WO2006132420A1 - 時間差測定装置および距離測定装置並びに距離測定方法 - Google Patents

時間差測定装置および距離測定装置並びに距離測定方法 Download PDF

Info

Publication number
WO2006132420A1
WO2006132420A1 PCT/JP2006/311767 JP2006311767W WO2006132420A1 WO 2006132420 A1 WO2006132420 A1 WO 2006132420A1 JP 2006311767 W JP2006311767 W JP 2006311767W WO 2006132420 A1 WO2006132420 A1 WO 2006132420A1
Authority
WO
WIPO (PCT)
Prior art keywords
time difference
correction
signal
unit
pulse
Prior art date
Application number
PCT/JP2006/311767
Other languages
English (en)
French (fr)
Inventor
Masahiro Ohishi
Yoshikatsu Tokuda
Fumio Ohtomo
Original Assignee
Kabushiki Kaisha Topcon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Topcon filed Critical Kabushiki Kaisha Topcon
Priority to CN2006800206258A priority Critical patent/CN101194183B/zh
Priority to US11/921,914 priority patent/US7945821B2/en
Priority to EP06757252A priority patent/EP1895322B1/en
Publication of WO2006132420A1 publication Critical patent/WO2006132420A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F10/00Apparatus for measuring unknown time intervals by electric means
    • G04F10/06Apparatus for measuring unknown time intervals by electric means by measuring phase

Definitions

  • Time difference measuring device Time difference measuring device, distance measuring device, and distance measuring method
  • the present invention relates to a time difference measuring device, a distance measuring device, and a distance measuring method, and more particularly, to an improvement in time difference measurement between pulse signals having a very short time interval.
  • a distance measuring device represented by a recent surveying instrument irradiates a distance measurement target with a measurement wave such as a laser beam or a microwave, and reflects a reflected wave (hereinafter referred to as a measurement wave) of the distance measurement target force. Based on the time difference between when the measurement wave is emitted and when it is detected, the reciprocating travel distance of the measurement wave is obtained, and the distance to the distance measurement target (one-way distance) is calculated. is doing.
  • a measurement wave such as a laser beam or a microwave
  • the time difference is measured by, for example, generating a high-frequency clock signal having a known period that is extremely shorter than the time difference from the measurement wave emission to the detection, and at the time of measurement wave emission. This is done by counting the number of clocks of the high-frequency clock signal generated up to the time of force detection and multiplying the counted value by the period.
  • it is necessary to increase the frequency of the clock signal, but there is a limit to increasing the frequency of generation of the clock signal.
  • the present applicant who should solve this problem, repeatedly generates a start signal synchronized with the measurement wave emission and a stop signal synchronized with the detection at a predetermined time interval, and repeats the repetition cycle.
  • a reference signal such as a sine wave generated with a shorter cycle is sampled with a repeated start signal and sampled with a repeated stop signal, and the first sampling wave and stop signal obtained by sampling with the start signal are stopped.
  • Signal-based support The phase difference from the second sampling wave obtained by sampling is obtained, and based on this phase difference, the phase difference between the start signal and the stop signal is obtained, and the obtained phase difference is converted into a time difference.
  • Patent Document 1 Propose a conversion technique
  • a start signal and a stop signal are generated in a state where two reference signals having a phase difference of ⁇ 2 [(1) and known periods are generated, such as a sine wave signal and a cosine wave signal.
  • both reference signals are sampled to detect the amplitude of each reference signal, and the start signal is detected based on the amplitude of both reference signals by the start signal.
  • phase at the time of stop signal detection is obtained based on the amplitude of both reference signals by the stop signal, the phase when the stop signal is detected, the difference between the phase when the start signal is detected and the phase when the stop signal is detected (phase difference), and these standards
  • This is a time difference measuring device for obtaining a difference in generation time between a start signal and a stop signal based on a known period of a signal (Patent Document 2).
  • this time difference measuring apparatus it is possible to accurately determine the time difference of the generation time difference between the start signal and the stop signal only by detecting the set of the start signal and the stop signal only once.
  • a sine wave signal and a cosine wave signal are generated as two reference signals, and a start signal and Both reference signals are sampled at the timing of the stop signal, and the amplitude of each reference signal at each timing All (amplitude of the sine wave signal at the start signal generation timing), A12 (cosine wave signal at the start signal generation timing) Amplitude), A21 (Stop signal generation timing) Sine wave signal amplitude) and A22 (cosine wave signal amplitude due to stop signal generation timing), and cosine wave signal amplitude A12 and sine wave signal amplitude All corresponding to the start signal generation timing.
  • intersection Pstart When drawn on the xy plane, the intersection Pstart is obtained as shown in Fig. 8A.
  • phase difference ⁇ in the reference signal between the start signal generation timing and the stop signal generation timing is
  • the present applicant instead of the two reference signals having a phase difference of ⁇ Z2 [rad] described above, the present applicant generates only a single reference signal, and samples the reference signal using a pulse signal. In this case, we have also proposed a technique for sampling at two timings: a pulse signal generation timing and a delay timing delayed from the generation timing by a phase difference ⁇ Z2 [rad] of the reference signal (patent) Reference 3).
  • the technique proposed in Patent Document 2 samples two reference signals in which a phase difference of ⁇ Z2 [rad] is set in advance at one timing at the same time.
  • the technique proposed by Patent Document 3 one of the reference signals, which are sampled at two timings which are shifted by a time corresponding to the phase difference between Z2 [r a d], patents and the technique of Patent Document 2
  • the technology in Reference 3 is substantially equivalent to the phase difference of approximately Z2 [rad] of the reference signal. This is the same as sampling the amplitude of the reference signal at two corresponding phase difference timings.
  • Patent Document 1 Japanese Patent No. 2916780
  • Patent Document 2 Japanese Patent Application 2004- 291495 (Unpublished)
  • Patent Document 3 # 112005 169500 (Unpublished)
  • circuit characteristics such as a resonance circuit and a filter that generate a reference signal are provided for generating each reference signal, and the two circuit characteristics are manufactured to be completely the same. This is practically difficult in balance with costs.
  • intersection point Pstop on the xy plane between the amplitude A22 of the cosine wave signal and the amplitude A21 of the sine wave signal detected corresponding to the stop signal generation timing is similar to the intersection point Pstart on the elliptic curve. Draw a trajectory lined up.
  • the amplitude Al l of the sine wave signal which is the reference signal at the start signal generation timing, is originally a value indicated by a two-dot chain line (circumference of the two-dot chain line).
  • Point on radius AO
  • the maximum amplitude of the sine wave signal itself had an error, it was actually detected with the value indicated by the solid line, while the cosine wave signal was If there is no error in the maximum amplitude or phase difference, and if it is detected with the value indicated by the solid straight line in Fig. 9, the intersection Pstart of both will naturally be at a different position.
  • the actual detected value The intersection point Pstart based on is smaller in the y-axis direction than the original intersection point Pstart and appears at a position shifted in the direction.
  • the measurement error problem described above is only one reference signal in the case of the proposed technique according to Patent Document 2 using two reference signals having a phase difference of ⁇ Z2 [rad]. This also occurs in the case of the proposed technique according to Patent Document 3 in which sampling is performed with a time difference corresponding to the phase difference ⁇ / 2 [rad].
  • the present invention has been made in view of the above circumstances, and accurately measures the time difference between two pulse signals generated with a predetermined time difference by a single measurement without repeatedly generating these two pulse signals. Even if there is an error in the single reference signal used to measure this time difference, or there is a difference in sampling timing or between two or more reference signals, there is an error in the measurement result. It is an object of the present invention to provide a time difference measuring apparatus capable of preventing the occurrence of the time difference, a distance measuring apparatus and a distance measuring method using the time difference measuring apparatus.
  • a time difference measuring apparatus is an apparatus that measures the time difference between two pulse signals generated with a time difference, and uses two reference signals having a phase difference of approximately ⁇ Z2 [rad] as each pulse.
  • the measurement accuracy of the time difference is improved by correcting the error and the error or the error of the reference signal itself, and obtaining the generated time difference using the corrected value.
  • a time difference measuring apparatus is a time difference measuring apparatus for measuring a time difference between two pulse signals generated with an unknown time difference and having a known period.
  • An amplitude detector for obtaining two amplitudes at each generation timing of each pulse signal so as to be the same as sampling the amplitude of the reference signal at two timings at time intervals, and each path signal Phase difference detection that obtains the phase of the reference signal and the phase difference between the generation timings of the pulse signal at each generation timing based on two amplitudes determined at each generation timing
  • the phase difference detected by the phase difference detection unit are corrected by the correction unit for correcting an error of the reference signal or an error of the phase difference of approximately ⁇ Z2 [rad], and the correction unit.
  • Based on the post out of phase characterized by comprising said two time difference calculating section for determining the occurrence time difference
  • the correction unit that corrects the error generates correction data (correction coefficient, correction function, reference table) or the like immediately before measuring the time difference between two pulse signals. It may be stored in memory, or may be stored as data for fixed correction according to individual differences of the time difference measuring device.
  • the phase detection unit obtains a phase in the reference signal for each generation timing, and generates both of the obtained pulse signals.
  • the phase difference ⁇ between the timings is obtained, and the phase difference ⁇ between both generation timings can be converted into a time difference At using the period Ts of the reference signal, and the time difference calculation unit performs this calculation.
  • the generation time difference between two pulse signals whose generation time difference At is unknown is obtained.
  • the time difference calculation unit obtains the occurrence time difference ⁇ t based on the phase difference corrected by the correction unit.
  • the time difference between the generation timings of the measurement pulse signals can be measured with high accuracy.
  • Another time difference measuring apparatus measures two generation time differences between two pulse signals and generates two reference signals having a phase difference of approximately Z2 [rad] and a known period. Then, these reference signals are sampled by each pulse signal (the amplitude is detected), and based on the amplitudes of the two reference signals at each sampling time, the phase at each sampling time in the reference signal is obtained. When determining the generation time difference based on the phase difference during sampling, the generation time difference of the pulse signal is accurately measured by correcting the phase difference error caused by the reference signal error.
  • Another time difference measuring apparatus is a time difference measuring apparatus that measures the time difference between two pulse signals generated with an unknown time difference, and is approximately ⁇ / 2 [rad
  • a reference signal generator that generates at least two reference signals having a known period and each amplitude of the two reference signals at the generation timing of the pulse signal
  • An amplitude detection unit for determining the phase of the reference signal for each generation timing of the pulse signal based on the amplitude detected for each of the reference signals by the amplitude detection unit, and the generation of the reference signal
  • a phase difference detector that obtains a phase difference between timings, and an error caused by an error between the two reference signals or an error of at least one reference signal is corrected for the phase difference detected by the phase difference detector.
  • a time difference calculation unit for obtaining a difference in generation time between the two measurement pulse signals based on the phase difference corrected by the correction unit.
  • the correction unit that corrects the error generates correction data (correction coefficient, correction function, reference table) or the like immediately before measuring the time difference between two pulse signals. It may be stored as data stored as fixed correction data corresponding to individual differences in the time difference measuring device.
  • the amplitude of the two reference signals having a phase difference of ⁇ ⁇ 2 [(1) generated by the reference signal generation unit is determined.
  • Detection unit Forces sampling at each generation timing of two pulse signals that occur with unknown time difference, and detects the amplitude of each reference signal for each sampling (each pulse signal).
  • the phase detection unit obtains the phase of each reference signal for each sampling based on the amplitude of each reference signal detected by the amplitude detection unit, and between the generation timings of these obtained pulse signals.
  • the phase difference ⁇ between the two generation timings can be converted into the time difference At using the reference signal period Ts, and the time difference calculation unit performs this calculation.
  • the generation time difference between two pulse signals whose generation time difference At is unknown is obtained.
  • the correction unit determines an error included in the phase difference due to an error between two reference signals or an error of at least one reference signal.
  • the time difference calculator corrects the occurrence time difference ⁇ t based on the phase difference corrected by the corrector.
  • the time difference between the generation timings of the measurement pulse signals can be measured with high accuracy.
  • the correction unit includes correction data ( A correction data storage unit that stores reference tables (lookup tables), correction coefficients, correction functions, etc.) and a correction calculation unit that performs correction calculation processing using correction data stored in the storage unit It is.
  • correction data A correction data storage unit that stores reference tables (lookup tables), correction coefficients, correction functions, etc.
  • correction calculation unit that performs correction calculation processing using correction data stored in the storage unit It is.
  • the correction unit includes a correction data storage unit that stores correction data for correcting an error, and the correction data storage unit. And a correction calculation unit that performs a correction calculation process using the correction data stored in.
  • the correction data includes, for example, the time difference obtained when two correction pulse signals with known time differences between generation timings are input to the time difference measuring apparatus, and the known time difference. Or the correspondence between the obtained phase difference and the known time difference (or the phase difference that should correspond to this time difference), or the two occurrences corresponding to each occurrence timing.
  • Actual measurement results including intermediate detection results and computation results
  • known time differences or corresponding to this time difference
  • the information is expressed in the form of a relational expression (correction coefficient to be multiplied, etc.), a function, a lookup table (reference table), etc. Yo ...
  • the correction data may be rewritable or rewritable after being stored in the correction data storage unit.
  • the influence on the measurement result due to the individual difference of the time difference measuring device can be eliminated.
  • the correction calculation unit performs correction calculation processing on the error between the two reference signals or the error in the measurement result due to the error of at least one reference signal, using the correction data stored in the correction data storage unit in advance.
  • the correction unit can be realized with a simple configuration of a correction data storage unit and a correction calculation unit.
  • this time difference measurement apparatus has a configuration having only an actual measurement mode for actually performing measurement, and does not include a configuration for generating correction data stored in the correction data storage unit (calibration mode). Therefore, the configuration can be simpler than the time difference measuring apparatus including such a calibration mode.
  • a time difference measuring apparatus has a calibration mode in addition to the actual measurement mode.
  • the correction unit includes an actual measurement mode in which a measurement pulse signal that is a pulse signal to be generated is measured.
  • a mode switching unit that switches between a calibration mode in which a correction pulse signal with a known time difference between generation timings is input, and the phase difference detection that is performed when the correction pulse signal is input in the calibration mode.
  • Correction data for generating correction data for correcting the error in accordance with the correspondence between the phase difference between the generation timings of the correction pulse signal calculated by the unit and the known time difference.
  • a correction data storage unit that stores the correction data generated by the correction data generation unit, and the correction data stored in the correction data storage unit.
  • the correction data is, for example, two correction pulse signals with known time differences between the generation timings, as in the time difference measurement apparatus according to the embodiment (3). Correspondence between the time difference obtained when input to the difference measuring device and the known time difference, or the obtained phase difference and the known time difference (or a phase difference that should correspond to this time difference).
  • Actual measurement results such as correspondence relationship or correspondence relationship between the two phases corresponding to each occurrence timing obtained and the known time difference (or phase difference that should correspond to this time difference) And the calculation result) and a relational expression (correction coefficient to be multiplied, etc.) and function indicating the correspondence between known time difference (or phase difference that should correspond to this time difference)
  • Any information can be used as long as the information is in the form of a lookup table (reference table).
  • a device that generates a pulse signal with a known time difference for calibration (for example, a sampling timing forming unit) is provided in a device external to the time difference measuring device, and the time difference measurement according to the present invention is performed.
  • the device is not equipped.
  • the correction data stored in the correction data storage unit in addition to the actual measurement mode in which actual measurement is performed.
  • a calibration mode is also provided for generating the calibration, and the calibration mode and the actual measurement mode are alternatively selected by the mode switching unit.
  • a correction pulse signal whose time difference between generation timings is known is input, and the input of this correction pulse signal causes the phase difference detection unit to generate a correction pulse signal between each generation timing of the correction pulse signal.
  • the phase difference is calculated, and the correction data generation unit generates correction data for correcting the error in accordance with the correspondence relationship between the calculated phase difference and the known time difference.
  • the correction data generated by the correction data generation unit is stored in the correction data storage unit, switched to the actual measurement mode by the mode switching unit, and then stored in the correction calculation unit and the correction data storage unit. Using the correction data, a phase difference corresponding to the time difference between the generation timings of the measurement pulse signals obtained in the actual measurement mode is corrected and processed.
  • the correction data stored in the correction data storage unit can be updated to the latest correction data by switching to the calibration mode. Therefore, the influence on the measurement result due to the individual difference of the time difference measuring device can be eliminated, and even the influence caused by the use environment such as secular change of the time difference measuring device can be eliminated. .
  • a time difference measuring apparatus has a calibration mode in addition to an actual measurement mode, and further generates a time difference pulse for calibration at equal intervals (sampling timing forming unit) ).
  • the correction unit includes a sampling timing forming unit that generates a correction pulse signal having a time difference between generation timings at equal intervals.
  • a mode switching unit for switching between an actual measurement mode in which a measurement pulse signal that is a pulse signal to be measured for the generation time difference is input and a calibration mode in which the correction pulse signal is input;
  • the phase difference between the generation timings of the correction pulse signal calculated by the phase difference detection unit when the correction pulse signal is input and the time difference between the equal intervals correspond to the correspondence relationship.
  • a correction data generation unit that generates correction data for correcting the error, and stores the correction data generated by the correction data generation unit. Using the correction data storage unit and the correction data stored in the correction data storage unit, the phase difference corresponding to a time difference between the generation timings of the measurement pulse signals obtained in the actual measurement mode.
  • a correction calculation unit for performing correction calculation processing.
  • the correction data is, for example, a correction pulse signal having a time difference between occurrence timings at equal intervals.
  • the time difference obtained when input to this time difference measuring device and the time difference, or the correspondence relation between the obtained phase difference and the time difference (or a phase difference that should correspond to this time difference) corresponds to actual measurement results (including intermediate detection results and calculation results) such as the correspondence between the two phases corresponding to each occurrence timing obtained and the time difference (or phase difference that should correspond to this time difference).
  • V kana Derconnection
  • the correction data stored in the correction data storage unit in addition to the actual measurement mode in which actual measurement is performed.
  • Calibration mode is also provided to generate the calibration mode. It is alternatively selected by the mode switching unit.
  • the sampling timing generation unit generates a correction pulse signal having equal time intervals between generation timings, in the same manner as the measurement noise signal, and the correction pulse signal is input by the input of the correction pulse signal.
  • the phase difference detection unit calculates the phase difference between the generation timings of the correction pulse signal, and the correction data generation unit determines the error according to the correspondence between the calculated phase difference and the equally spaced time difference.
  • the correction data generated by the correction data generation unit is stored in the correction data storage unit, switched to the actual measurement mode by the mode switching unit, and then stored in the correction calculation unit and the correction data storage unit.
  • the correction data a phase difference corresponding to the time difference between the generation timings of the measurement pulse signals obtained in the actual measurement mode is corrected and processed.
  • the correction data is generated by switching to the calibration mode, generating the correction pulse signal, and creating new correction data. Since the correction data stored in the storage unit can be updated to the latest correction data, the influence on the measurement result due to the individual difference of the time difference measurement device can be eliminated, and the time difference measurement device The effects caused by the usage environment such as secular change can be eliminated.
  • Calibration processing can also be performed in a self-contained manner. That is, since it is not necessary to prepare another external device (such as a device that generates a correction pulse signal) during the processing in the calibration mode, calibration can be performed even in a place where there is no external device.
  • another external device such as a device that generates a correction pulse signal
  • the correction pulse signal generated by the sampling timing forming unit includes a reference signal generated by the reference signal generating unit and a plurality of times. It is characterized by equidistant pulse signals synchronized at a rate of once.
  • the correction pulse signal generated by the sampling timing forming unit is asynchronous with a reference signal generated by the reference signal generating unit, The pulse signals are equally spaced.
  • the correction data corresponds to the amplitude ratio of each reference signal by the correction pulse signal detected by the amplitude detector. It is set as a thing.
  • the two reference signals are a sine wave signal and a cosine wave signal.
  • the phase difference between the sine wave signal and the cosine wave signal as the reference signal is ⁇ 2.
  • the phase ⁇ can be calculated, and the phase difference ⁇ can be easily calculated from the two phases. It can simply be detected.
  • the correction data is an arctangent of an amplitude ratio of each reference signal by the correction pulse signal detected by the amplitude detection unit. It is set to correspond to the value (arctan).
  • the two reference signals are a sine wave signal and a cosine wave signal
  • the plurality of correction pulse signals are time-sequentially.
  • the amplitude values of the sine wave signal at each timing sequentially input are plotted in time series
  • the amplitude values that are not plotted on a predetermined sine wave curve among the plotted amplitude values are as described above.
  • the amplitude value of the cosine wave signal at each timing when the plurality of correction pulse signals are sequentially input in time series so as to be plotted on a predetermined sine wave curve is plotted in time series.
  • the correction unit When the amplitude value that is not plotted on the predetermined cosine wave curve among the plotted amplitude values, the correction unit varies the amplitude value so that the amplitude value is plotted on the predetermined cosine wave curve. And correcting the.
  • the correction data stored in the correction data storage unit is data at discrete sampling points.
  • the correction unit performs interpolation calculation processing based on the sampling point data stored in the correction unit.
  • the data of the corresponding sampling point is generated by a fitting process.
  • the correction data stored in the correction data storage unit is obtained corresponding to elliptical discrete sampling points. It is stored as an elliptical function.
  • the time difference measuring device further includes an approximate time difference detecting unit for detecting an approximate generation time difference between the two measurement pulse signals, and calculating the time 1?> Key.
  • the unit calculates the time difference between the two measurement pulse signals based on the approximate time difference detected by the approximate time difference detection unit in addition to the precise time difference obtained by the time difference calculation unit.
  • the approximate time difference detection unit is capable of detecting the number of pulses of the reference signal by a known pulse counter or the like as long as it can detect the time with a resolution capable of discriminating one period of the reference signal. It is possible to apply one that detects an approximate time difference by counting.
  • the approximate time difference detection unit can detect the approximate generation time difference between the two pulse signals. Therefore, even if the time difference between these two pulse signals exceeds one period of the reference signal, it can be measured accurately.
  • phase difference ⁇ between the two pulse signals detected by the time difference calculation unit is calculated as a value within the range of 0 [rad] to 2 7u [rad].
  • this phase difference ⁇ 0 can also be expressed as 2 ⁇ + ⁇ ⁇ , 4 ⁇ + ⁇ ⁇ , ... Equation 2 can be expressed as ⁇ ( ⁇ -1) + ⁇ ( ⁇ ; natural number).
  • phase difference 2 ⁇ (n-1) [rad] which is the first term of the above general formula, also needs to be included as time. It is necessary to specify the natural number n.
  • the approximate time difference detection unit can roughly detect the occurrence time difference with a resolution of about one cycle of the reference signal, and based on the approximate occurrence time difference detected by the approximate time difference detection unit.
  • the phase difference 2 ⁇ ( ⁇ —: L) [ rad ] of the first term part of the general formula can be specified, and corresponds to the sum phase difference between the first term part and the second term part. Time ([2 ⁇ ( ⁇ - ⁇ ) + ⁇ ⁇ 1/2 ⁇ multiplied by the period [sec] of the reference signal), that is, the time difference between the two pulse signals is identified and determined as the only value be able to.
  • the amplitude detector precedes in time series among two measurement pulse signals which are the pulse signals to be measured for the generation time difference.
  • the amplitude All of the sine wave signal as the one reference signal and the amplitude A12 of the cosine wave signal as the other reference signal at the generation timing of one of the measurement pulse signals are detected, respectively, and the phase difference detector
  • the ratio of these amplitudes All, A12 (A11ZA12) is calculated, and based on this amplitude ratio (A11ZA12), the phase ⁇ start is calculated by tan—4 (A11 / A12) ⁇ , and the correction unit calculates the phase ⁇ start.
  • the amplitude detector corrects the phase to ⁇ start ′, and the amplitude detection unit detects the amplitude A21 of the sine wave signal and the cosine wave at the generation timing of the other pulse signal for measurement that continues in time series among the two pulse signals.
  • Signal amplitude A22 it
  • the phase difference detection unit calculates the ratio (A21ZA22) of the amplitudes A21 and A22, and based on the amplitude ratio (A21ZA22), the phase ⁇ stop is calculated by tan ' ⁇ (A21 / A22) ⁇ .
  • the correction unit corrects the phase ⁇ stop to the phase ⁇ stop ', and the time difference calculation unit calculates the phase difference ⁇ 0 between the generation timings of the two measurement pulse signals as ( ⁇ stop'- ⁇ It is calculated by start ').
  • the time difference measuring apparatus configured as described above, the time difference can be calculated with high accuracy by a simple calculation process.
  • the correction data is obtained by sampling at least six points in one period of the reference signal. To do.
  • Another time difference measuring apparatus measures a difference in generation time between two pulse signals, generates one reference signal whose known cycle is known, and samples these reference signals by each pulse signal.
  • it is the generation timing of the pulse signal
  • Even at a timing (delay timing) that is delayed by a time corresponding to the phase difference of approximately ⁇ ⁇ 2 [ ⁇ 3 ⁇ 4 (1) of the reference signal from this generation timing it is possible to generate each pulse signal by sampling.
  • two reference signal amplitudes are obtained, the phase of each occurrence timing in the reference signal is obtained based on the amplitude of these reference signals, and the occurrence time difference is obtained based on the phase difference between both occurrence timings.
  • the difference in the generation time of the pulse signal is accurately measured by correcting the error in the phase difference caused by the error in the reference signal.
  • Another time difference measuring apparatus is a time difference measuring apparatus that measures the time difference between two pulse signals generated with an unknown time difference, and has a single period.
  • a reference signal generation unit that generates a reference signal
  • a pulse delay unit that delays each of the two pulse signals by a time corresponding to a phase difference of approximately ⁇ 2 [(1) of the reference signal
  • An amplitude detection unit that obtains each amplitude of the reference signal at the generation timing of each pulse signal and the delay timing delayed by the pulse delay unit, and two detections for each pulse signal by the amplitude detection unit
  • a phase difference detection unit that obtains a phase difference between the reference signals and a generation timing of the pulse signals for each pulse signal, and a phase difference detection unit; Based on the detected phase difference, a correction unit that corrects an error of the reference signal or an error of the phase difference of approximately ⁇ / 2 [rad], and a phase difference that has been corrected by the correction unit. Accordingly, a time difference calculation unit for obtaining a difference in generation time between the
  • the correction unit that corrects the error generates correction data (correction coefficient, correction function, reference table) or the like immediately before measuring the time difference between two pulse signals. It may be stored as data stored as fixed correction data corresponding to individual differences in the time difference measuring device.
  • the amplitude detection unit generates an unknown time difference with respect to one reference signal generated by the reference signal generation unit 2 Sampling is performed at each generation timing and delay timing of each of the two noise signals, and each amplitude of the reference signal corresponding to the generation of each pulse signal is detected. Then, the phase detection unit obtains each phase of the reference signal at each generation timing based on each amplitude of the reference signal detected by the amplitude detection unit, and both generation timings of these obtained pulse signals. The phase difference ⁇ between the two generation timings can be converted into a time difference At using the reference signal period Ts, and the time difference calculation unit performs this calculation. Then, find the generation time difference between two pulse signals whose generation time difference At is unknown.
  • the correction unit is caused by an error of the reference signal itself with respect to the phase difference detected by the phase difference detection unit, or an error of setting the phase difference approximately ⁇ Z2 [rad] to obtain the delay timing.
  • the time difference calculation unit obtains the occurrence time difference ⁇ t based on the phase difference corrected by the correction unit.
  • the time difference between the generation timings of the measurement pulse signals can be measured with high accuracy.
  • a correction data storage unit in which the correction unit stores correction data (a reference table (lookup table), a correction coefficient, a correction function, etc.). And a correction calculation unit that performs correction calculation processing using the correction data stored in the storage unit.
  • correction data a reference table (lookup table), a correction coefficient, a correction function, etc.
  • correction calculation unit that performs correction calculation processing using the correction data stored in the storage unit.
  • the correction unit includes a correction data storage unit that stores correction data for correcting the error, and the correction data storage unit.
  • a correction calculation unit that performs correction calculation processing using the correction data stored in the unit.
  • the correction data includes, for example, a time difference obtained when two correction pulse signals with known time differences between generation timings are input to the time difference measuring device, and the known time difference. Or the correspondence between the obtained phase difference and the known time difference (or the phase difference that should correspond to this time difference), or the two occurrences corresponding to each occurrence timing.
  • Actual measurement results (including intermediate detection results and computation results) and known time differences (or corresponding to this time difference) such as the relationship between the phase and the known time difference (or the phase difference that should correspond to this time difference) Expressed in the form of relational expression (correction coefficient to be multiplied, etc.), function, lookup table (reference table), etc. If it is information, it may be in V or any form.
  • the correction data may be rewritable or rewritable after being stored in the correction data storage unit.
  • the influence on the measurement result due to the individual difference of the time difference measuring device can be eliminated.
  • the correction calculation unit uses the correction data stored in advance in the correction data storage unit to correct the error caused by the setting of the phase difference approximately ⁇ Z2 [rad] to obtain the reference signal error or delay timing.
  • the correction force can be realized with a simple configuration of the correction data storage unit and the correction calculation unit.
  • this time difference measuring apparatus has a configuration having only an actual measurement mode for actually performing measurement, and does not include a configuration for generating correction data stored in the correction data storage unit (calibration mode). Therefore, the configuration can be simpler than the time difference measuring apparatus including such a calibration mode.
  • the time difference measuring apparatus has a calibration mode in addition to the actual measurement mode.
  • the correction unit includes an actual measurement mode in which a measurement pulse signal that is a pulse signal of the generation time difference measurement target is input.
  • a mode switching unit that switches between a calibration mode in which a correction pulse signal with a known time difference between generation timings is input, and the phase difference detection that is performed when the correction pulse signal is input in the calibration mode.
  • a correction calculation unit that performs correction calculation processing on the phase difference corresponding to the time difference between the generation timings of the measurement pulse signals obtained in the mode.
  • the correction data is, for example, two correction pulse signals with known time differences between the generation timings, as in the time difference measurement apparatus according to the embodiment (18). Correspondence between the time difference obtained when input to the measuring device and the known time difference, or correspondence between the obtained phase difference and the known time difference (or a phase difference that should correspond to this time difference) Actual measurement results (intermediate detection results and computations) such as the relationship between the two phases corresponding to each occurrence timing obtained and the known time difference (or the phase difference that should correspond to this time difference) (Including the result) and a known time difference (or a phase difference that should correspond to this time difference), such as a relational expression (such as a correction coefficient to be multiplied), a function, a lookup table (reference table), etc. Information If, even those of Ru format WHATSOEVER,.
  • a device that generates a pulse signal with a known time difference for calibration (for example, a sampling timing forming unit) is provided in a device external to the time difference measuring device. The device is not equipped.
  • the correction data stored in the correction data storage unit in addition to the actual measurement mode in which actual measurement is performed.
  • a calibration mode is also provided for generating the calibration, and the calibration mode and the actual measurement mode are alternatively selected by the mode switching unit.
  • a correction pulse signal with a known time difference between generation timings is input, and the input of this correction pulse signal causes the phase difference detection unit to generate a correction pulse signal between each generation timing of the correction pulse signal.
  • the phase difference is calculated, and the correction data generation unit generates correction data for correcting the error in accordance with the correspondence relationship between the calculated phase difference and the known time difference.
  • the correction data generated by the correction data generation unit is stored in the correction data Stored in the control unit and switched to the actual measurement mode by the mode switching unit, and then using the correction data stored in the correction data storage unit and the correction data storage unit, the pulse signal for measurement obtained in the actual measurement mode is used. Corrects the phase difference corresponding to the time difference between the generation timings.
  • the correction data stored in the correction data storage unit can be updated to the latest correction data by switching to the calibration mode.
  • the influence on the measurement result due to the individual difference of the measuring device can be eliminated, and even the influence caused by the use environment such as secular change of the time difference measuring device can be eliminated.
  • a device that generates a pulse signal with a known time difference for calibration (for example, a sampling timing forming unit) is not provided in the time difference measuring device of the present invention. Compared to a time difference measuring apparatus equipped with a configuration for generating a signal, the configuration can be simplified.
  • a time difference measuring apparatus has a calibration mode in addition to the actual measurement mode, and further generates a time difference pulse at equal intervals for calibration (sampling timing forming unit). ).
  • the correction unit includes a sampling timing forming unit that generates a correction pulse signal having a time difference between generation timings at equal intervals.
  • a mode switching unit for switching between an actual measurement mode in which a measurement pulse signal that is a pulse signal to be measured for the generation time difference is input and a calibration mode in which the correction pulse signal is input;
  • the phase difference between the generation timings of the correction pulse signal calculated by the phase difference detection unit when the correction pulse signal is input and the time difference between the equal intervals correspond to the correspondence relationship.
  • a correction data generation unit that generates correction data for correcting the error, and stores the correction data generated by the correction data generation unit.
  • the phase difference corresponding to a time difference between the generation timings of the measurement pulse signals obtained in the actual measurement mode.
  • a correction calculation unit for performing correction calculation processing is, for example, a correction pulse signal in which the time difference between the generation timings is equal, as in the time difference measurement apparatus according to the embodiment (18) or (19).
  • Actual measurement results such as correspondence relationship or correspondence relationship between the two phases corresponding to each occurrence timing and the time difference (or phase difference that should correspond to this time difference) (Including the result) and known time difference (or phase difference that should correspond to this time difference), information expressed in the form of relational expressions (correction factors to be multiplied, etc.), functions, lookup tables (reference tables), etc.
  • V or That may be a form of also of the.
  • the correction data stored in the correction data storage unit in addition to the actual measurement mode in which actual measurement is performed.
  • a calibration mode is also provided for generating the calibration, and the calibration mode and the actual measurement mode are alternatively selected by the mode switching unit.
  • the sampling timing generation unit generates a correction pulse signal with a time difference between generation timings equal to that of the measurement noise signal, and the correction pulse signal is input.
  • the phase difference detection unit calculates the phase difference between the generation timings of the correction pulse signal, and the correction data generation unit determines the error according to the correspondence between the calculated phase difference and the equally spaced time difference.
  • the correction data generated by the correction data generation unit is stored in the correction data storage unit, switched to the actual measurement mode by the mode switching unit, and then stored in the correction calculation unit and the correction data storage unit.
  • the correction data a phase difference corresponding to the time difference between the generation timings of the measurement pulse signals obtained in the actual measurement mode is corrected and processed.
  • the correction data is generated by switching to the calibration mode, generating the correction pulse signal, and creating new correction data.
  • the correction data stored in the storage unit can be updated to the latest correction data. Therefore, it is possible to eliminate the influence on the measurement result due to the individual difference of the time difference measuring device, and it is possible to eliminate the influence caused by the usage environment such as the secular change of the time difference measuring device. .
  • Calibration processing can also be performed in a self-contained manner. That is, since it is not necessary to prepare another external device (such as a device that generates a correction pulse signal) during the processing in the calibration mode, calibration can be performed even in a place where there is no external device.
  • another external device such as a device that generates a correction pulse signal
  • the correction pulse signal generated by the sampling timing forming unit includes a reference signal generated by the reference signal generating unit and a plurality of times. It is characterized by equidistant pulse signals that are synchronized at a rate of once.
  • the correction pulse signal generated by the sampling timing forming unit is asynchronous with a reference signal generated by the reference signal generating unit,
  • the pulse signals are equally spaced.
  • the correction data corresponds to the amplitude ratio of each reference signal by the correction pulse signal detected by the amplitude detector. It is set as a thing.
  • the reference signal is a sine wave signal or a cosine wave signal.
  • the sine wave signal or the cosine wave signal is applied as the reference signal. Due to the approximate phase difference Z2 [rad] between the generation timing and the delay timing, the reference signal at the delay timing behaves as a cosine wave signal or a sine wave signal based on the generation timing, and is directly detected at these two timings.
  • the phase ⁇ can be calculated by taking the ratio of the values (amplitude values) and calculating the arctan of the ratio, and the phase difference ⁇ can be easily detected from the two phases.
  • the correction data includes the generation timing of the correction pulse signal detected by the amplitude detector and the delay timing. Corresponding to the arc tangent value of the ratio of the amplitude of the reference signal It is set as a thing.
  • the reference signal is a sine wave signal or a cosine wave signal
  • a plurality of the correction pulse signals are sequentially input in time series.
  • the amplitude value of the reference signal at each occurrence timing is plotted in time series
  • the amplitude values that are not plotted on a predetermined sine wave curve or cosine wave curve among the plotted amplitude values are described above.
  • the amplitude value of the reference signal at each delay timing in which the plurality of correction pulse signals are sequentially input in time series so as to be plotted on a predetermined sine wave curve or cosine wave curve is expressed in time series.
  • the correction unit corrects the variation in the amplitude value so as to be plotted on a sinusoidal curve.
  • the correction data stored in the correction data storage unit is data at discrete sampling points, and when determining the occurrence time difference When the data of the corresponding sampling point is not stored in the correction unit, the correction unit responds by interpolation processing or fitting processing based on the sampling point data stored in the correction unit. It is characterized by generating sampling point data.
  • the correction data stored in the correction data storage unit is obtained corresponding to elliptical discrete sampling points. It is stored as an elliptical function.
  • the time difference calculating unit further includes an approximate time difference detecting unit that detects an approximate occurrence time difference between the two measurement pulse signals, and the time difference calculating unit includes: In addition to the precise time difference obtained by the time difference calculation unit, the two approximate measurement time difference detected by the approximate time difference detection unit are used for the two measurement purposes. It is characterized in that a difference in generation time of pulse signals is calculated.
  • the approximate time difference detector can detect the number of pulses of the reference signal using a known pulse counter or the like as long as it can detect the time with a resolution that can discriminate one period of the reference signal. It is possible to apply one that detects an approximate time difference by counting.
  • the approximate time difference detection unit can detect the approximate generation time difference between the two pulse signals. Therefore, even if the time difference between these two pulse signals exceeds one period of the reference signal, it can be measured accurately.
  • phase difference ⁇ between the two pulse signals detected by the time difference calculation unit is calculated as a value within the range of 0 [rad] to 27 [u] [rad].
  • this phase difference ⁇ 0 is also potentially expressed as 2 ⁇ + ⁇ ⁇ , 4 ⁇ + ⁇ ⁇ ,... in addition to ⁇ 0 of 2 ⁇ or less. Equation 2 can be expressed as ⁇ ( ⁇ -1) + ⁇ ( ⁇ ; natural number).
  • phase difference 2 ⁇ (n-1) [rad] which is the first term of the above general formula, must also be included as time. It is necessary to specify the natural number n.
  • the approximate time difference detection unit can detect this with a resolution of about one period of the reference signal.
  • the occurrence time difference can be roughly detected, and based on the approximate occurrence time difference detected by this approximate time difference detector, the phase difference 2 ⁇ ( ⁇ —: L) [ ra d of the first term part of the general formula ]
  • the phase difference 2 ⁇ ( ⁇ —: L) [ ra d of the first term part of the general formula ] Corresponding to the sum phase difference between the first and second term parts ([2 ⁇ ( ⁇ - ⁇ ) + ⁇ ⁇ ] / 2 ⁇
  • the value obtained by multiplying [sec]) that is, the time difference between the two pulse signals can be specified as the only value.
  • the amplitude detector precedes in time series among two measurement pulse signals which are the pulse signals of the generation time difference measurement target.
  • the amplitude All of the sine wave signal as the reference signal at the generation timing of one measurement pulse signal and the amplitude A12 of the reference signal at the delay timing are detected, respectively, and the phase difference detection unit detects these amplitudes.
  • Ratio of Al l, A12 ( A11ZA12) is calculated, the phase ⁇ start is calculated by tan— (A1 1 / A12) ⁇ based on the amplitude ratio (A11ZA12), and the correction unit corrects the phase ⁇ start to the phase ⁇ start ′,
  • the amplitude detection unit is configured to calculate an amplitude A21 of the reference signal at the generation timing of the other measurement pulse signal following the time series of the two pulse signals and an amplitude A22 of the reference signal at the delay timing, respectively.
  • the phase difference detection unit calculates the ratio (A21ZA22) of these amplitudes A21 and A22, calculates the phase ⁇ stop based on the amplitude ratio (A21ZA22) by tan ⁇ (A21ZA22) ⁇ , and corrects the correction.
  • the unit corrects the phase ⁇ stop to the phase ⁇ stop ', and the time difference calculation unit calculates the phase difference ⁇ 0 between the generation timings of the two measurement pulse signals by ( ⁇ stop'- ⁇ start') It is characterized by
  • the time difference can be calculated with high accuracy by simple arithmetic processing.
  • the correction data is obtained by sampling at least six points in one period of the reference signal. To do.
  • the distance measuring apparatus according to the present invention is a distance measuring apparatus using the time difference measuring apparatus according to the present invention.
  • the distance measuring device is obtained by a measurement pulse wave emitting unit that emits a measurement pulse wave to a distance measurement object, and the measurement pulse wave reflected on the distance measurement object.
  • a reflected pulse wave detection unit that detects a reflected pulse wave, and obtains a first pulse signal at a timing when the measurement pulse wave is emitted from the measurement pulse wave emission unit, and the reflected pulse wave is the reflected pulse wave.
  • a second difference signal is acquired at the timing detected by the detection unit, and a time difference measuring device is used to measure a time difference from the timing at which the first pulse signal is acquired to the timing at which the second pulse signal is acquired.
  • the distance measurement device is characterized in that a time difference measuring device according to any force one of the above (1) of the present invention (31).
  • the distance measuring device includes a V measuring instrument and a shape measuring device for specifying the contour shape of the object by measuring the distance to the distance measuring object.
  • the measurement pulse wave generated by the measurement pulse wave emission unit for the distance measurement object is conventionally used as a distance measurement beam such as a microwave or a light wave (laser light, infrared light, etc.).
  • a distance measurement beam such as a microwave or a light wave (laser light, infrared light, etc.).
  • various known electromagnetic waves can be applied.
  • the measurement pulse wave emission unit emits the measurement pulse wave toward the distance measurement object
  • the reflected pulse wave detection unit includes the measurement pulse wave. The reflected pulse wave that is reflected back from the distance measurement object is detected.
  • the provided time difference measuring device acquires the first pulse signal at the timing when the measurement pulse wave is emitted, acquires the second pulse signal at the timing when the reflected pulse wave is detected, and The timing force that acquired the pulse signal of 1 The time difference until the timing of acquiring the second pulse signal is accurately measured, and the distance calculation unit measures the distance based on the time difference obtained by the time difference measuring device. Find the distance to the subject.
  • the time difference between the two pulse signals can be obtained with high accuracy, and the distance calculated according to the time difference can be measured with high accuracy.
  • the distance measuring method according to the present invention is a method for performing the action of the distance measuring device according to the present invention.
  • the distance measurement method generates at least two reference signals having a phase difference of approximately ⁇ ⁇ 2 [(1) and a known period, and a measurement pulse wave for the distance measurement object.
  • the amplitude of each of the two reference signals at the timing when the emission of the measurement pulse wave is detected is obtained, and the timing at which the reflected pulse wave obtained by reflecting the measurement pulse wave on the distance measurement target is detected.
  • the respective amplitudes of the two reference signals are obtained, and the phase of the reference signal for each detection timing of the pulse wave and the detection timing thereof are determined based on the amplitude detected for each two of the reference signals.
  • a phase difference between the two reference signals is corrected for the detected phase difference, and an error caused by an error of at least one of the reference signals is corrected.
  • the detection timing force of the measurement pulse wave also determines the time difference until the detection timing of the reflected pulse wave, and based on the time difference, the distance to the distance measurement object is calculated. It is characterized by calculating
  • each generation of two pulse signals generated with an unknown time difference with respect to two reference signals having a phase difference of ⁇ Z2 [rad] Sampling is performed at the timing, and the amplitude of each reference signal is detected for each sampling (each pulse signal).
  • phase difference ⁇ between the two generation timings of the obtained noise signals is obtained, and the phase difference ⁇ ⁇ between the two generation timings can be converted into a time difference At using the period Ts of the reference signal, and by performing this calculation, the two pulse signals with unknown generation time differences At can be detected. Find the difference in generation time.
  • the time difference between the generation timings of the measurement pulse signals can be measured with high accuracy.
  • the pulse signal generated at the detection timing of the measurement pulse wave emitted toward the distance measurement target, and the measurement pulse wave reflected by the distance measurement target By applying the pulse signal generated at the detection timing of the reflected pulse wave that has returned, the distance to the distance measurement object can be measured with high accuracy based on the measured time difference.
  • Another distance measurement method generates a single reference signal having a known period, emits a measurement pulse wave to a distance measurement object, and detects the emission of the measurement pulse wave.
  • the reflected pulse wave obtained by reflecting the measurement pulse wave on the distance measurement object is detected, and the detection timing when the measurement pulse is emitted and the detection timing force of the measurement pulse are also an abbreviation of the reference signal.
  • the amplitude of the reference signal is obtained at each of the delay timings that are delayed by a time corresponding to the phase difference of ⁇ 2 [(1), and the detection timing of the reflected pulse wave and the detection of the reflected pulse wave are obtained.
  • Timing force Delay timing which is a timing delayed by a time corresponding to the phase difference of approximately ⁇ Z2 [rad] of the reference signal
  • the phase of the reference signal for each timing and the phase difference between these detection timings are obtained, and the error of the reference signal or the error of the phase difference of approximately ⁇ Z2 [rad] is corrected for the obtained phase difference.
  • a detection timing force of the measurement pulse wave is obtained, and a time difference to the detection timing of the reflected pulse wave is obtained, and a distance to the distance measurement object is obtained based on the time difference. It is characterized by that.
  • each generation timing of two pulse signals generated with an unknown time difference with respect to a single reference signal and each of these generation timings.
  • the generation timing is sampled with a delay timing with a time difference corresponding to a phase difference of approximately ⁇ Z2 [rad], and the amplitude of each reference signal is detected at each timing of each pulse signal.
  • the phase of each reference signal corresponding to each generation timing is obtained, and the phase difference ⁇ between the two generation timings of the obtained pulse signal is calculated.
  • the phase difference ⁇ ⁇ between the two generation timings can be converted into the time difference At using the period Ts of the reference signal.
  • the time difference between the generation timings of the measurement pulse signals can be measured with high accuracy.
  • the pulse signal generated at the detection timing of the measurement pulse wave emitted toward the distance measurement target and the measurement pulse wave reflected by the distance measurement target By applying the pulse signal generated at the detection timing of the reflected pulse wave that has returned, the distance to the distance measurement object can be measured with high accuracy based on the measured time difference.
  • the detected phase difference is caused by an error of one reference signal, an error of a phase difference for delay timing, or an error between two reference signals. Even if the reference signal has an error in amplitude or phase difference to correct the included error and determine the occurrence time difference At based on the corrected phase difference, the measurement pulse signal It is possible to measure a time difference between occurrence timings with high accuracy.
  • the time difference between the pulse signals can be obtained with high accuracy by the above-described time difference measuring device according to the present invention.
  • the distance calculated in this way can be made highly accurate.
  • FIG. 1 is a block diagram showing a surveying instrument including a time difference measuring device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a time difference measuring device in the surveying device of FIG.
  • FIG. 3 is a diagram for explaining the principle of time difference measurement by the time difference measurement device of FIG. 2, and FIG.
  • Fig. 3B shows a cosine wave representing the reference signal S2
  • Fig. 3C shows a start signal Ml and a stop signal M2
  • Fig. 3D shows a start signal. It is a figure which shows the principle which calculates
  • FIG. 4 is a diagram showing a specific optical system in the surveying instrument of FIG. 1.
  • FIG. 5 is a diagram showing a specific control system (with synchronization) of the surveying instrument of FIG. 1.
  • FIG. 6 is a diagram showing a specific control system (no synchronization) of the surveying instrument of FIG. 1.
  • FIG. 7 is a diagram showing a relationship between a reference signal and a measurement pulse signal.
  • FIG. 8 A diagram showing the relationship between the sampling value (amplitude value) of the reference signal and the phase.
  • FIG. 8A is based on the value obtained by sampling the sine wave signal and the cosine wave signal at the same timing (start signal).
  • Fig. 8B shows the principle of obtaining the phase deviation amount.
  • Figure 8B shows the principle for obtaining the phase deviation amount based on the values obtained by sampling the sine wave signal and the cosine wave signal at the same timing (stop signal).
  • FIG. 9 is a diagram showing a state in which the locus of sampling values exhibits an elliptical curve.
  • Fig. 10 A diagram showing the phase error when the sampling value trajectory shows a curve on an ellipse.
  • Fig. 10A is a diagram equivalent to Fig. 3D when there is no error
  • Fig. 10B is a diagram of Fig. 10A.
  • FIG. 10C is a diagram corresponding to FIG. 3D when a predetermined error is included
  • FIG. 10D is a diagram illustrating the phase difference error in the case of FIG. 10C.
  • FIG. 11 is a diagram showing a relationship between a reference signal and a correction pulse signal.
  • FIG. 12 is a diagram showing an elliptical curve represented by a sampling value trajectory.
  • FIG. 13 is a diagram (part 1) for explaining the action for specifying the elliptical curve shown in FIG. 12, and FIG. 13A shows two lines parallel to the X axis for specifying the elliptical shape.
  • Figure 13B shows a tangent line and a straight line Lx connecting two contacts.
  • Figure 13B shows two tangent lines parallel to the y-axis to identify an elliptical shape and a straight line Ly connecting two contact points.
  • FIG. 13 is a diagram (part 1) for explaining the action for specifying the elliptical curve shown in FIG. 12, and FIG. 13A shows two lines parallel to the X axis for specifying the elliptical shape.
  • Figure 13B shows a tangent line and a straight line Lx connecting two contacts.
  • Figure 13B shows two tangent lines parallel to the y-axis to identify an elliptical shape and a straight line Ly connecting two contact points.
  • FIG. 14A is a diagram showing the intersection of two straight lines Lx and Ly, j8)
  • FIG. 14B is a diagram showing a saddle coordinate system with the intersection ( ⁇ , ⁇ ) as the origin (0, 0).
  • FIG. 15 is a diagram (part 3) for explaining the action for specifying the elliptical curve shown in FIG.
  • FIG. 16 is a diagram for explaining the principle of correction based on the waveform of the reference signal.
  • FIG. 17 is a diagram for explaining processing for correcting variations in sampling points that deviate from the reference signal waveform.
  • FIG. 18 is a diagram for explaining the principle of correction based on the accumulated phase.
  • FIG. 19A shows the error in the phase difference equivalent to Fig. 10D when the reference signals S 1 and S 2 are sampled at equal time intervals.
  • FIG. 19B is an enlarged view showing details of the collar portion of FIG. 19A.
  • FIG. 20 is a schematic diagram showing a state in which the reference signal is sampled by a clock signal generated at equal time intervals regardless of whether the force is synchronized with the reference signal.
  • FIG. 21 is a diagram showing an example of a variation in phase difference calculated based on the amplitude of a reference signal obtained by sampling.
  • ⁇ 22] It is a diagram illustrating the generation of a correction correspondence table.
  • FIG. 24 is a schematic diagram showing how the reference signal is sampled by a clock signal that is synchronized with the reference signal and generated at equal time intervals.
  • FIG. 25 is a diagram for explaining generation of a correspondence table for correction and an operation for correcting a phase difference based on the correspondence table for correction.
  • FIG. 26 A control system equivalent to Fig. 5 shows a modification in which the reference signal generator generates only the sine wave signal as a reference signal and generates the other reference signal based on the generated sine wave signal.
  • the reference signal generator generates only the sine wave signal as a reference signal, and based on the generated sine wave signal, generates the other reference signal.
  • FIG. 27 is a diagram of a control system corresponding to FIG.
  • FIG. 28 is a diagram of a control system corresponding to FIG.
  • FIG. 30A is a diagram showing the timing of the input signal and the delayed timing of this input signal.
  • Figure 30B shows the sampling at each timing of Figure 30A
  • Figure 30C shows Figure 3
  • Reflected light detection unit (reflected pulse wave detection unit)
  • FIG. 1 is a diagram showing a configuration of a surveying apparatus 100 that is an embodiment of a distance measuring apparatus according to the present invention that includes the time difference measuring apparatus of the present invention as a part of the configuration.
  • the surveying apparatus 100 shown in the figure is a measurement light emitting unit 10 (measurement pulse wave emitting unit) that emits a laser beam L1 (measurement pulse wave) in a distance form to a distance measurement object (hereinafter referred to as a distance measurement object) 90.
  • the reflected light detection unit 20 (reflected pulse wave detection unit) for detecting the reflected laser light L2 (reflected pulse wave) obtained by reflecting the laser light L1 on the distance measuring object 90, and the measurement light emitting unit 10
  • a pulsed start signal Ml (first pulse signal) is output at the timing when the laser beam L1 is emitted, and at the timing when the reflected laser beam L2 is detected by the reflected light detection unit 20, the pulsed stop signal M2 ( (Second pulse signal) and the time difference measuring device 40 for measuring the time difference At from the timing when the start signal Ml is output to the timing when the stop signal M2 is output, and the time difference measuring device 40.
  • the distance conversion unit 30 (distance calculation unit) for obtaining the distance to the distance measuring object 90 based on the obtained time difference ⁇ t and the distance measurement result output unit 50 for visually outputting the distance measurement result are provided.
  • the measurement light emitting unit 10 directs the semiconductor laser (PLD) 11 that is a light source that emits the pulsed laser light L1 and the laser light L1 emitted from the PLD 11 toward the distance measuring object 90.
  • the laser beam L1 emitted from the PLD 11 has a relatively large peak power and a duty ratio of about 0.01%. Laser beam.
  • the reflected light detection unit 20 includes a light receiving element 21 that detects the reflected laser light L2, and a detection optical system 22 that guides the reflected laser light L2 from the distance measuring object 90 to the light receiving element 21.
  • a detection optical system 22 that guides the reflected laser light L2 from the distance measuring object 90 to the light receiving element 21.
  • an avalanche photodiode may be used as the light receiving element 21 as long as it is an element capable of detecting the Norse reflected laser light L2.
  • the time difference measuring device 40 measures the output time difference At between the two pulse signals Ml and M2 output internally at the detection timing of the laser beam L1 and the detection timing of the reflected laser beam L2.
  • This time difference measuring device 40 is an embodiment of the time difference measuring device according to the present invention, and generates two reference signals SI and S2 having a phase difference of Z2 [rad] as shown in FIG.
  • the generated reference signal generator 41 reference signal generator
  • the generated reference signal generator 41 reference signal generator
  • the amplitude All of the two reference signals SI and S2 at each generation timing of the two pulse signals Ml and M2 start signal Ml generation Reference signal SI amplitude at imming
  • A12 reference signal S2 amplitude at start signal Ml generation timing
  • A21 reference signal S1 amplitude at stop signal M2 generation timing
  • A22 stop signal M2 generation
  • the phase difference detector 43 (phase difference detector) that calculates the phase difference ⁇ of the reference signal SI (or reference signal S2) and the phase difference ⁇ detected by the phase difference detector 43 are divided into two criteria.
  • a correction unit 46 (correction unit) that corrects an error between the signals SI and S2 or an error in the detected phase difference caused by an error in at least one of the reference signals SI and S2, and each of the two pulse signals Ml and M2 Approximate timing of occurrence Approximate time difference detection unit 45 (approximate time difference detection unit) that detects difference ta, phase difference ⁇ 0 corrected by correction unit 46, period Ts of reference signals SI and S2, and approximate time difference detection unit 45
  • a time difference calculation unit 44 (time difference calculation unit) that calculates an occurrence time difference At between the start signal Ml and the stop signal M2 based on the approximate time difference ta.
  • the correction unit 46 performs sampling to generate the correction pulse signals Nl and N2 with the time difference ⁇ ⁇ ⁇ between the generation timings imitating the pulse signals Ml and M2 (measurement pulse signals) as the measurement objects.
  • Timing generator 46b sampling timing generator
  • mode switching unit 46a mode to switch between the actual measurement mode to which measurement pulse signals Ml and M2 are input and the calibration mode to which correction pulse signals Nl and N2 are input.
  • the phase difference between the generation timings of the correction pulse signals Nl and N2 calculated by the phase difference detection unit 43 when the correction pulse signals Nl and N2 are input in the calibration mode.
  • the correction data generation unit 46c (correction data generation unit) that generates correction data for correcting the error according to the correspondence relationship between ⁇ and the known time difference ⁇ , and the correction data generation unit 46c Using the correction data storage unit 46d for storing the correction data generated in the above and the correction data stored in the correction data storage unit 46d, the measurement pulse signals Ml and M2 obtained in the actual measurement mode are generated. And a correction calculation section 46e (correction calculation section) for correcting and processing the phase difference ⁇ 0 corresponding to the time difference At between timings.
  • the two reference signals SI and S2 in the present embodiment are shown in FIG. 3A, for example.
  • the reference signal S2 of cosine wave (AOcos 0) shown in Fig. 3 IV is applied.
  • the reference signals S1 and S2 are not limited to the combination of the sine wave and cosine wave signals, but may be two signals of a periodic function that have a phase difference of ⁇ 2. For example, any other combination of signals.
  • the distance measurement result output unit 50 may be a display device such as a monitor that outputs a display, or may be a printer that prints and outputs as long as the distance measurement result is output visually. .
  • the reference signal generator 41 of the time difference measuring device 40 is connected to the sine wave signal S1 shown in FIG.
  • the cosine wave signal S2 shown in 3B is generated.
  • the time difference measuring device 40 generates the start signal Ml shown in Fig. 3C at the emission timing of the laser beam L1 from the PLD 11, and the amplitude detector 42 uses the start signal Ml to generate both reference signals SI. , S2 is sampled and held, and the amplitude values All and A12 of the reference signals SI and S2 obtained by sampling and holding are detected.
  • the phase difference detection unit 43 obtains the phase ⁇ start of the detected amplitude values All and A12 from the reference signal generation time. That is, the amplitude values All, A12 are as shown in Fig. 3D.
  • the phase difference detector 43 determines the phase of the reference signals SI and S2 when the start signal Ml is generated. ⁇ start,
  • the time difference measuring device 40 generates the stop signal M2 shown in FIG. 3C at the detection timing of the reflected laser beam L2 by the light receiving element 21, and the amplitude detector 42 uses the stop signal M2 to generate both reference signals SI.
  • S2 is sampled and detected, and the amplitude values A21 and A22 of the reference signals SI and S2 obtained by sampling and holding are detected.
  • the phase difference detection unit 43 obtains the phase ⁇ stop for the detected amplitude values A21 and A22 from the time when the reference signal is generated. That is, the amplitude values A21 and A22 are obtained by using the phase ⁇ stop of the reference signal generation force as shown in FIG.
  • the phase difference detection unit 42 determines the phase ⁇ stop of the reference signals SI and S2 when the stop signal M2 is generated.
  • the phase difference detection unit 43 calculates the two phases ⁇ start and ⁇ stop stored in the storage area.
  • phase difference ⁇ 0 for the reference signals SI and S2 corresponding to the time between the generation of the start signal Ml and the generation of the stop signal M2 is calculated.
  • phase difference ⁇ calculated by the phase difference detection unit 43 using equation (9) is 0 [rad]
  • the calculated phase difference ⁇ 0 includes 2 ⁇ + in addition to ⁇ 0 of 27u [rad] or less.
  • ⁇ ⁇ , 4 ⁇ + ⁇ ⁇ , ... also implicitly exist and can be expressed as the general formula 2 ⁇ ( ⁇ -1) + ⁇ ⁇ ( ⁇ ; natural number).
  • the phase difference 2 ⁇ (n ⁇ l) [rad] which is the first term of the above general formula, also needs to be converted. It is necessary to specify the natural number n.
  • the time difference At ( ( ⁇ ⁇ Z2TU) TS) in equation (10) corresponding to Select the close time difference as the time difference At to be obtained.
  • the distance conversion unit 30 performs a time-to-distance conversion process on the time difference At obtained by the time difference measuring device 40 in this way, and thereby, the distance measurement corresponding to the time difference At is performed.
  • the distance to the object 90 is obtained, and the obtained distance is visually displayed or printed out by the distance measurement result output unit 50.
  • the above is the time difference between the distance measuring device 100 and the time difference measuring device 40 of the present embodiment.
  • intersection (X, y) (A1 1, A12) of the amplitude values of All and A12 exists at a position off the circumference, for example, on the elliptical curve shown by the broken line in FIG. Will exist. [0188] And although the intersection (x, y) actually exists on such an elliptical (ellipse outer periphery) curve, it is on the outer periphery (circumference) of a perfect circle. If the phase difference ⁇ is calculated as existing, an error occurs in the phase difference ⁇ .
  • the locus (X, y) (cos ⁇ , 0.5sin ( ⁇ + 60 °)) where the intersection exists on the circumference of the ellipse shown in Fig. 10C. 1Z2 and has an error with a phase delay of 60 °.)
  • the correction unit 46 substantially performs a process of correcting the elliptical curved locus shown by a broken line in FIG. 9 to the circumference of a perfect circle shown by a two-dot chain line. A process for obtaining a function expression representing the elliptic curve obtained by fitting is performed.
  • the generation time difference ⁇ is imitated at equal time intervals and the measurement pulse signals Ml and M2.
  • the reference signals SI, S2 are sampled by the correction pulse signals Nl, N2,.
  • the correction unit 46 switches from the actual measurement mode in which the mode switching unit 46 a measures the measurement pulse signals Ml and M2 to the calibration mode in which the correction pulse signals N1, N2,... Are measured, and the sampling timing formation unit 46b A number of correction pulse signals Nl, N2,... Are generated at equal time intervals ⁇ while shifting the phase with respect to the reference signals SI and S2, and the amplitude detector 42, as shown in FIG. ,
  • the amplitude detector 42 samples the reference signals SI and S2, and at each generation timing, sets of amplitudes of the reference signals SI and S2 (All ', A 12'), ( ⁇ 21 ', ⁇ 22'), ...
  • the correction data generation unit 46c calculates the time difference between these phase ⁇ and phase difference ⁇ ⁇ at equal time intervals.
  • correction data for correcting the error of the reference signals SI and S2 is generated, and the generated correction data is stored in the correction data storage unit 46d, and the mode switching unit 46a switches the mode from the calibration mode to the actual measurement mode.In this actual measurement mode, when measuring the measurement pulse signals Ml and M2, the phase difference ⁇ obtained by the phase difference detector 43 is corrected.
  • the unit 46e performs correction using the correction data stored in the correction data storage unit 46d.
  • correction data generation processing by the correction data generation unit 46c will be described in detail below.
  • one generation method is based on the correspondence between the elliptical curve shown in Fig. 12 and the true circle that should be drawn, which is to identify the elliptical curve as a function. It is done from Yuko.
  • Equation (15) is the center of this elliptical curve (see FIG. 14).
  • the xy coordinate system is set to X so that the intersection point shown in equation (15) is the origin 0 (0, 0).
  • the elliptical curve f (X, Y) is expressed as shown in FIG.
  • the maximum amplitude of the reference signal S1 is obtained. That is, the value X when the partial differentiation of Equation (16) with respect to X and the partial differential value 3f (X, Y) / d X force O (zero) is
  • the elliptical curve is Y Can be obtained based on the ratio to the maximum amplitude value of the sine wave signal (formula (19)) as the reference signal S1.
  • Phase difference ⁇ ⁇ force expressed as ⁇ ⁇ 2 phase difference force between two reference signals SI and S2
  • Deviation force from this linear equation This represents the error from the true value, including the deviation from the reference signal SI, S2 amplitude difference and phase difference ⁇ ⁇ 2. From this value, correction data can be obtained.
  • the correction unit 46 of the time difference measuring device 40 in the present embodiment is similar to the measurement pulse signals Ml, M2, and the correction pulse signal Nl, Sampling timing forming section 46b (sampling timing forming section) that generates N2, ..., an actual measurement mode in which measurement pulse signals Ml and M2 are input, and a calibration mode in which correction pulse signals Nl and N2 are input Generation of the correction pulse signals Nl and N2 calculated by the phase difference detection block 43 when the correction pulse signals Nl and N2 are input in the calibration mode.
  • a correction data generation unit 46c (correction data generation unit) that generates correction data for correcting an error according to the correspondence between the phase difference ⁇ between timings and the time difference ⁇ of equal time intervals; Supplement Using the correction data storage unit 46d for storing the correction data generated by the data generation unit 46c and the correction data stored in the correction data storage unit 46d, the measurement pulse signal Ml, A correction calculation unit 46e (correction calculation unit) is provided for correcting and processing the phase difference ⁇ corresponding to the time difference ⁇ t between the M2 generation timings.
  • the time difference At measured by the time difference measuring device is input to the distance conversion unit 30 (see Fig. 1), and the distance conversion unit 30 calculates the following equation (25) based on the input time difference At.
  • the distance D to the distance measuring object 90 is calculated by In equation (25), the constant c represents the speed of light [m / sec].
  • the measured distance D to the distance measuring object 90 is output by the distance measurement result output unit 50, and the user of the surveying apparatus 100 can grasp the distance D.
  • the distance measurement result output unit 50 is a display device or the like that displays the distance D to the distance measurement object 90 as the distance measurement result as numerical information. You can also display various setting information.
  • the actual measurement of the reference signals S1 and S2 at each generation timing of the pair of start signal Ml and stop signal M2 is merely performed. Only once each time, the time difference between the two signals Ml and M2 can be accurately obtained, and the time difference and distance can be measured quickly.
  • the correction unit 46 determines the phase difference detected by the phase difference detection unit 43 due to an error between the two reference signals SI and S2 or an error of at least one reference signal S1 or S2.
  • the time difference calculation unit 44 corrects the error included in the phase difference, and the time difference calculation unit 44 calculates the occurrence time difference ⁇ t based on the phase difference corrected by the correction unit 46. Even if there is an error in the phase difference between both reference signals SI and S2 ⁇ Z2 [rad]), it is possible to measure the time difference between the generation timings of the measurement pulse signals Ml and M2 with high accuracy. .
  • the sine wave and cosine wave reference signals SI and S2 are sampled by clocks generated at equal time intervals, and the reference signals SI and S2 obtained as a result of the sampling are sampled.
  • the amplitude set which is the combined force of the two amplitudes
  • the elliptical curve (Fig. 12) obtained by connecting the plots of these amplitude sets is a perfect circle with the origin at the center.
  • the correction data is generated based on the correspondence with the arranged straight lines, the time difference measuring device and the distance measuring device of the present invention are not limited to this form.
  • the method shown in FIG. 20 can be applied.
  • the reference signal SI, S2 is generated by the clock signal Ci (CO, C1,. Sampling S2.
  • the periodic force for generating the clock signal is set to 1.3 times the period for generating the reference signal.
  • the clock signal Ci may be synchronized with the reference signals SI and S2, and may be synchronized! /.
  • the calculated phase difference ⁇ is not necessarily a constant value as shown in FIG. Variations can occur.
  • Plot the corresponding phase difference ⁇ ⁇ between each for phase ranges above 27 u [rad], subtract an integer multiple of 2 ⁇ [rad] and plot as a phase less than 2 ⁇ [rad])
  • a correspondence table indicated by an S-shaped curve shown in the figure can be obtained.
  • the relatively large size O indicates the phase ⁇ (or phase difference ⁇ 0) corresponding to the sampling points C0 to C9. If the clock signal Ci is synchronized with the reference signals SI and S2, the plot corresponding to the sampling point after C10 is the true phase (horizontal axis) of any sampling point that has already been measured. Direction value). For example, C10 overlaps CO and the position on the horizontal axis, and C11 overlaps C1 and the position on the horizontal axis.
  • the true phases ⁇ start-1 and ⁇ stop-1 corresponding to the measured phases ⁇ start and ⁇ stop are obtained based on a preset correspondence table (correction data; see FIG. 23). Can do.
  • the time difference T can be calculated by the following equation.
  • (( ⁇ stop-1 ⁇ start-1) / 2 ⁇ ) X (1 / f)
  • the above calculation method for internal correction can be applied to either the case where the clock signal Ci is synchronized with the reference signals SI and S2 or the case where the clock signal Ci is not synchronized. A method of obtaining that can be applied only when doing so will be described.
  • the reference signals SI and S2 are sampled by a clock signal having a generation cycle shorter than that of the reference signals SI and S2 and generated at equal time intervals. Note that this clock signal is synchronized with the reference signals SI and S2, and 100 clock signals are generated at equal time intervals during one cycle of the reference signals SI and S2. It is assumed that 100 sampling data are obtained from signals SI and S2.
  • the true phase difference ⁇ of the reference signals SI and S2 corresponding to the time interval between adjacent clocks in time series is (2 w Zl00) [rad].
  • the measurement phase difference ⁇ calculated based on the amplitudes of the reference signals SI and S2 obtained by sampling includes an error as described above, and therefore does not necessarily indicate a constant value.
  • the horizontal axis represents the true phase (phase difference corresponding to the time interval between adjacent clocks in time series (2 ⁇ / 100) [rad]), and the vertical axis represents the measured phase.
  • the corresponding phase difference ⁇ ⁇ between each of the 100 sampling points described above is plotted.
  • the range of 0 to 27u [rad] is, for example, S-shaped as shown in FIG. It is possible to obtain a correspondence table as correction data indicated by the curve.
  • the correction data thus obtained can be used for correction as it is.
  • the true phases ⁇ start-1 and ⁇ stop-1 corresponding to the measured phases ⁇ start and ⁇ stop are obtained based on a preset correspondence table (correction data; see FIG. 25). Can do.
  • the time difference T can be calculated by the following equation.
  • (( ⁇ stop-1 ⁇ start-1) / 2 ⁇ ) X (1 / f)
  • the configuration shown in FIG. 4 can be applied.
  • the illustrated optical system has a configuration in which the emission optical system 12 and the detection optical system 22 are functionally combined, and reflects the laser beam L1 emitted from the PLD 11 to guide it to the light receiving element (APD) 21.
  • the mirror 14 is configured to guide the laser beam L1 toward the distance measuring object 90, and includes a prism 13 and a lens 15 that guide the reflected laser light L2 from the distance measuring object 90 to the light receiving element 21. is there.
  • the illustrated configuration is merely an example, and the time difference measurement device and the distance measurement device according to the present invention are not limited to the above configuration.
  • the illustrated control system is first switched to the calibration mode by the mode switching unit (Selector) 46g.
  • the mode switching unit 46g blocks the input from the pulse detector 42a while allowing the input from the second frequency divider (Div) 11c, which will be described later, and the oscillation circuit (TXCO ) Based on the 15 MHz pulse output from 4 la, the sine wave (Sin) generator 41b and the cosine wave (Cos) generator 41c are each a sine wave reference signal whose phase is shifted by ⁇ ⁇ 2. SI and cosine wave reference signal S2 are generated, and these reference signals SI and S2 are band-limited by the corresponding bandpass filters (BPF) 42b and 42b.
  • BPF bandpass filters
  • the divided output cannula has a known pulse output time interval ⁇ , and this output pulse is the correction pulse signal Nl , N 2, ... are input to the mode switching unit 46g, and at the generation timing of this correction pulse signal N, the AZD converters (A / D) 42c, 42c receive the band-limited reference signals SI, S2 Sample and hold at least 6 sets each, and the sampled and held values, i.e., amplitude value sets (All, A12), (A21, A22), (A31, A32), (A41, A42), (A51, A52), (A61, A62), etc. are input to the CPU 44a.
  • the CPU 44a as the correction data generation unit 46c, sets a set of six or more input amplitude values. Based on the above, the correction data is generated according to the procedure described above, and the generated correction data is
  • the data is stored in the memory 46f that functions as the correction data storage unit 46d.
  • the RAM 44b connected to the CPU 44a stores arithmetic expressions and other constants.
  • the mode switching unit 46g allows the input from the pulse detector 42a, and based on the 15 MHz pulse output from the oscillation circuit (TXCO) 41a, the sine A wave (Sin) generator 41b and a cosine wave (Cos) generator 41c generate a sine wave reference signal Sl and a cosine wave reference signal S2 whose phases are shifted by ⁇ 2, respectively.
  • S2 is band-limited by corresponding bandpass filters (BPF) 42b and 42b.
  • the 15 [MHz] pulse output from the oscillator circuit (TXCO) 41a is divided by the first divider (Divider) 11a to 1Z99 to 151.51 [kHz], and the synthesizer (SYH ) It is multiplied by 100 times by l ib to 15. 151 [MHz], and the 100th period and the 99th period of the 15 [MHz] output pulse are synchronized with a phase difference of 0.
  • the 15. 151 [MHz] signal multiplied by the synthesizer l ib is further divided to 1Z (23 X 77) by the second divider (Div) l lc.
  • the output pulse is input to the driver (DRIVER) id, which drives the PLD11, and the PLD11 outputs the pulsed laser beam L1.
  • pulsed laser light L1 is repeatedly emitted from PLD11 at a frequency of approximately 8.5 [kHz], and with this repeated emission, reflected laser light L2 is repeatedly detected and a plurality of times.
  • the time difference between the start signal Ml and the stop signal can be measured, and the reliability of the measurement result can be improved by such multiple measurements.
  • start signal 42a is generated Ml and the stop signal M2 based on the laser beam L1 and the reflected laser beam L2 detected by the light receiving element (APD) 21, AZD converters (A / D) 42c and 42c sample and hold the band-limited reference signals SI and S2, respectively, and the sampled and held values, ie, amplitude values All and A12 and amplitude values A21 and A22, are the CPU 44a Is input.
  • the CPU 44a functioning as the correction calculation unit 46e reads the correction data from the memory 46f, and uses the read correction data to input the input sample hold value.
  • the phase with respect to (amplitude value) is corrected, and the phase difference is calculated based on the corrected phase.
  • the occurrence time difference ⁇ from the actually measured start signal Ml to the stop signal M2 Find t.
  • the output pulse of the transmission circuit 41a is also input to the pulse counter (CNTR) 45a.
  • the pulse counter 45a generates the start signal Ml generated by the pulse detector 42a.
  • the number of output pulses input in the meantime is counted, and the counting result is input to the CPU 44a and used for calculating the approximate time difference ta by the CPU 44a.
  • the CPU 44a performs the current measurement with high accuracy based on the approximate time difference ta and the high-resolution generation time difference At.
  • the difference ⁇ t can be obtained.
  • the power shown in FIG. 5 is a control system configured to synchronize the reference signal S1 (or reference signal S2) and the start signal Ml. These signals do not necessarily have to be synchronized. Both signals S1 (or S2) and Ml are not synchronized at all, that is, both signals S1 (or S2) and Ml are output independently from each other as shown in Fig. It may be completely asynchronous that depends only on the signal and does not depend on each other.
  • the time difference measuring apparatus and the distance measuring apparatus detect these two noise signals generated with a time difference only once each in the actual measurement mode. Although it is possible to measure the time difference between pulse signals with high accuracy, in actual measurement, measurement is performed multiple times, the average value of the obtained multiple measurement results is obtained, and the standard deviation is calculated. Therefore, it is preferable to improve the reliability of the measurement result.
  • the power shown in FIG. 5 is a control system configured to synchronize the reference signal S1 (or reference signal S2) with the start signal Ml or the correction pulse signal N.
  • These signals S1 (or S2), Ml, N do not need to be synchronized at all, i.e., both signals S1 (or S2), Ml, N force are independent of each other as shown in Fig. 6, for example.
  • the two transmitting circuit powers may depend only on the individually output signals, and may be completely asynchronous, independent of each other.
  • the control system shown in Fig. 6 includes a control system that generates reference signals SI and S2, and a PLD 11 that The control system that generates the light LI (measurement pulse signal generation system) and the control system that generates the correction pulse signal N are completely separate and independent, and the control system generates the reference signals SI and S2. 5 is the same as the control system shown in FIG. 5, whereas the control system in which the PLD 11 emits the laser light L1 and the control system that generates the correction pulse signal N are independent of the oscillator 41a.
  • the output cannula output from this oscillator l ie is divided by the divider (Div) 1 If, and this divided output cannula is Based on this, the driver (DRIVER) l lg drives the PLD 11, and the laser light L 1 is output from the PLD 11 at a timing completely unrelated to the timing of the reference signal S1 or S2.
  • the correction pulse signal N is output at a timing completely unrelated to the timing of the reference signal S1 or S2.
  • the reliability of the measurement result can be improved by performing the measurement a plurality of times.
  • the surveying apparatus 100 according to the present embodiment has been described as a semiconductor laser applied as a light source.
  • the distance measurement apparatus according to the present invention is not limited to the mode of the light source.
  • a light source that emits various types of laser light, a light source that emits light other than laser light, or a measurement wave emission source that generates measurement waves such as microwaves other than light can be applied. Even in this case, the same effect as in the present embodiment can be obtained and the same effect can be exhibited.
  • the time difference measuring device 40 in the surveying device 100 of the present embodiment includes a correction unit 46 that corrects an error between two reference signals S1 and S2 or an error caused by at least one reference signal S1 or S2.
  • Sampling timing generator 46b that generates a correction pulse signal N with a time difference between generation timings equal to the measurement pulse signal Ml, M2, and an actual measurement mode in which the measurement pulse signals Ml, M2 are input
  • the phase difference detection unit 43 when the correction pulse signal N is input in the calibration mode and the mode switching unit 46a for switching between the calibration mode in which the correction pulse signal N is input and the correction mode.
  • the correction data storage 46d for storing the correction data generated by the correction data generator 46c, and the correction data stored in the correction data storage 46d.
  • the actual measurement mode in which the actual measurement is performed by adopting the configuration including the correction calculation unit 46e that corrects and calculates the phase difference corresponding to the time difference between the generation timings of the measurement pulse signals obtained in
  • a calibration mode for generating correction data to be stored in the correction data storage unit is also provided, and the calibration mode and actual measurement mode are alternatively selected by the mode switching unit to measure the actual time difference.
  • the correction data stored in the correction data storage unit 46d is maximized by switching to the calibration mode, generating a correction noise signal, and creating new correction data. Because it can be updated to the correction data, it is possible to eliminate the effect on the measurement results due to individual differences of the time difference measuring device 40, and also due to the usage environment such as aging of the time difference measuring device 40 The effects that have been made can also be resolved.
  • Calibration processing can also be performed in a self-contained manner. That is, since it is not necessary to prepare another external device (such as a device that generates a correction pulse signal) during the processing in the calibration mode, calibration can be performed even in a place where there is no external device.
  • another external device such as a device that generates a correction pulse signal
  • the correction unit 46 does not include the sampling timing formation unit 46b, and an actual measurement mode in which a measurement pulse signal, which is a pulse signal subject to occurrence time difference measurement, is input, and a measurement pulse signal Ml.
  • the mode switching unit 46a that switches between the calibration mode in which the time difference between the generation timings and the known time difference between the generation timings is input, and the correction pulse signal N is input in the calibration mode.
  • the correction data for correcting the error according to the correspondence between the phase difference between the generation timings of the correction pulse signal N and the known time difference, calculated by the phase difference detection unit 43.
  • Correction data generation unit 46c for generating correction data
  • correction data storage unit 46d for storing correction data generated by the correction data generation unit 46c
  • correction data stored in the correction data storage unit 46d Use a configuration with a correction calculation unit 46e that uses the data to correct and process the phase difference corresponding to the time difference between the generation timings of the measurement pulse signals Ml and M2 obtained in the actual measurement mode. You can
  • the sampling timing forming unit 46b is The time difference measuring device 40 or the surveying device 100 (distance measuring device) is not directly provided, and the sending of the correction pulse signal with a known time difference by the sampling timing forming unit 46b is connected to the time difference measuring device 40 or the surveying device 100. It can also be performed by an external device used in the same way.
  • the correction unit 46 does not have the above-described calibration mode for generating correction data, and also includes a correction data storage unit 46d that stores correction data for correcting errors, and a correction data storage.
  • a configuration including a correction calculation unit 46e that performs correction calculation processing using the correction data stored in the unit 46d may be employed.
  • the configuration can be further simplified as compared with the time difference measuring apparatus 40 and the surveying apparatus 100 having such a calibration mode.
  • the correction data stored in the correction data storage unit 46d is data at discrete sampling points, and is used when obtaining the occurrence time difference At. In some cases, the data of the sampling point to be stored is not stored in the correction data storage unit 46d.
  • the normal part 46 may generate data (0, ⁇ ) of necessary sampling points between these two sampling points by interpolation processing or fitting processing.
  • interpolation processing for example, by applying a linear linear interpolation processing,
  • the period (generation time interval) of the correction pulse signal N is described as being shorter than the period Ts of the reference signals SI and S2.
  • the time difference measuring device and the distance measuring device of the present invention are not limited to this embodiment, and the period (generation time interval) of the correction pulse signal N is longer than the period Ts of the reference signals SI and S2. Also good.
  • the reference signal generator 41 generates a first reference signal S1 called a sine wave signal and a second reference signal S2 called a cosine wave signal, as shown in FIG. 5, for example.
  • the reference signal generation unit 41 does not include the cosine wave generation unit (Cos) 41c but generates a sine wave generation unit (Sin) 41b.
  • the reference signal generation unit 41 includes a force delay circuit 42d, which generates only one reference signal (sine wave signal) S1 from the beginning, in the reference signal S1 that is originally generated. In contrast, a new reference signal is generated by delaying the phase of the reference signal S1 by Z2 [rad].
  • This newly generated reference signal is ⁇ /
  • Each of the forms described as the first embodiment described above is a case where there are two reference signals, and the phase difference between both reference signals is approximately 7u Z2 [rad], and both reference signals are simultaneously transmitted (with the same timing).
  • the time difference measuring apparatus and the distance measuring apparatus according to the present invention are not limited to this form, and a configuration that can be substantially the same as this form can also be applied.
  • a set of sampling values may be obtained by sampling at one timing.
  • the mode switching unit 46g allows the input from the second frequency divider (Div) 11c, which will be described later, while blocking the input from the pulse detector 42a.
  • (TXCO) 41a Force Based on the output 15 [MHz] pulse, the sine wave (Sin) generator 41b generates a sine wave reference signal S1, which is the corresponding bandpass filter (BPF) Band limited by 42b.
  • the 15. 151 [MHz] signal multiplied by the synthesizer l ib is further divided into 1Z (23 X 77) by the second divider (Div) 11c.
  • the output pulse has a known ⁇ emission time interval, and this output pulse is input as a correction pulse signal Nl, N2,... To the mode switching unit 46g, and when the correction pulse signal N is generated.
  • the AZD converter (A / D) 42c samples and holds the band-limited reference signal S1.
  • the output cannula Nl (N2) input to the mode switching unit 46g is delayed by the phase ⁇ ⁇ 2 [ ⁇ 3 ⁇ 4 (1) in the reference signal S1 by the delay circuit 42cT.
  • the pulse ( ⁇ 2 ') is input to the AZD conversion (A / D) 42c to sample and hold the band-limited reference signal S1.
  • This delay circuit 42cT converts the input signal (correction pulse signal ⁇ ( ⁇ 1, ⁇ 2, ⁇ ), start signal Ml, stop signal ⁇ 2, etc.) into the phase difference Z2 [rad ],
  • the AZD variation 42 C amplitude detection unit 42
  • the value pair (All ', A12') is input to the CPU 44a.
  • the amplitude value sampled at the generation timing is a value on the sine wave signal S3
  • the amplitude value sampled at the delay timing is ⁇ from the sine wave signal S3. It can be grasped as a signal whose phase is delayed by Z2 [rad], that is, a value on the cosine wave signal.
  • the amplitude value All 'obtained by sampling at the generation timing is sampled at the vertical axis and sampled at the delay timing.
  • the set of amplitude values (All ', A12') at the timings corresponding to each other is the force expressed as shown in Fig. 30C.
  • the above expression is substantially the same as the expression using the two reference signals (phase difference ⁇ Z2 [rad]) shown in Fig. 3D and Fig. 8.
  • FIG. 29 shows a form corresponding to the embodiment shown in FIG.
  • the delay circuit 42 (the input signal (correction pulse signal N (N1, N2,...), Start signal Ml, stop signal M2, etc.) is converted into a phase difference ⁇ in the reference signal S1.
  • This is a pulse delay unit that delays by a time corresponding to Z2 [rad].
  • the A / D converter 42 c (amplitude detection unit 42) has an initial timing (occurrence timing; time tl) as shown in FIG.
  • the amplitude value sampled at the generation timing is the value on the sine wave signal S3
  • the amplitude value sampled at the delay timing is ⁇ It can be grasped as a signal whose phase is delayed by Z2 [rad], that is, a value on the cosine wave signal.
  • the amplitude value All 'obtained by sampling at the generation timing is sampled at the vertical axis and sampled at the delay timing.
  • the set of amplitude values (All ', A12') at the timings corresponding to each other is the force expressed as shown in Fig. 30C.
  • the above expression is substantially the same as the expression using the two reference signals (phase difference ⁇ Z2 [rad]) shown in Fig. 3D and Fig. 8.
  • the surveying apparatus has been described as an example of the position embodiment of the distance measuring apparatus of the present invention including the time difference measuring apparatus of the present invention.
  • the time difference measuring apparatus of the present invention extends to the distance measurement object.
  • a shape measuring device that identifies the contour shape, etc. of the target by measuring the distance of the object, it can be applied to various devices and fields that are required to calculate the distance calculated according to the time difference with high accuracy. Is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

時間差測定装置において、所定の時間差を以て生じる2つのパルス信号の当該時間差の測定に際し、この時間差測定に用いられる2つの基準信号間に差異が生じても、測定結果に誤差が生じるのを防止する。 スタート信号M1とストップ信号M2との間の時間差を測定する時間差測定装置であって、π/2の位相差を有する2つの基準信号S1,S2を基準信号発生部41により発生させ、振幅検出部42が、スタート信号M1およびストップ信号M2の各発生タイミングにおける両基準信号S1,S2の対応振幅値A11,A12およびA21,A22を検出し、位相差検出部43が、各振幅の組(A11,A12)および(A21,A22)に基づいて、基準信号Sにおける位相θを算出するに際し、補正部46が、基準信号S1,S2の誤差を補正する補正用データを用いて、算出される位相を補正する。   

Description

明 細 書
時間差測定装置および距離測定装置並びに距離測定方法
技術分野
[0001] 本発明は、時間差測定装置および距離測定装置並びに距離測定方法に関し、詳 細には、非常に短い時間間隔のパルス信号間の時間差測定の改良に関する。
背景技術
[0002] 近年の測量機器に代表される距離測定装置は、例えばレーザ光やマイクロ波等の 測定波を距離測定対象に対して照射し、その距離測定対象力もの反射波 (以下、測 定波と総称する。)を検出し、この測定波の出射時と検出時との時間差に基づいて、 測定波の往復進行距離を求め、これにより、距離測定対象までの距離 (片道の距離) を算出している。
[0003] ここで、時間差(時間間隔)の測定は、例えば、測定波の出射から検出までの時間 差に比べて極めて短 、既知の周期を有する高周波クロック信号を発生し、測定波の 出射時力 検出時までの間に発生した当該高周波クロック信号のクロック数を計数し 、この計数値に周期を乗ずることによって行われていた。しかし、このような測定にお いては、測定精度を向上させるためにはクロック信号の周波数を高める必要があるの に対して、クロック信号の発生周波数を高めるには限界があった。
[0004] そこで、複数の同一周波数の高周波クロック信号を、互いに所定の位相だけずらし て発生させ、各クロック信号のクロック数を計数することにより、クロック信号の周波数 を擬似的に高周波数ィ匕する方法が考案されている。しかし、この方法では、精度の 信頼性を高める上で、その発生させたクロック信号の数に対応させた測定の繰返し が必要であるため、測定時間の長時間化を招き、実用面で問題があった。
[0005] この問題を解決すベぐ本出願人は、測定波の出射時に同期したスタート信号と検 出時に同期したストップ信号とをそれぞれ所定の時間間隔で繰返し複数回発生させ 、この繰返しの周期よりも短い周期で発生させている正弦波等基準信号を、繰返しの スタート信号でサンプリングするとともに、繰返しのストップ信号でサンプリングして、ス タート信号によるサンプリングで得られた第 1のサンプリング波とストップ信号によるサ ンプリングで得られた第 2のサンプリング波との位相差を求め、この位相差に基づ!/ヽ て、スタート信号とストップ信号との間の位相差を求め、得られた位相差を時間差に 換算する技術を提案して ヽる (特許文献 1)。
[0006] しかし、上述した提案技術は、スタート信号とストップ信号とを複数回発生させて、 複数回の検出を行わなければならず、測定のさらなる迅速ィ匕の観点からは不利であ る。
[0007] さらに、この提案技術は、複数のスタート信号および複数のストップ信号がそれぞれ サンプリング信号として作用するため、スタート信号間の発生間隔およびストップ信号 間の発生間隔も正確に一定であることが要求され、その発生間隔を一定に保つ制御 も必要となる。
[0008] そこで、本出願人はこれらの問題を解決する技術を提案して!/ヽる。すなわち、例え ば正弦波信号と余弦波信号とのように、互いに π Ζ2[ (1]の位相差を有し、周期が 既知の 2つの基準信号を発生させた状態で、スタート信号およびストップ信号の発生 を待機し、スタート信号およびストップ信号の各発生タイミングで、両基準信号をサン プリングして各基準信号の振幅をそれぞれ検出し、スタート信号による両基準信号の 振幅に基づいて、スタート信号検出時の位相を求め、ストップ信号による両基準信号 の振幅に基づいて、ストップ信号検出時の位相を求め、スタート信号検出時の位相と ストップ信号検出時の位相との差 (位相差)およびこれら基準信号の既知の周期に基 づいて、スタート信号とストップ信号との発生時間差を求める時間差測定装置である( 特許文献 2)。
[0009] この時間差測定装置によれば、スタート信号とストップ信号との組を 1回だけ検出す るだけで、スタート信号とストップ信号との発生時間差を正確に時間差を求めることが できる。
[0010] すなわち、例えば図 7に示すように、 2つの基準信号として正弦波信号と余弦波信 号 (正弦波信号が位相 π Z2[rad]だけ遅延した信号)とを発生させ、スタート信号とス トップ信号とのタイミングで両基準信号をサンプリングし、各タイミングにおける各基準 信号の振幅 All (スタート信号の発生タイミングによる正弦波信号の振幅), A12 (スタ ート信号の発生タイミングによる余弦波信号の振幅), A21 (ストップ信号の発生タイミ ングによる正弦波信号の振幅), A22 (ストップ信号の発生タイミングによる余弦波信 号の振幅)を求め、スタート信号の発生タイミングに対応した余弦波信号の振幅 A12 と正弦波信号の振幅 Allとを xy平面に描くと、図 8Aに示すように交点 Pstartが得ら れ、これら振幅の比(A11ZA12)の逆正接値 arctan (AllZA12) (=tan_1 (All/Al 2) )は、正弦波信号 (または余弦波信号)の位相ゼロのタイミング力 の位相のずれ 量 Θ start ( =tan— 1 (A11/A12) )を表す。
[0011] 同様に、ストップ信号の発生タイミングに対応した余弦波信号の振幅 A22と正弦波 信号の振幅 A21とを xy平面に描くと、図 8Bに示すように交点 Pstopが得られ、これら 振幅の比 (A21ZA22)の逆正接値 arctan (A21/A22)は、正弦波信号 (または余弦 波信号)の位相ゼロのタイミングからの位相のずれ量 Θ stop (= tan"1 (A21/A22) )を 表す。
[0012] したがって、スタート信号の発生タイミングとストップ信号の発生タイミングとの間の、 基準信号における位相差 Δ Θは、
A θ = Θ stop— Θ start
によって求められ、スタート信号の発生タイミングとストップ信号の発生タイミングとの 時間差 A tは、基準信号の周期を Ts [秒]として、
A t= ( A θ /2π )Τ5[ ]
によって求めることができる。
[0013] また、本出願人は、上述した互いに π Z2[rad]の位相差を有する 2つの基準信号 に代えて、単一の基準信号のみを発生させ、パルス信号によってこの基準信号をサ ンプリングするに際して、パルス信号の発生タイミングと、この発生タイミングから、基 準信号の位相差 π Z2[rad]だけ遅延させた遅延タイミングとの 2つのタイミングでサン プリングする技術も提案して 、る (特許文献 3)。
[0014] すなわち、特許文献 2により提案された技術は、予め π Z2[rad]の位相差が設定さ れた 2つの基準信号を、 1つのタイミングで同時にサンプリングするものであるのに対 して、特許文献 3により提案された技術は、 1つの基準信号を、 Z2[rad]の位相差 に相当する時間だけずれた 2つのタイミングでサンプリングするものであり、特許文献 2の技術と特許文献 3の技術とは、実質的に、基準信号の略 Z2[rad]の位相差に 相当する 2つの位相差タイミングで該基準信号の振幅をそれぞれサンプリングするの と同一である。
特許文献 1:特許第 2916780号公報
特許文献 2 :特願 2004— 291495 (未公開)
特許文献 3: #112005 169500 (未公開)
発明の開示
発明が解決しょうとする課題
[0015] ところで、上述した特許文献 2による提案技術は、 2つの基準信号は、 π Z2[rad]の 位相差を有する以外、全く同一の振幅、周期を有するものである、との前提の下に成 立する技術であって、振幅に僅かな差異を生じたり、位相差が π Z2[rad]力も僅かに ずれただけで、結果に大きな誤差を生じる。
[0016] すなわち、 2つの基準信号の周期、振幅が完全に一致し、位相差が厳密に π /2[r ad]であれば、前述したスタート信号の発生タイミングに対応して検出された余弦波信 号の振幅 A12と正弦波信号の振幅 Al lとの xy平面上における交点 Pstartは、図 8A の破線で示したように、常に、半径 AO (基準信号 (正弦波信号および余弦波信号)の 設計上の最大振幅)の円周上に存在することになる。
[0017] ストップ信号の発生タイミングに対応して検出された余弦波信号の振幅 A22と正弦 波信号の振幅 A21との xy平面上における交点 Pstopも同様に、図 8Bの破線で示した ように、常に、半径 AOの円周上に存在する。
[0018] そして、各発生タイミングに対応した位相 Θ start, Θ stopを求める演算は、このよう に各交点 Pstartや Pstopが、基準信号の最大振幅 AOを半径とする円周上に存在す ることを前提としている。
[0019] しかし、例えば、基準信号を生成する共振回路やフィルタなどの回路特性は、各基 準信号生成用としてそれぞれ備えられるが、これら 2つの回路特性が完全に同一とな るように製造することは、コストとの均衡で事実上困難である。
[0020] また、例え、回路特性を完全に同一に揃えることができたとしても、基板上における 設置位置の僅かな差異によって、雰囲気温度等使用環境に差異が生じ、基準信号 の出力波形に差異を生じることもある。 [0021] さらには、経時的な変化の度合いにも差異が生じ得る。
[0022] このように、測定用のパルス信号間の発生時間間隔(時間差)の測定に用いられる 両基準信号が完全に一致している(最大振幅が一致し、位相差が π Z2[rad]ずれて いる。)との前提が覆ると、スタート信号の発生タイミングに対応して検出された余弦 波信号の振幅 A12と正弦波信号の振幅 Al lとの xy平面上における交点 Pstartは、例 えば図 9の破線で示すように、楕円状の曲線上に並ぶ軌跡を描く。
[0023] ストップ信号の発生タイミングに対応して検出された余弦波信号の振幅 A22と正弦 波信号の振幅 A21との xy平面上における交点 Pstopについても、交点 Pstartと同様 に、楕円状の曲線上に並ぶ軌跡を描く。
[0024] ここで、図 9に示す軌跡の図において、スタート信号の発生タイミングにおける基準 信号である正弦波信号の振幅 Al lが本来は二点鎖線の直線で示す値(二点鎖線の 円周(半径 = AO)上の点)で検出されるべきところ、正弦波信号の最大振幅自体に 誤差が生じていたために実際には実線の直線で示す値で検出され、一方、余弦波 信号については最大振幅にも位相差にも誤差が生じておらず、図 9において実線の 直線で示す値で検出されたとすると、両者の交点 Pstartは当然異なる位置となり、図 示の例では、実際の検出値に基づく交点 Pstartは本来の交点 Pstartよりも、 y軸方向 の値が小さ 、方向にずれた位置に現れる。
[0025] そして、この交点 Pstart (実際)に基づ!/、て、位相 Θ startを求める時は、交点 Pstart
(実際)が円周状に存在するものとして演算を行うため、図 9において Pstartを通過す る、一点鎖線で示した円周(半径く AO)を想定して、この一点鎖線の円周について の位相 Θ start (実際)が求められる力 本来求められるべき位相は Θ start (本来)とな るべさである。
[0026] したがって、本来もとめられるべき位相 Θ start (本来)と、検出値に基づいて実際に 求められる位相 Θ start (実際)との間には差異が生じ、位相 Θ stopにも同様の差異が 生じるため、両者の差分である位相差 Δ Θに誤差が生じて、最終的に求められる時 間差 A tが誤った値となる。
[0027] 上述の誤差が発生する例は、 2つの基準信号間の位相差が π Z2[rad]からずれた 場合のものであるが、基準信号の最大振幅が等しくない場合も、上述の例と同様に、 時間差 Δ tの測定結果に誤差が生じる。
[0028] また、上述した測定誤差の問題は、位相差が π Z2[rad]である 2つの基準信号を用 いた特許文献 2による提案技術の場合だけでなぐ基準信号は 1つであるが位相差 π /2[rad]に相当する時間差でサンプリングする特許文献 3による提案技術の場合 においても、同様に生じるものである。
[0029] 本発明は上記事情に鑑みなされたものであり、所定の時間差を以て生じる 2つのパ ルス信号の当該時間差を、これら 2つのパルス信号を繰返し発生させることなく 1回の 測定により精度よく測定することができ、しかも、この時間差の測定に用いられる単一 の基準信号に誤差が生じても、またはサンプリングタイミング差若しくは 2つ以上の基 準信号間に差異が生じても、測定結果に誤差が生じるのを防止することができる時 間差測定装置並びにこの時間差測定装置を用いた距離測定装置および距離測定 方法を提供することを目的とする。
課題を解決するための手段
[0030] 本発明に係る時間差測定装置は、時間差を以て発生する 2つのパルス信号の該発 生時間差を測定する装置であり、略 π Z2[rad]の位相差を有する 2つの基準信号を 各パルス信号で同時にサンプリングすることにより、または、単一の基準信号を各パ ルス信号の発生タイミングとこの発生タイミングとは略 π Z2[rad]の位相差 (略 π /2[
Figure imgf000008_0001
(211—1); η=1, 2, ···)の位相差を含む。以下、同じ 。)に相当する時間だけ遅延した遅延タイミングとにおいてそれぞれサンプリングする ことにより、サンプリングして得られた各タイミングにおける基準信号の振幅に基づい て上記発生時間差を求めるに際して、 2つの基準信号の同一タイミングにおける 2つ の振幅値の対応関係、または単一の基準信号の対応する 2つのタイミング (発生タイ ミングと遅延タイミングとからなる 2つのタイミング)における 2つの振幅値の対応関係 に基づいて、基準信号間の誤差および Ζまたは基準信号自体の誤差を補正し、この 補正後の値を用いて上記発生時間差を求めることにより、時間差の測定精度を向上 さ ·¾:るちのである。
[0031] すなわち、(1)本発明に係る時間差測定装置は、未知の時間差を以て発生する 2 つのパルス信号の該発生時間差を測定する時間差測定装置であって、周期が既知 の基準信号を発生する基準信号発生部と、前記 2つのパルス信号の各々の発生タイ ミングに対応して、実質的に、前記基準信号の略 π Ζ2[ι¾(1]の位相差に相当する時 間間隔の 2つのタイミングで該基準信号の振幅をそれぞれサンプリングするのと同一 となるように、前記各パルス信号の発生タイミングごとに 2つずつの振幅を求める振幅 検出部と、前記各パス信号の発生タイミングごとにそれぞれ求められた 2つずつの振 幅に基づいて、前記パルス信号の各発生タイミングごとの、前記基準信号の位相、お よびこれら発生タイミング間での位相差を求める位相差検出部と、前記位相差検出 部によって検出された前記位相差について、前記基準信号の誤差または前記位相 差略 π Z2[rad]の誤差を補正する補正部と、前記補正部によって補正された後の位 相差に基づいて、前記 2つの測定用パルス信号の発生時間差を求める時間差算出 部と備えたことを特徴とする。
[0032] ここで、実質的に、基準信号の略 π Z2[rad]の位相差に相当する時間間隔の 2つ のタイミングで該基準信号の振幅をそれぞれサンプリングするのと同一となるように、 各パルス信号の発生タイミングごとに 2つずつの振幅を求める、とは、
(a)基準信号が 1つである場合に、基準信号の略 7r Z2[rad]の位相差に相当する時 間間隔の 2つのタイミングで該基準信号の振幅をそれぞれサンプリングする、
(b)基準信号が 2つである場合であって、両基準信号間の位相差が略 π Z2[rad]で あるときは、両基準信号を同時にサンプリングする、
≥\、う二通りの方式を適用することができることを意味して 、る。
[0033] なお、上記(a) , (b)の記述内容はいずれも、 1つのパルス信号ごとに 2つの振幅値 を得ることを示しており、測定対象となる時間差を規定する 2つのノ ルス信号によって
、 4つの振幅値が得られる。
[0034] また、誤差を補正する補正部は、補正用のデータ (補正係数や補正関数、参照テ 一ブル)等を、 2つのパルス信号の発生時間差を測定する直前等にぉ 、て生成して 記憶するものであってもよいし、時間差測定装置の個体差に応じた固定的な補正用 のデータとして記憶されて 、てもよ 、。
[0035] このように構成された本発明に係る時間差測定装置によれば、
(a)基準信号が 1つである場合に、基準信号の略 7r Z2[rad]の位相差に相当する時 間間隔の 2つのタイミングで該基準信号の振幅をそれぞれサンプリングし、
(b)基準信号が 2つである場合であって、両基準信号間の位相差が略 π Z2[rad]で あるときは、両基準信号を同時にサンプリングし、
これにより、未知の時間差を以て生じる 2つのパルス信号の各発生タイミングごとに 2 つずつの基準信号の振幅が検出される。
[0036] そして、位相検出部が、この振幅検出部によって検出された基準信号の各振幅に 基づいて、各発生タイミングごとの基準信号における位相を求めるとともに、これら求 められたパルス信号の両発生タイミング間での位相差 Δ Θを求め、両発生タイミング 間での位相差 Δ Θは、基準信号の周期 Tsを用いて時間差 A tに変換することができ 、時間差算出部が、この演算を行うことで、発生時間差 A tが未知の 2つのパルス信 号の当該発生時間差を求める。
[0037] ここで、基準信号の誤差または位相差略 π Z2[rad]のタイミングにつ 、ての誤差に 起因してた、両パルス信号の発生タイミング間に対応した位相差に含まれた誤差を、 補正手段が補正し、時間差算出部は、この補正部によって補正された後の位相差に 基づ 、て発生時間差 Δ tを求める。
[0038] したがって、基準信号が振幅や位相差の誤差を有する場合にも、測定用パルス信 号の発生タイミング間の時間差を高精度に測定することができる。
[0039] 本発明に係る他の時間差測定装置は、 2つのパルス信号の発生時間差を測定す ベぐ略 Z2[rad]の位相差を有し、かつ周期が既知である 2つの基準信号を発生さ せて、各パルス信号によりこれら基準信号をサンプリングし (振幅を検出し)、各サン プリング時ごとの 2つの基準信号の振幅に基づいて、基準信号における各サンプリン グ時の位相を求め、両サンプリング時の間の位相差に基づいて、発生時間差を求め るに際し、基準信号の誤差に起因する位相差の誤差を補正することにより、パルス信 号の発生時間差を精度よく測定するものである。
[0040] すなわち、(2)本発明に係る他の時間差測定装置は、未知の時間差を以て発生す る 2つのパルス信号の該発生時間差を測定する時間差測定装置であって、略 π /2[ rad]の位相差を有し、周期が既知の少なくとも 2つの基準信号を発生する基準信号 発生部と、前記パルス信号の発生タイミングにおける前記 2つの基準信号の各振幅 を求める振幅検出部と、前記振幅検出部によって前記各基準信号ごとに各 2つずつ 検出された振幅に基づいて、前記パルス信号の各発生タイミングごとの、前記基準信 号の位相、およびこれら発生タイミング間での位相差を求める位相差検出部と、前記 位相差検出部によって検出された前記位相差について、前記 2つの基準信号間の 誤差または少なくとも一方の基準信号の誤差に起因した誤差を補正する補正部と、 前記補正部によって補正された後の位相差に基づ 、て、前記 2つの測定用パルス信 号の発生時間差を求める時間差算出部と備えたことを特徴とする。
[0041] ここで、誤差を補正する補正部は、補正用のデータ (補正係数や補正関数、参照テ 一ブル)等を、 2つのパルス信号の発生時間差を測定する直前等にぉ 、て生成して 記憶するものであってもよいし、時間差測定装置の個体差に応じた固定的な補正用 のデータとして記憶されて 、てもよ 、。
[0042] このように構成された本発明に係る他の時間差測定装置によれば、基準信号発生 部が発生した、 π Ζ2[ (1]の位相差を有する 2つの基準信号に対して、振幅検出部 力 未知の時間差を以て生じる 2つのパルス信号の各発生タイミングでサンプリングし 、各サンプリングごと (各パルス信号ごと)に各基準信号の振幅を検出する。
[0043] そして、位相検出部が、この振幅検出部によって検出された各基準信号の振幅に 基づいて、各サンプリングに各基準信号の位相を求めるとともに、これら求められた パルス信号の両発生タイミング間での位相差 Δ Θを求め、両発生タイミング間での位 相差 Δ Θは、基準信号の周期 Tsを用いて時間差 A tに変換することができ、時間差 算出部が、この演算を行うことで、発生時間差 A tが未知の 2つのパルス信号の当該 発生時間差を求める。
[0044] ここで、補正部が、位相差検出部によって検出された位相差について、 2つの基準 信号間の誤差または少なくとも一方の基準信号の誤差に起因して当該位相差に含ま れた誤差を補正し、時間差算出部は、この補正部によって補正された後の位相差に 基づ 、て発生時間差 Δ tを求める。
[0045] したがって、基準信号が振幅や位相差の誤差を有する場合にも、測定用パルス信 号の発生タイミング間の時間差を高精度に測定することができる。
[0046] 本発明の好適な一実施形態に係る時間差測定装置は、補正部が、補正用データ( 参照テーブル (ルックアップテーブル)や補正係数、補正関数等)を記憶した補正デ ータ記憶部と記憶部に記憶された補正用データを用いて補正演算処理を行う補正 演算部とを備えたものである。
[0047] すなわち、(3)本発明の時間差測定装置の好適な一実施形態において、補正部は 、誤差を補正するための補正用データを記憶した補正データ記憶部と、該補正デー タ記憶部に記憶された前記補正用データを用いて補正演算処理を行う補正演算部 とを備えたことを特徴とする。
[0048] ここで、補正用データは、例えば、発生タイミング間の時間差が既知の 2つの補正 用パルス信号を、この時間差測定装置に入力したときに得られた時間差と、当該既 知の時間差との対応関係や、あるいは、得られた位相差と当該既知の時間差 (もしく はこの時間差に対応すべき位相差)との対応関係や、あるいは、得られた各発生タイ ミングに対応した 2つの位相と当該既知の時間差 (もしくはこの時間差に対応すべき 位相差)との対応関係などの、実測定結果 (途中の検出結果や演算結果も含む)と既 知の時間差 (もしくはこの時間差に対応すべき位相差)との対応を示す関係式 (乗じ られる補正係数等)、関数、ルックアップテーブル (参照テーブル)等の形式で表した 情報であれば、 V、かなる形式のものであってもよ 、。
[0049] また、補正用データは、補正データ記憶部に記憶された後に、書換え不可能であ つてもよいし、書換え可能であってもよい。書換え不可能であるときは、時間差測定 装置の個体差に起因して測定結果に与える影響を解消することができる。
[0050] 一方、書換え可能であるときは、時間差測定装置の個体差に起因した影響だけで なぐ時間差測定装置の経年変化等使用環境などに起因した影響についても解消 することができる。
[0051] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば
、補正演算部が、補正データ記憶部に予め記憶された補正用データを用いて、 2つ の基準信号間の誤差または少なくとも一方の基準信号の誤差に起因した測定結果 における誤差を補正演算処理することにより、基準信号が振幅や位相差の誤差を有 する場合にも、測定用パルス信号の発生タイミング間の時間差を高精度に測定する ことができる。 [0052] しかも、補正部を、補正データ記憶部と補正演算部と 、う簡単な構成で実現するこ とがでさる。
[0053] すなわち、この時間差測定装置は、実際に測定を行う実測定モードのみを有する 構成であり、補正データ記憶部に記憶された補正用データを生成する(校正モード) ための構成は含まないため、そのような校正モードを含む時間差測定装置よりも簡単 な構成とすることができる。
[0054] 本発明の好適な一実施形態に係る時間差測定装置は、実測定モードの他に校正 モードを有するものである。
[0055] すなわち、(4)本発明の時間差測定装置の好適な一実施形態において、前記補 正部は、前記発生時間差測定対象のパルス信号である測定用パルス信号が入力さ れる実測定モードと、発生タイミング間の時間差が既知の補正用パルス信号が入力 される校正モードとを切り替えるモード切替部と、前記校正モードにお!、て前記補正 用パルス信号が入力されたことにより前記位相差検出部によって算出された、前記 補正用パルス信号の各発生タイミング間における位相差と、前記既知の時間差との 対応関係に応じて、前記誤差を補正するための補正用データを生成する補正用デ ータ生成部と、前記補正用データ生成部によって生成された前記補正用データを記 憶する補正データ記憶部と、該補正データ記憶部に記憶された前記補正用データ を用いて、前記実測定モードで得られた前記測定用パルス信号の発生タイミング間 の時間差に対応した前記位相差を補正演算処理する補正演算部とを備えたことを特 徴とする。
[0056] ここで、補正用データは、上記(3)の実施形態に係る時間差測定装置のものと同様 に、例えば、発生タイミング間の時間差が既知の 2つの補正用パルス信号を、この時 間差測定装置に入力したときに得られた時間差と、当該既知の時間差との対応関係 や、あるいは、得られた位相差と当該既知の時間差 (もしくはこの時間差に対応すベ き位相差)との対応関係や、あるいは、得られた各発生タイミングに対応した 2つの位 相と当該既知の時間差 (もしくはこの時間差に対応すべき位相差)との対応関係など の、実測定結果 (途中の検出結果や演算結果も含む)と既知の時間差 (もしくはこの 時間差に対応すべき位相差)との対応を示す関係式 (乗じられる補正係数等)、関数 、ルックアップテーブル (参照テーブル)等の形式で表した情報であれば、いかなる 形式のものであってもよ 、。
[0057] なお、校正用の時間差が既知のパルス信号を発生させるもの(例えば、サンプリン グタイミング形成部)は、時間差測定装置の外部の装置に備えられているものであり、 本発明の時間差測定装置には備えられていない。
[0058] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、実際に測定を行う実測定モードの他に、補正データ記憶部に記憶させる補正用デ ータを生成するための校正モードも備えており、校正モードと実測定モードとはモー ド切替部によって択一的に選択される。
[0059] まず、校正モードでは、発生タイミング間の時間差が既知の補正用パルス信号が入 力され、この補正用パルス信号の入力により位相差検出部によって、補正用パルス 信号の各発生タイミング間における位相差が算出され、補正用データ生成部が、こ の算出された位相差と既知の時間差との対応関係に応じて、誤差を補正するための 補正用データを生成する。
[0060] そして、補正用データ生成部によって生成された補正用データは補正データ記憶 部に記憶され、モード切替部によって実測定モードに切り替えられた後、補正演算部 力 補正データ記憶部に記憶された前記補正用データを用いて、実測定モードで得 られた測定用パルス信号の発生タイミング間の時間差に対応した位相差を補正演算 処理する。
[0061] このように、実際の時間差の測定を行う前段階にぉ 、て、校正モードに切り替えて、 補正データ記憶部に記憶された補正用データを最新の補正用データに更新すること ができるため、時間差測定装置の個体差に起因して測定結果に与える影響を解消 することができるとともに、時間差測定装置の経年変化等使用環境などに起因した影 響にっ 、ても解消することができる。
[0062] なお、校正用の時間差が既知のパルス信号を発生させるもの(例えば、サンプリン グタイミング形成部)は、本発明の時間差測定装置には備えられていないため、その ような校正用のパルス信号を発生する構成まで備えた時間差測定装置に比べて、構 成を簡略ィ匕することができる。 [0063] 本発明の好適な一実施形態に係る時間差測定装置は、実測定モードの他に校正 モードを有し、さらに、校正用の等間隔の時間差パルスを発生させるもの(サンプリン グタイミング形成部)を備えたものである。
[0064] すなわち、(5)本発明の時間差測定装置の好適な一実施形態において、前記補 正部は、発生タイミング間の時間差が等間隔の補正用パルス信号を発生するサンプ リングタイミング形成部と、前記発生時間差測定対象のパルス信号である測定用ノ ル ス信号が入力される実測定モードと前記補正用パルス信号が入力される校正モード とを切り替えるモード切替部と、前記校正モードにぉ 、て前記補正用パルス信号が 入力されたことにより前記位相差検出部によって算出された、前記補正用パルス信 号の各発生タイミング間における位相差と、前記等間隔の時間差との対応関係に応 じて、前記誤差を補正するための補正用データを生成する補正用データ生成部と、 前記補正用データ生成部によって生成された前記補正用データを記憶する補正デ ータ記憶部と、該補正データ記憶部に記憶された前記補正用データを用いて、前記 実測定モードで得られた前記測定用パルス信号の発生タイミング間の時間差に対応 した前記位相差を補正演算処理する補正演算部とを備えたことを特徴とする。
[0065] ここで、補正用データは、上記(3)または (4)の実施形態に係る時間差測定装置の ものと同様に、例えば、発生タイミング間の時間差が等間隔の補正用パルス信号を、 この時間差測定装置に入力したときに得られた時間差と、当該時間差との対応関係 や、あるいは、得られた位相差と当該時間差 (もしくはこの時間差に対応すべき位相 差)との対応関係や、あるいは、得られた各発生タイミングに対応した 2つの位相と当 該時間差 (もしくはこの時間差に対応すべき位相差)との対応関係などの、実測定結 果 (途中の検出結果や演算結果も含む)と既知の時間差 (もしくはこの時間差に対応 すべき位相差)との対応を示す関係式 (乗じられる補正係数等)、関数、ルックアップ テーブル (参照テーブル)等の形式で表した情報であれば、 V、かなる形式のものであ つてもよい。
[0066] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、実際に測定を行う実測定モードの他に、補正データ記憶部に記憶させる補正用デ ータを生成するための校正モードも備えており、校正モードと実測定モードとはモー ド切替部によって択一的に選択される。
[0067] まず、校正モードでは、サンプリングタイミング形成部が、測定用ノ ルス信号に模し て、発生タイミング間の時間差が等間隔の補正用パルス信号を発生し、この補正用 パルス信号の入力により位相差検出部によって、補正用パルス信号の各発生タイミ ング間における位相差が算出され、補正用データ生成部が、この算出された位相差 と等間隔の時間差との対応関係に応じて、誤差を補正するための補正用データを生 成する。
[0068] そして、補正用データ生成部によって生成された補正用データは補正データ記憶 部に記憶され、モード切替部によって実測定モードに切り替えられた後、補正演算部 力 補正データ記憶部に記憶された前記補正用データを用いて、実測定モードで得 られた測定用パルス信号の発生タイミング間の時間差に対応した位相差を補正演算 処理する。
[0069] このように、実際の時間差の測定を行う前段階にぉ 、て、校正モードに切り替えて、 補正用パルス信号を発生して新たな補正用データを作成することによって、補正デ ータ記憶部に記憶された補正用データを最新の補正用データに更新することができ るため、時間差測定装置の個体差に起因して測定結果に与える影響を解消すること ができるとともに、時間差測定装置の経年変化等使用環境などに起因した影響につ 、てち解消することができる。
[0070] また、校正処理も自己完結で行うことができる。すなわち、校正モードにおける処理 の際、他の外部装置 (補正用パルス信号を発生する装置等)を別途用意する必要が ないため、外部装置がない場所でも、校正を行うことができる。
[0071] (6)本発明の時間差測定装置の好適な一実施形態において、前記サンプリングタ イミング形成部が発生する前記補正用パルス信号は、前記基準信号発生部の発生 する基準信号と、複数回に一度の割合で同期する等間隔のパルス信号であることを 特徴とする。
[0072] (7)本発明の時間差測定装置の好適な一実施形態において、前記サンプリングタ イミング形成部が発生する前記補正用パルス信号は、前記基準信号発生部の発生 する基準信号と非同期で、かつ等間隔のパルス信号であることを特徴とする。 [0073] (8)本発明の時間差測定装置の好適な一実施形態において、前記補正用データ は、前記振幅検出部によって検出された前記補正用パルス信号による各基準信号 の振幅の比に対応したものとして設定されることを特徴とする。
[0074] (9)本発明の時間差測定装置の好適な一実施形態において、前記 2つの基準信 号は正弦波信号と余弦波信号とであることを特徴とする。
[0075] このように構成された上記(9)の本発明の好適な実施形態に係る時間差測定装置 によれば、基準信号として正弦波信号および余弦波信号という位相差が π Ζ2であ るものが適用されていることにより、直接検出された値 (振幅値)の比をとつて、その比 の arctanを算出すれば位相 Θを算出することができ、 2つの位相から位相差 Δ Θを簡 単に検出することができる。
[0076] (10)本発明の時間差測定装置の好適な一実施形態において、前記補正用データ は、前記振幅検出部によって検出された前記補正用パルス信号による各基準信号 の振幅の比の逆正接値 (arctan)に対応したものとして設定されることを特徴とする。
[0077] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、直接検出された値 (振幅値)の比をとつて、その比の arctanを算出すれば、位相 Θ を算出することができ、 2つの位相から位相差 Δ Θを簡単に検出することができる。
[0078] (11)本発明の時間差測定装置の好適な一実施形態において、前記 2つの基準信 号は正弦波信号と余弦波信号とであり、複数の前記補正用パルス信号が時系列的 に順次入力された各タイミングにおける前記正弦波信号の振幅値を、時系列的にプ ロットしたとき、前記プロットされた振幅値のうち、所定の正弦波曲線上にプロットされ ない振幅値については、前記所定の正弦波曲線上にプロットされるように、かつ、前 記複数の補正用パルス信号が時系列的に順次入力された各タイミングにおける前記 余弦波信号の振幅値を、時系列的にプロットしたとき、前記プロットされた振幅値のう ち、所定の余弦波曲線上にプロットされない振幅値については、前記所定の余弦波 曲線上にプロットされるように、前記補正部が前記振幅値のばらつきを補正することを 特徴とする。
[0079] (12)本発明の時間差測定装置の好適な一実施形態において、前記補正データ記 憶部に記憶された補正用データは、離散したサンプリング点におけるデータであり、 前記発生時間差を求めるに際して、対応するサンプリング点のデータが前記補正部 に記憶されていないときは、該補正部は、該補正部に記憶されているサンプリング点 のデータに基づ 、て補間演算処理またはフィッティング処理により、対応するサンプ リング点のデータを生成することを特徴とする。
[0080] ( 13)本発明の時間差測定装置の好適な一実施形態において、前記補正データ記 憶部に記憶された補正用データは、楕円状の離散したサンプリング点に対応して求 められた楕円状の関数として記憶されていることを特徴とする。
[0081] ( 14)本発明の時間差測定装置の好適な一実施形態において、前記 2つの測定用 パルス信号の概略発生時間差を検出する概略時間差検出部をさらに備え、前記時 間 1?〉キ算出部は、該時間差算出部によって求められた精密時間差にカ卩えて、前 記概略時間差検出部によって検出された前記概略発生時間差により、前記 2つの測 定用パルス信号の発生時間差を算出することを特徴とする。
[0082] 概略時間差検出部は、上述した基準信号の 1周期を判別可能程度の分解能で時 間を検出することができるものであればよぐ公知のパルスカウンタなどによって、基 準信号のパルス数を計数することにより概略時間差を検出するものを適用することが できる。
[0083] このように構成された上記(14)の本発明の好適な実施形態に係る時間差測定装 置によれば、概略時間差検出部によって 2つのパルス信号の概略発生時間差を検 出することができるため、これら 2つのパルス信号の発生時間差が、基準信号の 1周 期を超えるような長時間であっても、精度良く測定することができる。
[0084] すなわち、時間差算出部が検出する 2つのパルス信号間の位相差 Δ Θは、 0[rad] 〜2 7u [rad]の範囲内の値として算出される。しかし、基準信号は周期信号であるため 、この位相差 Δ 0は、 2 π以下の Δ 0の他、 2 π + Δ θ , 4 π + Α Θ ,…も潜在的に 表現されており、一般式 2 π (η- 1) + Δ θ (η ;自然数)として表すことができる。
[0085] 一方、算出すべき 2つのパルス信号の発生時間差としては、上記の一般式の第 1項 である位相差 2 π (n- 1) [rad]も時間として含まれる必要があり、その自然数 nを特定 する必要がある。
[0086] そこで、 2つのパルス信号の発生時間差が基準信号の 1周期(2 π [rad])を超える場 合であっても、概略時間差検出部がこの基準信号の 1周期程度の分解能でこの発生 時間差を概略的に検出することができ、この概略時間差検出部によって検出された 概略の発生時間差に基づいて、一般式の第 1項部分の位相差 2 π (η—: L) [rad]を特 定することができ、この第 1項部分と第 2項部分との総和の位相差に対応する時間([ 2 π (η- ΐ) + Δ θ 1/2 πに基準信号の周期 [sec]を乗算した値)、すなわち 2つのパ ルス信号の発生時間差を、唯一の値として特定して求めることができる。
[0087] (15)本発明の時間差測定装置の好適な一実施形態において、前記振幅検出部 は、前記発生時間差測定対象のパルス信号である 2つの測定用パルス信号のうち時 系列的に先行する一方の測定用パルス信号の発生タイミングにおける前記一方の基 準信号としての正弦波信号の振幅 Allおよび前記他方の基準信号としての余弦波 信号の振幅 A12をそれぞれ検出し、前記位相差検出部は、これら振幅 All, A12の 比(A11ZA12)を算出し、この振幅比(A11ZA12)に基づいて位相 Θ startを tan— 4 ( A11/A12) }により算出し、前記補正部は、前記位相 Θ startを位相 Θ start' に補正 し、前記振幅検出部は、前記 2つのパルス信号のうち時系列的に後続する他方の測 定用パルス信号の発生タイミングにおける前記正弦波信号の振幅 A21および前記余 弦波信号の振幅 A22をそれぞれ検出し、前記位相差検出部は、これら振幅 A21, A2 2の比(A21ZA22)を算出し、この振幅比(A21ZA22)に基づいて位相 Θ stopを tan '{ (A21/A22) }により算出し、前記補正部は、前記位相 Θ stopを位相 Θ stop' に補 正し、前記時間差算出部は、前記 2つの測定用パルス信号の発生タイミングの位相 差 Δ 0を( Θ stop' - Θ start' )により算出することを特徴とする。
[0088] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、簡単な演算処理により、時間差を精度よく算出することができる。
[0089] (16)本発明の時間差測定装置の好適な一実施形態において、前記補正用データ は、前記基準信号の 1周期のうち少なくとも 6点のサンプリングによって得られたもの であることを特徴とする。
[0090] 本発明に係る他の時間差測定装置は、 2つのパルス信号の発生時間差を測定す ベぐ周期が既知である 1つの基準信号を発生させて、各パルス信号によりこれら基 準信号をサンプリングする(振幅を検出し)に際して、パルス信号の発生タイミングだ けでなぐこの発生タイミングから、基準信号の略 π Ζ2[ι¾(1]の位相差に対応した時 間だけ遅延したタイミング (遅延タイミング)においても、サンプリングを行うことで、各 パルス信号の発生に対応して 2つずつの基準信号振幅を得、これらの基準信号の振 幅に基づいて、基準信号における各発生タイミングの位相を求め、両発生タイミング 間の位相差に基づいて、発生時間差を求めるに際し、基準信号の誤差に起因する 位相差の誤差を補正することにより、パルス信号の発生時間差を精度よく測定するも のである。
[0091] すなわち、(17)本発明に係る他の時間差測定装置は、未知の時間差を以て発生 する 2つのパルス信号の該発生時間差を測定する時間差測定装置であって、周期が 既知の単一の基準信号を発生する基準信号発生部と、前記 2つのパルス信号のそ れぞれを、前記基準信号の略 π Ζ2[ (1]の位相差に相当する時間だけ遅延させる パルス遅延部と、前記各パルス信号の発生タイミングおよび前記パルス遅延部によつ て遅延された遅延タイミングにおける前記基準信号の各振幅を求める振幅検出部と 、前記振幅検出部によって前記各パルス信号ごとに各 2つずつ検出された振幅に基 づいて、前記各パルス信号ごとの、前記基準信号の位相、およびこれらパルス信号 の発生タイミング間での位相差を求める位相差検出部と、前記位相差検出部によつ て検出された前記位相差にっ ヽて、前記基準信号の誤差または前記位相差略 π / 2[rad]の誤差を補正する補正部と、前記補正部によって補正された後の位相差に基 づいて、前記 2つの測定用パルス信号の発生時間差を求める時間差算出部と備えた ことを特徴とする。
[0092] ここで、誤差を補正する補正部は、補正用のデータ (補正係数や補正関数、参照テ 一ブル)等を、 2つのパルス信号の発生時間差を測定する直前等にぉ 、て生成して 記憶するものであってもよいし、時間差測定装置の個体差に応じた固定的な補正用 のデータとして記憶されて 、てもよ 、。
[0093] このように構成された本発明に係る他の時間差測定装置によれば、基準信号発生 部が発生した、 1つの基準信号に対して、振幅検出部が、未知の時間差を以て生じ る 2つのノ ルス信号の各発生タイミングおよび各遅延タイミングでサンプリングし、各 パルス信号の発生に対応した基準信号の各振幅を検出する。 [0094] そして、位相検出部が、この振幅検出部によって検出された基準信号の各振幅に 基づいて、各発生タイミングにおける基準信号の各位相を求めるとともに、これら求め られたパルス信号の両発生タイミング間での位相差 Δ Θを求め、両発生タイミング間 での位相差 Δ Θは、基準信号の周期 Tsを用いて時間差 A tに変換することができ、 時間差算出部が、この演算を行うことで、発生時間差 A tが未知の 2つのパルス信号 の当該発生時間差を求める。
[0095] ここで、補正部が、位相差検出部によって検出された位相差についての、基準信号 自体の誤差、または遅延タイミングを得るための位相差略 π Z2[rad]の設定の誤差 に起因する誤差を補正し、時間差算出部は、この補正部によって補正された後の位 相差に基づ 、て発生時間差 Δ tを求める。
[0096] したがって、基準信号が振幅や位相差の誤差を有する場合にも、測定用パルス信 号の発生タイミング間の時間差を高精度に測定することができる。
[0097] 本発明の好適な一実施形態に係る時間差測定装置は、補正部が、補正用データ( 参照テーブル (ルックアップテーブル)や補正係数、補正関数等)を記憶した補正デ ータ記憶部と記憶部に記憶された補正用データを用いて補正演算処理を行う補正 演算部とを備えたものである。
[0098] すなわち、(18)本発明の時間差測定装置の好適な一実施形態において、補正部 は、前記誤差を補正するための補正用データを記憶した補正データ記憶部と、該補 正データ記憶部に記憶された前記補正用データを用いて補正演算処理を行う補正 演算部とを備えたことを特徴とする。
[0099] ここで、補正用データは、例えば、発生タイミング間の時間差が既知の 2つの補正 用パルス信号を、この時間差測定装置に入力したときに得られた時間差と、当該既 知の時間差との対応関係や、あるいは、得られた位相差と当該既知の時間差 (もしく はこの時間差に対応すべき位相差)との対応関係や、あるいは、得られた各発生タイ ミングに対応した 2つの位相と当該既知の時間差 (もしくはこの時間差に対応すべき 位相差)との対応関係などの、実測定結果 (途中の検出結果や演算結果も含む)と既 知の時間差 (もしくはこの時間差に対応すべき位相差)との対応を示す関係式 (乗じ られる補正係数等)、関数、ルックアップテーブル (参照テーブル)等の形式で表した 情報であれば、 V、かなる形式のものであってもよ 、。
[0100] また、補正用データは、補正データ記憶部に記憶された後に、書換え不可能であ つてもよいし、書換え可能であってもよい。書換え不可能であるときは、時間差測定 装置の個体差に起因して測定結果に与える影響を解消することができる。
[0101] 一方、書換え可能であるときは、時間差測定装置の個体差に起因した影響だけで なぐ時間差測定装置の経年変化等使用環境などに起因した影響についても解消 することができる。
[0102] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば
、補正演算部が、補正データ記憶部に予め記憶された補正用データを用いて、基準 信号の誤差または遅延タイミングを得るための位相差略 π Z2[rad]の設定の誤差に 起因する誤差を補正演算処理することにより、基準信号が振幅や位相差の誤差を有 する場合にも、測定用パルス信号の発生タイミング間の時間差を高精度に測定する ことができる。
[0103] し力も、補正部を、補正データ記憶部と補正演算部と 、う簡単な構成で実現するこ とがでさる。
[0104] すなわち、この時間差測定装置は、実際に測定を行う実測定モードのみを有する 構成であり、補正データ記憶部に記憶された補正用データを生成する(校正モード) ための構成は含まないため、そのような校正モードを含む時間差測定装置よりも簡単 な構成とすることができる。
[0105] 本発明の好適な一実施形態に係る時間差測定装置は、実測定モードの他に校正 モードを有するものである。
[0106] すなわち、(19)本発明の時間差測定装置の好適な一実施形態において、前記補 正部は、前記発生時間差測定対象のパルス信号である測定用パルス信号が入力さ れる実測定モードと、発生タイミング間の時間差が既知の補正用パルス信号が入力 される校正モードとを切り替えるモード切替部と、前記校正モードにお!、て前記補正 用パルス信号が入力されたことにより前記位相差検出部によって算出された、前記 補正用パルス信号の各発生タイミング間における位相差と、前記既知の時間差との 対応関係に応じて、前記誤差を補正するための補正用データを生成する補正用デ ータ生成部と、前記補正用データ生成部によって生成された前記補正用データを記 憶する補正データ記憶部と、該補正データ記憶部に記憶された前記補正用データ を用いて、前記実測定モードで得られた前記測定用パルス信号の発生タイミング間 の時間差に対応した前記位相差を補正演算処理する補正演算部とを備えたことを特 徴とする。
[0107] ここで、補正用データは、上記(18)の実施形態に係る時間差測定装置のものと同 様に、例えば、発生タイミング間の時間差が既知の 2つの補正用パルス信号を、この 時間差測定装置に入力したときに得られた時間差と、当該既知の時間差との対応関 係や、あるいは、得られた位相差と当該既知の時間差 (もしくはこの時間差に対応す べき位相差)との対応関係や、あるいは、得られた各発生タイミングに対応した 2つの 位相と当該既知の時間差 (もしくはこの時間差に対応すべき位相差)との対応関係な どの、実測定結果 (途中の検出結果や演算結果も含む)と既知の時間差 (もしくはこ の時間差に対応すべき位相差)との対応を示す関係式 (乗じられる補正係数等)、関 数、ルックアップテーブル (参照テーブル)等の形式で表した情報であれば、いかな る形式のものであってもよ 、。
[0108] なお、校正用の時間差が既知のパルス信号を発生させるもの(例えば、サンプリン グタイミング形成部)は、時間差測定装置の外部の装置に備えられているものであり、 本発明の時間差測定装置には備えられていない。
[0109] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、実際に測定を行う実測定モードの他に、補正データ記憶部に記憶させる補正用デ ータを生成するための校正モードも備えており、校正モードと実測定モードとはモー ド切替部によって択一的に選択される。
[0110] まず、校正モードでは、発生タイミング間の時間差が既知の補正用パルス信号が入 力され、この補正用パルス信号の入力により位相差検出部によって、補正用パルス 信号の各発生タイミング間における位相差が算出され、補正用データ生成部が、こ の算出された位相差と既知の時間差との対応関係に応じて、誤差を補正するための 補正用データを生成する。
[0111] そして、補正用データ生成部によって生成された補正用データは補正データ記憶 部に記憶され、モード切替部によって実測定モードに切り替えられた後、補正演算部 力 補正データ記憶部に記憶された前記補正用データを用いて、実測定モードで得 られた測定用パルス信号の発生タイミング間の時間差に対応した位相差を補正演算 処理する。
[0112] このように、実際の時間差の測定を行う前段階において、校正モードに切り替えて、 補正データ記憶部に記憶された補正用データを最新の補正用データに更新すること ができるため、時間差測定装置の個体差に起因して測定結果に与える影響を解消 することができるとともに、時間差測定装置の経年変化等使用環境などに起因した影 響にっ 、ても解消することができる。
[0113] なお、校正用の時間差が既知のパルス信号を発生させるもの(例えば、サンプリン グタイミング形成部)は、本発明の時間差測定装置には備えられていないため、その ような校正用のパルス信号を発生する構成まで備えた時間差測定装置に比べて、構 成を簡略ィ匕することができる。
[0114] 本発明の好適な一実施形態に係る時間差測定装置は、実測定モードの他に校正 モードを有し、さらに、校正用の等間隔の時間差パルスを発生させるもの(サンプリン グタイミング形成部)を備えたものである。
[0115] すなわち、(20)本発明の時間差測定装置の好適な一実施形態において、前記補 正部は、発生タイミング間の時間差が等間隔の補正用パルス信号を発生するサンプ リングタイミング形成部と、前記発生時間差測定対象のパルス信号である測定用ノ ル ス信号が入力される実測定モードと前記補正用パルス信号が入力される校正モード とを切り替えるモード切替部と、前記校正モードにぉ 、て前記補正用パルス信号が 入力されたことにより前記位相差検出部によって算出された、前記補正用パルス信 号の各発生タイミング間における位相差と、前記等間隔の時間差との対応関係に応 じて、前記誤差を補正するための補正用データを生成する補正用データ生成部と、 前記補正用データ生成部によって生成された前記補正用データを記憶する補正デ ータ記憶部と、該補正データ記憶部に記憶された前記補正用データを用いて、前記 実測定モードで得られた前記測定用パルス信号の発生タイミング間の時間差に対応 した前記位相差を補正演算処理する補正演算部とを備えたことを特徴とする。 [0116] ここで、補正用データは、上記(18)または(19)の実施形態に係る時間差測定装 置のものと同様に、例えば、発生タイミング間の時間差が等間隔の補正用パルス信 号を、この時間差測定装置に入力したときに得られた時間差と、当該時間差との対 応関係や、あるいは、得られた位相差と当該時間差 (もしくはこの時間差に対応すベ き位相差)との対応関係や、あるいは、得られた各発生タイミングに対応した 2つの位 相と当該時間差 (もしくはこの時間差に対応すべき位相差)との対応関係などの、実 測定結果 (途中の検出結果や演算結果も含む)と既知の時間差 (もしくはこの時間差 に対応すべき位相差)との対応を示す関係式 (乗じられる補正係数等)、関数、ルック アップテーブル (参照テーブル)等の形式で表した情報であれば、 V、かなる形式のも のであってもよい。
[0117] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、実際に測定を行う実測定モードの他に、補正データ記憶部に記憶させる補正用デ ータを生成するための校正モードも備えており、校正モードと実測定モードとはモー ド切替部によって択一的に選択される。
[0118] まず、校正モードでは、サンプリングタイミング形成部が、測定用ノ ルス信号に模し て、発生タイミング間の時間差が等間隔の補正用パルス信号を発生し、この補正用 パルス信号の入力により位相差検出部によって、補正用パルス信号の各発生タイミ ング間における位相差が算出され、補正用データ生成部が、この算出された位相差 と等間隔の時間差との対応関係に応じて、誤差を補正するための補正用データを生 成する。
[0119] そして、補正用データ生成部によって生成された補正用データは補正データ記憶 部に記憶され、モード切替部によって実測定モードに切り替えられた後、補正演算部 力 補正データ記憶部に記憶された前記補正用データを用いて、実測定モードで得 られた測定用パルス信号の発生タイミング間の時間差に対応した位相差を補正演算 処理する。
[0120] このように、実際の時間差の測定を行う前段階にぉ 、て、校正モードに切り替えて、 補正用パルス信号を発生して新たな補正用データを作成することによって、補正デ ータ記憶部に記憶された補正用データを最新の補正用データに更新することができ るため、時間差測定装置の個体差に起因して測定結果に与える影響を解消すること ができるとともに、時間差測定装置の経年変化等使用環境などに起因した影響につ 、てち解消することができる。
[0121] また、校正処理も自己完結で行うことができる。すなわち、校正モードにおける処理 の際、他の外部装置 (補正用パルス信号を発生する装置等)を別途用意する必要が ないため、外部装置がない場所でも、校正を行うことができる。
[0122] (21)本発明の時間差測定装置の好適な一実施形態において、前記サンプリング タイミング形成部が発生する前記補正用パルス信号は、前記基準信号発生部の発 生する基準信号と、複数回に一度の割合で同期する等間隔のパルス信号であること を特徴とする。
[0123] (22)本発明の時間差測定装置の好適な一実施形態において、前記サンプリング タイミング形成部が発生する前記補正用パルス信号は、前記基準信号発生部の発 生する基準信号と非同期で、かつ等間隔のパルス信号であることを特徴とする。
[0124] (23)本発明の時間差測定装置の好適な一実施形態において、前記補正用データ は、前記振幅検出部によって検出された前記補正用パルス信号による各基準信号 の振幅の比に対応したものとして設定されることを特徴とする。
[0125] (24)本発明の時間差測定装置の好適な一実施形態において、前記基準信号は 正弦波信号または余弦波信号であることを特徴とする。
[0126] このように構成された上記(24)の本発明の好適な実施形態に係る時間差測定装 置によれば、基準信号として正弦波信号または余弦波信号が適用されていることに より、発生タイミングと遅延タイミングとの位相差略 Z2[rad]により、遅延タイミングで の基準信号は、発生タイミングを基準とすると、余弦波信号または正弦波信号として 振る舞い、これら 2つのタイミングで直接検出された値 (振幅値)の比をとつて、その比 の arctanを算出すれば位相 Θを算出することができ、 2つの位相から位相差 Δ Θを簡 単に検出することができる。
[0127] (25)本発明の時間差測定装置の好適な一実施形態において、前記補正用データ は、前記振幅検出部によって検出された前記補正用パルス信号の前記発生タイミン グと前記遅延タイミングとにおける前記基準信号の振幅の比の逆正接値に対応した ものとして設定されることを特徴とする。
[0128] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば 、直接検出された値 (振幅値)の比をとつて、その比の arctanを算出すれば、位相 Θ を算出することができ、 2つの位相から位相差 Δ Θを簡単に検出することができる。
[0129] (26)本発明の時間差測定装置の好適な一実施形態において、前記基準信号は 正弦波信号または余弦波信号であり、複数の前記補正用パルス信号が時系列的に 順次入力された各発生タイミングにおける前記基準信号の振幅値を、時系列的にプ ロットしたとき、前記プロットされた振幅値のうち、所定の正弦波曲線上または余弦波 曲線上にプロットされない振幅値については、前記所定の正弦波曲線上または余弦 波曲線上にプロットされるように、かつ、前記複数の補正用パルス信号が時系列的に 順次入力された各遅延タイミングにおける前記基準信号の振幅値を、時系列的にプ ロットしたとき、前記プロットされた振幅値のうち、所定の余弦波曲線上または正弦波 曲線上にプロットされない振幅値については、前記所定の余弦波曲線上または正弦 波曲線上にプロットされるように、前記補正部が前記振幅値のばらつきを補正するこ とを特徴とする。
[0130] (27)本発明の時間差測定装置の好適な一実施形態において、前記補正データ記 憶部に記憶された補正用データは、離散したサンプリング点におけるデータであり、 前記発生時間差を求めるに際して、対応するサンプリング点のデータが前記補正部 に記憶されていないときは、該補正部は、該補正部に記憶されているサンプリング点 のデータに基づ 、て補間演算処理またはフィッティング処理により、対応するサンプ リング点のデータを生成することを特徴とする。
[0131] (28)本発明の時間差測定装置の好適な一実施形態において、前記補正データ記 憶部に記憶された補正用データは、楕円状の離散したサンプリング点に対応して求 められた楕円状の関数として記憶されていることを特徴とする。
[0132] (29)本発明の時間差測定装置の好適な一実施形態において、前記 2つの測定用 パルス信号の概略発生時間差を検出する概略時間差検出部をさらに備え、前記時 間差算出部は、該時間差算出部によって求められた精密時間差に加えて、前記概 略時間差検出部によって検出された前記概略発生時間差により、前記 2つの測定用 パルス信号の発生時間差を算出することを特徴とする。
[0133] 概略時間差検出部は、上述した基準信号の 1周期を判別可能程度の分解能で時 間を検出することができるものであればよぐ公知のパルスカウンタなどによって、基 準信号のパルス数を計数することにより概略時間差を検出するものを適用することが できる。
[0134] このように構成された上記(29)の本発明の好適な実施形態に係る時間差測定装 置によれば、概略時間差検出部によって 2つのパルス信号の概略発生時間差を検 出することができるため、これら 2つのパルス信号の発生時間差が、基準信号の 1周 期を超えるような長時間であっても、精度良く測定することができる。
[0135] すなわち、時間差算出部が検出する 2つのパルス信号間の位相差 Δ Θは、 0[rad] 〜2 7u [rad]の範囲内の値として算出される。しかし、基準信号は周期信号であるため 、この位相差 Δ 0は、 2 π以下の Δ 0の他、 2 π + Δ θ , 4 π + Α Θ , …も潜在的に 表現されており、一般式 2 π (η- 1) + Δ θ (η ;自然数)として表すことができる。
[0136] 一方、算出すべき 2つのパルス信号の発生時間差としては、上記の一般式の第 1項 である位相差 2 π (n- 1) [rad]も時間として含まれる必要があり、その自然数 nを特定 する必要がある。
[0137] そこで、 2つのパルス信号の発生時間差が基準信号の 1周期(2 π [rad])を超える場 合であっても、概略時間差検出部がこの基準信号の 1周期程度の分解能でこの発生 時間差を概略的に検出することができ、この概略時間差検出部によって検出された 概略の発生時間差に基づいて、一般式の第 1項部分の位相差 2 π (η—: L) [rad]を特 定することができ、この第 1項部分と第 2項部分との総和の位相差に対応する時間([ 2 π (η- ΐ) + Δ θ ]/2 πに基準信号の周期 [sec]を乗算した値)、すなわち 2つのパ ルス信号の発生時間差を、唯一の値として特定して求めることができる。
[0138] (30)本発明の時間差測定装置の好適な一実施形態において、前記振幅検出部 は、前記発生時間差測定対象のパルス信号である 2つの測定用パルス信号のうち時 系列的に先行する一方の測定用パルス信号の前記発生タイミングにおける前記基 準信号としての正弦波信号の振幅 Al lおよび前記遅延タイミングにおける該基準信 号の振幅 A12をそれぞれ検出し、前記位相差検出部は、これら振幅 Al l , A12の比( A11ZA12)を算出し、この振幅比(A11ZA12)に基づいて位相 Θ startを tan— (A1 1/A12) }により算出し、前記補正部は、前記位相 Θ startを位相 Θ start' に補正し、 前記振幅検出部は、前記 2つのパルス信号のうち時系列的に後続する他方の測定 用パルス信号の前記発生タイミングにおける前記基準信号の振幅 A21および前記遅 延タイミングにおける該基準信号の振幅 A22をそれぞれ検出し、前記位相差検出部 は、これら振幅 A21, A22の比(A21ZA22)を算出し、この振幅比(A21ZA22)に基 づいて位相 Θ stopを tan— (A21ZA22) }により算出し、前記補正部は、前記位相 Θ s topを位相 Θ stop' に補正し、前記時間差算出部は、前記 2つの測定用パルス信号 の発生タイミングの位相差 Δ 0を( Θ stop' - Θ start' )により算出することを特徴と する。
[0139] このように構成された本発明の好適な一実施形態に係る時間差測定装置によれば
、簡単な演算処理により、時間差を精度よく算出することができる。
[0140] (31)本発明の時間差測定装置の好適な一実施形態において、前記補正用データ は、前記基準信号の 1周期のうち少なくとも 6点のサンプリングによって得られたもの であることを特徴とする。
[0141] 本発明に係る距離測定装置は、本発明に係る時間差測定装置を用いた距離測定 装置である。
[0142] すなわち、本発明に係る距離測定装置は、距離測定対象に対して測定パルス波を 出射する測定パルス波出射ユニットと、前記測定パルス波が前記距離測定対象で反 射して得られた反射パルス波を検出する反射パルス波検出ユニットと、前記測定パ ルス波が前記測定パルス波出射ユニットから出射されたタイミングで第 1のパルス信 号を取得し、前記反射パルス波が前記反射パルス波検出ユニットにより検出されたタ イミングで第 2のノ ルス信号を取得し、前記第 1のパルス信号を取得したタイミングか ら前記第 2のパルス信号を取得したタイミングまでの時間差を測定する時間差測定装 置と、前記時間差測定装置により求められた時間差に基づいて、前記距離測定対象 までの距離を求める距離演算部とを備えた距離測定装置において、前記時間差測 定装置は、本発明の上記(1)から(31)のうちいずれ力 1つに係る時間差測定装置で あることを特徴とする。 [0143] ここで、距離測定装置としては、 Vヽゎゆる測量機器や、距離測定対象までの距離を 測定することによりその対象の輪郭形状等を特定する形状測定装置も含まれる。
[0144] 測定パルス波出射ユニットが距離測定対象に対して発生する測定パルス波として は、例えば、マイクロ波や光波(レーザ光、赤外光等)等、距離測定用ビームとして従 来より用いられて 、る公知の種々の電磁波を適用することができる。
[0145] このように構成された本発明に係る距離測定装置によれば、測定パルス波出射ュ ニットが距離測定対象に向けて測定パルス波を出射し、反射ノ ルス波検出ユニットが 、この測定パルス波が距離測定対象で反射して戻った反射パルス波を検出する。
[0146] そして、備えられた時間差測定装置が、測定パルス波が出射されたタイミングで第 1 のパルス信号を取得し、反射パルス波が検出されたタイミングで第 2のパルス信号を 取得し、第 1のパルス信号を取得したタイミング力 第 2のパルス信号を取得したタイ ミングまでの時間差を精度よく測定し、距離演算部が、時間差測定装置により求めら れた時間差に基づ ヽて、距離測定対象までの距離を求める。
[0147] これによつて、両パルス信号間の時間差を高精度に求めることができるため、時間 差に応じて算出する距離を高精度に測定することができる。
[0148] 本発明に係る距離測定方法は、本発明に係る距離測定装置の作用を行う方法で ある。
[0149] すなわち、本発明に係る距離測定方法は、略 π Ζ2[ (1]の位相差を有し、周期が 既知の少なくとも 2つの基準信号を発生し、距離測定対象に対して測定パルス波を 出射し、前記測定パルス波の出射を検出したタイミングにおける前記 2つの基準信号 の各振幅を求め、前記測定パルス波が前記距離測定対象で反射して得られた反射 パルス波を検出したタイミングにおける前記 2つの基準信号の各振幅を求め、前記各 基準信号ごとに各 2つずつ検出された振幅に基づいて、前記パルス波の各検出タイ ミングごとの、前記基準信号の位相、およびこれら検出タイミング間での位相差を求 め、前記検出された前記位相差について、前記 2つの基準信号間の誤差または少な くとも一方の基準信号の誤差に起因した誤差を補正し、前記補正された後の位相差 に基づ!/、て、前記測定パルス波の検出タイミング力も前記反射パルス波の検出タイミ ングまでの時間差を求め、前記時間差に基づいて、前記距離測定対象までの距離 を求めることを特徴とする。
[0150] このように構成された本発明に係る距離測定方法によれば、 π Z2[rad]の位相差を 有する 2つの基準信号に対して、未知の時間差を以て生じる 2つのパルス信号の各 発生タイミングでサンプリングし、各サンプリングごと (各パルス信号ごと)に各基準信 号の振幅を検出する。
[0151] そして、検出された各基準信号の振幅に基づいて、各サンプリングに各基準信号 の位相を求めるとともに、これら求められたノ ルス信号の両発生タイミング間での位 相差 Δ Θを求め、両発生タイミング間での位相差 Δ Θは、基準信号の周期 Tsを用い て時間差 A tに変換することができ、この演算を行うことで、発生時間差 A tが未知の 2つのパルス信号の当該発生時間差を求める。
[0152] ここで、検出された位相差について、 2つの基準信号間の誤差または少なくとも一 方の基準信号の誤差に起因して当該位相差に含まれた誤差を補正し、補正された 後の位相差に基づ 、て発生時間差 Δ tを求める。
[0153] したがって、基準信号が振幅や位相差の誤差を有する場合にも、測定用パルス信 号の発生タイミング間の時間差を高精度に測定することができる。
[0154] そして、上述した未知の時間差を以て生じる 2つのパルス信号として、距離測定対 象に向けて出射した測定パルス波の検出タイミングで生じたパルス信号と、この測定 パルス波が距離測定対象で反射して戻った反射パルス波の検出タイミングで生じた パルス信号とを適用することにより、測定された時間差に基づいて、距離測定対象ま での距離を高精度に測定することができる。
[0155] 本発明に係る他の距離測定方法は、周期が既知の単一の基準信号を発生し、距 離測定対象に対して測定パルス波を出射し、前記測定パルス波の出射を検出し、前 記測定パルス波が前記距離測定対象で反射して得られた反射パルス波を検出し、 前記測定パルスの前記出射の際の検出タイミングと、該測定パルスの検出タイミング 力も前記基準信号の略 π Ζ2[ (1]の位相差に相当する時間だけ遅延させたタイミン グである遅延タイミングとにおいて、前記基準信号の振幅をそれぞれ求め、前記反射 パルス波の検出タイミングと、該反射パルス波の検出タイミング力 前記基準信号の 略 π Z2[rad]の位相差に相当する時間だけ遅延させたタイミングである遅延タイミン グとにおいて、前記基準信号の振幅をそれぞれ求め、前記測定パルス波について検 出された 2つの振幅と、前記反射パルス波について検出された 2つの振幅とに基づ いて、前記パルス波の各検出タイミングごとの、前記基準信号の位相、およびこれら 検出タイミング間での位相差を求め、前記求められた位相差について、前記基準信 号の誤差または前記位相差略 π Z2[rad]の誤差を補正し、前記補正された後の位 相差に基づいて、前記測定パルス波の検出タイミング力 前記反射パルス波の検出 タイミングまでの時間差を求め、前記時間差に基づいて、前記距離測定対象までの 距離を求めることを特徴とする。
[0156] このように構成された本発明に係る他の距離測定方法によれば、単一の基準信号 に対して、未知の時間差を以て生じる 2つのパルス信号の各発生タイミングおよびこ れらの各発生タイミングとは略 π Z2[rad]の位相差に対応した時間差の遅延タイミン グでそれぞれサンプリングし、各パルス信号の各タイミングごとに各基準信号の振幅 を検出する。
[0157] そして、検出された各基準信号の振幅に基づいて、各発生タイミングに対応した各 基準信号の位相を求めるとともに、これら求められたパルス信号の両発生タイミング 間での位相差 Δ Θを求め、両発生タイミング間での位相差 Δ Θは、基準信号の周期 Tsを用いて時間差 A tに変換することができ、この演算を行うことで、発生時間差 A t が未知の 2つのパルス信号の当該発生時間差を求める。
[0158] ここで、検出された位相差について、基準信号の誤差または遅延タイミング設定用 の遅延時間の誤差に起因した誤差を補正し、補正された後の位相差に基づいて発 生時間差 A tを求める。
[0159] したがって、基準信号が振幅や位相差の誤差を有する場合にも、測定用パルス信 号の発生タイミング間の時間差を高精度に測定することができる。
[0160] そして、上述した未知の時間差を以て生じる 2つのパルス信号として、距離測定対 象に向けて出射した測定パルス波の検出タイミングで生じたパルス信号と、この測定 パルス波が距離測定対象で反射して戻った反射パルス波の検出タイミングで生じた パルス信号とを適用することにより、測定された時間差に基づいて、距離測定対象ま での距離を高精度に測定することができる。 発明の効果
[0161] 本発明に係る時間差測定装置によれば、 1つの基準信号の誤差若しくは遅延タイミ ング用の位相差の誤差、または 2つの基準信号間の誤差に起因して、検出された位 相差に含まれた誤差を補正し、この補正された後の位相差に基づ!、て発生時間差 A tを求めるため、基準信号が振幅や位相差の誤差を有する場合にも、測定用パル ス信号の発生タイミング間の時間差を高精度に測定することができる。
[0162] また、本発明に係る距離測定装置、距離測定方法によれば、上述した本発明に係 る時間差測定装置によって、パルス信号間の時間差を高精度に求めることができる ため、時間差に応じて算出される距離を高精度なものとすることができる。
図面の簡単な説明
[0163] [図 1]本発明の一実施形態に係る時間差測定装置を含む測量装置を示すブロック図 である。
[図 2]図 1の測量装置における時間差測定装置を示すブロック図である。
[図 3]図 2の時間差測定装置による時間差測定の原理を説明する図であり、図 3Aは
、基準信号 S1を表す正弦波を示す図、図 3Bは、基準信号 S2を表す余弦波を示す 図、図 3Cは、スタート信号 Mlとストップ信号 M2とを表す図、そして図 3Dは、スター ト信号 Mlによる基準信号 Ml、 M2のサンプリング値と、ストップ信号 M2による基準 信号 Ml、 M2のサンプリング値とに基づいて、位相差を求める原理を示す図である。
[図 4]図 1の測量装置における具体的な光学系を示す図である。
[図 5]図 1の測量装置の具体的な制御系(同期あり)を示す図である。
[図 6]図 1の測量装置の具体的な制御系(同期なし)を示す図である。
[図 7]基準信号と測定用パルス信号との関係を示す図である。
[図 8]基準信号のサンプリング値 (振幅値)と位相との関係を示す図であり、図 8Aは、 正弦波信号と余弦波信号とを同一タイミング (スタート信号)でサンプリングした値に 基づいて、位相のずれ量を求める原理を示す図、図 8Bは、正弦波信号と余弦波信 号とを同一タイミング (ストップ信号)でサンプリングした値に基づ 、て、位相のずれ量 を求める原理を示す図である。
[図 9]サンプリング値の軌跡が楕円状の曲線を呈した状態を示す図である。 [図 10]サンプリング値の軌跡が楕円上の曲線を呈したときの、位相の誤差を示す図 であり、図 10Aは、誤差がない場合の図 3D相当の図、図 10Bは、図 10Aの場合の 位相差の誤差を示す図、図 10Cは、所定の誤差を含む場合の図 3D相当の図、そし て図 10Dは、図 10Cの場合の位相差の誤差を示す図である。
圆 11]基準信号と補正用パルス信号との関係を示す図である。
圆 12]サンプリング値の軌跡が呈する楕円状の曲線を示す図である。
[図 13]図 12に示した楕円状の曲線を特定するための作用を説明する図(その 1)であ り、図 13Aは、楕円形状を特定するための X軸に平行な 2本の接線と、 2つの接点を 結んだ直線 Lxとを描いた図、図 13Bは、楕円形状を特定するための y軸に平行な 2 本の接線と、 2つの接点を結んだ直線 Lyとを描 ヽた図である。
圆 14]図 12に示した楕円状の曲線を特定するための作用を説明する図(その 2)であ り、図 14Aは、 2本の直線 Lx、 Lyの交点 、 j8 )を示す図、図 14Bは、交点(α、 β )を原点(0、 0)とする ΧΥ座標系を示す図である。
圆 15]図 12に示した楕円状の曲線を特定するための作用を説明する図(その 3)であ る。
圆 16]基準信号の波形に基づいて補正する原理を説明する図である。
[図 17]基準信号の波形上力 外れたサンプリング点のバラツキを補正する処理を説 明する図である。
圆 18]累積位相に基づいて補正する原理を説明する図である。
圆 19]補正用データが存在しない場合の補間処理を説明する図であり、図 19Aは、 等時間間隔で基準信号 S 1、 S 2をサンプリングしたときの図 10D相当の位相差の誤 差を示す図、図 19Bは、図 19Aの Ζ部の詳細を示す拡大図である。
圆 20]基準信号と同期している力否かに拘わらず等時間間隔で発生するクロック信 号により、基準信号をサンプリングする様子を示す模式図である。
[図 21]サンプリングして得られた基準信号の振幅に基づいて算出された位相差のバ ラツキの一例を示す図である。
圆 22]補正用の対応テーブルの生成を説明する図である。
圆 23]補正用の対応テーブルに基づいて、位相差の補正を行う作用を説明する図で ある。
圆 24]基準信号と同期し、かつ等時間間隔で発生するクロック信号により、基準信号 をサンプリングする様子を示す模式図である。
[図 25]補正用の対応テーブルの生成を説明するとともに、補正用の対応テーブルに 基づいて、位相差の補正を行う作用を説明する図である。
[図 26]基準信号発生部が正弦波信号のみを基準信号として発生し、この発生した正 弦波信号に基づいて、他方の基準信号を生成する変形例を示す、図 5相当の制御 系の図である。
[図 27]基準信号発生部が正弦波信号のみを基準信号として発生し、この発生した正 弦波信号に基づいて、他方の基準信号を生成する変形例を示す、図 6相当の制御 系の図である。
[図 28]基準信号発生部が正弦波信号のみを基準信号として発生し、この発生した正 弦波信号に対して、互いに対応する 2つのタイミング (発生タイミングおよび遅延タイミ ング)でサンプリングを行う実施形態を示す、図 26相当の制御系の図である。
[図 29]基準信号発生部が正弦波信号のみを基準信号として発生し、この発生した正 弦波信号に対して、互いに対応する 2つのタイミング (発生タイミングおよび遅延タイミ ング)でサンプリングを行う実施形態を示す、図 27相当の制御系の図である。
[図 30]単一の基準信号に対する 2つのタイミング (発生タイミングおよび遅延タイミング
)でサンプリングを行ったときのサンプリング値 (振幅値)と位相との関係を示す図であ り、図 30Aは、入力信号のタイミングとこの入力信号の遅延したタイミングとを示す図
、図 30Bは、図 30Aの各タイミングでのサンプリングを示す図、そして図 30Cは、図 3
OBでサンプリングした値に基づいて位相差を求める原理を示す図である。
符号の説明
10 測定光出射ユニット(測定パルス波出射ユニット)
11 PLD (光源;)
20 反射光検出ユニット (反射パルス波検出ユニット)
21 受光素子
30 距離換算部 40 時間差測定装置
41 基準信号発生部
42 振幅検出部
43 位相差検出部
44 時間差算出部
45 概略時間差検出部
46 補正部
46a モード切替部
46b サンプリングタイミング形成部
46c 補正データ生成部
46d 補正データ記憶部
46e 補正データ演算部
50 測距結果出力部
90 距離測定対象
100 測量装置 (距離測定装置)
LI レーザ光
L2 反射レーザ光
Ml スタート信号 (第 1のパルス信号)
M2 ストップ信号 (第 2のパルス信号)
N 補正用パルス信号
SI, S2 基準信号
All, A12, A21, A22 振幅値
発明を実施するための最良の形態
以下、本発明に係る時間差測定装置並びに距離測定装置および距離測定方法に ついての最良の実施形態を、図面を参照して説明する。図 1は、本発明の時間差測 定装置を一部の構成として備えた本発明に係る距離測定装置の一実施形態である 測量装置 100の構成を示す図である。
(実施例 1) 図示の測量装置 100は、距離測定対象 (以下、測距対象という。) 90に対してノ ル ス状のレーザ光 L1 (測定パルス波)を出射する測定光出射ユニット 10 (測定パルス 波出射ユニット)と、レーザ光 L1が測距対象 90で反射して得られた反射レーザ光 L2 (反射パルス波)を検出する反射光検出ユニット 20 (反射パルス波検出ユニット)と、 測定光出射ユニット 10からレーザ光 L1が出射されたタイミングでパルス状のスタート 信号 Ml (第 1のパルス信号)を出力し、反射光検出ユニット 20により反射レーザ光 L 2が検出されたタイミングでパルス状のストップ信号 M2 (第 2のパルス信号)を出力し 、スタート信号 Mlを出力したタイミングからストップ信号 M2を出力したタイミングまで の時間差 A tを測定する時間差測定装置 40と、時間差測定装置 40により求められた 時間差 Δ tに基づ ヽて、測距対象 90までの距離を求める距離換算部 30 (距離演算 部)と、この測距結果を可視的に出力する測距結果出力部 50とを備えた構成である
[0166] ここで、測定光出射ユニット 10は、パルス状のレーザ光 L1を出射する光源である半 導体レーザ (PLD) 11と、この PLD11から出射したレーザ光 L1を測距対象 90に向 けて導光するレンズ等を含む出射光学系 12とを備えた構成であり、 PLD11から出射 されるレーザ光 L1は、比較的大きなピークパワーを有し、デューティ比が 0. 01%程 度のパルス状のレーザ光である。
[0167] 反射光検出ユニット 20は、反射レーザ光 L2を検出する受光素子 21と、測距対象 9 0からの反射レーザ光 L2を受光素子 21に導光する検出光学系 22とを備えている。 なお、受光素子 21は、ノ ルス状の反射レーザ光 L2を検出することができる素子であ ればよぐ例えばアバランシェ 'フォトダイオード (APD)などが用いられる。
[0168] 時間差測定装置 40は、レーザ光 L1の検出タイミングおよび反射レーザ光 L2の検 出タイミングで内部で出力された 2つのパルス信号 Ml, M2間の出力時間差 A tを測 定する。
[0169] この時間差測定装置 40は、本発明に係る時間差測定装置の一実施形態であり、 図 2に示すように、互いに Z2[rad]の位相差を有する 2つの基準信号 SI, S2を発 生する基準信号発生部 41 (基準信号発生部)と、 2つのパルス信号 Ml, M2の各発 生タイミングにおける 2つの基準信号 SI, S2の振幅 All (スタート信号 Mlの発生タ イミングにおける基準信号 SIの振幅), A12 (スタート信号 Mlの発生タイミングにお ける基準信号 S2の振幅), A21 (ストップ信号 M2の発生タイミングにおける基準信号 S1の振幅) , A22 (ストップ信号 M2の発生タイミングにおける基準信号 S2の振幅)を 検出する振幅検出部 42 (振幅検出部)と、得られた振幅 All, A12, A21, A22に基 づいて、 2つのパルス信号 Ml, M2の各発生タイミング間における基準信号 SI (また は基準信号 S2)の位相差 Δ Θを算出する位相差検出部 43 (位相差検出部)と、位 相差検出部 43によって検出された位相差 Δ Θについて、 2つの基準信号 SI, S2間 の誤差または少なくとも一方の基準信号 SI, S2の誤差に起因した当該検出された 位相差の誤差を補正する補正部 46 (補正部)と、 2つのパルス信号 Ml, M2の各発 生タイミングの概略の時間差 taを検出する概略時間差検出部 45 (概略時間差検出 部)と、補正部 46によって補正された後の位相差 Δ 0および基準信号 SI, S2の周 期 Ts並びに概略時間差検出部 45によって検出された概略時間差 taに基づいて、ス タート信号 Mlとストップ信号 M2との発生時間差 A tを算出する時間差算出部 44 (時 間差算出部)とを備えている。
[0170] そして、補正部 46は、測定対象としてのパルス信号 Ml, M2 (測定用パルス信号) に模した、発生タイミング間の時間差 ΔΤが等間隔の補正用パルス信号 Nl, N2を 発生するサンプリングタイミング形成部 46b (サンプリングタイミング形成部)と、測定 用パルス信号 Ml, M2が入力される実測定モードと補正用パルス信号 Nl, N2が入 力される校正モードとを切り替えるモード切替部 46a (モード切替部)と、校正モード において補正用パルス信号 Nl, N2が入力されたことにより位相差検出部 43によつ て算出された、補正用パルス信号 Nl, N2の各発生タイミング間における位相差 Δ Θと、既知の時間差 ΔΤとの対応関係に応じて、誤差を補正するための補正用デー タを生成する補正データ生成部 46c (補正用データ生成部)と、補正データ生成部 4 6cによって生成された補正用データを記憶する補正データ記憶部 46dと、補正デー タ記憶部 46dに記憶された補正用データを用いて、実測定モードで得られた測定用 パルス信号 Ml, M2の発生タイミング間の時間差 A tに対応した位相差 Δ 0を補正 演算処理する補正演算部 46e (補正演算部)とを備えて!/、る。
[0171] ここで、本実施形態における上記 2つの基準信号 SI, S2は、例えば、図 3Aに示す 正弦波 (AOsin 0; AOは最大振幅値を表す。)の基準信号 S1と、この正弦波基準信 号 S1に対して π Ζ2の位相差を有する正弦波 (AOsin ( θ + π Ζ2))に相当し、図 3 Βに示す余弦波 (AOcos 0 )の基準信号 S2とが適用されている。ただし、基準信号 S 1, S2は、これら正弦波および余弦波の信号の糸且合せに限定されるものではなぐ互 いに π Ζ2の位相差を有する関係にある周期関数の 2つの信号であれば、他の如何 なる信号の組合せであってもよ 、。
[0172] また、概略時間差検出部 45は、基準信号 SI, S2の 1周期 Ts程度の分解能で時間 を検出することができるものであればよぐ例えば、公知のノ ルスカウンタなどによつ て、基準信号 S1または S2のパルス数 Pcを計数することにより概略時間差 ta ( = Pc X Ts)を検出するものなどを適用することができる。
[0173] 測距結果出力部 50は、測距結果を可視的に出力するものであれば、表示出力す るモニタ等の表示装置であってもよいし、印刷出力するプリンタであってもよい。
[0174] ここで、時間差測定装置 40による、スタート信号 Mlとストップ信号 M2との発生時 間差 A tの算出作用の原理について、図 3を参照して概説する。
[0175] まず、時間差測定装置 40の基準信号発生部 41が図 3Aに示す正弦波信号 S1と図
3Bに示す余弦波信号 S2とを発生する。
[0176] 次いで、時間差測定装置 40は、 PLD11からのレーザ光 L1の出射タイミングで、 図 3Cに示すスタート信号 Mlを発生し、振幅検出部 42が、このスタート信号 Mlによ り両基準信号 SI, S2をサンプルホールドし、サンプルホールドして得られた各基準 信号 SI, S2の振幅値 All, A12を検出する。
[0177] 次に、位相差検出部 43が、検出された振幅値 All, A12についての、基準信号発 生時からの位相 Θ startを求める。すなわち、振幅値 All, A12は、図 3Dに示すように
、これら基準信号発生時力もの位相 Θ startを用いて、
All =A0sin Θ start (1)
Al 2= AOcos Θ start (2)
と表されるところ、
All/A12=tan 0 start (3)
であるから、位相差検出部 43は、スタート信号 Ml発生時の基準信号 SI, S2の位相 Θ startを、
Θ start=tan_1 (All/A12) (4)
により算出し、これを図示しない記憶領域に一時的に記憶させる。
[0178] 一方、時間差測定装置 40は、受光素子 21による反射レーザ光 L2の検出タイミング で、図 3Cに示すストップ信号 M2を発生し、振幅検出部 42が、このストップ信号 M2 により両基準信号 SI, S2をサンプルホールドし、サンプルホールドして得られた各基 準信号 SI, S2の振幅値 A21, A22を検出する。
[0179] 次に、位相差検出部 43が、検出された振幅値 A21, A22についての、基準信号発 生時からの位相 Θ stopを求める。すなわち、振幅値 A21, A22は、図 3Dに示すように 、これら基準信号発生時力 の位相 Θ stopを用いて、
A21 =AOsin 0 stop (5)
A22=AOcos Θ stop (6)
と表されるところ、
A21/A22=tan 0 stop (7)
であるから、位相差検出部 42は、ストップ信号 M2発生時の基準信号 SI, S2の位相 Θ stopを、
Θ stop = tan"1 (A21/A22) (8)
により算出し、これを図示しない記憶領域に一時的に記憶させる。
[0180] そして、位相差検出部 43は、記憶領域に記憶された 2つの位相 Θ start, Θ stopを
BJCみ出し、
A θ = Θ stop- Θ start (9)
により、スタート信号 Mlの発生時とストップ信号 M2の発生時との間の時間に対応し た基準信号 SI, S2についての位相差 Δ 0を算出する。
[0181] ここで、両パルス信号 Ml, M2の時間差 A tが、基準信号 SI, S2の 1周期 Tsよりも 短いときは、両パルス信号 Ml, M2の時間差 A tは、上述した位相差 Δ Θおよび周 期 Tsに基づいて、
Figure imgf000040_0001
により算出することができる。 [0182] しかし、位相差検出部 43によって式(9)により算出される位相差 Δ Θは、 0[rad]
〜27u[rad]の範囲内の値であるが、基準信号 SI, S2は周期信号であるため、算出さ れた位相差 Δ 0には、 27u[rad]以下の Δ 0の他、 2π + Δ θ, 4π + Α Θ,…も潜 在的に含み、一般式 2π (η-1) + Δ θ (η;自然数)として表すことができる。
[0183] 一方、算出すべき両パルス信号 Ml, M2の時間差 Atとしては、上記の一般式の 第 1項である位相差 2 π (n—l)[rad]も換算される必要があり、その自然数 nを特定す る必要がある。
[0184] そこで、両パルス信号 Ml, M2の時間差 Atが基準信号 SI, S2の 1周期(2 π [rad] )を超える場合であっても、概略時間差検出部 45がこの基準信号 SI, S2の 1周期程 度の分解能でこの時間差 Atを概略的に検出する。
[0185] そして、時間差算出部 44が、概略時間差検出部 45によって検出された概略時間 差 taを参照しつつ、位相差検出部 43により検出された位相差 Δ θ (={Δ θ, 2π + Δ θ, 4π + Δ θ, ···, 2π (η—1) + Δ θ ,… に対応した式(10)の各時間差 At (=(Δ θ Z2TU)TS)のうち概略時間差 taに最も近い時間差を、求めるべき時間差 Atとして選択する。
[0186] このようにして時間差測定装置 40によって求められた時間差 Atに対して、距離換 算部 30が、時間対距離の換算処理を行い、これによつて、時間差 Atに対応した、測 距対象 90までの距離が求められ、求められた距離は、測距結果出力部 50によって 可視的に表示出力あるいは印字出力される。
[0187] 以上が、本実施形態の距離測定装置 100および時間差測定装置 40による時間差
Δ tの基本的な測定原理であるが、実際の時間差測定装置 40は個体差や経年変化 等により、 2つの基準信号 SI, S2間で、最大振幅が AOで完全に等しぐかつ位相差 が πΖ2[ (1]を厳密に維持しているものとは限らず、最大振幅に僅かな差異 (誤差) が生じたり、位相差が π Z2[rad]から僅かにずれていることがあり、このような誤差が 生じたものでは、本来は図 3Dに示した真円周 { (X, y) I x=A0cos θ , y=A0sin θ }上に存在すべき、 2つの基準信号 SI, S2の振幅値 All, A12の交点(X, y) = (A1 1, A12)が、この円周上カゝら外れた位置に存在し、例えば図 9の破線で示した楕円状 の曲線上に存在することになる。 [0188] そして、実際には交点 (x, y)が、そのような楕円(楕円の外周縁)状の曲線上に存 在するにも拘わらず、真円の外周縁(円周)上に存在するものとして位相差 Δ Θの演 算を行うと、その位相差 Δ Θに誤差を生じる。
[0189] すなわち、図 10Aに示した真円の円周上に交点が存在する本来の軌跡 (X, y) = ( cos 0 , sin 0 )であれば、図 10Bに示すように、原点(0, 0)回りの位相 θ (0≤ Θ≤2 π [rad] (360° ) )に対して、位相差 Δ Θの誤差量は、常に 0である。
[0190] 一方、例えば図 10Cに示した楕円の周上に交点が存在する軌跡 (X, y) = (cos θ , 0. 5sin ( θ + 60° ) ) (基準信号 S2が、最大振幅において 1Z2となり、かつ、 60° の位相遅れを伴う誤差を有する。)であれば、図 10Dに示すように、原点(0, 0)回り の位相 0 (0≤ 0≤2 π [rad] ( = 360° ) )に対する位相差 Δ Θの誤差量は、位相 Θ ごとに異なる周期的な変動値を示す。
[0191] そこで、このような誤差を補正するの力 前述した補正部 46である。補正部 46は、 実質的には、図 9にお 、て破線で示した楕円状の曲線軌跡を二点鎖線で示した真 円の円周に補正する処理を行うものであり、まず、得られた楕円状の曲線を表す関数 式をフィッティングにより求める処理が行われる。
[0192] すなわち、発生時間差が未知の測定対象としての測定パルス信号 Ml, M2を検出 するのに先立って、発生時間差 Δ Τが等時間間隔で、かつ、測定用パルス信号 Ml , M2に模した補正用パルス信号 Nl, N2,…を用いることにより、図 11に示すように 、基準信号 SI, S 2を補正用パルス信号 Nl, N2,…でサンプリングして振幅の糸且 (A 11' , A12' ) , (A2Y , A22' ),…を得、これらの振幅の組 (Al l' , A12' ) , (A 2Y , Α22' ) ,…に基づいて、各補正用パルス信号 Nl, N2、…の発生タイミング 間の位相差 Δ Θと、各補正用パルス信号 Nl, N2,…の発生時間差 Δ Τ (等時間間 隔;一定)との対応関係を特定する。
[0193] ここで、補正部 46についてさらに詳細に説明する。補正部 46は、モード切替部 46 aが、測定パルス信号 Ml, M2を測定する実測定モードから、補正用パルス信号 N1 , N2,…を測定する校正モードに切り替え、サンプリングタイミング形成部 46bが、基 準信号 S I, S2に対する位相をずらしながら、等時間間隔の周期 Δ Τの間隔で、多数 の補正用パルス信号 Nl, N2,…を発生し、振幅検出部 42が、図 11に示すように、 各補正用パルス信号 Nの発生タイミングごとに、振幅検出部 42が基準信号 SI, S2 をサンプリングして、各発生タイミングごとに基準信号 SI, S2の振幅の組 (All' , A 12' ), (Α21' , Α22' ),…を求める。
[0194] これら振幅の組 (χ, y) = (A12' , All' ), (Α22' , Α2Υ ),…による交点を順 次結ぶと、例えば図 12に示すような楕円状の曲線上に交点が並ぶ。そして、位相差 検出部 43が、これらの交点ごとの位相 Θ、すなわち各タイミングごとの位相 Θと、時 系列的に隣接する発生タイミング間での位相 Θの差 Δ Θとを求めて、補正データ生 成部 46cに出力する。
[0195] 補正データ生成部 46cは、これらの位相 Θや位相差 Δ Θと、等時間間隔の時間差
ΔΤとの対応関係に基づいて、基準信号 SI, S2の誤差を補正するための補正用デ ータを生成し、生成された補正用データは補正データ記憶部 46dに記憶され、モー ド切替部 46aがモードを校正モードから、実測定モードに切り替え、この実測定モー ドにおいて、測定パルス信号 Ml, M2を測定した際に、位相差検出部 43で得られた 位相差 Δ Θを、補正演算部 46eが、補正データ記憶部 46dに記憶された補正用デ ータを用いて補正する。
[0196] 補正データ生成部 46cによる補正用データの生成処理について、以下に詳細に説 明する。まず、一つの生成方法は、図 12に示した楕円状の曲線と、本来描かれるベ き真円周との対応関係に基づくものであり、これは、楕円状の曲線を関数として特定 すること〖こより行われる。
[0197] 図 12に示した楕円状の曲線の関数を以下のように設定し、各係数を求める。
[0198] f(x, y)=ax2 + hxy+by2 + cx + dy+e = 0 (11)
まず、図 13Aに示すように、 X軸に平行な 2本の接線(3f(x,
Figure imgf000043_0001
を求め 、これらの接線と曲線 f(x, y)との交点をそれぞれ求める。そして、両交点を結ぶ直線 Lxを永める。
[0199] ここで、直線 Lxは、
3f(x, y)/3x=2ax+hy+c = 0 (12)
である。
[0200] 同様に、図 13Bに示すように、 y軸に平行な 2本の接線(3f(x, を求 め、これらの接線と曲線 f(x, y)との交点をそれぞれ求める。そして、両交点を結ぶ直 線 Lyを求める。
[0201] ここで、直線 Lyは、
3f(x, y)/3y=hx+2by+d=0 (13)
である。
[0202] 次に、両直線 Lx, Lyの交点を求める。この交点は、式(12), (13)の連立方
程式の解であり、
h2-4ab≠0 (14)
のとき、
(X, y)= (ひ, β) (15)
なる解を持つ。このとき、式(15)で表された解は、この楕円状の曲線の中心となる( 図 14参照)。
[0203] 次に、式(15)に示した交点位置が原点 0(0, 0)となるように、 xy座標系を X
Y座標系に変換する(図 14)。このとき xy座標系において式(11)で表された f(x, y) は、 XY座標系において、
f (X, Y) =aX2 + hXY+bY2 + k = 0 (16)
(ただし、 k=f , j8)である。)
と表され、楕円状の曲線 f (X, Y)は、図 15に示すように表される。
[0204] ここで、基準信号 S1の最大振幅を求める。すなわち、式(16)を Xについて偏微分 して、その偏微分値 3f(X, Y)/d X力O (ゼロ)となるときの値 Xは、
3f(X, Y)/3X=2aX+hY=0 (17)
より、
X=-(h/2a)Y (18)
となる。したがって、最大振幅 Ymax(=A )は、式(16)に式(18)を代入し、
sin
Ymax=士 {kZ(h2/(4a)—b)}1/2 (19)
が導かれる。
[0205] 一方、基準信号 S1と S2との位相差は、式(16)において、 X=0(基準信号 S2とし ての余弦波信号が 0)のときの正弦波信号の振幅(図 15にお 、て楕円状の曲線が Y 軸に接する Y接辺)を求めて、基準信号 S1としての正弦波信号の最大振幅値 (式(1 9) )との比に基づいて、得ることができる。
[0206] すなわち、 Υ接辺は、
f (X, Y) =bY2+k=0 (20)
より、
Y = ± (— kZb) 1/2 (21)
x=o
と求められる。
[0207] したがって、余弦波信号 S2との位相差 0 (= Θ)は、
Θ =sin_1{ (-k/b)
sin V (k/ (h2/4a-b) ) 1 2} (22)
と求められる。
[0208] ここで、正弦波信号 S1と余弦波信号 S2とは、物理的に 90[° ] ( = π /2[rad]) の位相差を有する信号であるから、
Δ θ = π /2- Θ (23)
sin sin
と表される位相差 Δ Θ 力 2つの基準信号 SI, S2間で、 π Ζ2の位相差力 の位
sin
相のずれを表す。
[0209] 以上の関係は、図 16に示すように、正弦波信号 S1の最大振幅が本来設定された AOとは異なる値 (式(19) )となり、余弦波信号 S2に対する正弦波信号 S1の位相差 が本来設定された π Ζ2からずれた (式(22) )状態であることを示しており、このすれ 量等の誤差を定量ィ匕したものであり、これが補正用データとして、補正データ記憶部 46d〖こ記'隐される。
[0210] また、説明は省略したが、正弦波信号 S1の最大振幅を式(17)〜(19)により求め たのと同様に、余弦波信号 S2の最大振幅についても、本来設定された AOとは異な る値となり得るため、式(16)を Yについて偏微分して、その偏微分値 3 f (X, Y) / d Yが 0 (ゼロ)となるときの値 Yを求め、式(16)に代入して最大振幅 Xmax (=A )を求 められる。
[0211] また、正弦波信号 S1や余弦波信号 S2を補正用パルス信号 Nによってサンプリング して得られた振幅を縦軸に、サンプリング間隔を横軸にプロットすると、例えば図 17 に示すように、正弦波信号 S1の振幅は正弦波上に、余弦波信号 S2の振幅は余弦 波上に存在するはずであるが、点 f3や f4のように、正弦波上や余弦波上から外れた ものは、同図に示した通り、各点 f 3または f4をそれぞれ通り、振幅方向に延長した直 線と、正弦波または余弦波との交点 f3' , f4' 〖こ、各点 f3, f4をずらせて、バラツキ をネ ΐ正するようにしてもよ 、。
[0212] 補正用パルス信号 Νの発生時間間隔 ΔΤを等時間間隔としたものでは、上述した 振幅検出段階でのバラツキの抑制方法の他、例えば図 18に示すように、補正用パ ルス信号を用いて検出した振幅に基づ 、て、位相差検出部 43で算出された位相を 、時間経過とともに加算して、経過時間 Τを横軸、算出された累積位相を縦軸として プロットすれば、本来は、横軸方向のプロット間隔は等間隔(時間間隔 ΔΤ)であり、 縦軸方向のプロット間隔も等間隔となるべきであるから、同図の破線で示すように、プ ロットは、一次式 (傾き一定)で近似される。
[0213] この一次式からのずれ力 基準信号 SI, S2の振幅差および位相差 π Ζ2からのず れを含めた、真の値からの誤差を表している。この値から、補正データを求めることが できる。
[0214] このように、本実施形態における時間差測定装置 40の補正部 46は、測定用パルス 信号 Ml, M2に模した、発生タイミング間の時間差 ΔΤが等時間間隔の補正用パル ス信号 Nl, N2,…を発生するサンプリングタイミング形成部 46b (サンプリングタイミ ング形成部)と、測定用パルス信号 Ml, M2が入力される実測定モードと補正用パ ルス信号 Nl, N2が入力される校正モードとを切り替えるモード切替部 46a (モード切 替)と、校正モードにおいて補正用パルス信号 Nl, N2が入力されたことにより位相 差検出部 43によって算出された、補正用ノ ルス信号 Nl, N2の各発生タイミング間 における位相差 Δ Θと、等時間間隔の時間差 ΔΤとの対応関係に応じて、誤差を補 正するための補正用データを生成する補正データ生成部 46c (補正用データ生成部 )と、補正データ生成部 46cによって生成された補正用データを記憶する補正データ 記憶部 46dと、補正データ記憶部 46dに記憶された補正用データを用いて、実測定 モードで得られた測定用パルス信号 Ml, M2の発生タイミング間の時間差 Δ tに対 応した位相差 Δ Θを補正演算処理する補正演算部 46e (補正演算部)とを備えてい る。 [0215] そして、上述した作用により、実測定モードにおいて検出され、補正部 46の補正演 算部 46eにより補正された後の、 2つの測定用パルス信号 Ml, M2間の発生時間差 A tに相応した位相差 Δ Θ力 時間差算出部 44に入力され、時間差算出部 44は、 入力された補正後の位相差 Δ Θに基づいて、この位相差に対応した時間差 A tを算 出する。
[0216] そして、時間差測定装置により測定された時間差 A tは、距離換算部 30 (図 1参照) に入力され、距離換算部 30は、入力された時間差 A tに基づき、下記式 (25)により 、測距対象 90までの距離 Dを算出する。なお、式(25)において定数 cは光速 [m/sec ]を表す。
[0217] D = c A t/2 (25)
以上のようにして、測定された測距対象 90までの距離 Dは、測距結果出力部 50に より出力され、この測量装置 100の使用者は距離 Dを把握することができる。
[0218] なお、測距結果出力部 50は、測距結果としての測距対象 90までの距離 Dを数値 情報として表示する表示装置等であるが、この距離 Dの他に、この測量装置 100の 各種設定情報等も併せて表示してもよ ヽ。
[0219] このように、本実施形態の時間差測定装置 40および測量装置 100によれば、ひと 組のスタート信号 Mlおよびストップ信号 M2の各発生タイミングごとの基準信号 S1, S2の実測定を、ただ 1回ずつ行うだけで、両信号 Ml, M2の発生時間差を精度よく 求めることができ、時間差および距離の測定の迅速ィ匕を図ることができる。
[0220] また、補正部 46が、位相差検出部 43によって検出された位相差について、 2つの 基準信号 SI, S2間の誤差または少なくとも一方の基準信号 S1または S2の誤差に 起因して当該位相差に含まれた誤差を補正し、時間差算出部 44は、この補正部 46 によって補正された後の位相差に基づ!、て発生時間差 Δ tを求めるため、基準信号 SI, S2が最大振幅ゃ両基準信号 SI, S2間の位相差 ^ Z2[rad])に誤差がある場 合にも、測定用パルス信号 Ml, M2の発生タイミング間の時間差を高精度に測定す ることがでさる。
[0221] また、基準信号 SI, S2として正弦波信号および余弦波信号という位相差が π /2 であるものが適用されていることにより、直接検出された値 (振幅値)の比をとつて、そ の比の arctanを算出すれば位相 Θを算出することができ、 2つの位相差力も位相差 Δ Θを検出することができる。
[0222] そして、 arctan力 計算される位相は、その時間的変化量が常に一定になるため、 基準信号に対する 2つのパルス信号の発生タイミングに拘わらず、一定の分解能お よび検出感度を得ることができる。
[0223] また、上述した実施形態は、正弦波および余弦波の各基準信号 SI, S2を、等時間 間隔で発生するクロックによりサンプリングして、このサンプリングの結果得られた各 基準信号 SI, S2の振幅の組合せ力 なる振幅組を二次元座標系に表現したとき、 これらの振幅組のプロットを結んで得られる楕円周状の曲線(図 12)を、原点を中心 とする真円周状の曲線に変換するのに必要な補正内容を求めることで、あるいは、図
19に示すように、等時間間隔 ΔΤで発生したクロック信号 Nにより基準信号 SI, S2を サンプリングすることで得られた位相差 (累積位相差)と、理想的な位相差 (累積位相 差)が配列される直線との対応関係に基づいて補正用データを生成しているが、本 発明の時間差測定装置、距離測定装置は、この形態に限定されるものではない。
[0224] 例えば、補正用データの他の生成方法の一例として、図 20に示す方法を適用する こともできる。すなわちこれらの基準信号 SI, S2よりも発生周期が長ぐかつ等時間 間隔で発生するクロック信号 Ci (時系列的に CO, C1, · ··, CIO,…;)により、基準信 号 SI, S2をサンプリングする。
[0225] 図 22においては、クロック信号の発生の周期力 基準信号の発生の周期の 1. 3倍 に設定されている。なお、このクロック信号 Ciは、基準信号 SI, S2と同期しているも のであってもよ!/ヽし、同期して ヽな 、ものであってもよ!/、。
[0226] クロック信号 Ciによる各サンプリング点において検出された各基準信号 SI, S2の 振幅に基づいて、時系列的に隣接したクロック信号間(C0〜C1, C1〜C2, · ··, C9
〜C10, · ··)に対応した位相差 Δ 0を求める。
[0227] クロック信号 Ciの発生間隔は一定であるため、算出される位相差 Δ Θは、本来は一 定値である力 既述の誤差等によって、図 21に示すように、必ずしも一定値とはなら ずにばらつきが発生しうる。
[0228] そこで、これら誤差を有する位相差 Δ Θの平均値 Δ Θ m[rad]を算出し、基準信号 S 1, S2の周波数を f とすると、クロック信号 Cの周波数 fcは、
TCXO
ϊο = 2 π X f / Δ 0 m
TCXO
により算出される。
[0229] そして、図 22に示すように、横軸に真の位相(真の位相の 1周期 T= lZf TCXO )、縦 軸に測定された位相をそれぞれ割り当てて前述したサンプリング点 C0〜C9の各間 に対応する位相差 Δ Θをプロットする(27u [rad]を上回った位相範囲については、 2 π [rad]の整数倍を減算して 2 π [rad]未満の位相としてプロットする)と、例えば同図 に示す S字状の曲線で示される対応テーブルを得ることができる。
[0230] 図 22において、相対的に大きいサイズの〇点は、サンプリング点 C0〜C9に対応 する位相 Θ (あるいは位相差 Δ 0 )を示す。 C10以後のサンプリング点に対応したプ ロットは、クロック信号 Ciが基準信号 SI, S2と同期しているものである場合には、既 に測定されたいずれかのサンプリング点の真の位相(横軸方向の値)と一致する。例 えば、 C10は COと横軸上の位置が重なり合い、 C11は C1と横軸上の位置が重なり 合う。
[0231] 一方、クロック信号 Ciが、基準信号 SI, S2と同期しないものである場合には、既に 測定されたいずれかのサンプリング点の真の位相(横軸方向の値)と一致せず、図 2 2において相対的に小さいサイズの〇点で表された位置にプロットされる。
[0232] 以上のように、 0〜2 π [rad]の範囲には、このプロットの集積によって、補正用デー タとしての対応テーブルが形成される。
[0233] そして、このように求められた補正用データは、そのまま補正に用いることができる。
すなわち、測定された位相 Θ start, Θ stopにそれぞれ対応する真の位相 Θ start- 1, Θ stop-1を、予め設定された対応テーブル (補正用データ;図 23参照)に基づいて、 求めることができる。
[0234] そして、得られた真の位相 Θ start-1, Θ stop-1および基準信号 SI, S2の周波数 f
T
に基づいて、時間差 Tは下記式により算出することができる。
CXO
[0235] Τ= ( ( θ stop-1 Θ start-1) /2 π ) X (1/f )
TCXO
以上の補正内用の求め方は、クロック信号 Ciが、基準信号 SI, S2と同期するもの であっても、同期しないものであっても、いずれの場合にも適用可能であるが、同期 する場合にのみ適用可能な求め方について説明する。
[0236] まず、図 24に示すように、基準信号 SI, S2よりも発生周期が短ぐかつ等時間間 隔で発生するクロック信号により、基準信号 SI, S2をサンプリングする。なお、このク ロック信号は、基準信号 SI, S2と同期しているものであり、基準信号 SI, S2の 1周 期の間に、等時間間隔で 100個のクロック信号が発生し、各基準信号 SI, S2からそ れぞれ 100個のサンプリングデータを得るものとする。
[0237] このとき、時系列的に隣接するクロック間の時間間隔に対応した基準信号 SI, S2 の真の位相差 Δ Θは、(2 w Zl00) [rad]である。
[0238] 一方、サンプリングして得られた基準信号 SI, S2の各振幅に基づいて算出された 測定位相差 Δ Θには、前述したように誤差が含まれているため、必ずしも一定値を示 さず、図 22と同様に、横軸に真の位相(時系列的に隣接するクロック間の時間間隔 に対応した位相差 (2 π /100) [rad])、縦軸に測定された位相をそれぞれ割り当て て前述した 100点のサンプリング点の各間に対応する位相差 Δ Θをプロットすると、 このプロットの集積によって、 0〜27u [rad]の範囲には、例えば図 25に示す S字状の 曲線で示される、補正用データとしての対応テーブルを得ることができる。
[0239] そして、このように求められた補正用データは、そのまま補正に用いることができる。
すなわち、測定された位相 Θ start, Θ stopにそれぞれ対応する真の位相 Θ start-1, Θ stop-1を、予め設定された対応テーブル (補正用データ;図 25参照)に基づいて、 求めることができる。
[0240] そして、得られた真の位相 Θ start-1, Θ stop-1および基準信号 SI, S2の周波数 f
T
に基づいて、時間差 Tは下記式により算出することができる。
CXO
[0241] Τ= ( ( θ stop-1 Θ start-1) /2 π ) X (1/f )
TCXO
また、測定光出射ユニット 10および反射光検出ユニット 20としては、例えば図 4に 示す構成を適用することができる。
[0242] 図示の光学系は、出射光学系 12と検出光学系 22とが機能的に兼用された構成で あり、 PLD11から出射されたレーザ光 L1を反射して受光素子 (APD) 21に導くミラ 一 14と、レーザ光 L1を測距対象 90に向けて導光するとともに、測距対象 90からの 反射レーザ光 L2を受光素子 21に導くプリズム 13およびレンズ 15とを備えた構成で ある。
[0243] なお、図示の構成は一例に過ぎず、本発明に係る時間差測定装置、距離測定装 置は、このような構成のものに限定されるものではない。
[0244] また、時間差測定装置 40の具体的な制御系としては、例えば図 5に示す構成を適 用することができる。
[0245] 図示の制御系は、モード切替部(Selector) 46gによって、まず校正モードに切り替 えられる。
[0246] まず、校正モードでは、モード切替部 46gが、パルス検出器 42aからの入力を遮断 しつつ、後述する第 2の分周器 (Div) 11cからの入力を許容し、発振回路 (TXCO) 4 laから出力された 15[MHz]のパルスに基づいて、正弦波(Sin)生成部 41bおよび余 弦波 (Cos)生成部 41cがそれぞれ、位相が π Ζ2だけずれた正弦波の基準信号 SI 、余弦波の基準信号 S2を発生し、これらの基準信号 SI, S2は対応するバンドパスフ ィルタ(BPF) 42b, 42bにより帯域制限される。
[0247] 一方、発振回路(TXCO) 41aから出力された 15[MHz]のパルスは、第 1の分周器
(Divider) 11aにより 1Z99に分周されて 151. 51[kHz]となり、シンセサイザ(SYH) l lbにより 100倍に遁倍されて 15. 151[MHz]となり、この 100周期目と、 15[MHz]の 出力パルスの 99周期目とが、位相差 0で同期する。
[0248] シンセサイザ l ibにより遁倍された 15. 151[MHz]の信号は、さらに第 2の分
周器 (Div) 11cにより 1Z (23 X 77)に分周され、この分周された出カノ ルスは、パル スの出射時間間隔が既知の ΔΤであり、この出力パルスが補正用パルス信号 Nl, N 2,…として、モード切替部 46gに入力され、この補正用パルス信号 Nの発生タイミン グで、 AZD変換器 (A/D) 42c, 42cが、帯域制限された基準信号 SI, S2をそれぞ れ少なくとも 6組以上サンプルホールドし、そのサンプルホールドされた値、すなわち 振幅値の組 (All, A12)、 (A21, A22)、 (A31, A32)、 (A41, A42)、 (A51, A52)、 (A61, A62)、…が、 CPU44aに入力される。
[0249] ここで、 6組以上の振幅値の組を必要とするのは、式(11)の f (X, y)を特定する定 数 a, b, c, d, e, hを定めるためである。
[0250] CPU44aは、補正用データ生成部 46cとして、入力された 6組以上の振幅値の組 に基づき、前述した手順により、補正用データを生成し、生成された補正用データを
、補正用データ記憶部 46dとして機能するメモリ 46fに記憶する。
[0251] なお、 CPU44aに接続された RAM44bには、演算式やその他の諸定数等が記憶 されている。
[0252] 次に、実測定モードでは、モード切替部 46gが、パルス検出器 42aからの入力を許 容し、発振回路 (TXCO) 41aから出力された 15[MHz]のパルスに基づいて、正弦波 (Sin)生成部 41bおよび余弦波(Cos)生成部 41cがそれぞれ、位相が π Ζ2だけず れた正弦波の基準信号 Sl、余弦波の基準信号 S2を発生し、これらの基準信号 S1, S2は対応するバンドパスフィルタ(BPF) 42b, 42bにより帯域制限される。
[0253] 発振回路(TXCO) 41aから出力された 15[MHz]のパルスは、第 1の分周器(Divide r) 11aにより 1Z99に分周されて 151. 51[kHz]となり、シンセサイザ(SYH) l ibによ り 100倍に遁倍されて 15. 151[MHz]となり、この 100周期目と、 15[MHz]の出力パ ルスの 99周期目とが、位相差 0で同期する。
[0254] そして、シンセサイザ l ibにより遁倍された 15. 151[MHz]の信号は、さらに第 2の 分周器 (Div) l lcにより 1Z(23 X 77)に分周され、この分周された出力パルスは、ド ライノく(DRIVER) l idに入力され、このドライバ l idが PLD11を駆動し、 PLD11がパ ルス状のレーザ光 L1を出力することとなる。
[0255] したがって、 PLD11からは、およそ 8. 5[kHz]の周波数でパルス状のレーザ光 L1 が繰返し出射され、この繰返しの出射に伴って、反射レーザ光 L2が繰返し検出され て、複数回のスタート信号 Mlおよびストップ信号間の時間差を測定することができ、 このような複数回の測定により、測定結果の信頼性を向上させることができる。
[0256] 受光素子 (APD) 21により検出されたレーザ光 L1および反射レーザ光 L2に基づい てパルス検出器(pulse Det) 42aが生成したスタート信号 Mlおよびストップ信号 M2 の発生タイミングで、 AZD変換器 (A/D) 42c, 42cが、帯域制限された基準信号 SI , S2をそれぞれサンプルホールドし、そのサンプルホールドされた値、すなわち振幅 値 All, A12および振幅値 A21, A22が、 CPU44aに入力される。
[0257] そして、補正演算部 46eとして機能する CPU44aが、メモリ 46fから補正用データを 読み出し、この読み出された補正用データを用いて、入力されたサンプルホールド値 (振幅値)に対する位相を補正処理し、この補正後の位相に基づいて位相差を算出 し、得られた位相差に基づいて、実測定されたスタート信号 Mlからストップ信号 M2 までの発生時間差 Δ tを求める。
[0258] 一方、発信回路 41aの出力パルスはパルスカウンタ(CNTR) 45aにも入力され、こ のパルスカウンタ 45aは、パルス検出器 42aによるスタート信号 Mlの発生タイミング 力 ストップ信号 M2の発生タイミングまでの間に入力された出力パルスのパルス数を 計数し、この計数結果は CPU44aに入力され、 CPU44aによる概略時間差 taの 算出に供される。
[0259] これにより、 CPU44aは、基準信号 SI, S2の 1周期を超える発生時間差 A tであつ ても、概略時間差 taと高分解能の発生時間差 A tとに基づいて、高精度に、当該時 間差 Δ tを求めることができる。
[0260] 図 5に示したものは、基準信号 S1 (または基準信号 S2)とスタート信号 Mlとを同期 させる構成の制御系である力 これらの信号は必ずしも同期するものである必要はな く、両信号 S1 (または S2) , Mlは全く同期しないもの、すなわち両信号 S1 (または S 2) , Mlが、例えば図 6に示すように、互いに独立した 2つの発信回路力 個別に出 力された信号にのみ依存し、相互には依存しない完全非同期のものであってもよい。
[0261] なお、本発明に係る時間差測定装置および距離測定装置は、時間差を有して発生 する 2つのノ ルス信号を、実測定モードで、それぞれ 1回ずつ検出するだけで、これ ら 2つのパルス信号間の時間差を精度よく測定することができるものであるが、実際の 測定に際しては、測定を複数回行い、得られた複数の測定結果の平均値を求めたり 、標準偏差等を算出して、測定結果の信頼性を高めるのが好ましい。
[0262] なお、図 5に示したものは、基準信号 S1 (または基準信号 S2)とスタート信号 Mlあ るいは補正用パルス信号 Nとを同期させる構成の制御系である力 これらの信号は 必ずしも同期するものである必要はなぐこれらの信号 S1 (または S2) , Ml, Nは全 く同期しないもの、すなわち両信号 S1 (または S2) , Ml, N力 例えば図 6に示すよ うに、互いに独立した 2つの発信回路力も個別に出力された信号にのみ依存し、相 互には依存しない完全非同期のものであってもよい。
[0263] この図 6に示した制御系は、基準信号 SI, S2を生成する制御系と、 PLD11がレー ザ光 LIを出射させる制御系(測定用パルス信号の生成系)および補正用パルス信号 Nを生成する制御系とが完全に分離独立したものであり、基準信号 SI, S2を生成す る制御系は図 5に示した制御系と同一であるのに対し、 PLD11がレーザ光 L1を出 射させる制御系および補正用パルス信号 Nを生成する制御系は、発信回路 41aとは 別個独立のオシレータ(OSC) l ieの出力パルスに依存し、実測定モードでは、この オシレータ l ieから出力された出カノ ルスが分周器 (Div) 1 Ifにより分周され、この分 周された出カノ ルスに基づいて、ドライバ(DRIVER) l lgが PLD11を駆動し、基準 信号 S1または S2のタイミングとは全く無関係のタイミングで、 PLD11からレーザ光 L 1が出力される。
[0264] 一方、校正モードでは、基準信号 S1または S2のタイミングとは全く無関係のタイミ ングで、補正用パルス信号 Nが出力される。
[0265] そして、このように構成された制御系を有する時間差測定装置、距離測定装置であ つても、複数回の測定により、測定結果の信頼性を向上させることができる。
[0266] また、本実施形態に係る測量装置 100は、光源として半導体レーザを適用したもの として説明したが、本発明に係る距離測定装置においては、この光源の態様に限定 されるものではなぐ他の種類のレーザ光を出射する光源や、レーザ光以外の光を出 射する光源、あるいは、光以外のマイクロ波等の測定波を発生する測定波出射源を 適用することができ、これらを適用した場合にも、本実施形態と同様の作用を奏し、同 様の効果を発揮することができる。
[0267] 本実施形態の測量装置 100における時間差測定装置 40は、 2つの基準信号 S1, S2間の誤差または少なくとも一方の基準信号 S1または S2の誤差に起因した誤差を 補正する補正部 46として、測定用パルス信号 Ml, M2に模した、発生タイミング間の 時間差が等時間間隔の補正用パルス信号 Nを発生するサンプリングタイミング形成 部 46bと、測定用パルス信号 Ml, M2が入力される実測定モードと補正用パルス信 号 Nが入力される校正モードとを切り替えるモード切替部 46aと、校正モードにぉ ヽ て補正用ノ ルス信号 Nが入力されたことにより位相差検出部 43によって算出された 、補正用パルス信号 Nの各発生タイミング間における位相差と、等時間間隔の時間 差との対応関係に応じて、誤差を補正するための補正用データを生成する補正用デ ータ生成部 46cと、補正用データ生成部 46cによって生成された補正用データを記 憶する補正データ記憶部 46dと、補正データ記憶部 46dに記憶された補正用データ を用いて、実測定モードで得られた測定用パルス信号の発生タイミング間の時間差 に対応した位相差を補正演算処理する補正演算部 46eとを備えた構成を採用するこ とにより、実際に測定を行う実測定モードの他に、補正データ記憶部に記憶させる補 正用データを生成するための校正モードも備えており、校正モードと実測定モードと はモード切替部によって択一的に選択され、実際の時間差の測定を行う前段階にお いて、校正モードに切り替えて、補正用ノ ルス信号を発生して新たな補正用データ を作成することによって、補正データ記憶部 46dに記憶された補正用データを最新 の補正用データに更新することができるため、時間差測定装置 40の個体差に起因し て測定結果に与える影響を解消することができるとともに、時間差測定装置 40の経 年変化等使用環境などに起因した影響についても解消することができる。
[0268] また、校正処理も自己完結で行うことができる。すなわち、校正モードにおける処理 の際、他の外部装置 (補正用パルス信号を発生する装置等)を別途用意する必要が ないため、外部装置がない場所でも、校正を行うことができる。
[0269] なお、補正部 46としては、サンプリングタイミング形成部 46bを備えずに、発生時間 差測定対象のパルス信号である測定用パルス信号が入力される実測定モードと、測 定用パルス信号 Ml, M2に模して発生した、発生タイミング間の時間差が既知の補 正用パルス信号 Nが入力される校正モードとを切り替えるモード切替部 46aと、校正 モードにおいて補正用パルス信号 Nが入力されたことにより位相差検出部 43によつ て算出された、補正用パルス信号 Nの各発生タイミング間における位相差と、既知の 時間差との対応関係に応じて、誤差を補正するための補正用データを生成する補正 用データ生成部 46cと、補正用データ生成部 46cによって生成された補正用データ を記憶する補正データ記憶部 46dと、補正データ記憶部 46dに記憶された補正用デ ータを用いて、実測定モードで得られた測定用パルス信号 Ml, M2の発生タイミング 間の時間差に対応した位相差を補正演算処理する補正演算部 46eとを備えた構成 を採用することちできる。
[0270] すなわち、図 2に示した構成のうち、サンプリングタイミング形成部 46bについては、 時間差測定装置 40または測量装置 100 (距離測定装置)が直接備えるものではなく 、このサンプリングタイミング形成部 46bによる、時間差が既知の補正用パルス信号 の送出を、時間差測定装置 40または測量装置 100に接続等されて用いられる外部 の装置によって行われるものとすることもできる。
[0271] このように、校正用の時間差が既知のパルス信号を発生させるもの(サンプリングタ イミング形成部)が備えられていないため、そのような校正用のパルス信号を発生す る構成まで備えた時間差測定装置 40、測量装置 100に比べて、構成を簡略化する ことができる。
[0272] また、補正部 46としては、上述した補正用データを生成する校正モードも備えずに 、誤差を補正するための補正用データを記憶した補正データ記憶部 46dと、補正デ ータ記憶部 46dに記憶された補正用データを用いて補正演算処理を行う補正演算 部 46eとを備えた構成を採用することもできる。
[0273] このように、校正モードを備えないことによって、そのような校正モードを有する時間 差測定装置 40、測量装置 100に比べて、構成をさらに簡略ィ匕することができる。
[0274] なお、上述した 、ずれの補正部 46であっても、補正データ記憶部 46dに記憶され た補正用データは、離散したサンプリング点におけるデータであり、発生時間差 A t を求めるに際して、対応するサンプリング点のデータが補正データ記憶部 46dに記 憶されていない場合もある。
[0275] 例えば、図 10Cに示した楕円の周上に、振幅値の交点が存在する軌跡 (X, y)を呈 する誤差を有する場合、原点(0, 0)回りの位相 θ (0≤ Θ≤2 7u [rad] ( = 360° ;) )に 対する位相差 Δ Θの誤差量が、図 19Aに示すように、位相 Θごとに異なる周期的な 変動値を示すが、補正しょうとするサンプリング点力 例えば Z部の既存サンプリング 点 0 、 0 の間にあって、補正用データが存在しない場合には、図 19Bに示すよう n n+1
に、既存サンプリング点のデータ( 0 , Δ Θ ) = ( θ , ε ) , ( θ , ε )を用いて、補 n n n+1 n+1
正部 46が、補間処理あるいはフィッティング処理により、これら両サンプリング点の間 の必要サンプリング点のデータ(0 , ε )を生成すればよい。
A A
[0276] 補間処理としては、例えば、一次線形補間処理を適用して、
ε = ε + ( ε ε ) ( θ — θ ) Ζ ( Θ θ ) (26) により求めることができる。なお、補間処理としては、上述した一次補間の他に、二次 以上の高次の補間処理 (三次スプライン補間処理等)を適用してもよ!、し、また他の フィッティング処理を適用してもょ 、。
[0277] また、上述した実施形態は、図 11に示したように、補正用パルス信号 Nの周期(発 生時間間隔)が基準信号 SI, S2の周期 Tsよりも短いものとして説明したが、本発明 の時間差測定装置、距離測定装置は、この実施形態に限定されるものではなぐ補 正用パルス信号 Nの周期 (発生時間間隔)が基準信号 SI, S2の周期 Tsよりも長いも のであってもよい。
(変形例 1)
上述した各実施形態は、基準信号発生部 41が例えば図 5に示すように正弦波信 号という第 1の基準信号 S1と、余弦波信号という第 2の基準信号 S2とを、各別に生成 して、それぞれを各別に出力する構成であるが、例えば図 26に示すように、基準信 号発生部 41は余弦波生成部 (Cos) 41cを備えず、正弦波生成部 (Sin) 41bが発生し た正弦波の基準信号 S 1に対して、基準信号 S 1における位相差 π /2[rad] ( ( π /2 ) [radi x (2η- 1) ;η= 1, 2,…;)に相当する時間だけ遅延させる処理を施す遅延回 路 42dを備えた構成を採用することもできる。
[0278] すなわち、基準信号発生部 41は、原始的に一つの基準信号 (正弦波信号) S1の みを生成するものである力 遅延回路 42dが、この原始的に生成された基準信号 S1 に対して基準信号 S1における位相を Z2[rad]だけ遅延させて新たな基準信号を 生成する。
[0279] この新たに生成された基準信号は、基準信号すなわち正弦波信号に対して、 π /
2[rad]の位相差を有するため、余弦波信号 S2となる。
[0280] そして、正弦波信号 S1と余弦波信号 S2とが出力されることにより、実質的に、図 5 に示した実施形態と同様の作用効果を得ることができる。
[0281] なお、このように、 2つの基準信号のうち一方がオリジナルであり、他方はこのオリジ ナルに基づいて生成されたものであれば、両基準信号間で、例えば振幅の差など信 号波形の差異が生じにくぐ振幅に応じた位相の演算の際の誤差を抑制することが できる。 [0282] このような遅延回路 42dを用いた構成を、例えば図 6に示した実施形態に適用する と、例えば図 27に示す構成となり、この構成の実施形態によれば、実質的に、図 6に 示した実施形態と同様の作用効果を得ることができる。
(実施形態 2)
上述した実施例 1としてそれぞれ説明した形態は、基準信号が 2つである場合であ つて、両基準信号間の位相差が略 7u Z2[rad]であり、両基準信号を同時に(同一の タイミングで)サンプリングする形態であるが、本発明に係る時間差測定装置および 距離測定装置は、この形態に限定されるものではなぐ実質的に、この形態と同一視 できる構成を適用することもできる。
[0283] すなわち、互いに位相差を有する 2つの基準信号を同時にサンプリングして一組の サンプリング値 (振幅値)を得るのではなぐ 1つの基準信号を、上記位相差に対応し た時間差を有する 2つのタイミングでサンプリングして一組のサンプリング値を得るよう にしてもよい。
[0284] 例えば、図 26に示した実施形態に対応させた形態を図 28に示す。図示の実施形 態は、校正モードでは、モード切替部 46gが、パルス検出器 42aからの入力を遮断し つつ、後述する第 2の分周器 (Div) 11cからの入力を許容し、発振回路 (TXCO) 41a 力 出力された 15[MHz]のパルスに基づいて、正弦波(Sin)生成部 41bが正弦波の 基準信号 S1を発生し、この基準信号 S1は対応するバンドパスフィルタ (BPF) 42bに より帯域制限される。
[0285] 一方、発振回路(TXCO) 41aから出力された 15[MHz]のパルスは、第 1の分周器
(Divider) 11aにより 1Z99に分周されて 151. 51[kHz]となり、シンセサイザ(SYH) l lbにより 100倍に遁倍されて 15. 151[MHz]となり、この 100周期目と、 15[MHz]の 出力パルスの 99周期目とが、位相差 0で同期する。
[0286] シンセサイザ l ibにより遁倍された 15. 151[MHz]の信号は、さらに第 2の分周器( Div) 11c〖こより 1Z (23 X 77)に分周され、この分周された出力パルスは、ノ レスの 出射時間間隔が既知の ΔΤであり、この出力パルスが補正用パルス信号 Nl, N2, …として、モード切替部 46gに入力され、この補正用パルス信号 Nの発生タイミング で、 AZD変換器 (A/D) 42cが、帯域制限された基準信号 S1をサンプルホールドす る。
[0287] また、モード切替部 46gに入力された出カノ ルス Nl (N2)は、遅延回路 42cT に より、基準信号 S1における位相 π Ζ2[ι¾(1]だけ遅延されて、この遅延された出力パ ルス (Ν2' )が、 AZD変翻 (A/D) 42cに入力されて、帯域制限された基準 信号 S 1をサンプルホールドする。
[0288] この遅延回路 42cT は、入力された信号 (補正用パルス信号 Ν (Ν1, Ν2, · · ·)や、 スタート信号 Ml、ストップ信号 Μ2等)を、基準信号 S1における位相差 Z2[rad]に 相当する時間だけ遅延させるパルス遅延部であり、 AZD変 42C (振幅検出部 4 2)は、図 30に示すように、最初のタイミング (発生タイミング;時刻 tl)と、このタイミン グと対応した、 π Z2[rad]だけ遅延して得られたタイミング (遅延タイミング;時刻 tl' =tl + A tl ( A tl =TsZ4) )との 2つのタイミングでそれぞれサンプルホールドされ た値、すなわち振幅値の組 (All' , A12' )を、 CPU44aに入力する。
[0289] 同様に、発生タイミング(時刻 t2)と、このタイミングと対応した遅延タイミング(時刻 t 2' =t2+ A t2 ( A t2=TsZ4) )との 2つのタイミングでそれぞれサンプルホールド された値、すなわち振幅値の組 (A21' , A22' )力 CPU44aに入力される。
[0290] このように、発生タイミングにお 、てサンプリングされた振幅値を正弦波信号 S3上 の値であるとすれば、遅延タイミングにおいてサンプリングされる振幅値は、正弦波信 号 S3とは π Z2[rad]だけ位相が遅れた信号、すなわち余弦波信号上の値として把 握することができ、発生タイミングにおいてサンプリングして得られた振幅値 All' を 縦軸に、遅延タイミングにおいてサンプリングして得られた振幅値 A を横軸にそ れぞれ表すと、これら互いに対応するタイミングにおける振幅値の組 (All' , A12' )は、図 30Cに示すように表現される力 この 2次元座標上での表現は、図 3D、図 8 に示した 2つの基準信号 (位相差 π Z2[rad])を用いた表現と実質的に同一となる。
[0291] そして、他の構成部分は、図 5あるは図 26に示した実施形態における同一符号の 構成部分と同一であり、その作用も実質的に同一であるから、これら図 5あるいは図 2 6に示した実施形態と同一の効果を発揮させることができる。
[0292] なお、図 5や図 26の実施形態において適用可能の変形例等は、図 28に示した実 施形態においても、すべて適用可能である。 [0293] 図 28の実施形態と同様に、図 27に示した実施形態に対応させた形態を図 29に示 す。この実施形態も、遅延回路 42(Τ 力 入力された信号 (補正用パルス信号 N (N1 , N2, ···)や、スタート信号 Ml、ストップ信号 M2等)を、基準信号 S1における位相 差 π Z2[rad]に相当する時間だけ遅延させるパルス遅延部であり、 A/D変 42 c (振幅検出部 42)は、図 30に示すように、最初のタイミング (発生タイミング;時刻 tl) と、このタイミングと対応した、 Z2[rad]だけ遅延して得られたタイミング (遅延タイミ ング;時刻 tl' = 1 +厶1;1 (厶1;1 =丁574) )との2っのタィミングでそれぞれサンプ ルホールドされた値、すなわち振幅値の組 (All' , A12' )を、 CPU44aに入力す る。
[0294] 同様に、発生タイミング(時刻 t2)と、このタイミングと対応した遅延タイミング(時刻 t 2' =t2+ A t2 ( A t2=TsZ4) )との 2つのタイミングでそれぞれサンプルホールド された値、すなわち振幅値の組 (A21' , A22' )力 CPU44aに入力される。
[0295] このように、発生タイミングにお 、てサンプリングされた振幅値を正弦波信号 S3上 の値であるとすれば、遅延タイミングにおいてサンプリングされる振幅値は、正弦波信 号 S3とは π Z2[rad]だけ位相が遅れた信号、すなわち余弦波信号上の値として把 握することができ、発生タイミングにおいてサンプリングして得られた振幅値 All' を 縦軸に、遅延タイミングにおいてサンプリングして得られた振幅値 A を横軸にそ れぞれ表すと、これら互いに対応するタイミングにおける振幅値の組 (All' , A12' )は、図 30Cに示すように表現される力 この 2次元座標上での表現は、図 3D、図 8 に示した 2つの基準信号 (位相差 π Z2[rad])を用いた表現と実質的に同一となる。
[0296] そして、他の構成部分は、図 6あるは図 27に示した実施形態における同一符号の 構成部分と同一であり、その作用も実質的に同一であるから、これら図 6あるいは図 2 7に示した実施形態と同一の効果を発揮させることができる。
[0297] なお、図 6や図 27の実施形態において適用可能の変形例等は、図 29に示した実 施形態においても、すべて適用可能である。
[0298] 以上、本発明を例示的な実施例の観点力も説明したが、本発明はこれらに限定さ れるものではない。当業者であれば、本発明の範囲や趣旨から逸脱することなく本発 明の構成に対して様々な改良や変更が可能であることは容易に理解できることであ る。上記記載の観点から、本発明はこの発明の改良や変更を包含することを意図し ており、そのような改良や変更は、特許請求の範囲及びその均等物の範囲内に含ま れる。
[0299] 本願は、 2005年 6月 10日に出願された日本特許出願番号第 2005— 171571号に 基づき優先権主張をするものであり、同出願の明細書、図面および特許請求の範囲 を含む出願内容は、すべてを参照してここに含める。
産業上の利用可能性
[0300] 上述の実施形態では、本発明の時間差測定装置を含む本発明の距離測定装置の 位置実施形態として測量装置を例に説明したが、本発明の時間差測定装置は、距 離測定対象までの距離を測定することによりその対象の輪郭形状等を特定する形状 測定装置のほか、時間差に応じて算出される距離を高精度に求めることが要求され る種々の装置や分野に適用することが可能である。

Claims

請求の範囲
[1] 未知の時間差を以て発生する 2つのパルス信号の該発生時間差を測定する時間 差測定装置であって、
周期が既知の基準信号を発生する基準信号発生部と、
前記 2つのパルス信号の各々の発生タイミングに対応して、実質的に、前記基準信 号の略 π Z2[rad]の位相差に相当する時間間隔の 2つのタイミングで該基準信号の 振幅をそれぞれサンプリングするのと同一となるように、前記各パルス信号の発生タ イミングごとに 2つずつの振幅を求める振幅検出部と、
前記各パルス信号の発生タイミングごとにそれぞれ求められた 2つずつの振幅に基 づいて、前記パルス信号の各発生タイミングごとの、前記基準信号の位相、およびこ れら発生タイミング間での位相差を求める位相差検出部と、
前記位相差検出部によって検出された前記位相差について、前記基準信号の誤 差または前記位相差略 π Z2[rad]の誤差を補正する補正部と、
前記補正部によって補正された後の位相差に基づ 、て、前記 2つの測定用パルス 信号の発生時間差を求める時間差算出部と備えたことを特徴とする時間差測定装置
[2] 未知の時間差を以て発生する 2つのパルス信号の該発生時間差を測定する時間 差測定装置であって、
略 π Z2[rad]の位相差を有し、周期が既知の少なくとも 2つの基準信号を発生する 基準信号発生部と、
前記パルス信号の発生タイミングにおける前記 2つの基準信号の各振幅を求める 振幅検出部と、
前記振幅検出部によって前記各基準信号ごとに各 2つずつ検出された振幅に基づ いて、前記パルス信号の各発生タイミングごとの、前記基準信号の位相、およびこれ ら発生タイミング間での位相差を求める位相差検出部と、
前記位相差検出部によって検出された前記位相差について、前記 2つの基準信号 間の誤差または少なくとも一方の基準信号の誤差に起因した誤差を補正する補正部 と、 前記補正部によって補正された後の位相差に基づ 、て、前記 2つの測定用パルス 信号の発生時間差を求める時間差算出部と備えたことを特徴とする時間差測定装置
[3] 前記補正部は、前記誤差を補正するための補正用データを記憶した補正データ記 憶部と、該補正データ記憶部に記憶された前記補正用データを用いて補正演算処 理を行う補正演算部とを備えたことを特徴とする請求項 2に記載の時間差測定装置。
[4] 前記補正部は、
前記発生時間差測定対象のパルス信号である測定用パルス信号が入力される実 測定モードと、発生タイミング間の時間差が既知の補正用パルス信号が入力される 校正モードとを切り替えるモード切替部と、
前記校正モードにおいて前記補正用パルス信号が入力されたことにより前記位相 差検出部によって算出された、前記補正用パルス信号の各発生タイミング間におけ る位相差と、前記既知の時間差との対応関係に応じて、前記誤差を補正するための 補正用データを生成する補正用データ生成部と、
前記補正用データ生成部によって生成された前記補正用データを記憶する補正 データ記憶部と、
該補正データ記憶部に記憶された前記補正用データを用いて、前記実測定モード で得られた前記測定用パルス信号の発生タイミング間の時間差に対応した前記位相 差を補正演算処理する補正演算部とを備えたことを特徴とする請求項 2に記載の時 間差測定装置。
[5] 前記補正部は、
発生タイミング間の時間差が等間隔の補正用パルス信号を発生するサンプリングタ イミング形成部と、
前記発生時間差測定対象のパルス信号である測定用パルス信号が入力される実 測定モードと前記補正用パルス信号が入力される校正モードとを切り替えるモード切 替部と、
前記校正モードにおいて前記補正用パルス信号が入力されたことにより前記位相 差検出部によって算出された、前記補正用パルス信号の各発生タイミング間におけ る位相差と、前記等間隔の時間差との対応関係に応じて、前記誤差を補正するため の補正用データを生成する補正用データ生成部と、
前記補正用データ生成部によって生成された前記補正用データを記憶する補正 データ記憶部と、
該補正データ記憶部に記憶された前記補正用データを用いて、前記実測定モード で得られた前記測定用パルス信号の発生タイミング間の時間差に対応した前記位相 差を補正演算処理する補正演算部とを備えたことを特徴とする請求項 2に記載の時 間差測定装置。
[6] 前記サンプリングタイミング形成部が発生する前記補正用パルス信号は、前記基準 信号発生部の発生する基準信号と、複数回に一度の割合で同期する等間隔のパル ス信号であることを特徴とする請求項 5に記載の時間差測定装置。
[7] 前記サンプリングタイミング形成部が発生する前記補正用パルス信号は、前記基準 信号発生部の発生する基準信号と非同期で、かつ等間隔のパルス信号であることを 特徴とする請求項 5に記載の時間差測定装置。
[8] 前記補正用データは、前記振幅検出部によって検出された前記補正用パルス信 号による各基準信号の振幅の比に対応したものとして設定されることを特徴とする請 求項 2から 7のうちいずれか 1項に記載の時間差測定装置。
[9] 前記 2つの基準信号は正弦波信号と余弦波信号とであることを特徴とする請求項 2 力 8のうちいずれか 1項に記載の時間差測定装置。
[10] 前記補正用データは、前記振幅検出部によって検出された前記補正用パルス信 号による各基準信号の振幅の比の逆正接値に対応したものとして設定されることを特 徴とする請求項 9に記載の時間差測定装置。
[11] 前記 2つの基準信号は正弦波信号と余弦波信号とであり、複数の前記補正用パル ス信号が時系列的に順次入力された各タイミングにおける前記正弦波信号の振幅値 を、時系列的にプロットしたとき、前記プロットされた振幅値のうち、所定の正弦波曲 線上にプロットされない振幅値については、前記所定の正弦波曲線上にプロットされ るように、かつ、前記複数の補正用パルス信号が時系列的に順次入力された各タイミ ングにおける前記余弦波信号の振幅値を、時系列的にプロットしたとき、前記プロット された振幅値のうち、所定の余弦波曲線上にプロットされない振幅値については、前 記所定の余弦波曲線上にプロットされるように、前記補正部が前記振幅値のばらつき を補正することを特徴とする請求項 2から 10のうちいずれか 1項に記載の時間差測定 装置。
[12] 前記補正データ記憶部に記憶された補正用データは、離散したサンプリング点に おけるデータであり、前記発生時間差を求めるに際して、対応するサンプリング点の データが前記補正部に記憶されていないときは、該補正部は、該補正部に記憶され て 、るサンプリング点のデータに基づ 、て補間演算処理またはフィッティング処理に より、対応するサンプリング点のデータを生成することを特徴とする請求項 2から 11の うちいずれか 1項に記載の時間差測定装置。
[13] 前記補正データ記憶部に記憶された補正用データは、楕円状の離散したサンプリ ング点に対応して求められた楕円状の関数として記憶されて 、ることを特徴とする請 求項 2から 11のうちいずれか 1項に記載の時間差測定装置。
[14] 前記 2つの測定用パルス信号の概略発生時間差を検出する概略時間差検出部を さらに備え、
前記時間差算出部は、該時間差算出部によって求められた精密時間差に加えて、 前記概略時間差検出部によって検出された前記概略発生時間差により、前記 2つの 測定用パルス信号の発生時間差を算出することを特徴とする請求項 2から 13のうち V、ずれか 1項に記載の時間差測定装置。
[15] 前記振幅検出部は、前記発生時間差測定対象のパルス信号である 2つの測定用 パルス信号のうち時系列的に先行する一方の測定用パルス信号の発生タイミングに おける前記一方の基準信号としての正弦波信号の振幅 Allおよび前記他方の基準 信号としての余弦波信号の振幅 A12をそれぞれ検出し、前記位相差検出部は、これ ら振幅 All, A12の比(A11ZA12)を算出し、この振幅比(A11ZA12)に基づいて 位相 Θ startを tan— (A11ZA12) }により算出し、前記補正部は、前記位相 Θ startを 位相 0 start' に補正し、
前記振幅検出部は、前記 2つのパルス信号のうち時系列的に後続する他方の測定 用パルス信号の発生タイミングにおける前記正弦波信号の振幅 A21および前記余弦 波信号の振幅 A22をそれぞれ検出し、前記位相差検出部は、これら振幅 A21, A22 の比(A21ZA22)を算出し、この振幅比(A21ZA22)に基づいて位相 Θ stopを tan { (A21/A22) }により算出し、前記補正部は、前記位相 Θ stopを位相 Θ stop' に補 正し、前記時間差算出部は、前記 2つの測定用パルス信号の発生タイミングの位相 差 Δ 0を( Θ stop' - Θ start' )により算出することを特徴とする請求項 2から 14のう ちいずれか 1項に記載の時間差測定装置。
[16] 前記補正用データは、前記基準信号の 1周期のうち少なくとも 6点のサンプリングに よって得られたものであることを特徴とする請求項 12から 15のうちいずれか 1項に記 載の時間差測定装置。
[17] 未知の時間差を以て発生する 2つのパルス信号の該発生時間差を測定する時間 差測定装置であって、
周期が既知の単一の基準信号を発生する基準信号発生部と、
前記 2つのパルス信号のそれぞれを、前記基準信号の略 π Z2[rad]の位相差に相 当する時間だけ遅延させるパルス遅延部と、
前記各パルス信号の発生タイミングおよび前記パルス遅延部によって遅延された 遅延タイミングにおける前記基準信号の各振幅を求める振幅検出部と、
前記振幅検出部によって前記各パルス信号ごとに各 2つずつ検出された振幅に基 づいて、前記各パルス信号ごとの、前記基準信号の位相、およびこれらパルス信号 の発生タイミング間での位相差を求める位相差検出部と、
前記位相差検出部によって検出された前記位相差について、前記基準信号の誤 差または前記位相差略 π Z2[rad]の誤差を補正する補正部と、
前記補正部によって補正された後の位相差に基づ 、て、前記 2つの測定用パルス 信号の発生時間差を求める時間差算出部と備えたことを特徴とする時間差測定装置
[18] 前記補正部は、前記誤差を補正するための補正用データを記憶した補正データ記 憶部と、該補正データ記憶部に記憶された前記補正用データを用いて補正演算処 理を行う補正演算部とを備えたことを特徴とする請求項 17に記載の時間差測定装置
[19] 前記補正部は、
前記発生時間差測定対象のパルス信号である測定用パルス信号が入力される実 測定モードと、発生タイミング間の時間差が既知の補正用パルス信号が入力される 校正モードとを切り替えるモード切替部と、
前記校正モードにおいて前記補正用パルス信号が入力されたことにより前記位相 差検出部によって算出された、前記補正用パルス信号の各発生タイミング間におけ る位相差と、前記既知の時間差との対応関係に応じて、前記誤差を補正するための 補正用データを生成する補正用データ生成部と、
前記補正用データ生成部によって生成された前記補正用データを記憶する補正 データ記憶部と、
該補正データ記憶部に記憶された前記補正用データを用いて、前記実測定モード で得られた前記測定用パルス信号の発生タイミング間の時間差に対応した前記位相 差を補正演算処理する補正演算部とを備えたことを特徴とする請求項 17に記載の時 間差測定装置。
[20] 前記補正部は、
発生タイミング間の時間差が等間隔の補正用パルス信号を発生するサンプリングタ イミング形成部と、
前記発生時間差測定対象のパルス信号である測定用パルス信号が入力される実 測定モードと前記補正用パルス信号が入力される校正モードとを切り替えるモード切 替部と、
前記校正モードにおいて前記補正用パルス信号が入力されたことにより前記位相 差検出部によって算出された、前記補正用パルス信号の各発生タイミング間におけ る位相差と、前記等間隔の時間差との対応関係に応じて、前記誤差を補正するため の補正用データを生成する補正用データ生成部と、
前記補正用データ生成部によって生成された前記補正用データを記憶する補正 データ記憶部と、
該補正データ記憶部に記憶された前記補正用データを用いて、前記実測定モード で得られた前記測定用パルス信号の発生タイミング間の時間差に対応した前記位相 差を補正演算処理する補正演算部とを備えたことを特徴とする請求項 17に記載の時 間差測定装置。
[21] 前記サンプリングタイミング形成部が発生する前記補正用パルス信号は、前記基準 信号発生部の発生する基準信号と、複数回に一度の割合で同期する等間隔のパル ス信号であることを特徴とする請求項 20に記載の時間差測定装置。
[22] 前記サンプリングタイミング形成部が発生する前記補正用パルス信号は、前記基準 信号発生部の発生する基準信号と非同期で、かつ等間隔のパルス信号であることを 特徴とする請求項 20に記載の時間差測定装置。
[23] 前記補正用データは、前記振幅検出部によって検出された前記補正用パルス信 号による各基準信号の振幅の比に対応したものとして設定されることを特徴とする請 求項 17から 22のうちいずれ力 1項に記載の時間差測定装置。
[24] 前記基準信号は正弦波信号または余弦波信号であることを特徴とする請求項 17か ら 23のうちいずれか 1項に記載の時間差測定装置。
[25] 前記補正用データは、前記振幅検出部によって検出された前記補正用パルス信 号の前記発生タイミングと前記遅延タイミングとにおける前記基準信号の振幅の比の 逆正接値に対応したものとして設定されることを特徴とする請求項 24に記載の時間 差測定装置。
[26] 前記基準信号は正弦波信号または余弦波信号であり、複数の前記補正用パルス 信号が時系列的に順次入力された各発生タイミングにおける前記基準信号の振幅 値を、時系列的にプロットしたとき、前記プロットされた振幅値のうち、所定の正弦波 曲線上または余弦波曲線上にプロットされない振幅値については、前記所定の正弦 波曲線上または余弦波曲線上にプロットされるように、かつ、前記複数の補正用パル ス信号が時系列的に順次入力された各遅延タイミングにおける前記基準信号の振幅 値を、時系列的にプロットしたとき、前記プロットされた振幅値のうち、所定の余弦波 曲線上または正弦波曲線上にプロットされない振幅値については、前記所定の余弦 波曲線上または正弦波曲線上にプロットされるように、前記補正部が前記振幅値の ばらつきを補正することを特徴とする請求項 17から 25のうちいずれか 1項に記載の 時間差測定装置。
[27] 前記補正データ記憶部に記憶された補正用データは、離散したサンプリング点に おけるデータであり、前記発生時間差を求めるに際して、対応するサンプリング点の データが前記補正部に記憶されていないときは、該補正部は、該補正部に記憶され て 、るサンプリング点のデータに基づ 、て補間演算処理またはフィッティング処理に より、対応するサンプリング点のデータを生成することを特徴とする請求項 17から 26 のうちいずれか 1項に記載の時間差測定装置。
[28] 前記補正データ記憶部に記憶された補正用データは、楕円状の離散したサンプリ ング点に対応して求められた楕円状の関数として記憶されて 、ることを特徴とする請 求項 17から 26のうちいずれ力 1項に記載の時間差測定装置。
[29] 前記 2つの測定用パルス信号の概略発生時間差を検出する概略時間差検出部を さらに備え、
前記時間差算出部は、該時間差算出部によって求められた精密時間差に加えて、 前記概略時間差検出部によって検出された前記概略発生時間差により、前記 2つの 測定用パルス信号の発生時間差を算出することを特徴とする請求項 17から 28のうち V、ずれか 1項に記載の時間差測定装置。
[30] 前記振幅検出部は、前記発生時間差測定対象のパルス信号である 2つの測定用 パルス信号のうち時系列的に先行する一方の測定用パルス信号の前記発生タイミン グにおける前記基準信号としての正弦波信号の振幅 Allおよび前記遅延タイミング における該基準信号の振幅 A12をそれぞれ検出し、前記位相差検出部は、これら振 幅 All, A12の比(A11ZA12)を算出し、この振幅比(A11ZA12)に基づいて位相 Θ startを tan— (A11ZA12) }により算出し、前記補正部は、前記位相 Θ startを位相 Θ start' にネ ftlhし、
前記振幅検出部は、前記 2つのパルス信号のうち時系列的に後続する他方の測定 用パルス信号の前記発生タイミングにおける前記基準信号の振幅 A21および前記遅 延タイミングにおける該基準信号の振幅 A22をそれぞれ検出し、前記位相差検出部 は、これら振幅 A21, A22の比(A21ZA22)を算出し、この振幅比(A21ZA22)に基 づいて位相 Θ stopを tan— (A21ZA22) }により算出し、前記補正部は、前記位相 Θ s topを位相 Θ stop' に補正し、前記時間差算出部は、前記 2つの測定用パルス信号 の発生タイミングの位相差 Δ 0を( Θ stop' - Θ start' )により算出することを特徴と する請求項 17から 29のうちいずれか 1項に記載の時間差測定装置。
[31] 前記補正用データは、前記基準信号の 1周期のうち少なくとも 6点のサンプリングに よって得られたものであることを特徴とする請求項 27から 30のうちいずれか 1項に記 載の時間差測定装置。
[32] 距離測定対象に対して測定パルス波を出射する測定パルス波出射ユニットと、前 記測定パルス波が前記距離測定対象で反射して得られた反射パルス波を検出する 反射パルス波検出ユニットと、前記測定パルス波が前記測定パルス波出射ユニットか ら出射されたタイミングで第 1のパルス信号を取得し、前記反射パルス波が前記反射 パルス波検出ユニットにより検出されたタイミングで第 2のノ ルス信号を取得し、前記 第 1のパルス信号を取得したタイミング力 前記第 2のパルス信号を取得したタイミン グまでの時間差を測定する時間差測定装置と、前記時間差測定装置により求められ た時間差に基づいて、前記距離測定対象までの距離を求める距離演算部とを備え た距離測定装置において、
前記時間差測定装置は、請求項 1から 31のうちいずれか 1項に記載の時間差測定 装置であることを特徴とする距離測定装置。
[33] 略 π Z2[rad]の位相差を有し、周期が既知の少なくとも 2つの基準信号を発生し、 距離測定対象に対して測定パルス波を出射し、
前記測定パルス波の出射を検出したタイミングにおける前記 2つの基準信号の各 振幅を求め、
前記測定パルス波が前記距離測定対象で反射して得られた反射パルス波を検出 したタイミングにおける前記 2つの基準信号の各振幅を求め、
前記各基準信号ごとに各 2つずつ検出された振幅に基づいて、前記パルス波の各 検出タイミングごとの、前記基準信号の位相、およびこれら検出タイミング間での位相 差を求め、
前記検出された前記位相差について、前記 2つの基準信号間の誤差または少なく とも一方の基準信号の誤差に起因した誤差を補正し、
前記補正された後の位相差に基づ 、て、前記測定パルス波の検出タイミングから 前記反射パルス波の検出タイミングまでの時間差を求め、
前記時間差に基づ 、て、前記距離測定対象までの距離を求めることを特徴とする 距離測定方法。
周期が既知の単一の基準信号を発生し、
距離測定対象に対して測定パルス波を出射し、
前記測定パルス波の出射を検出し、
前記測定パルス波が前記距離測定対象で反射して得られた反射パルス波を検出 し、
前記測定パルスの前記出射の際の検出タイミングと、該測定パルスの検出タイミン ダカも前記基準信号の略 Z2[rad]の位相差に相当する時間だけ遅延させたタイミ ングである遅延タイミングとにお 、て、前記基準信号の振幅をそれぞれ求め、 前記反射パルス波の検出タイミングと、該反射パルス波の検出タイミング力 前記 基準信号の略 π Z2[rad]の位相差に相当する時間だけ遅延させたタイミングである 遅延タイミングとにおいて、前記基準信号の振幅をそれぞれ求め、
前記測定パルス波について検出された 2つの振幅と、前記反射パルス波について 検出された 2つの振幅とに基づいて、前記パルス波の各検出タイミングごとの、前記 基準信号の位相、およびこれら検出タイミング間での位相差を求め、
前記求められた位相差につ!、て、前記基準信号の誤差または前記位相差略 π / 2[rad]の誤差を補正し、
前記補正された後の位相差に基づ 、て、前記測定パルス波の検出タイミングから 前記反射パルス波の検出タイミングまでの時間差を求め、
前記時間差に基づ 、て、前記距離測定対象までの距離を求めることを特徴とする 距離測定方法。
PCT/JP2006/311767 2005-06-10 2006-06-12 時間差測定装置および距離測定装置並びに距離測定方法 WO2006132420A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800206258A CN101194183B (zh) 2005-06-10 2006-06-12 时间差测量装置和距离测量装置以及距离测量方法
US11/921,914 US7945821B2 (en) 2005-06-10 2006-06-12 Time lag measuring device, distance measuring apparatus and distance measuring method
EP06757252A EP1895322B1 (en) 2005-06-10 2006-06-12 Time difference measuring apparatus, distance measuring apparatus, and distance measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-171571 2005-06-10
JP2005171571A JP4878127B2 (ja) 2005-06-10 2005-06-10 時間差測定装置および距離測定装置並びに距離測定方法

Publications (1)

Publication Number Publication Date
WO2006132420A1 true WO2006132420A1 (ja) 2006-12-14

Family

ID=37498602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311767 WO2006132420A1 (ja) 2005-06-10 2006-06-12 時間差測定装置および距離測定装置並びに距離測定方法

Country Status (5)

Country Link
US (1) US7945821B2 (ja)
EP (1) EP1895322B1 (ja)
JP (1) JP4878127B2 (ja)
CN (1) CN101194183B (ja)
WO (1) WO2006132420A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589649A (zh) * 2012-01-19 2012-07-18 河北联合大学 双色激光料位计

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101470408B (zh) * 2007-12-29 2012-01-11 北京时代之峰科技有限公司 利用低频时钟的主动式测量方法及装置
EP2144087B1 (de) * 2008-07-11 2010-05-26 Pepperl + Fuchs GmbH Verfahren und Ultraschallsensor zur Höhenbestimmung von Objekten auf einer Transporteinrichtung
CN101420225B (zh) * 2008-12-03 2011-01-12 中国航天科技集团公司第五研究院第五〇四研究所 基于fpga的高精度时差校准方法
CN102025350B (zh) * 2009-09-18 2013-03-06 中芯国际集成电路制造(上海)有限公司 脉冲衰减环路及延迟测量装置
JP5666813B2 (ja) * 2010-03-15 2015-02-12 株式会社テセック 時間幅測定装置
JP5912234B2 (ja) * 2010-07-16 2016-04-27 株式会社トプコン 測定装置
TWI438445B (zh) * 2010-12-03 2014-05-21 Chroma Ate Inc Measurement method of signal delay time
US9042002B2 (en) * 2011-08-30 2015-05-26 Panasonic Intellectual Property Management Co., Ltd. Modulated signal detecting apparatus and modulated signal detecting method
CN102590808B (zh) * 2012-01-12 2013-12-18 重庆大学 基于载波调制原理的多测尺微波相位测距方法
JP6017916B2 (ja) * 2012-10-16 2016-11-02 株式会社豊田中央研究所 光検出器
US9784818B1 (en) * 2013-10-04 2017-10-10 National Technology & Engineering Solutions Of Sandia, Llc Time-dependent phase error correction using digital waveform synthesis
JP6410258B2 (ja) * 2015-03-02 2018-10-24 株式会社トプコン 光波距離計
US10031215B1 (en) * 2015-12-16 2018-07-24 The United States Of America As Represented By The Secretary Of The Navy Pulse timer providing accuracy in spatially local dimensioning and visualization
CN106153177B (zh) * 2016-08-25 2019-07-05 中国航空工业集团公司北京长城计量测试技术研究所 一种激光测振校准用大触发延迟的量子化测量方法
JP6933473B2 (ja) * 2017-03-10 2021-09-08 株式会社東芝 距離計測装置および距離画像撮影装置
CN108632979B (zh) * 2017-03-20 2022-04-05 中兴通讯股份有限公司 一种优化时间同步误差的方法、装置和设备
CN107436383B (zh) * 2017-08-22 2019-08-16 电子科技大学 一种高精度脉冲信号时差测量装置和测量方法
DE112018006163A5 (de) 2018-01-03 2020-09-03 Hybrid Lidar Systems Ag Anordnung und verfahren zur laufzeitmessung eines signals zwischen zwei ereignissen
KR102010172B1 (ko) * 2018-02-07 2019-08-12 한국과학기술원 레이저 펄스의 비행시간 검출을 이용하는 단차 높이 측정 시스템
CN109059799B (zh) * 2018-05-08 2024-03-22 安捷睿(厦门)机器人有限公司 一种激光三维扫描仪及其扫描方法和扫描控制装置
CN108872711A (zh) * 2018-05-11 2018-11-23 华中科技大学 一种基于同一交流电源的介质损耗同步测量方法
KR102196035B1 (ko) * 2018-12-26 2020-12-29 (주)미래컴퍼니 펄스 위상 이동을 이용한 3차원 거리측정 카메라의 비선형 거리 오차 보정 방법
CN110737189B (zh) * 2019-11-05 2021-02-09 中国电子科技集团公司第四十四研究所 脉冲激光间隔测量电路
CN111398979B (zh) * 2020-06-08 2020-10-16 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和相关测距系统
CN111830816B (zh) * 2020-06-28 2023-05-12 南京天朗防务科技有限公司 自适应定时方法、装置
CN112099036B (zh) * 2020-11-10 2021-03-23 深圳市汇顶科技股份有限公司 距离测量方法以及电子设备

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560271A (en) 1982-04-08 1985-12-24 Tokyo Kogaku Kikai Kabushiki Kaisha Optical distance-measuring method and apparatus therefor
JPS6263885A (ja) * 1985-08-21 1987-03-20 Yokogawa Electric Corp 時間幅計測装置
JPS6385489A (ja) * 1986-09-30 1988-04-15 Yokogawa Electric Corp 微小時間差計測装置
JPH0277673A (ja) * 1988-06-29 1990-03-16 Topcon Corp 時間差の高分解測定装置
US5218289A (en) 1991-06-18 1993-06-08 Thomson-Csf Electronic device for the measurement of time lags
JPH05231879A (ja) * 1992-02-20 1993-09-07 Okuma Mach Works Ltd 検出位置の補正方法
JPH08122465A (ja) * 1994-10-27 1996-05-17 Sony Tektronix Corp 時間測定装置
US5566139A (en) * 1993-09-20 1996-10-15 The United States Of America As Represented By The United States National Aeronautics And Space Administration Picosecond resolution sampling time interval unit
EP1321740A2 (en) 2001-12-18 2003-06-25 Kabushiki Kaisha Topcon Light-wave rangefinder using a pulse method
JP2004291495A (ja) 2003-03-27 2004-10-21 Seiko Epson Corp 液体噴射装置
JP2005169500A (ja) 2003-10-31 2005-06-30 General Electric Co <Ge> 融接法及び溶接物品
WO2006038559A1 (ja) * 2004-10-04 2006-04-13 Kabushiki Kaisha Topcon 時間差測定装置および測定方法並びに測距装置および測距方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950019772A (ko) * 1993-12-29 1995-07-24 김주용 위상 변화를 이용한 광학식 거리 측정 장치 및 그 방법
JP3636397B2 (ja) * 1996-04-04 2005-04-06 富士通株式会社 ジッタ抑圧回路
JP3835762B2 (ja) * 2002-06-26 2006-10-18 三井造船株式会社 誘導加熱装置
JP2004219333A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd エンコーダ出力信号補正装置
US7102306B2 (en) * 2003-03-17 2006-09-05 Matsushita Electric Industrial Co., Ltd. Brushless DC motor driving method and apparatus for it
JP4222892B2 (ja) * 2003-07-02 2009-02-12 日本電産サンキョー株式会社 誤差補正機能付エンコーダ
CN100523724C (zh) * 2003-10-24 2009-08-05 亚洲光学股份有限公司 雷射测距装置
JP2007234183A (ja) * 2006-03-03 2007-09-13 Funai Electric Co Ltd 光ディスク装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560271A (en) 1982-04-08 1985-12-24 Tokyo Kogaku Kikai Kabushiki Kaisha Optical distance-measuring method and apparatus therefor
JPS6263885A (ja) * 1985-08-21 1987-03-20 Yokogawa Electric Corp 時間幅計測装置
JPS6385489A (ja) * 1986-09-30 1988-04-15 Yokogawa Electric Corp 微小時間差計測装置
JP2916780B2 (ja) 1988-06-29 1999-07-05 株式会社トプコン 時間差の高分解測定装置
JPH0277673A (ja) * 1988-06-29 1990-03-16 Topcon Corp 時間差の高分解測定装置
US5218289A (en) 1991-06-18 1993-06-08 Thomson-Csf Electronic device for the measurement of time lags
JPH05231879A (ja) * 1992-02-20 1993-09-07 Okuma Mach Works Ltd 検出位置の補正方法
US5566139A (en) * 1993-09-20 1996-10-15 The United States Of America As Represented By The United States National Aeronautics And Space Administration Picosecond resolution sampling time interval unit
JPH08122465A (ja) * 1994-10-27 1996-05-17 Sony Tektronix Corp 時間測定装置
EP1321740A2 (en) 2001-12-18 2003-06-25 Kabushiki Kaisha Topcon Light-wave rangefinder using a pulse method
JP2004291495A (ja) 2003-03-27 2004-10-21 Seiko Epson Corp 液体噴射装置
JP2005169500A (ja) 2003-10-31 2005-06-30 General Electric Co <Ge> 融接法及び溶接物品
WO2006038559A1 (ja) * 2004-10-04 2006-04-13 Kabushiki Kaisha Topcon 時間差測定装置および測定方法並びに測距装置および測距方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1895322A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589649A (zh) * 2012-01-19 2012-07-18 河北联合大学 双色激光料位计

Also Published As

Publication number Publication date
EP1895322A4 (en) 2009-12-09
EP1895322B1 (en) 2012-11-28
CN101194183A (zh) 2008-06-04
JP2006343294A (ja) 2006-12-21
US7945821B2 (en) 2011-05-17
JP4878127B2 (ja) 2012-02-15
EP1895322A1 (en) 2008-03-05
CN101194183B (zh) 2012-05-30
US20090235127A1 (en) 2009-09-17

Similar Documents

Publication Publication Date Title
WO2006132420A1 (ja) 時間差測定装置および距離測定装置並びに距離測定方法
EP1808671B1 (en) Time difference measuring device, measuring method, distance measuring device, and distance measuring method
JP6436616B2 (ja) 計測装置、計測方法、および処理装置
EP2787326B1 (en) Encoder and method of outputting measurement value of position or angle
EP1321740B1 (en) Light-wave rangefinder using a pulse method
CN106123780A (zh) 非接触式空间曲线精密测量方法和装置
WO2015115054A1 (ja) 位置センサ
EP1931031A1 (en) Proximity sensor and proximity detection method
JP5227350B2 (ja) 変位量検出装置
JPH06241972A (ja) 化学センシング装置
EP0434030A1 (en) Pressure detector by use of quartz oscillator
CN217331319U (zh) 多回波跟踪的磁致伸缩液位计
JP4924980B2 (ja) 距離測定装置
KR100980168B1 (ko) 위상차 검출 장치 및 회전 위치 검출 장치
JP2001274482A (ja) レーザ光周波数測定装置、校正装置、レーザ光周波数測定方法及び校正方法
JPH10170652A (ja) パルス光時間間隔計測方式およびパルス光時間間隔計測方法
JPH06160196A (ja) 位相測定装置と距離測定装置
JP2532371B2 (ja) 変位量測定回路
JP2015145786A (ja) 位置センサ
JPH02292616A (ja) 位置検出装置
KR20090062628A (ko) 거리측정장치 및 방법
JPH02201106A (ja) 寸法測定装置
JP2005291929A (ja) 電磁誘導式エンコーダ
JPH10132927A (ja) 時間計測回路
JPH05340976A (ja) 計測装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680020625.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11921914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006757252

Country of ref document: EP