WO2021227203A1 - 探测单元、探测装置及方法 - Google Patents

探测单元、探测装置及方法 Download PDF

Info

Publication number
WO2021227203A1
WO2021227203A1 PCT/CN2020/097333 CN2020097333W WO2021227203A1 WO 2021227203 A1 WO2021227203 A1 WO 2021227203A1 CN 2020097333 W CN2020097333 W CN 2020097333W WO 2021227203 A1 WO2021227203 A1 WO 2021227203A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
signal
phase
exposure
circuit
Prior art date
Application number
PCT/CN2020/097333
Other languages
English (en)
French (fr)
Inventor
雷述宇
Original Assignee
宁波飞芯电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波飞芯电子科技有限公司 filed Critical 宁波飞芯电子科技有限公司
Priority to US17/924,528 priority Critical patent/US20230184940A1/en
Publication of WO2021227203A1 publication Critical patent/WO2021227203A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/703SSIS architectures incorporating pixels for producing signals other than image signals
    • H04N25/704Pixels specially adapted for focusing, e.g. phase difference pixel sets

Definitions

  • This application relates to the field of detection technology, and in particular to a detection unit, detection device and method.
  • DTOF direct-TOF
  • the emitted light signal is periodically modulated, and the phase of the reflected light signal relative to the emitted light signal is modulated.
  • the measurement technique in which the delay is measured and the flight time is calculated by the phase delay is called the ITOF (Indirect-TOF) technique.
  • ITOF Indirect-TOF
  • modulation and demodulation it can be divided into continuous wave (CW) modulation and demodulation mode and pulse modulation (Pulse Modulated, PM) modulation and demodulation mode.
  • CW continuous wave
  • PM Pulse Modulated
  • the ITOF scheme can also achieve high precision and high Sensitive distance detection program, so the application of ITOF program has also been more widely used.
  • the distance information of the target can be obtained according to the phase ranging algorithm.
  • the phase ranging algorithm For example, the simplest two-phase method, Or you can also use a three-phase four-phase method or even a five-phase scheme to obtain distance information.
  • a four-phase algorithm is used as an example. At least two exposures are required (in order to ensure measurement accuracy, four exposures are usually required) In order to complete the collection of four phase data and output a frame of depth image, it is difficult to obtain a higher frame rate.
  • the detection device and the detected object have a certain relative speed, it will become very important to quickly and accurately obtain and process the distance data, especially when the detection device is In the case of in-vehicle equipment, fast and accurate distance information will be very helpful for users to achieve fully automated driving in fast driving, while also ensuring the safety of automated driving.
  • the purpose of this application is to provide a detection unit in view of the above-mentioned shortcomings in the prior art, so as to solve the technical problem that the existing detection unit cannot cope with the high-precision and rapid detection of multiple targets.
  • an embodiment of the present application provides a detection pixel unit, including: a photosensitive module that receives light emitted by a light source to perform exposure processing on the pixel;
  • a processing module which can process the exposure to obtain an exposure signal
  • It also includes a first circuit and a second circuit configured to convert incident light into respective electrical signals, wherein the first circuit is configured to receive a first modulation signal, and the second circuit is configured to receive a second modulation signal, wherein, The first circuit and the second circuit are configured to generate respective electrical signals according to the first modulation signal and the second modulation signal;
  • the processing module receives the first signal and can be electrically connected to the light source to emit light to illuminate the object to be detected. At the same time, the processing module can also be electrically connected to the photosensitive module, and the photosensitive module can receive and emit light from the light source. A plurality of received control signals with the same phase or different phases of the optical signal, and at least one electrical signal corresponding to the received control signal of the same phase is obtained through the two circuits;
  • the information acquisition module can obtain the target information of the detected object according to the electric signal corresponding to the received control signal of the same phase obtained by the two circuits.
  • the processing module may also receive a second signal, may be electrically connected to the photosensitive module, and obtain the electrical signals corresponding to the multiple reception control signals of different phases through the two circuits;
  • the information acquisition module can obtain target information of the detected object according to the electrical signals corresponding to the multiple received control signals in different phases.
  • the pixel unit is a distance acquisition pixel unit
  • the target information is target distance information
  • the present invention also provides a detection device, including a light source, the light source is operable to emit light to illuminate an object to be detected;
  • a photosensitive module which performs exposure processing on the pixel array at a time associated with the light emitted by the light source
  • the processing module can respectively process the exposure to obtain an exposure signal
  • It also includes a first circuit and a second circuit configured to convert incident light into respective electrical signals, wherein the first circuit is configured to receive a first modulation signal, and the second circuit is configured to receive a second modulation signal, wherein, The first circuit and the second circuit are configured to generate respective electrical signals according to the first modulation signal and the second modulation signal;
  • the processing module receives the first signal and can be electrically connected to the light source to emit light to illuminate the object to be detected. At the same time, the processing module can also be electrically connected to the photosensitive module, and the photosensitive module can receive and emit light from the light source. A plurality of received control signals with the same phase or different phases of the optical signal, and at least one electrical signal corresponding to the received control signal of the same phase is obtained through the two circuits;
  • the information acquisition module can obtain the target information of the detected object according to the electric signal corresponding to the received control signal of the same phase obtained by the two circuits.
  • the processing module may also receive a second signal, may be electrically connected to the photosensitive module, and obtain the electrical signals corresponding to the multiple reception control signals of different phases through the two circuits;
  • the information acquisition module can obtain target information of the detected object according to the electrical signals corresponding to the multiple received control signals in different phases.
  • the phases of a plurality of received control signals having the same phase or different phases with the light signal emitted by the light source include 0°, 90°, 180°, and 270°.
  • the information obtaining module may obtain the target information of the detected object by obtaining different electrical signals corresponding to each phase of the four received control signals respectively according to the two circuits.
  • the exposure information includes N groups, where N is an integer greater than or equal to 2, and the N groups of exposures include at least two sets of exposures of a first exposure time and a second exposure time, and the first exposure time is less than the total exposure time.
  • the second exposure time is an integer greater than or equal to 2
  • the exposure information includes two subframe information, and each of the two subframe information includes information about four different reception control phase signals.
  • the two subframes include the same number of first exposure time information, and the first exposure time information includes four different reception control phase information.
  • the two sub-frames further include second exposure time information of the same number of times, and the first sub-frame includes information corresponding to at least one second exposure time, and the second exposure time includes a phase difference of The output information corresponding to the receiving control signal of the two phase information of 180°, the second sub-frame includes at least one second exposure time information, and the second exposure time includes two phase information information with a phase difference of 180°
  • the output information corresponding to the receiving control signal is received, and the receiving control signals with a phase difference of 180° within the second exposure time included in the two sub-frames may constitute the output signals of the four receiving control signals with different phases.
  • the N sets of exposure information include multiple subframe information, and each of the multiple subframe information includes information about four different reception control phase signals.
  • two adjacent subframes in the plurality of subframes both include at least one output information corresponding to the received control signal of two phase information with a phase difference of 180°, and all of the two adjacent subframes include
  • the receiving control signals with a phase difference of 180° during the second exposure time can form the output signals of the four receiving control signals with different phases;
  • the processing module can receive the third control signal and output at least one exposure duration in different sub-frames
  • At least one of the different phase control information obtained by the two circuits is an electrical signal
  • the information acquisition module can obtain target information of the detected object according to the electrical signal corresponding to the same phase reception control signal obtained by the two circuits.
  • an embodiment of the present application provides a detection method, which is applied to the detection device described in the second aspect, and the detection method includes:
  • the light source can be operated to emit light to illuminate the object to be detected
  • a photosensitive module which performs exposure processing on the pixel array at a time associated with the light emitted by the light source
  • the processing module can respectively process the exposure to obtain an exposure signal
  • It also includes a first circuit and a second circuit configured to convert incident light into respective electrical signals, wherein the first circuit is configured to receive a first modulation signal, and the second circuit is configured to receive a second modulation signal, wherein, The first circuit and the second circuit are configured to generate respective electrical signals according to the first modulation signal and the second modulation signal;
  • the processing module receives the first signal control, and the photosensitive module can receive multiple receiving control signals with the same phase or different phases as the light signal emitted by the light source, and obtain at least one receiving control signal with the same phase through the two circuits.
  • the information acquisition module can obtain the target information of the detected object according to the electric signal corresponding to the received control signal of the same phase obtained by the two circuits.
  • the processing module may also receive a second signal control, and obtain the electrical signals corresponding to the multiple received control signals with different phases through the two circuits;
  • the information acquisition module can obtain target information of the detected object according to the electrical signals corresponding to the multiple received control signals in different phases.
  • the phases of a plurality of received control signals having the same phase or different phases with the light signal emitted by the light source include 0°, 90°, 180°, and 270°.
  • the information obtaining module may obtain the target information of the detected object by obtaining different electrical signals corresponding to each phase of the four received control signals respectively according to the two circuits.
  • the exposure information includes N groups, where N is an integer greater than or equal to 2, and the N groups of exposures include at least two sets of exposures of a first exposure time and a second exposure time, and the first exposure time is less than the total exposure time.
  • the second exposure time is an integer greater than or equal to 2
  • the N sets of exposure information include multiple subframe information, and each of the multiple subframe information includes information about four different reception control phase signals.
  • two adjacent subframes in the plurality of subframes both include at least one output information corresponding to the received control signal of two phase information with a phase difference of 180°, and all of the two adjacent subframes include
  • the receiving control signals with a phase difference of 180° during the second exposure time can form the output signals of the four receiving control signals with different phases;
  • the processing module can receive the third control signal and output at least one exposure duration in different sub-frames
  • At least one of the different phase control information obtained by the two circuits is an electrical signal
  • the information acquisition module can obtain target information of the detected object according to the electrical signal corresponding to the same phase reception control signal obtained by the two circuits.
  • An embodiment of the present application provides a detection unit, a detection device, and a method.
  • the detection device includes: a light source, the light source is operable to emit light to illuminate an object to be detected; Exposure processing is performed on the pixel array; a processing module, respectively processing the exposure to obtain an exposure signal; further comprising a first circuit and a second circuit configured to convert incident light into respective electrical signals, wherein the first The circuit is configured to receive a first modulation signal, and the second circuit is configured to receive a second modulation signal, wherein the first circuit and the second circuit are configured to generate respective electrical signals according to the first modulation signal and the second modulation signal
  • the processing module receives the first signal, and can be electrically connected to the light source to emit light to illuminate the detected object, and the processing module can also be electrically connected to the photosensitive module, the photosensitive module can receive and the light source Transmit multiple receiving control signals with the same phase or different phases of the optical signal, and obtain at least one electrical signal corresponding to the same phase receiving control signal through the two circuit
  • the detection device has an intelligent selection function.
  • the first mode it is realized that at least one electrical signal corresponding to the same phase reception control signal obtained by the two circuits is obtained in the receiving part, that is to say, for exactly the same emitted light
  • the two electrical signal values of the same signal can be used for certain calculations, including the difference value.
  • the final more accurate information enables the detector to maximize the accuracy of the image obtained or the measured distance.
  • the system can choose autonomously or mode selection through the system.
  • the first control signal can be the user's button selection.
  • the signal generated by adaptive control where the signal generated by adaptive control can be the relative movement speed of the detected object and the detection device.
  • the detection device mainly focuses on the accuracy of the information output to ensure The accuracy of the information of different detected objects in the field of view detected by the entire device.
  • the processing module can also receive a second signal, can be electrically connected to the photosensitive module, and obtain the electrical signals corresponding to the multiple reception control signals with different phases through the two circuits; information acquisition unit , The target information of the detected object can be obtained according to the electrical signals corresponding to the multiple different phase reception control signals. In this mode, the system can quickly output information to ensure the safety of the detection system and high user experience.
  • FIG. 1 is a schematic diagram of functional modules of a detection device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of the work of a photosensitive module provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the work of an information acquisition module provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of a control sequence diagram provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another control sequence provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a different exposure time mode provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a control timing sequence of a certain subframe in accordance with different exposure durations according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of another control timing sequence of a certain subframe in accordance with different exposure durations according to an embodiment of the application.
  • FIG. 9 is a schematic diagram of a control sequence of multiple subframes with different exposure durations according to an embodiment of the application.
  • FIG. 10 is a schematic diagram of another control sequence of multiple subframes with different exposure durations according to an embodiment of the application.
  • FIG. 11 is another schematic diagram of a control sequence of multiple subframes with different exposure durations according to an embodiment of the application.
  • FIG. 12 is a schematic flowchart of a detection method provided by an embodiment of this application.
  • FIG. 13 is a schematic flowchart of another detection method provided by an embodiment of this application.
  • FIG. 1 is a schematic diagram of functional modules of a detection device provided by an embodiment of the application.
  • the detection device includes: a light source 110, a processing module 120, a photosensitive module 130, and an information generating module 140.
  • the light source 110 may be configured as a continuous light emitting unit or an array type light source system, which may be a semiconductor laser, It can also be an LED or other pulse-modulated light source.
  • a semiconductor laser is used as a light source, a vertical-cavity surface-emitting laser (VCSEL) or an edge-emitting semiconductor laser (EEL) can be used.
  • VCSEL vertical-cavity surface-emitting laser
  • EEL edge-emitting semiconductor laser
  • the photosensitive module 130 includes a photoelectric conversion module, which has a photo-diode (PD) function, and may be specifically a photosensitive coupling device (Charge-coupled Device, CCD), a complementary metal oxide semiconductor (Complementary Metal Oxide). Semiconductor, CMOS), and its type is not specifically limited here.
  • PD photo-diode
  • CCD Charge-coupled Device
  • CMOS complementary metal oxide semiconductor
  • the processing module 120 may include a control module, which can control the light source to emit different times of emitted light.
  • the processing module 120 can make the photosensitive module 130 emit the emitted light from the light source 110 and the phase difference with the emitted light is delayed by
  • the four values of 0°, 180°, 90° and 270° respectively obtain the light reflected by the detected object 150 corresponding to different phase delays.
  • the reflected light forms incident light at the photosensitive module 130 and then passes through The photoelectric conversion of the receiving part generates different information.
  • the two-phase scheme of 0° and 180° is also used to obtain the information of the detected object.
  • the multi-tap structure can have an independent tap for each phase, four phase taps and a pixel unit.
  • Phase connection can be direct connection or transfer connection through an intermediate medium
  • two phases can share a tap, for example, 0° and 90° share a tap, 180° and 270° share a tap, so the design can not only
  • Multi-tap connection on a pixel achieves the effect of efficiently obtaining target information (such as distance, depth, contour or image, etc.) .
  • the light source 110 emits emitted light
  • the photosensitive module 130 is controlled by the processing module 120 to obtain the light reflected by the detected object 150 at a predetermined delay phase, for example, four different delay phases, from the emitted light.
  • the reflected light forms incident light on the photosensitive module 130.
  • the solution does not have special requirements for the light source.
  • the light emitted by the light source each time is the same light and there is no phase difference, which avoids the need to adjust the light-emitting state parameters of the light source device during use.
  • the error is caused, and the implementation of the device is very simple, which ensures the reliability of the entire detection device system.
  • the realization of the phase delay is implemented in the receiving part and the controller, and the information processing can be integrated in the photosensitive module 130
  • the module 120 and/or the information generating module 140 ensure the simplicity and efficiency of the system structure.
  • the use of a multi-phase delay receiving scheme in the receiving part also avoids the need to emit light for each phase at the transmitting end, for example, for four-phase
  • the light emitted by the light source 110 and reflected by the detected object 150 is converted into photo-generated electrons (or photo-generated charges) in the photoelectric conversion module of the photosensitive module 130.
  • the photo-generated electrons are modulated by the tap and follow the first circuit or the second circuit inside the device.
  • Part of the transferred charge (the first circuit or the second circuit mentioned here includes the charge or electron transfer channel inside the pixel), through the first electron transfer channel or the second electron transfer channel in the pixel, are respectively transferred to Different external physical circuit parts (the first circuit or the second circuit also includes the first physical circuit part and the second physical circuit part outside the pixel), and then go through the physical scheme calculation inside the pixel (for example, using a charge storage unit : Capacitors, etc.) or digital operations (for example, a structure that integrates a sensor and a computing unit into an integrated chip), or perform physical operations or digital operations on subsequent ADCs or other circuit parts.
  • the present invention does not limit specific implementation schemes.
  • the controller 120 controls the light source 110 to emit the emitted light, which is reflected by the detected object 150, and the processing module 120 controls the photosensitive module 130 to receive with two phase delays, for example The two phase delays of 0° and 180° of the above four phases are received.
  • the photoelectric conversion module in the photosensitive module 130 converts the delayed phase optical signal into photo-generated electrons in the pixel, and the tap of the first circuit receives the first modulation
  • the signal transfers the photo-generated electrons converted from the 0° phase of the pixel in the photoelectric conversion module to form an electrical signal.
  • This electrical signal is output by the first circuit.
  • the photo-generated electrons converted in the photoelectric conversion module with a phase of 180° are transferred to form an electrical signal, which is output by the second circuit. It is also possible that each phase delay corresponds to a tap.
  • 0° and 90° share a floating diffusion node (FD), and 180° and 270° share a floating diffusion node (FD).
  • the specific operation is Using a floating diffusion node does not mean sharing a fixed floating diffusion node.
  • Two floating diffusion nodes that share a phase delay can be interchanged.
  • the electrical signals corresponding to the 0° and 180° phase delays can be obtained in one light source emission, and in the next control of the controller, the 90° and 270° phase delays of the four phases
  • the photoelectric conversion module in the photosensitive module 130 converts the delayed phase light signal into photogenerated electrons in the pixel, and the tap of the first circuit receives the first modulation signal, and converts the 90° phase in the pixel into the photoelectric conversion module.
  • the photo-generated electrons are transferred to form an electrical signal. This electrical signal is output by the first circuit.
  • the tap of the second circuit receives the second modulation signal. Signal, this electrical signal is output by the second circuit, in this mode the information corresponding to 90° and 270° is obtained at one time.
  • the processing module 120 can also control the light source 110 to output the emitted light, and control at least two phase delays of 0° and 180° among the four phases for receiving. It is converted into photo-generated electrons.
  • the tap of the first circuit receives the first modulation signal and transfers the photo-generated electrons converted by the 180° phase in the photoelectric conversion module to form an electrical signal. This electrical signal is output by the first circuit.
  • the taps of the two circuits receive the second modulation signal, transfer the photo-generated electrons converted by the 0° delay phase of the pixel in the photoelectric conversion module to form an electrical signal, which is output by the second circuit, so far, the two circuits are realized separately Obtain at least one electrical signal corresponding to the same phase receiving control signal.
  • at least two electrical signals obtained by the two circuits can be calculated to obtain target information, such as image or distance information. Use the signals obtained by the two circuits to perform the following operations:
  • the 90° and 270° delayed phase results are obtained through similar schemes, and can be corrected by calculations similar to Equation 1, and the corrected results can be used in the final target information acquisition.
  • the corrected results can be used in the detection of the detection device.
  • the process result can also be directly used in the specific expression of the final image or distance calculation.
  • the present invention does not limit the specific implementation.
  • f(0°) refers to the final information result corresponding to the 0° phase that needs to be corrected.
  • f(0°_1) refers to the information result corresponding to the 0° phase obtained by the first circuit
  • f(0°_2) refers to the information result corresponding to the 0° phase obtained by the second circuit
  • m, n, l, h can be [-1, 1] The correction coefficient of the value in the interval.
  • the phase delay of the receiving phases of 0° and 180° has a phase difference of 180°;
  • the modulation signals corresponding to the two delayed receiving phases in the first circuit and the second circuit are reciprocal signals, that is to say In the first period of time, when the 0° phase delay receives the electrical signal output through the first circuit or the second circuit, the corresponding 180° delay reception on the pixel does not output the electrical signal through any of the above two circuits.
  • the opposite operation is performed in the other time period.
  • the same operation is performed for the phase difference of 180° and the phase delay of 90° and the receiving phase of 270°. In this way, the circuit modulation signal corresponding to the phase difference of 180° is obtained.
  • the reciprocal signal scheme achieves the effect of obtaining signal reliability and efficient system operation when multi-phase sharing taps or floating diffusion (FD) or other circuit elements.
  • the N groups of exposures include a first exposure with a first exposure duration and a second exposure with a second exposure duration, where the first exposure time is an exposure with a short exposure time, and the two groups are exposed to the same pixel or pixel array
  • This can ensure the adaptability of the entire receiving array to the field of view, and will not produce blind spots due to the receiving array being divided into different units to receive different exposures, and it is easier to achieve in control.
  • Long and short exposures use different exposures on the same pixel.
  • the timing is realized, and the reset control timing can be set between the timings, thereby ensuring that different exposure information will not have the effect of interference, and there is no need to design complex isolation technologies at the pixel level.
  • the detection device can receive the first signal during operation, which can be the user's selection button signal. For example, when the user selects smart driving or similar function keys, the first control signal is generated. At this time, in order to ensure the accuracy of ranging, the detection device will have different
  • the circuit outputs the electrical signal corresponding to at least one phase delay signal, and uses the electrical signal to perform similar operations to ensure the accuracy of the signal.
  • the multiple exposures include long and short exposure signals. All the four-phase delay signals of the exposure time are output by two channels, which can ensure the rapid effect of the detection of close objects in the field of view, and at the same time ensure the accuracy of the final distance obtained by the detection.
  • each phase of the four phases is output by only one circuit under this signal.
  • the signal can be self-adaptively generated by the system, which can be related to the near and far state of the detected object 150 and/or the relative movement speed of the detection device and the detected object 150, for example, the relative movement between the detected object 150 and the detection device 150
  • the movement speed is relatively fast, and there is no limitation here.
  • the detection device can also receive a third control signal, which is similar to the first detection signal, and will not be repeated here. Even the third control signal can be the same as the first A control signal is the same signal.
  • the detection information contains multiple sub-frame signals. At this time, it can be achieved by reasonably configuring different phase delay signals and exposure durations.
  • the information of two adjacent sub-frames is complementary, which ensures that the detection device can detect with high precision while also ensuring that the frame frequency of information acquisition does not decrease, and the system efficiency is ensured.
  • the charge is allocated to the first tap and the second tap according to the distance to the object, by using all eight detections (for each One phase signal obtains the electrical signal corresponding to the phase delay through two circuits), the signal executes the calculation of the depth representing the distance to the object, and the electrical information of different phases can be output through two different circuits,
  • the accumulated charge signal can be used to calculate the phase difference of the optical signal between the laser imaging radar and the target based on the 4 sets of integrated charges during the distance acquisition process. Taking sinusoidal modulated light as an example, the phase difference between the echo signal corresponding to the modulated light and the transmitted signal for:
  • c is the speed of light and f is the laser frequency emitted by the light source 110.
  • f is the laser frequency emitted by the light source 110.
  • the case where the light emitted by the light source 110 is a square wave can be divided into different cases.
  • the final distance information is obtained according to the following calculation method:
  • Q 0° , Q 90° , Q 180° and Q 270° are the electrical signals converted by the receiving circuit corresponding to different phase delays
  • c is the speed of light
  • different circuits including the internal charge transfer channel of the pixel and the pixel The external physical circuit part
  • the results obtained by the two circuits for the same phase of the received signal processing are also different.
  • r1 refers to the electrical signal value converted by the first circuit by the 0° delay phase actually substituted into the distance calculation formula
  • Q 0° refers to the value obtained without considering the difference between the first circuit and the second circuit under ideal conditions
  • the ideal calculation true value of ⁇ Q1 refers to the deviation electrical signal value generated when the 0°delay phase signal is converted by the first circuit.
  • Equation 8 the electrical signal corresponding to the 180°delay phase is calculated.
  • Each symbol in the formula represents the meaning and The meaning of the 0° delay phase calculation formula is similar, so I will not repeat it here.
  • the value of ⁇ Q1 can be a linear function relationship or a multiple function relationship. The value can be simulated according to the actual situation.
  • each of the four different delay phases can be obtained by the first circuit and the second circuit to obtain two electrical signal values, and then the arithmetic average solution (or similar algorithm) can be used. Obtain the electric signal value finally substituted into the expression, which can be expressed by the following formula:
  • the signals obtained by the two circuits are added and operated. After the addition operation, the results obtained by the same phase in different circuit outputs are superimposed. On this basis, the influencing factors ⁇ Q1 and ⁇ Q2 are also superimposed, so in the result Considering the difference of the same phase of the output of different circuits, the accurate distance result can be obtained by using the superimposed result in the subsequent distance calculation, which is explained by the formula 4 of square wave detection:
  • the sum result can be directly used in the final distance acquisition without averaging, and the final accurate distance information can be obtained.
  • the result can be obtained through the accumulation of physical capacitor charges or through the subsequent digital operation of the arithmetic circuit.
  • the difference operation of different phases is involved, so the offset caused by the alignment comparator can be eliminated.
  • it can also remove the transfer function mismatch phenomenon caused by the difference of non-ideal factors such as taps.
  • the deviation charge caused by function mismatch can also be classified as a linear or non-linear relationship. Its fundamental principle is similar to the charge difference caused by offset. It can also be used similar to the value obtained by two channels in image sensing applications. Correction to obtain the most accurate value is as the previous Relation 1 scheme.
  • the photosensitive module 130 contains a first circuit and a second circuit.
  • the first circuit can receive the first modulation signal.
  • the photosensitive module 130 The photogenerated electrons generated by the photoelectric conversion module inside the module 130 can be transferred by the first circuit to form a first electrical signal.
  • the first circuit includes the electron transfer channel in the pixel unit and the physical circuit part outside the pixel unit.
  • the first modulation The signal can be a physical device or device in the first circuit such as a modulation grid.
  • the modulation signal generated by the controller realizes that different photo-generated electrons are transferred from the first circuit or the second circuit to form a corresponding electrical signal.
  • the second modulation The basic principle of the signal acting on the second circuit is similar to that of the first circuit, and will not be repeated here.
  • the same pixel can also be connected to more circuits to obtain more electrical signals, which will not be repeated here.
  • the first circuit and the second circuit can be directly connected to the same pixel unit. Through the time-sharing output of the pixel unit, more pixels can be detected for the detected object, which ensures the accuracy of detection. In addition, multiple such pixels
  • the formation of the entire pixel array realizes high-efficiency detection and targeted detection, as well as simultaneous detection of multiple targets.
  • Figure 3 shows an electrical signal obtained by different circuits (the first circuit and the second circuit are taken as examples here, but the specific implementation is not limited to only two circuit output signals) to obtain the detected object 150
  • the first electrical signal may include the electrical signals output by the first circuit corresponding to different phase delays, for example, the first electrical signal may include 0°, 90°, 180° and 270° four-phase delay correspondence
  • the second electrical signal may also include four electrical signals corresponding to the four-phase delay of 0°, 90°, 180°, and 270°.
  • the information generating module 140 follows the first circuit and the first At least one electrical signal corresponding to the same phase reception control signal obtained by the two circuits is used to obtain the final target information, wherein the at least one same phase reception control signal can be any one or more of the four phases mentioned above, and the four-phase method can be used to achieve measurement.
  • the method shown in Equation 1 can also be used to correct at least part of the information obtained in the entire pixel array to obtain the information required for the calculation of the final target information (distance or image, etc.), that is, the first
  • the electrical signal and the second electrical signal can be used in the calculation of the final target information, or can be directly calculated in a physical or digital manner to obtain the final target information according to the four-phase distance measurement formula described above. It is defined that the electrical signal obtained through the first circuit or the second circuit is directly used for the target information of the detected object is directly used for the final calculation.
  • Figures 4 and 5 show a schematic diagram of using a light source 110 to emit square emission light for detection. Take two phases and two taps as an example for illustration.
  • 401 and 501 represent two light source emissions.
  • the emitted light, 402 and 502 represent the echo signal obtained after the emitted light is reflected by the target
  • Q 0°,r1 represents the first electrical signal corresponding to the 0°phase delay output by the first circuit
  • Q 180°,r2 represents The second electrical signal corresponding to the 180° phase delay output through the second circuit
  • Q 0°,r2 represents the second electrical signal corresponding to the 0° phase delay output through the second circuit
  • Q 0°,r1 represents The first electrical signal corresponding to the 180° phase delay output by the first circuit, it can be clearly seen from Fig.
  • the 0° delay phase refers to the phase that is controlled by the controller 130 and does not have any delay with the emitted light.
  • the receiver control signal and other delay phases have the same meaning as 0°.
  • the four electrical signals obtained are processed in the information acquisition unit 140, and the final target information can be obtained in the manner described above.
  • Figure 6 shows a schematic diagram of setting multiple sub-frames with different phase delays and different exposure durations.
  • the frame rate is 15FPS, 30FPS or 60FPS, which means that each second can contain 15, 30 or 60 sub-frames.
  • the four phase information of the frame and the N+1th frame according to different length and short exposures can use the previous subframe and the next subframe to form complementary subframes, so that in the detection of multiple subframes, the information of two adjacent subframes Both can achieve different detection distances in a multi-target scene, and by setting in this way, the distance information of the detected object can be obtained in the same way, such as a four-phase algorithm.
  • the information of every two adjacent sub-frames can form complementary information, so In the result output, the frame rate of the result output will not be reduced because the amount of information required to obtain the result is relatively large.
  • Figure 7 illustrates a timing diagram for setting different phases and different exposure time information.
  • the short exposure time includes four-phase data, and the phase delay of each short exposure is obtained by two circuits separately
  • the precise distance information of the detected object at a relatively close distance can be directly obtained in this subframe, eliminating the influence of offset and transfer function mismatch, and on the other hand.
  • the long-exposure data of the long-distance detected object can be obtained through two phases, which ensures that the entire detection can have a higher frame rate arrangement possibility.
  • Figure 8 shows another timing diagram for setting different phases and different exposure time information. The parts similar to the setting of Figure 7 will not be repeated. The difference is that the long-distance corresponding long-exposure phase delay is 90° and 270°, so It can realize the alternate cooperation with the sub-frames of FIG. 7 to realize the information complementation under the high frame rate, and ensure the output accuracy and the efficiency of the output result.
  • Figure 9 shows a timing diagram of setting different phases and different exposure time information in the multi-subframe information.
  • this setting takes into account the high requirements of short-range detection for detection accuracy, so each phase delay of short-exposure detection
  • the results are obtained by two circuits at all times, ensuring the user experience and ensuring the safety and reliability of the equipment used.
  • the long exposure information can be complementarily arranged in adjacent sub-frames, thus ensuring the rapid output of the ranging results. Ensure that the system works in a higher frame rate mode, which improves user experience.
  • Figure 10 illustrates a timing diagram of setting different phases and different exposure time information in the multi-subframe information.
  • this mode uses the complementarity of the two adjacent subframe information on the one hand to ensure The system can work in the high frame rate mode.
  • the long-exposure and long-distance obtain the distance value of the long-distance target through the two-phase method, which can also ensure that the detection device has a more reliable range result.
  • Figure 11 illustrates a timing diagram for setting different phases and different exposure time information in the multi-subframe information. Compared with the way in Figure 10, there are two different circuits for different phase information for different exposure durations in this mode.
  • the output ensures that each target in the field of view can be efficiently and accurately detected.
  • the complementary information of all two adjacent sub-frames can also achieve the effect of not reducing the frame rate of the output result in the detection distance.
  • the second exposure time can be the first exposure time. Four times or more is not limited here.
  • FIG 12 shows the steps of the implementation of the present invention.
  • the S101 processing module 120 controls the light source 110 to emit light that can be square wave, triangle wave or sine wave, etc. There is no specific limitation here, and the field of view is illuminated under the action of the emitted light.
  • the detected object 150 reflects the emitted light, thereby forming a reflected light echo.
  • the S102 processing module 120 controls the photosensitive module 130 to receive the reflected light with a control signal with a different phase delay from the light source 110.
  • S103 photosensitive module 130 obtains electrical signals corresponding to at least one phase control signal among multiple received signals of the same phase or different phases through two circuits, wherein multiple received signals of the same phase or different phases refer to the same phase and different phases.
  • There are multiple delay control signals for example, the number of four delay phases is four
  • the S104 information acquisition module 140 obtains target information of the detected object 150 according to at least one electrical signal corresponding to the same phase control signal obtained by the two circuits.
  • At least one electrical signal corresponding to the same phase control signal can be used in the intermediate or final calculation of target information acquisition. The scheme of using this electrical signal in a physical or digital manner has also been described before, and will not be repeated here.
  • Figure 13 illustrates the steps of another implementation of the present invention. Similar to the steps shown in Figure 11, Figure 13 further defines a scheme for obtaining target information using a four-phase scheme, and defines each of the four delay phases. The phases are both obtained by the two circuits to obtain the corresponding electrical signals, and the implementation of the corresponding steps can refer to the steps described in FIG. 7, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种探测像素单元、探测装置及使用该探测装置的探测方法,探测装置包括可操作以发射光来照明被探测物(150)的光源(110),感光模块(130)可通过接收第一调制信号的第一电路和接收第二调制信号的第二电路输出电信号,处理模块(120)可以接收不同的控制信号控制,进而在探测系统内部可以不同的模式工作,其中可以两个电路对于延时相位接收控制信号的之一相位延时对应的电信号分别输出,从而实现探测信息的精确性,同时系统还能够在一定帧频模式下对于子帧内部的相位延时信息和曝光时间信息进行合理布置,保证了整个系统的高效性。

Description

探测单元、探测装置及方法
相关申请的交叉引用
本申请要求于2020年05月13日提交中国专利局的申请号为CN202010403265.1、名称为“探测单元、探测装置及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及探测技术领域,特别涉及一种探测单元、探测装置及方法。
背景技术
在探测技术领域越来越多的技术不断被推出,为了保证图像或者测距等应用领域的高效快速探测的目标,越来越多的器件被设计为包含多个抽头(两个或者两个以上)的结构,其可分时段工作对于与其连接的像素单元中产生的光生电子进行读取,多抽头被合理安排时可以实现芯片内或者其构成的接收部高效工作,然而对于由不同抽头所摄取的信号存在由于各种因素导致的偏差,即使对于相同的返回光入射产生的光生电子也存在由不同抽头所输出值存在差异,这一现象将在图像获取或者测距中产生重要的影响。
近年来,随着半导体技术的进步,用于测量到物体的距离的测距模块的小型化已经取得了进展。因此,例如,已经实现了在诸如所谓的智能电话等移动终端中安装测距模块,所述智能电话是具有通信功能的小型信息处理装置随着科技的进步,在距离或者深度信息探测过程中,经常使用的方法为飞行时间测距法(Time of flight,TOF),其原理是通过给目标物连续发送光脉冲,然后用传感器接收从物体返回的光,通过探测光脉冲的飞行(往返)时间来得到目标物距离,在TOF技术中直接对光飞行时间进行测量的技术被称为DTOF(direct-TOF);对发射光信号进行周期性调制,通过对反射光信号相对于发射光信号的相位延迟进行测量,再由相位延迟对飞行时间进行计算的测量技术被成为ITOF(Indirect-TOF)技术。按照调制解调类型方式的不同可以分为连续波(Continuous Wave,CW)调制解调方式和脉冲调制(Pulse Modulated,PM)调制解调方式,更进一步采用ITOF的方案也能够获得高精度和高灵敏度的距离检测方案,所以ITOF方案应用也获得了更为广泛的应用。
为了获得高效的测量结果和芯片更高的集成化,比较多采用两抽头或者以上的方式来实现测距,可以按照相位测距算法获得目标物的距离信息,例如最简单的采用两相位方法、或者还可以采用三相位四相位方法甚至是5相位方案进行距离信息的获得,此处以一种四相位的算法为例,至少需要进行两次曝光(为了保证测量精度,通常需要进行四次曝光)才能完成对四个相位数据的采集输出一帧深度图像,因而难以获得较高的帧频,同时不同抽头输出信息时存在如之前所述的结果差异,为了在测距或者图像获取过程中保证结果的准确性,同时为了保证图像或者测距等应用领域的高效快速探测的目标信息,探测信息的获得效率也越来越受到关注,在图像获取时探测系统能否高效快速处理出高质量的图片,将直接影响到用户体验,在测距领域更是如此,例如当探测设备与被探测物体具有一定的相对速度时快速准确地获取和处理距离数据将变得非常重要,尤其是当探测设备为车载设备时,快速准确的距离信息将非常有助于用户在快速驾驶中实现全自动化驾驶,同时也能保障自动驾驶的安全性。
同时在四相位测距的基础上还需要安排不同相位的不同曝光时间保证测距系统具有更高的效率,因而更难以获得较高的信息输出帧频,因此亟待一种能够解决探测信息尤其是测距过程中能够保证探测设备具有很准确的探测结果,有需要有很高的动态范围特性,同时还能保证整个测距设备高效快速输出结果的解决方案。
发明内容
本申请的目的在于,针对上述现有技术中的不足,提供一种探测单元,以解决现有探测单元不能应对多目标高精度快速探测的技术问题。
为实现上述目的,本申请实施例采用的技术方案如下:
第一方面,本申请实施例提供了一种探测像素单元,包括:感光模块,接收光源发射光对所述像素进行曝光处理;
处理模块,可对所述曝光进行处理以获得曝光信号;
还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收 第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;
所述处理模块接收第一信号,可电性连接所述光源发射光来照明被探测物,同时所述处理模块还可电性连接所述感光模块,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;
信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
可选地,所述处理模块还可接收第二信号,可电性连接所述感光模块,并通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;
信息获取模块,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息。
可选地,还所述像素单元为距离获取像素单元,所述目标信息为目标距离信息。
另一方面,本发明还提供一种探测装置,包括,光源,所述光源可操作以发射光来照明被探测物;
感光模块,在与所述光源发射光关联的时间对所述像素阵列进行曝光处理;
处理模块,可分别对所述曝光进行处理以获得曝光信号;
还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;
所述处理模块接收第一信号,可电性连接所述光源发射光来照明被探测物,同时所述处理模块还可电性连接所述感光模块,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;
信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
可选地,所述处理模块还可接收第二信号,可电性连接所述感光模块,并通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;
信息获取模块,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息。
可选地,与所述光源发射光信号同相位或者不同相位的多个接收控制信号相位包括0°,90°,180°和270°。
可选地,所述信息获取模块,可依据所述两个电路分别获得所述四个接收控制信号的每一个相位对应的不同电信号获得所述被探测物的目标信息。
可选地,所述曝光信息包括N组,其中N为大于等于2的整数,所述N组曝光包括至少第一曝光时间和第二曝光时间的两组曝光,所述第一曝光时间小于所述第二曝光时间。
可选地,所述曝光信息包含两个子帧信息,所述两个子帧信息中均包含四个不同的接收控制相位信号的信息。
可选地,所述两个子帧中包含相同的次数第一曝光时间信息,且所述第一曝光时间信息包含四个不同接收控制相位信息。
可选地,所述两个子帧中还包括相同的次数第二曝光时间信息,且所述第一子帧包含至少一次第二曝光时间对应的信息,且所述第二曝光时间包含相位差为180°的两个相位信息的接收控制信号对应的输出信息,所述第二子帧包含至少一次第二曝光时间信息,且所述第二曝光时间包含相位差为180°的两个相位信息的接收控制信号对应的输出信息,且所述两个子帧包含的所述第二曝光时间内相位差为180°的接收控制信号可组成所述四个相位不同接收控制信号的输出信号。
可选地,所述N组曝光信息包含多个子帧信息,所述多个子帧信息中均包含四个不同的接收控制相位信号的信息。
可选地,所述多个子帧中相邻两个子帧均包含至少一个的相位差为180°的两个相位信息的接收控制信号对应的输出信息,且所述相邻两个子帧包含的所述第二曝光时间内相位差为180°的接收控制信号可组成所述四个相位不同接收控制信号的输出信号;所述处理模块可接收第三控制信号,输出不同子帧中至少一个曝光时长的不同相位控制信息中至少一个通过所述两个电路获得的电信号,信息获取模块,可 依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
第三方面,本申请实施例提供了一种探测方法,应用于上述第二方面所述的探测装置,所述探测方法包括:
光源可操作以发射光来照明被探测物;
感光模块,在与所述光源发射光关联的时间对所述像素阵列进行曝光处理;
处理模块,可分别对所述曝光进行处理以获得曝光信号;
还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;
所述处理模块接收第一信号控制,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;
信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
可选地,所述处理模块还可接收第二信号控制,通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;
信息获取模块,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息。
可选地,与所述光源发射光信号同相位或者不同相位的多个接收控制信号相位包括0°,90°,180°和270°。
可选地,所述信息获取模块,可依据所述两个电路分别获得所述四个接收控制信号的每一个相位对应的不同电信号获得所述被探测物的目标信息。
可选地,所述曝光信息包括N组,其中N为大于等于2的整数,所述N组曝光包括至少第一曝光时间和第二曝光时间的两组曝光,所述第一曝光时间小于所述第二曝光时间。
可选地,所述N组曝光信息包含多个子帧信息,所述多个子帧信息中均包含四个不同的接收控制相位信号的信息。
可选地,所述多个子帧中相邻两个子帧均包含至少一个的相位差为180°的两个相位信息的接收控制信号对应的输出信息,且所述相邻两个子帧包含的所述第二曝光时间内相位差为180°的接收控制信号可组成所述四个相位不同接收控制信号的输出信号;所述处理模块可接收第三控制信号,输出不同子帧中至少一个曝光时长的不同相位控制信息中至少一个通过所述两个电路获得的电信号,信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
本申请的有益效果是:
本申请实施例提供的一种探测单元、探测装置及方法,该探测装置包括:光源,所述光源可操作以发射光来照明被探测物;感光模块,在与所述光源发射光关联的时间对所述像素阵列进行曝光处理;处理模块,分别对所述曝光进行处理以获得曝光信号;还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;所述处理模块接收第一信号,可电性连接所述光源发射光来照明被探测物,同时所述处理模块还可电性连接所述感光模块,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。如此,该探测设备具有智能化选择功能,在第一种模式下,实现在接收部获得由两个电路分别获得至少一个相同相位接收控制信号对应的电信号,也就是说对于完全相同的发射光由目标反射后被不同的电路所接收,可以理解为由不同的抽头获得并在后续电路中进行运算处理,最终可以利用相同信号的两次电信号值进行一定的运算,包括差值等方案获得最终更准确的信息,使得探测器在获得图像的质量或者测量的距离上均有最大限度的准确性提升,通过该系统自主选择或者是模式选择,例如第一控制信号可以为用户的按键选择,或者是自适应控制产生信号,其中自适应控制产生信号可以为与被探测物与探测设备的相对运动速度,当该速度小于某一阈值时,该探测设备主要关注对于信息输出的准确性,保证整个设备探测的视场 中不同被探测物信息的精确性。另一方面,所述处理模块还可接收第二信号,可电性连接所述感光模块,并通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;信息获取单元,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息,在这一模式下,系统能够快速输出信息,保证探测系统的安全性和高的用户体验效果。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的一种探测装置的功能模块示意图;
图2为本申请实施例提供的一种感光模块工作示意图;
图3为本申请实施例提供的一种信息获取模块工作的示意图;
图4为本申请实施例提供的一种控制时序图示意图;
图5为本申请实施例提供的另一种控制时序示意图;
图6为本申请实施例提供的一种不同曝光时长模式示意图;
图7为本申请实施例提供的一种配合不同曝光时长某一子帧控制时序示意图;
图8为本申请实施例提供的另一种配合不同曝光时长某一子帧控制时序示意图;
图9为本申请实施例提供的一种配合不同曝光时长多子帧控制时序示意图;
图10为本申请实施例提供的另一种配合不同曝光时长多子帧控制时序示意图;
图11为本申请实施例提供的又一种配合不同曝光时长多子帧控制时序示意图;
图12为本申请实施例提供的一种探测方法的流程示意图;
图13为本申请实施例提供的另一种探测方法的流程示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚和完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
图1为本申请实施例提供的一种探测装置的功能模块示意图。如图1所示,该探测装置包括:光源110、处理模块120、感光模块130和信息生成模块140,其中光源110可以配置为发射连续光的单元或者阵列型光源系统,其可以为半导体激光器,也可以是LED或者其他可以脉冲调制的光源,当采用半导体激光器作为光源时,可以采用垂直腔面发射激光器VCSEL(Vertical-cavity surface-emitting laser)或者边发射半导体激光器EEL(edge-emitting laser),此处仅为示例性说明并不作具体限定,光源110输出的光的波形也不进行限定,可以为方波、三角波或者正弦波等。感光模块130包含光电转换模块,其具有光电转化功能可以由光电二极管(Photo-Diode,PD)实现,可以具体为感光耦合元件(Charge-coupled Device,CCD),互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS),此处也不具体限定其类型。
处理模块120中可包含控制模块,其可控制所述光源出不同次数的发射光,处理模块120可使感光模块130在与光源110发射发射光时刻在与所述发射光相位差延时分别为0°、180°、90°和270°四个值时分别获得不同相位延时对应的经被探测物150反射回的光,所述反射回的光在感光模块130处形成入射光,进而经过接收部光电转化生成不同的信息,在某些情况下也使用0°和180°两相位方案实现被探测物的信息获取,也有文献公开了0°、120°和240°三相位获得目标信息,甚至有文献也公开了五相位差延 时方案,本发明并不具体限定,获取的目标信息可以为目标的图像信息也可以为目标的距离信息或轮廓信息等,本发明也不具体限定。以下为了说明具体技术问题以四相位的飞行时间获取距离的方案为例进行存在问题和解决方案的具体阐述,多抽头结构可以为每个相位具有独立的一个抽头,四个相位抽头和一个像素单元相连接(可以为直接连接或者为通过中间介质转接连接),也可以为两个相位共用一个抽头,例如0°和90°共用一个抽头,180°和270°共用一个抽头,这样设计不仅能够实现可靠性传输信息的目的,还进一步能够保证像元尺寸设计和布局结构的最优化,多抽头连接在一个像元上实现了高效获得目标信息(例如距离、深度、轮廓或图像等)的效果。
在前述基础上,光源110发出发射光,感光模块130通过处理模块120控制,在与所述发射光具有预定延迟相位例如四个不同的延迟相位下获得经被探测物150反射的光,返回的反射光在感光模块130形成入射光,方案对于光源并不做特殊要求,每次光源发射的光为相同的光不存在相位差异,避免了由于光源设备在使用过程中由于发光状态参数需要调整而引起的误差,并且设备的实现也非常简单,保证了整个探测设备系统的可靠性,本方案中对于相位延时的实现在接收部和控制器内进行实现,可以在感光模块130中集成信息处理模块120和/或信息生成模块140保证了系统结构的简便和高效性,另外在接收部采用多相位延迟接收方案也避免了需要在发射端对于每一个相位都需要发射发射光,例如对于四相位方案中我们可以在一次发射中获得0°和180°两个相位延迟的目标物信息,这使得整个测距系统能够实现高效测距的目标。光源110发射的经过被探测物150反射的光,在感光模块130的光电转化模块内转化为光生电子(或者光生电荷),光生电子经过抽头的调制,在器件内部按照第一电路或者第二电路的部分转移电荷(此处所提到的第一电路或者第二电路包含像元内部的电荷或者电子转移通道),经过像元内的第一电子转移通道或者第二电子转移通道被分别传输到不同的外部实体电路部分(第一电路或者第二电路也包含了像元外部的第一实体电路部分和第二实体电路部分),之后经过在像元内部的物理方案运算(例如使用电荷存储单元:电容等)或者数字运算(例如将传感器和运算单元集成为一体芯片的结构),或者在后续的ADC或者其他的电路部进行物理运算或者数字运算,本发明并不限定具体的实现方案。
以四相位两抽头结构为例进行说明,其中0°和90°共用一个抽头,180°和270°共用一个抽头为例(但是具体的操作中共用一个抽头并不意味着共用一个固定的抽头,两个相位延时共用的抽头可以进行互换),控制器120控制光源110发射发射光,其经过被探测物150反射之后,处理模块120控制感光模块130以两个相位延时进行接收,例如上述四相位中的0°和180°两个相位延时进行接收,感光模块130中的光电转化模块将延时相位光信号在像元中转化为光生电子,第一电路的抽头接收第一调制信号,将像元中的0°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第一电路输出,第二电路的抽头接收第二调制信号,将像元中的180°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第二电路输出。也可以每个相位延时对应一个抽头,在第一电路中0°和90°共用一个浮动扩散节点(FD),而180°和270°共用一个浮动扩散节点(FD),但是具体的操作中共用一个浮动扩散节点并不意味着共用一个固定的浮动扩散节点,两个相位延时共用的浮动扩散节点可以进行互换。在这一实施例中0°和180°相位延时对应的电信号可以在一次光源发射中被获得,而在下一次控制器的控制中,四相位中的90°和270°两个相位延时进行接收,感光模块130中的光电转化模块将延时相位光信号在像元中转化为光生电子,第一电路的抽头接收第一调制信号,将像元中的90°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第一电路输出,第二电路的抽头接收第二调制信号,将像元中的270°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第二电路输出,在这一模式下90°和270°对应的信息被一次性获得。最后处理模块120还可以控制光源110输出发射光,并至少控制四相位中的0°和180°两个相位延时进行接收,接收部130中的光电转化模块将延时相位光信号在像元中转化为光生电子,第一电路的抽头接收第一调制信号,将像元中的180°相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第一电路输出,第二电路的抽头接收第二调制信号,将像元中的0°延迟相位在光电转化模块转化的光生电子转移,形成电信号,这一电信号由第二电路输出,至此实现了两个电路分别获得至少一个相同相位接收控制信号对应的电信号的效果,在进行最终的目标信息运算过程中可以对于两个电路获得的至少两个电信号进行运算以获得目标信息,例如对于图像或者距离信息可以利用两个电路获得的信号进行如下运算:
f(0°)=mf(0°_1)+nf(0°_2);
f(180°)=lf(180°_1)+hf(180°_2);   (1)
90°和270°延迟相位结果通过类似的方案获得,并且可以进行类似于式1的运算进行修正,并将该修正结果用于最终的目标信息获得中,该修正结果可以为探测装置探测中的过程结果,也可以直接用在最终图像或者距离运算的具体表达式中,本发明并不限定具体实现方式,式中,f(0°)指需要被修正的0°相位对应的最终信息结果,f(0°_1)指第一电路获得的0°相位对应的信息结果,f(0°_2)指第二电路获得的0°相位对应的信息结果,其中m,n,l,h可以为[-1,1]区间内取值的修正系数。
以上实施例中相位延时为0°和180°的接收相位,其相位差为180°;两个延时接收相位在第一电路和第二电路对应的调制信号为互逆信号,也就是说在第一时间段0°相位延时接收通过第一电路或者第二电路输出电信号时,该像元上对应的180°延时接收不通过上述两个电路的任何电路输出电信号,而在另一时间段正好执行相反的操作,对于相位差为180°的相位延时为90°和270°的接收相位也进行相同操作,如此获得了相位差为180°接收相位对应的电路调制信号为互逆信号的方案,实现了多相位共用抽头或者浮动扩散(FD)或者其他电路元件时信号可靠性获取和系统高效工作的效果。
另一方面,为了获得更高的探测准确性,系统探测时,需要采用不同曝光持续时间,保证整个视场内被探测物150为多个并且具有远近不同的状态。在N组曝光中包含第一曝光持续时间的第一曝光和第二曝光持续时间的第二曝光,其中第一曝光时间为短曝光时间的曝光,两组曝光在相同的像元或者像元阵列上实现,这样能够保证整个接收阵列对于视场的适应性,不至于产生由于接收阵列分为不同单元接收不同曝光而产生盲点,而且在控制上更容易实现,长短曝光在相同像元上利用不同时序实现,时序之间可以设置复位控制时序,进而保证了不同曝光信息不会存在干扰的效果,也不用在像元层面设计复杂的隔离技术。
探测装置在运行中可以接收第一信号,其可以为用户的选择按钮信号,例如用户选择智能驾驶或者类似功能按键时,第一控制信号产生,此时为了保证测距精度,探测装置会由不同的电路对于至少一个相位延时信号对应的电信号输出,利用该电信号执行之前类似操作可以保证信号的准确性,另外在多次曝光中包含长短曝光信号,在多次曝光之一信号的短曝光时间所有的四相位延时信号,均由两路输出信号,这样可以保证对于视场内近距离物体探测时具有快速的效果,同时又保证了探测最终获得的距离准确性,在第二信号状态下,系统内为了保证探测的高效性,四相位中每一个相位在该信号下均只由一个电路输出,此时能够快速获得被探测物150的距离,保证了用户体验,所述第二信号可以由系统自适应产生,其可与被探测物150的远近状态和/或探测设备与被探测物150的相对运动速度相关,例如被探测物150距离探测设备较近两者之间的相对运动速度较快,此处并不做限制,探测装置还可接收第三控制信号,其与第一探测信号产生远离相类似此处不再赘述,甚至所述第三控制信号可与所述第一控制信号为相同信号,在每秒具有例如15FPS、30FPS或者60FPS多种探测频率下,探测信息包含了多个子帧信号,此时可以通过合理配置不同相位延时信号和曝光持续时间,能够实现两相邻子帧的信息互补,保证了探测设备能够高精度探测的同时还能保证信息获取的帧频不降低,保证系统高效性。
以下结合TOF测距中多抽头中所存在的技术问题和解决方案进行进一步说明,当根据到物体的距离将电荷分配给第一抽头和第二抽头时,通过使用全部的八个检测(对于每一个相位信号均通过两个电路获得相位延时对应的电信号),信号执行对表示到所述物体的所述距离的深度进行计算的运算,通过两个不同电路可以输出不同相位的电信息,例如累积的电荷量信号,在距离获取过程中可以利用可根据4组积分电荷计算光信号在激光成像雷达与目标之间往返的相位差
Figure PCTCN2020097333-appb-000001
以正弦调制光为例,调制光所对应的回波信号与发射信号之间的相位差
Figure PCTCN2020097333-appb-000002
为:
Figure PCTCN2020097333-appb-000003
上式2中Q 、Q 90°、Q 180°和Q 270°分别为不同相位延时对应的接收部电路转化出来的电信号,结合距离与相位差之间的关系,可以获得最终的距离结果:
Figure PCTCN2020097333-appb-000004
上式3中c为光速,f为光源110发射的激光频率,对于光源110发射光为方波的情况可以分为不同情况,按照如下的计算方法获得最终的距离信息:
当Q >Q 180°且Q 90°>Q 270°时,
Figure PCTCN2020097333-appb-000005
当Q <Q 180°且Q 90°>Q 270°时,
Figure PCTCN2020097333-appb-000006
当Q <Q 180°且Q 90°<Q 270°时,
Figure PCTCN2020097333-appb-000007
当Q >Q 180°且Q 90°<Q 270°时,
Figure PCTCN2020097333-appb-000008
上述方波进行距离计算的式4-7中,Q 、Q 90°、Q 180°和Q 270°分别为不同相位延时对应的接收部电路转化出来的电信号,c为光速,f为激光频率,当然在一些特殊的情况下也有公司直接采用正弦波的方法近似计算方波的距离,在进行四相位测距过程中,会涉及到由不同电路(包含像素内部电荷转移通道和像素外部实体电路部分)输出不同相位延时信号的结果,然而在实际使用过程中由于列线和比较器的延迟和offset等的影响,由两个电路对于相同相位接收信号处理获得的结果也存在差异,例如将这些影响归类到Q ,Q 180°的固有偏差电子数为△Q1,△Q2,则实际有中Q ,Q 180°获得的电子数存在一定的偏差,例如通过第一电路和第二电路分别获得的四个相位延时对应的电信号分别为:
Q 0°,r1=Q +△Q1;Q 180°,r2=Q 180°+△Q2;   (8)
式8中的Q 0°,r1指实际代入距离运算公式中的0°延时相位经第一电路转换的电信号值,Q 指理想情况下不考虑第一电路和第二电路差异获得的理想计算真值,△Q1指对于0°延时相位信号由第一电路转化时所产生的偏差电信号值,式8中180°延时相位对应的电信号计算式中各符号代表含义与0°延时相位计算式含义类似,此处不再进行赘述,△Q1值可以为一次函数关系式也可以为多次函数关系式,具体依据实际情况可以模拟该值,该偏差电信号在实际使用中非常难以获得,因此在此条件下将不同相位通过不同延时相位转化的电信号实际值代入距离求解公式中会产生一定的偏差,造成最终的距离计算不准确,本发明的方案中为了解决这一技术问题,可以将不同的四个延时相位中的每一个延时相位分别由第一电路和第二电路均获得两个电信号值,再利用算数平均方案(或者类似的算法)获得最终代入表达式中的电信号值,可以用下式表达:
Figure PCTCN2020097333-appb-000009
也就是由两个电路获得的信号进行加和运算,经过加和运算之后相同相位在不同的电路输出获得的结果被叠加,在此基础上影响因素△Q1和△Q2也被叠加,因此在结果中考虑了不同电路输出相同相位的差异,而将叠加之后的结果用于后续的距离计算中可以获得准确的距离结果,以方波探测的式4情况来进行说明:
当Q >Q 180°且Q 90°>Q 270°时,
Figure PCTCN2020097333-appb-000010
上式10中在最终的距离获取中可以直接使用加和结果而不进行平均亦可获得最终准确的距离信息,实现可以通过物理电容电荷累加的结果也可以通过后续的运算电路进行数字运算获得,在计算中由于涉及到不同相位的作差运算,因而由于列线比较器等引起的offset可以被消除,另一方面也可以去除由于抽头等非理想因素差异而产生的传递函数失配现象,传递函数失配引起的偏差电荷也可以被归类为线性 或者非线性关系式,其去根本原理与offset引起的电荷差异相类似,也可以采用类似于图像传感应用时利用两通道获得的值来修正获得最准确的值如之前关系式1的方案。
图2示出了一种感光模块130内部信号传递和连接关系示意图,感光模块130内部包含有第一电路和第二电路,第一电路可以接收第一调制信号,在该信号的控制下,感光模块130内部的光电转化模块产生的光生电子可以被第一电路转移,形成第一电信号,如之前所述第一电路包含像素单元内电子转移通道和像素单元外的实体电路部分,第一调制信号可以为第一电路中的实体设备或装置例如调制栅,通过控制器所产生的调制信号,实现了不同的光生电子由第一电路或者第二电路转移,形成对应的电信号,第二调制信号作用于第二电路的基本原理与第一电路类似,此处不再赘述,当然同一像元也可以连接更多的电路,获得更多的电信号,此处也不再赘述,上述的第一电路和第二电路可以直接连接至相同的像素单元,通过像素单元的分时输出,可以实现更多像元对于被探测物的探测,保证了探测的准确性,另外多个这种像元形成整个像元阵列实现了高效探测和针对性探测,也可实现多目标同时探测。
图3示出了一种通过不同电路(此处以第一电路和第二电路两个电路为例进行说明,但是具体实现并不限于只有两个电路输出信号)获得的电信号来获得被探测物150结果信息的示意图,第一电信号可以包含不同相位延时对应的由第一电路输出的电信号,例如第一电信号可以包含0°、90°、180°和270°四相位延时对应的四个电信号,同理,第二电信号也可以包含0°、90°、180°和270°四相位延时对应的四个电信号,信息生成模块140依照所述第一电路和第二电路获得的至少一个相同相位接收控制信号对应的电信号来获取最终的目标信息,其中至少一个相同相位接收控制信号可以为上述四相位中的任何一个或多个,利用四相位方法可以实现测距的高效性,也可以利用如式1所示的方法对于整个像素阵列中至少部分获得的信息进行修正,得到最终目标信息(距离或图像等)计算所需要的信息,也就是所述第一电信号和第二电信号可以用于最终目标信息的计算过程中也可以为按照例如之前所述的四相位方法测距公式直接在物理或者数字方式下计算获得最终的目标信息,此处并不限定通过第一电路或者第二电路获得的电信号直接用于被探测物的目标信息是直接用于最终运算的。
图4和图5示出了一种利用光源110发射方形发射光进行探测的示意图,以两个相位两个抽头为例进行说明,在图4和图5中401和501代表两次光源发射的发射光,402和502代表发射光经过目标反射之后获得的回波信号,Q 0°,r1代表了经过第一电路输出的0°相位延时对应的第一电信号,Q 180°,r2代表了经过第二电路输出的180°相位延时对应的第二电信号,Q 0°,r2代表了经过第二电路输出的0°相位延时对应的第二电信号,Q 0°,r1代表了经过第一电路输出的180°相位延时对应的第一电信号,由图4和图5可以明显地看出0°延时相位指由控制器130控制的与发射光不存在任何延迟的接收器控制信号,其他延时相位与0°具有相同的含义,将获得的四个电信号在信息获取单元140中进行处理,按照之前所阐述的方式可以获得最终的目标信息。
图6示意了多个子帧不同相位延时和不同曝光持续时间的设置示意图,例如在帧频分别为15FPS、30FPS或者60FPS,也就是说每秒可以包含15、30或60个子帧,在第N帧和第N+1帧按照不同的长短曝光的四个相位信息,可以利用前一子帧和后一子帧形成互补子帧,这样在多子帧的探测中,相邻的两个子帧信息均能实现对于多目标场景内,不同探测距离,而且通过该方式设置,可以按照相同的方式获得被探测物的距离信息例如四相位算法,每相邻两子帧的信息可以形成互补信息,因而在结果输出中也不会因为获得结果需要的信息量比较大而降低结果输出的帧频。
图7示意了一种设置不同相位和不同曝光时间信息的时序图,在当前的N子帧中,短曝光时间包括四相位数据,并且每一短曝光的相位延时均由两个电路分别获得结果,这样的当探测系统在这种模式时,一方面在这一子帧内直接可以获得例如距离较近的被探测物的精确距离信息,消除了offset和传递函数失配等的影响,另一方面对于远距离被探测物的长曝光数据可以通过两相位获得结果,保证了整个探测能够具有更高的帧频布置可能性。
图8示意了另一种设置不同相位和不同曝光时间信息的时序图,与图7的设置类似部分不再赘述,其差异为远距离对应的长曝光相位延时为90°和270°,这样能够实现与图7的子帧交替配合,实现高帧频下的信息互补,保证输出精度和输出结果的高效性。
图9示意了一种在多子帧信息中设置不同相位和不同曝光时间信息的时序图,该设置一方面考虑了近距离探测对于探测准确性的高要求,因此短曝光探测的每一个相位延时均由两个电路获得结果,保证 了用户体验,并保证了使用设备的安全可靠,另一方面长曝光信息可以在相邻子帧内互补布置,因而保证了测距结果的快速输出,能够保证系统在更高的帧频模式下工作,提升了用户体验。
图10示意了一种在多子帧信息中设置不同相位和不同曝光时间信息的时序图,与图9的方式相比,该模式一方面利用了两个相邻子帧信息的互补,保证了系统能够在高帧频模式下工作,另一方面长曝光远距离通过两相位方式获得远距离目标的距离值,也能够保证探测装置具有更可靠的距离结果。
图11示意了一种在多子帧信息中设置不同相位和不同曝光时间信息的时序图,与图10的方式相比,该模式下不同曝光持续时间的不同相位信息均有两个不同的电路输出,保证了视场中每一个目标可以被高效准确地探测,所有相邻的两个子帧信息互补也能实现探测距离中不降低输出结果帧频的效果。
实际使用中并不限于上述几种实施例中的不同曝光时间和不同相位延时信息获取的布置方案,也可以自主依据需要的帧频进行合理布置,其中第二曝光时间可以为第一曝光时间的四倍以上此处并不限定。
图12示出了本发明实现的方式步骤,S101处理模块120控制光源110发射光可以为方波、三角波或者正弦波等等此处并不具体限制,在发射光的作用下视场被照亮,被探测物150对发射光反射,从而形成反射光回波,S102处理模块120在控制光源发射发射光的同时,以与光源110具有不同相位延时的控制信号控制感光模块130接收反射光的回波,S103感光模块130通过两个电路分别获得多个相同相位或者不同相位接收信号中的至少一个相位控制信号对应的电信号,其中多个相同相位或者不同相位接收信号指相同相位和不同相位的延时控制信号为多个,例如四延时相位的数量为四个,S104信息获取模块140依据两个电路分别获得的至少一个相同相位控制信号对应的电信号获得被探测物150的目标信息,至少一个相同相位控制信号对应的电信号可以在目标信息获取的中间或者最终计算中被利用,之前也阐述了物理方式或者数字方式利用此电信号的方案,在此不再进行赘述。
图13示意了本发明又一实现的方式步骤,与图11所示的步骤类似,在图13中进一步限定了利用四相位方案获得目标信息的方案,并且限定了四个延时相位的每一个相位均由两个电路获得对应的电信号,对应步骤的实现方式可以参照图7所述的步骤,此处也不再进行赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种探测像素单元,其特征在于包括:
    感光模块,接收光源发射光对所述像素进行曝光处理;
    处理模块,可对所述曝光进行处理以获得曝光信号;
    还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;
    所述处理模块接收第一信号,可电性连接所述光源发射光来照明被探测物,同时所述处理模块还可电性连接所述感光模块,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;
    信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
  2. 如权利要求1所述的像素单元,其特征在于,所述处理模块还可接收第二信号,可电性连接所述感光模块,并通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;
    信息获取模块,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息。
  3. 如权利要求1所述的像素单元,其特征在于,所述像素单元为距离获取像素单元,所述目标信息为目标距离信息。
  4. 一种包含权利要求1所述像素组成的阵列型探测装置,其特征在于包括:光源,所述光源可操作以发射光来照明被探测物;
    感光模块,在与所述光源发射光关联的时间对所述像素阵列进行曝光处理;
    处理模块,可分别对所述曝光进行处理以获得曝光信号;
    还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;
    所述处理模块接收第一信号,可电性连接所述光源发射光来照明被探测物,同时所述处理模块还可电性连接所述感光模块,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;
    信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
  5. 如权利要求4所述的探测装置,其特征在于,所述处理模块还可接收第二信号,可电性连接所述感光模块,并通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;
    信息获取模块,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息。
  6. 权利要求4所述的探测装置,其特征在于,与所述光源发射光信号同相位或者不同相位的多个接收控制信号相位包括0°,90°,180°和270°。
  7. 如权利要求7所述的探测装置,其特征在于,所述信息获取模块,可依据所述两个电路分别获得所述四个接收控制信号的每一个相位对应的不同电信号获得所述被探测物的目标信息。
  8. 如权利要求7所述的探测装置,其特征在于,所述曝光信息包括N组,其中N为大于等于2的整数,所述N组曝光包括至少第一曝光时间和第二曝光时间的两组曝光,所述第一曝光时间小于所述第二曝光时间。
  9. 如权利要求8所述的探测装置,其特征在于,所述曝光信息包含两个子帧信息,所述两个子帧信息中均包含四个不同的接收控制相位信号的信息。
  10. 如权利要求9所述的探测装置,其特征在于,所述两个子帧中包含相同的次数第一曝光时间信息,且所述第一曝光时间信息包含四个不同接收控制相位信息。
  11. 如权利要求10所述的探测装置,其特征在于,所述两个子帧中还包括相同的次数第二曝光时间信息,且所述第一子帧包含至少一次第二曝光时间对应的信息,且所述第二曝光时间包含相位差为180°的两个相位信息的接收控制信号对应的输出信息,所述第二子帧包含至少一次第二曝光时间信息,且所 述第二曝光时间包含相位差为180°的两个相位信息的接收控制信号对应的输出信息,且所述两个子帧包含的所述第二曝光时间内相位差为180°的接收控制信号可组成所述四个相位不同接收控制信号的输出信号。
  12. 如权利要求8所述的探测装置,其特征在于,所述N组曝光信息包含多个子帧信息,所述多个子帧信息中均包含四个不同的接收控制相位信号的信息。
  13. 如权利要求12所述的探测装置,其特征在于,所述多个子帧中相邻两个子帧均包含至少一个的相位差为180°的两个相位信息的接收控制信号对应的输出信息,且所述相邻两个子帧包含的所述第二曝光时间内相位差为180°的接收控制信号可组成所述四个相位不同接收控制信号的输出信号;所述处理模块可接收第三控制信号,输出不同子帧中至少一个曝光时长的不同相位控制信息中至少一个通过所述两个电路获得的电信号,信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
  14. 一种使用权利要求4-13任一所述探测装置的探测方法,其特征在于包括:光源可操作以发射光来照明被探测物;
    感光模块,在与所述光源发射光关联的时间对所述像素阵列进行曝光处理;
    处理模块,可分别对所述曝光进行处理以获得曝光信号;
    还包括配置成将入射光转换为各自的电信号的第一电路和第二电路,其中,第一电路被配置为接收第一调制信号,第二电路被配置为接收第二调制信号,其中,第一电路和第二电路被配置为根据第一调制信号和第二调制信号来生成各自的电信号;
    所述处理模块接收第一信号控制,所述感光模块可接收与所述光源发射光信号同相位或者不同相位的多个接收控制信号,并通过所述两个电路分别获得至少一个相同相位接收控制信号对应的电信号;
    信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
  15. 如权利要求14所述的探测方法,其特征在于,所述处理模块还可接收第二信号控制,通过所述两个电路分别获得所述多个不同相位接收控制信号对应的电信号;
    信息获取模块,可依据所述多个不同相位接收控制信号对应的电信号获得被探测物的目标信息。
  16. 如权利要求14所述的探测方法,其特征在于,与所述光源发射光信号同相位或者不同相位的多个接收控制信号相位包括0°,90°,180°和270°。
  17. 如权利要求16所述的探测方法,其特征在于,所述信息获取模块,可依据所述两个电路分别获得所述四个接收控制信号的每一个相位对应的不同电信号获得所述被探测物的目标信息。
  18. 如权利要求14所述的探测方法,其特征在于,所述曝光信息包括N组,其中N为大于等于2的整数,所述N组曝光包括至少第一曝光时间和第二曝光时间的两组曝光,所述第一曝光时间小于所述第二曝光时间。
  19. 如权利要求18所述的探测方法,其特征在于,所述N组曝光信息包含多个子帧信息,所述多个子帧信息中均包含四个不同的接收控制相位信号的信息。
  20. 如权利要求19所述的探测方法,其特征在于,所述多个子帧中相邻两个子帧均包含至少一个的相位差为180°的两个相位信息的接收控制信号对应的输出信息,且所述相邻两个子帧包含的所述第二曝光时间内相位差为180°的接收控制信号可组成所述四个相位不同接收控制信号的输出信号;所述处理模块可接收第三控制信号,输出不同子帧中至少一个曝光时长的不同相位控制信息中至少一个通过所述两个电路获得的电信号,信息获取模块,可依据包含所述两个电路分别获得的相同相位接收控制信号对应的电信号获得被探测物的目标信息。
PCT/CN2020/097333 2020-05-13 2020-06-22 探测单元、探测装置及方法 WO2021227203A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/924,528 US20230184940A1 (en) 2020-05-13 2020-06-22 Measurement unit, and measurement apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010403265.1 2020-05-13
CN202010403265.1A CN113740866A (zh) 2020-05-13 2020-05-13 探测单元、探测装置及方法

Publications (1)

Publication Number Publication Date
WO2021227203A1 true WO2021227203A1 (zh) 2021-11-18

Family

ID=78526177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097333 WO2021227203A1 (zh) 2020-05-13 2020-06-22 探测单元、探测装置及方法

Country Status (3)

Country Link
US (1) US20230184940A1 (zh)
CN (1) CN113740866A (zh)
WO (1) WO2021227203A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113687366A (zh) * 2020-05-14 2021-11-23 宁波飞芯电子科技有限公司 探测单元、探测装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105531A (zh) * 2006-07-10 2008-01-16 欧姆龙株式会社 雷达装置
CN103344962A (zh) * 2013-07-12 2013-10-09 北京理工大学 一种基于光路差分的激光脉冲测距方法
CN109541627A (zh) * 2018-12-25 2019-03-29 西南技术物理研究所 双波长自适应距离门激光雷达
CN110133675A (zh) * 2019-06-10 2019-08-16 炬佑智能科技(苏州)有限公司 发光测距的数据处理方法、装置、电子设备与光处理电路
CN110320528A (zh) * 2019-06-14 2019-10-11 深圳奥比中光科技有限公司 时间深度相机及多频调制解调的降低噪声的距离测量方法
EP3637132A1 (en) * 2018-10-10 2020-04-15 Sensors Unlimited, Inc. Pixels for time of flight (tof) imaging
CN111123285A (zh) * 2019-12-30 2020-05-08 宁波飞芯电子科技有限公司 基于阵列型传感器的信号接收系统、方法及阵列型传感器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105872392B (zh) * 2015-01-23 2019-01-04 原相科技股份有限公司 具有动态曝光时间的光学测距系统
JP6922187B2 (ja) * 2016-11-08 2021-08-18 株式会社リコー 測距装置、監視カメラ、3次元計測装置、移動体、ロボット及び光源駆動条件設定方法
CN108345000A (zh) * 2017-01-24 2018-07-31 北醒(北京)光子科技有限公司 一种具有面阵光电传感器的探测方法
CN207354504U (zh) * 2017-04-25 2018-05-11 湘潭大学 一种频率与曝光可调的飞行时间三维成像装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101105531A (zh) * 2006-07-10 2008-01-16 欧姆龙株式会社 雷达装置
CN103344962A (zh) * 2013-07-12 2013-10-09 北京理工大学 一种基于光路差分的激光脉冲测距方法
EP3637132A1 (en) * 2018-10-10 2020-04-15 Sensors Unlimited, Inc. Pixels for time of flight (tof) imaging
CN109541627A (zh) * 2018-12-25 2019-03-29 西南技术物理研究所 双波长自适应距离门激光雷达
CN110133675A (zh) * 2019-06-10 2019-08-16 炬佑智能科技(苏州)有限公司 发光测距的数据处理方法、装置、电子设备与光处理电路
CN110320528A (zh) * 2019-06-14 2019-10-11 深圳奥比中光科技有限公司 时间深度相机及多频调制解调的降低噪声的距离测量方法
CN111123285A (zh) * 2019-12-30 2020-05-08 宁波飞芯电子科技有限公司 基于阵列型传感器的信号接收系统、方法及阵列型传感器

Also Published As

Publication number Publication date
CN113740866A (zh) 2021-12-03
US20230184940A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
CN110320528B (zh) 时间深度相机及多频调制解调的降低噪声的距离测量方法
WO2021008209A1 (zh) 深度测量装置及距离测量方法
US10545239B2 (en) Distance-measuring imaging device and solid-state imaging device
KR101668869B1 (ko) 거리 센서, 3차원 이미지 센서 및 그 거리 산출 방법
CN110361751B (zh) 时间飞行深度相机及单频调制解调的降低噪声的距离测量方法
US10073164B2 (en) Distance-measuring/imaging apparatus, distance measuring method of the same, and solid imaging element
EP2803184B1 (en) Method of operating a time-of-flight pixel
WO2021103428A1 (zh) 一种深度测量系统及方法
CN110221274B (zh) 时间飞行深度相机及多频调制解调的距离测量方法
CN110456370B (zh) 飞行时间传感系统及其测距方法
WO2022017366A1 (zh) 一种深度成像方法及深度成像系统
US20010024271A1 (en) Distance measurement apparatus and distance measuring
US10996324B2 (en) Time of flight system and method using multiple measuring sequences
WO2004070313A1 (ja) 距離画像センサ
EP3572835B1 (en) Permutation of measuring capacitors in a time-of-flight sensor
KR20130053601A (ko) 깊이 센서의 픽셀 및 상기 픽셀을 포함하는 이미지 센서
CN110456369B (zh) 飞行时间传感系统及其测距方法
WO2019200833A1 (zh) 一种测距方法、装置、测距传感器以及传感阵列
KR102019382B1 (ko) 거리 검출 센서 및 그것의 동작 방법
CN111123285B (zh) 基于阵列型传感器的信号接收系统、方法及阵列型传感器
WO2021227203A1 (zh) 探测单元、探测装置及方法
WO2021227202A1 (zh) 探测装置及方法
WO2021103814A1 (zh) 一种信号提取电路、信号提取方法以及测距方法和装置
CN113687366A (zh) 探测单元、探测装置及方法
CN112954230A (zh) 深度测量方法、芯片和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20935488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20935488

Country of ref document: EP

Kind code of ref document: A1