5を作製した。
支持基板シリコンウェーハ及び活性層用シリコンウェーハのそれぞれの表面に、プラズマCVD法により、基板温度を300℃に維持した状態で、CH3SiH3ガスを55sccm、O2ガスを110sccm流して、膜厚50nmのシリコン酸化膜をそれぞれの面に形成した。また、支持基板シリコンウェーハ及び活性層用シリコンウェーハの表面に活性化面を形成するために、支持基板シリコンウェーハ及び活性層用シリコンウェーハをチャンバ内に導入し、真空度を1×10-5Pa以下に保持した後、シリコンターゲットをスパッタリングして、支持基板シリコンウェーハ及び活性層用シリコンウェーハのそれぞれの表面上のシリコン酸化膜にアモルファスシリコンからなるアモルファス層を成膜した。そして、両基板を真空常温環境下で接合した。そして、活性層用シリコンウェーハの表面を研削研磨して最後にウェットエッチングを行い、支持基板シリコンウェーハ上にCVD法により形成した膜厚100nmのシリコン酸化膜だけ残した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で1時間実施した後に、さらに追加で1100℃の温度で5分のシリコン酸化膜緻密化熱処理を実施した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、発明例8に対応する評価用試料7を作製した。
試料1で用いたものと同じ支持基板シリコンウェーハを用意し、さらに、熱酸化法により1100℃で厚さ100nmのシリコン酸化膜を形成し、従来例1、2に対応する評価用試料8を作製した。
シリコン酸化膜緻密化熱処理を実施しなかった以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例1に対応する評価用試料9を作製した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において300℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例2に対応する評価用試料10を作製した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において300℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例3に対応する評価用試料11を作製した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において1100℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例4に対応する評価用試料12を作製した。
シリコン酸化膜緻密化熱処理を窒素ガス雰囲気下において1100℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例5に対応する評価用試料13を作製した。
シリコン酸化膜緻密化熱処理をアルゴンガス雰囲気下において500℃の温度で1時間に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例6に対応する評価用試料14を作製した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で5分に変更した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例7に対応する評価用試料15を作製した。
シリコン酸化膜緻密化熱処理を酸素ガス雰囲気下において500℃の温度で1時間実施した後、さらに1100℃の温度で1時間実施した以外は、試料1と同じ条件で支持基板上にシリコン酸化膜を形成し、比較例8に対応する評価用試料16を作製した。
発明例1~8、従来例1、2及び比較例1~8のそれぞれのシリコン酸化膜を評価するにあたり、試料1~16のシリコン酸化膜の表面に対して、XRRを評価することにより、シリコン酸化膜の密度を評価した。発明例1~8に対応する試料1~7は2.2g/cm3以上あることがわかる。CVD法により形成したシリコン酸化膜は緻密化のための熱処理を実施する事で、熱酸化法で形成したシリコン酸化膜と同程度に緻密化できることが確認できた。また、比較例6及び7に対応する試料14及び15においてシリコン酸化膜の密度が低いのは、比較例6においてはアルゴンガス雰囲気下においてシリコン酸化膜緻密化熱処理を実施したこと、比較例7においては熱処理時間が短いことにより、十分にシリコン酸化膜と酸素との反応が進まなかったためと考えられる。同様にして、酸素との結合という観点から、比較例8対応する試料16においては、熱処理温度が高すぎて、結合した酸素がシリコン酸化膜から解離したため、酸化膜の密度が低くなってしまったものと考えられる。評価結果を表3に示す。
また、同様にして試料1~8のそれぞれのシリコン酸化膜表面に対して、KFM法を用いてシリコン酸化膜の表面電位を測定することにより、発明例1~8、従来例1、2のそれぞれのシリコン酸化膜に存在する固定電荷の有無を評価した。この結果から、これまでTZDB評価やXRR評価においては同等の評価結果であった、熱酸化法により形成したシリコン酸化膜による従来例と、CVD法により形成した後熱処理を施したシリコン酸化膜による発明例とにおいて、発明例のみ、シリコン酸化膜の表面電位が5mV以下となり、固定電荷が存在しないことがわかった。その結果を併せて表3に示し、測定時の表面電位プロファイルを図7に示す。
112,212,312 シリコン酸化膜
125,225,325 活性層
218 アモルファスシリコン層
110,210,310 支持基板シリコンウェーハ
120,220,320 活性層用シリコンウェーハ
Claims (11)
- 支持基板シリコンウェーハ及び活性層用シリコンウェーハの少なくとも一方の表面上に、CVD法を用いて厚さ5μm以上50μm以下のシリコン酸化膜を形成するシリコン酸化膜形成工程と、
前記シリコン酸化膜を介して前記支持基板シリコンウェーハと前記活性層用シリコンウェーハを貼り合わせる接合工程と、を含むSOIウェーハの製造方法であって、
窒素、酸素又はそれらの混合雰囲気下で前記シリコン酸化膜に熱処理を施して前記シリコン酸化膜中のSiO2結合密度を増加させるシリコン酸化膜緻密化熱処理工程を更に含み、
前記シリコン酸化膜形成工程の後、前記接合工程に先立ち、前記シリコン酸化膜の表面粗さRaを3nm未満となるまで低減する研磨工程を含むことを特徴とするSOIウェーハの製造方法。 - 前記シリコン酸化膜緻密化熱処理工程において、500℃以上1000℃未満、10分以上1時間以下の熱処理を施す、請求項1に記載のSOIウェーハの製造方法。
- 前記接合工程の後、1000℃以上1200℃未満で1分以上10分未満の熱処理を施す、請求項1又は2に記載のSOIウェーハの製造方法。
- 前記シリコン酸化膜形成工程において、形成するシリコン酸化膜の厚みの合計が50μm以下である、請求項1~3のいずれか一項に記載のSOIウェーハの製造方法。
- 前記シリコン酸化膜緻密化熱処理工程における熱処理温度が700℃以上900℃未満である、請求項1~4のいずれか一項に記載のSOIウェーハの製造方法。
- 前記シリコン酸化膜形成工程において、前記支持基板シリコンウェーハ及び前記活性層用シリコンウェーハのいずれか一方の表面上にのみシリコン酸化膜を形成する、請求項1~5のいずれか1項に記載のSOIウェーハの製造方法。
- 前記シリコン酸化膜形成工程の後に、前記シリコン酸化膜を形成した方と他方のシリコンウェーハの表面に、真空常温下で、イオンビーム又は中性原子ビームを照射する活性化処理を施して活性化面を形成する活性化処理工程を含み、
前記接合工程では、前記活性化処理工程に引き続く前記真空常温下で、前記活性化面を介して前記支持基板シリコンウェーハ及び前記活性層用シリコンウェーハを貼り合わせる、
請求項6に記載のSOIウェーハの製造方法。 - 前記接合工程において、接合面となるそれぞれの表面に対してプラズマ雰囲気下でイオンを照射した後、両接合面を接触させて接合する、請求項6に記載のSOIウェーハの製造方法。
- 前記シリコン酸化膜形成工程において、前記支持基板シリコンウェーハ及び前記活性層用シリコンウェーハの両方の表面上に前記シリコン酸化膜を形成する、請求項1~5のいずれか1項に記載のSOIウェーハの製造方法。
- 前記シリコン酸化膜形成工程の後に、真空常温下でシリコンターゲット材をスパッタリングして前記支持基板シリコンウェーハの表面上のシリコン酸化膜、若しくは前記活性層用シリコンウェーハの表面上のシリコン酸化膜、又は前記活性層用シリコンウェーハ及び前記活性層用シリコンウェーハの両方の表面上のシリコン酸化膜上にアモルファスシリコンを堆積させるアモルファス層形成工程を含み、
前記接合工程では、前記アモルファス層形成工程に引き続く前記真空常温下で、前記アモルファス層を介して前記支持基板シリコンウェーハ及び前記活性層用シリコンウェーハを貼り合わせる、
請求項9に記載のSOIウェーハの製造方法。 - 前記接合工程において、接合面となるそれぞれの表面に対してプラズマ雰囲気下でイオンを照射した後、両接合面を接触させて接合する、請求項9に記載のSOIウェーハの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020217849A JP7487659B2 (ja) | 2020-12-25 | 2020-12-25 | Soiウェーハの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020217849A JP7487659B2 (ja) | 2020-12-25 | 2020-12-25 | Soiウェーハの製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022102851A JP2022102851A (ja) | 2022-07-07 |
JP7487659B2 true JP7487659B2 (ja) | 2024-05-21 |
Family
ID=82272838
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020217849A Active JP7487659B2 (ja) | 2020-12-25 | 2020-12-25 | Soiウェーハの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7487659B2 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008513600A (ja) | 2004-09-16 | 2008-05-01 | エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ | 二酸化ケイ素層を製造する方法 |
JP2009501440A (ja) | 2005-07-13 | 2009-01-15 | エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ | 厚い絶縁層の粗さを減少させるための方法 |
JP2011124280A (ja) | 2009-12-08 | 2011-06-23 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法及びsoiウェーハ |
JP2017045886A (ja) | 2015-08-27 | 2017-03-02 | 株式会社Sumco | Soiウェーハの製造方法およびsoiウェーハ |
JP2020038916A (ja) | 2018-09-05 | 2020-03-12 | 株式会社Sumco | Soiウェーハ及びその製造方法 |
-
2020
- 2020-12-25 JP JP2020217849A patent/JP7487659B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008513600A (ja) | 2004-09-16 | 2008-05-01 | エス.オー.アイ.テック シリコン オン インシュレータ テクノロジーズ | 二酸化ケイ素層を製造する方法 |
JP2009501440A (ja) | 2005-07-13 | 2009-01-15 | エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ | 厚い絶縁層の粗さを減少させるための方法 |
JP2011124280A (ja) | 2009-12-08 | 2011-06-23 | Shin Etsu Handotai Co Ltd | Soiウェーハの製造方法及びsoiウェーハ |
JP2017045886A (ja) | 2015-08-27 | 2017-03-02 | 株式会社Sumco | Soiウェーハの製造方法およびsoiウェーハ |
JP2020038916A (ja) | 2018-09-05 | 2020-03-12 | 株式会社Sumco | Soiウェーハ及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022102851A (ja) | 2022-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6650463B2 (ja) | 電荷トラップ層を備えた高抵抗率の半導体・オン・インシュレーターウェハーの製造方法 | |
US8183128B2 (en) | Method of reducing roughness of a thick insulating layer | |
JP3900741B2 (ja) | Soiウェーハの製造方法 | |
WO2005124865A1 (ja) | 貼り合わせウェーハの製造方法 | |
US10192778B2 (en) | Semiconductor on insulator structure comprising a sacrificial layer and method of manufacture thereof | |
WO2002050912A1 (fr) | Procede de fabrication de plaquettes de silicium sur isolant et plaquette de silicium sur isolant | |
US7696059B2 (en) | Method for manufacturing semiconductor substrate | |
JP5518205B2 (ja) | 結晶シリコンの少なくとも一つの極薄層を含む多層膜を製造する方法 | |
JP7542053B2 (ja) | 多結晶炭化ケイ素で作られたキャリア基板上に単結晶炭化ケイ素の薄層を含む複合構造を製造するためのプロセス | |
JP7262415B2 (ja) | 複合基板およびその製造方法 | |
JP7487659B2 (ja) | Soiウェーハの製造方法 | |
JP7024668B2 (ja) | Soiウェーハ及びその製造方法 | |
US10796946B2 (en) | Method of manufacture of a semiconductor on insulator structure | |
CN110085509B (zh) | 一种均匀性厚膜soi硅片的制备方法 | |
JP2024028041A (ja) | Soiウェーハ及びその製造方法 | |
JP2024031692A (ja) | Soiウェーハ及びその製造方法 | |
JP5643488B2 (ja) | 低応力膜を備えたsoiウェーハの製造方法 | |
JP2019062020A (ja) | Soiウェーハの製造方法およびsoiウェーハ | |
JP2023085098A (ja) | 積層ウェーハ及びその製造方法 | |
JP2024021511A (ja) | 接合シリコンウェーハ及びその製造方法 | |
JP2021100013A (ja) | 多層soiウェーハ及びその製造方法並びにx線検出センサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230926 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231117 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20240123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240307 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240409 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240422 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7487659 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |