WO2006109427A1 - 六塩化二ケイ素の精製方法及び高純度六塩化二ケイ素 - Google Patents

六塩化二ケイ素の精製方法及び高純度六塩化二ケイ素 Download PDF

Info

Publication number
WO2006109427A1
WO2006109427A1 PCT/JP2006/305441 JP2006305441W WO2006109427A1 WO 2006109427 A1 WO2006109427 A1 WO 2006109427A1 JP 2006305441 W JP2006305441 W JP 2006305441W WO 2006109427 A1 WO2006109427 A1 WO 2006109427A1
Authority
WO
WIPO (PCT)
Prior art keywords
silanol
hexasalt
purity
nickel
raw material
Prior art date
Application number
PCT/JP2006/305441
Other languages
English (en)
French (fr)
Inventor
Koji Ishikawa
Hiroshi Suzuki
Yoshinori Kimata
Original Assignee
Toagosei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co., Ltd. filed Critical Toagosei Co., Ltd.
Priority to CN2006800027385A priority Critical patent/CN101107196B/zh
Priority to JP2007512438A priority patent/JP5157441B2/ja
Priority to EP06729430.6A priority patent/EP1867604B1/en
Priority to US11/910,459 priority patent/US7740822B2/en
Priority to KR1020077016388A priority patent/KR101307074B1/ko
Publication of WO2006109427A1 publication Critical patent/WO2006109427A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/10778Purification
    • C01B33/10784Purification by adsorption
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification

Definitions

  • the present invention relates to a method for purifying hexasalt nitrone and a high purity hexasalt nitrone. More specifically, a method for obtaining high-purity dicathenium hexachloride by efficiently removing silanol by using a raw material strength of hexa-salt nickel containing silanol as an impurity, and a high-purity hexasalt salt obtained by the method. Concerning Nike Element.
  • the high-purity hexasalt nickel silicate of the present invention can be used as a material for forming a nitride nitride film in a semiconductor device.
  • halogen silicon such as dichlorosilane has been used as a silicon semiconductor raw material.
  • a CVD material capable of forming a nitrided nitride film at a low temperature is expected, and studies using hexahexasilicate are being promoted.
  • a method for purifying a salted silica compound is disclosed, for example, in JP-A-2-153815.
  • the reference discloses an example in which a black polysilane raw material is purified by a method in which it is brought into contact with activated carbon and then distilled.
  • An object of the present invention is to provide a method for obtaining a high-purity hexa-salt nitrone element by efficiently removing the hexa-salt nitrone raw material power silanol containing silanol as an impurity.
  • a hexasalt succinice raw material containing hexasalt succinic acid and silanol as impurities is brought into contact with an adsorbent to remove silanol.
  • a contact step is provided.
  • the adsorbent may be activated carbon.
  • a distillation step for distillation may be provided after the contact step. It is preferable to perform each of the above steps in an inert gas atmosphere.
  • the high-purity hexasalt nitrone element of the present invention is obtained by the purification method described above.
  • the high-purity hexasalt nickel silicate of the present invention can have a silanol content of 1 mass ppm or less. Further, the high-purity hexasalt nickel silicate of the present invention may have a silanol content of 0.05 mass ppm or less.
  • the purification method of the present invention it is possible to efficiently remove silanol as an impurity, and to obtain hexasalt nitrone having a reduced concentration of the compound below a predetermined amount.
  • the high-purity hexasalt nickel silicate of the present invention is suitable as a material for forming a nitride nitride film in a semiconductor device.
  • a hexasalt succinice raw material containing hexasalt succinic acid and silanol as impurities is brought into contact with an adsorbent to remove silanol.
  • a contact process is provided.
  • the “six salt-in-nickel raw material” includes hexa-salt-nickel element and impurities such as silanol.
  • concentration of silanol is usually 4 ppm or more.
  • Other impurities include metal components, aluminum chloride, and tetrasalt titanium, depending on the method for producing hexasalt nickel.
  • silanol refers to a salted silica compound having a silanol group.
  • adsorbent used in the contacting step conventionally known adsorbents can be used without limitation in shape, size, and the like.
  • the adsorbent include activated carbon, silica gel, and molecular sieve. Of these, activated carbon has silanol groups. It is preferable that the adsorption performance for the compound to be used is high. It is also suitable for removing metal components and the like.
  • Activated carbon is usually produced by coal pitch, petroleum pitch or the like, and powdered activated charcoal (gas activated charcoal, zinc chloride activated charcoal and phosphoric acid activated charcoal); granular activated carbon (crushed charcoal, granulated charcoal and Molding charcoal); fibrous activated carbon; specially molded activated carbon and the like.
  • powdered activated charcoal gas activated charcoal, zinc chloride activated charcoal and phosphoric acid activated charcoal
  • granular activated carbon crushed charcoal, granulated charcoal and Molding charcoal
  • fibrous activated carbon specially molded activated carbon and the like.
  • granular activated carbon and / or fibrous activated carbon are preferred. From the viewpoint of workability and the like, a granular material of 5 to 500 mesh is preferable.
  • the adsorbent When the adsorbent is used, it is preferable to use it in a state with as little moisture as possible. Therefore, it is preferable to dry the adsorbent in advance.
  • the drying method is selected according to the type of adsorbent, but in the case of activated carbon, it is in the presence or distribution of an inert gas such as nitrogen, helium or argon (hereinafter also referred to as “inert gas atmosphere”). Alternatively, heat treatment is preferably performed under reduced pressure.
  • the heat treatment conditions may be selected depending on the type and amount of the adsorbent, but when the activated carbon is heat-treated in an inert gas atmosphere, the temperature is 120 ° C or higher (preferably 140 ° C or higher, and the upper limit is usually 500 ° C.) for 4 hours or longer (preferably 8 hours or longer, and the upper limit is usually 72 hours).
  • the temperature is 120 ° C or higher (preferably 140 ° C or higher, and the upper limit is usually 500 ° C) for 1 hour or longer (the upper limit is usually 24 hours). And can be dried in a shorter time.
  • a specific method of the contacting step for example, (1) a method in which an adsorbent is added to and dispersed in a hexachlorodichloride raw material (batch method), (2) a cylindrical body such as a column And the like, and a method of filling the adsorbent and passing the hexasalt-nickel raw material from one side of the cylindrical body (continuous method).
  • the method (2) is preferred.
  • the use ratio and contact time at the time of contact of the hexa-salt / nickel raw material and the adsorbent are not particularly limited.
  • the contacting step is preferably performed in an inert gas atmosphere such as nitrogen, helium, or argon, and particularly preferably performed in an inert gas atmosphere having a water content of 0.5 mass ppm or less.
  • an inert gas atmosphere such as nitrogen, helium, or argon
  • Examples of the method under an inert gas atmosphere include a method of simply introducing an inert gas into the system and a method of introducing an inert gas from the other while reducing the pressure in the system.
  • An atmosphere with less moisture can be formed by heating a container, a cylindrical body, a tubular body, or the like that is filled with the hexa-salt / nickel raw material at the time of introducing and before introducing the inert gas. .
  • the amount of liquid to be fed when the hexasalt-nickel raw material is passed is selected according to the inner diameter of the cylindrical body and the like, and is not particularly limited. : LOO liter Z, preferably 0.5-20 liter Z. Within the above range, the dichlorinated hexachloride raw material and the adsorbent are in sufficient contact with each other, and impurities such as silanol are adsorbed on the adsorbent, so that the higher purity hexasalt can be recovered. .
  • the cylindrical body when the cylindrical body has heat resistance, the cylindrical body is filled with an adsorbent and heat-treated in an inert gas atmosphere to sufficiently dry the adsorbent. Thereafter, the contact process can be efficiently carried out by passing the hexa-salt-nickel raw material under the same atmosphere as it is.
  • the method for purifying the hexa-salt nitrone of the present invention can include a distillation step of distillation after the contacting step.
  • distillation step simple distillation and multistage distillation by repeating this, batch distillation with a rectification column, continuous distillation with a rectification column, and the like can be applied.
  • the distillation temperature is usually 140 to 150 ° C, preferably 142 to 148 ° C. This distillation can be carried out by removing salt salt compounds such as tetra salt salt, trisalt salt, tetrasalt salt and disilane.
  • the distillation step is also preferably performed in an inert gas atmosphere such as nitrogen, helium or argon.
  • a more efficient method for purifying the hexasalt nitrone is to perform the distillation step and the contact step in the same system in an inert gas atmosphere.
  • the cylindrical body, the container, and the like used in the contact step and the distillation step are preferably made of stainless steel from the viewpoints of reduced pressure, ease of heating, and the like. In particular, it is possible to remove the moisture adhering to the inner surface in a short time by using the one whose inner surface is electrolytically polished. wear.
  • the content of silanol, and further, a chloride compound such as tetrasalt silicate, trisalt silicate, tetrasilane disilane, metal components, and the like has been reduced.
  • a chloride compound such as tetrasalt silicate, trisalt silicate, tetrasilane disilane, metal components, and the like.
  • the high-purity hexasalt nitrone element of the present invention preferably has a silanol amount of 1 mass ppm or less, and more preferably 0.05 mass ppm or less.
  • This amount of silanol can be measured by FT-IR.
  • the amount of silanol can be quantified using a calibration curve prepared using trimethylsilanol as a standard substance.
  • the high-purity hexasalt nickel silicate of the present invention is suitable, for example, as a material for forming a nitride nitride film in a semiconductor device.
  • a hexa-salt nitrone raw material (I) having a silanol amount of 4.88 mass ppm by FT-IR using trimethylsilanol as a standard substance was used.
  • a stainless steel column having an inner diameter of 36 mm and a length of 200 mm was charged in advance with 30 g of activated carbon that had been vacuum-dried at 150 ° C. for 8 hours under a nitrogen atmosphere in advance. Thereafter, 1 liter of the above drotenium hexachloride raw material (I) was passed through the column at a feed rate of 2 liters Z and collected in a nitrogen atmosphere. Analysis of the amount of silanol in the obtained hexasalt-nickel was 0.55 mass ppm.
  • a hexa-salt-nicky raw material ( ⁇ ) with a silanol content of 5.34 mass ppm by FT-IR was used.
  • a stainless steel column with an inner diameter of 36 mm and a length of 200 mm is pre-packed with 80 g of activated carbon that has been vacuum-dried at 150 ° C for 12 hours under a nitrogen atmosphere in advance. It was. Thereafter, 5 liters of the above dichlorinated hexachloride raw material (11) was passed through the column at a feed rate of 1 liter Z in a nitrogen atmosphere and collected. Analysis of the amount of silanol in the obtained hexasalt dinitrone was 0.29 mass ppm.
  • the obtained liquid was transferred to a stainless steel flask and set in a stainless steel distillation apparatus. Distillation was carried out while raising the temperature to 170 ° C with a mantle heater for heating the flask and publishing nitrogen gas at this temperature.
  • the silanol content of the obtained main-stained hexasalt-nickel was analyzed to be 0.07 mass ppm.
  • a hexa-salt-nicky raw material ( ⁇ ) having a silanol content of 4.51 mass ppm by FT-IR was used.
  • a stainless steel column with an inner diameter of 10 mm and a length of 300 mm was thoroughly purged with nitrogen by 10 g of activated carbon (trade name “CW480B”, manufactured by Nimura Igaku Co., Ltd.) that had been vacuum-dried in a nitrogen atmosphere at 150 ° C for 2 hours in advance. Filled in the glove box. Connect the bottom of the column (the outlet of the 6-salt nitrone raw material ( ⁇ ) to be passed) and a stainless steel distillation device (stainless steel flask) using stainless steel piping and valves, and evacuate the entire system. And nitrogen substitution. After nitrogen substitution, the moisture concentration in the system was measured with a moisture meter and found to be 0.3 mass ppm o
  • the high-purity hexasalt nickel silicate of the present invention has a very small amount of silanol, and is therefore suitable as a material for forming a nitride nitride film in a semiconductor device.
  • the nitride nitride film is also not suitable. Since a pure product is hardly contained, a high-performance semiconductor device can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明の目的は、不純物としてシラノールを含む六塩化二ケイ素原料からシラノールを効率よく除去して、高純度の六塩化二ケイ素を得る方法を提供することである。本発明の六塩化二ケイ素の精製方法は、六塩化二ケイ素と、不純物としてのシラノールとを含む六塩化二ケイ素原料を、活性炭等の吸着材と接触させ、シラノールを除去する工程を備える。更に、蒸留する工程を備えることもできる。上記各工程は、不活性ガス雰囲気下で行うことが好ましい。

Description

明 細 書
六塩化ニケィ素の精製方法及び高純度六塩化二ケィ素
技術分野
[0001] 本発明は、六塩ィ匕ニケィ素の精製方法及び高純度六塩ィ匕ニケィ素に関する。更に 詳しくは、不純物としてシラノールを含む六塩ィ匕ニケィ素原料力もシラノールを効率 よく除去して、高純度の六塩化二ケィ素を得る方法、及び、該方法により得られる高 純度六塩ィ匕ニケィ素に関する。本発明の高純度六塩ィ匕ニケィ素は、半導体デバイス における窒化ケィ素膜の形成材料等として用いることができる。
背景技術
[0002] 従来、シリコン半導体原料として、ジクロロシラン等のハロゲンィ匕ケィ素が用いられ ている。近年、このジクロロシランに比べて、窒化ケィ素膜を低温で成膜できる CVD 材料として期待されて 、る六塩ィ匕ニケィ素を用いる検討が進められて 、る。
し力しながら、いかなる製造方法により得られた六塩ィ匕ニケィ素であっても、不純物 として、シラノールが含まれていることから、窒化ケィ素膜を安定して形成させるため に、高純度の六塩ィヒニケィ素が必要とされ、シラノール等の不純物を除去する精製 方法が求められている。不純物の含有量が多くなると、窒化ケィ素膜の成膜速度が 極端に鈍化し、また、膜に不純物が取り込まれ、均一な膜が得られない等の問題が 生じる。
[0003] 塩ィ匕ケィ素化合物の精製方法としては、例えば、特開平 2— 153815号公報に開 示されている。該文献には、クロ口ポリシラン原料を、活性炭と接触させ、その後、蒸 留する方法により精製した例が開示されている。
発明の開示
発明が解決しょうとする課題
[0004] 本発明の目的は、不純物としてシラノールを含む六塩ィ匕ニケィ素原料力 シラノー ルを効率よく除去して、高純度の六塩ィ匕ニケィ素を得る方法を提供することにある。 課題を解決するための手段
[0005] 本発明は以下に示される。 本発明の六塩ィ匕ニケィ素の精製方法は、六塩ィ匕ニケィ素と、不純物としてのシラノ 一ルとを含む六塩ィ匕ニケィ素原料を、吸着材と接触させ、シラノールを除去する接触 工程を備えることを特徴とする。
上記吸着材が活性炭であるものとすることができる。
更に、上記接触工程の後に、蒸留する蒸留工程を備えることができる。 上記各工程を、不活性ガス雰囲気下で行うことが好ま ヽ。
本発明の高純度六塩ィ匕ニケィ素は、上記の精製方法により得られたことを特徴とす る。本発明の高純度六塩ィ匕ニケィ素は、シラノール量が 1質量 ppm以下であるものと することができる。また、本発明の高純度六塩ィ匕ニケィ素は、シラノール量が 0. 05質 量 ppm以下であるものとすることができる。
発明の効果
[0006] 本発明の精製方法によれば、不純物としてのシラノールを効率よく除去し、該化合 物の濃度が所定量以下に低減された六塩ィ匕ニケィ素を得ることができる。
また、本発明の高純度六塩ィ匕ニケィ素によれば、半導体デバイスにおける窒化ケィ 素膜の形成材料等として好適である。
発明を実施するための最良の形態
[0007] 以下、本発明を詳しく説明する。
本発明の六塩ィ匕ニケィ素の精製方法は、六塩ィ匕ニケィ素と、不純物としてのシラノ 一ルとを含む六塩ィ匕ニケィ素原料を、吸着材と接触させ、シラノールを除去する接触 工程を備える。
尚、本発明において、「六塩ィ匕ニケィ素原料」は、六塩ィ匕ニケィ素と、シラノール等 の不純物とを含むものである。シラノールの濃度は、通常、 4ppm以上である。また、 他の不純物としては、六塩ィ匕ニケィ素の製造方法によるが、金属成分、塩化アルミ- ゥム、四塩ィ匕チタン等が挙げられる。
また、「シラノール」とは、シラノール基を有する塩ィ匕ケィ素化合物をいう。
[0008] 接触工程において用いられる吸着材としては、従来、公知の吸着材を、形状、大き さ等が限定されることなく用いることができる。この吸着材としては、活性炭、シリカゲ ル、モレキュラーシーブ等が挙げられる。これらのうち、活性炭は、シラノール基を有 する化合物に対する吸着性能が高ぐ好適である。また、金属成分等の除去におい ても好適である。
[0009] 活性炭は、通常、石炭ピッチ、石油ピッチ等力 製造されたものであり、粉末状活性 炭 (ガス賦活炭、塩化亜鉛賦活炭及び燐酸賦活炭);粒状活性炭 (破砕炭、顆粒炭 及び成形炭);繊維状活性炭;特殊成形活性炭等が挙げられる。これらのうち、粒状 活性炭及び/又は繊維状活性炭が好適である。作業性等の観点から、 5〜500メッ シュの粒状物が好ましい。
[0010] 吸着材を使用する際には、極力、水分が少ない状態で用いることが好ましい。従つ て、吸着材を、予め、乾燥しておくことが好ましい。乾燥方法は、吸着材の種類により 選択されるが、活性炭の場合、窒素、ヘリウム、アルゴン等の不活性ガスの存在下又 は流通下(以下、併せて「不活性ガス雰囲気下」という。)、あるいは、減圧下で、熱処 理することが好ましい。
熱処理の条件は、吸着材の種類及び量により選択すればよいが、活性炭を不活性 ガス雰囲気下で熱処理する場合、温度 120°C以上 (好ましくは 140°C以上であり、上 限は、通常、 500°Cである。)で、 4時間以上 (好ましくは 8時間以上であり、上限は、 通常、 72時間である。)とするのが一般的である。減圧下で処理する場合には、温度 120°C以上 (好ましくは 140°C以上であり、上限は、通常、 500°Cである。)で、 1時間 以上 (上限は、通常、 24時間である。)と、更に短時間で乾燥することができる。
[0011] 接触工程の具体的な方法としては、例えば、(1)六塩化二ケィ素原料に、吸着材を 添加、分散させて行う方法 (バッチ法)、(2)カラム等の筒状体に吸着材を充填し、該 筒状体の片側より六塩ィ匕ニケィ素原料を通液する方法 (連続法)等が挙げられる。こ れらのうち、(2)の方法が好ましい。
尚、六塩ィ匕ニケィ素原料及び吸着材の接触時の使用割合並びに接触時間は、特 に限定されない。
[0012] 接触工程は、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で行うことが好まし ぐ特に、水分量が 0. 5質量 ppm以下の不活性ガス雰囲気下で行うことが好ましい。 水分量が少ないほど、接触工程の際に、六塩ィ匕ニケィ素がシラノールに変化するこ とを防止することがでさる。 不活性ガス雰囲気下とする方法としては、系内に、単に不活性ガスを導入する方法 、系内を減圧しながら、他方から不活性ガスを導入する方法等が挙げられる。不活性 ガスの導入時及び z又は導入前に、六塩ィ匕ニケィ素原料が充填される容器、筒状 体、管状体等を加熱することにより、より水分の少ない雰囲気を形成することができる 。下記の蒸留工程においても同様である。
[0013] 上記(2)の方法において、六塩ィ匕ニケィ素原料を通液する際の送液量は、筒状体 の内径等により選択され、特に限定されないが、通常、 0. 1〜: LOOリットル Z時、好ま しくは 0. 5〜20リットル Z時である。上記範囲であれば、六塩化二ケィ素原料及び吸 着材が十分に接触し、シラノール等の不純物が、吸着材に吸着し、より高純度の六 塩ィ匕ニケィ素を回収することができる。
尚、上記(2)の方法において、筒状体が耐熱性を有する場合には、この筒状体に 吸着材を充填し、不活性ガス雰囲気下で熱処理して、吸着材を十分に乾燥させた後 、そのまま同じ雰囲気下で、六塩ィ匕ニケィ素原料を通液することで、効率的に接触ェ 程を進めることができる。
[0014] 本発明の六塩ィ匕ニケィ素の精製方法は、接触工程の後、蒸留する蒸留工程を備 えることができる。
[0015] 蒸留工程の具体的な方法としては、単蒸留及びこれを繰り返した多段の蒸留、精 留塔を備えたバッチ式蒸留、精留塔を備えた連続式蒸留等を適用することができる。 蒸留温度は、通常、 140〜150°C、好ましくは 142〜148°Cである。この蒸留により、 四塩ィ匕ケィ素、三塩ィ匕ケィ素、四塩ィ匕ジシラン等の塩ィ匕ケィ素化合物を除去すること ちでさる。
蒸留工程も、窒素、ヘリウム、アルゴン等の不活性ガス雰囲気下で行うことが好まし い。
より効率的な六塩ィ匕ニケィ素の精製方法は、この蒸留工程と、上記の接触工程とを 、不活性ガス雰囲気とした同じ系内にお 、て行うことである。
[0016] 上記の接触工程及び蒸留工程において用いる筒状体、容器等は、減圧のしゃすさ 、加熱しやすさ等の観点から、ステンレス製のものが好ましい。特に、内面が電解研 磨されたものを用いることにより、内面に付着した水分の除去を短時間で行うことがで きる。
[0017] 本発明の精製方法において、各工程の終了後、回収された六塩ィ匕ニケィ素は、水 分の少な 、雰囲気下に保存しておくことが好ま 、。
[0018] 本発明の精製方法により、シラノール、更には、四塩ィ匕ケィ素、三塩ィ匕ケィ素、四塩 化ジシラン等の塩化ケィ素化合物、金属成分等の含有量が低減された、本発明の高 純度六塩ィ匕ニケィ素が得ることができる。
[0019] 本発明の高純度六塩ィ匕ニケィ素は、好ましくはシラノール量が 1質量 ppm以下であ り、更に好ましくは、 0. 05質量 ppm以下である。このシラノール量は、 FT— IRにより 測定することができる。上記シラノール量は、トリメチルシラノールを標準物質として作 成された検量線を用いて定量することができる。
[0020] 本発明の高純度六塩ィ匕ニケィ素は、例えば、半導体デバイスにおける窒化ケィ素 膜の形成材料等として好適である。
実施例
[0021] 以下、本発明について、実施例を挙げて具体的に説明する。尚、本発明は、これら の実施例に何ら制約されるものではな 、。
[0022] 実施例 1
精製原料として、標準物質としてトリメチルシラノールを用いた FT— IRによるシラノ ール量が 4. 88質量 ppmである六塩ィ匕ニケィ素原料 (I)を用いた。
内径 36mm、長さ 200mmのステンレス製カラムに、予め、窒素雰囲気下、 150°C で 8時間真空乾燥させた活性炭に村ィ匕学社製、商品名「CP460B」)30gを充填し た。その後、窒素雰囲気下、上記六塩化二ケィ素原料 (I) 1リットルを、給液速度 2リツ トル Z時でカラム内に通液し、回収した。得られた六塩ィ匕ニケィ素のシラノール量を 分析したところ、 0. 55質量 ppmであった。
[0023] 実施例 2
精製原料として、 FT— IRによるシラノール量が 5. 34質量 ppmである六塩ィ匕ニケィ 素原料 (Π)を用いた。
内径 36mm、長さ 200mmのステンレス製カラムに、予め、窒素雰囲気下、 150°C で 12時間真空乾燥させた活性炭に村ィ匕学社製、商品名「CP460B」)80gを充填し た。その後、窒素雰囲気下、上記六塩化二ケィ素原料 (11) 5リットルを、給液速度 1リ ットル Z時でカラム内に通液し、回収した。得られた六塩ィ匕ニケィ素のシラノール量を 分析したところ、 0. 29質量 ppmであった。
次いで、得られた液体をステンレス製フラスコに移し、ステンレス製蒸留装置にセッ トした。蒸留は、フラスコを加熱するためのマントルヒータにて 170°Cまで昇温して、こ の温度で、窒素ガスをパブリングしながら行った。初留として 500ml、主留として 4リツ トルの六塩ィ匕ニケィ素を得た。得られた主留六塩ィ匕ニケィ素のシラノール量を分析し たところ、 0. 07質量 ppmであった。
[0024] 実施例 3
精製原料として、 FT— IRによるシラノール量が 4. 51質量 ppmである六塩ィ匕ニケィ 素原料 (ΠΙ)を用いた。
内径 10mm、長さ 300mmのステンレス製カラムに、予め、窒素雰囲気下、 150°C1 2時間真空乾燥させた活性炭(二村ィ匕学社製、商品名「CW480B」) 10gを、充分に 窒素置換したグローブボックス中にて充填した。カラム下端 (通液する六塩ィ匕ニケィ 素原料 (ΠΙ)の出口)とステンレス製蒸留装置 (ステンレス製フラスコ)とを、ステンレス 製配管及びバルブを用いて接続し、装置全体の内部を真空引き及び窒素置換を行 つた。窒素置換後、系内の水分濃度を水分計にて測定したところ 0. 3質量 ppmであ つた o
次いで、上記六塩ィ匕ニケィ素原料 (III) 1リットルを、給液速度 1リットル Z時でカラ ム内に通液し、ステンレス製配管によりステンレス製フラスコに移した。その後、実施 例 2と同様にして蒸留を行い、初留として 40ml、主留として 850mlの六塩ィ匕ニケィ素 を得た。得られた主留六塩ィ匕ニケィ素のシラノール量を分析したところ、 0. 04質量 p pmであつ 7こ。
産業上の利用可能性
[0025] 本発明の高純度六塩ィ匕ニケィ素は、シラノール量が極微量であるため、半導体デ バイスにおける窒化ケィ素膜の形成材料等として好適であり、該窒化ケィ素膜も、不 純物がほとんど含まれな 、ため、高性能の半導体デバイスを作製することができる。

Claims

請求の範囲
[I] 六塩ィ匕ニケィ素と、不純物としてのシラノールとを含む六塩ィ匕ニケィ素原料を、吸 着材と接触させ、シラノールを除去する接触工程を備えることを特徴とする六塩ィ匕ニ ケィ素の精製方法。
[2] 上記吸着材が活性炭である請求項 1に記載の六塩ィ匕ニケィ素の精製方法。
[3] 上記接触工程が、不活性ガス雰囲気下で行われる請求項 1に記載の六塩ィ匕ニケィ 素の精製方法。
[4] 更に、上記接触工程の後に、蒸留する蒸留工程を備える請求項 1に記載の六塩ィ匕 ニケィ素の精製方法。
[5] 上記蒸留工程が、不活性ガス雰囲気下で行われる請求項 4に記載の六塩ィ匕ニケィ 素の精製方法。
[6] 請求項 1に記載の精製方法により得られたことを特徴とする高純度六塩化二ケィ素
[7] シラノール量力 ^質量 ppm以下である請求項 6に記載の高純度六塩ィ匕ニケィ素。
[8] シラノール量が 0. 05質量 ppm以下である請求項 6に記載の高純度六塩ィ匕ニケィ 素。
[9] 請求項 4に記載の精製方法により得られたことを特徴とする高純度六塩ィ匕ニケィ素
[10] シラノール量力 ^質量 ppm以下である請求項 9に記載の高純度六塩ィヒニケィ素。
[II] シラノール量が 0. 05質量 ppm以下である請求項 9に記載の高純度六塩ィ匕ニケィ 素。
PCT/JP2006/305441 2005-04-07 2006-03-17 六塩化二ケイ素の精製方法及び高純度六塩化二ケイ素 WO2006109427A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800027385A CN101107196B (zh) 2005-04-07 2006-03-17 六氯化二硅的精制方法和高纯度六氯化二硅
JP2007512438A JP5157441B2 (ja) 2005-04-07 2006-03-17 六塩化二ケイ素の精製方法
EP06729430.6A EP1867604B1 (en) 2005-04-07 2006-03-17 Method for purification of disilicon hexachloride and high purity disilicon hexachloride
US11/910,459 US7740822B2 (en) 2005-04-07 2006-03-17 Method for purification of disilicon hexachloride and high purity disilicon hexachloride
KR1020077016388A KR101307074B1 (ko) 2005-04-07 2006-03-17 육염화 이규소의 정제 방법 및 고순도 육염화 이규소

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005111438 2005-04-07
JP2005-111438 2005-04-07

Publications (1)

Publication Number Publication Date
WO2006109427A1 true WO2006109427A1 (ja) 2006-10-19

Family

ID=37086718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305441 WO2006109427A1 (ja) 2005-04-07 2006-03-17 六塩化二ケイ素の精製方法及び高純度六塩化二ケイ素

Country Status (7)

Country Link
US (1) US7740822B2 (ja)
EP (1) EP1867604B1 (ja)
JP (1) JP5157441B2 (ja)
KR (1) KR101307074B1 (ja)
CN (1) CN101107196B (ja)
TW (1) TWI429589B (ja)
WO (1) WO2006109427A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000841A1 (de) 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur Herstellung von hochreinem Hexachlordisilan
JP2010018508A (ja) * 2008-07-14 2010-01-28 Toagosei Co Ltd 高純度クロロポリシランの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042936A1 (de) * 2008-10-17 2010-04-22 Wacker Chemie Ag Verfahren zur Entfernung von Titan aus Hexachlordisilan
ES2444429T3 (es) * 2008-11-11 2014-02-25 Styron Europe Gmbh Proceso para retirar silanol de la preparación de un polímero modificado
DE102009056438B4 (de) 2009-12-02 2013-05-16 Spawnt Private S.À.R.L. Verfahren zur Herstellung von Hexachlordisilan
DE102009056731A1 (de) 2009-12-04 2011-06-09 Rev Renewable Energy Ventures, Inc. Halogenierte Polysilane und Polygermane
CN108017060B (zh) * 2018-02-09 2019-06-28 浙江博瑞电子科技有限公司 一种六氯乙硅烷的纯化方法
CN112723359B (zh) * 2020-12-30 2022-02-08 烟台万华电子材料有限公司 多元金属硅化物与氯化铵反应制备乙硅烷的方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923784A (en) * 1958-06-25 1963-04-18 Wacker Chemie Gmbh Process for the manufacture of very pure hexachlorodisilane
JPS61275125A (ja) * 1985-05-30 1986-12-05 Mitsui Toatsu Chem Inc ヘキサクロロジシランの安定化法
JPH02153815A (ja) * 1988-12-06 1990-06-13 Mitsubishi Metal Corp クロロポリシランの精製方法
WO2002012122A1 (fr) * 2000-08-02 2002-02-14 Mitsubishi Materials Polycrystalline Silicon Corporation Procédé de production d'hexachlorure de disilicium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1530038B1 (en) * 2002-08-09 2010-10-13 Toagosei Co., Ltd. Method of measuring concentration of silanol group
US7531679B2 (en) * 2002-11-14 2009-05-12 Advanced Technology Materials, Inc. Composition and method for low temperature deposition of silicon-containing films such as films including silicon nitride, silicon dioxide and/or silicon-oxynitride
JP2006176357A (ja) * 2004-12-22 2006-07-06 Sumitomo Titanium Corp ヘキサクロロジシランの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB923784A (en) * 1958-06-25 1963-04-18 Wacker Chemie Gmbh Process for the manufacture of very pure hexachlorodisilane
JPS61275125A (ja) * 1985-05-30 1986-12-05 Mitsui Toatsu Chem Inc ヘキサクロロジシランの安定化法
JPH02153815A (ja) * 1988-12-06 1990-06-13 Mitsubishi Metal Corp クロロポリシランの精製方法
WO2002012122A1 (fr) * 2000-08-02 2002-02-14 Mitsubishi Materials Polycrystalline Silicon Corporation Procédé de production d'hexachlorure de disilicium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1867604A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007000841A1 (de) 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur Herstellung von hochreinem Hexachlordisilan
WO2009047238A1 (de) 2007-10-09 2009-04-16 Wacker Chemie Ag Verfahren zur herstellung von hochreinem hexachlordisilan
US8551296B2 (en) 2007-10-09 2013-10-08 Wacker Chemie Ag Process for preparing high-purity hexachlorodisilane
JP2010018508A (ja) * 2008-07-14 2010-01-28 Toagosei Co Ltd 高純度クロロポリシランの製造方法

Also Published As

Publication number Publication date
TWI429589B (zh) 2014-03-11
JP5157441B2 (ja) 2013-03-06
CN101107196A (zh) 2008-01-16
EP1867604A1 (en) 2007-12-19
JPWO2006109427A1 (ja) 2008-10-16
TW200642954A (en) 2006-12-16
US7740822B2 (en) 2010-06-22
EP1867604A4 (en) 2010-02-03
KR101307074B1 (ko) 2013-09-11
EP1867604B1 (en) 2013-05-15
CN101107196B (zh) 2011-03-30
US20090053124A1 (en) 2009-02-26
KR20080004450A (ko) 2008-01-09

Similar Documents

Publication Publication Date Title
WO2006109427A1 (ja) 六塩化二ケイ素の精製方法及び高純度六塩化二ケイ素
CN107848796B (zh) 氢气回收系统及氢气的分离回收方法
EP0765840B1 (en) Surface hydrophobic active carbon and method for production thereof
JP5824318B2 (ja) 圧力スイング吸着処理による精製水素ガスの製造装置および方法
WO2015059919A1 (ja) 多結晶シリコンの製造方法
TWI755148B (zh) 從氯矽烷混合物中除去雜質的方法
CN105143104A (zh) 硅烷化合物或氯硅烷化合物的纯化方法、多晶硅的制造方法和弱碱性离子交换树脂的再生处理方法
JP2004149351A (ja) クロロシラン及びその精製方法
KR101134230B1 (ko) 염화실란 정제 방법 및 시스템, 그리고 금속계 불순물 정제용 흡착제
JP6698762B2 (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
TWI568673B (zh) 三氯矽烷之純化
EP2322478B1 (en) Method for the purification of silicon tetrachloride
KR20150037855A (ko) 다결정 실리콘의 제조 방법
JPH10316691A (ja) クロロシランからのリン除去法
US5232602A (en) Phosphorous removal from tetrachlorosilane
JPH1036377A (ja) 高純度アルコキシシランの製造方法
CN106488884A (zh) 氯硅烷的纯化方法
TWI773121B (zh) 獲得六氯二矽烷的方法
JPH0480848B2 (ja)
JP7061452B2 (ja) リン酸の製造方法および精製方法
JPS6325210A (ja) ジシランの精製方法
JPH0352406B2 (ja)
JP2006117559A (ja) トリメチルシランの精製方法
US20080009645A1 (en) Preparation Of Adsorbents For Purifying Organosilicon Compounds
JPS6241166B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007512438

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006729430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077016388

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680002738.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWE Wipo information: entry into national phase

Ref document number: 11910459

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006729430

Country of ref document: EP