WO2006100804A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2006100804A1
WO2006100804A1 PCT/JP2005/022558 JP2005022558W WO2006100804A1 WO 2006100804 A1 WO2006100804 A1 WO 2006100804A1 JP 2005022558 W JP2005022558 W JP 2005022558W WO 2006100804 A1 WO2006100804 A1 WO 2006100804A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
image
imaging
shooting
unit
Prior art date
Application number
PCT/JP2005/022558
Other languages
English (en)
French (fr)
Inventor
Naoto Yumiki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2007509143A priority Critical patent/JP4441565B2/ja
Priority to US11/886,631 priority patent/US8031240B2/en
Priority to CN2005800491498A priority patent/CN101142813B/zh
Publication of WO2006100804A1 publication Critical patent/WO2006100804A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/63Control of cameras or camera modules by using electronic viewfinders
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/675Focus control based on electronic image sensor signals comprising setting of focusing regions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2101/00Still video cameras

Definitions

  • the present invention relates to a shooting posture in an imaging device, and more specifically to an imaging device that accurately determines a shooting state when shooting is performed in an upper posture or a lower posture.
  • CCD Charge Coupled Device
  • CMOS Complementary Metal
  • digital cameras Digital Video cameras
  • the shooting posture of a digital camera for example, when shooting a landscape subject such as a landscape, the photographer sets the posture of the digital camera to a landscape state, while shooting a portrait subject such as a person or a building. Takes a picture with the digital camera in the vertical position. Stroke direction force of the shutter button Digital force When the camera is parallel to the direction of gravity, the posture of the digital camera is the landscape orientation. The posture of the digital camera when the stroke direction of the shutter button is orthogonal to the direction of gravity is called the vertical shooting posture.
  • an image taken in each posture is referred to as a horizontal image or a vertical image!
  • the posture detecting means is provided with posture detecting means in order to match the top and bottom directions at the time of shooting and playback.
  • the posture information is written into the photographed image, and at the time of displaying the photographed image, the posture information is simultaneously read so that the photographed image can be displayed so that the top and bottom directions coincide.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-88439
  • the conventional imaging apparatus can detect that it is in the lower position, but cannot detect that it is in the upper position.
  • Today's digital cameras have many opportunities to shoot airplanes flying in the sky, which are often compatible with telephoto, but in that case, it is necessary to shoot with the digital camera facing up. Therefore, in the case of the upper posture, it cannot be determined whether the posture is the horizontal shooting posture or the vertical shooting posture.
  • it is necessary to provide a posture detection sensor separately there is a problem that costs increase.
  • the present invention aims to provide an imaging apparatus that can accurately determine the force of the imaging apparatus in the landscape orientation or the portrait orientation, regardless of whether it is in the upward orientation or the downward orientation. Target.
  • an imaging apparatus having the following configuration.
  • an imaging apparatus that outputs an optical image of a subject as an electrical image signal, an imaging optical system that forms an optical image of a subject, and an optical device formed by the imaging optical system
  • An imaging means for receiving an image and converting an optical image into an electrical image signal; a first attitude detection means for detecting the horizontal or vertical attitude of the imaging apparatus at the time of shooting;
  • the second posture detection means for detecting the upper posture or the lower posture of the image pickup device, and when the image pickup device is in the upper posture or the lower posture, is read from the image pickup means based on the information of the second posture detection means.
  • an image recording means for recording the attitude discrimination signal detected by the first attitude detection means together with the captured image.
  • the digital camera can be used in the up or down position by detecting the horizontal shooting position of the digital camera body, the two vertical shooting positions, the up position, and the down position. Even when shooting in the horizontal direction, the vertical position when shooting and the vertical position when displaying images can be made the same for both horizontal and vertical shooting images.
  • posture input means for inputting a horizontal posture or a vertical posture of the imaging apparatus.
  • the posture determination signal indicating the vertical posture, the horizontal posture, or the vertical posture is written to the photographed image using the posture input means after detecting the upper posture or the lower posture of the imaging apparatus.
  • posture discrimination signals can be written for both the horizontal shooting posture and the vertical shooting posture that are not mistaken.
  • the posture determination signal indicating the horizontal posture or the vertical posture of the imaging device is a captured image after detecting the horizontal posture or the vertical posture again after detecting the upper posture or the lower posture of the imaging device. It is characterized by being written in.
  • posture discrimination signals can be automatically written for both the horizontal shooting posture and the vertical shooting posture.
  • an image pickup apparatus including an image blur correction apparatus that detects vibration applied to the image pickup apparatus and drives a correction lens of the image pickup optical system in two directions orthogonal to the optical axis.
  • the posture detection means is characterized in that the posture of the imaging device is determined by detecting a signal for driving the correction lens.
  • the imaging device including the image blur correction device can detect the horizontal posture of the imaging device at the time of shooting or a posture without adding a new configuration for detecting the vertical posture. .
  • an imaging apparatus including an image blur correction apparatus that detects vibration applied to the imaging apparatus and drives a correction lens of the imaging optical system in two directions orthogonal to the optical axis.
  • the apparatus includes first and second actuators for driving the correction lens, and the attitude detection means determines the attitude of the imaging apparatus by detecting the drive current value of at least one of the first or second actuators. It is characterized by doing.
  • the attitude of the imaging device can be easily determined by detecting the drive current value of at least one of the first or second actuator.
  • the second attitude detection unit detects a signal for driving the focus lens group.
  • the posture of the imaging apparatus is determined.
  • an imaging device equipped with a linear actuator can be used without adding a new configuration for detecting the upper or lower posture of the imaging device during shooting. Detection can be performed.
  • the focus lens group is moved to a position at infinity.
  • the focus lens group can be driven to a position at infinity, so that instantaneous photographing can be performed.
  • the focus lens group is moved to a macro photographing position when the posture is in a downward posture.
  • the focus lens group can be driven to a macro shooting position, so that shooting can be performed instantaneously.
  • the imaging device of the present invention by detecting the horizontal shooting posture, the two vertical shooting postures, the upper posture, and the lower posture of the digital camera body, the upper posture or the lower posture. Even when taking a picture using a digital camera at, the top and bottom of the images taken in the horizontal and vertical orientations can be made the same when taking the image and displaying the image.
  • FIG. 1 is a block diagram showing a control system for an image pickup apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing the upper surface and the rear surface of the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 3 is a block diagram showing a control system of the image blur correction device of the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 4 is an exploded perspective view showing an image blur correction mechanism of the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 5 is a perspective view showing the linear actuator of the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 6 is a perspective view of a mounting portion of a yoke of the linear actuator of the image pickup apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram showing various postures of the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 8 is an explanatory diagram of posture detection of the image blur correction mechanism according to the first embodiment of the present invention.
  • FIG. 9 is a diagram showing a coil supply current amount of an image blur correction mechanism for each photographing posture in the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 10 is an explanatory diagram of posture determination signals for each shooting posture in the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is an explanatory diagram showing a display method when displaying an image taken by the imaging apparatus according to Embodiment 1 of the present invention on the display unit.
  • FIG. 12 is a block diagram showing a control system for a linear actuator in the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 13 is an explanatory diagram of the posture of the linear actuator in the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 14 is a diagram showing a coil supply current amount of the linear actuator for each shooting posture in the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 15 is a flowchart showing operations from the start of recording to the end of recording based on a photographed image according to Embodiment 1 of the present invention.
  • FIG. 16 is an explanatory diagram of a shooting method and a menu for inputting a shooting posture by the imaging apparatus according to Embodiment 1 of the present invention.
  • FIG. 17 is a flowchart showing operations up to recording end force recording end by the imaging apparatus according to Embodiment 2 of the present invention.
  • FIG. 18 is an explanatory diagram of a change in posture of the camera after the completion of shooting according to Embodiment 2 of the present invention.
  • Shutter controller Shutter drive motor Internal memory
  • FIG. 1 is a block diagram showing a schematic configuration of a digital camera 1 according to Embodiment 1 of the present invention.
  • the digital camera 1 includes an imaging optical system L, a microcomputer 3, an imaging sensor 4, a CCD drive control unit 5, an analog signal processing unit 6, an AZD conversion unit 7, a digital signal processing unit 8, and a buffer.
  • a memory 9, an image compression unit 10, an image recording control unit 11, an image recording unit 12, an image display control unit 13, a display unit 55, a shutter control unit 41, and a shutter drive motor 42 are provided. Prepare.
  • the imaging optical system L is an optical system including three lens groups Ll, L2, and L3.
  • the first lens group L1 and the second lens group L2 (image blur correction lens group) are in the optical axis direction. Zoom in by moving to.
  • the third lens group L3 (focus lens group) performs focusing by moving in the optical axis direction.
  • the second lens group L2 is a correction lens group, and plays a role of correcting the movement of the image by moving the optical axis in a plane perpendicular to the optical axis to decenter the optical axis.
  • the image blur correction mechanism can be used in combination as the posture detection means of the digital camera 1.
  • the microcomputer 3 controls the entire various control units of the digital camera 1.
  • the microcomputer 3 includes a power switch 35, a shutter operation unit 36, a shooting / playback switching operation. Signals from the control unit 37, cross control key 38, MENU setting operation unit 39, and SET operation unit 40 can be received.
  • the shutter control unit 41 drives the shutter drive motor 42 based on the control signal from the microphone port computer 3 based on the timing signal generated by the operation of the shutter operation unit 36 to operate the shutter.
  • the image sensor 4 is preferably composed of a CCD, and converts an optical image formed by the photographing optical system L into an electrical signal.
  • the image sensor 4 is driven and controlled by the CCD drive control unit 5.
  • the image sensor 4 may be composed of CMOS.
  • the image signal output from the imaging sensor 4 is sequentially processed from the analog signal processing unit 6 to the AZD conversion unit 7, the digital signal processing unit 8, the buffer memory 9, and the image compression unit 10.
  • the analog signal processing unit 6 performs analog signal processing such as gamma processing on the image signal output from the imaging sensor 4.
  • the AZD conversion unit 7 converts the analog signal output from the analog signal processing unit 6 into a digital signal.
  • the digital signal processing unit 8 performs digital signal processing such as noise removal and contour enhancement on the image signal converted into a digital signal by the AZD conversion unit 7.
  • the buffer memory 9 is a RAM (Random Access Memory) and stores the image signal processed by the digital signal processing unit 8.
  • the image signal stored in the buffer memory 9 is sequentially processed from the image compression unit 10 to the image recording unit 12.
  • the image signal stored in the nother memory 9 is transmitted to the image compression unit 10 according to a command from the image recording control unit 11, and the data of the image signal is compressed by a predetermined size.
  • the image signal is compressed at a predetermined ratio and has a data size smaller than that of the original data.
  • a JPEG Joint Photographic Experts Group
  • the image compression unit 10 also generates a reduced image signal corresponding to a captured image used for thumbnail display or the like. Thereafter, the compressed image signal and the reduced image signal are transmitted to the image recording unit 12.
  • the image recording unit 12 includes an internal memory 50 (not shown) provided in the main body of the digital camera 1 and a Z or removable memory 51, and based on a command from the image recording control unit 11, An image signal, a corresponding reduced image signal, and predetermined information to be recorded are associated and recorded.
  • the predetermined information to be recorded with these image signals is: It includes the date and time when the image was shot, focal length information, shutter speed information, aperture value information, shooting mode information, and attitude information of the digital camera 1 described later.
  • the image display control unit 13 is controlled by a control signal from the microcomputer 3.
  • the display unit 55 displays the image signal recorded in the image recording unit 12 or the buffer memory 9 as a visible image.
  • the display form of the display unit 55 includes a display form of only the image signal and a form of displaying information at the time of photographing the image signal.
  • the information at the time of shooting the image signal includes focal length information, shutter speed information, aperture value information, shooting mode information, focus state information, and posture information. These pieces of information are displayed by the operation of the menu setting operation unit 39.
  • FIG. Fig. 2 (a) is a top view of the digital camera 1
  • Fig. 2 (b) is a rear view of the digital camera 1.
  • the casing la has an imaging optical system including the lens 2 on the front and a power switch on the back. 35, a shooting Z playback switching operation section 37, a cross control key 38, a MENU setting operation section 39, a SET operation section 40, and a display section 55 that provides LCD monitor power.
  • the upper surface of the housing la includes a shirt operation unit 36 and a zoom operation unit 57.
  • the zoom operation unit 57 is provided around the shutter operation unit 36 so as to be rotatable coaxially with the shutter operation unit 36.
  • the power switch 35 is an operation member that performs ONZOF F of the digital camera 1.
  • the shooting Z playback switching operation unit 37 is an operation member for switching between the shooting mode and the playback mode, and the mode is switched by rotating the lever.
  • the MENU setting operation unit 39 is an operation member for causing the display unit 55 to display various menus.
  • the cross operation key 38 is an operation member for selecting by pressing the upper, lower, left and right parts from various operation menus displayed on the display unit 55 by the operation of the MENU setting operation unit 39.
  • the micro computer 3 issues an execution command corresponding to the selected operation menu.
  • SET operation unit 40 This is an operation member for returning the display of various operation menus to the state before display.
  • the image blur correction device 16 includes a motion correction unit 15A, a photographing posture detection unit 32A, a motion detection unit 18A, and a signal processing unit 3A.
  • the motion correction unit 15A that controls the optical axis AZ of the imaging light includes a second lens group L2, a wing control unit 14x, a pitching control unit 14y, and a position detection unit 15.
  • the second lens group L2 is a correction lens group that plays a role of correcting the movement of the image by decentering the optical axis by moving in a plane perpendicular to the optical axis AZ.
  • the second lens unit L2 is driven and controlled in two directions (X and Y directions) orthogonal to the optical axis AZ by the wing drive control unit 14x and the pitching drive control unit 14y.
  • the X direction is the keying direction
  • the Y direction is the pitching direction.
  • the position detection unit 15 is a detection unit that detects the position of the second lens unit L2, and together with the bowing drive control unit 14x and the pitching drive control unit 14y, forms a feedback control loop for controlling the second lens unit L2. .
  • the imaging posture detection unit 32A includes a winging current value detection unit 32x and a pitching current value detection unit 32y.
  • the charing current value detection unit 32x detects a current value flowing to the coil when a charing actuator 29x described later operates.
  • the pitching current value detection unit 32y detects the value of the current flowing to the coil when the pitching actuator 29y operates.
  • the motion detector 18A includes a bowing angular velocity sensor 18x and a pitching angular velocity sensor 18y.
  • the caming angular velocity sensor 18x and the pitching angular velocity sensor 18y are sensors for detecting the movement of the imaging apparatus itself including the imaging optical system L due to camera shake and other vibrations.
  • the angular velocity sensor 18x and the pitching angular velocity sensor 18y output both positive and negative angular velocity signals depending on the direction of movement of the digital camera 1, based on the output when the digital camera 1 is stationary.
  • the output signal is processed by a signal processing unit.
  • the signal processing unit 3A includes a microcomputer 3, a cornering angular velocity sensor 18x and a pitching angular velocity sensor 18y, and A / D conversion units 19x and 19y.
  • the signals output from the shafting angular velocity sensor 18x and the pitching angular velocity sensor 18y are filtered and amplified, and then processed by the AZD converters 19x and 19y. After being converted into a signal, it is given to the microcomputer 3.
  • the microcomputer 3 performs filtering, integration processing, phase compensation, gain adjustment, clip processing, etc. on the output signals of the moving angular velocity sensor 18x and the pitching angular velocity sensor 18y acquired via the A / D converters 19x and 19y. Each process is performed.
  • the microcomputer 3 calculates the drive control amount of the correction lens group L2 necessary for motion correction and generates a control signal.
  • the generated control signal is output to the showing drive control unit 14x and the pitching drive control unit 14y via the DZA conversion units 17x and 17y. Accordingly, the charing drive control unit 14x and the pitching drive control unit 14y drive the correction lens group L2 based on the control signal to correct the movement of the image.
  • the image blur correcting mechanism 20 includes a pitching holding frame 21, a cornering holding frame 22, a fixed frame 25, a cornering actuator 29x, a pitching actuator 29y, and a light emitting element 30. And a light receiving element 31.
  • the pitching holding frame 21 has coils 24x and 24y.
  • the second lens group L2 and the light emitting element 30 are fixed to the pitching holding frame 21.
  • the pitching holding frame 21 is slidably held in the Y direction with respect to the winging holding frame 22 via two pitching shafts 23a and 23b.
  • the caming holding frame 22 is held so as to be slidable in the X direction with respect to the fixed frame 25 via the caming shafts 26a and 26b.
  • the coining actuator 29x includes a magnet 27x and a yoke 28x, and is held by the fixed frame 25.
  • the pitching actuator 29y includes a magnet 27y and a yoke 28y, and is held by the fixed frame 25.
  • the light receiving element 31 is fixed to the fixed frame 25, receives the projection light of the light emitting element 30, and detects a two-dimensional position coordinate.
  • the image blur correction device 16 detects the camera shake generated in the digital camera 1 by the cornering angular velocity sensor 18x and the pitching angular velocity sensor 18y, and cancels the camera shake detected by the microcomputer 3.
  • the coils 24x and 24y of the pitching holding frame 21 are external circuits When the electric current is supplied from the vertical axis, the pitching holding frame 21 is defined by the two directions X and Y perpendicular to the optical axis AZ (referred to as the XY plane) by the magnetic circuit formed by the actuators 29x and 29y. ) Move in.
  • FIG. 8 shows the attitude of the image blur correction mechanism 20. More specifically, Fig. 8 (a) shows the posture of the image blur correction mechanism 20 in the horizontal shooting posture, and Fig. 8 (b) shows the posture of the image blur correction mechanism 20 in the vertical shooting posture 1. Show. FIG. 8 (c) shows the pitching holding frame 21 shown in FIGS. 8 (a) and 8 (b) as viewed from the Y direction.
  • the weights of the second lens unit L2, the pitching holding frame 21, the coils 24x and 24y, and the showing holding frame 22 are in the direction of gravity. Acting in the Y direction. At this time, the second lens unit L2 needs to be held at the center of the optical axis in order to obtain an appropriate image. Therefore, it is necessary to generate an electromagnetic force to support the weight of the second lens unit L2. Therefore, the current Iyl is supplied to the coil 24y to generate the required electromagnetic force. On the other hand, in the X direction, the second lens unit L2 is held at the center of the optical axis, so there is no need to consider the self-weight instruction. Therefore, the value of the current 1x2 supplied to the coil 24x is smaller than the value of the current Iyl supplied to the coil 24y.
  • FIG. 8B shows the posture of the image blur correction mechanism 20 in the vertical shooting posture rotated by 90 ° in the horizontal shooting posture force about the optical axis.
  • the weights of the second lens unit L2, the pitching holding frame 21, the coils 24x and 24y, and the winging holding frame 22 act in the X direction, which is the direction of gravity.
  • the second lens unit L2 needs to be held at the center of the optical axis. Therefore, in the X direction, in addition to the weight of the second lens unit L2, it is necessary to generate an electromagnetic force for supporting the weight of the wing holding frame 22. [0047] Therefore, in order to generate the necessary electromagnetic force, the current 1x1 is supplied to the coil 24x.
  • the value of the current 1x1 is larger than the value of the current Iyl supplied to the coil 24y in the landscape orientation when the weight of the wing holding frame 22 is taken into consideration.
  • the current Iy2 supplied to the coil 24y is supplied to the coil 24x because it is not necessary to consider the support of its own weight for holding the second lens unit L2 at the optical axis center in the Y direction. Small compared to the current 1x1 value.
  • the value of the current flowing through the coils 24x and 24y is determined according to the shooting posture of the digital camera 1. That is, the shooting postures of the image blur correction mechanism 20 and the digital camera 1 can be determined by detecting the current values flowing through the coils 24x and 24y. Therefore, the image blur correction mechanism 20 can be used as a posture detection means of the digital camera 1 as well as preventing image blur.
  • the shooting posture of the digital camera 1 is determined as described below.
  • the angle of the digital camera 1 in the landscape orientation is the reference, and the angle at that time is 0 degree. That is, the state shown in FIG. 7A is the landscape orientation.
  • the posture of digital camera 1 in the vertical shooting posture is the state in which the horizontal shooting posture force is also rotated 90 degrees or 90 degrees around the optical axis, and the state shown in FIG. 7 (b) is 90 degrees.
  • the vertical shooting posture 1 is rotated, and the state shown in FIG. 7 (c) is the vertical shooting posture 2 rotated 90 degrees.
  • the attitude of the digital camera 1 is determined based on the current values detected by the showing current value detection unit 32x and the pitching current value detection unit 32y.
  • the coiling current value detection unit 32x and the pitching current value detection unit 32y are connected to the coil 24x of the image blur correction mechanism 20.
  • the value of the flowing current 1x2 and the value of the current Iyl flowing through the coil 24y are detected.
  • the microcomputer 3 determines that the posture of the digital camera 1 is the horizontal shooting posture. In this state, the photographer can shoot the subject by pressing the shutter operation unit 36.
  • the captured image is recorded in the image recording unit 12.
  • the image recording control unit 11 has the shooting posture of the digital camera 1 set to 0.
  • An attitude discrimination signal 60 (0) indicating that the angle is a degree is added to the image signal output from the nother memory 9.
  • This posture determination signal 60 is recorded in, for example, the header or footer portion of the image signal.
  • the timing for recording the posture determination signal 60 may be in either the nother memory 9 or the image recording unit 12.
  • an image captured in the landscape orientation is read out from the digital camera 1 as shown in Fig. 11 (a) by reading out the orientation determination signal 60 (0) recorded in the captured image during playback. It is displayed in the state where the top and bottom of the image coincided with the shooting.
  • the posture of the digital camera 1 depends on the chowing current value detection unit 32x and the pitching current value. This is determined by the current value detected by the detection unit 32y.
  • the copying of the image blur correction mechanism 20 is performed by the showing current value detection unit 32x and the pitching current value detection unit 32y.
  • the value of the current 1x1 flowing through the coil 24x and the value of the current Iy2 flowing through the coil 24y are detected.
  • the microcomputer 3 determines that the posture of the digital camera 1 is the vertical shooting posture 1. In this state, the photographer can shoot the subject by pressing the shutter operation unit 36.
  • the captured image is recorded in the image recording unit 12.
  • the image recording control unit 11 outputs a posture determination signal 60 (1) indicating that the shooting posture of the digital camera 1 is a vertical shooting posture in which the horizontal shooting posture force is also rotated 90 degrees around the optical axis. It is added to the image signal output from the memory 9.
  • an image shot in this vertical shooting posture 1 is rotated 90 degrees by reading the posture discrimination signal 60 (1) recorded in the shot image at the time of playback, and the image ll ( It is displayed in the state where the top and bottom of the image coincides with the time taken with the digital camera 1 as shown in b).
  • the magnitude of the value of the current 1x1 flowing through the coil 24x shown in Fig. 10 is almost the same and the polarity is reversed.
  • the horizontal shooting posture power is also the vertical shooting posture 2 rotated by 90 degrees.
  • the photographer can photograph the subject by pressing the shutter operation unit 36.
  • the photographed image is recorded in the image recording unit 12.
  • the image recording control unit 11 outputs a posture determination signal 60 (2) indicating that the shooting posture of the digital camera 1 is the horizontal shooting posture force 2-the vertical shooting posture 2 rotated by 90 degrees. It is added to the image signal output from the memory 9.
  • the image shot in the vertical shooting posture 2 is rotated 90 degrees by reading out the posture discrimination signal 60 (2) recorded in the shot image at the time of reproduction, and the image shown in FIG. )
  • the image is taken with the digital camera 1 as shown in ()
  • the image is displayed in the same position.
  • the focus lens holding frame 81 holds the third lens unit L3 and is disposed in parallel with the optical axis AZ.
  • the focus lens holding frame 81 extends along guide poles 82a and 82b fixed to a lens barrel (not shown) at both ends. It is slidable in the optical axis AZ direction.
  • the stator 84 of the linear actuator 83 that drives the focus lens holding frame 81 in the optical axis AZ direction is composed of a main magnet 85 magnetized perpendicular to the drive direction (Z direction), and a U-shaped main yoke. 86 and a plate-shaped side yoke 87.
  • the magnetic circuit 88 including the stator 84 is configured so as to be symmetric (X direction) with respect to the driving direction force and to be substantially symmetric with respect to the driving direction (Z direction).
  • the coil 90 which is a component of the movable element 89 of the linear actuator 83, is fixed to the focus lens holding frame 81 so as to have a predetermined gap from the main magnet 85.
  • the focus lens holding frame 81 is driven in the optical axis AZ direction by passing a current through the coil 90 so as to be orthogonal to the magnetic flux generated by the main magnet 85.
  • a position detecting means is constituted by a magnetic scale 92 integrally formed with the focus lens holding frame 81 and a magnetic sensor 91 for detecting a signal of the magnetic scale 92.
  • the third lens unit L3 is a focus lens unit that performs focusing by moving in parallel with the optical axis AZ.
  • the third lens unit L3 The controller 70 controls the drive in the Z direction parallel to the optical axis AZ.
  • the position detection unit 71 is a detection unit that detects the position of the third lens group L3, and together with the focus drive control unit 70, forms a feedback control loop for controlling the movement of the third lens group L3.
  • the photographing posture detection unit 32A includes a focus current value detection unit 72.
  • the focus current value detection unit 72 detects the value of the current flowing through the coil when the linear actuator 83 operates.
  • FIG. 13 shows the attitude of the linear actuator 83. That is, FIG. 13 (a) shows the posture of the linear actuator 83 in the upper posture shooting, and FIG. 13 (b) shows the posture of the linear actuator 83 in the lower posture shooting.
  • the weights of the third lens group L3, the focus lens holding frame 81, and the coil 90 act in the gravitational direction -Z direction.
  • the third lens group needs to be held in order to move to the predetermined focus position. Therefore, it is necessary to generate electromagnetic force to support the weight of the third lens unit L3. Therefore, the current Ifl is supplied to the coil 90 to generate the required electromagnetic force.
  • the weights of the third lens unit L3, the focus lens holding frame 81, and the coil 90 act in the Z direction, which is the direction of gravity.
  • the third lens group needs to be held in order to move to the predetermined focus position. Therefore, it is necessary to generate an electromagnetic force to support the weight of the third lens unit L3. Therefore, the current If 2 is supplied to the coil 90 to generate the necessary electromagnetic force.
  • the value of the current flowing through the coil 90 is determined according to the shooting posture of the digital camera 1. That is, the photographing posture of the linear actuator 83 and the digital camera 1 can be determined by detecting the absolute value of the current value flowing through the coil 90. Accordingly, the linear actuator 83 can drive the third lens unit L3 and can be used in combination as an upward and downward posture detecting means of the digital camera 1.
  • the determination of the shooting posture of the digital camera 1 is performed as follows.
  • the focus current value detection unit 72 detects the value of the current Ifl flowing in the coil 90 of the linear actuator 83. .
  • the microcomputer 3 determines that the posture of the digital camera 1 is the upper posture. In this state, the photographer can photograph the subject by pressing the shutter operation unit 36. The photographed image is recorded in the image recording unit 12.
  • the value of the current H2 flowing through the coil 90 of the linear actuator 83 is detected by the focus current value detection unit 72. Based on the detected current value, the microcomputer 3 determines that the posture of the digital camera 1 is the lower posture. In this state, the photographer can photograph the subject by pressing the shutter operation unit 36. The photographed image is recorded in the image recording unit 12.
  • the photographing posture detection unit 32A causes the horizontal photographing posture shown in FIG. 17 (a), the vertical photographing posture 1 shown in FIG. 17 (b), the vertical photographing posture 2 shown in FIG. 17 (c), and FIG.
  • step S2 the photographing posture detection unit 32A detects the posture of the digital camera 1.
  • step S4 it is determined whether or not the photographing posture is an upward posture. If the shooting posture is in the upright position, YES is determined and control proceeds to step S30. On the other hand, if the posture is not up, NO is determined and control proceeds to the next step S6.
  • step S5 it is determined whether or not the shooting posture is a lower posture. If the shooting posture is in the lower posture, YES is determined, and control proceeds to step S20. On the other hand, when the shooting posture is the lower posture, it is determined as NO, and the control shifts to step S14.
  • step S 14 if the shutter operation unit 36 is operated in a state other than the upper posture and the lower posture, the microcomputer 3 transmits a command to the digital signal processing unit 8. In response to the received command, the digital signal processing unit 8 calculates an exposure value based on the received image signal. Then, the microcomputer 3 automatically sets an appropriate shutter speed based on the calculated exposure value, and the photometry process is terminated. Further, the linear actuator 83 is driven so that the contrast value of the image signal reaches a peak, and the in-focus state is obtained. By performing the process, the distance measurement process is completed and a predetermined image is captured.
  • step S16 based on a command from the photographing posture detection unit 32A, any one of the posture determination signals 60 (0), 60 (1), and 60 (2) is recorded in the photographed image.
  • the photographed image is recorded in the image recording unit 12.
  • step S30 that is, in the above-described step S4, when it is determined that the camera is in the up position, the display unit 55 of the digital camera 1 is displayed on the display unit 55 so that the photographer can select the current shooting position. Three menus are displayed as shown in.
  • step S32 the photographer uses the cross operation key 38 to select one of the horizontal shooting posture, the vertical shooting posture 1, and the vertical shooting posture 2, and then confirms using the SET operation unit 40.
  • An attitude discrimination signal 60 indicating the current shooting attitude is temporarily stored in the nother memory 9.
  • step S 34 when the shutter operation unit 36 is operated, the microcomputer 3 transmits a command to the digital signal processing unit 8. In response to the received command, the digital signal processing unit 8 calculates an exposure value based on the received image signal. Then, the microcomputer 3 automatically sets an appropriate shutter speed based on the calculated exposure value, and the photometry process is terminated. Further, the re-actor 83 is driven so that the contrast value of the image signal reaches a peak, and the focusing process is performed, whereby the distance measuring process is completed and a predetermined image is taken.
  • step S36 the posture determination signal temporarily stored in the buffer memory 9 is read, and the posture determination signal 60 (0), 60 (1), or 60 (2) is added to the captured image. Is recorded. The captured image is recorded in the image recording unit 12.
  • step S20 that is, in the above-described step S6, when it is determined that the camera is in the down posture, the display unit 55 of the digital camera 1 displays the figure so that the photographer can select the current shooting posture. As shown in Fig. 16, three menus are displayed.
  • step S22 the photographer takes the horizontal shooting posture, the vertical shooting posture 1, or the vertical shooting posture. 2 is selected using the cross-shaped operation key 38 and confirmed using the SET operation unit 40, and the posture determination signal 60 indicating the current shooting posture is stored in the buffer memory 9. Memorize temporarily.
  • step S24 when the shutter operation unit 36 is operated, the microcomputer 3 transmits a command to the digital signal processing unit 8.
  • the digital signal processing unit 8 calculates an exposure value based on the received image signal.
  • the microcomputer 3 automatically sets an appropriate shutter speed based on the calculated exposure value, and the photometry process is terminated.
  • the linear actuator 83 is driven so that the contrast value of the image signal reaches a peak, and the focusing process is performed, whereby the ranging process is completed and a predetermined image is captured.
  • step S36 the posture determination signal temporarily stored in the buffer memory 9 is read, and any one of the posture determination signals 60 (0), 60 (1) and 60 (2) is added to the photographed image. Is recorded. The captured image is recorded in the image recording unit 12.
  • the horizontal shooting posture, two vertical shooting postures, the upper posture, and the lower posture of the digital camera body are detected. Then, when the digital camera is in the horizontal shooting posture or the vertical shooting posture, the shooting operation is controlled using the posture detection means of the image blur correction device.
  • the digital camera is in the up position or the down position, the photographer can input the camera position. As a result, even when the digital camera is shot in the up or down position, both the horizontal and vertical positions of the captured image must be correct for shooting and displaying the image. Can be the same.
  • the optical system and the imaging device are not limited to being integrated with each other. It may correspond to a so-called interchangeable lens system in which minutes can be exchanged. Also in this case, the image blur correction device may be either one integrated with the optical system or built in the image pickup apparatus main body.
  • the digital camera 1 has the same power as that in the first embodiment described above, and the operation at the time of shooting is different.
  • step S2 when the photographer turns on the power switch 35 and holds the digital camera 1 in a predetermined posture at the time of shooting, in step S2, The posture of the digital camera 1 is detected by the photographing posture detector 32A.
  • step S4 it is determined whether or not the detected posture is an upward posture.
  • step S54 If the posture is up, YES is determined and control proceeds to step S54. If the posture is not up, NO is determined and control proceeds to step S6.
  • step S6 it is determined whether or not the detected posture is a downward posture. If it is in the down position, YES is determined, and control proceeds to step S44. If it is not in the down posture, it is determined as NO and the control proceeds to step S14.
  • step S14 that is, when the shutter operation unit 36 is operated in a state where the digital camera 1 is neither in the upper position nor in the lower position, the microcomputer 3 transmits a command to the digital signal processing unit 8.
  • the digital signal processing unit 8 calculates an exposure value based on the received image signal.
  • the microcomputer 3 automatically sets an appropriate shutter speed based on the calculated exposure value, and the photometry process ends.
  • the linear actuator 83 is driven so that the contrast value of the image signal reaches a peak, the focusing process is performed, the distance measuring process is terminated, and a predetermined image is taken.
  • step S17 any one of the posture determination signals 60 (0), 60 (1), and 60 (2) is recorded in the photographed image based on a command from the photographing posture detection unit 32A.
  • the photographed image is recorded in the image recording unit 12.
  • step S54 that is, when it is determined that the posture is the upper position, when the shutter operation unit 36 is operated, the microcomputer 3 transmits a command to the digital signal processing unit 8.
  • the digital signal processing unit 8 calculates an exposure value based on the received image signal.
  • the microcomputer 3 automatically sets an appropriate shutter speed based on the calculated exposure value, and the photometry process ends.
  • the linear actuator 83 is driven so that the contrast value of the image signal has a peak, the focusing process is performed, the distance measurement process is completed, and a predetermined image is photographed.
  • step S55 the captured image is temporarily stored in the buffer memory 9.
  • step S56 based on the movement of the digital camera 1 by the photographer, it is determined whether the digital camera 1 is in the horizontal shooting posture or the vertical shooting posture. This is because when the photographer finishes photographing, the posture of the digital camera 1 is usually rotated and moved as shown by the arrow in FIG. 18 in order to confirm the photographed image on the display unit 50. This is a process that focuses on. Specifically, as shown in Fig. 18 (a), in the upright and landscape orientations, when shooting is completed, the photographer confirms the shot image with a digital camera as shown by the arrow. Rotate 1 to return to the state shown in Fig. 18 (b). In other words, the state shown in FIG. 18 (b) is the landscape orientation.
  • step S57 while the digital camera 1 changes from the state shown in FIG. 18 (a) to the posture shown in FIG. 18 (b), the posture determination signal 60 is added to the captured image temporarily stored in the nota memory 9. (0) is automatically recorded. Similarly, when the digital camera 1 is in the vertical orientation 1, the posture determination signal 60 is also applied while the digital camera 1 changes from the state shown in FIG. 18 (c) to the state shown in FIG. 18 (d). (1) is automatically recorded. In addition, although the description is omitted, in the case of the vertical shooting posture 2, the posture determination signal 60 (2) is automatically recorded.
  • step S44 that is, when it is determined to be in the down posture, the microcomputer 3 transmits a command to the digital signal processing unit 8 when the shutter operation unit 36 is operated.
  • the digital signal processing unit 8 calculates an exposure value based on the received image signal.
  • the microcomputer 3 automatically sets an appropriate shutter speed based on the calculated exposure value, and the photometry process ends.
  • the linear actuator 83 is driven so that the contrast value of the image signal reaches a peak, and the focusing process is performed.
  • the distance measuring process is completed, and a predetermined image is taken.
  • step S45 the captured image is temporarily stored in the buffer memory 9.
  • step S46 the posture of the digital camera 1 is determined based on the movement of the digital camera 1 by the photographer as in step S56 described above. That is, when shooting is completed, in order to confirm the shot image on the display unit 50, the posture of the digital camera 1 is usually rotated and moved as indicated by an arrow.
  • step S47 in the case of the landscape orientation, the captured image temporarily stored in the noffer memory 9 while the tilt of the digital camera 1 changes.
  • the posture discrimination signal 60 (0) is automatically recorded in Similarly, the posture determination signal 60 (1) is automatically recorded in the case of the vertical shooting posture 1, and the posture determination signal 60 (2) is automatically recorded in the case of the vertical shooting posture 2.
  • the shooting posture of the digital camera is horizontal shooting or vertical shooting. This makes it easier to use because it is possible to automatically determine whether the photographer has to bother inputting the information.
  • the photographing posture is at least one of the forces determined by detecting the current values of both the pitching current value detection unit and the chowing current value detection unit.
  • the shooting posture can be specified. In this case, as described in the second embodiment, even when an abnormality occurs in one of the pitching current value detection unit or the winging current value detection unit, both current values are detected. Thus, the shooting posture can be accurately determined.
  • the photographing posture is limited to the force determined by detecting the current values of the pitching current value detection unit and the chowing current value detection unit. I can't. For example, the same effect can be obtained by measuring the voltage value. Further, the detection of the linearizer is not limited to the current value, and a voltage value may be used.
  • a separate dedicated corner is used instead of the image blur correction device.
  • a degree detection sensor may be provided.
  • an imaging apparatus having one shutter operation unit is used, the present invention is not limited to this.
  • a shutter operation unit that shoots in landscape orientation and a shutter operation unit that shoots in vertical orientation can be installed independently, and the shooting posture can be determined by using the shutter operation unit. .
  • the photographed image is shown as a still image, but the same effect can be obtained for a moving image or a simple moving image.
  • the method of attaching signals (0) to (2) is used as the posture determination signal, but the present invention is not limited to this.
  • a signal may be added only in the vertical shooting posture.
  • the attitude determination signal is not limited to the method of recording in the captured image, but may be recorded in a file different from the captured image, and the captured image and the file in which the attitude determination signal is recorded may be associated with each other.
  • Embodiments 1 and 2 when the upper posture is detected, there are many opportunities to shoot an airplane or the like, so the linear actuator 83 is automatically set so that the focal length is infinite. You may make it move to. On the other hand, when the lower posture is detected, there are many opportunities to take macro shots of flowers etc., so the linear actuator 83 may be automatically moved so that the focal length is close! .
  • the upper posture and the lower posture are detected using only the image blur correction mechanism 20 performed using the linear actuator 83, or at least the upper posture and the lower posture. It can be detected that the posture is one of the lower postures.
  • the current supplied to the coils 24y and 24x The values of Iy2 and 1x2 are as shown in Figure 9. Based on these current values, it is possible to determine whether the posture is the upper posture or the lower posture. Therefore, even when shooting in the up or down position using a single position detection means called the image blur correction mechanism 20, it is possible to take a correct image for both the horizontal and vertical positions.
  • the top and bottom of the image and the top and bottom of the image display can be the same.
  • the imaging optical system, the image blur correction device, and the focus reader are not limited to the shapes and configurations described as the first embodiment and the second embodiment of the present invention.
  • the arrangement configuration of the image blur correction lens group and the focus lens group can be arbitrarily set based on a specific optical design solution.
  • a coil is formed around the direction parallel to the lens optical axis, but the image blur correction apparatus is perpendicular to the lens optical axis.
  • a coil may be formed around any direction.
  • the determination method of the horizontal posture, the vertical posture, the upper posture, and the lower posture is not limited to the methods described as the first embodiment and the second embodiment of the present invention. That is, in the first and second embodiments of the present invention, the horizontal posture and the vertical posture are detected using the two actuators of the image blur correction device, and the upper posture and the lower posture are detected using the linear actuator. Although a method of detecting the posture is adopted, other methods can also be used. As an example of such a method, the horizontal posture and the vertical posture are detected using one of the image blur correction device and the linear actuator, and the upper posture is detected using the other image blur correction device. Also, it may be applied to a lens barrel in which each actuator is arranged so as to detect the lower posture.
  • the imaging device, display control device, and display device of the present invention require a comfortable display regarding the display method of a captured image, such as a digital still camera, a digital video camera, and a mobile phone terminal with a power function. It is suitable for.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Details Of Cameras Including Film Mechanisms (AREA)
  • Television Signal Processing For Recording (AREA)

Description

明 細 書
撮像装置
技術分野
[0001] 本発明は、撮像装置における撮影姿勢に関し、より特定的には、上姿勢、あるいは 下姿勢にて撮影される場合の撮影状態を正確に判別する撮像装置に関する。
背景技術
[0002] 近年、 CCD (Charge Coupled Device)や CMOS (Complementary Metal
-Oxide Semiconductor)などの撮像センサおよび信号処理の集積度が向上し、 かつ安価に提供できるようになつたため、被写体の光学的な像を電気的な画像信号 に変換して出力できるデジタルスチルカメラやデジタルビデオカメラ(以下、「デジタ ルカメラ」と称す)が急速に普及して 、る。
[0003] デジタルカメラの撮影姿勢については、例えば風景など横長の被写体を撮影する 場合、撮影者はデジタルカメラの姿勢を横状態とし、一方、人物や建物など縦長の被 写体を撮影する場合には、デジタルカメラの姿勢を縦状態として、撮影を行う。なお、 シャッターボタンのストローク方向力 重力方向に対して平行になるときのデジタル力 メラの姿勢を横撮り姿勢とする。そして、シャッターボタンのストローク方向が、重力方 向に対して直交するときのデジタルカメラの姿勢を縦撮り姿勢という。
[0004] また、それぞれの姿勢で撮影された画像を横撮り画像または縦撮り画像と!/、う。この 2つの撮影姿勢にお 、て撮影された画像を再生表示する時には、撮影時と再生時の 天地方向とを一致させるために、姿勢検出手段を撮像装置に姿勢検出手段を備え ている。そして、撮影時にはその姿勢情報を撮影画像に書き込み、撮影画像の表示 の際に、その姿勢情報を同時に読み込んで、天地方向が一致するように撮影画像を 表示できるように構成されて 、る。
[0005] なお、デジタルカメラが下姿勢に在る場合には、横撮り姿勢、あるいは縦撮り姿勢 の何れであるかを判別できない。それゆえに、下姿勢であると検出されたときには、 撮影者自身が、横撮り姿勢および縦撮り姿勢の何れであるのかを、デジタルカメラに 入力することにより、正確に、天地方向が一致するように撮影画像を表示するシステ ムが提案されて 、る (特許文献 1)。
特許文献 1:特開 2004— 88439号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、従来の撮像装置は、下姿勢であることは検出できるが、上姿勢である ことを検出できない。昨今のデジタルカメラは、望遠に対応しているものが多ぐ空を 飛ぶ飛行機などを撮影する機会が多いが、その場合には、デジタルカメラを上に向 けて撮影する必要がある。したがって、上姿勢の場合には、横撮り姿勢および縦撮り 姿勢の何れであるかを判別できない。また、姿勢検出センサを別途設ける必要がある ため、コストアップにつながるという問題がある。
[0007] そこで本発明は、上姿勢、あるいは下姿勢の何れであっても、撮像装置が横撮り姿 勢、あるいは縦撮り姿勢であるの力を正確に判別できる撮像装置を提供することを目 的とする。
課題を解決するための手段
[0008] 本発明の目的は、以下の構成を備えた撮像装置により達成される。具体例として、 被写体の光学的な像を電気的な画像信号として出力する撮像装置であって、被写 体の光学的な像を形成する撮像光学系と、撮像光学系によって形成された光学的な 像を受光して光学的な像を電気的な画像信号に変換する撮像手段と、撮影時の前 記撮像装置の横姿勢あるいは縦姿勢を検出する第 1の姿勢検出手段と、撮影時の 撮像装置の上姿勢あるいは下姿勢を検出する第 2の姿勢検出手段と、撮像装置が 上姿勢あるいは下姿勢であるときには第 2の姿勢検出手段の情報をもとに撮像手段 カゝら読み出された撮影画像と共に第 1の姿勢検出手段により検出された姿勢判別信 号を記録する画像記録手段とを備えることを特徴とする。
[0009] このような構成により、デジタルカメラ本体の横撮り姿勢、 2つの縦撮り姿勢及び、上 姿勢、および下姿勢を検出することにより、上姿勢、あるいは下姿勢にてデジタルカメ ラを使用して撮影した場合であっても、横撮り姿勢と縦撮り姿勢の両方の撮影画像に ついて、間違えることなぐ撮影時の天地と画像表示時の天地とを同一にできる。
[0010] 具体例として、撮像装置の横姿勢、あるいは縦姿勢を入力する姿勢入力手段を設 け、横姿勢、あるいは縦姿勢を示す姿勢判別信号は、撮像装置の上姿勢、あるいは 下姿勢検出後、姿勢入力手段を用いて撮影画像に書き込まれることを特徴とする。 このような構成により、間違えることなぐ横撮り姿勢と縦撮り姿勢の両方の撮影画像 について、姿勢判別信号を書き込むことができる。
[0011] 具体例として、撮像装置の横姿勢、あるいは縦姿勢を示す姿勢判別信号は、撮像 装置の上姿勢、あるいは下姿勢検出後、再度、横姿勢、あるいは縦姿勢を検出した 後に、撮影画像に書き込まれることを特徴としている。
この構成により、横撮り姿勢と縦撮り姿勢の両方の撮影画像について、姿勢判別信 号を自動的に書き込むことができる。
[0012] 具体例として、撮像装置に加わる振動を検知して、撮像光学系の補正レンズを光 軸と直交する 2方向に駆動する像ぶれ補正装置を備えた撮像装置であって、第 1の 姿勢検出手段は、補正レンズを駆動させるための信号を検出することにより、撮像装 置の姿勢を判別することを特徴とする。
[0013] このような構成により、像ぶれ補正装置を備えた撮像装置は、撮影時の撮像装置の 横姿勢、あるいは縦姿勢を検出するための新たな構成を追加することなぐ姿勢を検 出できる。
[0014] 具体例として、撮像装置に加わる振動を検知して、撮像光学系の補正レンズを光 軸と直交する 2方向に駆動する像ぶれ補正装置を備えた撮像装置であって、像ぶれ 補正装置は、補正レンズを駆動するための第 1、第 2のァクチユエータを含み、姿勢 検出手段は、第 1または第 2のァクチユエータの少なくとも一方の駆動電流値を検出 することにより撮像装置の姿勢を判別することを特徴としている。
このような構成により、第 1または第 2のァクチユエータの少なくとも一方の駆動電流 値を検出することにより、撮像装置の姿勢を容易に判別できる。
[0015] 具体例として、フォーカスレンズ群を駆動するリニアァクチユエータを備えた撮像装 置であって、第 2の姿勢検出手段は、フォーカスレンズ群を駆動させるための信号を 検出することにより、撮像装置の姿勢を判別することを特徴とする。
このような構成により、リニアァクチユエータを備えた撮像装置は、撮影時の撮像装 置の上姿勢、あるいは下姿勢を検出するための新たな構成を追加することなぐ姿勢 検出を行うことができる。
[0016] 具体例として、撮像装置が上姿勢であるときには、フォーカスレンズ群を無限遠の 位置に移動させることを特徴として 、る。
このような構成により、無限遠の位置へフォーカスレンズ群を駆動できるので、瞬時 に撮影することが可能となる。
[0017] 具体例として、下姿勢であるときには、フォーカスレンズ群をマクロ撮影の位置に移 動させることを特徴として 、る。
このような構成により、マクロ撮影の位置へフォーカスレンズ群を駆動できるので、瞬 時に撮影することが可能となる。
発明の効果
[0018] 上述のように、本発明に係る撮像装置によれば、デジタルカメラ本体の横撮り姿勢 、 2つの縦撮り姿勢、上姿勢、および下姿勢を検出することにより、上姿勢、あるいは 下姿勢にてデジタルカメラを使用して撮影する場合であっても、横撮り姿勢と縦撮り 姿勢の両方の撮影画像について、間違えることなぐ撮影時の天地と画像表示時の 天地とを同一にできる。
図面の簡単な説明
[0019] [図 1]図 1は、本発明の実施の形態 1に係る撮像装置の制御システムを示すブロック 図である。
[図 2]図 2は、本発明の実施の形態 1に係る撮像装置の上面および背面を表す図で ある。
[図 3]図 3は、本発明の実施の形態 1に係る撮像装置の像ぶれ補正装置の制御シス テムを示すブロック図である。
[図 4]図 4は、本発明の実施の形態 1に係る撮像装置の像ぶれ補正機構を示す分解 斜視図である。
[図 5]図 5は、本発明の実施の形態 1に係る撮像装置のリニアァクチユエータを示す 斜視図である。
[図 6]図 6は、本発明の実施の形態 1に係る撮像装置のリニアァクチユエータのヨーク の取り付け部の斜視図である。 [図 7]図 7は、本発明の実施の形態 1に係る撮像装置の様々な姿勢を表す図である。
[図 8]図 8は、本発明の実施の形態 1に係る像ぶれ補正機構の姿勢検出の説明図で ある。
[図 9]図 9は、本発明の実施の形態 1に係る撮像装置における撮影姿勢別の像ぶれ 補正機構のコイル供給電流量を示す図である。
[図 10]図 10は、本発明の実施の形態 1に係る撮像装置における撮影姿勢別の姿勢 判別信号の説明図である。
[図 11]図 11は、本発明の実施の形態 1に係る撮像装置により撮影された画像を表示 部に表示させる際の表示方法について説明図である。
[図 12]図 12は、本発明の実施の形態 1に係る撮像装置におけるリニアァクチユエ一 タの制御システムを示すブロック図である。
[図 13]図 13は、本発明の実施の形態 1に係る撮像装置におけるリニアァクチユエ一 タの姿勢の説明図である。
[図 14]図 14は、本発明の実施の形態 1に係る撮像装置における撮影姿勢別のリニア ァクチユエータのコイル供給電流量を示す図である。
[図 15]図 15は、本発明の実施の形態 1に係る撮影画像による記録開始カゝら記録終 了までの動作を表すフローチャート図である。
[図 16]図 16は、本発明の実施の形態 1に係る撮像装置による撮影方法および撮影 姿勢を入力するメニューの説明図である。
[図 17]図 17は、本発明の実施の形態 2に係る撮像装置による記録開始力 記録終 了までの動作を表すフローチャート図である。
[図 18]図 18は、本発明の実施の形態 2に係る撮影終了後のカメラの姿勢変化の説 明図である。
符号の説明
1 デジタルカメラ
la 筐体
2 レンズ鏡筒
3 マイクロコンピュータ A 信号処理部
撮像センサ
CCD駆動制御部 アナログ信号処理部 AZD変換部
デジタル信号処理部 ノ ッファメモリ
0 画像圧縮部
1 画像記録制御部
2 画像記録部
3 画像表示制御部
4x ョーイング駆動制御部4y ピッチング駆動制御部5 位置検出部
6 像ぶれ補正装置
5A 動き補正部
7x、 17y DZA変換部8A 動き検出部
8x ョーイング角速度センサ8y ピッチング角速度センサ9x、 19y AZD変換部0 像ぶれ補正機構
1 ピッチング保持枠2 ョーイング保持枠3 ピッチングシャフト x、 24y コイル
5 固定枠
6a、 26b ョーイングシャフト x、 27y マグネットx、 28y ヨーク
x、 29y ァクチユエータ 発光素子
受光素子
A 撮影姿勢検出部x ョーイング電流値検出部y ピッチング電流値検出部 電源スィッチ
シャッター操作部 撮影,再生切換操作部 十字操作キー
MENU設定操作部
SET操作部
シャッター制御部 シャッター駆動モータ 内部メモリ
リムーバブルメモリ 表示部
ズーム操作部
姿勢判別信号
フォーカス電流値検出部 リニアァクチユエータ 固定子
メインマグネット メインヨーク
サイドヨーク
磁気回路 90 コィノレ
L 撮像光学系
L1 第 1レンズ群
L2 第 2レンズ群
L3 第 3レンズ群
発明を実施するための最良の形態
[0021] (実施の形態 1)
図 1は、本発明の実施の形態 1に係るデジタルカメラ 1の概略構成を示すブロック図 である。デジタルカメラ 1は、撮像光学系 Lと、マイクロコンピュータ 3と、撮像センサ 4と 、 CCD駆動制御部 5と、アナログ信号処理部 6と、 AZD変換部 7と、デジタル信号処 理部 8と、バッファメモリ 9と、画像圧縮部 10と、画像記録制御部 11と、画像記録部 1 2と、画像表示制御部 13と、表示部 55と、シャッター制御部 41と、シャッター駆動モ ータ 42とを備える。
[0022] 撮像光学系 Lは、 3つのレンズ群 Ll、 L2、および L3を含む光学系であり、第 1レン ズ群 L1と第 2レンズ群 L2 (像ぶれ補正レンズ群)は、光軸方向に移動することにより ズーミングを行う。第 3レンズ群 L3 (フォーカスレンズ群)は、光軸方向に移動すること によりフォーカシングを行う。また、第 2レンズ群 L2は、補正レンズ群であって、光軸 に垂直な面内を移動することにより光軸を偏心させて画像の動きを補正する役割を 果たす。
[0023] 機械的な振動や撮影者による揺れ等がデジタルカメラ 1に加わると、被写体からレ ンズに向かって照射される光の光軸は、レンズの光軸に対してずれる。したがって、 得られる画像は不鮮明な画像となる。これを防ぐために設けられている防止機構を、 像ぶれ補正機構という。なお、本実施の形態において、像ぶれ補正機構は、デジタ ルカメラ 1の姿勢検出手段として併用できる。これらの構造および動作については後 述する。
[0024] マイクロコンピュータ 3は、デジタルカメラ 1の各種の制御部全体を制御する。また、 マイクロコンピュータ 3は、電源スィッチ 35、シャッター操作部 36、撮影/再生切換操 作部 37、十字操作キー 38、 MENU設定操作部 39および SET操作部 40からの信 号を、それぞれ受信可能である。
[0025] シャッター制御部 41は、シャッター操作部 36の操作によるタイミング信号により、マ イク口コンピュータ 3からの制御信号に基づいて、シャッター駆動モータ 42を駆動し、 シャッターを動作させる。
[0026] 撮像センサ 4は、好ましくは CCDで構成され、撮影光学系 Lにより形成される光学 的な像を電気的な信号に変換する。撮像センサ 4は、 CCD駆動制御部 5により駆動 制御される。なお、撮像センサ 4は、 CMOSで構成してもよい。
[0027] 撮像センサ 4から出力された画像信号は、アナログ信号処理部 6から、 AZD変換 部 7、デジタル信号処理部 8、バッファメモリ 9、画像圧縮部 10へと、順次処理される。 アナログ信号処理部 6は、撮像センサ 4から出力される画像信号にガンマ処理等のァ ナログ信号処理を施す。 AZD変換部 7は、アナログ信号処理部 6から出力されたァ ナログ信号をデジタル信号に変換する。デジタル信号処理部 8は、 AZD変換部 7〖こ よりデジタル信号に変換された画像信号に対して、ノイズ除去や輪郭強調等のデジ タル信号処理を施す。バッファメモリ 9は、 RAM (Random Access Memory)であ り、デジタル信号処理部 8により処理された画像信号をー且記憶する。
[0028] さらに、バッファメモリ 9に記憶された画像信号は、画像圧縮部 10から画像記録部 1 2へと、順次処理される。ノ ッファメモリ 9に記憶された画像信号は、画像記録制御部 11の指令により、画像圧縮部 10に送信され、画像信号のデータは所定の大きさ〖こ 圧縮される。この際、画像信号は、所定の比率で圧縮され、元のデータよりも小さな データサイズになる。例えば、この圧縮方法として、 JPEG (Joint Photographic E xperts Group)方式が用いられる。また同時に、画像圧縮部 10はサムネイル表示 等に用いられる撮影画像に対応する縮小画像信号についても生成する。その後、圧 縮された画像信号および縮小画像信号は、画像記録部 12へ送信される。
[0029] 画像記録部 12は、デジタルカメラ 1の本体に設けられた内部メモリ 50 (図示せず) および Z又は着脱可能なリムーバブルメモリ 51により構成され、画像記録制御部 11 の指令に基づいて、画像信号と、対応する縮小画像信号と、記録すべき所定の情報 とを関連付けて記録する。これらの画像信号とともに記録されるべき所定の情報は、 画像を撮影した際の日時と、焦点距離情報と、シャッタースピード情報と、絞り値情報 と、撮影モード情報と、後述するデジタルカメラ 1の姿勢情報とを含む。
[0030] 画像表示制御部 13は、マイクロコンピュータ 3からの制御信号により制御される。こ の画像表示制御部 13の指令により、表示部 55は、画像記録部 12あるいはバッファメ モリ 9に記録された画像信号を可視画像として表示する。表示部 55の表示形態は、 画像信号のみの表示形態と、画像信号の撮影時の情報を表示する形態とがある。画 像信号の撮影時の情報は、焦点距離情報と、シャッタースピード情報と、絞り値情報 と、撮影モード情報と、合焦状態情報と、姿勢情報とを含む。これらの情報は、 MEN U設定操作部 39の操作により表示される。
[0031] 次に、実施の形態 1に係るデジタルカメラ 1の構成について、図 2を用いて説明する 。図 2 (a)は、デジタルカメラ 1の上面図、図 2 (b)は、デジタルカメラ 1の背面図である 筐体 laは、前面にレンズ 2を含む撮像光学系を備え、背面に電源スィッチ 35と、撮 影 Z再生切換操作部 37と、十字操作キー 38と、 MENU設定操作部 39と、 SET操 作部 40と、液晶モニタ力 なる表示部 55とを含む。さらに、筐体 laの上面は、シャツ ター操作部 36と、ズーム操作部 57とを備える。
[0032] ズーム操作部 57は、シャッター操作部 36と同軸に回動可能に、シャッター操作部 3 6の周囲に設けられている。電源スィッチ 35は、デジタルカメラ 1の電源の ONZOF Fを行う操作部材である。撮影 Z再生切換操作部 37は、撮影モードと再生モードの 切換えを行う操作部材であり、レバーを回動させることにモードの切換が行われる。 撮影モードに切換えられた状態で、ズーム操作部 57を右方向へ回動させると撮像光 学系 Lは望縁側へ、ズーム操作部 57を左方向へ回動させると撮像光学系 Lは広角 側へ、それぞれマイクロコンピュータ 3により制御される。
[0033] MENU設定操作部 39は、表示部 55に各種メニューを表示させるための操作部材 である。十字操作キー 38は、 MENU設定操作部 39の操作により表示部 55に表示さ れた各種操作メニューから、上下左右の部位を押圧して選択するための操作部材で ある。十字操作キー 38により種操作メニューの何れかが選択されると、マイクロコンビ ユータ 3は、選択された操作メニューに対応する実行指令を出す。 SET操作部 40は 、各種操作メニューの表示を、表示前の状態に戻すための操作部材である。
[0034] 次に、図 3を用いて像ぶれ補正装置の制御システムについて説明する。図 3におい て、像ぶれ補正装置 16は、動き補正部 15Aと、撮影姿勢検出部 32Aと、動き検出部 18Aと、信号処理部 3Aとを備える。撮像光の光軸 AZを制御する動き補正部 15Aは 、第 2レンズ群 L2と、ョーイング制御部 14xと、ピッチング制御部 14yと、位置検出部 15とを含む。第 2レンズ群 L2は、光軸 AZに垂直な面内を移動することにより、光軸を 偏心させ、画像の動きを補正する役割を果たす補正レンズ群である。第 2レンズ群 L2 は、ョーイング駆動制御部 14xおよびピッチング駆動制御部 14yにより、光軸 AZに 直交する 2方向(Xおよび Y方向)に駆動制御される。以下、 X方向をョーイング方向 、 Y方向をピッチング方向とする。位置検出部 15は、第 2レンズ群 L2の位置を検出す る検出部あり、ョーイング駆動制御部 14xおよびピッチング駆動制御部 14yとともに、 第 2レンズ群 L2を制御するための帰還制御ループを形成する。
[0035] 撮影姿勢検出部 32Aは、ョーイング電流値検出部 32xと、ピッチング電流値検出 部 32yとを含む。ョーイング電流値検出部 32xは、後述するョーイングァクチユエータ 29xが動作した際にコイルへ流れる電流値を検出する。同様に、ピッチング電流値検 出部 32yは、ピッチングァクチユエータ 29yが動作した際にコイルへ流れる電流値を 検出する。
[0036] 動き検出部 18Aは、ョーイング角速度センサ 18xと、ピッチング角速度センサ 18yと を含む。ョーイング角速度センサ 18xおよびピッチング角速度センサ 18yは、手ぶれ およびその他の振動による撮像光学系 Lを含む撮像装置自体の動きを検出するため のセンサであり、それぞれョーイングおよびピッチングの 2方向の動きを検出する。ョ 一イング角速度センサ 18xおよびピッチング角速度センサ 18yは、デジタルカメラ 1が 静止している状態での出力を基準とし、デジタルカメラ 1の動く方向により正負両方の 角速度信号を出力する。出力された信号は、信号処理部にて処理される。
[0037] 信号処理部 3Aは、マイクロコンピュータ 3と、ョーイング角速度センサ 18xおよびピ ツチング角速度センサ 18yと、 A/D変換部 19xおよび 19yとを含む。ョーイング角速 度センサ 18xおよびピッチング角速度センサ 18yより出力された信号は、フィルタ処 理およびアンプ処理等が施された後に、 AZD変換部 19xおよび 19yによってデジタ ル信号に変換された後に、マイクロコンピュータ 3に与えられる。マイクロコンピュータ 3は、 A/D変換部 19xおよび 19yを介して取り込んだョ一イング角速度センサ 18x およびピッチング角速度センサ 18yの出力信号に対して、フィルタリング、積分処理、 位相補償、ゲイン調整およびクリップ処理等の各処理を施す。
[0038] これらの各処理を施すことにより、マイクロコンピュータ 3は、動き補正に必要な補正 レンズ群 L2の駆動制御量を算出して、制御信号を生成する。生成された制御信号 は、 DZA変換部 17xおよび 17yを介して、ョーイング駆動制御部 14xおよびピッチ ング駆動制御部 14yに出力される。これにより、ョーイング駆動制御部 14xおよびピッ チング駆動制御部 14yは、制御信号に基づいて、補正レンズ群 L2を駆動し、画像の 動きを補正する。
[0039] 次に、図 4を参照して、本実施の形態に用いられる像ぶれ補正装置 16の像ぶれ補 正機構 20の構成について説明する。図 4において、像ぶれ補正機構 20は、ピッチン グ保持枠 21と、ョーイング保持枠 22と、固定枠 25と、ョーイングァクチユエータ 29xと 、ピッチングァクチユエータ 29yと、発光素子 30と、受光素子 31とを含む。
[0040] ピッチング保持枠 21は、コイル 24xおよび 24yを有する。第 2レンズ群 L2および発 光素子 30は、ピッチング保持枠 21に固定されている。ピッチング保持枠 21は、 2本 のピッチングシャフト 23aおよび 23bを介して、ョーイング保持枠 22に対して、 Y方向 に摺動可能に保持される。
ョーイング保持枠 22は、ョーイングシャフト 26aおよび 26bを介して、固定枠 25に対 し、 X方向に摺動可能に保持される。
[0041] ョーイングァクチユエータ 29xは、マグネット 27xと、ヨーク 28xとを有し、固定枠 25 に保持される。同様に、ピッチングァクチユエータ 29yは、マグネット 27yと、ヨーク 28 yとを有し、固定枠 25に保持される。
[0042] 受光素子 31は、固定枠 25に固定され、発光素子 30の投射光を受光し、 2次元の 位置座標を検出する。像ぶれ補正装置 16は、撮影者が撮影する際には、ョーイング 角速度センサ 18xおよびピッチング角速度センサ 18yにより、デジタルカメラ 1に生じ る手ぶれを検知して、マイクロコンピュータ 3が検出された手ぶれを打ち消すように指 令を与える。ピッチング保持枠 21のコイル 24xおよび 24yは、それぞれ外部の回路 から電流が供給されると、ァクチユエータ 29xおよび 29yとにより形成される磁気回路 により、ピッチング保持枠 21は、光軸 AZと直角な 2方向 Xおよび Yで規定される平面 (「XY平面」と称す)内を移動する。
[0043] またピッチング保持枠 21の位置を受光素子 31により検出するため、高精度な位置 検出を行うことができる。すなわち、像ぶれ補正機構 20により第 2レンズ群 L2を光軸 ΑΖと直交する ΧΥ平面内を移動させることにより、撮像光学系 Lを介して撮像センサ 4 に入射する画像の補正でき、手ぶれに起因する像ぶれを抑制した良好な画像を撮 影できる。
[0044] 次に、ョーイング電流値検出部 32χおよびピッチング電流値検出部 32yによる電流 値検出方法について、図 8および図 9を参照して説明する。図 8は、像ぶれ補正機構 20の姿勢を示している。より詳しく言えば、図 8 (a)は横撮り姿勢の撮影における像ぶ れ補正機構 20の姿勢を示し、図 8 (b)は縦撮り姿勢 1の撮影における像ぶれ補正機 構 20の姿勢を示す。図 8 (c)は、図 8 (a)および図 8 (b)に示したピッチング保持枠 21 を Y方向からみた様子を表している。
[0045] 図 8 (a)に示す横撮り姿勢の場合、第 2レンズ群 L2と、ピッチング保持枠 21と、コィ ル 24xおよび 24yと、ョーイング保持枠 22とのそれぞれの重さは、重力方向である Y 方向へ作用する。このとき、第 2レンズ群 L2は、適切な像を得るために光軸中心に保 持される必要がある。それゆえに、第 2レンズ群 L2の自重を支持するための電磁力 の発生が必要である。したがって、必要とする電磁力を発生させるために電流 Iylが コイル 24yに供給される。一方、 X方向については、第 2レンズ群 L2は光軸中心に保 持されるので、自重の指示を考慮する必要がない。それゆえに、コイル 24xへ供給さ れる電流 1x2の値は、コイル 24yへ供給される電流 Iylの値と比較して小さ 、。
[0046] 図 8 (b)は、光軸を中心として横撮り姿勢力 90° 回転させた縦撮り姿勢における 像ぶれ補正機構 20の姿勢を示している。第 2レンズ群 L2と、ピッチング保持枠 21と、 コイル 24xおよび 24yと、ョーイング保持枠 22とのそれぞれの重さは、重力方向であ る X方向へ作用する。このとき、第 2レンズ群 L2は、光軸中心に保持される必要があ る。そのため、 X方向に関して、第 2レンズ群 L2の自重に加えて、ョーイング保持枠 2 2の自重を支持するための電磁力の発生が必要となる。 [0047] したがって、必要とする電磁力を発生させるために、電流 1x1がコイル 24xへ供給さ れる。電流 1x1の値は、ョーイング保持枠 22の自重分を考慮すると、横撮り姿勢にお いてコイル 24yに供給される電流 Iylの値と比較して大きい。一方、 Y方向に関して、 第 2レンズ群 L2を光軸中心に保持するための自重の支持を考慮する必要がないた め、コイル 24yへ供給される電流 Iy2の値は、コイル 24xへ供給される電流 1x1の値と 比較して小さい。
[0048] 上述のように、コイル 24xおよび 24yに流れる電流の値は、デジタルカメラ 1の撮影 姿勢に応じて定まる。すなわち、像ぶれ補正機構 20およびデジタルカメラ 1の撮影姿 勢は、コイル 24xおよび 24yに流れる電流値を検出することにより判断できる。したが つて、像ぶれ補正機構 20は、像ぶれを防止する役割とともに、デジタルカメラ 1の姿 勢検出手段としても併用できる。
[0049] さらに、デジタルカメラ 1の撮影姿勢は、以下の述べるようにして判別される。なお、 横撮りの姿勢におけるデジタルカメラ 1の姿勢を基準とし、そのときの角度を 0度とす る。つまり、図 7 (a)に示した状態が横撮り姿勢である。また、縦撮りの姿勢におけるデ ジタルカメラ 1の姿勢は、横撮り姿勢力も光軸を中心として 90度、あるいは一 90度回 転させた状態となり、図 7 (b)に示した状態が 90度回転させた縦撮り姿勢 1であり、図 7 (c)に示した状態が― 90度回転させた縦撮り姿勢 2である。
[0050] 次に、撮影者が、横撮り姿勢で風景など横長の被写体を撮影する場合につ!ヽて説 明する。デジタルカメラ 1の姿勢は、ョーイング電流値検出部 32xおよびピッチング電 流値検出部 32yにより検出された電流値に基づいて判断される。
[0051] 図 7 (a)に示す横撮りの姿勢、すなわち 0度の姿勢で撮影した場合、ョーイング電流 値検出部 32xおよびピッチング電流値検出部 32yにより、像ぶれ補正機構 20のコィ ル 24xに流れる電流 1x2の値およびコイル 24yに流れる電流 Iylの値がそれぞれ検 出される。これらの電流値により、マイクロコンピュータ 3は、デジタルカメラ 1の姿勢が 横撮り姿勢であると判別する。この状態で撮影者は、シャッター操作部 36を押すこと により、被写体を撮影できる。そして撮影された画像は、画像記録部 12に記録される
[0052] この際、図 10に示すように、画像記録制御部 11はデジタルカメラ 1の撮影姿勢が 0 度であることを示す姿勢判別信号 60 (0)を、ノ ッファメモリ 9から出力される画像信号 に付加する。この姿勢判別信号 60は、例えば画像信号のヘッダーあるいはフッター 部分に記録される。なお、姿勢判別信号 60を記録するタイミングは、ノ ッファメモリ 9 あるいは画像記録部 12内の何れでもよ 、。
[0053] よって、横撮り姿勢にて撮影された画像は、再生時に撮影画像に記録された姿勢判 別信号 60 (0)を読み出すことにより、図 11 (a)に示すようなデジタルカメラ 1を用いた 撮影時と画像の天地が一致する状態にて表示される。
[0054] 一方、撮影者が縦撮り姿勢で、人物など縦長の被写体を撮影する場合、横撮り姿 勢の場合と同様に、デジタルカメラ 1の姿勢は、ョーイング電流値検出部 32xおよび ピッチング電流値検出部 32yの電流値検出値により判断される。
[0055] 図 7 (b)に示す縦撮りの姿勢 1、すなわち 90度の姿勢で撮影した場合、ョーイング電 流値検出部 32xおよびピッチング電流値検出部 32yにより、像ぶれ補正機構 20のコ ィル 24xに流れる電流 1x1の値およびコイル 24yに流れる電流 Iy2の値がそれぞれ検 出される。これらの電流値により、マイクロコンピュータ 3は、デジタルカメラ 1の姿勢が 縦撮り姿勢 1であると判別する。この状態で撮影者は、シャッター操作部 36を押すこ とにより、被写体を撮影できる。撮影された画像は、画像記録部 12に記録される。こ の際、画像記録制御部 11は、デジタルカメラ 1の撮影姿勢が光軸を中心として横撮り 姿勢力も 90度回転した縦撮り姿勢であったことを示す姿勢判別信号 60 (1)を、バッ ファメモリ 9から出力される画像信号に付加する。
[0056] よって、この縦撮り姿勢 1にて撮影された画像は、再生時に撮影画像に記録された 姿勢判別信号 60 (1)を読み出すことにより、撮影画像を 90度回転させて、図 l l (b )に示すようなデジタルカメラ 1を用いた撮影時と画像の天地が一致する状態にて表 示される。
[0057] さらに、図 7 (c)に示す位置より 180度回転させた縦撮りの姿勢 2においては、図 10 に示すコイル 24xに流れる電流 1x1の値の大きさはほぼ同じて、極性が逆(プラスか らマイナスへ変化)となることに基づいて、横撮り姿勢力も一 90度回転した縦撮り姿 勢 2であると判別できる。この状態で撮影者は、シャッター操作部 36を押すことにより 、被写体を撮影できる。そして撮影された画像は、画像記録部 12に記録される。この 際、画像記録制御部 11は、デジタルカメラ 1の撮影姿勢が横撮り姿勢力 光軸を中 心として - 90度回転した縦撮り姿勢 2であることを示す姿勢判別信号 60 (2)を、バッ ファメモリ 9から出力される画像信号に付加する。
[0058] よって、縦撮り姿勢 2にて撮影された画像は、再生時に撮影画像に記録された姿勢 判別信号 60 (2)を読み出すことにより、撮影画像を 90度回転させて、図 11 (b)に示 すようなデジタルカメラ 1を用いた撮影時と画像の天地が一致する状態にて表示され る。
[0059] 次に、図 5および図 6を用いて、第 3レンズ群 L3 (フォーカスレンズ群)を駆動するフ オーカスレンズ駆動用ァクチユエータの構成について説明する。フォーカスレンズ保 持枠 81は第 3レンズ群 L3を保持すると共に、光軸 AZと平行に配設され、両端をレン ズ鏡筒(図示せず)に固定されたガイドポール 82aおよび 82bに沿って光軸 AZ方向 に摺動自在に構成されている。フォーカスレンズ保持枠 81を光軸 AZ方向に駆動さ せるリニアァクチユエータ 83の固定子 84は、駆動方向(Z方向)と垂直に磁化された メインマグネット 85と、コの字型のメインヨーク 86及び板状のサイドヨーク 87とにより構 成されている。
[0060] さらに、メインヨーク 86の Z軸方向(+ )側には、上下に 2つの嵌合用突起 86aが設 けられ、レンズ鏡筒の固定枠 79に設けられた被嵌合部 79aに嵌合可能に構成されて いる。また、固定子 84からなる磁気回路 88は、駆動方向力も見て左右対称 (X方向) で、かつ駆動方向(Z方向)〖こも略左右対称であるように構成されている。
[0061] 一方、リニアァクチユエータ 83の可動子 89の構成部品であるコイル 90は、メインマ グネット 85と所定の空隙を有するようにフォーカスレンズ保持枠 81に固定されて 、る 。そして、メインマグネット 85の発生する磁束と直交するように、コイル 90に電流を流 すことにより、フォーカスレンズ保持枠 81が光軸 AZ方向に駆動する仕組みになって いる。フォーカスレンズ保持枠 81に一体に構成された磁気スケール 92と、磁気スケ ール 92の信号を検出する磁気センサ 91とで位置検出手段が構成されている。
[0062] 次に、図 12を参照して、リニアァクチユエータ 83を用いたフォーカス装置の制御シ ステムについて説明する。第 3レンズ群 L3は、光軸 AZと平行に移動することにより、 フォーカシングを行うフォーカスレンズ群である。第 3レンズ群 L3は、フォーカス馬区動 制御部 70により、光軸 AZに平行な Z方向に駆動制御される。位置検出部 71は、第 3 レンズ群 L3の位置を検出する検出部であり、フォーカス駆動制御部 70とともに、第 3 レンズ群 L3の移動を制御するための帰還制御ループを形成する。
[0063] 撮影姿勢検出部 32Aは、フォーカス電流値検出部 72を含む。フォーカス電流値検 出部 72は、リニアァクチユエータ 83が動作した際にコイルに流れる電流の値を検出 する。
[0064] 図 13および図 14を参照して、フォーカス電流値検出部 72による電流値検出方法 について説明する。図 13に、リニアァクチユエータ 83の姿勢を示す。つまり、図 13 (a )は上姿勢の撮影におけるリニアァクチユエータ 83の姿勢を示し、図 13 (b)は下姿勢 の撮影におけるリニアァクチユエータ 83の姿勢を示す。
[0065] 図 13 (a)に示す上姿勢の場合、第 3レンズ群 L3と、フォーカスレンズ保持枠 81と、 コイル 90とのそれぞれの重さは、重力方向である— Z方向へ作用する。この時、第 3 レンズ群は、所定のフォーカス位置へ移動させるために保持される必要がある。その ため、第 3レンズ群 L3の自重を支持するための電磁力の発生が必要である。したが つて、必要とする電磁力を発生させるために電流 Iflがコイル 90に供給される。
[0066] 一方、図 13 (b)に示す下姿勢の場合、第 3レンズ群 L3と、フォーカスレンズ保持枠 81と、コイル 90とのそれぞれの重さは、重力方向である Z方向へ作用する。この時、 第 3レンズ群は、所定のフォーカス位置へ移動させるために保持される必要がある。 そのため、第 3レンズ群 L3の自重を支持するための電磁力の発生が必要である。し たがって、必要とする電磁力を発生させるために電流 If 2がコイル 90に供給される。
[0067] 上述より、コイル 90に流れる電流値は、デジタルカメラ 1の撮影姿勢に応じて定まる 。すなわち、リニアァクチユエータ 83およびデジタルカメラ 1の撮影姿勢は、コイル 90 に流れる電流値の絶対値を検出することにより判断できる。したがって、リニアァクチ ユエータ 83は、第 3レンズ群 L3を駆動するとともに、デジタルカメラ 1の上方向と下方 向の姿勢検出手段として併用できる。
[0068] さらに、デジタルカメラ 1の撮影姿勢の判別は次のようにして行われる。撮影者が上 姿勢、つまり空を飛ぶ飛行機などを望遠にて撮影する場合、フォーカス電流値検出 部 72により、リニアァクチユエータ 83のコイル 90に流れる電流 Iflの値が検出される 。検出された電流値に基づいて、マイクロコンピュータ 3は、デジタルカメラ 1の姿勢が 上姿勢であると判別する。この状態で撮影者は、シャッター操作部 36を押すことによ り、被写体を撮影できる。そして撮影された画像は、画像記録部 12に記録される。
[0069] 一方、撮影者が下姿勢、つまり花などをマクロ撮影する場合、フォーカス電流値検 出部 72により、リニアァクチユエータ 83のコイル 90に流れる電流 H2の値が検出され る。検出された電流値に基づいて、マイクロコンピュータ 3は、デジタルカメラ 1の姿勢 が下姿勢であると判別する。この状態で撮影者は、シャッター操作部 36を押すことに より、被写体を撮影できる。そして撮影された画像は、画像記録部 12に記録される。
[0070] よって、撮影姿勢検出部 32Aにより、図 17 (a)に示す横撮り姿勢、図 17 (b)に示す 縦撮り姿勢 1、図 17 (c)に示す縦撮り姿勢 2、図 17 (d)に示す上姿勢、および図 17 ( e)に示す下姿勢というデジタルカメラ 1の 5つの姿勢を判別できる。
[0071] 以下に、図 15に示すフローチャートを参照して、上述の如く構成された撮像装置に おける、撮影姿勢に応じた画像撮影の動作について説明する。撮影者は、撮影を行 うために電源スィッチ 35を ONとし、デジタルカメラ 1を所定の姿勢で構える。
[0072] 先ず、ステップ S2において、撮影姿勢検出部 32Aは、デジタルカメラ 1の姿勢を検 出する。
[0073] ステップ S4において、撮影姿勢が上姿勢かどうかを判別される。撮影姿勢が上姿 勢の場合は、 YESと判断されて、制御はステップ S30へ進む。一方、上姿勢でない 場合は、 NOと判断されて、制御は次のステップ S6に進む。
[0074] ステップ S5において、撮影姿勢が下姿勢かどうかが判別される。撮影姿勢が下姿 勢の場合は YESと判断されて、制御はステップ S 20に進む。一方、撮影姿勢が下姿 勢の場合は NOと判断されて、制御はステップ S14へ移行する。
[0075] ステップ S14にお 、て、上姿勢および下姿勢でな 、状態で、シャッター操作部 36 が操作されると、マイクロコンピュータ 3はデジタル信号処理部 8へ指令を送信する。 デジタル信号処理部 8は、受信した指令に応答して、受像した画像信号に基づいて 露光値を算出する。そして、マイクロコンピュータ 3は、算出された露光値に基づいて 、適切なシャッタースピードを自動設定して、測光処理が終了される。さらに、画像信 号のコントラスト値がピークとなるように、リニアァクチユエータ 83が駆動されて、合焦 処理が行われることにより、測距処理が終了して、所定の画像が撮影される。
[0076] ステップ S16において、撮影姿勢検出部 32Aの指令に基づき、撮影画像には、姿 勢判別信号 60 (0)、 60 (1)および 60 (2)の何れかが記録される。そして、撮影画像 は、画像記録部 12に記録される。
[0077] ステップ S30において、つまり、上述のステップ S4において、上姿勢と判別された場 合には、撮影者が現在の撮影姿勢を選択できるように、デジタルカメラ 1の表示部 55 に、図 16に示すような 3つのメニューが表示される。
ステップ S32において、撮影者は、横撮り姿勢、縦撮り姿勢 1、あるいは縦撮り姿勢 2の何れかであるかを、十字操作キー 38により選択した後に、 SET操作部 40を用い て確定して、現在の撮影姿勢がどの状態であるかという姿勢判別信号 60を、ノ ッファ メモリ 9に一時的に記憶する。
なお、図 16に示すメニューのうち、縦撮り姿勢 1、あるいは縦撮り姿勢 2の状態で表 示する際には、図 16 (b)に示すように、その表示メニューも回転させて表示させること により、撮影者は選択し易くなる。
[0078] ステップ S34において、シャッター操作部 36が操作されると、マイクロコンピュータ 3 はデジタル信号処理部 8へ指令を送信する。デジタル信号処理部 8は、受信した指 令に応答して、受像した画像信号に基づいて露光値を算出する。そして、マイクロコ ンピュータ 3は算出された露光値に基づ 、て、適切なシャッタースピードを自動設定 し、測光処理が終了される。さらに、画像信号のコントラスト値がピークとなるように、リ -ァァクチユエータ 83が駆動されて、合焦処理が行われることにより、測距処理が終 了し、所定の画像が撮影される。
[0079] ステップ S36において、バッファメモリ 9に一時的に記憶していた姿勢判別信号が 読み出されて、撮影画像に姿勢判別信号 60 (0)、 60 (1)および 60 (2)の何れかが 記録される。そして、撮影画像は、画像記録部 12に記録される。
[0080] ステップ S20において、つまり、上述のステップ S6において、下姿勢と判別された場 合には、デジタルカメラ 1の表示部 55には、撮影者が現在の撮影姿勢を選択できる ように、図 16に示すように 3つのメニューが表示される。
[0081] ステップ S22において、撮影者は、横撮り姿勢、縦撮り姿勢 1、あるいは縦撮り姿勢 2の何れかであるかを、十字操作キー 38により選択し、 SET操作部 40を用いて確定 することにより、現在の撮影姿勢がどの状態であるかという姿勢判別信号 60を、バッ ファメモリ 9に一時的に記憶する。
[0082] ステップ S24において、シャッター操作部 36が操作されると、マイクロコンピュータ 3 はデジタル信号処理部 8へ指令を送信する。デジタル信号処理部 8は、受信した指 令に応答して、受像した画像信号に基づいて露光値を演算する。そして、マイクロコ ンピュータ 3は算出された露光値に基づ 、て、適切なシャッタースピードを自動設定 して、測光処理が終了される。さらに、画像信号のコントラスト値がピークとなるように、 リニアァクチユエータ 83が駆動されて、合焦処理が行われることにより、測距処理が 終了し、所定の画像が撮影される。
[0083] ステップ S36において、バッファメモリ 9に一時的に記憶していた姿勢判別信号が 読み出されて、撮影画像に、姿勢判別信号 60 (0)、 60 (1)および 60 (2)の何れかが 記録される。そして、撮影画像は、画像記録部 12に記録される。
[0084] 上述のように、本発明の実施の形態 1によれば、デジタルカメラ本体の横撮り姿勢、 2つの縦撮り姿勢、上姿勢、および下姿勢を検出される。そして、デジタルカメラが、 横撮り姿勢、あるいは縦撮り姿勢にあるときには、像ぶれ補正装置の姿勢検出手段 を用いて撮影動作の制御を行う。デジタルカメラが、上姿勢、あるいは下姿勢にある ときには、撮影者がカメラの姿勢を入力できるように構成されている。結果、デジタル カメラを、上姿勢、あるいは下姿勢で撮影した場合であっても、横撮り姿勢と縦撮り姿 勢の両方の撮影画像について、間違えることなぐ撮影時の天地と画像表示時の天 地とを同一にできる。
[0085] また、像ぶれ補正装置、およびフォーカス用リニアァクチユエータを用いてデジタル カメラの姿勢検出を行うことにより、デジタルカメラの姿勢検出のために別途姿勢検出 センサ等を設ける必要がなぐ部品点数の削減、およびコストダウンを図ることができ る。さら〖こは、像ぶれ補正装置を搭載することにより、ぶれのない画像を撮影すること ができ、フォーカス用リニアァクチユエータを用いることにより、追従性を速くしつつ、 低消費電力化を図ったフォーカスシステムを実現できる。
[0086] なお、光学系と撮像装置とは一体であることに限定されるものではなぐ光学系の部 分が交換可能である、いわゆる交換レンズ方式に対応するものであっても良い。また 、その場合にも、像ぶれ補正装置については、光学系と一体になつたもの、あるいは 撮像装置本体内に内蔵されたものの何れであっても良い。
[0087] (実施の形態 2)
次に、図 17および図 18を参照して、本発明の実施の形態 2に係る撮像装置につい て説明する。本実施の形態においては、デジタルカメラ 1は、上述の実施の形態 1に おけるとの同一に構成されている力 その撮影時の動作が異なる。
[0088] 図 17のフローチャートに示すように、本実施の形態における撮像装置は、撮影時 に、撮影者が電源スィッチ 35を ONにし、デジタルカメラ 1を所定の姿勢で構えると、 ステップ S2において、撮影姿勢検出部 32Aにより、デジタルカメラ 1の姿勢が検出さ れる。
[0089] 次に、ステップ S4において、検出された姿勢が上姿勢である力否かが判別される。
上姿勢の場合は、 YESと判断されて、制御はステップ S54に進む。上姿勢ではない 場合は、 NOと判断されて制御はステップ S6に進む。
[0090] ステップ S6において、検出された姿勢が下姿勢である力否かが判別される。下姿 勢の場合は、 YESと判断されて、制御はステップ S44に進む。下姿勢でない場合は 、 NOと判断されて、制御はステップ S14に進む。
[0091] ステップ S14において、つまり、デジタルカメラ 1は上姿勢および下姿勢の何れでも ない状態で、シャッター操作部 36が操作されると、マイクロコンピュータ 3はデジタル 信号処理部 8へ指令を送信する。デジタル信号処理部 8は、受信した指令に応答し て、受像した画像信号に基づいて露光値を算出する。そして、マイクロコンピュータ 3 は、算出された露光値に基づいて、適切なシャッタースピードを自動設定して、測光 処理が終了する。さらに、画像信号のコントラスト値がピークとなるように、リニアァクチ ユエータ 83が駆動され、合焦処理が行われて、測距処理が終了し、所定の画像が撮 影される。
[0092] ステップ S17において、撮影姿勢検出部 32Aの指令に基づき、撮影画像には、姿 勢判別信号 60 (0)、 60 (1)、および 60 (2)の何れかが記録される。そして、そして、 撮影画像は、画像記録部 12に記録される。 [0093] ステップ S54において、つまり、上姿勢と判別された場合に、シャッター操作部 36が 操作されると、マイクロコンピュータ 3はデジタル信号処理部 8へ指令を送信する。デ ジタル信号処理部 8は、受信した指令に応答して、受像した画像信号に基づいて露 光値を算出する。そして、マイクロコンピュータ 3は算出された露光値に基づいて、適 切なシャッタースピードを自動設定して、測光処理が終了する。さらに、画像信号のコ ントラスト値がピークとなるように、リニアァクチユエータ 83が駆動され、合焦処理が行 われ、測距処理が終了して、所定の画像が撮影される。
[0094] ステップ S55において、撮影画像がバッファメモリ 9に一時的に記憶される。
[0095] ステップ S56において、撮影者によるデジタルカメラ 1の移動に基づいて、デジタル カメラ 1が、横撮り姿勢および縦撮り姿勢の何れであるかが判別される。これは、撮影 者は撮影が終了すると、撮影画像を表示部 50にて確認するために、図 18に矢印で 示すように、デジタルカメラ 1の姿勢を回転させて移動することが常であることに着目 しての処理である。具体的には、図 18 (a)に示すように、上姿勢かつ横撮り姿勢の場 合には、撮影が終了すると、撮影者は撮影画像を確認するために、矢印のようにデ ジタルカメラ 1を回転させて、図 18 (b)に示す状態に戻す。つまり、図 18 (b)に示す 状態は、横撮り姿勢である。
[0096] ステップ S57において、デジタルカメラ 1が図 18 (a)の状態から図 18 (b)の姿勢へ 変わる間に、ノ ッファメモリ 9に一時的に記憶されている撮影画像に姿勢判別信号 6 0 (0)が自動的に記録される。なお、デジタルカメラ 1が縦撮り姿勢 1の場合には、同 様に、図 18 (c)の状態から図 18 (d)の状態へ、デジタルカメラ 1の姿勢へ変わる間に 、姿勢判別信号 60 (1)が自動的に記録される。また、説明は省略するが、縦撮り姿 勢 2の場合には、姿勢判別信号 60 (2)が自動的に記録される。
[0097] ステップ S44において、つまり、下姿勢と判別された場合、シャッター操作部 36が操 作されると、マイクロコンピュータ 3はデジタル信号処理部 8へ指令を送信する。デジ タル信号処理部 8は、受信した指令に応答して、受像した画像信号に基づいて露光 値を算出する。そして、マイクロコンピュータ 3は算出された露光値に基づいて、適切 なシャッタースピードを自動設定し、測光処理が終了する。さらに、画像信号のコント ラスト値がピークとなるように、リニアァクチユエータ 83が駆動されて、合焦処理が行 われて、測距処理が終了し、所定の画像が撮影される。
[0098] ステップ S45において、撮影画像はバッファメモリ 9に一時的に記憶される。
[0099] ステップ S46において、上述のステップ S56と同様〖こ、撮影者によるデジタルカメラ 1の移動に基づいて、デジタルカメラ 1の姿勢が判別される。つまり、撮影が終了する と、その撮影画像を表示部 50にて確認するために、デジタルカメラ 1の姿勢を矢印の ように回転させて移動することが常である。
[0100] よって、ステップ S47において、上姿勢で説明した原理と同様に、横撮り姿勢の場 合には、デジタルカメラ 1の傾きが変わる間に、ノッファメモリ 9に一時的に記憶されて いる撮影画像に姿勢判別信号 60 (0)が自動的に記録される。同様に、縦撮り姿勢 1 の場合には姿勢判別信号 60 (1)が、縦撮り姿勢 2の場合には姿勢判別信号 60 (2) が自動的に記録される。
[0101] 上述のように本発明の実施の形態 2において、実施の形態 1に加え、上姿勢、あるい は下姿勢にあるときには、デジタルカメラの撮影姿勢が、横撮り、あるいは縦撮りであ るかという情報を、撮影者がわざわざ入力する必要がなぐ自動的に判別することが 可能となるので、さらに使い勝手が良くなる。
[0102] なお、実施の形態 1および 2において説明した上姿勢、あるいは下姿勢を判別する 機能については、撮影者が使用しない時は、作動しないようにすることも可能である。
[0103] また、本実施の形態 1および 2にお 、て、撮影姿勢は、ピッチング電流値検出部お よびョーイング電流値検出部の両方の電流値を検出することにより判断した力 少な くとも一方の電流値を検出することにより、撮影姿勢を特定できる。この場合に、実施 の形態 2において説明したように、ピッチング電流値検出部もしくはョーイング電流値 検出部のどちらか一方の電流値検出部に異常が生じた場合でも、両方の電流値を 検出することにより撮影姿勢を正確に判断できる。
[0104] なお、本実施の形態 1および 2にお 、て、撮影姿勢は、ピッチング電流値検出部お よびョーイング電流値検出部の電流値を検出することにより判断している力、これに 限られない。例えば、電圧値を測定しても同様の効果を得ることができる。また、リニ ァァクチユエータの検出についても、電流値に限らず、電圧値を用いてもよい。
[0105] なお、実施の形態 1および 2において、像ぶれ補正装置の替わりに、別途専用の角 度検出センサを設けてもよい。また、 1つのシャッター操作部を備えた撮像装置を用 いたが、これに限られない。例えば、横撮り姿勢で撮影するシャッター操作部と、縦撮 り姿勢で撮影するシャッター操作部とをそれぞれ単独で搭載し、そのシャッター操作 部を使用することにより、撮影姿勢の判別を行ってもよい。
[0106] なお、本実施の形態 1および 2にお 、て、撮影画像は静止画像である場合にっ ヽ て示したが、動画あるいは簡易動画等についても同様の効果を得ることができる。
[0107] なお本実施の形態 1および 2において、姿勢判別信号として、(0)から(2)の信号を 付する方法を用いたが、これに限られない。例えば、縦撮り姿勢においてのみ、信号 を付加してもよい。また、姿勢判別信号は、撮影画像に記録する方法に限らず、撮影 画像とは別のファイルに記録し、撮影画像と、姿勢判別信号が記録されたファイルと を対応させてもよい。
[0108] また、本実施の形態 1および 2において、上姿勢を検出した場合には、飛行機など を撮影する機会が多いため、焦点距離が無限位置になるように、リニアァクチユエ一 タ 83を自動的に移動させるようにしてもよい。逆に、下姿勢を検出した場合には、花 などをマクロ撮影する機会が多いため、焦点距離が近距離位置になるように、リニア ァクチユエータ 83を自動的に移動させるようにしてもよ!、。
[0109] また、本実施の形態 1および 2においては、上姿勢および下姿勢の検出はリニアァ クチユエータ 83を用いて行っている力 像ぶれ補正機構 20のみを用いても、少なくと も上姿勢および下姿勢のいずれかであることを検出できる。すわわち、図 8 (c)に示 すように、上姿勢の場合は、ピッチング保持枠 21およびョーイング保持枠 22の自重 を考慮する必要がな 、ため、コイル 24yおよび 24xへ供給される電流 Iy2および 1x2 の値は、それぞれ、図 9に示すようになる。これらの電流値に基づいて、上姿勢およ び下姿勢のいずれかであるかを判別できる。よって、像ぶれ補正機構 20という一つ の姿勢検出手段により、上姿勢、あるいは下姿勢で撮影した場合であっても、横撮り 姿勢と縦撮り姿勢の両方の撮影画像について、間違えることなぐ撮影時の天地と画 像表示時の天地とを同一にできる。
[0110] 撮像光学系、像ぶれ補正装置、フォーカスリ-ァァクチユエータは、本発明の実施 の形態 1および実施の形態 2として説明された形状や構成に限定されるものではない 。例えば、撮像光学系において、像ぶれ補正レンズ群とフォーカスレンズ群の配置構 成は、具体的な光学設計解に基づいて任意に設定できる。また、像ぶれ補正装置に ついても、本発明の実施の形態 1および実施の形態 2においては、レンズ光軸に平 行な方向の周りにコイルが形成されて 、るが、レンズ光軸に垂直な方向の周りにコィ ルを形成してもよい。
[0111] さらに、横姿勢、縦姿勢、上姿勢、および下姿勢の判別方法についても、本発明の 実施の形態 1および実施の形態 2として記載されて ヽる方法に限定されな!ヽ。すなわ ち、本発明の実施の形態 1および実施の形態 2においては、像ぶれ補正装置の 2つ のァクチユエータを用いて横姿勢および縦姿勢を検出し、リニアァクチユエ一タを用 いて上姿勢および下姿勢を検出する方法を採用されているが、他の方法も用いるこ とができる。そのような方法の一例として、像ぶれ補正装置のいずれか一方のァクチ ユエータとリニアァクチユエータを用いて横姿勢および縦姿勢を検出し、像ぶれ補正 装置の他方のァクチユエータを用いて上姿勢および下姿勢を検出するように各ァク チユエータを配置したレンズ鏡筒に適用してもよ 、。
産業上の利用可能性
[0112] 本発明の撮像装置、表示制御装置ならびに表示装置は、撮影画像の表示方法に 関し快適な表示が要望されている、デジタルスチルカメラ、デジタルビデオカメラ、力 メラ機能付きの携帯電話端末などに好適である。

Claims

請求の範囲
[1] 被写体の光学的な像を電気的な画像信号として出力する撮像装置であって、 被写体の光学的な像を形成する撮像光学系と、
前記撮像光学系によって形成された光学的な像を受光し、光学的な像を電気的な 画像信号に変換する撮像手段と、
前記撮像装置が撮影時に、横姿勢および縦姿勢の何れであるかを検出して、姿勢 判別信号を生成する第 1の姿勢検出手段と、
前記撮像装置が撮影時に上姿勢および下姿勢の何れであるかを検出する第 2の姿 勢検出手段と、
前記撮像装置が上姿勢および下姿勢の何れかであるときには、前記第 2の姿勢検出 手段による検出結果に基づいて、前記撮像手段から読み出された撮影画像と共に 前記姿勢判別信号を記録する画像記録手段とを備える撮像装置。
[2] 前記撮像装置が横姿勢および縦姿勢の何れであるかを示す情報を入力する姿勢 入力手段をさらに備え、
前記姿勢判別信号は、前記撮像装置が上姿勢および下姿勢の何れであるかの検 出後に、前記姿勢入力手段により前記撮影画像に書き込まれることを特徴とする、請 求項 1に記載の撮像装置。
[3] 前記姿勢判別信号は、前記撮像装置が上姿勢および下姿勢の何れであるかの検 出後に、横姿勢および縦姿勢の何れであるかの検出後に、前記撮影画像に書き込 まれることを特徴とする、請求項 1に記載の撮像装置。
[4] 前記撮像装置に加わる振動を検知して、前記撮像光学系の補正レンズを光軸と直 交する 2方向に駆動する像ぶれ補正装置をさらに備え、
前記第 1の姿勢検出手段は、前記補正レンズを駆動させるための信号に基づいて、 前記撮像装置の姿勢を判別することを特徴とする、請求項 1に記載の撮像装置。
[5] 前記像ぶれ補正装置は、補正レンズを光軸と直交する 2方向に駆動するための第 1および第 2のァクチユエータを含み、
前記第 1の姿勢検出手段は、前記第 1または第 2のァクチユエータの少なくとも一方 の駆動電流値に基づ ヽて撮像装置の姿勢を判別することを特徴とする、請求項 4に 記載の撮像装置。
[6] フォーカスレンズ群を駆動するリニアァクチユエータをさらに備え、
前記第 2の姿勢検出手段は、前記フォーカスレンズ群を駆動させるための信号に基 づ 、て撮像装置の姿勢を判別することを特徴とする、請求項 1に記載の撮像装置。
[7] 撮像装置が上姿勢であるときには、フォーカスレンズ群を無限遠の位置に移動させ ることを特徴とする、請求項 1に記載の撮像装置。
[8] 撮像装置が下姿勢であるときには、フォーカスレンズ群をマクロ撮影の位置に移動 させることを特徴とする、請求項 1に記載の撮像装置。
PCT/JP2005/022558 2005-03-18 2005-12-08 撮像装置 WO2006100804A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007509143A JP4441565B2 (ja) 2005-03-18 2005-12-08 撮像装置
US11/886,631 US8031240B2 (en) 2005-03-18 2005-12-08 Imaging device
CN2005800491498A CN101142813B (zh) 2005-03-18 2005-12-08 成像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-079303 2005-03-18
JP2005079303 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006100804A1 true WO2006100804A1 (ja) 2006-09-28

Family

ID=37023497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022558 WO2006100804A1 (ja) 2005-03-18 2005-12-08 撮像装置

Country Status (4)

Country Link
US (1) US8031240B2 (ja)
JP (1) JP4441565B2 (ja)
CN (1) CN101142813B (ja)
WO (1) WO2006100804A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055522A (ja) * 2007-08-29 2009-03-12 Panasonic Corp 撮像システムと交換レンズおよびカメラボディ
JP2009251149A (ja) * 2008-04-03 2009-10-29 Canon Inc 光学機器
JP2010085730A (ja) * 2008-09-30 2010-04-15 Casio Computer Co Ltd 撮像装置
JP2010085473A (ja) * 2008-09-29 2010-04-15 Canon Inc 撮像装置
JP2010091712A (ja) * 2008-10-07 2010-04-22 Canon Inc レンズ駆動装置、レンズ鏡筒、撮像装置
JP2010191024A (ja) * 2009-02-17 2010-09-02 Canon Inc 撮像装置、信号処理装置及び姿勢判定方法
JP2012053197A (ja) * 2010-08-31 2012-03-15 Canon Inc 撮影システム
JP2012129678A (ja) * 2010-12-14 2012-07-05 Canon Inc 撮像装置およびその姿勢検出方法
JP2013501964A (ja) * 2009-08-10 2013-01-17 エクセリス インコーポレイテッド 暗視装置における二元的焦点合せ用のシステムおよび方法
JP2013073242A (ja) * 2011-09-28 2013-04-22 Apple Inc 動的な自動焦点動作
JP2013214935A (ja) * 2012-03-07 2013-10-17 Casio Comput Co Ltd 撮像装置、その撮影姿勢特定方法、及びプログラム
JP2018028678A (ja) * 2017-10-05 2018-02-22 株式会社ニコン 撮像装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013925B2 (en) * 2005-12-01 2011-09-06 Panasonic Corporation Imaging device, display control device, display device, and image display system for improved thumbnail image display
CN101790033B (zh) * 2009-01-28 2014-04-16 奥林巴斯映像株式会社 摄像装置以及应用于该摄像装置的抖动校正装置
US20110067256A1 (en) * 2009-09-18 2011-03-24 Hiwin Mikrosystem Corp. Position display device providing digital displacement signal
JP5482327B2 (ja) * 2010-03-12 2014-05-07 富士通株式会社 撮像装置、撮像方法および撮像プログラム
JP5136624B2 (ja) * 2010-11-25 2013-02-06 カシオ計算機株式会社 撮像装置、撮像方法及びプログラム
KR101892301B1 (ko) * 2011-08-09 2018-09-28 엘지이노텍 주식회사 휴대 단말기 및 그의 자세를 검출하는 방법
US20140028897A1 (en) * 2012-07-25 2014-01-30 Digitaloptics Corporation Camera Orientation Sensing Using Camera Module Processor
TWI586165B (zh) * 2012-07-25 2017-06-01 數字光學公司 帶有方向感測之相機模組
JP6041575B2 (ja) * 2012-08-23 2016-12-14 キヤノン株式会社 画像表示装置、その制御方法、および制御プログラム
US9850161B2 (en) 2016-03-29 2017-12-26 Applied Materials, Inc. Fluoride glazes from fluorine ion treatment
US10587816B1 (en) * 2019-01-04 2020-03-10 Gopro, Inc. High dynamic range processing based on angular rate measurements
US11438509B2 (en) * 2019-03-29 2022-09-06 Canon Kabushiki Kaisha Imaging apparatus configured to record orientation of the imaging apparatus when an image is captured

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972879A (ja) * 1982-10-19 1984-04-24 Fuji Photo Film Co Ltd 画像記録再生装置
JPH05183795A (ja) * 1991-12-28 1993-07-23 Sony Corp 撮像装置
JPH06282001A (ja) * 1993-03-30 1994-10-07 Nikon Corp 姿勢検出装置及びそれを備えたカメラ
JPH08336069A (ja) * 1995-04-13 1996-12-17 Eastman Kodak Co 電子スチルカメラ
JP2002207232A (ja) * 2001-01-10 2002-07-26 Matsushita Electric Ind Co Ltd 撮像装置の像ぶれ補正方法および装置
JP2004088439A (ja) * 2002-08-27 2004-03-18 Canon Inc 電子カメラ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03222582A (ja) 1990-01-29 1991-10-01 Eastman Kodatsuku Japan Kk 電子スチルカメラ装置及びその表示装置
JPH06300962A (ja) 1993-04-14 1994-10-28 Canon Inc カメラの自動焦点調節装置
US6285831B1 (en) * 1997-09-09 2001-09-04 Minolta Co., Ltd. Optical apparatus with a posture detection device
JP3736085B2 (ja) * 1997-11-26 2006-01-18 コニカミノルタフォトイメージング株式会社 ズーム鏡胴
US6148149A (en) * 1998-05-26 2000-11-14 Microsoft Corporation Automatic image rotation in digital cameras
US7375755B2 (en) * 2001-08-30 2008-05-20 Canon Kabushiki Kaisha Image processing apparatus and method for displaying an image and posture information
US7265790B2 (en) * 2003-07-07 2007-09-04 Hewlett-Packard Development Company, L.P. System and method for setting an image capture device to an operational mode
US20050264653A1 (en) * 2004-05-27 2005-12-01 Starkweather James A Portable electronic device with adjustable image capture orientation and method therefore
JP3952049B2 (ja) * 2004-08-12 2007-08-01 コニカミノルタフォトイメージング株式会社 振れ補正機構及びこれを用いた撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972879A (ja) * 1982-10-19 1984-04-24 Fuji Photo Film Co Ltd 画像記録再生装置
JPH05183795A (ja) * 1991-12-28 1993-07-23 Sony Corp 撮像装置
JPH06282001A (ja) * 1993-03-30 1994-10-07 Nikon Corp 姿勢検出装置及びそれを備えたカメラ
JPH08336069A (ja) * 1995-04-13 1996-12-17 Eastman Kodak Co 電子スチルカメラ
JP2002207232A (ja) * 2001-01-10 2002-07-26 Matsushita Electric Ind Co Ltd 撮像装置の像ぶれ補正方法および装置
JP2004088439A (ja) * 2002-08-27 2004-03-18 Canon Inc 電子カメラ

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009055522A (ja) * 2007-08-29 2009-03-12 Panasonic Corp 撮像システムと交換レンズおよびカメラボディ
US8159746B2 (en) 2008-04-03 2012-04-17 Canon Kabushiki Kaisha Optical apparatus with image stabilizing and movable lenses and actuators for shifting and/or moving the lenses
JP2009251149A (ja) * 2008-04-03 2009-10-29 Canon Inc 光学機器
JP2010085473A (ja) * 2008-09-29 2010-04-15 Canon Inc 撮像装置
JP2010085730A (ja) * 2008-09-30 2010-04-15 Casio Computer Co Ltd 撮像装置
JP2010091712A (ja) * 2008-10-07 2010-04-22 Canon Inc レンズ駆動装置、レンズ鏡筒、撮像装置
JP2010191024A (ja) * 2009-02-17 2010-09-02 Canon Inc 撮像装置、信号処理装置及び姿勢判定方法
JP2013501964A (ja) * 2009-08-10 2013-01-17 エクセリス インコーポレイテッド 暗視装置における二元的焦点合せ用のシステムおよび方法
JP2012053197A (ja) * 2010-08-31 2012-03-15 Canon Inc 撮影システム
JP2012129678A (ja) * 2010-12-14 2012-07-05 Canon Inc 撮像装置およびその姿勢検出方法
JP2013073242A (ja) * 2011-09-28 2013-04-22 Apple Inc 動的な自動焦点動作
JP2013214935A (ja) * 2012-03-07 2013-10-17 Casio Comput Co Ltd 撮像装置、その撮影姿勢特定方法、及びプログラム
US9143701B2 (en) 2012-03-07 2015-09-22 Casio Computer Co., Ltd. Imaging apparatus capable of specifying shooting posture, method for specifying shooting posture, and storage medium storing program
JP2018028678A (ja) * 2017-10-05 2018-02-22 株式会社ニコン 撮像装置

Also Published As

Publication number Publication date
CN101142813B (zh) 2010-06-23
JP4441565B2 (ja) 2010-03-31
US20090027510A1 (en) 2009-01-29
US8031240B2 (en) 2011-10-04
CN101142813A (zh) 2008-03-12
JPWO2006100804A1 (ja) 2008-08-28

Similar Documents

Publication Publication Date Title
JP4441565B2 (ja) 撮像装置
CN101377603B (zh) 图像模糊校正装置、镜筒和成像设备
US7783179B2 (en) Image blur correction apparatus, lens barrel, and image capture apparatus
JP6486656B2 (ja) 撮像装置
JP5914716B1 (ja) 撮像装置
JP4981565B2 (ja) 表示制御装置、撮像装置および印刷装置
JP4875971B2 (ja) 撮影装置及びその調整方法
WO2007097287A1 (ja) 撮像装置及びレンズ鏡筒
KR101663225B1 (ko) 디지털 영상처리장치 및 방법
WO2006126309A1 (ja) 撮像装置、表示制御装置、表示装置、印刷制御装置、および印刷装置
JP6470478B2 (ja) 撮像装置及び撮像制御方法
WO2018188609A1 (zh) 一种拍照装置、方法及设备
JP2012239229A (ja) 撮像装置、印刷装置、印刷システム、印刷方法、表示装置、表示システムおよび表示方法
JP2006135782A (ja) 撮像装置、表示制御装置および表示装置
JP5047355B2 (ja) 表示制御装置、撮像装置および印刷装置
JP2007094320A (ja) 手ぶれ補正機能付き撮像装置
JP5293947B2 (ja) 撮像装置
JP2006259327A (ja) 撮像装置
JP2014164266A (ja) 駆動装置、及び画像機器
JP5487643B2 (ja) カメラ
WO2007023663A1 (ja) 撮像装置、画像処理プログラム、それが記録された情報記録媒体、画像処理装置、及び画像処理方法
JP5386604B2 (ja) 表示制御装置、撮像装置および印刷装置
JP2007025509A (ja) 撮像装置
WO2006080342A1 (ja) 撮像装置、印刷システム並びに印刷装置、画像印刷方法、その方法の制御プログラムが記録された記録媒体
JP2006050678A (ja) 撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509143

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11886631

Country of ref document: US

Ref document number: 200580049149.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05814191

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5814191

Country of ref document: EP