CN111398979B - 基于飞行时间的测距方法和相关测距系统 - Google Patents

基于飞行时间的测距方法和相关测距系统 Download PDF

Info

Publication number
CN111398979B
CN111398979B CN202010511457.4A CN202010511457A CN111398979B CN 111398979 B CN111398979 B CN 111398979B CN 202010511457 A CN202010511457 A CN 202010511457A CN 111398979 B CN111398979 B CN 111398979B
Authority
CN
China
Prior art keywords
proportion
time
pixels
sampling
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010511457.4A
Other languages
English (en)
Other versions
CN111398979A (zh
Inventor
李宗德
王浩任
杨孟达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co Ltd filed Critical Shenzhen Goodix Technology Co Ltd
Priority to CN202010511457.4A priority Critical patent/CN111398979B/zh
Publication of CN111398979A publication Critical patent/CN111398979A/zh
Application granted granted Critical
Publication of CN111398979B publication Critical patent/CN111398979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/36Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本申请公开了一种基于飞行时间的测距方法和基于飞行时间的测距系统。所述测距方法包括:从脉冲产生单元(110)间歇性地发送多个脉冲(PE),其中所述多个脉冲被目标物(102)反射而产生多个反射信号;使飞行时间传感器(100)让所述飞行时间传感器中的多个像素中各像素对第一比例的所述多个反射信号持续第一预定时间来执行第一信号采样,以及对第二比例的所述多个反射信号持续第二预定时间来执行第二信号采样,以产生对应所述多个像素的多个采样结果;根据所述多个采样结果(SR),得到对应所述多个像素的多个深度信息(DI)和多个亮度信息(LI);以及依据所述多个深度信息和所述多个亮度信息调整所述分配第一比例和所述第二比例。

Description

基于飞行时间的测距方法和相关测距系统
技术领域
本申请涉及测距和深度传感技术,尤其涉及一种基于飞行时间的测距方法,及其相关的测距系统。
背景技术
基于飞行时间(time of flight,TOF)的距离测量技术中,脉冲调制(pulsemodulation)通过光脉冲发送和接收的时间差来测量目标物的距离,具备了较简单的测量机制。然而,在高动态范围(high dynamic range, HDR)的应用中,现有的技术对于近距离过曝与远距离信号量不足的问题,仍有相当大的改善空间。因此,如何在进行基于飞行时间的距离测量时,使远近距离的信号量能尽量的达到平衡,已成为本领域亟需解决的问题之一。
发明内容
本申请的一实施例公开了一种基于飞行时间的测距方法,包括:从脉冲产生单元间歇性地发送多个脉冲,其中所述多个脉冲被目标物反射而产生多个反射信号;使飞行时间传感器让所述飞行时间传感器中的多个像素中各像素对第一特并比例的所述多个反射信号持续第一预定时间来执行第一信号采样,以及对第二比例的所述多个反射信号持续第二预定时间来执行第二信号采样,以产生对应所述多个像素的多个采样结果,其中所述第一预定时间的开始时间点和对应的所述脉冲的发送时间点具有第一时间差,以及所述第二预定时间的开始时间点和对应的所述脉冲的发送时间点具有第二时间差,且所述第一时间差小于所述第二时间差,以及所述第一信号采样对应第一深度范围,所述第二信号采样对应第二深度范围;根据所述多个采样结果,得到对应所述多个像素的多个深度信息和多个亮度信息;以及依据所述多个深度信息和所述多个亮度信息调整所述第一比例和所述第二比例。
本申请的另一实施例公开了一种基于飞行时间的测距系统,包括:脉冲产生单元;控制电路,耦接于所述脉冲产生单元,用以控制所述脉冲产生单元间歇性地发送多个脉冲,以及依据多个深度信息和多个亮度信息调整第一比例和第二比例,其中所述多个脉冲被目标物反射而产生多个反射信号;以及飞行时间传感器,包括具有多个像素的像素阵列,所述飞行时间传感器由所述控制电路所控制,用以让所述多个像素中各像素对所述第一比例的所述多个反射信号持续第一预定时间来执行第一信号采样,以及对所述第二比例的所述多个反射信号持续第二预定时间来执行第二信号采样,以产生对应所述多个像素的多个采样结果,其中所述第一预定时间的开始时间点和对应的所述脉冲的发送时间点具有第一时间差,以及所述第二预定时间的开始时间点和对应的所述脉冲的发送时间点具有第二时间差,且所述第一时间差小于所述第二时间差,以及所述第一信号采样对应第一深度范围,所述第二信号采样对应第二深度范围,所述飞行时间传感器并根据所述多个采样结果,得到对应所述多个像素的所述多个深度信息和所述多个亮度信息。
本申请所公开的基于飞行时间的测距方法及相关测距系统可以通过综合考虑深度信息和亮度信息,来分别调整针对不同距离所采取的信号采样的比例,来提升高动态范围采样的效能。
附图说明
图1是本申请基于飞行时间的测距系统的一实施例的功能方框示意图;
图2是图1所示的测距系统的像素阵列中单个像素的电路结构的一实施例的示意图;
图3是图2所示的像素所涉及的信号时序的一实施例的示意图;
图4是图2所示的像素所涉及的信号时序的另一实施例的示意图;
图5是于调整第一比例和第二比例之前,多个第一像素于亮度0到11的分布直方图以及多个第二像素于亮度0到11的分布直方图;
图6是于调整第一比例和第二比例之后,多个第一像素于亮度0到11的分布直方图以及多个第二像素于亮度0到11的分布直方图;
图7是相位为0度、90度、180度和270度的脉冲的示意图。
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本申请内容的不同特征。下文所述之元件/组件与配置的具体例子是用以简化本申请内容。当可想见,这些叙述仅为示例,其本意并非用于限制本申请内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的元件/组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本申请内容可能会在多个实施例中重复使用元件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「相同」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「相同」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「相同」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
本申请能够在进行基于飞行时间的距离测量时,综合考虑深度信息和亮度信息,来分别调整针对不同距离所采取的信号采样的比例,以避免盲目地配置造成过曝或过暗的问题。
图1是本申请基于飞行时间的测距系统的一实施例的功能方框示意图。测距系统100可用于探测目标物102与测距系统100之间的距离,需注意的是,目标物102与测距系统100之间的距离应小于或等于测距系统100的最大测量距离。举例来说(但本申请不限于此),测距系统100可以是三维成像系统或者深度传感系统,其可采用时间飞行法来测量周遭目标物的距离或深度,从而获得景深和三维图像信息。
值得注意的是,测距系统100可实施为多种不同类型的飞行时间测距系统,诸如基于飞行时间的光学测距系统、基于飞行时间的声波测距系统、基于飞行时间的雷达测距系统,或其他类型的飞行时间测距系统。为简洁起见,以下以测距系统100实施为光学测距系统的实施例来说明本申请的飞行时间测距方案。然而,本领域所属技术人员应可了解本申请的飞行时间测距方案可应用于任何基于飞行时间的测距系统。
测距系统100可包括(但不限于)一脉冲产生单元110、一控制电路120和一飞行时间传感器130。脉冲产生单元110用以间歇性地发送脉冲,其具有一脉冲长度T。在发送出一个脉冲之后,脉冲产生单元110会停止发送脉冲一段时间,而这段时间可远大于或大于脉冲长度T。一直到下一次启动时,脉冲产生单元110可再次发送一个脉冲。
于本申请中,测距系统100可以是基于飞行时间的光学测距系统,因此,脉冲产生单元110可由一光脉冲产生单元来实施,以产生一脉冲光信号EL。在本申请的第一种方案中,脉冲光信号EL可以是间歇产生的单个光脉冲。也就是说,所述光脉冲产生单元可间歇性地发送单个光脉冲,作为脉冲产生单元110间歇产生的单个脉冲。举例来说,脉冲产生单元110可包括(但不限于)一驱动电路和一发光单元(图1未示)。所述驱动电路用以驱动所述发光单元,使所述发光单元间歇性地发出单个光脉冲。所述发光单元可以是(但不限于)半导体激光器(又可称作激光二极管(Laser Diode,LD))、发光二极管(Light Emitting Diode,LED)或其他可以产生光脉冲的发光单元,其半导体激光器所产生的光脉冲是相干光(coherent light),而发光二极管所产生的光脉冲是非相干光(incoherent light)。
值得注意的是,脉冲产生单元110可产生其他类型的脉冲,诸如声波脉冲或电磁波脉冲。例如,在测距系统100实施为声波测距系统的实施例中,脉冲产生单元110可由一声波脉冲产生器来实施。所述声波脉冲产生器用以间歇性地发送单个声波脉冲(诸如超声波脉冲),作为脉冲产生单元110间歇产生的单个脉冲。又例如,在测距系统100实施为雷达测距系统的实施例中,脉冲产生单元110可由一电磁波脉冲产生器来实施。所述电磁波脉冲产生器用以间歇性地发送单个电磁波脉冲,作为脉冲产生单元110间歇产生的单个脉冲。
控制电路120耦接于脉冲产生单元110,用以控制脉冲产生单元110产生脉冲光信号EL。例如,控制电路120可控制脉冲产生单元110间歇性地发送单个光脉冲。又例如,控制电路120可控制脉冲产生单元110所包括的驱动电路,使所述驱动电路驱动脉冲产生单元110所包括的发光单元间歇性地发送单个光脉冲。飞行时间传感器130由控制电路120所控制,用以对一反射信号RL进行采样,以检测测距系统100(或飞行时间传感器130)与目标物102之间的距离,其中反射信号RL是脉冲光信号EL被目标物102反射而产生。在另外的实施例中,控制电路120可以是终端设备中的主控单元而不必包含在测距系统100之中。
于本申请中,飞行时间传感器130在可调控的预定时间TR(为方便说明,以时间长度标记为TR的波形来表示)内持续地根据一采样时间间隔执行多次的信号采样,以产生反射信号RL的采样结果,换句话说,在预定时间TR的范围内抵达飞行时间传感器130的反射信号RL均可被感测到。一般来说,由于从近处和远处反射回来的反射信号RL会具有不同的到达时间,因此一般为了提升动态范围,会将预定时间TR设定为大于或等于脉冲长度T,例如大于或等于脉冲长度T的若干倍,使来自近处和远处的反射信号RL都能被捕获,但缺点是所收到的来自近处的信息量往往远多于来自远处的信息量,造成远处的信息量容易受到背景光的影响,引发散粒噪声(shot noise)。因此,本申请中的预定时间TR为可调控的,其细节说明于后。
在执行多次的所述信号采样以产生所述采样结果之后,飞行时间传感器130可根据所述采样结果计算出反射信号RL与脉冲产生单元110所发送的脉冲光信号EL之间的相位偏移。举例来说,飞行时间传感器130可包括(但不限于)一像素阵列132和一处理电路134。像素阵列132包括多个像素,各像素可包括一光传感器以根据反射信号RL产生一光响应信号(photo response signal)。控制电路120可使各像素的光传感器选择性地将各像素相应的光响应信号输出到处理电路134。光传感器可以是光电二极管。
处理电路134可根据一采样控制信号SC,于预定时间TR中每隔所述采样时间间隔对各像素输出的光响应信号进行一次采样,并据以产生一采样结果SR,采样控制信号SC可由控制电路120产生。接下来,处理电路134可对采样结果SR进行信号处理,这些信号处理可以是诸如混频处理和离散傅里叶变换,以计算各像素所接收的反射信号RL的振幅(即亮度信息LI),及各像素所接收的反射信号RL与脉冲产生单元110所发送的脉冲光信号EL之间的相位偏移,从而检测出脉冲光信号EL的飞行时间,以及根据飞行时间计算出目标物102与参考位置的距離(即深度信息DI),并将亮度信息LI和深度信息DI传送至控制电路120,好让控制电路120据以控制脉冲产生单元110和像素阵列32,其细节说明于后。所述参考位置可以是(但不限于)测距系统100的位置。
为了方便说明,以下采用一种像素电路的实施方式来说明本申请所公开的飞行时间测距方案。然而,本发明并不以此为限。图2是图1所示的像素阵列132中单个像素的电路结构的一实施例的示意图。请连同图1参阅图2。于此实施例中,像素332包括(但不限于)一光传感器PD、一第一读出电路(诸如光电读出电路)333和一第二读出电路(诸如光电读出电路)334。光传感器PD(诸如光电二极管)用以进行光传感操作。例如,光传感器PD可传感反射信号RL以对应地产生一光响应信号PR,其中光响应信号PR可通过第一读出电路333和第二读出电路334其中的至少一个读出电路输出。在一些实施例中,光传感器PD可将接收到的光信号转换成对应大小的光电流信号,即光响应信号PR可以是表征光信号大小的电流信号,第一读出电路333/第二读出电路334用于读出所述光电流信号。
第一读出电路333可根据一第一控制信号TX1选择性地传输光传感器PD所产生的光响应信号PR,以产生一第一像素输出PO1,其中第一控制信号TX1可由控制电路120来提供。也就是说,像素332可根据第一控制信号TX1选择性地将光响应信号PR通过所述第一读出电路传送到处理电路130,以产生第一像素输出PO1并输出至处理电路130。第二读出电路334可根据一第二控制信号TX2选择性地传输光传感器PD所产生的光响应信号PR,以产生一第二像素输出PO2,其中第二控制信号TX2可由控制电路120来提供,并具有与第一控制信号TX1不同的相位,在一个具体例子中,TX1与TX2的相位差为180°。像素332可根据第二控制信号TX2选择性地将光响应信号PR通过所述第二读出电路传送到处理电路130,以产生第二像素输出PO2并输出至处理电路130。在此实施例中,第一控制信号TX1和第二控制信号TX2可由图1所示的控制电路120来提供。
于此实施例中,第一读出电路333可包括(但不限于)一第一复位晶体管MR1、一第一传输晶体管MT1、一第一输出晶体管MF1和一第一读取晶体管MW1。第二读出电路334包括(但不限于)一第二复位晶体管MR2、一第二传输晶体管MT2、一第二输出晶体管MF2和一第二读取晶体管MW2。第一复位晶体管MR1和第二复位晶体管MR2均根据一复位信号RST来分别复位一第一浮动扩散节点FD1和一第二浮动扩散节点FD2,其中复位信号RST可由控制电路120来提供。第一传输晶体管MT1和第二传输晶体管MT2均耦接于光传感器PD,分别根据第一控制信号TX1和第二控制信号TX2来导通,即第一传输晶体管MT1和第二传输晶体管MT2分别受控于第一控制信号TX1和第二控制信号TX2,以实现与光传感器PD的连接与断开。第一输出晶体管MF1和第一输出晶体管MF2分别用以放大第一浮动扩散节点FD1和第二浮动扩散节点FD2的电压信号,以分别产生一第一像素输出PO1和一第二像素输出PO2。第一读取晶体管MW1和第二读取晶体管MW2均根据一选择信号SEL,分别将第一像素输出PO1和第二像素输出PO2选择性地输出,其中选择信号SEL可由控制电路120来提供。
请一并参阅图1、图2和图3。图3是图2所示的像素332所涉及的信号时序的一实施例的示意图。图3中,脉冲产生单元110共发送两次脉冲PE,对应地,传感器130会进行两次的采样,两次采样的方式大致相同,但时间点不同,使前一次采样可针对反射信号RL中较快反射至传感器130的部分进行采样,后一次采样可针对反射信号RL中较慢反射至传感器130的部分进行采样。
进一步来说,以第一个脉冲PE来说,第一个脉冲PE于时间点t1发出后,经过反射成为反射信号RL,由于反射信号RL带有第一个脉冲PE从不同深度反射回来的能量,从近处反射回来的能量会较从远处反射回来的能量更快抵达像素332。也就是说,理论上从时间点t1之后任何时间都有可能带有第一个脉冲PE的反射信号RL的能量(请参考图3中反射信号RL在时间点t1之后的标示)。一般在高动态范围的应用中,可以增加每次采样的预定时间TR的长度,使采样到的信息量对应更广的深度范围,但采样到的信息中,反射自远处的信息会远远的少于反射自近处的信息,造成反射自远处的信息容易受到噪声干扰。
本实施例中,针对不同的脉冲PE进行不同的目标深度范围采样。例如针对图3中的第一个脉冲PE,控制电路120使传感器130对在预定时间TR1的时间范围内进行第一信号采样;对图3中的第二个脉冲PE,控制电路120使传感器130对在预定时间TR2的时间范围内进行第二信号采样。其中预定时间TR1相对于第一个脉冲PE的发出时间晚了第一时间差tX,预定时间TR2相对于第二个脉冲PE的发出时间晚了第一时间差tX+2TN,预定时间TR1和预定时间TR2的长度相同。因此,所述第一信号采样可以在预定时间TR1中采样到第一个脉冲PE从较近处反射回传感器130的能量;所述第二信号采样可以在预定时间TR2中采样到第二个脉冲PE从较远处反射回传感器130的能量,两者的目标采样深度不同且不重复。
在本实施例中,会发射多次的脉冲PE(例如上千次),并依据预定时间TR1或预定时间TR2来进行所述第一信号采样或所述第二信号采样。具体来说,可以使多次的脉冲PE中第一比例的脉冲PE对应所述第一信号采样,以及使多次的脉冲PE中第二比例的脉冲PE对应所述第二信号采样,例如依据所述第一比例和第二比例,使对应所述第一信号采样的脉冲PE的数目少于对应所述第二信号采样的脉冲PE的数目,以平衡来自近处和远处的能量,使来自近处的能量不会过度曝光,并拉高来自远处的能量。举例来说,80%的脉冲PE对应所述第二信号采样来针对远处信息进行采样;剩下20%的脉冲PE对应所述第一信号采样来针对进处信息进行采样。所述第一比例和所述第二比例可分别独立调整,其详细的调整方式将说明如后。
图3中第一时间差tX可设定为例如脉冲长度T的一半,但本申请不以此限。所述第一时间差和所述第二时间差的差也可以大于或小于两个采样区间TN,但应不小于采样区间TN。预定时间TR1可以包含两个采样区间TN(即时间点t2至时间点t4和时间点t4至时间点t6);预定时间TR2可以包含两个采样区间TN(即时间点t10至时间点t12和时间点t12至时间点t14),其中各采样区间TN的时间长度等于脉冲长度T。第一控制信号TX1于各采样区间TN的波形相同;第二控制信号TX2于各采样区间TN的波形相同。第二控制信号TX2和第一控制信号TX1之间可具有180度的相位差。
在某些实施例中,可以依据所需要的动态范围调整预定时间的长度,且不同类型的信号采样所针对的目标深度范围也可以彼此重叠。请参考图4,预定时间TR3可用于第三信号采样,预定时间TR3可以包含4个采样区间TN,例如预定时间TR3从时间点t2开始持续4个采样区间TN,因此预定时间TR3便可以同时包括预定时间TR1和预定时间TR2所针对的动态范围。换句话说,所述第三信号采样的目标深度范围为所述第一信号采样和所述第二信号采样的集合。因此,可以任意地依动态范围的需求来使多次的脉冲PE去对应不同类型的信号采样,且信号采样的类型数目没有限制,例如在某些实施例中可以依据所述第一比例和所述第二比例来使15%的脉冲PE对应所述第三信号采样,85%的脉冲PE对应所述第二信号采样,由于所述第三信号采样的目标深度范围完全包含了所述第一信号采样和所述第二信号采样,因此实质上等同于使15%的脉冲PE对应所述第一信号采样,100%的脉冲PE对应所述第二信号采样;或使10%的脉冲PE对应所述第一信号采样,10%的脉冲PE对应所述第三信号采样,80%的脉冲PE对应所述第二信号采样,实质上等同于使20%的脉冲PE对应所述第一信号采样,90%的脉冲PE对应所述第二信号采样。
另外,于各采样区间TN中每隔所述采样时间间隔对各像素的输出进行一次采样,其中所述采样时间间隔可以是脉冲长度T的四分之一。然而,本申请并不以此为限,所述采样时间间隔也可以是脉冲长度T的八分之一或十六分之一。
如前所述,图3中的所述第一信号采样可以在预定时间TR1中采样到第一个脉冲PE从较近处反射回传感器130的能量;所述第二信号采样可以在预定时间TR2中采样到第二个脉冲PE从较远处反射回传感器130的能量,两者的目标采样深度不同且不重复。换句话说,所述第一信号采样对应了第一深度范围,例如距离测距系统100为5到10公尺的深度范围;所述第二信号采样对应了第二深度范围,例如距离测距系统100为10到20公尺的深度范围。
在测距系统100尚未得知所欲进行测距的场景的任何信息时,会先使用预设的第一比例和第二比例来进行所述第一信号采样和所述第二信号采样。举例来说,预设的第一比例和第二比例可以完全依据深度范围来设定,例如所述第一信号采样是针对近距离的采样,所述第二信号采样是针对远距离的采样,则预设的第一比例和第二比例会给予所述第二信号采样较多的比重。但精确地来看,这样的配置不一定是正确的,例如在所欲进行测距的场景中,远距离的物体具有非常高的亮度,而近距离的物体反而具有非常低的亮度。
因此,在使用预设的第一比例和第二比例来进行所述第一信号采样和所述第二信号采样后,处理电路134从像素阵列132得到各像素的采样结果并计算出各像素的深度信息DI和亮度信息LI,并传送至控制电路120,控制电路120便可依据深度信息DI和亮度信息LI调整第一比例和第二比例。具体来说,控制电路120会依据各像素的深度信息DI,来将各像素分类为第一像素和第二像素,分别对应至所述第一深度范围或所述第二深度范围。也就是说,深度信息DI落于所述第一深度范围的像素会被归类为所述第一像素;深度信息DI落于所述第二深度范围的像素会被归类为所述第二像素。并且,控制电路将所述第一像素所带有的亮度信息LI归类为第一亮度信息,以及将所述第二像素所带有的亮度信息LI归类为第二亮度信息。
假设所有像素皆属于所述第一像素,则可将所述第一比例调至最高,也就是可完全忽视所述第二信号采样。反之,如果所有像素皆属于所述第二像素,则将第二比例调至最高。
假设所述第一像素和所述第二像素皆有多个,则控制电路120会依据各第一像素的亮度信息LI来判断是否要加重或减轻所述第一信号采样的比重;以及依据各第二像素的亮度信息LI来判断是否要加重或减轻所述第二信号采样的比重。在本实施例中,控制电路120针对各第一像素的亮度信息LI进行统计,举例来说,依据各第一像素的亮度信息LI,将各第一像素对应至预设的多个亮度区间的其中之一,如图5的上方图表所示,有12个连续且互不重叠的区间,代表亮度0到11,则依据各第一像素的亮度信息LI来统计各区间对应至多少个第一像素,并得到统计直方图。类似地,图5的下方图表代表各第二像素的亮度信息LI的统计直方图。
表1为多个第一像素于亮度0到11的分布数目;表2为多个第二像素于亮度0到11的分布数目。
Figure 401348DEST_PATH_IMAGE001
表一
Figure 677345DEST_PATH_IMAGE002
表二
依据表一及图5里的上方图绘示的情况,各第一像素的亮度信息LI的统计直方图显示出,依据预设的第一比例和第二比例进行所述第一信号采样有过度曝光的倾向,也就是亮度偏高的像素比例过高;而依据表二及图5里的下方图绘示的情况,各第二像素的亮度信息LI的统计直方图显示出,依据预设的第一比例和第二比例进行所述第二信号采样有曝光不足(过暗)的倾向,也就是亮度偏低的像素比例过高。
控制电路120可设定若干预设的参考值来作为判定是否要调整所述第一比例和所述第二比例的依据。例如当多个第一亮度信息中超过第一临界值的比例高于第一预设值(例如总个数的10%),则降低所述第一比例;当所述多个第二亮度信息中超过所述第一临界值的比例高于所述第一预设值,降低所述第二比例;当所述多个第一亮度信息中低于第二临界值的比例高于第二预设值,提高所述第一比例;以及当所述多个第二亮度信息中超过所述第二临界值的比例高于所述第二预设值,提高所述第二比例。
因此,假设所述第一临界值为亮度9,第二临界值为亮度2,第一预设值和第二预设值皆为总个数的10%,则依据表1,超过亮度9的第一像素的个数为230,占总个数470的约49%,因此控制电路120判断需降低所述第一比例;又则依据表2,低于亮度2的第一像素的个数为200,占总个数375的约53%,因此控制电路120判断需提高所述第二比例。
在某些实施例中,控制电路120亦可以使用其他的机制来对表1和表2的统计值加以计算以决定如何调整所述第一比例和所述第二比例,例如也可以直接计算所有像素的平均亮度,若高于第三临界值则降低对应的信号采样的比例,若低于第四临界值则提高对应的信号采样的比例。
因此,假设所述第三临界值为亮度8,第二临界值为亮度1,则依据表3,470个像素亮度的平均值为9,因此控制电路120判断需降低所述第一比例;依据表2,470个像素亮度的平均值为1.6,因此控制电路120判断需提高所述第二比例。
经过上述方式,控制电路120可更新所述第一比例和所述第二比例,使后续的测距操作得到的结果更为平衡,如图6里的上方图所示,各第一像素的亮度信息LI的统计直方图显示出,依据经过控制电路120调整后的第一比例和第二比例进行所述第一信号采样已经没有过度曝光或曝光不足的情况,也就是亮度适中的像素比例最高;如图6里的下方图所示,各第二像素的亮度信息LI的统计直方图显示出,依据经过控制电路120调整后的第一比例和第二比例进行所述第二信号采样也已经没有过度曝光或曝光不足的情况,也就是亮度适中的像素比例最高。
在某些实施例中,控制电路120可实时地依据处理电路134传送来的深度信息DI和亮度信息LI来更新所述第一比例和所述第二比例。在某些实施例中,控制电路120亦可只更新一次所述第一比例和所述第二比例并持续使用直到测距操作结束。此外,针对有超过两种类型的信号采样的情况,亦可使用上述的方式来设定多个类型的信号采样的比例。
在某些实施例中,如图7所示,脉冲产生单元110会间歇性地发送多个相位为0度的脉冲PE,之后再间歇性地发送多个相位为90度的脉冲PE,之后再间歇性地发送多个相位为180度的脉冲PE,之后再间歇性地发送多个相位为270度的脉冲PE。由于四种相位的脉冲PE彼此间具有相位差,也就是反射信号RL到达像素阵列132的时间先天就有先后的差异,因此若使用针对0度的脉冲PE设计的信号采样配置方式(如针对0度的脉冲PE所得到的最佳化的第一比例和第二比例)使用在相位为90、180或270度的脉冲PE,效果会打折扣。因此,本申请的一实施例中,会针对不同相位的脉冲PE分别计算信号采样配置方式,如针对90、180和270度的脉冲PE分别依据前述的方法找出第一比例和第二比例。
上文的叙述简要地提出了本申请某些实施例的特征,使本领域的技术人员可更全面地理解本申请的多个层面。本领域的技术人员应可了解,其可轻易地利用本申请作为基础,来设计或更动其他流程与结构,以实现与上文所述的实施方式相同的目的和/或达到相同的优点。本领域的技术人员应当明白,这些等效的实施方式仍属于本申请的精神与范围,且其可进行各种改变、替代与更改,而不会悖离本申请的精神与范围。

Claims (26)

1.一种基于飞行时间的测距方法,其特征在于,包括:
从脉冲产生单元间歇性地发送多个脉冲,其中所述多个脉冲被目标物反射而产生多个反射信号;
使飞行时间传感器让所述飞行时间传感器中的多个像素中各像素对第一比例的所述多个反射信号持续第一预定时间来执行第一信号采样,以及对第二比例的所述多个反射信号持续第二预定时间来执行第二信号采样,以产生对应所述多个像素的多个采样结果,其中所述第一预定时间的开始时间点和对应的所述脉冲的发送时间点具有第一时间差,以及所述第二预定时间的开始时间点和对应的所述脉冲的发送时间点具有第二时间差,且所述第一时间差小于所述第二时间差,以及所述第一信号采样对应第一深度范围,所述第二信号采样对应第二深度范围;
根据所述多个采样结果,得到对应所述多个像素的多个深度信息和多个亮度信息;以及
依据所述多个深度信息和所述多个亮度信息调整所述第一比例和所述第二比例。
2.如权利要求1所述的测距方法,其中依据所述多个深度信息和所述多个亮度信息调整所述第一比例和所述第二比例的步骤包括:
依据对应所述多个像素的所述多个深度信息、所述第一深度范围和所述第二深度范围,来将对应所述多个像素的所述多个亮度信息分类为多个第一亮度信息和多个第二亮度信息;以及
依据所述多个第一亮度信息和所述多个第二亮度信息来调整所述第一比例和所述第二比例。
3.如权利要求2所述的测距方法,其中依据对应所述多个像素的所述多个深度信息、所述第一深度范围和所述第二深度范围,来将对应所述多个像素的所述多个亮度信息分类为所述多个第一亮度信息和所述多个第二亮度信息的步骤包括:
将所述多个像素中,具有落于所述第一深度范围的深度信息的多个像素对应的多个亮度信息归类为所述多个第一亮度信息;以及
将所述多个像素中,具有落于所述第二深度范围的深度信息的多个像素对应的多个亮度信息归类为所述多个第二亮度信息。
4.如权利要求2所述的测距方法,其中依据所述多个第一亮度信息和所述多个第二亮度信息来调整所述第一比例和所述第二比例的步骤包括:
当所述多个第一亮度信息中超过第一临界值的比例高于第一预设值,降低所述第一比例;以及
当所述多个第二亮度信息中超过所述第一临界值的比例高于所述第一预设值,降低所述第二比例。
5.如权利要求2所述的测距方法,其中依据所述多个第一亮度信息和所述多个第二亮度信息来调整所述第一比例和所述第二比例的步骤另包括:
当所述多个第一亮度信息中低于第二临界值的比例高于第二预设值,提高所述第一比例;以及
当所述多个第二亮度信息中超过所述第二临界值的比例高于所述第二预设值,提高所述第二比例。
6.如权利要求1所述的测距方法,其中所述第一预定时间包括至少一采样区间;所述第二预定时间包括至少一所述采样区间,所述采样区间具有固定的时间长度。
7.如权利要求6所述的测距方法,其中所述采样区间的时间长度等于所述多个脉冲中各脉冲的脉冲长度。
8.如权利要求7所述的测距方法,其中所述第二时间差和所述第一时间差的差至少为所述采样区间的时间长度。
9.如权利要求7所述的测距方法,其中所述第一预定时间和所述第二预定时间包括相同数目的所述采样区间。
10.如权利要求7所述的测距方法,其中所述第一预定时间包括的所述采样区间的数目大于所述第二预定时间包括的所述采样区间的数目。
11.如权利要求1所述的测距方法,其中所述第一深度范围和所述第二深度范围不重叠。
12.如权利要求1所述的测距方法,其中所述第一深度范围和所述第二深度范围部分重叠。
13.如权利要求1所述的测距方法,另包括:
从所述脉冲产生单元间歇性地发送多个延迟脉冲,其中所述多个延迟脉冲被所述目标物反射而产生多个延迟反射信号,且所述多个延迟脉冲和所述多个脉冲的相位差是90、180或270度;以及
使所述飞行时间传感器让所述飞行时间传感器中的所述多个像素中各像素对第三比例的所述多个延迟反射信号执行所述第一信号采样,以及对第四比例的所述多个延迟反射信号执行所述第二信号采样,以产生对应所述多个像素的多个延迟采样结果,其中所述第三比例和所述第一比例不同,以及所述第四比例和所述第二比例不同;
根据所述多个延迟采样结果,得到对应所述多个像素的多个延迟深度信息和多个延迟亮度信息;以及
依据所述多个延迟深度信息和所述多个延迟亮度信息调整所述第三比例和所述第四比例。
14.一种基于飞行时间的测距系统,其特征在于,包括:
脉冲产生单元;
控制电路,耦接于所述脉冲产生单元,用以控制所述脉冲产生单元间歇性地发送多个脉冲,以及依据多个深度信息和多个亮度信息调整第一比例和第二比例,其中所述多个脉冲被目标物反射而产生多个反射信号;以及
飞行时间传感器,包括具有多个像素的像素阵列,所述飞行时间传感器由所述控制电路所控制,用以让所述多个像素中各像素对所述第一比例的所述多个反射信号持续第一预定时间来执行第一信号采样,以及对所述第二比例的所述多个反射信号持续第二预定时间来执行第二信号采样,以产生对应所述多个像素的多个采样结果,其中所述第一预定时间的开始时间点和对应的所述脉冲的发送时间点具有第一时间差,以及所述第二预定时间的开始时间点和对应的所述脉冲的发送时间点具有第二时间差,且所述第一时间差小于所述第二时间差,以及所述第一信号采样对应第一深度范围,所述第二信号采样对应第二深度范围,所述飞行时间传感器并根据所述多个采样结果,得到对应所述多个像素的所述多个深度信息和所述多个亮度信息。
15.如权利要求14所述的测距系统,其中所述控制电路另用以:
依据对应所述多个像素的所述多个深度信息、所述第一深度范围和所述第二深度范围,来将对应所述多个像素的所述多个亮度信息分类为多个第一亮度信息和多个第二亮度信息;以及
依据所述多个第一亮度信息和所述多个第二亮度信息来调整所述第一比例和所述第二比例。
16.如权利要求15所述的测距系统,其中所述控制电路另用以:将所述多个像素中,具有落于所述第一深度范围的深度信息的多个像素对应的多个亮度信息归类为所述多个第一亮度信息;以及
将所述多个像素中,具有落于所述第二深度范围的深度信息的多个像素对应的多个亮度信息归类为所述多个第二亮度信息。
17.如权利要求15所述的测距系统,其中所述控制电路另用以:
当所述多个第一亮度信息中超过第一临界值的比例高于第一预设值,降低所述第一比例;以及
当所述多个第二亮度信息中超过所述第一临界值的比例高于所述第一预设值,降低所述第二比例。
18.如权利要求15所述的测距系统,其中所述控制电路另用以:
当所述多个第一亮度信息中低于第二临界值的比例高于第二预设值,提高所述第一比例;以及
当所述多个第二亮度信息中超过所述第二临界值的比例高于所述第二预设值,提高所述第二比例。
19.如权利要求14所述的测距系统,其中所述第一预定时间包括至少一采样区间;所述第二预定时间包括至少一所述采样区间,所述采样区间具有固定的时间长度。
20.如权利要求19所述的测距系统,其中所述采样区间的时间长度等于所述多个脉冲中各脉冲的脉冲长度。
21.如权利要求20所述的测距系统,其中所述第二时间差和所述第一时间差的差至少为所述采样区间的时间长度。
22.如权利要求20所述的测距系统,其中所述第一预定时间和所述第二预定时间包括相同数目的所述采样区间。
23.如权利要求20所述的测距系统,其中所述第一预定时间包括的所述采样区间的数目大于所述第二预定时间包括的所述采样区间的数目。
24.如权利要求14所述的测距系统,其中所述第一深度范围和所述第二深度范围不重叠。
25.如权利要求14所述的测距系统,其中所述第一深度范围和所述第二深度范围部分重叠。
26.如权利要求14所述的测距系统,其中所述控制电路进一步控制所述脉冲产生单元间歇性地发送多个延迟脉冲,以及依据多个延迟深度信息和多个延迟亮度信息调整第三比例和第四比例,其中所述多个延迟脉冲被所述目标物反射而产生多个延迟反射信号,且所述多个延迟脉冲和所述多个脉冲的相位差是90、180或270度;以及所述飞行时间传感器进一步让所述飞行时间传感器中的所述多个像素中各像素对所述第三比例的所述多个延迟反射信号执行所述第一信号采样,以及对所述第四比例的所述多个延迟反射信号执行所述第二信号采样,以产生对应所述多个像素的多个延迟采样结果,其中所述第三比例和所述第一比例不同,以及所述第四比例和所述第二比例不同,所述飞行时间传感器并根据所述多个延迟采样结果,得到对应所述多个像素的所述多个延迟深度信息和所述多个延迟亮度信息。
CN202010511457.4A 2020-06-08 2020-06-08 基于飞行时间的测距方法和相关测距系统 Active CN111398979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010511457.4A CN111398979B (zh) 2020-06-08 2020-06-08 基于飞行时间的测距方法和相关测距系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010511457.4A CN111398979B (zh) 2020-06-08 2020-06-08 基于飞行时间的测距方法和相关测距系统

Publications (2)

Publication Number Publication Date
CN111398979A CN111398979A (zh) 2020-07-10
CN111398979B true CN111398979B (zh) 2020-10-16

Family

ID=71437638

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010511457.4A Active CN111398979B (zh) 2020-06-08 2020-06-08 基于飞行时间的测距方法和相关测距系统

Country Status (1)

Country Link
CN (1) CN111398979B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111929662B (zh) * 2020-10-12 2020-12-15 光梓信息科技(上海)有限公司 感测装置
CN111965660B (zh) * 2020-10-26 2021-02-23 深圳市汇顶科技股份有限公司 飞行时间传感器、测距系统及电子装置
CN115088018A (zh) * 2021-01-15 2022-09-20 谷歌有限责任公司 用于模拟光飞行的系统和方法
TWI762387B (zh) * 2021-07-16 2022-04-21 台達電子工業股份有限公司 飛行測距裝置及其檢測方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194183A (zh) * 2005-06-10 2008-06-04 株式会社拓普康 时间差测量装置和距离测量装置以及距离测量方法
CN107850668A (zh) * 2016-02-23 2018-03-27 索尼公司 测距模块、测距系统和控制测距模块的方法
CN109313264A (zh) * 2018-08-31 2019-02-05 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和测距系统
CN110168398A (zh) * 2018-07-18 2019-08-23 深圳市汇顶科技股份有限公司 飞时测距系统及校正方法
CN110456380A (zh) * 2019-07-31 2019-11-15 炬佑智能科技(苏州)有限公司 飞行时间传感相机及其深度检测方法
CN110574364A (zh) * 2019-07-29 2019-12-13 深圳市汇顶科技股份有限公司 三维图像传感器以及相关三维图像传感模组及手持装置
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法
CN110988840A (zh) * 2019-11-01 2020-04-10 青岛小鸟看看科技有限公司 飞行时间的获取方法、装置及电子设备
EP3647813A1 (en) * 2018-10-31 2020-05-06 Infineon Technologies AG Image sensor with interleaved hold for single-readout depth measurement
CN111208528A (zh) * 2018-11-16 2020-05-29 精準基因生物科技股份有限公司 飞时测距传感器以及飞时测距方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101194183A (zh) * 2005-06-10 2008-06-04 株式会社拓普康 时间差测量装置和距离测量装置以及距离测量方法
CN107850668A (zh) * 2016-02-23 2018-03-27 索尼公司 测距模块、测距系统和控制测距模块的方法
CN110168398A (zh) * 2018-07-18 2019-08-23 深圳市汇顶科技股份有限公司 飞时测距系统及校正方法
CN109313264A (zh) * 2018-08-31 2019-02-05 深圳市汇顶科技股份有限公司 基于飞行时间的测距方法和测距系统
EP3647813A1 (en) * 2018-10-31 2020-05-06 Infineon Technologies AG Image sensor with interleaved hold for single-readout depth measurement
CN111208528A (zh) * 2018-11-16 2020-05-29 精準基因生物科技股份有限公司 飞时测距传感器以及飞时测距方法
CN110574364A (zh) * 2019-07-29 2019-12-13 深圳市汇顶科技股份有限公司 三维图像传感器以及相关三维图像传感模组及手持装置
CN110456380A (zh) * 2019-07-31 2019-11-15 炬佑智能科技(苏州)有限公司 飞行时间传感相机及其深度检测方法
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法
CN110988840A (zh) * 2019-11-01 2020-04-10 青岛小鸟看看科技有限公司 飞行时间的获取方法、装置及电子设备

Also Published As

Publication number Publication date
CN111398979A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN111398979B (zh) 基于飞行时间的测距方法和相关测距系统
US20210018623A1 (en) Time-of-flight based distance measuring method and distance measuring system
CN110609293B (zh) 一种基于飞行时间的距离探测系统和方法
US10775507B2 (en) Adaptive transmission power control for a LIDAR
CN111427052B (zh) 基于飞行时间的测距方法和相关测距系统
JP4488170B2 (ja) 三次元距離画像を記録するための方法及び装置
US20190086522A1 (en) Distance measuring device
US9927516B2 (en) Distance measuring apparatus and distance measuring method
CN110456370B (zh) 飞行时间传感系统及其测距方法
US8334496B2 (en) 3D active imaging device with a circuit for integrating and timestamping incident radiation on a photosensitive element
CN110456369B (zh) 飞行时间传感系统及其测距方法
US8773668B2 (en) Displacement sensor
WO2021248273A1 (zh) 基于飞行时间的测距方法和相关测距系统
US20210405162A1 (en) Time-of-flight distance measuring methods and related distance measuring systems
CN111366945A (zh) 基于飞行时间的测距方法和相关测距系统
CN210579398U (zh) 光源控制装置以及飞行时间传感器
WO2021227203A1 (zh) 探测单元、探测装置及方法
CN111837053B (zh) 基于飞行时间的测距方法和测距系统
US20230082977A1 (en) Apparatus and method for time-of-flight sensing of a scene
CN114598807B (zh) 照相机及其自动曝光方法及电脑可读取存储介质
US20230071101A1 (en) Apparatus and method for sensing a scene
CN117930256A (zh) 一种脉冲式iToF激光雷达的距离选通探测装置及方法
JP2022191793A (ja) 距離画像撮像装置及び距離画像撮像方法
Dabidian et al. Direct Time-of-Flight (d-ToF) Pulsed LiDAR Sensor with Simultaneous Noise and Interference Suppression
JP2022124821A (ja) 測距センサ及び測距装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant