WO2006101075A1 - 多層フィルム・シート成形用ダイス - Google Patents

多層フィルム・シート成形用ダイス Download PDF

Info

Publication number
WO2006101075A1
WO2006101075A1 PCT/JP2006/305545 JP2006305545W WO2006101075A1 WO 2006101075 A1 WO2006101075 A1 WO 2006101075A1 JP 2006305545 W JP2006305545 W JP 2006305545W WO 2006101075 A1 WO2006101075 A1 WO 2006101075A1
Authority
WO
WIPO (PCT)
Prior art keywords
cho
die
force
molten resin
layer
Prior art date
Application number
PCT/JP2006/305545
Other languages
English (en)
French (fr)
Inventor
Kenji Nozawa
Koji Mizunuma
Original Assignee
Toshiba Kikai Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Kikai Kabushiki Kaisha filed Critical Toshiba Kikai Kabushiki Kaisha
Priority to JP2007509269A priority Critical patent/JP4769795B2/ja
Priority to CN2006800093669A priority patent/CN101146662B/zh
Priority to US11/909,384 priority patent/US8105064B2/en
Publication of WO2006101075A1 publication Critical patent/WO2006101075A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • B29C48/313Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections by positioning the die lips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/255Flow control means, e.g. valves
    • B29C48/2556Flow control means, e.g. valves provided in or in the proximity of dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/307Extrusion nozzles or dies having a wide opening, e.g. for forming sheets specially adapted for bringing together components, e.g. melts within the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • B29C48/31Extrusion nozzles or dies having a wide opening, e.g. for forming sheets being adjustable, i.e. having adjustable exit sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92114Dimensions
    • B29C2948/92152Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92904Die; Nozzle zone

Definitions

  • the present invention relates to a multilayer film 'a die used for sheet forming, and more particularly, to a multi-hold type multilayer film' sheet die (multi-hold die).
  • Multi-layer film with multi-hold dies (T-die).
  • T-die Multi-layer film with multi-hold dies
  • the flow rate distribution of the molten resin after the molten resin of each layer joins
  • the flow distribution of the molten resin in each layer before joining is also consistent in the width direction of the die.
  • the die stagnation time distribution must be uniform in the width direction of the die.
  • a multilayer film by the multi-hold method In order to obtain a uniform flow rate distribution and a uniform die stagnation time distribution, a multilayer film by the multi-hold method.
  • the hold of each layer and the pressure loss adjustment land The shape is determined by analysis and analysis by simulation using a computer.
  • the shape of the manifold and the pressure loss adjustment land is a fairly complicated curved surface shape, but it is possible to add a complicated curved surface shape by high-precision numerical control machining.
  • the resin characteristics vary from layer to layer depending on the operating conditions and resin types of the FINEREM sheet molding machine. In this way, the resin characteristics change depending on the operating conditions of the film sheet forming machine.Therefore, even if the shape of the manifold and pressure loss adjustment land is optimally set as described above, the film and sheet can be used under all operating conditions. It is difficult to make the thickness uniform.
  • the molten resin of each layer joins in the die, and at the portion where the molten resin is combined, the resin characteristic difference between layers and the characteristic of the mating layer resin are subject to interference.
  • the resin behavior at this junction is simulated with a simple model that is difficult to fully simulate. There are many.
  • a choke force portion is often provided in each layer of the molten resin flow path.
  • a three-layer film 'sheet forming die if all three layers are provided with a choke portion, the die structure becomes complicated and the die shape becomes very large, making it difficult to use easily. For this reason, in general, a chore force portion is often provided only in the outer layer molten resin flow path or only in the inner layer molten resin flow path.
  • the clearance adjustment of the cho force part is performed by turning the cho force adjusting bolt and moving the cho cover in the vertical direction (direction in which the cross-sectional area of the molten resin flow path inside the dice changes).
  • a chore force adjusting bolt is a general die, and a plurality of choke force adjusting bolts are provided with a pitch of about 30 to 60 mm in the die width direction.
  • the cho cover generally has a square bar structure and is made of the same steel material as the die body.
  • the cho-force clearance adjustment which is performed by changing the amount of movement of the cho-cover by turning each cho-force adjustment bolt, bends the cho-cover at every several cho-force adjustment bolt pitches, and makes a chore with that shape. It is only enough to change the crevice, and the cho cover cannot be bent in a wavy manner for each cho force adjustment bolt. In other words, it is difficult to finely adjust the gap of the cho force part at a narrow pitch, and it is impossible to adjust the thickness at a narrow pitch.
  • a rotary actuator is attached to each choke force adjusting bolt, and the film 'sheet thickness is automatically measured.
  • Each rotary actuator is feedback-controlled based on the measured value, and the film / sheet thickness is automatically controlled. is there.
  • the gap adjustment of the cho force part is automatic, but as with the manual one, the narrow pitch is adjusted. It is not possible to adjust the gap at the narrow pitch with fine adjustment of the gap between the small cho force parts.
  • the die structure is complicated and the die shape becomes large as described above. Therefore, only the outer layer molten resin flow path or the inner layer molten resin flow path has a cho force. There are many parts.
  • a multilayer heater in which a cartridge heater is carried in the die body, the viscosity characteristic of the molten resin in the molten resin flow path of each layer is changed by heater heating, and the film thickness is adjusted by adjusting the flow rate of the molten resin Film 'sheet forming dies are also known.
  • a plurality of cartridge heaters are arranged at a predetermined pitch in the die width direction from the back surface of the die, and the film 'sheet thickness is adjusted by changing the flow characteristics of the resin in the manifold by adjusting the temperature of each heater.
  • the influence controlled by the heater at the center of the die reaches the molten resin that flows to the end of the die. become.
  • a plurality of cartridge heaters arranged at a predetermined pitch in the width direction of the die outlet and the temperature of each heater being adjusted can be individually controlled in the width direction, which is effective for forming a film or a thin sheet. Has been used. However, in the case of thick sheets, sufficient control is difficult due to the lack of heat in the heater, and it is rarely used.
  • the cartridge heater between the outer layer molten resin flow path and the inner layer molten resin flow path heats the outer layer molten resin flow path and the inner layer molten resin flow path at the same time. It is difficult to accurately control the temperature of the molten resin in each layer. In order to prevent the outer layer molten resin from being affected by the unnecessary influence of the heater, it is conceivable to provide a heat insulating portion with a heat insulating material between the heater and the outer layer molten resin flow path, but in a limited structural space, the heat insulating portion It is often difficult to provide
  • a problem to be solved by the present invention is to form a multilayer film sheet having a high precision thickness.
  • a multilayer film 'sheet forming die is a multi-hold type multi-layer film having a plurality of manifold sections and a molten resin flow channel'.
  • a movable cho cover is movably disposed in the middle of at least one of the resin flow paths of the resin flow path, and the movable cho cover is fixed by a plurality of cho force adjusting bolts disposed at a predetermined pitch in the die width direction. It has a choke force gap adjustment mechanism that moves and adjusts the choke force gap.
  • the multi-layer film 'sheet forming die according to the present invention is preferably a multi-layer film having a different layer thickness' a multi-layer film forming a sheet' a sheet die, and the layer thickness is thin.
  • the movable cho cover is movably disposed only in the middle of the molten resin flow path, and the thermal conductor is provided on each of the choke force adjusting bolts of the movable cho cover.
  • the multilayer film sheet-forming die comprises two outer layer manifold portions and a molten resin flow channel, and at least one inner layer manifold portion and a molten resin flow channel.
  • a multi-hold type multilayer film sheet dice having a plurality of choke force adjusting bolts in which a movable cho cover is movably disposed in the middle of the molten resin flow path for the outer layer and arranged at a predetermined pitch in the die width direction.
  • the outer layer has a cho force part gap adjustment mechanism for adjusting the gap of the cho force part by moving the movable cho force bar.
  • the multilayer film sheet forming die according to the present invention includes two outer layer manifold portions and a molten resin flow path, and at least one inner layer manifold section and a molten resin flow path.
  • a movable cho cover is movably disposed in the middle of the molten resin flow path for the outer layer, and a plurality of cho force adjusting bolts disposed at a predetermined pitch in the die width direction.
  • an outer layer cho force part gap adjustment mechanism that adjusts the gap of the cho force part by moving the movable cho force bar, and a fixed cho cover is fixedly arranged in the middle of the molten resin flow path for the inner layer, and the cho force
  • a thermal conductor is provided on each of the adjustment bolts, and the thermal conductors are arranged at a predetermined pitch in the die width direction at the arrangement portion of the fixed cho cover.
  • the multilayer film sheet-forming die according to the present invention includes two outer layer manifold portions and a molten resin flow path, and at least one inner layer manifold section and a molten resin flow path.
  • a movable cho cover is movably disposed in the middle of the molten resin flow path for the outer layer, and a plurality of cho force adjusting bolts disposed at a predetermined pitch in the die width direction.
  • an outer layer cho force part gap adjustment mechanism for adjusting the gap of the cho force part by moving the movable cho force bar, and a thermal conductor is provided on each of the cho force adjustment bolts, and a molten resin flow path for the inner layer Thermal conductors are arranged at a predetermined pitch in the die width direction in the middle of the process.
  • each of the thermal conductors is provided with a temperature sensor.
  • the multilayer film 'sheet forming die according to the present invention preferably further has an upper lip portion and a lower lip portion, and is formed in a slit-like shape long in the die width direction by the upper lip portion and the lower lip portion.
  • a die outlet is defined, and a lip gap adjusting mechanism for adjusting a lip gap of the die outlet is provided.
  • the multilayer film 'sheet forming die according to the present invention preferably further has an upper lip portion and a lower lip portion, and is formed in a slit shape long in the die width direction by the upper lip portion and the lower lip portion.
  • a die outlet is defined, and at least one of the upper lip portion and the lower lip portion is provided with a plurality of heater elements, each of which can be individually adjusted in temperature, mounted at a predetermined pitch in the die width direction. .
  • FIG. 1 is a longitudinal sectional view showing an embodiment in which a multilayer film 'sheet forming die according to the present invention is applied to a two-layer film'sheet forming die.
  • FIG. 2 is a longitudinal sectional view showing one embodiment in which a multilayer film sheet-forming die according to the present invention is applied to a three-layer film sheet-forming die.
  • Fig. 3 shows a multilayer film according to the present invention. It is a longitudinal cross-sectional view which shows other embodiment applied to the die for shaping
  • FIG. 4 is a longitudinal sectional view showing another embodiment in which the multilayer film sheet-forming die according to the present invention is applied to a three-layer film sheet-forming die.
  • FIG. 5 is a longitudinal sectional view showing another embodiment in which a multilayer film 'sheet-forming die according to the present invention is applied to a two-layer film'sheet-forming die.
  • FIG. 6 is a longitudinal sectional view showing another embodiment in which a multilayer film 'sheet forming die according to the present invention is applied to a three-layer film' sheet forming die.
  • FIG. 7 is a longitudinal sectional view showing another embodiment in which a multilayer film 'sheet forming die according to the present invention is applied to a two-layer film' sheet forming die.
  • FIG. 8 is a longitudinal sectional view showing another embodiment in which a multilayer film 'sheet forming die according to the present invention is applied to a three-layer film' sheet forming die.
  • the multilayer film 'sheet forming die includes a die body 100, two upper and lower tree-letter inlet channels 111 and 112, and a long die in the die width direction, two Mayuho Redo® 14, 115.
  • the resin inlet channels 111 and 112 communicate with the manifold holding portions 114 and 115 individually at the center in the die width direction.
  • Molten resin flow paths 117 and 118 are individually formed on the outlet sides of the manifold holding sections 114 and 115, respectively.
  • the shapes of the molten resin flow paths 117 and 118 of the respective layers, which are long in the die width direction as in the case of the manifold, are optimally set by computer simulation.
  • the molten resin flow paths 117 and 118 are formed in a flow path shape that merges into one at the merge section 120, and the merge section 120 is formed by one merged molten resin flow path 121 that is long in the die width direction. Therefore, it communicates with a die outlet 122 on the front side of the die body 100.
  • the die outlet 122 is defined by a top lip portion 123 and a lower lip portion 124 that are long and slit in the die width direction.
  • a plurality of lip adjustment bolts 125 are attached to the die body 100 at a predetermined pitch in the die width direction. By turning the lip adjusting bolt 125, the upper lip portion 123 is elastically deformed for each lip adjusting bolt 125 so that the lip gap at the die outlet 122 can be finely adjusted.
  • This structure is a lip gap adjusting mechanism.
  • movable cho covers 131, 132 are movably disposed in the middle of the upper and lower molten resin flow paths 117, 118.
  • the movable cho covers 131 and 132 constitute variable cho force portions 133 and 134 in the middle of the molten resin flow paths 117 and 118, respectively.
  • a plurality of hollow choke force bolts (cho force adjusting bolts) 135, 136 are arranged at a predetermined pitch (about 20 to 60 mm) in the die width direction.
  • the hollow chobonoleto 135 is connected to the upper movable cho cover 131 and is turned to move the movable cho cover 131 up and down to adjust the gap of the cho force portion 133.
  • the hollow chore force Bonoleto 136 is connected to the lower movable choke cover 132 and rotated to move the movable choo cover 132 up and down to adjust the gap of the choke force part 134. This is the choke force gap adjustment mechanism.
  • Thin hollow cylindrical conductors 137, 138 are inserted into the movable cho covers 131, 132 in the hollow portions of the plurality of upper and lower hollow cho force bolts 135, 136, respectively.
  • the hollow chocobore 135 and 136 hollow rods and the thermore conductors 137 and 138 are inserted so that the leading ends of the movable choco covers 131 and 132 can reach.
  • the thermal conductors 137 and 138 can be constituted by a cartridge heater, a double pipe type heat medium pipe, or the like, and a temperature at which precise temperature measurement can be performed at the tip of the movable cho cover 131 or 132 side. Sensors 139 and 140 are built in, and the temperature is controlled independently.
  • the choke force adjusting bolt for the movable cho covers 131 and 132 may be constituted by a heat medium bolt, and the choke force adjusting bolt itself may be a thermal conductor.
  • the temperature of each of the thermal conductors 137 and 138 can be individually and precisely controlled.
  • the temperature sensors 139 and 140 can be omitted depending on the required film thickness accuracy.
  • the heat of the thermal conductor 137 is conducted to the movable cho cover 131, and the surface temperature of the movable cho cover 131 is determined by the thermal conductor 137.
  • the heat of 138 is conducted to the movable cho cover 132, and the surface temperature of the movable cho cover 132 is determined by the thermal conductor 138.
  • the molten resin of the cho force parts 133 and 134 flows in a large amount at the portion where the surface temperature of the movable cho covers 131 and 132 is high by lowering the viscosity due to the resin characteristics, and the film corresponding to the portion The sheet thickness increases.
  • the movable cho cover 131 the movable cho cover 131
  • the cho force parts 133 and 134 have a narrow flow path structure, it is sufficiently attainable to control the flow characteristics of the resin in the flow path with temperature. This makes the hollow cho force bolt 135
  • Thermal conductor control (temperature control) by the thermal conductors 137 and 138 is preferably an automatic type.
  • the multilayer film sheet forming die is a film of an automatic control system that performs feedback control by automatic measurement of the film sheet thickness.
  • a film that is preferably used in a sheet forming machine 'sheet thickness Based on the automatic measurement results, the thermal conductor control (temperature control) of each thermal conductor 137, 138 can be performed so that the film thickness is uniform.
  • the set temperature of each of the thermal conductors 137 and 138 may be manually input based on the result of automatic film thickness measurement.
  • the surface temperature of the movable cho covers 131 and 132 can be forcibly set to a low temperature.
  • the amount can be set in large scale and range.
  • the thermal conductor control by the thermal conductors 137 and 138 and the lip gap adjustment by the lip adjustment bolt 125 enable molding of a multilayer film having a high precision thickness.
  • the resin thickness of each layer can be adjusted, and by adjusting the lip gap, a multilayer film sheet having a high accuracy in the resin thickness and the overall thickness of each layer can be formed. Can shape.
  • thermal conductor 137 does not necessarily have to be provided in each layer, as shown in FIG. 135, thermal conductor 137, temperature sensor 139 force S may be provided.
  • the movable cho cover 131, the hollow chobo bolore 135, the thermal conductor 137, and the temperature sensor 139 are provided only in the molten resin flow path 117 on one side, so that the number of necessary parts is larger than when these are provided in both. Is reduced, the mechanical structure is simplified, and the control system is simplified.
  • FIG. 5 shows a multilayer film having a different layer thickness, a multilayer film for forming a sheet, and a sheet die, and the cross-sectional areas of the resin inlet channel 112 and the molten resin channel 118 are the resin inlet channel. 111, larger than the cross-sectional area of the molten resin flow channel 117.
  • the layer with a thick layer and a large resin flow rate has a smaller change in the layer thickness due to the thermal conductor and a smaller layer thickness due to the thermal conductor. Thickness adjustment is performed effectively with high sensitivity. In this case as well, the overall thickness can be adjusted by the lip gap.
  • the movable resin cover 131 has a thin layer thickness, and in this embodiment, the movable cho cover 131 is movably disposed only in the middle of the molten resin flow channel 117.
  • a thermal conductor 137 may be provided on each of the hollow choke bolts 135.
  • the multilayer film 'sheet molding die of this embodiment is a three-layer film' sheet molding die, and the die body 10 has two upper and lower outer layer resin inlet channels 11 and 12, and an intermediate portion.
  • outer layer resin inlet channels 11 and 12 and the inner layer resin inlet channel 13 are respectively connected to the outer layer manifolds 14 and 15 and the inner layer manifold 16 at the center in the die width direction. Communicate.
  • Outer layer molten resin flow paths 17, 18 and inner layer molten resin flow path 19 are formed on the outlet side of outer layer manifold sections 14, 15 and inner layer manifold section 16, respectively. ing.
  • the molten resin flow paths 17 to 19 of the respective layers are optimally set by computer simulations so that the length of the molten resin flow paths 17 to 19 in the die width direction is the same as the manifold holding portion.
  • the outer-layer molten resin flow channels 17 and 18 and the inner-layer molten resin flow channel 19 are formed in a flow channel shape that merges at the merge portion 20, and the merge portion 20 is long in the die width direction.
  • Two joined molten resin passages 21 communicate with the die outlet 22 on the front side of the die body 10.
  • the die outlet 22 is defined by an upper lip portion 23 and a lower lip portion 24 in a slit shape that is long in the die width direction.
  • a plurality of lip adjustment bolts 25 are attached to the die body 10 at a predetermined pitch in the die width direction.
  • the lip adjustment bolt 25 By turning the lip adjustment bolt 25, the upper lip 23 is elastically deformed for each lip adjustment bolt 25 and the lip clearance at the die outlet 22 can be finely adjusted. It ’s a sea urchin.
  • This structure is a lip gap adjusting mechanism.
  • movable chow covers 31, 32, 51 are movably disposed in the middle of the outer layer molten resin flow path 17, 18 and the inner layer molten resin flow path 19.
  • the movable cho covers 31, 32, 51 constitute variable cho force portions 33, 34, 52 in the middle of the outer layer molten resin flow paths 17, 18 and the inner layer molten resin flow path 19.
  • a plurality of hollow choke force bolts (cho force adjusting bolts) 35, 36, 53 are arranged at a predetermined pitch (about 20 to 60 mm) in the die width direction.
  • the hollow chobonoleto 35 is connected to the upper movable cho cover 31 and is rotated to move the movable force bar 31 up and down to adjust the clearance of the cho force portion 33.
  • the hollow cho force bolt 36 is connected to the lower movable cho cover 32 and is rotated to move the movable cho cover 32 up and down to adjust the gap of the cho force portion 34.
  • the hollow cho force bolt 53 is connected to the intermediate movable cho cover 51 and is turned to move the movable cho cover 51 up and down to adjust the gap of the cho force portion 52. This is the chore part clearance adjustment mechanism.
  • Thin rod-shaped thermal conductors 37, 38, 54 are inserted into the hollow portions of the plurality of hollow cho force bolts 35, 36, 53 up to the movable cho cover 31, 32, 51 portion.
  • the hollow chobobonoleto 35, 36, and 53 hollow inserts 37, 38, and 54 are inserted so that the distal end side reaches the movable chocovers 31, 32, and 51.
  • the thermal conductors 37, 38, 53 can be configured with cartridge heaters, double pipe type heat transfer pipes, etc., and precise temperature measurement at the tip of the movable cho cover 31, 32, 51 side Built-in temperature sensors 39, 40, and 55 that are independently temperature controlled.
  • the choke force adjusting bolt for the movable cho covers 31, 32, 51 may be constituted by a heat medium bolt, and the choke force adjusting bolt itself may be a thermal conductor.
  • the temperature of each of the thermal conductors 37, 38, and 54 is individually and precisely controlled. Is possible.
  • the temperature sensors 39, 40, and 54 can be omitted depending on the required film thickness accuracy.
  • the heat of the thermal conductor 37 is conducted to the movable cho cover 31, and the surface temperature of the movable cho cover 31 is determined by the thermal conductor 37.
  • the heat of the thermal conductor 38 is conducted to the movable cho cover 32, and the surface temperature of the movable cho cover 32 is determined by the thermal conductor 38.
  • the heat of the thermal conductor 54 is transmitted to the movable cho cover 51, and the surface temperature of the movable cho cover 51 is determined by the thermal conductor 54.
  • the molten resin in the cho force parts 33, 34, 52 flows in a large amount at the part where the surface temperature of the movable cho covers 31, 32, 51 is high, by lowering the viscosity due to the resin characteristics, and the part corresponding to that part The film 'sheet thickness will be thicker. Contrary to this, at the portion where the surface temperature of the movable cho covers 31, 32, 51 is low, the flow of the molten resin is reduced, and the film corresponding to that portion is thin.
  • the cho force parts 33, 34, and 52 have a narrow flow path structure, it is sufficiently attainable to control the flow characteristics of the resin in the flow path with temperature. As a result, the adjustment at a narrow pitch that cannot be adjusted by adjusting the clearance of the cho force portion with the hollow cho force bolts 35, 36, 53 can be performed by temperature control of the thermal conductors 37, 38, 54.
  • Multilayer film according to this embodiment.
  • Sheet forming dies also have an automatic control system that performs feedback control by automatic measurement of film and sheet thickness. Film preferred for use in a sheet forming machine. Depending on the result of automatic measurement, it is possible to control the thermal conductor (temperature control) of each thermal conductor 37, 38, 54 so that the film thickness is uniform.
  • the surface temperature of the movable cho covers 31, 32, 51 can be forcibly set to a low temperature.
  • the amount can be set in large scale and range.
  • a multilayer film sheet having a high precision thickness can be formed by controlling the thermal conductor with the thermal conductors 37, 38, and 55 and adjusting the lip gap with the lip adjusting bolt 25.
  • a multilayer optical sheet using birefringence which requires high precision in thickness accuracy, with high productivity.
  • the resin thickness of each layer can be adjusted, and by adjusting the lip gap, a multilayer film sheet having a high accuracy in the resin thickness and the overall thickness of each layer can be formed. Can shape.
  • FIG. 3 Another embodiment in which a multilayer film 'sheet forming die according to the present invention is applied to a three-layer film' sheet forming die will be described with reference to FIG.
  • parts corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof is omitted.
  • a fixed cho cover 41 is fixedly arranged in the middle of the inner layer molten resin flow path 19 in place of the movable cho cover 51 so as to be replaceable.
  • the fixed cho cover 41 constitutes a cho force portion 42 in the middle of the inner layer molten resin flow path 19.
  • a plurality of thermal conductors 43 for the inner layer are arranged at a predetermined pitch (about 20 to 60 mm) in the die width direction in the arrangement portion of the fixed cho cover 41. ing.
  • the thermal conductor 43 can also be constituted by a cartridge heater, a double-pipe heat medium pipe, or the like, and has a built-in temperature sensor 44 that can perform precise temperature measurement at the tip of the fixed cho cover 41 side. And les.
  • the temperature of each thermal conductor 37, 38, 43 can be controlled precisely and individually. Is possible.
  • the temperature sensors 39, 40, and 44 can be omitted depending on the required film thickness accuracy.
  • the heat of the thermal conductor 37 is conducted to the movable cho cover 31 and the thermal conductor 3
  • the 7 determines the surface temperature of the movable cho cover 31.
  • the heat of the thermal conductor 38 is conducted to the movable cho cover 32, and the surface temperature of the movable choke cover 32 is determined by the thermal conductor 38.
  • the molten resin in the cho force portions 33 and 34 flows in a large amount in the portion where the surface temperature of the movable cho covers 31 and 32 is high by lowering the viscosity due to the resin characteristics, and the film corresponding to the portion of the film ' The sheet thickness increases. Contrary to this, at the portion where the surface temperature of the movable cho covers 31 and 32 is low, the flow of the molten resin is reduced, and the thickness of the film / sheet corresponding to the portion is reduced.
  • the cho force parts 33 and 34 have a narrow flow path structure, it is sufficiently attainable to control the flow characteristics of the resin in the flow path with temperature. As a result, adjustment at a narrow pitch that cannot be adjusted by adjusting the clearance of the cho force portion with the hollow cho force bolts 35 and 36 can be performed by temperature control of the thermal conductors 37 and 38.
  • the chore force gap adjustment by the hollow cho force bolts 35 and 36 is manual, and the thermal conductor control (temperature control) by the thermal conductors 37 and 38 is automatic.
  • the heat of the thermal conductor 43 is conducted to the fixed cho cover 41, and the surface temperature of the fixed cho cover 41 is determined by the thermal conductor 43.
  • the molten resin in the inner-layer cho-force portion 42 flows in a portion where the surface temperature of the fixed cho-cover 41 is high by lowering the viscosity due to the resin characteristics, and the film corresponding to the portion of the film 'sheet thickness The thickness gets thicker. Contrary to this, at the portion where the surface temperature of the fixed cho cover 41 is low, the flow of the molten resin is reduced, and the thickness of the film corresponding to that portion is reduced.
  • the cho force part 42 also has a narrow channel structure, it is sufficiently attainable to control the flow characteristics of the resin in the channel by temperature. This makes it possible to adjust the pitch at a narrow pitch. This can be done by controlling the temperature of the conductor 43.
  • the multilayer film according to this embodiment. Even in the sheet molding die, the film.
  • the film of the automatic control system that performs feedback control by automatic measurement of the sheet thickness.
  • the set temperature of each of the thermal conductors 37, 38, 44 may be manually input based on the result of automatic film thickness measurement.
  • the surface temperature of the movable cho covers 31, 32, and the fixed cho cover 41 can be forcibly set to a low temperature.
  • the control amount can be set in a large range.
  • the thickness is adjusted by using both the fixed exchange type fixed cho cover 41 and the thermal conductor control by the thermal conductor 43. Since the fixed choke cover 41 does not adjust the gap, the die structure is simple and the die can be used practically without increasing the size of the die.
  • the outer layer is a combination of choke force gap adjustment and thermal conductor control
  • the combination of thermal conductor control and finer adjustment of the outer layer can be used to adjust the thickness of the outer layer and inner layer resin. Control can be performed with high accuracy. As a result, it is possible to form a multilayer film sheet with high precision thickness even if the operating conditions vary greatly or the resin type changes.
  • outer layer thermal conductor 37, 38, thermal conductor Thermal conductor control by 43 and lip gap adjustment by lip adjustment bolt 25 enable high-precision multilayer film sheet to be formed. This makes it possible to form a multilayer optical sheet using birefringence, which requires high-precision thickness accuracy, with high productivity.
  • the resin thickness of each layer can be adjusted, and the lip gap adjustment is further performed to form a multilayer film 'sheet in which the resin thickness of each layer and the overall thickness are highly accurate. Can shape.
  • FIG. 4 Another embodiment in which the multilayer film 'sheet forming die according to the present invention is applied to a three-layer film' sheet forming die will be described with reference to FIG.
  • portions corresponding to those in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and description thereof is omitted.
  • the fixed cho cover 41 is omitted, and for the inner layer, the temperature of the inner wall of the inner layer molten resin flow path 19 is determined by the thermal conductors 43 disposed on both sides of the inner layer molten resin flow path 19. Adjustments are made.
  • the inner layer molten resin flow path 19 in the portion where the thermal conductor 43 is disposed is a throttle path. Other than this, it is the same as the previous embodiment (FIG. 2).
  • the outer layer has a large difference in operating conditions due to the combined use of chore force clearance adjustment with hollow chore bolts 35 and 36 and thermal conductor control with thermal conductors 37 and 38. Even if the resin varieties change, it becomes possible to form a multilayer film with high accuracy.
  • the thickness of the inner layer is adjusted only by the thermal conductor control by the thermal conductor 43. Since the thermal conductor 43 is provided on both sides of the molten resin flow path 19 for the inner layer, the adjustment amount of the cho cover gap can be compensated by the thermal conductor control. Since the inner layer has neither a cho cover nor a cho cover clearance adjustment mechanism, the die structure is simple and the die can be used practically without increasing the die size.
  • the resin thickness of each layer can be adjusted, and by further adjusting the lip gap, it is possible to form a multilayer film sheet having a highly accurate resin thickness and overall thickness of each layer.
  • the thermal conductor 43 may be provided only on one side of the inner layer molten resin flow path 19.
  • each of the molten resin flow paths 17 and 18 for the outer layer (Konomi, movable choker 31, 32, hollow chobo bonoleto 35, 36, thermal conductor 37, 38, temperature sensor 39, I should have 40.
  • the heat from the inner layer thermal conductor 43 or 54 is transferred not only to the inner layer molten resin flow path 19 but also to the outer layer molten resin flow paths 17 and 18, and the temperature is increased by trying to thicken the inner layer. Increasing the temperature also increases the temperature of the outer layer, and both increase the flow rate. However, since the overall thickness is held down by the lip, there is little change in the layer thickness ratio. On the other hand, since the heat of the thermal conductors 37 and 38 in the outer layer is transmitted only to the outer layer portion, the ratio of the layer thickness can be adjusted effectively. For this reason, the thermal conductors 37 and 38 can be attached only to the outer layer, and the overall thickness can be adjusted by the lip gap.
  • the force acting as a die for forming a three-layer film / sheet is a multi-layer film according to the present invention.
  • a sheet forming die has a plurality of inner layers of four layers, five layers, Further multi-layer films can be similarly configured as sheet forming dies.
  • FIGS. 7 and 8 Film thickness adjustment at the die outlets 22 and 122 at any position in the sheet width direction is shown in FIGS. 7 and 8 in addition to the lip gap adjusting mechanism using the lip adjusting bolts 25 and 125.
  • a plurality of cartridge heaters (heater elements) 61 and 62 are inserted into each of the upper lip portions 23 and 123 and the lower lip portions 24 and 124 at a predetermined pitch in the die width direction.
  • the temperature may be adjusted individually for 61 and 62, and the temperature-viscosity-flow rate characteristics of the molten resin at the die outlets 22 and 122 may be used.
  • Multilayer film sheet forming dies according to the present invention can be used in the case where operating conditions differ greatly due to the combined use of choke force adjustment bolt adjustment with a chore force adjustment bolt and thermal conductor control with a thermal conductor. Even if the resin varieties change, it is possible to form a film with high precision thickness.
  • the surface temperature of the cho cover in the molten resin flow path of each layer can be controlled by the thermal conductor at a pitch equivalent to the arrangement pitch of the cho force adjusting bolts.
  • the thermal conductor When the surface temperature of the cho cover is high, the molten resin in the cho force part flows more by lowering the viscosity due to the resin properties, and the film corresponding to that part increases the sheet thickness.
  • the surface temperature of the cho cover is low, the flow will be less and the film corresponding to that part will be thinner.Thus, the sheet thickness will be thinner, so fine adjustment with a narrow pitch is possible by thermal conductor control. It is possible to form a highly accurate film thickness sheet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 高精度な厚さの多層フィルム・シートを成形するために、溶融樹脂流路(111,112)の途中に可動チョーカバー(31,32)を可動配置し、ダイス幅方向に所定のピッチで配置された複数個のチョーカ調整ボルト(35,36)によって可動チョーカバーを動かしてチョーカ部の隙間調整を行い、チョーカ調整ボルトの各々にサーマルコンダクタ(37,38)を設ける。

Description

明 細 書
多層フィルム.シート成形用ダイス 技術分野
[0001] この発明は、多層フィルム 'シート成形に用いられるダイスに関し、特に、マルチマ 二ホールド方式の多層フィルム 'シートダイス(マルチマ二ホールドダイス)に関するも のである。
背景技術
[0002] マルチマ二ホールドダイス(Tダイ)による多層フィルム.シート成形では、多層成形 するフィルム 'シートの厚さが均一になるには、各層の溶融樹脂が合流した後の溶融 樹脂の流量分布がダイスの幅方向にぉレ、て均一で、且つダイ停滞時間分布もダイス の幅方向において均一であることは勿論のこと、合流前の各層の溶融樹脂の流量分 布もそれぞれダイスの幅方向にぉレ、て均一で、且つダイ停滞時間分布もダイスの幅 方向において均一である必要がある。
[0003] このことに対して、均一な流量分布、均一なダイ停滞時間分布が得られるよう、マル チマ二ホールド法による多層フィルム.シート成形用ダイスでは、各層のマ二ホールド や圧損調整ランドの形状を、コンピュータを用いたシミュレーションによる分析、解析 によって決定することが行われている。この場合のマ二ホールドや圧損調整ランドの 形状は、かなり複雑な曲面形状になるが、高精度な数値制御機械加工によって複雑 な曲面形状の加ェも可能になってきてレ、る。
[0004] 多層フィルム 'シート成形においても、単層フィルム 'シート成形と同様に、フイノレム' シート成形機の運転条件や樹脂品種により、樹脂特性は各層毎に変わる。このように 、フィルム 'シート成形機の運転条件により、樹脂特性が変わるため、前述したように マ二ホールドや圧損調整ランドの形状を最適設定しても、全ての運転条件で、フィル ム.シート厚さを均一することは難しい。
[0005] また、各層の溶融樹脂がダイス内において合流し、合わされる部分では、各層相互 の樹脂特性差や相手層樹脂の特性の干渉を受ける。この合流部における樹脂挙動 は、シミュレーションを完全に行うことが難しぐ簡単なモデルでシミュレーションするこ とが多い。
[0006] 従来、運転条件、樹脂品種、更に各層合流による多層フィルム 'シートの厚さ変動 は、各層のチョー力部隙間を変えることにより、各層の厚さを調整し、ダイス出口のリツ プ隙間調整によって全層厚さを調整することにより、補償している。
[0007] 2層フィルム 'シート成形用のダイスでは、各層の溶融樹脂流路に各々チョー力部を 設けることが多い。 3層フィルム 'シート成形用のダイスでは、 3層すべてにチョー力部 を設けると、ダイス構造が複雑になると共にダイス形状が非常に大きくなり、容易に使 用することが難しくなる。このため、一般的には、外層の溶融樹脂流路にのみ、あるい は内層の溶融樹脂流路にのみチョー力部を設けることが多い。
[0008] しかし、外層の溶融樹脂流路にのみ、あるいは内層の溶融樹脂流路にのみチョー 力部が設けられた場合には、各層の精密調整を行うことが難しいので、外層の厚さ精 度がょレ、フィルム ·シートを成形することが難しレ、。
[0009] チョー力部の隙間調整は、チョー力調整ボルトを回し、チョーカバーを上下方向(ダ イス内部における溶融樹脂流路の断面積に変化を与える方向)移動させることにより 行われる。チョー力調整ボルトは、一般的なダイスで、ダイス幅方向に、 30〜60mm 程度のピッチをもって複数個設けられている。
[0010] フィルム ·シート厚さを均一にするには、これらのチョー力調整ボルトを操作し、チヨ 一力部の隙間を、各チョー力調整ボルトの配置部位毎に調整する。チョーカバーは、 一般に、角棒構造で、ダイス本体と同種の鋼材により構成されている。
[0011] 各チョー力調整ボルトを回してチョーカバーの移動量を変えて行うチョー力部隙間 調整は、数本のチョー力調整ボルトピッチ毎にチョーカバーを曲げて、その形状でチ ョ一力部隙間を変える程度であり、各チョー力調整ボルト毎に波状にチョーカバーを 曲げることはできない。つまり、狭いピッチでの微細なチョー力部隙間調整は困難で あり、狭いピッチでの厚さ調整を行うことができない。
[0012] 各チョー力調整ボルトに回転ァクチユエータを取り付け、フィルム 'シート厚さを自動 計測し、その計測値によって各回転ァクチユエータをフィードバック制御し、自動的に フィルム ·シート厚さを自動制御するシステムがある。
[0013] この場合、チョー力部の隙間調整は、 自動になるが、手動のものと同様に、狭いピッ チでの微細なチョー力部隙間調整ができず、狭いピッチでの厚さ調整を行うことがで きない。
[0014] 3層すべてにチョー力部を設けると、前述の如ぐダイス構造が複雑でダイス形状が 大きくなるので、外層の溶融樹脂流路にのみ、あるいは内層の溶融樹脂流路にのみ チョー力部を設けることが多い。
[0015] また、ダイス本体にカートリッジヒータを坦め込まれ、ヒータ加熱によって各層の溶融 樹脂流路における溶融樹脂の粘性特性を変え、溶融樹脂の流量調整によってフィル ム 'シート厚さを調整する多層フィルム 'シート成形用ダイスも知られている。
[0016] カートリッジヒータがダイス背面よりダイス幅方向に所定ピッチで複数個配置され、 各ヒータの温度調整によってマ二ホールド内樹脂の流れ特性を変えてフィルム'シー ト厚さを調整する方式のものでは、ダイス中央よりマ二ホールド内に流入した溶融樹 脂がマ二ホールド内でダイス幅方向に広がる時に、ダイス中央側のヒータによって制 御した影響がダイス端部側へ流れる溶融樹脂に及ぶことになる。
[0017] このため、フィルム 'シート厚さ調整において、ダイス端部側についてはダイス中央 側上流の制御影響を考慮した複雑な制御が必要になる。樹脂特性から、上流側と下 流側の温度制御の相互干渉により、フィルム 'シート厚さを均一にすることが困難にな る場合も生じる。
[0018] カートリッジヒータがダイス出口幅方向に所定ピッチで複数個配置され、各ヒータを 温度調整する方式のものでは、幅方向に個別に制御可能であるため、フィルムや薄 物シートの成形に有効的に使用されている。しかし、厚物シートの場合は、ヒータの 熱量不足により、十分な制御が困難で、使用されることが少ない。
[0019] 3層フィルム 'シート成形用のダイスでは、外層溶融樹脂流路と内層溶融樹脂流路 の間のカートリッジヒータは、外層溶融樹脂流路と内層溶融樹脂流路を同時に加熱 することになり、各層の溶融樹脂の温度制御を的確に行うことが難しい。このヒータの 不要な影響を外層溶融樹脂が受けないよう、このヒータと外層溶融樹脂流路との間 に、断熱材による断熱部を設けることも考えられるが、限られた構造スペースで、断熱 部を設けることは困難な場合が多い。
発明の開示 [0020] この発明が解決しょうとする課題は、高精度な厚さの多層フィルム 'シートを成形す ることである。
[0021] この発明による多層フィルム 'シート成形用ダイスは、複数個のマ二ホールド部およ び溶融樹脂流路を有するマルチマ二ホールド方式の多層フィルム 'シートダイスにお いて、前記複数個の溶融樹脂流路のうちの少なくとも一つの前記溶融樹脂流路の途 中に可動チョーカバーが可動配置され、ダイス幅方向に所定のピッチで配置された 複数個のチョー力調整ボルトによって前記可動チョーカバーを動かしてチョー力部の 隙間調整を行うチョー力部隙間調整機構を有し、前記チョー力調整ボルトの各々に
[0022] この発明による多層フィルム 'シート成形用ダイスは、好ましくは、層厚さが互いに異 なる多層フィルム 'シートを成形する多層フィルム 'シートダイスである場合には、層厚 さが薄レ、ものの溶融樹脂流路の途中にのみに前記可動チョーカバーが可動配置さ れ、当該可動チョーカバーのチョー力調整ボルトの各々に前記サーマルコンダクタが 設けられている。
[0023] また、この発明による多層フィルム.シート成形用ダイスは、二つの外層用のマニホ 一ルド部および溶融樹脂流路と、少なくとも一つの内層用のマ二ホールド部および溶 融榭脂流路を有するマルチマ二ホールド方式の多層フィルム 'シートダイスにおいて 、外層用の溶融樹脂流路の途中に可動チョーカバーが可動配置され、ダイス幅方向 に所定のピッチで配置された複数個のチョー力調整ボルトによって前記可動チョー力 バーを動かしてチョー力部の隙間調整を行う外層用チョー力部隙間調整機構を有す る。
[0024] また、この発明による多層フィルム 'シート成形用ダイスは、二つの外層用のマニホ 一ルド部および溶融樹脂流路と、少なくとも一つの内層用のマ二ホールド部および溶 融樹脂流路を有するマルチマ二ホールド方式の多層フィルム 'シートダイスにおいて 、外層用の溶融樹脂流路の途中に可動チョーカバーが可動配置され、ダイス幅方向 に所定のピッチで配置された複数個のチョー力調整ボルトによって前記可動チョー力 バーを動かしてチョー力部の隙間調整を行う外層用チョー力部隙間調整機構を有し 、内層用の溶融樹脂流路の途中に固定チョーカバーが固定配置され、前記チョー力 調整ボルトの各々にサーマルコンダクタが設けられ、前記固定チョーカバーの配置 部位におけるダイス幅方向に所定のピッチでサーマルコンダクタが配置されている。
[0025] また、この発明による多層フィルム.シート成形用ダイスは、二つの外層用のマニホ 一ルド部および溶融樹脂流路と、少なくとも一つの内層用のマ二ホールド部および溶 融樹脂流路を有するマルチマ二ホールド方式の多層フィルム 'シートダイスにおいて 、外層用の溶融樹脂流路の途中に可動チョーカバーが可動配置され、ダイス幅方向 に所定のピッチで配置された複数個のチョー力調整ボルトによって前記可動チョー力 バーを動かしてチョー力部の隙間調整を行う外層用チョー力部隙間調整機構を有し 、前記チョー力調整ボルトの各々にサーマルコンダクタが設けられ、内層用の溶融樹 脂流路の途中におけるダイス幅方向に所定のピッチでサーマルコンダクタが配置さ れている。
[0026] この発明による多層フィルム 'シート成形用ダイスは、好ましくは、前記サーマルコン ダクタの各々に温度センサが設けられている。
[0027] この発明による多層フィルム 'シート成形用ダイスは、好ましくは、さらに、上部リップ 部と下部リップ部を有し、前記上部リップ部と前記下部リップ部とによりダイス幅方向 に長いスリット状のダイス出口が画定され、当該ダイス出口のリップ隙間を調整するリ ップ隙間調整機構を有する。
[0028] この発明による多層フィルム 'シート成形用ダイスは、好ましくは、さらに、上部リップ 部と下部リップ部を有し、前記上部リップ部と前記下部リップ部とによりダイス幅方向 に長いスリット状のダイス出口が画定され、前記上部リップ部と前記下部リップ部の少 なくとも何れか一方に、各々個別に温度調整可能な複数個のヒータ要素がダイス幅 方向に所定ピッチで装着されてレ、る。
図面の簡単な説明
[0029] [図 1]図 1は、この発明による多層フィルム 'シート成形用ダイスを 2層フィルム 'シート 成形用ダイスに適用した一つの実施形態を示す縦断面図である。
[図 2]図 2は、この発明による多層フィルム.シート成形用ダイスを 3層フィルム.シート 成形用ダイスに適用した一つの実施形態を示す縦断面図である。
[図 3]図 3は、この発明による多層フィルム.シート成形用ダイスを 3層フィルム.シート 成形用ダイスに適用した他の実施形態を示す縦断面図である。
[図 4]図 4は、この発明による多層フィルム.シート成形用ダイスを 3層フィルム.シート 成形用ダイスに適用したもう一つの実施形態を示す縦断面図である。
[図 5]図 5は、この発明による多層フィルム 'シート成形用ダイスを 2層フィルム 'シート 成形用ダイスに適用した他の実施形態を示す縦断面図である。
[図 6]図 6は、この発明による多層フィルム 'シート成形用ダイスを 3層フィルム 'シート 成形用ダイスに適用した他の実施形態を示す縦断面図である。
[図 7]図 7は、この発明による多層フィルム 'シート成形用ダイスを 2層フィルム 'シート 成形用ダイスに適用した他の実施形態を示す縦断面図である。
[図 8]図 8は、この発明による多層フィルム 'シート成形用ダイスを 3層フィルム 'シート 成形用ダイスに適用した他の実施形態を示す縦断面図である。
発明を実施するための最良の形態
[0030] この発明による多層フィルム 'シート成形用ダイスを 2層フィルム 'シート成形用ダイ スに適用した一つの実施形態を、図 1を参照して説明する。
[0031] 本実施形態の多層フィルム 'シート成形用ダイスは、ダイス本体 100に、上下二つ の樹月旨入口流路 111、 112と、ダイス幅方向に長レ、二つのマユホーノレド咅^ 14、 115 を有する。
[0032] 樹脂入口流路 111、 112は、各々ダイス幅方向中央にて各々個別にマ二ホールド 部 114、 115に連通している。
[0033] マ二ホールド部 114、 115の出口側には、各々個別に、溶融樹脂流路 117、 118が 形成されている。この各層の溶融樹脂流路 117、 118はマ二ホールド部と同様にダイ ス幅方向に長ぐその形状は、コンピュータによるシミュレーションによって最適設定さ れている。
[0034] 溶融樹脂流路 117と 118は、合流部 120において一つに合流する流路形状に形 成されており、合流部 120はダイス幅方向に長い一つの合流溶融樹脂流路 121によ つてダイス本体 100の前面側のダイス出口 122に連通している。
[0035] ダイス出口 122は、上部リップ部 123と下部リップ部 124とにより、ダイス幅方向に長 レ、スリット状に画定されてレ、る。 [0036] ダイス本体 100には、ダイス幅方向に所定のピッチで、複数個のリップ調整ボルト 1 25が取り付けられている。リップ調整ボルト 125を回すことによって、各リップ調整ボ ルト 125毎に上部リップ部 123を弾性変形させ、ダイス出口 122のリップ隙間を微調 整できるようになつている。この構造がリップ隙間調整機構である。
[0037] 上下二つの溶融樹脂流路 117、 118の途中には、各々、可動チョーカバー 131、 1 32が可動配置されている。可動チョーカバー 131、 132は、溶融樹脂流路 117、 11 8の途中に可変のチョー力部 133、 134を構成している。
[0038] ダイス本体 100には、ダイス幅方向に所定のピッチ(20〜60mm程度)で、複数個 の中空チョー力ボルト(チョー力調整ボルト) 135、 136が配置されている。中空チョー カボノレト 135は、上側の可動チョーカバー 131に接続され、回されることにより、可動 チョーカバー 131を上下移動させ、チョー力部 133の隙間調整を行う。中空チョー力 ボノレト 136は、下側の可動チョーカバー 132に接続され、回されることにより、可動チ ョーカバー 132を上下移動させ、チョー力部 134の隙間調整を行う。これがチョー力 部隙間調整機構である。
[0039] 上下複数個の中空チョー力ボルト 135、 136の各々の中空部には細棒状のサーマ ノレコンダクタ 137、 138が可動チョーカバー 131、 132部分まで挿入されている。つま り、中空チョーカボノレト 135、 136の中空咅 Wこ、サーマノレコンダクタ 137、 138の先端 側が可動チョーカバー 131、 132部分に届くように挿入されている。
[0040] サーマルコンダクタ 137、 138は、カートリッジヒータや二重パイプ式の熱媒式パイ プ等により構成することができ、可動チョーカバー 131、 132側の先端部に精密な温 度測定を行える温度センサ 139、 140を内蔵し、各々独立して温度制御される。
[0041] なお、可動チョーカバー 131、 132のためのチョー力調整ボルトを熱媒ボルトにより 構成し、チョー力調整ボルト自体をサーマルコンダクタとすることもできる。
[0042] 温度センサ 139、 140により計測される温度によってサーマルコンダクタ 137、 138 の電流制御を行うことにより、各サーマルコンダクタ 137、 138の温度を個別に精密 に制御することが可能になる。なお、要求されるフィルム 'シート厚さ精度によっては、 温度センサ 139、 140を省略できる。
[0043] ダイス流路をコンピュータによってシミュレーションした時の条件と実際に運転した 時の樹脂特性が異なる場合や、シミュレーション時と異なる品種の樹脂を用いて運転 する場合には、ダイス幅方向全体の流れが大きなうねりで変化する。この大きなうねり は、中空チョー力ボルト 135、 136の操作によって調整、補償する。
[0044] サーマルコンダクタ 137の熱は可動チョーカバー 131に伝導し、サーマルコンダク タ 137によって可動チョーカバー 131の表面温度が決まる。また、サーマルコンダクタ
138の熱は可動チョーカバー 132に伝導し、サーマルコンダクタ 138によって可動チ ョーカバー 132の表面温度が決まる。
[0045] チョー力部 133、 134の溶融樹脂は、可動チョーカバー 131、 132の表面温度が高 い部位では、樹脂特性によって粘性を下げることにより、多く流れ、その部位に相当 する部分のフィルム 'シート厚さは厚くなる。これとは、反対に、可動チョーカバー 131
、 132の表面温度が低い部位では、溶融樹脂の流れが少なくなり、その部位に相当 する部分のフィルム 'シート厚さは薄くなる。
[0046] チョー力部 133、 134は、狭い流路構造になっているから、流路内榭脂の流れ特性 を温度で制御することは、十分達成可能である。これにより、中空チョー力ボルト 135
、 136によるチョー力部隙間調整では調整できない狭いピッチでの調整は、サーマル コンダクタ 137、 138の温度制御によって行うことができる。
[0047] このこと力 、中空チョー力ボルト 135、 136によるチョー力部隙間調整は手動式で
、サーマルコンダクタ 137、 138によるサーマルコンダクタ制御(温度制御)は自動式 であることが好ましい。
[0048] この実施形態による多層フィルム ·シート成形用ダイスは、フィルム ·シート厚さの自 動計測によってフィードバック制御する自動制御システムのフィルム.シート成形機で の使用が好ましぐフィルム 'シート厚さの自動計測結果によって、フィルム 'シート厚 さが均一になるように、各サーマルコンダクタ 137、 138のサーマルコンダクタ制御( 温度制御)を行うこと力 Sできる。
[0049] なお、簡易機では、フィルム 'シート厚さの自動計測結果に基づいて、各サーマル コンダクタ 137、 138の設定温度を手動入力してもよい。
[0050] サーマルコンダクタ 137、 138が熱媒式の場合には、可動チョーカバー 131、 132 の表面温度を強制的に低い温度に設定することが可能であるので、温度による制御 量を大きレ、レンジで設定することができる。
[0051] 上述したように、各層について、中空チョー力ボルト 135、 136によるチョー力部隙 間調整と、サーマルコンダクタ 137、 138によるサーマルコンダクタ制御とを併用する ことにより、運転条件が大きく違った場合や、樹脂品種が変わっても、高精度の厚さ の多層フィルム 'シートが成形可能になる。
[0052] 同一樹脂品種の場合には、サーマルコンダクタ 137、 138によるサーマルコンダク タ制御とリップ調整ボルト 125によるリップ隙間調整によって高精度の厚さの多層フィ ルム 'シートが成形可能になる。これにより、高精度の厚さ精度を要求される複屈折を 利用した光学用多層フィルム 'シートの成形を生産性よく行うことが可能になる。
[0053] このように、この実施形態では、各層の樹脂厚さ調整が可能で、更にリップ隙間調 整を行うことにより、各層の樹脂厚さと全体厚さが高精度な多層フィルム 'シートを成 形できる。
[0054] なお、可動チョーカバー、サーマルコンダクタは、必ずしも、各層に設けられる必要 はなぐ図 5に示されているように、片側の溶融樹脂流路 117にのみ、可動チョーカバ 一 131、中空チョーカボノレ卜 135、サーマノレコンダクタ 137、温度センサ 139力 S設けら れてもよい。
[0055] 片側の溶融樹脂流路 117にのみ、可動チョーカバー 131、中空チョーカボノレト 135 、サーマルコンダクタ 137、温度センサ 139が設けられることにより、これらが両方に 設けられる場合に比して必要部品の個数が削減され、機械的な構造が簡素化され、 併せてこれらの制御系も簡単になる。
[0056] 図 5は、層厚さが互いに異なる多層フィルム.シートを成形する多層フィルム.シート ダイスであり、樹脂入口流路 112、溶融樹脂流路 118の流路断面積が、樹脂入口流 路 111、溶融樹脂流路 117の流路断面積より大きい。
[0057] サーマルコンダクタによって層厚さを調整する場合、層厚さが厚ぐ樹脂流量が多 い層は、サーマルコンダクタによる層厚さの変化が小さぐ層厚さが薄いほうがサーマ ルコンダクタによる層厚さ調整が感度よく効果的に行われる。この場合も、全体の厚さ はリップ隙間で調整することが可能である。
[0058] したがって、片側の溶融樹脂流路のみ、可動チョーカバー、中空チョー力ボルト、サ 一マルコンダクタ等を設ける場合、層厚さが薄いものの溶融樹脂流路、この実施形態 では、溶融樹脂流路 117の途中にのみに可動チョーカバー 131が可動配置され、こ の可動チョーカバー 131の中空チョー力ボルト 135の各々にサーマルコンダクタ 137 が設けられればよい。
[0059] このように、片側にしかサーマルコンダクタがない場合でも、従来のチョークバーを 押引するダイに比べて短い間隔の凹凸を調整できるメリットが得られる。
[0060] この発明による多層フィルム 'シート成形用ダイスを 3層フィルム 'シート成形用ダイ スに適用した一つの実施形態を、図 2を参照して説明する。
[0061] 本実施形態の多層フィルム 'シート成形用ダイスは、 3層フィルム 'シート成形用ダイ スであり、ダイス本体 10に、上下二つの外層用樹脂入口流路 11、 12と、中間部の一 つの内層用樹脂入口流路 13と、ダイス幅方向に長い二つの外層用マ二ホールド部 1
4、 15および内層用マ二ホールド部 16を有する。
[0062] 外層用樹脂入口流路 11、 12、内層用樹脂入口流路 13は、各々ダイス幅方向中央 にて各々個別に外層用マ二ホールド部 14、 15、内層用マ二ホールド部 16に連通し ている。
[0063] 外層用マ二ホールド部 14、 15、内層用マ二ホールド部 16の出口側には、各々個 別に、外層用溶融樹脂流路 17、 18、内層用溶融樹脂流路 19が形成されている。こ の各層の溶融樹脂流路 17〜: 19はマ二ホールド部と同様にダイス幅方向に長ぐそ の形状は、コンピュータによるシミュレーションによって最適設定されている。
[0064] 外層用溶融樹脂流路 17と 18と内層用溶融樹脂流路 19は、合流部 20において一 つに合流する流路形状に形成されており、合流部 20はダイス幅方向に長い一つの 合流溶融樹脂流路 21によってダイス本体 10の前面側のダイス出口 22に連通してい る。
[0065] ダイス出口 22は、上部リップ部 23と下部リップ部 24とにより、ダイス幅方向に長いス リット状に画定されている。
[0066] ダイス本体 10には、ダイス幅方向に所定のピッチで、複数個のリップ調整ボルト 25 が取り付けられている。リップ調整ボルト 25を回すことによって、各リップ調整ボルト 2 5毎に上部リップ部 23を弾性変形させ、ダイス出口 22のリップ隙間を微調整できるよ うになつている。この構造がリップ隙間調整機構である。
[0067] 外層用溶融樹脂流路 17、 18と内層用溶融樹脂流路 19の途中には、各々、可動チ ョーカバー 31、 32、 51が可動配置されている。可動チョーカバー 31、 32、 51は、外 層用溶融樹脂流路 17、 18、内層用溶融樹脂流路 19の途中に可変のチョー力部 33 、 34、 52を構成してレ、る。
[0068] ダイス本体 10には、ダイス幅方向に所定のピッチ(20〜60mm程度)で、複数個の 中空チョー力ボルト(チョー力調整ボルト) 35、 36、 53が配置されている。中空チョー カボノレト 35は、上側の可動チョーカバー 31に接続され、回されることにより、可動チヨ 一力バー 31を上下移動させ、チョー力部 33の隙間調整を行う。中空チョー力ボルト 3 6は、下側の可動チョーカバー 32に接続され、回されることにより、可動チョーカバー 32を上下移動させ、チョー力部 34の隙間調整を行う。また、中空チョー力ボルト 53は 、中間部の可動チョーカバー 51に接続され、回されることにより、可動チョーカバー 5 1を上下移動させ、チョー力部 52の隙間調整を行う。これがチョー力部隙間調整機構 である。
[0069] 複数個の中空チョー力ボルト 35、 36、 53の各々の中空部には細棒状のサーマル コンダクタ 37、 38、 54が可動チョーカバー 31、 32、 51部分まで挿入されている。つ まり、中空チョーカボノレト 35、 36、 53の中空咅 ^こサーマノレコンダクタ 37、 38、 54の 先端側が可動チョーカバー 31、 32、 51部分に届くように挿入されている。
[0070] サーマルコンダクタ 37、 38、 53は、カートリッジヒータや二重パイプ式の熱媒式パイ プ等により構成することができ、可動チョーカバー 31、 32、 51側の先端部に精密な 温度測定を行える温度センサ 39、 40、 55を内蔵し、各々独立して温度制御される。
[0071] なお、可動チョーカバー 31、 32、 51のためのチョー力調整ボルトを熱媒ボルトによ り構成し、チョー力調整ボルト自体をサーマルコンダクタとすることもできる。
[0072] 温度センサ 39、 40、 55により計測される温度によってサーマルコンダクタ 37、 38、 54の電流制御を行うことにより、各サーマルコンダクタ 37、 38、 54の温度を個別に精 密に制御することが可能になる。なお、要求されるフィルム 'シート厚さ精度によって は、温度センサ 39、 40、 54を省略できる。
[0073] ダイス流路をコンピュータによってシミュレーションした時の条件と実際に運転した 時の樹脂特性が異なる場合や、シミュレーション時と異なる品種の樹脂を用いて運転 する場合には、ダイス幅方向全体の流れが大きなうねりで変化する。この大きなうねり ίま、中空チョーカボノレ卜 35、 36、 53の操作 ίこよって調整、ネ甫償する。
[0074] サーマルコンダクタ 37の熱は可動チョーカバー 31に伝導し、サーマルコンダクタ 3 7によって可動チョーカバー 31の表面温度が決まる。サーマルコンダクタ 38の熱は 可動チョーカバー 32に伝導し、サーマルコンダクタ 38によって可動チョーカバー 32 の表面温度が決まる。また、サーマルコンダクタ 54の熱は可動チョーカバー 51に伝 導し、サーマルコンダクタ 54によって可動チョーカバー 51の表面温度が決まる。
[0075] チョー力部 33、 34、 52の溶融樹脂は、可動チョーカバー 31、 32、 51の表面温度 が高い部位では、樹脂特性によって粘性を下げることにより、多く流れ、その部位に 相当する部分のフィルム 'シート厚さは厚くなる。これとは、反対に、可動チョーカバー 31、 32、 51の表面温度が低い部位では、溶融樹脂の流れが少なくなり、その部位に 相当する部分のフィルム 'シート厚さは薄くなる。
[0076] チョー力部 33、 34、 52は、狭レ、流路構造になってレ、るから、流路内樹脂の流れ特 性を温度で制御することは、十分達成可能である。これにより、中空チョー力ボルト 35 、 36、 53によるチョー力部隙間調整では調整できない狭いピッチでの調整は、サー マルコンダクタ 37、 38、 54の温度制御によって行うことができる。
[0077] このこと力ら、中空チョー力ボルト 35、 36、 53によるチョー力部隙間調整は手動式 で、外層サーマルコンダクタ 37、 38、 54によるサーマルコンダクタ制御(温度制御) は自動式であることが好ましレ、。
[0078] この実施形態による多層フィルム.シート成形用ダイスでも、フィルム.シート厚さの 自動計測によってフィードバック制御する自動制御システムのフィルム 'シート成形機 での使用が好ましぐフィルム 'シート厚さの自動計測結果によって、フィルム 'シート 厚さが均一になるように、各サーマルコンダクタ 37、 38、 54のサーマルコンダクタ制 御(温度制御)を行うこと力 Sできる。
[0079] サーマルコンダクタ 37、 38、 54が熱媒式の場合には、可動チョーカバー 31、 32、 51の表面温度を強制的に低い温度に設定することが可能であるので、温度による制 御量を大きレ、レンジで設定することができる。 [0080] 上述したように、外層、内層の各層について、中空チョー力ボルト 35、 36、 53による チョー力部隙間調整と、サーマルコンダクタ 37、 38、 54によるサーマルコンダクタ制 御とを併用することにより、運転条件が大きく違った場合や、樹脂品種が変わっても、 高精度の厚さの多層フィルム 'シートが成形可能になる。
[0081] 同一樹脂品種の場合には、サーマルコンダクタ 37、 38、 55によるサーマルコンダク タ制御とリップ調整ボルト 25によるリップ隙間調整によって高精度の厚さの多層フィル ム 'シートが成形可能になる。これにより、高精度の厚さ精度を要求される複屈折を利 用した光学用多層フィルム 'シートの成形を生産性よく行うことが可能になる。
[0082] このように、この実施形態では、各層の樹脂厚さ調整が可能で、更にリップ隙間調 整を行うことにより、各層の樹脂厚さと全体厚さが高精度な多層フィルム 'シートを成 形できる。
[0083] この発明による多層フィルム 'シート成形用ダイスを 3層フィルム 'シート成形用ダイ スに適用した他の実施形態を、図 3を参照して説明する。なお、図 3において、図 2に 対応する部分は、図 2に付した符号と同一の符号を付けて、その説明を省略する。
[0084] この実施形態では、内層用溶融樹脂流路 19の途中には、可動チョーカバー 51に 代えて、固定チョーカバー 41が交換可能に固定配置されている。固定チョーカバー 41は、内層用溶融樹脂流路 19の途中にチョー力部 42を構成している。
[0085] 固定チョーカバー 41の配置部位には、中空チョー力ボルト 35、 36と同様に、ダイス 幅方向に所定のピッチ(20〜60mm程度)で複数個の内層用のサーマルコンダクタ 43が配置されている。
[0086] サーマルコンダクタ 43も、カートリッジヒータや二重パイプ式の熱媒式パイプ等によ り構成することができ、固定チョーカバー 41側の先端部に精密な温度測定を行える 温度センサ 44を内蔵してレ、る。
[0087] 温度センサ 39、 40、 44により計測される温度によってサーマルコンダクタ 37、 38、 43の電流制御を行うことにより、各サーマルコンダクタ 37、 38、 43の温度を個別に精 密に制御することが可能になる。なお、要求されるフィルム 'シート厚さ精度によって は、温度センサ 39、 40、 44を省略できる。
[0088] ダイス流路をコンピュータによってシミュレーションした時の条件と実際に運転した 時の樹脂特性が異なる場合や、シミュレーション時と異なる品種の樹脂を用いて運転 する場合には、ダイス幅方向全体の流れが大きなうねりで変化する。この大きなうねり は、中空チョー力ボルト 35、 36の操作によって調整、補償する。
[0089] サーマルコンダクタ 37の熱は可動チョーカバー 31に伝導し、サーマルコンダクタ 3
7によって可動チョーカバー 31の表面温度が決まる。また、サーマルコンダクタ 38の 熱は可動チョーカバー 32に伝導し、サーマルコンダクタ 38によって可動チョーカバ 一 32の表面温度が決まる。
[0090] チョー力部 33、 34の溶融樹脂は、可動チョーカバー 31、 32の表面温度が高い部 位では、樹脂特性によって粘性を下げることにより、多く流れ、その部位に相当する 部分のフィルム 'シート厚さは厚くなる。これとは、反対に、可動チョーカバー 31、 32 の表面温度が低い部位では、溶融樹脂の流れが少なくなり、その部位に相当する部 分のフィルム ·シート厚さは薄くなる。
[0091] チョー力部 33、 34は、狭い流路構造になっているから、流路内榭脂の流れ特性を 温度で制御することは、十分達成可能である。これにより、中空チョー力ボルト 35、 36 によるチョー力部隙間調整では調整できない狭いピッチでの調整は、サーマルコンダ クタ 37、 38の温度制御によって行うことができる。
[0092] このこと力 、中空チョー力ボルト 35、 36によるチョー力部隙間調整は手動式で、サ 一マルコンダクタ 37、 38によるサーマルコンダクタ制御(温度制御)は自動式である ことが好ましい。
[0093] サーマルコンダクタ 43の熱は固定チョーカバー 41に伝導し、サーマルコンダクタ 4 3によって固定チョーカバー 41の表面温度が決まる。
[0094] 内層のチョー力部 42の溶融樹脂は、固定チョーカバー 41の表面温度が高い部位 では、樹脂特性によって粘性を下げることにより、多く流れ、その部位に相当する部 分のフィルム 'シート厚さは厚くなる。これとは、反対に、固定チョーカバー 41の表面 温度が低い部位では、溶融樹脂の流れが少なくなり、その部位に相当する部分のフ イルム'シート厚さは薄くなる。
[0095] チョー力部 42も、狭い流路構造になっているから、流路内樹脂の流れ特性を温度 で制御することは、十分達成可能である。これにより、狭いピッチでの調整を、サーマ ルコンダクタ 43の温度制御によって行うことができる。
[0096] このこと力 ら、この実施形態による多層フィルム.シート成形用ダイスでも、フィルム. シート厚さの自動計測によってフィードバック制御する自動制御システムのフィルム. シート成形機での使用が好ましぐフィルム 'シート厚さの自動計測結果によって、フィ ルム 'シート厚さが均一になるように、各サーマルコンダクタ 37、 38、 44のサーマルコ ンダクタ制御(温度制御)を行うことができる。
[0097] なお、簡易機では、フィルム 'シート厚さの自動計測結果に基づいて、各サーマル コンダクタ 37、 38、 44の設定温度を手動入力してもよい。
[0098] サーマルコンダクタ 37、 38、 43が熱媒式の場合には、可動チョーカバー 31、 32、 固定チョーカバー 41の表面温度を強制的に低い温度に設定することが可能である ので、温度による制御量を大きいレンジで設定することができる。
[0099] 上述したように、外層については、中空チョー力ボルト 35、 36によるチョー力部隙間 調整と、サーマルコンダクタ 37によるサーマルコンダクタ制御とを併用することにより、 運転条件が大きく違った場合や、樹脂品種が変わっても、高精度の厚さの多層フィ ルム'シートが成形可能になる。
[0100] 内層については、固定交換式の固定チョーカバー 41とサーマルコンダクタ 43によ るサーマルコンダクタ制御とを併用して厚さ調整が行われる。固定チョーカバー 41が 隙間調整でないので、ダイス構造が簡単で、ダイス寸法が大きくなることがなぐ実用 的に使用可能になる。
[0101] 樹脂特性が大きく変わる場合には、その樹脂の成形条件で、シミュレーションを行 レ、、その条件での最適固定チョーカバーを製作し、固定チョーカバー 41の交換を行 う。そして、微調整は、サーマルコンダクタ 43による温度制御により行う。
[0102] 外層は、チョー力部隙間調整とサーマルコンダクタ制御との併用式になっているか ら、サーマルコンダクタ制御と、外層の、より微細な調整との組み合わせで、外層、内 層の樹脂の厚さ制御を高精度に行うことができる。これらのことにより、運転条件が大 きく違った場合や、樹脂品種が変わっても、高精度の厚さの多層フィルム 'シートが成 形可能になる。
[0103] 同一樹脂品種の場合には、外層用サーマルコンダクタ 37、 38、サーマルコンダクタ 43によるサーマルコンダクタ制御とリップ調整ボルト 25によるリップ隙間調整によって 高精度の厚さの多層フィルム 'シートが成形可能になる。これにより、高精度の厚さ精 度を要求される複屈折を利用した光学用多層フィルム 'シートの成形を生産性よく行 うことが可能になる。
[0104] このように、この実施形態では、各層の樹脂厚さ調整が可能で、更にリップ隙間調 整を行うことにより、各層の樹脂厚さと全体厚さが高精度な多層フィルム 'シートを成 形できる。
[0105] この発明による多層フィルム 'シート成形用ダイスを 3層フィルム 'シート成形用ダイ スに適用したもう一つの実施形態を、図 4を参照して説明する。なお、図 4においても 、図 2に対応する部分は、図 2に付した符号と同一の符号を付けて、その説明を省略 する。
[0106] この実施形態では、固定チョーカバー 41が省略され、内層に関しては、内層用溶 融樹脂流路 19の両側に配置されたサーマルコンダクタ 43によって内層用溶融樹脂 流路 19の通路内壁の温度調整を行うようになっている。なお、サーマルコンダクタ 43 の配置部分の内層用溶融樹脂流路 19は、絞り通路になっている。このこと以外は、 前述の実施形態(図 2)と同じである。
[0107] この実施形態でも、外層については、中空チョー力ボルト 35、 36によるチョー力部 隙間調整と、サーマルコンダクタ 37、 38によるサーマルコンダクタ制御とを併用する ことにより、運転条件が大きく違った場合や、樹脂品種が変わっても、高精度の厚さ の多層フィルム 'シートが成形可能になる。
[0108] 内層については、サーマルコンダクタ 43によるサーマルコンダクタ制御のみで厚さ 調整が行われる。サーマルコンダクタ 43は内層用溶融樹脂流路 19の両側に設けら れているので、サーマルコンダクタ制御によってチョーカバー隙間調整分を補うことが できる。そして、内層については、チョーカバーもチョーカバー隙間調整機構もない ので、ダイス構造が簡単で、ダイス寸法が大きくなることがなぐ実用的に使用可能に なる。
[0109] この実施形態でも、各層の樹脂厚さ調整が可能で、更にリップ隙間調整を行うこと により、各層の樹脂厚さと全体厚さが高精度な多層フィルム 'シートを成形できる。 [0110] なお、多層フィルム.シートの要求精度によっては、サーマルコンダクタ 43は内層用 溶融樹脂流路 19の片側だけに設けられていてもよい。
[0111] また、 3層フィルム 'シート成形用ダイスの場合、可動チョーカバー、サーマルコンダ クタ等は、外層用溶融樹脂流路 17、 18にのみ設けられ、内層用溶融樹脂流路 19に ついては省略されてもよい。つまり、図 6に示されているように、外層用溶融樹脂流路 17、 18の各々(このみ、可動チョーカノ一 31、 32、中空チョーカボノレト 35、 36、サー マルコンダクタ 37、 38、温度センサ 39、 40が設けられていればよレ、。
[0112] 内層のサーマルコンダクタ 43あるいは 54からの熱は内層用溶融樹脂流路 19だけ でなく外層用溶融樹脂流路 17、 18の部分にまで伝熱してしまい、内層を厚くしょうと して温度を上げると、外層部分の温度も上がり、両方とも流量が増えることになる。し かし、リップ部で全体の厚さを押さえられているので、層厚さの比率変化は少なレ、。こ れに対し、外層のサーマルコンダクタ 37、 38の熱は、外層部分にしか伝わらないの で、効果的に層厚さの比率を調整することができる。このことから、外層だけにサーマ ルコンダクタ 37、 38を取り付け、全体の厚さはリップ隙間で調整することが可能であ る。
[0113] このように、内層のサーマルコンダクタがない場合でも、従来のチョークバーを押引 するダイに比べて短レヽ間隔の凹凸を調整できるメリットが得られる。短レ、間隔の凹凸 の調整できるメリットがある。
[0114] 上述の実施形態では、 3層フィルム ·シート成形用のダイスになっている力 この発 明による多層フィルム 'シート成形用ダイスは、内層が複数存在することになる 4層、 5 層、それ以上の多層のフィルム 'シート成形用ダイスとして、同様に構成することがで きる。
[0115] また、ダイス出口 22、 122でのフィルム.シート幅方向の任意の位置の厚さ調節は、 リップ調整ボルト 25や 125によるリップ隙間調整機構以外に、図 7、図 8に示されてい るように、上部リップ部 23、 123、下部リップ部 24、 124の各々に、複数個のカートリツ ジヒータ(ヒータ要素) 61、 62をダイス幅方向に所定ピッチで坦め込み装着し、これら カートリッジヒータ 61、 62を各々個別に温度調整し、ダイス出口 22、 122における溶 融樹脂の温度—粘性—流量特性を利用するものであってもよい。 産業上の利用可能性
[0116] この発明による多層フィルム 'シート成形用ダイスは、チョー力調整ボルトによるチヨ 一力部隙間調整と、サーマルコンダクタによるサーマルコンダクタ制御とを併用してい ることにより、運転条件が大きく違った場合や、樹脂品種が変わっても、高精度の厚さ のフィルム 'シートが成形可能になる。
[0117] サーマルコンダクタによって各層の溶融樹脂流路におけるチョーカバーの表面温 度をチョー力調整ボルトの配置ピッチと同等のピッチで制御できる。チョー力部の溶 融樹脂は、チョーカバーの表面温度が高いと、樹脂特性によって粘性を下げることに より、多く流れ、その部位に相当する部分のフィルム 'シート厚さが厚くなり、これとは、 反対に、チョーカバーの表面温度が低いと、流れが少なくなり、その部位に相当する 部分のフィルム 'シート厚さが薄くなるから、サーマルコンダクタ制御によって狭いピッ チでの微細な調整が可能になり、高精度な厚さのフィルム 'シートを成形することがで きる。

Claims

請求の範囲
[1] 複数個のマ二ホールド部および溶融樹脂流路を有するマルチマ二ホールド方式の 多層フィルム.シートダイスにおいて、
前記複数個の溶融樹脂流路のうちの少なくとも一つの前記溶融樹脂流路の途中に 可動チョーカバーが可動配置され、ダイス幅方向に所定のピッチで配置された複数 個のチョー力調整ボルトによって前記可動チョーカバーを動力、してチョー力部の隙間 調整を行うチョー力部隙間調整機構を有し、
前記チョー力調整ボルトの各々にサーマルコンダクタが設けられている、 多層フィルム ·シート成形用ダイス。
[2] 層厚さが互いに異なる多層フィルム 'シートを成形する多層フィルム 'シートダイスで あって、層厚さが薄いものの溶融樹脂流路の途中にのみに前記可動チョーカバーが 可動配置され、当該可動チョーカバーのチョー力調整ボルトの各々に前記サーマル コンダクタが設けられている請求項 1記載の多層フィルム 'シート成形用ダイス。
[3] 二つの外層用のマ二ホールド部および溶融樹脂流路と、少なくとも一つの内層用 のマ二ホールド部および溶融樹脂流路を有するマルチマ二ホールド方式の多層フィ ノレム 'シートダイスにおいて、
外層用の溶融樹脂流路の途中に可動チョーカバーが可動配置され、ダイス幅方向 に所定のピッチで配置された複数個のチョー力調整ボルトによって前記可動チョー力 バーを動かしてチョー力部の隙間調整を行う外層用チョー力部隙間調整機構を有す る、
多層フィルム ·シート成形用ダイス。
[4] 二つの外層用のマ二ホールド部および溶融樹脂流路と、少なくとも一つの内層用 のマ二ホールド部および溶融樹脂流路を有するマルチマ二ホールド方式の多層フィ ノレム 'シートダイスにおいて、
外層用の溶融樹脂流路の途中に可動チョーカバーが可動配置され、ダイス幅方向 に所定のピッチで配置された複数個のチョー力調整ボルトによって前記可動チョー力 バーを動かしてチョー力部の隙間調整を行う外層用チョー力部隙間調整機構を有し 内層用の溶融樹脂流路の途中に固定チョーカバーが固定配置され、 前記チョー力調整ボルトの各々にサーマルコンダクタが設けられ、
前記固定チョーカバーの配置部位におけるダイス幅方向に所定のピッチでサーマ ルコンダクタが配置されている、
多層フィルム ·シート成形用ダイス。
[5] 二つの外層用のマ二ホールド部および溶融樹脂流路と、少なくとも一つの内層用 のマ二ホールド部および溶融樹脂流路を有するマルチマ二ホールド方式の多層フィ ノレム 'シートダイスにおいて、
外層用の溶融樹脂流路の途中に可動チョーカバーが可動配置され、ダイス幅方向 に所定のピッチで配置された複数個のチョー力調整ボルトによって前記可動チョー力 バーを動かしてチョー力部の隙間調整を行う外層用チョー力部隙間調整機構を有し 前記チョー力調整ボルトの各々にサーマルコンダクタが設けられ、
内層用の溶融樹脂流路の途中におけるダイス幅方向に所定のピッチでサーマルコ ンダクタが配置されている、
多層フィルム ·シート成形用ダイス。
[6] 前記サーマルコンダクタの各々に温度センサが設けられている請求項 1〜5の何れ 力 1項記載の多層フィルム 'シート成形用ダイス。
[7] 上部リップ部と下部リップ部を有し、前記上部リップ部と前記下部リップ部とによりダ イス幅方向に長レ、スリット状のダイス出口が画定され、当該ダイス出口のリップ隙間を 調整するリップ隙間調整機構を有する請求項 1〜6の何れ力 1項記載の多層フィルム
'シート成形用ダイス。
[8] 上部リップ部と下部リップ部を有し、前記上部リップ部と前記下部リップ部とによりダ イス幅方向に長レ、スリット状のダイス出口が画定され、前記上部リップ部と前記下部リ ップ部の少なくとも何れか一方に、各々個別に温度調整可能な複数個のヒータ要素 がダイス幅方向に所定ピッチで装着されている請求項 1〜6の何れ力、 1項記載の多 層フィルム ·シート成形用ダイス。
PCT/JP2006/305545 2005-03-22 2006-03-20 多層フィルム・シート成形用ダイス WO2006101075A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007509269A JP4769795B2 (ja) 2005-03-22 2006-03-20 多層フィルム・シート成形用ダイス
CN2006800093669A CN101146662B (zh) 2005-03-22 2006-03-20 多层膜、片成形用模具
US11/909,384 US8105064B2 (en) 2005-03-22 2006-03-20 Multilayered film/sheet molding die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005082491 2005-03-22
JP2005-082491 2005-03-22

Publications (1)

Publication Number Publication Date
WO2006101075A1 true WO2006101075A1 (ja) 2006-09-28

Family

ID=37023736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305545 WO2006101075A1 (ja) 2005-03-22 2006-03-20 多層フィルム・シート成形用ダイス

Country Status (6)

Country Link
US (1) US8105064B2 (ja)
JP (1) JP4769795B2 (ja)
KR (1) KR20070121780A (ja)
CN (1) CN101146662B (ja)
TW (1) TWI299301B (ja)
WO (1) WO2006101075A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511109A (ja) * 2008-12-04 2012-05-17 アイトゲネーシッシュ テヒニッシュ ホッホシュレ チューリッヒ 重合物、それを作製する方法、およびダイ
WO2012117513A1 (ja) * 2011-03-01 2012-09-07 株式会社サン・エヌ・ティ 複層押出成形装置
JP2015196329A (ja) * 2014-04-01 2015-11-09 日本ゼオン株式会社 複層フィルム及びその製造方法、並びに位相差フィルム

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5492385B2 (ja) 2008-04-16 2014-05-14 東芝機械株式会社 シート成形用ダイスおよびシート成形方法
EP2523796B1 (en) * 2010-01-15 2018-02-28 3M Innovative Properties Company Method and system for controlling cross-web layer profile of a multilayer polymer film
CN102933367B (zh) 2010-05-07 2016-06-01 3M创新有限公司 用于制备多层聚合物薄膜的设备
US9216535B2 (en) * 2011-06-07 2015-12-22 3M Innovative Properties Company Slot die position adjustments to facilitate patterned products
US9579684B2 (en) * 2011-06-07 2017-02-28 3M Innovative Properties Company Slot die position adjustment control
US20140327175A1 (en) * 2013-05-01 2014-11-06 Paragon Films, Inc. Stretch Film Using a Multi-Manifold Die
FR3015313B1 (fr) 2013-12-20 2017-02-24 Bostik Sa Bec d'extrusion avec un volume de relaxation, buse et installation d'encollage correspondantes, procede d'encollage en continu
CN106393628A (zh) * 2016-08-31 2017-02-15 昆山恒光塑胶股份有限公司 Tpu‑abs复合板共挤工艺
US10272609B2 (en) * 2016-09-26 2019-04-30 Nordson Corporation Extrusion die having thermally responsive lip adjustment assembly
US11372060B2 (en) * 2017-10-20 2022-06-28 Abb Power Electronics Inc. Busway joint connection monitoring system and methods of assembling the same
US11045991B2 (en) * 2018-04-13 2021-06-29 Nordson Corporation Dual stage flex lip for an extrusion die
DE102018114008A1 (de) * 2018-06-12 2019-12-12 Marcus Herrmann Vorrichtung und Verfahren zur Erzeugung dreidimensionaler Gegenstände
JP7284665B2 (ja) * 2018-11-09 2023-05-31 芝浦機械株式会社 Tダイ、tダイ用パッキン、側方密閉機構、およびシート・フィルム製造装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715321U (ja) * 1993-08-26 1995-03-14 東レ株式会社 複合シート製造装置
JPH08112852A (ja) * 1994-10-17 1996-05-07 Sumitomo Heavy Ind Ltd 層分布自動調整システム
JPH10217310A (ja) * 1997-02-03 1998-08-18 Teijin Ltd ダ イ
JPH11309770A (ja) * 1998-04-28 1999-11-09 Toshiba Mach Co Ltd 多層押出成形方法および装置
JP2001158036A (ja) * 1999-12-06 2001-06-12 Mitsubishi Heavy Ind Ltd 発泡シート成形用ダイ
JP2003181904A (ja) * 2001-12-18 2003-07-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3559239A (en) * 1968-02-27 1971-02-02 American Can Co Multilayer extrusion die
US3759653A (en) * 1971-06-30 1973-09-18 Standard Oil Co Extrusion die with arched choke bar
JPS5137938B2 (ja) * 1971-12-29 1976-10-19
US4454084A (en) * 1982-06-09 1984-06-12 Leesona Corporation Extrusion die control system
JPH0675902B2 (ja) 1985-06-10 1994-09-28 三菱重工業株式会社 ダイリップ調整装置
AT383991B (de) * 1985-11-14 1987-09-10 Klepsch Senoplast Verfahren zur herstellung von verbundplatten
JPH065864Y2 (ja) * 1988-12-01 1994-02-16 三菱重工業株式会社 押出成形用ダイリップ調整装置
US5577209A (en) * 1991-07-11 1996-11-19 Itt Corporation Apparatus and method for providing multi-level security for communication among computers and terminals on a network
JPH05228975A (ja) 1992-02-25 1993-09-07 Toray Ind Inc 共押出装置
JP2818354B2 (ja) 1993-06-16 1998-10-30 帝人株式会社 多層フイルムの押出装置
DE69616729T2 (de) * 1995-12-28 2002-05-08 Fuji Photo Film Co Ltd Verfahren zur Herstellung von Mehrschichtbahn oder Folie
JPH09300432A (ja) 1996-05-09 1997-11-25 Mitsubishi Heavy Ind Ltd ダイリップ調整装置
US6061600A (en) * 1997-05-09 2000-05-09 I/O Control Corporation Backup control mechanism in a distributed control network
JP3931391B2 (ja) * 1997-08-22 2007-06-13 富士フイルム株式会社 多層支持体の成形方法及びその成形ダイ装置
US6035405A (en) * 1997-12-22 2000-03-07 Nortel Networks Corporation Secure virtual LANs
US6556547B1 (en) * 1998-12-15 2003-04-29 Nortel Networks Limited Method and apparatus providing for router redundancy of non internet protocols using the virtual router redundancy protocol
JP3932711B2 (ja) 1999-01-08 2007-06-20 東レ株式会社 フイルム製造装置
US6711679B1 (en) * 1999-03-31 2004-03-23 International Business Machines Corporation Public key infrastructure delegation
TW425821B (en) * 1999-05-31 2001-03-11 Ind Tech Res Inst Key management method
JP2001077919A (ja) * 1999-09-03 2001-03-23 Fujitsu Ltd 冗長構成監視制御システム並びにその監視制御装置及び被監視制御装置
US6920559B1 (en) * 2000-04-28 2005-07-19 3Com Corporation Using a key lease in a secondary authentication protocol after a primary authentication protocol has been performed
WO2002095543A2 (en) * 2001-02-06 2002-11-28 En Garde Systems Apparatus and method for providing secure network communication
AU2003208199A1 (en) * 2002-03-18 2003-09-29 Colin Martin Schmidt Session key distribution methods using a hierarchy of key servers
CN1262355C (zh) * 2002-11-12 2006-07-05 松下电器产业株式会社 挤压型喷嘴和使用该喷嘴的涂布装置
JP4504099B2 (ja) * 2003-06-25 2010-07-14 株式会社リコー デジタル証明書管理システム、デジタル証明書管理装置、デジタル証明書管理方法、更新手順決定方法およびプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715321U (ja) * 1993-08-26 1995-03-14 東レ株式会社 複合シート製造装置
JPH08112852A (ja) * 1994-10-17 1996-05-07 Sumitomo Heavy Ind Ltd 層分布自動調整システム
JPH10217310A (ja) * 1997-02-03 1998-08-18 Teijin Ltd ダ イ
JPH11309770A (ja) * 1998-04-28 1999-11-09 Toshiba Mach Co Ltd 多層押出成形方法および装置
JP2001158036A (ja) * 1999-12-06 2001-06-12 Mitsubishi Heavy Ind Ltd 発泡シート成形用ダイ
JP2003181904A (ja) * 2001-12-18 2003-07-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511109A (ja) * 2008-12-04 2012-05-17 アイトゲネーシッシュ テヒニッシュ ホッホシュレ チューリッヒ 重合物、それを作製する方法、およびダイ
WO2012117513A1 (ja) * 2011-03-01 2012-09-07 株式会社サン・エヌ・ティ 複層押出成形装置
JP2015196329A (ja) * 2014-04-01 2015-11-09 日本ゼオン株式会社 複層フィルム及びその製造方法、並びに位相差フィルム

Also Published As

Publication number Publication date
CN101146662B (zh) 2011-06-15
JPWO2006101075A1 (ja) 2008-09-04
JP4769795B2 (ja) 2011-09-07
TW200702146A (en) 2007-01-16
US8105064B2 (en) 2012-01-31
KR20070121780A (ko) 2007-12-27
US20090035410A1 (en) 2009-02-05
TWI299301B (en) 2008-08-01
CN101146662A (zh) 2008-03-19

Similar Documents

Publication Publication Date Title
WO2006101075A1 (ja) 多層フィルム・シート成形用ダイス
EP2184766B1 (en) Directional extruded bead control
US8066506B2 (en) Melt balancing element in a manifold melt channel
JP4739970B2 (ja) 多層フィルム・シート成形用ダイスおよび多層フィルム・シート成形方法
JP4741857B2 (ja) フィルム・シート成形用ダイス
JP3662169B2 (ja) 冷却ノズル法で熱可塑性合成樹脂製の中空室付き異形材を製造する方法と装置
CN105313292B (zh) 具有定幅系统的多歧管挤出模具及其使用方法
JP5492385B2 (ja) シート成形用ダイスおよびシート成形方法
EP1134066A3 (en) Feedblock for adjusting the dimensions of a set of co-extruded layers of a multi-layer sheet
JP3973755B2 (ja) 多層押出成形方法および装置
JPH05228975A (ja) 共押出装置
EP0834388A1 (en) Adjustable coextrusion feedblock
JP5270593B2 (ja) 複層押出成形装置
JP3280702B2 (ja) シートまたはフィルムの押出成形装置
JPS6224499Y2 (ja)
JPH08112852A (ja) 層分布自動調整システム
JP2023553099A (ja) 押出物品を製造するために使用されるスロットダイを調整するための方法及びシステム
JPS59220332A (ja) 押出し複合アダプタ
EP0767044A1 (en) Extrusion die with advanced flow distribution correction device
WO2012117513A1 (ja) 複層押出成形装置
JP4426210B2 (ja) 成形用治具及びこれを用いた成形体の製造方法
JP4244100B2 (ja) 樹脂成形金型
JPH09174660A (ja) 複層シート又は複層フィルムの成形ダイ装置
JPH09327853A (ja) 押出しダイス
JPH0655407B2 (ja) シ−ト状物押出し用ダイ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680009366.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509269

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11909384

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077024024

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729513

Country of ref document: EP

Kind code of ref document: A1