WO2006100300A1 - Verfahren zur herstellung wasserabsorbierender polymere - Google Patents

Verfahren zur herstellung wasserabsorbierender polymere Download PDF

Info

Publication number
WO2006100300A1
WO2006100300A1 PCT/EP2006/061010 EP2006061010W WO2006100300A1 WO 2006100300 A1 WO2006100300 A1 WO 2006100300A1 EP 2006061010 W EP2006061010 W EP 2006061010W WO 2006100300 A1 WO2006100300 A1 WO 2006100300A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
gas
drying
belt
water
Prior art date
Application number
PCT/EP2006/061010
Other languages
English (en)
French (fr)
Inventor
Matthias Weismantel
Stefan Bruhns
Dominicus Van Esbroeck
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36581968&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2006100300(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to CN2006800094407A priority Critical patent/CN101146832B/zh
Priority to EP06725287A priority patent/EP1863852B1/de
Priority to DE502006008808T priority patent/DE502006008808D1/de
Priority to JP2008502424A priority patent/JP5992134B2/ja
Priority to US11/816,769 priority patent/US8592516B2/en
Priority to BRPI0608923A priority patent/BRPI0608923B1/pt
Priority to AT06725287T priority patent/ATE496945T1/de
Publication of WO2006100300A1 publication Critical patent/WO2006100300A1/de
Priority to US14/063,129 priority patent/US9238215B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/07Stiffening bandages
    • A61L15/12Stiffening bandages containing macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/06Conditioning or physical treatment of the material to be shaped by drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/008Treatment of solid polymer wetted by water or organic solvents, e.g. coagulum, filter cakes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/06Treatment of polymer solutions
    • C08F6/10Removal of volatile materials, e.g. solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/02Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces
    • F26B17/04Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by belts carrying the materials; with movement performed by belts or elements attached to endless belts or chains propelling the materials over stationary surfaces the belts being all horizontal or slightly inclined
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/06Controlling, e.g. regulating, parameters of gas supply

Definitions

  • the present invention relates to a process for the preparation of water-absorbing polymers with low drying quality index by polymerization of a monomer solution and drying of the hydrogel obtained by means of a heated gas stream, an apparatus for carrying out the method and the use of the water-absorbing polymers prepared by the process for the preparation of hygiene articles.
  • Water-absorbing polymers are, in particular, polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives.
  • Such polymers are used as aqueous solution-absorbing products for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water retention agents in agricultural horticulture.
  • an aqueous polymer gel is obtained which must be dried.
  • the drying of the polymer gel is likewise described in the monograph "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, pages 87-93.
  • the drying process has in common that due to the wide gel size distribution of the polymer to be dried polymer complete drying of all hydrogel particles only under such conditions, under which the majority of the hydrogel particles is already over-dried.
  • these drying conditions represent an uneconomical exploitation of the dryer capacity.
  • the drying conditions are such that the majority of the hydrogel particles are already dry, while a smaller part of the hydrogel particles is still wet.
  • Moist hydrogel particles are elastic and tend to stick together, so that they lead to considerable disturbances in the subsequent grinding and sieving process of the material to be dried, which are undesirable.
  • drying conditions are therefore chosen which represent a compromise between utilization of the dryer capacity and processability of the material to be dried.
  • the drying process should on the one hand be economical and lead to a product with a low water content even after short residence times, on the other hand the drying process should be very gentle, so that the product quality is only slightly changed by the drying.
  • the object was achieved by processes for the preparation of water-absorbing polymers by polymerization of a monomer solution and drying of the resulting hydrogel by means of a heated gas stream, characterized in that
  • the drying is carried out in at least two temperature zones, the gas inlet temperatures of the at least two temperature zones satisfying the condition T n not equal to T n + 3 , wherein the indices n and a are each an integer greater than 0, preferably an integer from 1 to 20, especially preferably an integer from 1 to 10, very particularly preferably an integer from 1 to 5, mean, and / or
  • the gas stream flows from above the hydrogel in the front section of a belt dryer from below and in the rear section of the belt dryer, wherein the flow reversal takes place at a water content of the hydrogel of 15 to 45 wt .-%, and / or
  • the hydrogel layer is at least partially flowed from below in a belt dryer, the gas velocity being from 5 to 30% of the gas velocity necessary to detach the hydrogel from the belt,
  • the temperature of the heated gas stream is preferably at least 50 ° C., more preferably at least 100 ° C., most preferably at least 150 0 C, and preferably up to 250 0 C, particularly preferably up to 220 ° C, most preferably up to 200 0 C.
  • the indices indicate the time sequence of the temperature zones that the material to be dried passes through in ascending order, later passing through temperature zones with higher indices.
  • a temperature zone is an area in which the gas inlet temperature can be set independently.
  • the front section consists of temperature zones with lower indices
  • the rear section consists of temperature zones with higher indices.
  • the water content is determined according to the test method No. 430.2-02 "Moisture content" recommended by the EDANA (European Disposables and Nonwovens Association).
  • V CD V CD, where v max is the maximum gas or air velocity at which the hydrogel separates from the belt p B the bulk density of the hydrogel, g the gravitational constant, ⁇ h the pressure drop across the hydrogel layer and c D the gas or air resistance coefficient is. At the point of the vortex, the gravity acting on the hydrogel layer and the gas or air resistance cancel each other out. The vortex point marks the boundary between the fixed bed and the fluidized bed.
  • the bulk density of the hydrogel is the quotient of weight and bulk volume of the hydrogel on the belt.
  • the bulk volume of the hydrogel includes in addition to the hydrogel nor the cavities contained in the hydrogel.
  • the at least two gas inlet temperatures preferably satisfy the condition T n greater than T n + a .
  • the drying is preferably carried out in at least three temperature zones, the gas inlet temperatures satisfying the conditions T n not equal to T n + 3 , preferably T n greater than T n + a , and T n + 3 smaller T n + b , the index b being a whole Number greater than a, preferably an integer from (a + 1) to (a + 20), more preferably an integer from (a + 1) to (a + 10), most preferably an integer from (a + 1 ) to (a + 5), where preferably T n is greater than T n + b .
  • the gas inlet temperatures in at least two of the a temperature zones T n to T n + a- satisfy the condition T n + r greater than T n + 8 , where the index a is an integer greater than 1, the index r an integer from 0 to (a-2) and the subscript s is an integer from (r + 1) to (a-1).
  • the gas inlet temperatures in at least two of the (cb) temperature zones T n + b to T n + C-1 satisfy the condition T n + U greater than T n + V , where the index c is an integer greater (b + 1), preferably an integer from (b + 1) to (b + 20), more preferably an integer from (b + 1) to (b + 10), most preferably an integer from (b + 1) b + 1) to (b + 5), the subscript u is an integer from b to (c-2) and the subscript v is an integer from (u + 1) to (c-1).
  • the gas inlet temperatures in at least three of the (cb) temperature zones T n + b to T n + C-1 satisfy the condition T n + U is greater than T n + V greater than T n + W , wherein the Index c is an integer greater than (b + 2), preferably an integer from (b + 2) to (b + 20), more preferably an integer from (b + 2) to (b + 10), most preferably an integer from (b + 2) to (b + 5), the subscript u is an integer from b to (c-3), the subscript v is an integer from (u + 1) to (c-2) and the subscript w is an integer from (v + 1) to (c-1).
  • the gas inlet temperatures are set so that T n is greater than T n + b , T n + 1 is greater than T n + b + 1, and T n + 1 is not less than T n + b .
  • the optimal and therefore preferred temperature distribution can also be represented as a wave, consisting of two wave crests and a wave trough.
  • the first wave peak T n the second wave peak T n + b and the wave trough between them T n + 3 , wherein the first wave crest is higher than the second.
  • the temperature difference of the gas inlet temperatures is, if a temperature difference required, usually at least 0.5 0 C, preferably at least 1 0 C, more preferably at least 5 ° C, most preferably at least 10 0 C, and usually up to 50 0 C, preferably to to 40 ° C., more preferably up to 30 ° C., most preferably up to 20 ° C.
  • the velocity of the gas stream flowing into the hydrogel layer is preferably at least 0.5 m / s, more preferably at least 0.8 m / s, very particularly preferably at least 1 m / s, and preferably up to 5 m / s, particularly preferably up to at 3 m / s, most preferably up to 2 m / s.
  • the gas to be used is not limited. For drying, air, nitrogen or other inert gases under dry conditions can be used. Air is preferred.
  • the hydrogel flowing gas stream may contain water vapor. But the water vapor content, should not exceed a value corresponding to a dew point of preferably at most 50 0 C, particularly preferably at most 40 ° C, most preferably at most 30 0 C.
  • the gas inlet temperatures T n to T n + a-1 are preferably at most 200 ° C, more preferably from 175 to 180 0 C.
  • the gas inlet temperatures T n + 3 to T n + b-1 are preferably at least 150 0 C, more preferably at least 155 ° C, most preferably from 155 to 160 ° C.
  • the gas inlet temperatures T n + b to T n + C-1 are preferably at most 185 ° C, more preferably at most 180 0 C, most preferably from 170 to 175 ° C.
  • the residence time during the drying is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and preferably up to 120 minutes, more preferably up to 90 minutes, most preferably up to 60 minutes.
  • the relative residence time is for the sum of the residence times of the temperature zones with the gas inlet temperatures T n to T n + a- i preferably at least 10%, more preferably at least 15%, preferably up to 25%, most preferably up to 20%, very particularly preferably 18%, for the sum of the residence times of the temperature zones with the gas inlet temperatures T n + 3 to T n + b- i preferably at least 5%, more preferably at least 10%, preferably up to 20%, most preferably up to 16 %, most preferably 14%, and for the sum of the residence times of the temperature zones with the gas inlet temperatures T n + b to T n + CI preferably at least 80%, more preferably at least 70%, preferably up to 40%, most preferably up to 60%, most preferably 68%, each based on the total residence time on the dryer.
  • the relative residence time in the individual temperature zones T n to T n + a-1 is preferably adjusted so that the relative residence times are the same.
  • the relative residence time in the (ba) individual temperature zones T n + a to T n + b-1 is preferably adjusted so that the relative residence times are the same.
  • the relative residence time in the (cb) individual temperature zones T n + b to T n + 0 - I is preferably adjusted so that the relative residence times are the same.
  • the water content of the hydrogel during flow reversal is preferably at least 20% by weight, preferably at least 24% by weight. particularly preferably at least 26% by weight, very particularly preferably at least 28% by weight, and preferably at most 40% by weight, preferably at most 34% by weight, particularly preferably at most 32% by weight, very particularly preferably at most 30 wt .-%.
  • the drying is preferably operated so that the flow reversal occurs between the temperature zones T n + bi and T n + b .
  • the gas velocity after the flow reversal is preferably increased, preferably by at least 10%, particularly preferably by at least 30%, very particularly by at least 40%, and preferably by up to 100%, particularly preferably by up to 80%, very especially up to 60%.
  • the gas velocity is preferably at least 5%, particularly preferably at least 8%, very particularly preferably at least 10%, and preferably up to 30%, particularly preferably up to 25%, very particularly preferably up to 20%, the gas velocity necessary to release the hydrogel from the belt.
  • the water content of the polymer gel to be dried is preferably at least 30% by weight, more preferably at least 40% by weight, most preferably at least 50% by weight, and preferably up to 70% by weight, more preferably up to 65% by weight. -%, most preferably up to 60 wt .-%.
  • the water content of the dried polymer gel is preferably at least 2 wt .-%, more preferably at least 3 wt .-%, most preferably at least 5 wt .-%, and preferably up to 10 wt .-%, particularly preferably up to 9 wt. -%, most preferably up to 8 wt .-%.
  • the drying is preferably carried out at a pressure which is reduced with respect to the atmospheric pressure, preferably by at least 0.5 mbar, particularly preferably by at least 2 mbar, very particularly preferably by at least 10 mbar.
  • the reduced pressure in the dryer compared with the atmospheric pressure causes a more favorable gas flow in the dryer and thus a more uniform drying.
  • the preferred method for the present invention is a conveyor belt process (belt dryer).
  • the belt dryer is a convective drying system for the particularly gentle treatment of ventilated products.
  • the product to be dried is placed on an endless, gas-permeable conveyor belt and flown by means of a heated gas stream, preferably air.
  • the drying gas is circulated in order to experience the highest possible saturation when passing through the product layer multiple times.
  • a certain proportion of the drying gas preferably at least 10%, more preferably at least 15%, most preferably at least 20%, and preferably up to 50%, more preferably up to 40%, most preferably up to 30%, of the amount of gas per pass leaves the dryer as highly saturated vapors and removes the evaporated from the product amount of water.
  • the size and design of the dryer depends on the product to be processed, the production capacity and the drying task.
  • the belt dryer can be equipped as a single-belt, multi-belt, multi-stage or multi-deck system.
  • Preferred for the present invention is the operation of a belt dryer with at least one belt.
  • Very particular preference is booklet dryers.
  • the drying properties of the water-absorbing polymers are determined individually as a function of the selected process parameters.
  • the hole size and mesh size of the tape is adapted to the product. Certain surface finishes, such as electropolishing or Teflonizing, are also possible.
  • chain-guided and chainless tape systems can be used, such as plate belts, thin plate and endless plate belts, plastic and metal fabric tapes.
  • the gas flow in the dryer is consistently designed for energy-efficient operation.
  • Energy recovery systems may be used to utilize heat from the exhaust stream to preheat the supplied fresh gas.
  • the gas guidance can take place according to the following concepts: in the cross-flow from above / from below, alternating, cross-countercurrent or else in the cross-direct current.
  • Cross-flow gas guidance is preferred.
  • the heating of the dryer can be done directly or indirectly via the various heating media such as steam, hot water, flue gases, thermal oil or gas.
  • the cover dryer is characterized by a low height. It is used for gentle drying and when transfers are not possible or desired.
  • Multi-tray dryers have similar features to multi-belt dryers, but the individual sections are independently controllable as with single-belt dryers.
  • the multistage dryer consists of a number of single-belted dryers connected in series.
  • the hydrogel to be dried is preferably applied to the belt of the belt dryer by means of a swivel belt.
  • the feed height ie, the vertical distance between the swivel belt and the belt, is preferably at least 10 cm, particularly preferably at least 20 cm, very particularly preferably at least 30 cm, preferably up to 200 cm, particularly preferably up to 120 cm, very particularly preferably up to 40 cm.
  • the layer thickness of the hydrogel to be dried on the belt dryer is preferably at least 2 cm, particularly preferably at least 5 cm, very particularly preferably at least 8 cm, and preferably at most 20 cm, particularly preferably at most 15 cm, very particularly preferably at most 12 cm.
  • the belt speed of the belt dryer is preferably at least 0.005 m / s, more preferably at least 0.01 m / s, very particularly preferably at least 0.015 m / s, and preferably up to 0.05 m / s, particularly preferably up to 0, 03 m / s, most preferably up to 0.025 m / s.
  • the drying by the conveyor belt method (belt drying), loaded in the holeed hordes of a circular conveyor in a tunnel in the manner indicated above with drying material and the material to be dried during the promotion by blowing gas / air / mixture in the manner indicated above drying the tray holes is the most economical drying method for water-absorbing polymers and is therefore preferred.
  • the drying rate of the item to be dried is determined by the evaporation rate, which indicates how many kg of water are dried out of the product to be dried per square meter strip area per hour. This evaporation rate should be as high as possible for economic reasons.
  • the hydrogel structure to be dried by the process according to the invention which is optionally mixed with additional reactants and / or water-absorbing polymer particles which have been separated as undersize in the classification steps, has a relatively large gel surface and thus for belt drying due to their loose arrangement of already divided gel bodies economically advantageous drying rate.
  • the drying rate can be further increased by applying a release agent to the hydrogel particles.
  • the application of the release agent takes place without mechanical stress on the hydrogel particles by spraying in suitable equipment, such as rotary kiln, Drais mixer, plowshare mixers, such as Lödige mixers, Peterson-Kelly mixers, cone screw mixers.
  • Suitable release agents are nonionic, ionic or amphoteric surfactants having an HLB value greater than or equal to 3 (definition of the HLB value: see W. C. Griffin,
  • the use of surfactants to improve the drying properties of hydrogel particles during drying by means of contact dryers is known and described in detail in EP-A-0 785 224.
  • Examples of the surfactants acting as release agents can be found in EP-A-0 785 223 on page 3, line 27, to page 4, line 38.
  • Further suitable release agents are silicone, unsaturated alcohols or polyglycols and their derivatives. Examples of the specified classes of compounds can be found in DE-A-198 46 413 on page 6, lines 21 to 42.
  • the temperature of the polymer gel is kept as low as possible as the drying progresses to increase the efficiency and to prevent the pieces or fine particles from being present - stick to others. This can be achieved, for example, by adequate cooling of the polymer gel formed with inflowing cold air or ambient air, the evaporative cooling resulting in the automatic cooling of the polymer product.
  • the polymer gel is dried in this way, for example by flow drying on a belt.
  • drying quality index is usually at most 8, preferably at most 6, preferably at most 4, more preferably at most 2, very preferably at most 1, and usually at least 0.01 is.
  • Cross-linking agents which contain at least two ethylenically unsaturated groups and in which at least two ethylenically unsaturated groups are connected to one another via at least one ester group, for example esters of unsaturated monocarboxylic or polycarboxylic acids, are at least partially employed in the preparation of the aqueous polymer gels of polyols, such as diacrylate or triacrylate, for example, butanediol or ethylene glycol diacrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters and polyallyl esters.
  • polyols such as diacrylate or triacrylate, for example, butanediol or ethylene glycol diacrylate or methacrylate
  • trimethylolpropane triacrylate and allyl compounds such as allyl (meth) acrylate, trially
  • the aqueous polymer gels are obtained by polymerization of a monomer solution containing
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, or derivatives thereof, such as acrylamide, methacrylamide, acrylic esters and methacrylic acid esters. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula
  • R 1 is hydrogen or methyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen or methyl
  • R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids may be mono-, di- or tricarboxylic acids.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on Acrylic acid, wherein acrylic acid salts are taken into account as acrylic acid.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used.
  • the crosslinkers b) are compounds having at least two polymerizable groups which can be incorporated in the polymer network by free-radical polymerization.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as described in EP-A-0 530 438, di- and triacrylates, as in EP-AO 547 847, EP-A-0 559 476, EP-AO 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A-03/104301 and DE-A-103 31 450, mixed acrylates which, in addition to acrylic lat groups contain further ethylenically unsaturated groups, as described in DE-A-103 31 456 and the earlier German application with the file reference 10355401.7, or
  • Suitable crosslinkers b) are especially N, N'-methylenebisacrylamide and N 1 N'-methylenebismethacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl ester, polyallyl ester, tetraallyl xyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in EP-A-343427.
  • polyols such as diacrylate or triacrylate, for example butanediol or ethylene glycol di acrylate or methacrylate
  • crosslinkers b) are pentaerythritol di-pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol and glycerol triallyl ethers, polyallyl ethers based on sorbitol, and also ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, wherein the polyethylene glycol used has a molecular weight between 300 and 1000.
  • crosslinkers b) are di- and triacrylates of 3 to 15 times ethoxylated glycerol, 3 to 15 times ethoxylated trimethylolpropane, 3 to 15 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-fold ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, and the 3-times mixed ethoxylated or propoxylated glycerol or trimethylolpropane, the 15-fold ethoxylated glycerol or trimethylolpropane, and the 40-times ethoxylated glycerol, trimethylolethane or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as described, for example, in WO-A-03/104301. Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol. Very particular preference is given to diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol. Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • Examples of ethylenically unsaturated monomers c) copolymerizable with the monomers a) are acrylamide, methacrylamide, crotonamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, dimethylaminoneopentyl acrylate and dimethylaminoneopentyl methacrylate.
  • water-soluble polymers d) it is possible to use polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, polyglycols or polyacrylic acids, preferably polyvinyl alcohol and starch.
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance. Therefore, the polymerization inhibitors before the polymerization by inerting, ie, flowing through with an inert gas, preferably nitrogen, are freed of dissolved oxygen.
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight.
  • Water-absorbing polymers are usually obtained by polymerization of an aqueous monomer solution and optionally subsequent comminution of the hydrogel. Suitable preparation methods are described in the literature. Water-absorbing polymers can be obtained, for example
  • reaction is preferably carried out in a kneader, such as in WO-A-
  • the acid groups of the resulting hydrogels are usually partially neutralized, preferably from 25 to 85 mol%, preferably from 27 to 80 mol%, more preferably from 27 to 30 mol% or from 40 to 75 mol%, using the customary neutralizing agents may be, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or Alkalimetallhydrogencarbonate and mixtures thereof. Instead of alkali metal salts and ammonium salts can be used. Sodium and potassium are particularly preferred as alkali metals, most preferably, however, sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the neutralization is achieved by mixing in the neutralization onsmittels as an aqueous solution or preferably as a solid.
  • sodium hydroxide with a water content well below 50 wt .-% may be present as a waxy mass with a melting point above 23 ° C. In this case, a dosage as general cargo or melt at elevated temperature is possible.
  • hydrous hydrogels are dried according to the above-described inventive method.
  • the further treatment of the dried hydrogel does not matter in the method according to the invention.
  • the method according to the invention may, for example, also comprise the steps of grinding, sieving and / or post-crosslinking.
  • the dried hydrogel is preferably ground and sieved, it being possible to use roll mills, pin mills or vibratory mills for milling.
  • the particle size of the sieved, dry hydrogel is preferably below 1000 .mu.m, more preferably below 900 .mu.m, most preferably below 800 .mu.m, and preferably above 100 .mu.m, more preferably above 150 .mu.m, most preferably above 200 .mu.m.
  • the base polymers are then preferably surface postcrosslinked.
  • Suitable postcrosslinkers for this purpose are compounds which contain at least two groups which can form covalent bonds with the carboxylate groups of the hydrogel.
  • Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyglycidyl compounds, as in EP-AO 083 022, EP-A-543 303 and EP-A-937 736, di- or polyfunctional alcohols, as described in DE-C-33 14 019, DE-C-35 23 617 and EP-A-450 922, or ⁇ -hydroxyalkylamides as described in DE-A-102 04 938 and US-6,239,230.
  • DE-A-40 20 780 cyclic carbonates, in DE-A-198 07 502 2- oxazolidone and its derivatives, such as 2-hydroxyethyl-2-oxazolidone, in DE-A-198 07 992 bis- and poly 2-oxazolidinone, in DE-A-198 54 573 2-oxotetrahydro-1,3-oxazine and its derivatives, in DE-A-198 54 574 N-acyl-2-oxazolidones, in DE-A-102 04 937 cyclic ureas, in DE-A-103 34 584 bicyclic amide acetals, in EP-A-1 199 327 oxetanes and cyclic ureas and in WO-A-03/031482 morpholine-2,3-dione and its derivatives are described as suitable surface postcrosslinkers.
  • the postcrosslinking is usually carried out so that a solution of the surface postcrosslinker is sprayed onto the hydrogel or the dry base polymer powder. Following the spraying, the polymer powder is thermally dried, whereby the crosslinking reaction can take place both before and during drying.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
  • Suitable dryers include Bepex® dryers and Nara® dryers.
  • fluidized bed dryers can also be used.
  • the water-absorbing polymers of the invention typically have an absorbency under pressure of 0.3 psi (2.07 kPa) of at least 10 g / g, preferably at least 15 g / g, more preferably at least 20 g / g, and usually less than 60 g / g on.
  • Absorption under pressure (AUL) is determined according to the test method No. 442.2-02 "Absorption under pressure" recommended by the EDANA (European Disposables and Nonwovens Association).
  • a further subject of the present invention are processes for the production of hygiene articles, in particular diapers, comprising the use of water-absorbing polymer particles produced according to the abovementioned method.
  • Another object of the present invention is a device for drying water-absorbing polymers, comprising
  • At least one gas-permeable conveyor belt ii) at least one conveyor belt i) has a device that allows the at least one conveyor belt i) to supply at least two heated gas streams of different temperature, iii) at least one gas preheater, iv) at least one gas supply from i) is directed at the top of the conveyor belt i), v) optionally at least one gas supply directed from below onto the conveyor belt i), the conveyor belt i) being able to be flowed first from below, and vi) at least one device for reducing pressure,
  • the device ii) may, for example, consist of at least two independent gas preheaters or of a gas preheater, the heated gas stream being divided and the temperatures of the substreams being adjustable independently of each other by admixing exhaust gas or fresh gas.
  • the number of gas streams of different temperature, which can be supplied via the device ii), is preferably at least 6, preferably at least 8, particularly preferably at least 10, very particularly preferably at least 12.
  • Heated means that it is possible to supply the gas streams heat energy, so that the temperature of the gas stream is higher than before the heat supply, preferably at least 10 ° C higher, preferably at least 20 0 C higher, more preferably at least 30 ° C higher, very particularly preferably at least 40 0 C higher.
  • suitable compressors which are arranged so that gas is conveyed from the dryer, so that the pressure in the dryer is lower than in the environment.
  • Another object of the present invention is a device for drying water-absorbing polymers comprising
  • At least one gas-permeable conveyor belt i) at least one conveyor belt i) having a device which allows the at least one conveyor belt i) to supply at least ten heated gas streams of different temperature, iii) at least one gas preheater, iv) at least one gas supply which is directed from above onto the conveyor belt i), v) if appropriate at least one gas supply directed from below onto the conveyor belt i), the conveyor belt i) being able to be flowed first from below, and vi) optionally at least one device for reducing pressure,
  • the number of gas streams of different temperature, which can be supplied via the device ii), is preferably at least 11, preferably at least 12, more preferably at least 13, most preferably at least 14.
  • the present method makes it possible to easily produce water-absorbing polymers which are distinguished by an excellent absorption profile.
  • the aqueous polymer gel obtained during the polymerization is gently and economically dried.
  • the product properties are only slightly influenced by the drying according to the invention.
  • the water-absorbing polymers thus obtained can be widely used in fields where it is necessary to absorb and retain aqueous liquids.
  • the preferred areas of application are above all the agricultural sector and other industrial fields of application.
  • the measurements should be carried out at an ambient temperature of 23 + 2 0 C and a relative humidity of 50 + 10%.
  • the water-absorbing polymers are thoroughly mixed before the measurement.
  • the proportion of extractables in the water-absorbing polymer particles is determined according to the EDANA (European Disposables and Nonwovens Association) recommended test method No. 470.2-02 "Extractables".
  • the moisture content is determined according to the monograph "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, pages 143 and 144.
  • 1 g of hydrogel sample is dried in an LC column under helium atmosphere for 1 hour at 180 ° C and the moisture content is determined by the weight loss.
  • a sample is taken from the comminuted aqueous polymer gel after the polymerization, distributed homogeneously in thin layers on trays with sieve trays and then dried at 80 ° C. for 24 h at less than 100 mbar. This drying is very gentle on the product. Subsequently, the dried hydrogel is ground and the sieve fraction is isolated from 300 to 600 .mu.m (polymer 1).
  • a hydrogel sample dried according to the dry method to be investigated is also ground. Subsequently, the sieve fraction is isolated from 300 to 600 ⁇ m (polymer 2).
  • the dried water-absorbing polymers are characterized by determining the centrifuge retention capacity (CRC) and the content of extractables. Siert.
  • the moisture content is determined and taken into account mathematically in the determination of these properties. Typically, the moisture content is about 5 wt .-%.
  • TQI Drying Quality Index
  • TQI 0.5 x (CRC 2 [g / g] - CRC 1 [g / g]) + 0.5 x (Extractable 2 [%] - Extractable ! [%])
  • the subscripts here denote the polymers 1 and 2, respectively.
  • the drying quality index is thus the greater, the more the drying operation increases the centrifuge retention capacity and the more the proportion of extractables increases. Both contributions are weighted equally.
  • the height of the drying quality index indicates how much the properties of the water-absorbent polymer are changed by the drying conditions of the aqueous polymer gel.
  • a low drying quality index means a gentle drying.
  • the EDANA test methods are available, for example, from the European Dispensables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brussels, Associates.
  • Polyethylene glycol 400 diacrylate (diacrylate of a polyethylene glycol having an average molecular weight of 400 g / mol) is used as the polyethylenically unsaturated crosslinker.
  • the amount used was 2 kg per ton of monomer solution.
  • the throughput of the monomer solution was 18 t / h.
  • the individual components are continuously metered into a 6.3 ml 3 volume List Contikneter reactor (List, Arisdorf, Switzerland) in the following quantities:
  • the reaction solution had a temperature of 23.5 ° C. at the inlet.
  • the reactor was operated at a shaft speed of 38rpm.
  • the residence time of the reaction mixture in the reactor was 15 minutes.
  • the aqueous polymer gel was applied to a belt dryer. In total, 18.3 t / h of aqueous polymer gel having a water content of 55% by weight were dried. The gel was applied from a height of 30 cm by means of a swivel tape on the conveyor belt of the dryer. The height of the gel layer was about 10 cm.
  • the belt speed of the dryer belt was 0.02 m / s and the residence time on the dryer belt was about 37 minutes.
  • the belt dryer was divided into a total of six temperature zones, in which the gas inlet temperatures could be set independently.
  • the band was flown from below with air.
  • the air velocity was 1.2 m / s.
  • the strip was supplied with air from above.
  • the air velocity was 1, 8 m / s.
  • the aqueous polymer gel was applied to a belt dryer.
  • 18.3 t / h of aqueous polymer gel having a water content of 55% by weight were dried.
  • the gel was applied from a height of 30 cm by means of a swivel tape on the conveyor belt of the dryer.
  • the height of the gel layer was about 10 cm.
  • the belt speed of the dryer belt was 0.02 m / s and the residence time on the dryer belt was about 37 minutes.
  • the belt dryer was divided into a total of six temperature zones, in which the gas inlet temperatures could be set independently.
  • the conveyor belt could be flowed independently from below or from above in each temperature zone independently of each other.
  • the water content in the air reversal was adjusted over the residence time. For this purpose, the number of temperature zones flowed from below or above was varied accordingly.
  • the band was exposed to air from below.
  • the air velocity was 1.2 m / s.
  • the tape was flown from above with air.
  • the air velocity was 1, 8 m / s.
  • the aqueous polymer gel was applied to a belt dryer. In total, 18.3 t / h of aqueous polymer gel having a water content of 55% by weight were dried. The gel was applied from a height of 30 cm by means of a swivel tape on the conveyor belt of the dryer. The height of the gel layer was about 10 cm.
  • the conveyor belt length effective for drying was 44 m.
  • the belt dryer was divided into a total of six temperature zones, in which the gas inlet temperatures could be set independently.
  • the residence time in the belt dryer was set via the belt speed.
  • the gas velocity at which the hydrogel layer separates from the strip (fluid point) was 11 m / s.
  • the band was flown from below with air.
  • the tape was flown from above with air.
  • the air velocity was 1.8 m / s.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Graft Or Block Polymers (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, wobei - die Trocknung in mindestens zwei Temperaturzonen durchgeführt wird und/oder - der Gasstrom das Hydrogel im vorderen Abschnitt eines Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 15 bis 45 Gew.-% stattfindet, und/oder - die Hydrogelschicht in einem Bandtrockner zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 5 bis 30% der Gasgeschwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen, eine Vorrichtung zur Durchführung des Verfahrens sowie die Verwendung der nach dem Verfahren hergestellten wasserabsorbierenden Polymere zur Herstellung von Hygieneartikeln.

Description

Verfahren zur Herstellung wasserabsorbierender Polymere
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymere mit niedrigem Trocknungsqualitätsindex durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, eine Vorrichtung zur Durchführung des Verfahrens sowie die Verwendung der nach dem Verfahren hergestellten wasserabsorbierenden Polymere zur Herstellung von Hygieneartikeln.
Weitere Ausführungsformen der vorliegenden Erfindung sind den Ansprüchen, der Beschreibung und den Beispielen zu entnehmen. Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale des erfindungsgemä- ßen Gegenstandes nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen verwendbar sind, ohne den Rahmen der Erfindung zu verlassen.
Wasserabsorbierende Polymere sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärke- ether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wässrigeri Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Solche Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstel- lung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wassörzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Die Herstellung der wasserabsorbierenden Polymere wird beispielsweise in der Monographie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Gra- harn, Wiley-VCH, 1998, oder in Ullmann's Encyclopedia of Industrial Chemistry, 6. Auflage, Band 35, Seiten 73 bis 103, beschrieben.
Üblicherweise wird nach der Polymerisation ein wässriges Polymergel erhalten, das getrocknet werden muss. Die Trocknung des Polymergels wird ebenfalls in der Mono- graphie "Modern Superabsorbent Polymer Technology", F. L. Buchholz und AT. Graham, Wiley-VCH, 1998, Seiten 87 bis 93, offenbart.
Den Trocknungsverfahren ist gemein, dass aufgrund der breiten Gelgrößenverteilung des zu trocknenden Polymerguts eine vollständige Trocknung aller Hydrogelpartikel nur unter solchen Bedingungen erfolgt, unter denen der Großteil der Hydrogelpartikel bereits übertrocknet ist. Diese Trocknungsbedingungen stellen aber eine unwirtschaftliche Ausnutzung der Trocknerkapazität dar. Bei einer wirtschaftlich optimierten Ausnutzung der Trocknerkapazität sind die Trocknungsbedingungen jedoch derart, dass der Großteil der Hydrogelpartikel bereits trocken ist, während ein kleinerer Teil der Hydrogelpartikel noch feucht ist. Feuchte Hydrogelpartikel sind gummielastisch und neigen zu Verklebungen, so dass sie zu erheblichen Störungen bei dem sich anschließenden Mahl- und Siebprozess des Trocknungsgutes führen, welche unerwünscht sind. Es besteht daher die Notwendigkeit, die feuchten, gummielastischen Hydrogelt- eilchen von den spröden, teilweise übertrockneten Hydrogelteilchen vor der Mahlung abzutrennen. In der Praxis werden daher Trocknungsbedingungen gewählt, die einen Kompromiss zwischen Ausnutzung der Trocknerkapazität und Verarbeitbarkeit des Trocknungsgutes darstellen.
Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur Herstellung wasserabsorbierender Polymerpartikel, insbesondere eine verbesserte Trocknung der während des Verfahrens anfallenden wässrigen Polymergele.
Das Trocknungsverfahren sollte einerseits wirtschaftlich sein und bereits nach kurzen Verweilzeiten zu einem Produkt mit niedrigem Wassergehalt führen, andererseits sollte das Trocknungsverfahren sehr schonend sein, so dass die Produktqualität durch die Trocknung nur wenig verändert wird.
Gelöst wurde die Aufgabe durch Verfahren zur Herstellung wasserabsorbierender Polymere durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, dadurch gekennzeichnet, dass
die Trocknung in mindestens zwei Temperaturzonen durchgeführt wird, wobei die Gaseingangstemperaturen der mindestens zwei Temperaturzonen die Bedingung Tn ungleich Tn+3 erfüllen, wobei die Indizes n und a jeweils eine ganze Zahl größer 0, vorzugsweise eine ganze Zahl von 1 bis 20, besonders bevorzugt eine ganze Zahl von 1 bis 10, ganz besonders bevorzugt eine ganze Zahl von 1 bis 5, bedeuten, und/oder
der Gasstrom das Hydrogel im vorderen Abschnitt eines Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 15 bis 45 Gew.-% stattfindet, und/oder
die Hydrogelschicht in einem Bandtrockner zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 5 bis 30% der Gasgeschwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen,
Die Temperatur des erwärmten Gasstroms beträgt vorzugsweise mindestens 500C, besonders bevorzugt mindestens 1000C, ganz besonders bevorzugt mindestens 1500C, und vorzugsweise bis zu 2500C, besonders bevorzugt bis zu 220°C, ganz besonders bevorzugt bis zu 2000C.
Die Indizes geben die zeitliche Abfolge der Temperaturzonen an, die das zu trocknen- de Gut in aufsteigender Abfolge durchläuft, wobei Temperaturzonen mit höheren Indizes später durchlaufen werden. Eine Temperaturzone ist ein Bereich, in dem die Gaseingangstemperatur unabhängig eingestellt werden kann.
Der vordere Abschnitt besteht aus Temperaturzonen mit niedrigeren Indizes, der hinte- re Abschnitt besteht aus Temperaturzonen mit höheren Indizes. Damit durchläuft das zu trocknende Gut zuerst den vorderen Abschnitt.
Der Wassergehalt wird gemäß der von der EDANA (European Disposables and Non- wovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" be- stimmt.
Die Gas- bzw. Luftgeschwindigkeit, bei der sich die Hydrogelschicht vom Band ablöst
I DB X 2 X Δh (Wirbelpunkt), kann experimentell bestimmt oder gemäß vmax = J- — s berechnet
V CD werden, wobei vmax die maximale Gas- bzw. Luftgeschwindigkeit ist, bei der sich das Hydrogel vom Band ablöst pB das Schüttgewicht des Hydrogels, g die Gravitationskonstante, Δh der Druckverlust über die Hydrogelschicht und cD der Gas- bzw. Luftwiderstandsbeiwert ist. Am Wirbelpunkt heben sich die auf die Hydrogelschicht wirkende Schwerkraft und der Gas- bzw Luftwiderstand auf. Der Wirbelpunkt markiert die Grenze zwischen Festbett und Wirbelbett. Das Schüttgewicht des Hydrogels ist der Quotient aus Gewicht und Schüttvolumen des Hydrogels auf dem Band. Das Schüttvolumen des Hydrogels schließt neben dem Hydrogel noch die im Hydrogel enthaltenen Hohlräume mit ein.
Vorzugsweise erfüllen die mindestens zwei Gaseingangstemperaturen die Bedingung Tn größer Tn+a.
Bevorzugt wird die Trocknung in mindestens drei Temperaturzonen durchgeführt, wobei die Gaseingangstemperaturen die Bedingungen Tn ungleich Tn+3, vorzugsweise Tn größer Tn+a, und Tn+3 kleiner Tn+b erfüllen, wobei der Index b eine ganze Zahl größer a, vorzugsweise eine ganze Zahl von (a+1) bis (a+20), besonders bevorzugt eine ganze Zahl von (a+1) bis (a+10), ganz besonders bevorzugt eine ganze Zahl von (a+1) bis (a+5), bedeutet, wobei vorzugsweise gilt Tn größer Tn+b.
In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfüllen die Gaseingangstemperaturen in mindestens zwei der a Temperaturzonen Tn bis Tn+a-i die Bedingung Tn+r größer Tn+8, wobei der Index a eine ganze Zahl größer 1 , der Index r eine ganze Zahl von 0 bis (a-2) und der Index s eine ganze Zahl von (r+1) bis (a-1) bedeuten.
In einer weiteren besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfüllen die Gaseingangstemperaturen in mindestens zwei der (c-b) Temperaturzonen Tn+b bis Tn+C-1 die Bedingung Tn+U größer Tn+V, wobei der Index c eine ganze Zahl größer (b+1), vorzugsweise eine ganze Zahl von (b+1) bis (b+20), besonders bevorzugt eine ganze Zahl von (b+1) bis (b+10), ganz besonders bevorzugt eine ganze Zahl von (b+1) bis (b+5), der Index u eine ganze Zahl von b bis (c-2) und der Index v eine ganze Zahl von (u+1) bis (c-1) bedeuten.
In einer ganz besonders bevorzugten Ausführungsform der vorliegenden Erfindung erfüllen die Gaseingangstemperaturen in mindestens drei der (c-b) Temperaturzonen Tn+b bis Tn+C-1 die Bedingung Tn+U größer Tn+V größer Tn+W, wobei der Index c eine ganze Zahl größer (b+2), vorzugsweise eine ganze Zahl von (b+2) bis (b+20), besonders bevorzugt eine ganze Zahl von (b+2) bis (b+10), ganz besonders bevorzugt eine ganze Zahl von (b+2) bis (b+5), der Index u eine ganze Zahl von b bis (c-3), der Index v eine ganze Zahl von (u+1) bis (c-2) und der Index w eine ganze Zahl von (v+1) bis (c-1) bedeuten.
Ganz besonders bevorzugt ist ein Verfahren zur Trocknung von wässrigen Hydrogelen in mindestens sechs Temperaturzonen, wobei a mindestens 2, b mindestens 3 und c mindestens 6 beträgt. Vorzugsweise werden die Gaseingangstemperaturen so eingesellt, dass gilt Tn größer Tn+b, Tn+1 größer Tn+b+1 sowie Tn+1 nicht kleiner Tn+b.
Die optimale und damit bevorzugte Temperaturverteilung läßt sich auch als Welle, bestehend aus zwei Wellenbergen und einem Wellental, darstellen. Dabei ist der erste Wellenberg Tn, der zweite Wellenberg Tn+b und das Wellental dazwischen Tn+3, wobei der erste Wellenberg höher ist als der zweite.
Der Temperaturdifferenz der Gaseingangstemperaturen beträgt, sofern eine Temperaturdifferenz gefordert, üblicherweise mindesten 0,50C, vorzugsweise mindestens 10C, besonders bevorzugt mindestens 5°C, ganz besonders bevorzugt mindestens 100C, und üblicherweise bis zu 500C, vorzugsweise bis zu 400C, besonders bevorzugt bis zu 300C, ganz besonders bevorzugt bis zu 200C.
Die Geschwindigkeit des die Hydrogelschicht anströmenden Gasstromes beträgt vorzugsweise mindestens 0,5 m/s, besonders bevorzugt mindestens 0,8 m/s, ganz besonders bevorzugt mindestens 1 m/s, und vorzugsweise bis zu 5 m/s, besonders be- vorzugt bis zu 3 m/s, ganz besonders bevorzugt bis zu 2 m/s. Das zu verwendende Gas unterliegt keiner Beschränkung. Zur Trocknung können Luft, Stickstoff oder andere unter den Trockenbedingungen inerte Gase eingesetzt werden. Luft ist bevorzugt.
Der das Hydrogel anströmende Gasstrom kann Wasserdampf enthalten. Der Wasserdampfanteil sollte aber einen Wert, der einem Taupunkt von vorzugsweise höchstens 500C, besonders bevorzugt höchstens 40°C, ganz besonders bevorzugt höchstens 300C, entspricht, nicht übersteigen.
Die Gaseingangstemperaturen Tn bis Tn+a-1 betragen vorzugsweise höchstens 200°C, besonders bevorzugt von 175 bis 1800C.
Die Gaseingangstemperaturen Tn+3 bis Tn+b-1 betragen vorzugsweise mindestens 1500C, besonders bevorzugt mindestens 155°C, ganz besonders bevorzugt von 155 bis 160°C.
Die Gaseingangstemperaturen Tn+b bis Tn+C-1 betragen vorzugsweise höchstens 185°C, besonders bevorzugt höchstens 1800C, ganz besonders bevorzugt von 170 bis 175°C.
Die Verweilzeit bei der Trocknung beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten, und vorzugsweise bis zu 120 Minuten, besonders bevorzugt bis zu 90 Minuten, ganz besonders bevorzugt bis zu 60 Minuten.
Die relative Verweilzeit beträgt für die Summe der Verweilzeiten der Temperaturzonen mit den Gaseingangstemperaturen Tn bis Tn+a-i vorzugsweise mindestens 10%, besonders bevorzugt mindestens 15%, vorzugsweise bis zu 25%, ganz besonders bevorzugt bis zu 20%, ganz besonders bevorzugt 18%, für die Summe der Verweilzeiten der Temperaturzonen mit den Gaseingangstemperaturen Tn+3 bis Tn+b-i vorzugsweise min- destens 5%, besonders bevorzugt mindestens 10%, vorzugsweise bis zu 20%, ganz besonders bevorzugt bis zu 16%, ganz besonders bevorzugt 14%, und für die Summe der Verweilzeiten der Temperaturzonen mit den Gaseingangstemperaturen Tn+b bis Tn+C-I vorzugsweise mindestens 80%, besonders bevorzugt mindestens 70%, vorzugsweise bis zu 40%, ganz besonders bevorzugt bis zu 60%, ganz besonders bevorzugt 68%, jeweils bezogen auf die Gesamtverweilzeit auf dem Trockner.
Die relative Verweilzeit in den a einzelnen Temperaturzonen Tn bis Tn+a-1 wird vorzugsweise so eingestellt, dass die relativen Verweilzeiten gleich sind.
Die relative Verweilzeit in den (b-a) einzelnen Temperaturzonen Tn+a bis Tn+b-1 wird vorzugsweise so eingestellt, dass die relativen Verweilzeiten gleich sind. Die relative Verweilzeit in den (c-b) einzelnen Temperaturzonen Tn+b bis Tn+0-I wird vorzugsweise so eingestellt, dass die relativen Verweilzeiten gleich sind.
Wird das zu trocknende Hydrogel im vorderen Abschnitt des Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben von dem Gasstrom angeströmt, so beträgt der Wassergehalt des Hydrogels bei der Strömungsumkehr vorzugsweise mindestens 20 Gew.-%, bevorzugt mindestens 24 Gew.-%, besonders bevorzugt mindestens 26 Gew.-%, ganz besonders bevorzugt mindestens 28 Gew.-%, und vorzugsweise höchstens 40 Gew.-%, bevorzugt höchstens 34 Gew.-%, besonders bevorzugt höchstens 32 Gew.-%, ganz besonders bevorzugt höchstens 30 Gew.-%. Die Trocknung wird vorzugsweise so betrieben, dass die Strömungsumkehr zwischen den Temperaturzonen Tn+b-i und Tn+b eintritt.
Vorzugsweise ist die Gasgeschwindigkeit nach der Strömungsumkehr erhöht, vor- zugsweise um mindestens 10%, besonders bevorzugt um mindestens 30%, ganz besonders um mindestens 40%, und vorzugsweise um bis zu 100%, besonders bevorzugt um bis zu 80%, ganz besoders um bis zu 60%.
Wird der Bandtrockner zumindest teilweise von unten angeströmt, so beträgt die Gas- geschwindigkeit vorzugsweise mindestens 5%, besonders bevorzugt mindestens 8%, ganz besonders bevorzugt mindestens 10%, und vorzugsweise bis zu 30%, besonders bevorzugt bis zu 25%, ganz besonders bevorzugt bis zu 20%, der Gasgeschwindigkeit, die notwendig ist um das Hydrogel vom Band zu lösen.
Der Wassergehalt des zu trocknenden Polymergels beträgt vorzugsweise mindestens 30 Gew.-%, besonders bevorzugt mindestens 40 Gew.-%, ganz besonders bevorzugt mindestens 50 Gew.-%, und vorzugsweise bis zu 70 Gew-%, besonders bevorzugt bis zu 65 Gew.-%, ganz besonders bevorzugt bis zu 60 Gew.-%.
Der Wassergehalt des getrockneten Polymergels beträgt vorzugsweise mindestens 2 Gew.-%, besonders bevorzugt mindestens 3 Gew.-%, ganz besonders bevorzugt mindestens 5 Gew.-%, und vorzugsweise bis zu 10 Gew.-%, besonders bevorzugt bis zu 9 Gew.-%, ganz besonders bevorzugt bis zu 8 Gew.-%.
Die Trocknung wird vorzugsweise bei einem Druck durchgeführt, der gegenüber dem Atmosphärendruck vermindert ist, vorzugsweise um mindestens 0,5 mbar, besonders bevorzugt um mindestens 2 mbar, ganz besonders bevorzugt um mindestens 10 mbar.
Der gegenüber dem Atmosphärendruck verminderte Druck im Trockner bewirkt eine günstigere Gasströmung im Trockner und damit eine gleichmäßigere Trocknung. Das für die vorliegende Erfindung bevorzugte Verfahren ist ein Förderbandverfahren (Bandtrockner). Der Bandtrockner ist ein konvektives Trocknungssystem für die besonders schonende Behandlung von durchlüftbaren Produkten. Das zu trocknende Produkt wird auf ein endloses, gasdurchlässiges Förderband gegeben und mittels ei- nes erwärmten Gasstromes, vorzugsweise Luft, angeströmt.
Das Trocknungsgas wird im Kreis geführt, um beim mehrfachen Durchgang durch die Produktschicht eine möglichst hohe Aufsättigung zu erfahren. Ein gewisser Anteil des Trockengases, vorzugsweise mindestens 10%, besonders bevorzugt mindestens 15%, ganz besonders bevorzugt mindestens 20%, und vorzugsweise bis zu 50%, besonders bevorzugt bis zu 40%, ganz besonders bevorzugt bis zu 30%, der Gasmenge pro Durchgang, verlässt den Trockner als hoch aufgesättigter Brüden und führt die aus dem Produkt verdampfte Wassermenge ab.
Die Größe und Ausführung der Trockner richtet sich nach dem zu verarbeitenden Produkt, der Produktionskapazität und der Trocknungsaufgabe.
Der Bandtrockner kann als Einband-, Mehrband-, Mehrstufen-, oder Mehretagensystem ausgestattet werden. Bevorzugt ist für die vorliegende Erfindung der Betrieb eines Bandtrockners mit mindestens einem Band. Ganz besonders bevorzugt sind Einbandtrockner. Um die Bandtrocknung verfahrenstechnisch optimal durchzuführen, werden die Trocknungseigenschaften der wasserabsorbierenden Polymere in Abhängigkeit von den gewählten Prozessparametern individuell ermittelt. Die Lochgröße und Maschenweite des Bandes wird dem Produkt angepaßt. Auch bestimmte Oberflächenver- edelungen, wie Elektropolieren oder Teflonisieren, sind möglich.
Zur optimalen Produktförderung können alle, dem Fachmann bekannten kettengeführten und kettenlosen Bandsysteme eingesetzt werden, wie beispielsweise Plattenbänder, Dünnblech- und Endlosplattenbänder, Kunststoff- und Metallgewebebänder.
Zur wirtschaftlichen Trocknung der wasserabsorbierenden Polymere wird die Gasführung im Trockner konsequent auf einen energieeffizienten Betrieb ausgelegt. Es sind verschiedene Gasführungskonzepte möglich, die Vorteile hinsichtlich Trocknungsverhalten und Energieausnutzung aufweisen. Energierückgewinnungssysteme können eingesetzt werden, um Wärme aus dem Abgasstrom zur Vorwärmung des zugeführten Frischgases zu nutzen.
Die Gasführung kann nach folgenden Konzepte erfolgen: im Kreuzstrom von oben / von unten, alternierend, Kreuzgegenstrom oder aber im Kreuzgleichstrom. Die Gasfüh- rung im Kreuzgegenstrom ist bevorzugt. Die Beheizung des Trockners kann direkt oder indirekt über die verschiedenen Heizmedien wie Dampf, Warmwasser, Rauchgase, Thermalöl oder Gas erfolgen.
Der Einbandtrockner zeichnet sich durch eine nur geringe Bauhöhe aus. Er wird einge- setzt zur schonenden Trocknung und wenn Umschüttungen nicht möglich oder erwünscht sind.
Bei geringem Platzangebot und sehr langen Trocknungszeiten bietet sich häufig das Konzept eines Mehrbandtrockners an. Das Produkt wird gleichmäßig auf das oberste Band verteilt und nacheinander an mehrere darunterliegende Bänder weitergegeben. Es ergibt sich der Vorteil, dass das Produkt beim Übergang und Fallen auf die nächste Ebene mehrfach gewendet und homogenisiert wird. Die Umschüttung des Produktes bei der Übergabe von einem auf das nächste Band führt zur Auflösung von Agglomera- ten und Schaffung neuer freier Oberflächen für den Wärme- und Stoffübergang.
Mehretagentrockner weisen ähnliche Merkmale wie Mehrbandtrockner auf, allerdings sind die einzelnen Sektionen unabhängig voneinander steuerbar wie bei Einbandtrocknern. Der Mehrstufentrockner besteht aus mehreren hintereinander geschalteten Einbandtrocknem.
Eine wesentliche Voraussetzung zur optimalen Trocknung ist die gleichmäßige Produktaufgabe. Diese kann gestaltet werden durch den Einsatz von schwenkbaren und oszillierenden Verteilbändern, Schwingrinnen oder Schnecken, Vibrationsrinnen oder Schwingförderern.
Das zu trocknende Hydrogel wird vorzugsweise mittels eines Schwenkbandes auf das Band des Bandtrockners aufgebracht. Die Aufgabehöhe, d.h., der vertikale Abstand zwischen Schwenkband und Band, beträgt vorzugsweise mindeste 10 cm, besonders bevorzugt mindestes 20 cm, ganz besonders bevorzugt mindestens 30 cm, vorzugs- weise bis zu 200 cm, besonders bevorzugt bis zu 120 cm, ganz besonders bevorzugt bis zu 40 cm.
Die Schichtdicke des zu trocknende Hydrogels auf dem Bandtrockner beträgt vorzugsweise mindestens 2 cm, besonders bevorzugt mindestens 5 cm, ganz besonders be- vorzugt mindestens 8 cm, und vorzugsweise höchstens 20 cm, besonders bevorzugt höchstens 15 cm, ganz besonders bevorzugt höchstens 12 cm.
Die Bandgeschwindigkeit des Bandtrockners beträgt vorzugsweise mindestens 0,005 m/s, besonders bevorzugt mindestens 0,01 m/s, ganz besonders bevorzugt mindes- tens 0,015 m/s, und vorzugsweise bis zu 0,05 m/s, besonders bevorzugt bis zu 0,03 m/s, ganz besonders bevorzugt bis zu 0,025 m/s. Die Trocknung nach dem Förderband-Verfahren (Bandtrocknung), bei der mit Löcher versehene Horden eines Kreisförderers in einem Tunnel in der oben angegebenen Weise mit Trocknungsgut beladen und das Trocknungsgut während der Förderung durch Durchblasen von Gas/Luft/Gemisch in der oben angegebenen Weise durch die Hordenlöcher getrocknet wird, stellt das wirtschaftlichste Trocknungsverfahren für wasserabsorbierende Polymere dar und ist daher bevorzugt. Die Trocknungsgeschwindigkeit des Trocknungsguts wird bestimmt durch die Verdampfungsleistung, die angibt, wieviel kg Wasser aus dem zu trocknenden Produkt pro Quadratmeter Bandfläche pro Stunde herausgetrocknet werden. Diese Verdampfungsleistung sollte aus wirtschaftli- chen Gründen möglichst hoch sein.
Die nach dem erfindungsgemäßen Verfahren zu trocknende Hydrogelstruktur, die gegebenenfalls mit zusätzlichen Reaktanden und/oder wasserabsorbierende Polymerpartikel, die als Unterkorn bei den Klassierschritten abgetrennt wurden, vermischt ist, weist aufgrund ihrer lockeren Anordnung bereits zerteilter Gelkörper eine relativ große Geloberfläche und somit für die Bandtrocknung eine wirtschaftlich vorteilhafte Trocknungsgeschwindigkeit auf. In einer besonders bevorzugten Verfahrensvariante kann die Trocknungsgeschwindigkeit durch Aufgabe eines Trennmittels auf die Hydrogelteilchen noch weiter gesteigert werden. Das Aufbringen der Trennmittel erfolgt hierbei ohne mechanische Belastung der Hydrogelpartikel durch Aufsprühen in dafür geeigneten Geräten, wie beispielsweise Drehrohr, Drais-Mischer, Pflugscharmischern, wie Lödige- Mischer, Peterson-Kelly-Mischer, Kegel-Schnecken-Mischern.
Als Trennmittel eignen sich nichtionische, ionische oder amphotere Tenside mit einem HLB-Wert größer gleich 3 (Definition des HLB-Wertes: siehe W.C. Griffin,
J.Soc.Cosmetic Chem. 5 (1954) 249). Bevorzugt sind solche Tenside, die in Wasser löslich oder zumindest dispergierbar sind. Der Einsatz von Tensiden zur Verbesserung der Trocknungseigenschaften von Hydrogelpartikeln bei der Trocknung mit Hilfe von Kontakttrocknern ist bekannt und ausführlich in EP-A-O 785 224 beschrieben. Beispiele zu den als Trennmittel fungierenden Tensiden sind der EP-A-O 785 223 auf Seite 3, Zeile 27, bis Seite 4, Zeile 38, zu entnehmen. Weitere geeignete Trennmittel sind SiIi- cone, ungesättigte Alkohole oder Polyglykole und ihre Derivate. Beispiele der angegebenen Verbindungsklassen sind der DE-A-198 46 413 auf Seite 6, Zeilen 21 bis 42. zu entnehmen.
Bei der im Laufe der Trocknung bewirkten Zerkleinerung von verhältnismäßig großen Stücken zu anschließend feinen Teilchen ist es bevorzugt, die Temperatur des Polymergels bei fortschreitender Trockung so niedrig wie möglich zu halten, um den Wirkungsgrad zu erhöhen und zu verhindern, dass die Stücke oder feinen Teilchen anein- ander kleben. Dies kann beispielsweise erreicht werden durch ausreichende Kühlung des gebildeten Polymergels mit anströmender Kaltluft bzw. Umgebungsluft, wobei es durch die Verdampfungskälte zur automatischen Abkühlung des Polymerguts kommt. Das Polymergel wird auf diese Weise beispielsweise durch Strömungstrocknen auf einem Band getrocknet.
Nach dem erfindungsgemäßen Verfahren ist es möglich wässrige Polymergele zu tro- cken, so dass der Trocknungsqualitätsindex (TQI) üblicherweise höchstens 8, vorzugsweise höchstens 6, bevorzugt höchstens 4, besonders bevorzugt höchstens 2, ganz besonders bevorzugt höchstens 1 , und üblicherweise mindestens 0,01 beträgt.
Besonders vorteilhaft ist das erfindungsgemäße Verfahren, wenn bei der Herstellung der wässrigen Polymergele zumindest teilweise Vernetzer eingesetzt werden, die mindestens zwei ethylenisch ungesättigte Gruppen enthalten und bei denen mindestens zwei ethylenisch ungesättigte Gruppen über mindestens eine Estergruppe miteinander verbunden sind, beispielsweise Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester und Polyallylester.
Die wässrigen Polymergele werden durch Polymerisation einer Monomerlösung, enthaltend
a) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, b) mindestens einen Vernetzer, c) gegebenenfalls ein oder mehrere mit dem Monomeren a) copolymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und d) gegebenenfalls ein oder mehrere wasserlösliche Polymere, auf die die Monomere a), b) und ggf. c) zumindest teilweise aufgepfropft werden können,
erhalten.
Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, oder deren Derivate, wie Acrylamid, Methacrylamid, Acrylsäureester und Methacrylsäureester. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu 0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydro- chinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
Figure imgf000012_0001
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeu- tet.
Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oderTricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Die Vernetzer b) sind Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A-O 530 438 beschrieben, Di- und Triacrylate, wie in EP-A-O 547 847, EP-A-O 559 476, EP-A-O 632 068, WO-A-93/21237, WO-A-03/104299, WO-A-03/104300, WO-A- 03/104301 und DE-A-103 31 450 beschrieben, gemischte Acrylate, die neben Acry- latgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE-A- 103 31 456 und der älteren deutschen Anmeldung mit dem Aktenzeichen 10355401.7 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE-A-195 43 368, DE- A-196 46 484, WO-A-90/15830 und WO-A-02/32962 beschrieben.
Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N1N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallylo- xyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP-A-O 343427 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi- Pentaerythritoltri- und Pentaerythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerindi- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylier- te Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Polyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 300 und 1000 aufweist.
Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 15-fach ethoxylierten Glyzerins, des 3- bis 15-fach ethoxylierten Trimethylolpropans, des 3- bis 15-fach ethoxylierten Trimethylolethans, inbesondere Di- und Triacrylate des 2- bis 6- fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxy- lierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine wie sie beispielsweise in WO-A-03/104301 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischerweise unter 10 Gew.-ppm) im wasserabor- bierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränderte Oberflächenspannung (typischerweise mindestens 0,068 N/m) im Vergleich zu Wasser gleicher Temperatur auf.
Mit den Monomeren a) copolymerisierbare ethylenisch ungesättigte Monomere c) sind beispielsweise Acrylamid, Methacrylamid, Crotonsäureamid, Dimethylaminoethyl- methacrylat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopro- pylacrylat, Dimethylaminobutylacrylat, Dimethylaminoethylmethacrylat, Diethylami- noethylmethacrylat, Dimethylaminoneopentylacrylat und Dimethylaminoneopentyl- methacrylat.
Als wasserlösliche Polymere d) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, Polyglykole oder Polyacrylsäuren, vorzugsweise Polyvinylalkohol und Stärke, eingesetzt werden. Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher können die Polymerisationsinhibitoren vor der Polymerisation durch Inertisierung, d.h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
Die Herstellung eines geeigneten Grundpolymers sowie weitere geeignete hydrophile ethylenisch ungesättigte Monomere d) werden in DE-A-19941 423, EP-A-O 686 650, WO-A-01 /45758 und WO-A-03/104300 beschrieben.
Wasserabsorbierende Polymere werden üblicherweise durch Polymerisation einer wässrigen Monomerlösung und gegebenenfalls einer anschließenden Zerkleinerung des Hydrogels erhalten. Geeignete Herstellverfahren sind in der Literatur beschrieben. Wasserabsorbierende Polymere können beispielsweise erhalten werden durch
Gelpolymerisation im Batchverfahren bzw. Rohrreaktor und anschließender Zerkleinerung im Fleischwolf, Extruder oder Kneter (EP-A-O 445 619, DE-A-19 846 413) - Polymerisation im Kneter, wobei durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert wird, (WO-A-01/38402)
Polymerisation auf dem Band und anschließende Zerkleinerung im Fleischwolf, Extruder oder Kneter (DE-A-38 25 366, US-6,241 ,928) Emulsionspolymerisation, wobei bereits Perlpolymerisate relativ enger Gelgrö- ßenverteilung anfallen (EP-A-O 457 660)
In-situ Polymerisation einer Gewebeschicht, die zumeist im kontinuierlichen Betrieb zuvor mit wässriger Monomerlösung besprüht und anschließend einer Photopolymerisation unterworfen wurde (WO-A-02/94328, WO-A-02/94329)
Die Umsetzung wird vorzugsweise in einem Kneter, wie beispielsweise in WO-A-
01/38402 beschrieben, oder auf einem Bandreaktor, wie beispielsweise in EP-A-O 955 086 beschrieben, durchgeführt.
Die Säuregruppen der erhaltenen Hydrogele sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 85 mol-%, bevorzugt zu 27 bis 80 mol-%, besonders bevorzugt zu 27 bis 30 mol-% oder 40 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Al- kalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium als Alkalimetalle besonders bevorzugt sind, ganz besonders bevorzugt jedoch Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisati- onsmittels als wässrige Lösung oder bevorzugt auch als Feststoff erreicht. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23°C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
Die Neutralisation kann nach der Polymerisation auf der Stufe des Hydrogels durchgeführt werden. Es ist aber auch möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol- %, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Hydrogels eingestellt wird. Die Monomerlösung kann durch Einmischen des Neutralisationsmittels neutralisiert werden. Das Hydrogel kann mechanisch zerkleinert werden, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig unterge- mischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden. Die Neutralisation der Monomerlösung auf den Endneutralisationsgrad ist bevorzugt.
Anschließend werden die erhaltenen wässrigen Hydrogele gemäß den oben beschrie- benen erfindungsgemäßen Verfahren getrocknet.
Auf die weitere Behandlung des getrockneten Hydrogels kommt es bei dem erfindungsgemäßen Verfahren nicht an. Das erfindungsgemäße Verfahren kann beispielsweise noch die Schritte Mahlung, Siebung und/oder Nachvernetzung umfassen.
Das getrocknete Hydrogel wird vorzugsweise gemahlen und gesiebt, wobei zur Mahlung üblicherweise Walzenstühle, Stiftmühlen oder Schwingmühlen eingesetzt werden können. Die Partikelgröße des gesiebten, trockenen Hydrogels beträgt vorzugsweise unter 1000 μm, besonders bevorzugt unter 900 μm, ganz besonders bevorzugt unter 800 μm, und vorzugsweise über 100 μm, besonders bevorzugt über 150 μm, ganz besonders bevorzugt über 200 μm.
Ganz besonders bevorzugt ist eine Partikelgröße (Siebschnitt) von 106 bis 850 μm. Die Partikelgröße wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Particle size distribution" bestimmt.
Die Grundpolymere werden vorzugsweise anschließend oberflächennachvernetzt. Hierzu geeignete Nachvernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polya- ziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in EP-A-O 083 022, EP-A-543 303 und EP-A-937 736 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE-C-33 14 019, DE-C-35 23 617 und EP-A-450 922 beschrieben, oder ß- Hydroxyalkylamide, wie in DE-A-102 04 938 und US-6,239,230 beschrieben.
Des weiteren sind in DE-A-40 20 780 zyklische Karbonate, in DE-A-198 07 502 2- Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE-A-198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A-198 54 573 2-Oxotetrahydro-1 ,3-oxazin und dessen Derivate, in DE-A-198 54 574 N-Acyl-2-Oxazolidone, in DE-A-102 04 937 zyklische Harnstoffe, in DE-A-103 34 584 bizyklische Amidacetale, in EP-A-1 199 327 Oxetane und zyklische Harnstoffe und in WO-A-03/031482 Morpholin-2,3-dion und dessen Derivate als geeignete Oberflächennachvernetzer beschrieben.
Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des O- berflächennachvernetzers auf das Hydrogel oder das trockene Grundpolymerpulver aufgesprüht wird. Im Anschluss an das Aufsprühen wird das Polymerpulver thermisch getrocknet, wobei die Vernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit be- wegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schaufelmischer. Geeignete Mischer sind beispielsweise Lödige®-Mischer, Bepex®-Mischer, Nauta®-Mischer, Processall®-Mischer und Schugi®-Mischer.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex®-Trockner und Nara®-Trockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Es kann aber auch beispielsweise eine azeotrope Destillation als Trocknungsverfahren benutzt werden.
Bevorzugte Trocknungstemperaturen liegen im Bereich 50 bis 2500C, bevorzugt bei 50 bis 200°C, und besonders bevorzugt bei 50 bis 1500C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 30 Minuten, be- sonders bevorzugt unter 10 Minuten. Ein weiterer Gegenstand der vorliegenden Erfindung sind wasserabsorbierende Polymere, die nach dem oben beschriebenen Verfahren erhältlich sind.
Die erfindungsgemäßen wasserabsorbierenden Polymere weisen typischerweise eine Zentrifugenretentionskapazität (CRC) von mindestens 10 g/g, vorzugsweise mindestens 15 g/g, besonders bevorzugt mindestens 20 g/g, und üblicherweise von weniger als 100 g/g auf. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der E- DANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
Die erfindungsgemäßen wasserabsorbierenden Polymere weisen typischerweise eine Absorption unter Druck 0,3 psi (2,07 kPa) von mindestens 10 g/g, vorzugsweise mindestens 15 g/g, besonders bevorzugt mindestens 20 g/g, und üblicherweise von weniger als 60 g/g auf. Die Absorption unter Druck (AUL) wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 442.2-02 "Absorption under pressure" bestimmt.
Ein weiterer Gegenstand der vorliegenden Erfindung sind Verfahren zur Herstellung von Hygieneartikeln, insbesondere Windeln, umfassend die Verwendung gemäß oben- genannten Verfahrens hergestellter wasserabsorbierender Polymerpartikel.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Vorrichtung zum Trocknen wasserabsorbierender Polymere, umfassend
i) mindestens ein gasdurchlässiges Förderband, ii) wobei mindestens ein Förderband i) über eine Vorrichtung verfügt, die es ermöglicht dem mindestens einen Förderband i) mindestens zwei erwärmte Gasströme unterschiedlicher Temperatur zuzuführen, iii) mindestens einen Gasvorwärmer, iv) mindestens eine Gaszufuhr die von oben auf das Förderband i) gerichtet ist, v) gegebenenfalls mindestens eine Gaszufuhr die von unten auf das Förderband i) gerichtet ist, wobei das Förderband i) zuerst von unten angeströmt werden kann, und vi) mindestens eine Vorrichtung zur Druckminderung,
Die Vorrichtung ii) kann beispielsweise aus mindestens zwei unabhängigen Gasvorwärmern bestehen oder aus eine Gasvorwärmer, wobei der erwärmte Gasstrom geteilt und die Temperaturen der Teilströme durch Zumischen von Abgas oder Frischgas unabhängig voneinander einstellbar sind. Die Anzahl der Gasströme unterschiedlicher Temperatur, die über die Vorrichtung ii) zugeführt werden können, beträgt vorzugsweise mindestens 6, bevorzugt mindestens 8, besonders bevorzugt mindestens 10, ganz besonders bevorzugt mindestens 12.
Erwärmt bedeutet, dass die Möglichkeit besteht den Gasströmen Wärmeenergie zuzuführen, so dass die Temperatur des Gasstroms höher ist als vor der Wärmezufuhr, vorzugsweise mindestens 10°C höher, bevorzugt mindestens 200C höher, besonders bevorzugt mindestens 30°C höher, ganz besonders bevorzugt mindestens 400C höher.
Als Vorrichtung vi) sind beispielsweise Verdichter geeignet, die so angeordnet sind, dass Gas aus dem Trockner gefördert wird, so dass der Druck im Trockner niedriger ist als in der Umgebung.
Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Vorrichtung zum Trock- nen wasserabsorbierender Polymere, umfassend
i) mindestens ein gasdurchlässiges Förderband, ii) wobei mindestens ein Förderband i) über eine Vorrichtung verfügt, die es ermöglicht dem mindestens einen Förderband i) mindestens zehn erwärmte Gas- ströme unterschiedlicher Temperatur zuzuführen, iii) mindestens einen Gasvorwärmer, iv) mindestens eine Gaszufuhr die von oben auf das Förderband i) gerichtet ist, v) gegebenenfalls mindestens eine Gaszufuhr die von unten auf das Förderband i) gerichtet ist, wobei das Förderband i) zuerst von unten angeströmt werden kann, und vi) gegebenenfalls mindestens eine Vorrichtung zur Druckminderung,
Die Anzahl der Gasströme unterschiedlicher Temperatur, die über die Vorrichtung ii) zugeführt werden können, beträgt vorzugsweise mindestens 11 , bevorzugt mindestens 12, besonders bevorzugt mindestens 13, ganz besonders bevorzugt mindestens 14.
Das vorliegende Verfahren ermöglicht es, auf einfache Weise wasserabsorbierende Polymere herzustellen, die sich durch ein hervorragendes Absorptionsprofil auszeichnen. Durch das erfindungsgemäße Verfahren wird das bei der Polymerisation anfallen- de wässrige Polymergel schonend und wirtschaftlich getrocknet. Die Produkteigenschaften werden durch die erfindungsgemäße Trocknung nur wenig beeinflusst. Die auf diese Weise erhaltenen wasserabsorbierenden Polymere können weitestgehend eingesetzt werden in Gebieten, in denen es darum geht, wässrige Flüssigkeiten zu absorbieren und zurückzuhalten. Bevorzugte Einsatzgebiete sind neben dem Hygiene- sektor vor allem der Agrarsektor sowie weitere industrielle Anwendungsgebiete.
Zur Bestimmung der Güte der Nachvemetzung werden die getrocknete wasserabsorbierenden Polymerpartikel mit den nachfolgend beschrieben Testmethoden geprüft. Methoden:
Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstempera- tur von 23 + 2 0C und einer relativen Luftfeuchte von 50 + 10 % durchgeführt werden. Die wasserabsorbierenden Polymere werden vor der Messung gut durchmischt.
Zentrifugenretentionskapazität (CRC Centrifuge Retention Capacity)
Die Zentrifugenretentionskapazität der wasserabsorbierenden Polymerpartikel wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
Extrahierbare
Der Anteil an Extrahierbaren in den wasserabsorbierenden Polymerpartikeln wird gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 470.2-02 "Extractables" bestimmt.
Feuchtegehalt:
Der Feuchtegehalt wird gemäß der in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und AT. Graham, Wiley-VCH, 1998, Seiten 143 und 144, beschriebenen Methode bestimmt. Dazu wird 1g Hydrogelprobe in einer LC-Säule unter Heliumathmosphäre 1 Stunde bei 180°C getrocknet und der Feuchtgehalt über den Gewichtsverlust ermittelt.
Trocknungsgualitätsindex (TQI)
Zur Bestimmung des Trocknungsqualitätsindex wird von dem zerkleinerten wässrigen Polymergel nach der Polymerisation eine Probe entnommen, auf Blechen mit Siebböden homogen in dünner Schicht verteilt und dann 24 h bei 800C im Vakuum bei weniger als 100 mbar getrocknet. Diese Trocknung ist sehr produktschonend. Anschließend wird das getrocknete Hydrogel gemahlen und die Siebfraktion von 300 bis 600 μm iso- liert (Polymer 1).
Eine nach dem zu untersuchenden Trockenverfahren getrocknete Hydrogelprobe wird ebenfalls gemahlen. Anschließend wird die Siebfraktion von 300 bis 600 μm isoliert (Polymer 2).
Die getrockneten wasserabsorbierenden Polymere werden durch Bestimmung der Zentrifugenretentionskapazität (CRC) sowie des Gehalts an Extrahierbaren charakteri- siert. Zusätzlich wird der Feuchtegehalt bestimmt und rechnerisch bei der Ermittlung dieser Eigenschaften berücksichtigt. Typischerweise liegt der Feuchtegehalt bei ca. 5 Gew.-%.
Aus den Messwerten bestimmt man dann den Trocknungsqualitätsindex (TQI), der sich wie folgt berechnet:
TQI = 0,5 x (CRC2 [g/g] - CRC1 [g/g]) + 0,5 x (Extrahierbare2 [%] - Extrahierbare! [%])
Die tiefgestellten Indizes bezeichnen hier die Polymere 1 bzw. 2. Der Trocknungsqualitätsindex ist also umso größer, je mehr durch die Betriebstrocknung die Zentrifugenre- tentionskapazität ansteigt und je mehr der Anteil der Extrahierbaren dabei ansteigt. Beide Beiträge werden gleich gewichtet. Die Höhe des Trocknungsqualitätsindex gibt an, wie stark die Eigenschaften des wasserabsorbierenden Polymeren durch die Trocknungsbedingungen des wässrigen Polymergels verändert werden. Ein niediger Trocknungsqualitätsindex bedeutet hierbei eine schonende Trocknung.
Die EDANA-Testmethoden sind beispielsweise erhältlich bei der European Dispo- sables and Nonwovens Association, Avenue Eugene Plasky 157, B-1030 Brüssel, BeI- gien.
Beispiele:
Herstellung des Polymergels
Durch kontinuierliches Mischen von Wasser, 50 gew.-%iger Natronlauge und Acrylsäu- re wurde eine 38,8 gew.-%ige Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 71,3 mol-% betrug. Der Feststoffgehalt der Monomerlösung betrug 38,8 Gew.-%. Die Monomerlösung wurde nach dem Mischen der Komponenten durch einen Wärmetauscher kontinuierlich auf eine Temperatur von 29°C abgekühlt und mit Stickstoff entgast.
Als mehrfach ethylenisch ungesättigter Vernetzer wird Polyethylenglykol-400-diacrylat (Diacrylat eines Polyethylenglykols mit einem mittleren Molgewicht von 400 g/mol) verwendet. Die Einsatzmenge betrug 2 kg pro t Monomerlösung.
Zur Initiierung der radikalischen Polymerisation wurden folgende Komponenten eingesetzt: Wasserstoffperoxid (1,03 kg (0,25 gew.-%ig) pro t Monomerlösung), Natriumpe- roxodisulfat (3,10 kg (15 gew.-%ig) pro t Monomerlösung), sowie Ascorbinsäure (1 ,05 kg (1 gew.-%ig) pro t Monomerlösung).
Der Durchsatz der Monomerlösung betrug 18 t/h. Die einzelnen Komponenten werden kontinuierlich in einen Reaktor List Contikneter mit 6.3m3 Volumen (Fa. List, Arisdorf, Schweiz) in folgenden Mengen eindosiert:
18 t/h Monomerlösung
36 kg/h Polyethylenglycol-400-diacrylat
74,34 kg/h Wasserstoffperoxidlösung/Natriumperoxodisulfat-Lösung
18,9 kg/h Ascorbinsäurelösung
Am Ende des Reaktors wurden zusätzlich 750 bis 900 kg/h abgetrenntes Unterkorn mit einer Partikelgröße kleiner 150 μm zudosiert.
Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5°C. Der Reaktor wurde mit einer Drehzahl der Wellen von 38rpm betrieben. Die Verweilzeit der Reaktionsmi- schung im Reaktor betrug 15 Minuten.
Im erhaltenen Produktgel wurde analytisch ein Restacrylsäuregehalt von 0,6 Gew.-% (bezogen auf Feststoffgehalt) und ein Feststoffgehalt von 45,0 Gew.-% gefunden. E- ventuell vorhandene Gelpartikel mit einem Durchmesser von 50 mm oder mehr wurden abgetrennt.
Beispiele 1 bis 4
Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Insgesamt wurden 18,3 t/h wässriges Polymergel mit einem Wassergehalt von 55 Gew.-% getrocknet. Das Gel wurde aus einer Höhe von 30 cm mittels eines Schwenkbandes auf das Förderband des Trockners aufgebracht. Die Höhe der Gelschicht betrug ca. 10 cm.
Die Bandgeschwindigkeit des Trocknerbandes betrug 0,02 m/s und die Verweilzeit auf dem Trocknerband betrug ca. 37 Minuten.
Der Bandtrockner war in insgesamt sechs Temperaturzonen unterteilt, in denen die Gaseingangstemperaturen unabhängig voneinander eingestellt werden konnten. Die Verweilzeit in den Temperaturzonen T1 bis T6 betrug (n=1 ; a=2; b=3, c=6): Temperaturzone rel. Verweilzeit abs. Verweilzeit
Ti 9% ca. 3,3 Minuten
T2 9% ca. 3,3 Minuten
T3 14% ca. 5,2 Minuten
T4 222/3% ca. 8,4 Minuten
T5 222/3% ca. 8,4 Minuten
T6 222/3% ca. 8,4 Minuten
In den Temperaturzonen T1 bis T3 wurde das Band von unten mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1 ,2 m/s.
In den Temperaturzonen T4 bis T6 wurde das Band von oben mit Luft angströmt. Die Luftgeschwindigkeit betrug 1 ,8 m/s.
Die Gaseingangstemperaturen der einzelnen Temperaturzonen sind in der Tabelle 1 und die Messergebnisse sind in der Tabelle 2 zusammengefasst.
Tab. 1: Gaseingangstemperaturen
Figure imgf000022_0001
Tab. 2: Messergebnisse
Figure imgf000022_0002
Beispiele 5 bis 7
Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Insgesamt wurden 18,3 t/h wässriges Polymergel mit einem Wassergehalt von 55 Gew.-% getrocknet. Das Gel wurde aus einer Höhe von 30 cm mittels eines Schwenkbandes auf das Förderband des Trockners aufgebracht. Die Höhe der Gelschicht betrug ca. 10 cm. Die Bandgeschwindigkeit des Trocknerbandes betrug 0,02 m/s und die Verweilzeit auf dem Trocknerband betrug ca. 37 Minuten.
Der Bandtrockner war in insgesamt sechs Temperaturzonen unterteilt, in denen die Gaseingangstemperaturen unabhängig voneinander eingestellt werden konnten. Die Verweilzeit in den Temperaturzonen T1 bis T6 betrug (n=1; a=2; b=3, c=6):
Temperaturzone Temperatur rel. Verweilzeit abs. Verweilzeit
Ti 1800C 9% ca. 3,3 Minuten
T2 175°C 9% ca. 3,3 Minuten
T3 165°C 14% ca. 5,2 Minuten
T4 175°C 222/3% ca. 8,4 Minuten
T5 1700C 22%% ca. 8,4 Minuten
T6 165°C 222/3% ca. 8,4 Minuten
Das Förderband konnte in jeder Temperaturzone unabhängig voneinander wahlweise von unten oder von oben angeströmt werden. Der Wassergehalt bei der Luftumkehr wurde über die Verweilzeit eingestellt. Dazu wurde die Anzahl der von unten bzw. oben angeströmten Temperaturzonen entsprechend variiert.
In den vorderen Temperaturzonen wurde das Band von unten mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1 ,2 m/s.
In den hinteren Temperaturzone wurde das Band von oben mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1 ,8 m/s.
Die eingestellten Parameter sind in der Tabelle 3 und die Messergebnisse sind in der Tabelle 4 zusammengefasst.
Tab. 3: Luftgeschwindigkeiten, relative Verweilzeiten und Wassergehalte bei der Strömungsumkehr
Figure imgf000023_0001
Tab. 4: Messergebnisse
Figure imgf000024_0001
Beispiele 8 bis 10
Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Insgesamt wurden 18,3 t/h wässriges Polymergel mit einem Wassergehalt von 55 Gew.-% getrocknet. Das Gel wurde aus einer Höhe von 30 cm mittels eines Schwenkbandes auf das Förderband des Trockners aufgebracht. Die Hö- he der Gelschicht betrug ca. 10 cm.
Die für die Trocknung wirksame Förderbandlänge betrug 44 m.
Der Bandtrockner war in insgesamt sechs Temperaturzonen unterteilt, in denen die Gaseingangstemperaturen unabhängig voneinander eingestellt werden konnten. Die Verweilzeit in den Temperaturzonen T1 bis T6 betrug (n=1 ; a=2; b=3, c=6):
Temperaturzone Temperatur rel. Verweilzeit
T1 1800C 9%
T2 175°C 9%
T3 165°C 14%
T4 175°C 222/3%
T5 1700C 22%%
T6 165°C 22%%
Die Verweilzeit im Bandtrockner wurde über die Bandgeschwindigkeit eingestellt. Die Gasgeschwindigkeit, bei der sich die Hydrogelschicht vom Band ablöst (Wirbelpunkt), betrug 11 m/s.
In den Temperaturzonen T1 bis T3 wurde das Band von unten mit Luft angeströmt.
In den Temperaturzonen T4 bis T6 wurde das Band von oben mit Luft angeströmt. Die Luftgeschwindigkeit betrug 1,8 m/s.
Die eingestellten Parameter sind in der Tabelle 5 und die Messergebnisse sind in der Tabelle 6 zusammengefasst. Tab. 5: Luftgeschwindigkeiten, relative Verweilzeiten und Wassergehalte bei der Strömungsumkehr
Figure imgf000025_0001
Tab. 6: Messergebnisse
Figure imgf000025_0002
*) Rissbildung in Gelschicht

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymere mit niedrigem Trock- nungsqualitätsindex durch Polymerisation einer Monomerlösung und Trocknung des erhaltenen Hydrogels mittels eines erwärmten Gasstromes, dadurch gekennzeichnet, dass
die Trocknung in mindestens zwei Temperaturzonen durchgeführt wird, wobei die Gaseingangstemperaturen die Bedingung Tn ungleich Tn+a erfüllen, wobei die Indizes n und a jeweils eine ganze Zahl größer 0 bedeuten, und/oder
der Gasstrom das Hydrogel im vorderen Abschnitt eines Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wo- bei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 15 bis 45 Gew.-% stattfindet, und/oder
die Hydrogelschicht in einem Bandtrockner zumindest teilweise von unten angeströmt wird, wobei die Gasgeschwindigkeit von 5 bis 30% der Gasge- schwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Gaseingangstemperaturen die Bedingung Tn größer Tn+3 erfüllen.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trocknung in mindestens drei Temperaturzonen durchgeführt wird, wobei die Gaseingangstemperaturen die Bedingung Tn+3 kleiner Tn+b erfüllen, wobei der Index b eine ganze Zahl größer a bedeutet.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass die Gaseingangstemperaturen die Bedingung Tn größer Tπ+b erfüllen.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Gaseingangstemperaturen in mindestens zwei der Temperaturzonen Tn bis
Tp+a-1 die Bedingung Tn+r größer Tn+3 erfüllen, wobei der Index a eine ganze Zahl größer 1 , der Index r eine ganze Zahl von 0 bis (a-2) und der Index s eine ganze Zahl von (r+1) bis (a-1) bedeuten.
6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Gaseingangstemperaturen in mindestens zwei der Temperaturzonen Tn+b bis Tn+C-I die Bedingung Tn+11 größer Tn+V erfüllen, wobei der Index c eine ganze Zahl größer (b+1), der Index u eine ganze Zahl von b bis (c-2) und der Index v eine ganze Zahl von (u+1) bis (c-1) bedeuten.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Gaseingangstemperaturen in mindestens drei der Temperaturzonen Tn+b bis
Tn+c-1 die Bedingung Tn+U größer Tn+V größer Tn+W erfüllen, wobei der Index c eine ganze Zahl größer (b+2), der Index u eine ganze Zahl von b bis (c-3), der Index v eine ganze Zahl von (u+1) bis (c-2) und der Index w eine ganze Zahl von (v+1) bis (c-1) bedeuten.
8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Temperaturdifferenz der Gaseingangstemperaturen mindestens 2°C beträgt.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Gasstrom das Hydrogel im vorderen Abschnitt des Bandtrockners von unten und im hinteren Abschnitt des Bandtrockners von oben anströmt, wobei die Strömungsumkehr bei einem Wassergehalt des Hydrogels von 20 bis 40 Gew.-% stattfindet.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass die Geschwindigkeit des die Hydrogelschicht anströmenden Gasstroms nach der Strömungsumkehr erhöht ist.
11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Hydrogelschicht zumindest teilweise von unten angeströmt wird, wobei die
Gasgeschwindigkeit von 10 bis 20% der Gasgeschwindigkeit beträgt, die notwendig ist um das Hydrogel vom Band zu lösen.
12. Verfahren gemäß einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass das Hydrogel vor der Trocknung einen Wassergehalt von 30 bis 70 Gew.-% aufweist.
13. Verfahren gemäß einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Hydrogel nach der Trocknung einen Wassergehalt von 1 bis 10 Gew.-% aufweist.
14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Geschwindigkeit des die Hydrogelschicht anströmenden Gasstroms von 0,5 bis 5 m/s beträgt.
15. Verfahren gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass der die Hydrogelschicht anströmende Gasstrom einen Wasserdampfanteil aufweist, der einem Taupunkt von höchstens 500C entspricht.
16. Verfahren gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die Temperatur des die Hydrogelschicht anströmenden Gasstroms von 50 bis 2500C beträgt.
17. Verfahren gemäß einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Verweilzeit des Hydrogels im Trockner von 10 bis 120 Minuten beträgt.
18. Verfahren gemäß einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass der Druck bei der Trocknung niedriger ist als Atmosphärendruck.
19. Verfahren gemäß einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass die Aufgabehöhe des Hydrogels auf das Band von 10 bis 200 cm beträgt.
20. Verfahren gemäß einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Bandgeschwindigkeit von 0,005 bis 0,05 m/s beträgt.
21. Verfahren gemäß einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass der Trocknungsqualitätsindex bei der Trocknung des Hydrogels höchstens 8 beträgt.
22. Vorrichtung zum Trocknen wasserabsorbierender Polymere, bestehend aus einem gasdurchlässigen Förderband, das von einem vorgewärmten Gas angeströmt werden kann, wobei die Gaseingangstemperaturen so eingestellt werden können, dass mindestens zwei Temperaturzonen entstehen, und mindestens einer Vorrichtung zur Druckminderung.
23. Vorrichtung zum Trocknen wasserabsorbierender Polymere, bestehend aus einem gasdurchlässigen Förderband, das von einem vorgewärmten Gas angeströmt werden kann, wobei die Gaseingangstemperaturen so eingestellt werden können, dass mindestens zehn Temperaturzonen entstehen.
24. Vorrichtung gemäß Anspruch 22 oder 23, dadurch gekennzeichnet, dass das Förderband im vorderen Abschnitt von unten und im hinteren Abschnitt von oben angeströmt werden kann.
25. Verwendung einer Vorrichtung gemäß einem der Ansprüche 22 bis 24 zum Trocknen wasserabsorbierender Polymere.
26. Verfahren zur Herstellung von Hygieneartikeln, umfassend die Verwendung gemäß einem der Ansprüche 1 bis 21 hergestellter wasserabsorbierender Polymere.
PCT/EP2006/061010 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere WO2006100300A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN2006800094407A CN101146832B (zh) 2005-03-24 2006-03-23 生产吸水性聚合物的方法
EP06725287A EP1863852B1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
DE502006008808T DE502006008808D1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
JP2008502424A JP5992134B2 (ja) 2005-03-24 2006-03-23 吸水性ポリマーの製造方法
US11/816,769 US8592516B2 (en) 2005-03-24 2006-03-23 Method for the production of water absorbing polymers
BRPI0608923A BRPI0608923B1 (pt) 2005-03-24 2006-03-23 processo para produzir um polímero absorvedor de água, dispositivo para secagem de um polímero absorvedor de água, e, uso de um dispositivo
AT06725287T ATE496945T1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere
US14/063,129 US9238215B2 (en) 2005-03-24 2013-10-25 Apparatus for the production of water absorbing polymers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005014291A DE102005014291A1 (de) 2005-03-24 2005-03-24 Verfahren zur Herstellung wasserabsorbierender Polymere
DE102005014291.5 2005-03-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/816,769 A-371-Of-International US8592516B2 (en) 2005-03-24 2006-03-23 Method for the production of water absorbing polymers
US14/063,129 Division US9238215B2 (en) 2005-03-24 2013-10-25 Apparatus for the production of water absorbing polymers

Publications (1)

Publication Number Publication Date
WO2006100300A1 true WO2006100300A1 (de) 2006-09-28

Family

ID=36581968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/061010 WO2006100300A1 (de) 2005-03-24 2006-03-23 Verfahren zur herstellung wasserabsorbierender polymere

Country Status (11)

Country Link
US (2) US8592516B2 (de)
EP (3) EP2305718B1 (de)
JP (3) JP5992134B2 (de)
KR (1) KR20070121804A (de)
CN (1) CN101146832B (de)
AT (1) ATE496945T1 (de)
BR (1) BRPI0608923B1 (de)
DE (2) DE102005014291A1 (de)
TW (1) TW200640951A (de)
WO (1) WO2006100300A1 (de)
ZA (1) ZA200709067B (de)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034786A1 (de) * 2006-09-19 2008-03-27 Basf Se Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
WO2009028568A1 (ja) 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. 吸水性樹脂の製造方法
JP2010515816A (ja) * 2007-01-16 2010-05-13 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマーの製造
WO2011104152A1 (de) * 2010-02-24 2011-09-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011104139A1 (de) * 2010-02-24 2011-09-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US8119755B2 (en) * 2008-07-11 2012-02-21 Basf Se Process for producing water-absorbing polymer particles
WO2014082705A1 (de) 2012-11-30 2014-06-05 Merck Patent Gmbh Elektronische vorrichtung
WO2015046604A1 (ja) 2013-09-30 2015-04-02 株式会社日本触媒 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法
WO2015053372A1 (ja) 2013-10-09 2015-04-16 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤及びその製造方法
WO2015072536A1 (ja) 2013-11-14 2015-05-21 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
WO2015074966A1 (en) 2013-11-22 2015-05-28 Basf Se Process for producing water-absorbing polymer particles
WO2015199758A1 (en) 2014-06-23 2015-12-30 The Procter & Gamble Company Absorbing articles comprising water absorbing resin and method for producing the same
EP2438096B1 (de) 2009-06-03 2016-01-27 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
US9327270B2 (en) 2006-09-25 2016-05-03 Basf Se Method for the continuous production of water absorbent polymer particles
WO2016180597A1 (de) 2015-05-08 2016-11-17 Basf Se Herstellungsverfahren zur herstellung wasserabsorbierender polymerartikel und bandtrockner
WO2017170604A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 吸水剤の製造方法
WO2017170501A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 吸水剤およびその製造方法、並びに吸水剤を用いた吸収性物品
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2017207374A1 (de) 2016-05-31 2017-12-07 Basf Se Bandtrockneranordnung zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln und verfahren zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln
KR20180004790A (ko) * 2015-05-08 2018-01-12 바스프 에스이 물 흡수성 폴리머 입자들을 제조하기 위한 제조 프로세스 및 벨트 건조기
WO2018011018A1 (de) 2016-07-15 2018-01-18 Basf Se Bandtrockneranordnung zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln und verfahren zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln
WO2018092864A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
WO2019074094A1 (ja) 2017-10-12 2019-04-18 株式会社日本触媒 粒子状吸水剤の物性の測定方法及び粒子状吸水剤
WO2019098244A1 (ja) 2017-11-16 2019-05-23 株式会社日本触媒 吸水剤および吸収性物品
WO2019198821A1 (ja) 2018-04-13 2019-10-17 株式会社日本触媒 吸水性シート、吸水性シートの製造方法および吸収性物品
WO2019221235A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂の製造方法
WO2020096003A1 (ja) 2018-11-07 2020-05-14 株式会社日本触媒 粒子状吸水剤の製造方法および粒子状吸水剤
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
WO2020145383A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水剤、及び吸水剤の製造方法
WO2020145384A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
WO2020241123A1 (ja) 2019-05-31 2020-12-03 株式会社日本触媒 吸水剤の製造方法及びポリアクリル酸(塩)系吸水性樹脂
WO2021095806A1 (ja) 2019-11-12 2021-05-20 株式会社日本触媒 粒子状吸水剤およびその製造方法
WO2021140905A1 (ja) 2020-01-06 2021-07-15 株式会社日本触媒 吸収体、吸水性樹脂、及び吸収性物品
WO2021162072A1 (ja) 2020-02-14 2021-08-19 株式会社日本触媒 吸収体、吸水剤および吸水剤の製造方法
WO2021162085A1 (ja) 2020-02-14 2021-08-19 株式会社日本触媒 吸水性樹脂およびその製造方法
WO2021201177A1 (ja) 2020-03-31 2021-10-07 株式会社日本触媒 粒子状吸水剤
EP3984633A1 (de) 2015-01-07 2022-04-20 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel
WO2022163849A1 (ja) 2021-01-29 2022-08-04 株式会社日本触媒 吸水性樹脂の製造方法
WO2022181771A1 (ja) 2021-02-26 2022-09-01 株式会社日本触媒 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
WO2022196763A1 (ja) 2021-03-18 2022-09-22 株式会社日本触媒 吸水性樹脂の製造方法
WO2022197991A1 (en) 2021-03-18 2022-09-22 The Procter & Gamble Company Method for producing absorbent articles comprising water-absorbing resin
WO2022239723A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2023046583A1 (de) 2021-09-27 2023-03-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730633B2 (en) * 2004-10-12 2010-06-08 Pesco Inc. Agricultural-product production with heat and moisture recovery and control
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
CN101605819B (zh) * 2007-02-06 2014-07-23 巴斯夫欧洲公司 通过聚合单体溶液的液滴生产吸水性聚合物颗粒的方法
WO2009153196A1 (de) * 2008-06-19 2009-12-23 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
TWI500636B (zh) * 2008-10-07 2015-09-21 Evonik Degussa Gmbh 用於製造超吸性聚合物的方法
TWI500663B (zh) * 2008-10-07 2015-09-21 Evonik Degussa Gmbh 用於製造超吸性聚合物的連續方法
US8357766B2 (en) 2008-10-08 2013-01-22 Evonik Stockhausen Gmbh Continuous process for the production of a superabsorbent polymer
US8048942B2 (en) 2008-10-08 2011-11-01 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
US8063121B2 (en) 2008-10-08 2011-11-22 Evonik Stockhausen Gmbh Process for the production of a superabsorbent polymer
CN102482435B (zh) * 2009-08-28 2014-04-30 株式会社日本触媒 吸水性树脂的制造方法
JP5514841B2 (ja) 2010-01-20 2014-06-04 株式会社日本触媒 吸水性樹脂の製造方法
WO2011090130A1 (ja) 2010-01-20 2011-07-28 株式会社日本触媒 吸水性樹脂の製造方法
WO2011099586A1 (ja) 2010-02-10 2011-08-18 株式会社日本触媒 吸水性樹脂粉末の製造方法
JP5658229B2 (ja) * 2010-03-08 2015-01-21 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
EP2546286B1 (de) 2010-03-12 2019-09-25 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden kunstharzes
EP3115382B1 (de) 2010-04-07 2019-07-10 Nippon Shokubai Co., Ltd. Verfahren zur herstellung eines wasserabsorbierenden polyacrylsäure(salz)-harzpulvers sowie wasserabsorbierendes polyacrylsäure(salz)-harzpulver
US8765906B2 (en) 2010-04-27 2014-07-01 Nippon Shokubai, Co., Ltd. Method for producing polyacrylic acid (salt) type water absorbent resin powder
US8791230B2 (en) 2010-06-08 2014-07-29 Nippon Shokubai Co., Ltd. Method for producing particulate water absorbent resin
KR101317815B1 (ko) * 2010-06-16 2013-10-15 주식회사 엘지화학 고흡수성 수지의 제조 방법
EP2700667B1 (de) 2011-04-20 2017-08-09 Nippon Shokubai Co., Ltd. Verfahren und vorrichtung zur herstellung eines wasserabsorbierbaren harzes mit einer polyacrylsäure oder einem salz davon
EP2615120B2 (de) 2012-01-12 2022-12-21 Evonik Superabsorber GmbH Verfahren zur kontinuierlichen Herstellung von wasserabsorbierenden Polymeren
EP2620465B2 (de) 2012-01-27 2018-03-28 Evonik Degussa GmbH Wärmebehandlung von wasserabsorbierenden Polymerpartikeln in einem Wirbelbett bei hoher Aufheizrate
EP2620466B1 (de) * 2012-01-27 2014-09-10 Evonik Degussa GmbH Wärmebehandlung von wasserabsorbierenden Polymerpartikeln in einem Wirbelbett
CN105555158B (zh) * 2013-09-25 2019-12-03 日本烟草产业株式会社 碳热源的干燥方法
JP6267047B2 (ja) * 2014-04-25 2018-01-24 新日鐵住金株式会社 脱水ケーキの含水率低下装置及び脱水ケーキの含水率低下方法
WO2015163518A1 (en) * 2014-04-25 2015-10-29 Songwon Industrial Co., Ltd. Initiator system for preparation of a water-absorbent polymer by radical polymerization
US9975979B2 (en) 2014-10-08 2018-05-22 Lg Chem, Ltd. Method of preparing superabsorbent polymer
KR102159498B1 (ko) * 2016-12-26 2020-09-25 주식회사 엘지화학 건조 시스템
KR102518937B1 (ko) * 2017-12-22 2023-04-05 주식회사 엘지화학 고흡수성 수지의 제조 방법
CN109078391A (zh) * 2018-08-03 2018-12-25 闽江学院 一种水凝胶填充多孔滤材制备的复合滤芯
EP3753976B1 (de) 2018-11-13 2023-08-30 Lg Chem, Ltd. Verfahren zur herstellung eines stark absorbierenden polymers
JP2023534848A (ja) * 2020-12-07 2023-08-14 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104302A1 (de) * 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2005103119A1 (de) * 2004-04-21 2005-11-03 Stockhausen Gmbh Verfahren zur herstellung eines absorbierenden polymers mittels spreittrocknung
WO2005123781A2 (de) * 2004-06-21 2005-12-29 Stockhausen Gmbh Wasserabsorbierendes polysaccharid sowie ein verfahren zu seiner herstellung

Family Cites Families (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6917989A (de) * 1968-12-06 1970-06-09
US3765103A (en) * 1971-12-03 1973-10-16 Foamat Foods Corp Plural gas stream dryer
JPS6018690B2 (ja) 1981-12-30 1985-05-11 住友精化株式会社 吸水性樹脂の吸水性改良方法
JPS58180233A (ja) 1982-04-19 1983-10-21 Nippon Shokubai Kagaku Kogyo Co Ltd 吸収剤
US4734478A (en) 1984-07-02 1988-03-29 Nippon Shokubai Kagaku Kogyo Co., Ltd. Water absorbing agent
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
ES2026653T3 (es) * 1987-04-30 1992-05-01 Nippon Shokubai Kagaku Kogyo Co., Ltd Metodo para la produccion de un polimero hidrofilo.
FI90554C (fi) 1987-07-28 1994-02-25 Dai Ichi Kogyo Seiyaku Co Ltd Menetelmä akryylipolymeerigeelin jatkuvaksi valmistamiseksi
DE3817425A1 (de) 1988-05-21 1989-11-23 Cassella Ag Alkenyl-phosphon- und -phosphin-saeureester, verfahren zu ihrer herstellung sowie unter deren verwendung hergestellte hydrogele und deren verwendung
CA2001590A1 (en) * 1988-10-28 1990-04-28 Tsuneo Tsubakimoto Method for metered supply of material, apparatus therefor, and method for production of hydrophilic polymer by use thereof
WO1990015830A1 (en) 1989-06-12 1990-12-27 Weyerhaeuser Company Hydrocolloid polymer
DE4007313A1 (de) 1990-03-08 1991-09-12 Basf Ag Verfahren zur herstellung von feinteiligen, wasserloeslichen polymerisaten
CA2038779A1 (en) 1990-04-02 1991-10-03 Takumi Hatsuda Method for production of fluid stable aggregate
FR2661912B1 (fr) 1990-05-14 1994-05-13 Hoechst Ste Francaise Nouveaux polymeres absorbants, leur procede de fabrication et leur application.
DE4020780C1 (de) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0467073B1 (de) * 1990-07-17 1995-04-12 Sanyo Chemical Industries Ltd. Verfahren zur Herstellung von Wasser absorbierenden Harzen
ES2097235T3 (es) 1991-09-03 1997-04-01 Hoechst Celanese Corp Polimero superabsorbente que tiene propiedades de absorcion mejoradas.
DE4138408A1 (de) 1991-11-22 1993-05-27 Cassella Ag Hydrophile, hochquellfaehige hydrogele
JP3045422B2 (ja) 1991-12-18 2000-05-29 株式会社日本触媒 吸水性樹脂の製造方法
DE69312126T2 (de) 1992-03-05 1997-11-06 Nippon Catalytic Chem Ind Verfahren zu Herstellung eines absorbierenden Harzes
GB9208449D0 (en) 1992-04-16 1992-06-03 Dow Deutschland Inc Crosslinked hydrophilic resins and method of preparation
DE69412547T2 (de) 1993-06-18 1999-04-22 Nippon Catalytic Chem Ind Verfahren zur Herstellung eines absorbierenden Harzes
DE4326877C1 (de) * 1993-08-11 1994-10-13 Babcock Bsh Ag Verfahren zum Trocknen von Platten und Trockner
US6058623A (en) * 1993-09-24 2000-05-09 The Chemithon Corporation Apparatus and process for removing volatile components from a composition
JP3297192B2 (ja) 1994-03-31 2002-07-02 三洋化成工業株式会社 含水ゲル状重合体の搬送方法及び乾燥方法並びにコンベア式乾燥装置
US5624967A (en) 1994-06-08 1997-04-29 Nippon Shokubai Co., Ltd. Water-absorbing resin and process for producing same
JP2700531B2 (ja) 1994-09-05 1998-01-21 三洋化成工業株式会社 含水ゲル状重合体の連続的乾燥方法
DE19646484C2 (de) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368C2 (de) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19601764A1 (de) 1996-01-19 1997-07-24 Hoechst Ag Verfahren zur Herstellung hydrophiler, hochquellfähiger Hydrogele
DE19601763A1 (de) 1996-01-19 1997-07-24 Hoechst Ag Verwendung von Tensiden bei der Trocknung von hydrophilen, hochquellfähigen Hydrogelen
US5713138A (en) * 1996-08-23 1998-02-03 Research, Incorporated Coating dryer system
TW473485B (en) * 1997-12-10 2002-01-21 Nippon Catalytic Chem Ind The production process of a water-absorbent resin
DE19756633A1 (de) * 1997-12-19 1999-06-24 Hoechst Ag Verfahren zur unterkritischen Trocknung von Lyogelen zu Aerogelen
JP4077093B2 (ja) * 1997-12-25 2008-04-16 株式会社日本触媒 親水性架橋重合体の製造方法
DE19807502B4 (de) 1998-02-21 2004-04-08 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen, daraus hergestellte Hydrogele und deren Verwendung
US6265488B1 (en) 1998-02-24 2001-07-24 Nippon Shokubai Co., Ltd. Production process for water-absorbing agent
US6503979B1 (en) 1998-02-26 2003-01-07 Basf Aktiengesellschaft Method for cross-linking hydrogels with bis- and poly-2-oxazolidinones
JP4141526B2 (ja) 1998-04-07 2008-08-27 株式会社日本触媒 吸水性樹脂の製造方法
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
KR100476170B1 (ko) 1998-04-28 2005-03-10 니폰 쇼쿠바이 컴파니 리미티드 흡수성수지 함수겔상물의 제조방법
DE19846413A1 (de) 1998-10-08 2000-04-13 Basf Ag Verfahren zur Herstellung von hydrophilen wasserquellbaren Polymeren sowie deren Verwendung
DE19849499A1 (de) * 1998-10-27 2000-05-04 Basf Ag Verfahren zur vollständigen Trocknung von Hydrogelen
JP4323647B2 (ja) * 1998-11-18 2009-09-02 株式会社日本触媒 親水性重合体の製造方法
US6207796B1 (en) 1998-11-18 2001-03-27 Nippon Shokubai Co., Ltd. Production process for hydrophilic polymer
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
DE19941423A1 (de) 1999-08-30 2001-03-01 Stockhausen Chem Fab Gmbh Polymerzusammensetzung und ein Verfahren zu dessen Herstellung
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
DE19955861A1 (de) 1999-11-20 2001-05-23 Basf Ag Verfahren zur kontinuierlichen Herstellung von vernetzten feinteiligen gelförmigen Polymerisaten
EP1244474A1 (de) 1999-12-23 2002-10-02 The Dow Chemical Company Polymere mit hoher permeabilität und geringer saugfähigkeit
EP1130045B2 (de) 2000-02-29 2015-10-28 Nippon Shokubai Co., Ltd. Verfaren zur Herstellung eines wasserabsorbierenden Harzpulvers
US6809158B2 (en) 2000-10-20 2004-10-26 Nippon Shokubai Co., Ltd. Water-absorbing agent and process for producing the same
US6979564B2 (en) 2000-10-20 2005-12-27 Millennium Pharmaceuticals, Inc. 80090, human fucosyltransferase nucleic acid molecules and uses thereof
AU2002338987A1 (en) 2001-05-23 2002-12-03 Basf Aktiengesellschaft Double-sided coated fibrous web absorbent article
WO2002094329A1 (en) 2001-05-23 2002-11-28 Basf Aktiengesellschaft Odor control containing absorbent materials
US7183360B2 (en) 2001-10-05 2007-02-27 Basf Aktiengesellschaft Method for crosslinking hydrogels with morpholine-2,3-diones
JP4084648B2 (ja) * 2001-12-19 2008-04-30 株式会社日本触媒 吸水性樹脂の製造方法
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
US6780225B2 (en) * 2002-05-24 2004-08-24 Vitronics Soltec, Inc. Reflow oven gas management system and method
DE10225943A1 (de) 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
CA2488226A1 (en) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylic esters of polyalkoxylated trimethylolpropane
BR0311498A (pt) 2002-06-11 2005-03-15 Basf Ag éster f, processos para preparar o mesmo e um hidrogel reticulado, polìmero, hidrogel reticulado, uso de um polìmero, composição de matéria, e usos de uma mistura da reação, e de um éster f
US7003896B2 (en) * 2002-10-25 2006-02-28 Leonard Immanuel Tafel Radiation curing and drying
DE602004009484T2 (de) * 2003-01-27 2008-07-24 Nippon Shokubai Co. Ltd. Verfahren zur Herstellung von einem wasserabsorbierenden Formkörper
US7169843B2 (en) 2003-04-25 2007-01-30 Stockhausen, Inc. Superabsorbent polymer with high permeability
US20040214499A1 (en) 2003-04-25 2004-10-28 Kimberly-Clark Worldwide, Inc. Absorbent structure with superabsorbent material
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
JP4297756B2 (ja) * 2003-08-29 2009-07-15 三洋電機株式会社 真空断熱材用コア材
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
CA2596864C (en) * 2005-02-04 2012-05-08 The Procter & Gamble Company Absorbent structure with improved water-swellable material
DE102005014291A1 (de) * 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
US20090047613A1 (en) * 2005-03-29 2009-02-19 Kadant Black Clawson Inc. Method and Apparatus for Pneumatic Drying of Lime Mud
DE102005042038A1 (de) * 2005-09-02 2007-03-08 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
DE102005042608A1 (de) * 2005-09-07 2007-03-08 Basf Ag Polymerisationsverfahren
DE102007053030A1 (de) * 2007-11-05 2009-05-07 Fleissner Gmbh Einrichtung zur Beaufschlagung von Stoffen mittels heißen Gasen
US8161661B2 (en) * 2008-02-26 2012-04-24 Active Land International Corporation Continuous drying apparatus and method
EP2313040B1 (de) * 2008-08-06 2013-06-19 Basf Se Flüssigkeit absorbierende artikel
EP2313041B1 (de) * 2008-08-06 2013-07-17 Basf Se Flüssigkeit absorbierende artikel
JP5933262B2 (ja) * 2008-08-06 2016-06-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 流体吸収性物品
DE102008063661A1 (de) * 2008-12-18 2010-06-24 Hamm/Oser/Siewert GbR (vertretungsberechtigte Gesellschafter Dr. Erwin Oser + H. Hamm + N. Siewert, 50670 Köln) Trocknen von Fest-Flüssig-Mischsystemen
US20110214593A1 (en) * 2010-03-05 2011-09-08 Prabir Kumar Roychoudhury Eco-friendly system and process for generating thermal energy from waste biomass
EP2630183A1 (de) * 2010-10-21 2013-08-28 Basf Se Wasserabsorbierende polymerpartikel und herstellungsverfahren dafür
WO2012054661A1 (en) * 2010-10-21 2012-04-26 The Procter & Gamble Company Absorbent structures comprising post-crosslinked water-absorbent particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003104302A1 (de) * 2002-06-01 2003-12-18 Basf Aktiengesellschaft (meth)acrylester von polyalkoxyliertem trimethylolpropan
WO2005103119A1 (de) * 2004-04-21 2005-11-03 Stockhausen Gmbh Verfahren zur herstellung eines absorbierenden polymers mittels spreittrocknung
WO2005123781A2 (de) * 2004-06-21 2005-12-29 Stockhausen Gmbh Wasserabsorbierendes polysaccharid sowie ein verfahren zu seiner herstellung

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008034786A1 (de) * 2006-09-19 2008-03-27 Basf Se Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
US7960490B2 (en) 2006-09-19 2011-06-14 Basf Se Process for preparing color-stable water-absorbing polymer particles with a low degree of neutralization
US9327270B2 (en) 2006-09-25 2016-05-03 Basf Se Method for the continuous production of water absorbent polymer particles
JP2010515816A (ja) * 2007-01-16 2010-05-13 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマーの製造
US9505853B2 (en) 2007-01-16 2016-11-29 Basf Se Production of superabsorbent polymers
EP2690114A1 (de) 2007-08-28 2014-01-29 Nippon Shokubai Co., Ltd. Verfahren zur Herstellung von wasserabsorbierendem Harz
EP2189478A1 (de) * 2007-08-28 2010-05-26 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierendes harz
WO2009028568A1 (ja) 2007-08-28 2009-03-05 Nippon Shokubai Co., Ltd. 吸水性樹脂の製造方法
EP2189478B1 (de) * 2007-08-28 2016-03-09 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierendes harz
US8119755B2 (en) * 2008-07-11 2012-02-21 Basf Se Process for producing water-absorbing polymer particles
EP2438096B1 (de) 2009-06-03 2016-01-27 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2011104139A1 (de) * 2010-02-24 2011-09-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
CN102762616A (zh) * 2010-02-24 2012-10-31 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
WO2011104152A1 (de) * 2010-02-24 2011-09-01 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel
CN102762616B (zh) * 2010-02-24 2014-07-16 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
WO2014082705A1 (de) 2012-11-30 2014-06-05 Merck Patent Gmbh Elektronische vorrichtung
WO2015046604A1 (ja) 2013-09-30 2015-04-02 株式会社日本触媒 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法
EP4159307A1 (de) 2013-09-30 2023-04-05 Nippon Shokubai Co., Ltd. Verfahren zum füllen eines partikelförmigen wasserabsorptionsmittels und verfahren zur probenahme eines gefüllten partikelförmigen wasserabsorptionsmittels
WO2015053372A1 (ja) 2013-10-09 2015-04-16 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤及びその製造方法
WO2015072536A1 (ja) 2013-11-14 2015-05-21 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
WO2015074966A1 (en) 2013-11-22 2015-05-28 Basf Se Process for producing water-absorbing polymer particles
WO2015199758A1 (en) 2014-06-23 2015-12-30 The Procter & Gamble Company Absorbing articles comprising water absorbing resin and method for producing the same
US10696890B2 (en) 2014-09-30 2020-06-30 Nippon Shokubai Co., Ltd. Methods of liquefying and shrinking water-absorbable resins in a water-containing state
EP3984633A1 (de) 2015-01-07 2022-04-20 Nippon Shokubai Co., Ltd. Wasserabsorbierendes mittel
KR102548548B1 (ko) 2015-05-08 2023-06-28 바스프 에스이 물 흡수성 폴리머 입자들을 제조하기 위한 제조 프로세스 및 벨트 건조기
US10648731B2 (en) 2015-05-08 2020-05-12 Basf Se Production method for producing water-absorbing polymer particles and belt dryer
KR20180004790A (ko) * 2015-05-08 2018-01-12 바스프 에스이 물 흡수성 폴리머 입자들을 제조하기 위한 제조 프로세스 및 벨트 건조기
US10647787B2 (en) 2015-05-08 2020-05-12 Basf Se Production process for producing water-absorbent polymer particles and belt dryer
WO2016180597A1 (de) 2015-05-08 2016-11-17 Basf Se Herstellungsverfahren zur herstellung wasserabsorbierender polymerartikel und bandtrockner
WO2017170604A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 吸水剤の製造方法
US11224857B2 (en) 2016-03-28 2022-01-18 Nippon Shokubai Co., Ltd. Method for manufacturing water absorbing agent
WO2017170605A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 粒子状吸水剤
WO2017170501A1 (ja) 2016-03-28 2017-10-05 株式会社日本触媒 吸水剤およびその製造方法、並びに吸水剤を用いた吸収性物品
WO2017207374A1 (de) 2016-05-31 2017-12-07 Basf Se Bandtrockneranordnung zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln und verfahren zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln
WO2018011018A1 (de) 2016-07-15 2018-01-18 Basf Se Bandtrockneranordnung zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln und verfahren zum trocknen eines wässrigen polymergels und zum zerkleinern des getrockneten polymergels zu getrockneten polymerpartikeln
EP4012309A1 (de) 2016-07-15 2022-06-15 Basf Se Anordnung und verfahren zum trocknen und zum zerkleinern eines wässrigen polymergels
US11766659B2 (en) 2016-11-16 2023-09-26 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder, and drying device and drying method for particulate hydrous gel
WO2018092863A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
WO2018092864A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
US11465126B2 (en) 2016-11-16 2022-10-11 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder and production apparatus therefor
WO2019074094A1 (ja) 2017-10-12 2019-04-18 株式会社日本触媒 粒子状吸水剤の物性の測定方法及び粒子状吸水剤
EP4113099A2 (de) 2017-10-12 2023-01-04 Nippon Shokubai Co., Ltd. Teilchenförmiges absorptionsmittel
WO2019098244A1 (ja) 2017-11-16 2019-05-23 株式会社日本触媒 吸水剤および吸収性物品
WO2019198821A1 (ja) 2018-04-13 2019-10-17 株式会社日本触媒 吸水性シート、吸水性シートの製造方法および吸収性物品
WO2019221235A1 (ja) 2018-05-16 2019-11-21 株式会社日本触媒 吸水性樹脂の製造方法
WO2020096003A1 (ja) 2018-11-07 2020-05-14 株式会社日本触媒 粒子状吸水剤の製造方法および粒子状吸水剤
WO2020145384A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水性樹脂を主成分とする吸水剤及びその製造方法
WO2020145383A1 (ja) 2019-01-11 2020-07-16 株式会社日本触媒 吸水剤、及び吸水剤の製造方法
WO2020241123A1 (ja) 2019-05-31 2020-12-03 株式会社日本触媒 吸水剤の製造方法及びポリアクリル酸(塩)系吸水性樹脂
WO2021095806A1 (ja) 2019-11-12 2021-05-20 株式会社日本触媒 粒子状吸水剤およびその製造方法
WO2021140905A1 (ja) 2020-01-06 2021-07-15 株式会社日本触媒 吸収体、吸水性樹脂、及び吸収性物品
WO2021162072A1 (ja) 2020-02-14 2021-08-19 株式会社日本触媒 吸収体、吸水剤および吸水剤の製造方法
WO2021162085A1 (ja) 2020-02-14 2021-08-19 株式会社日本触媒 吸水性樹脂およびその製造方法
WO2021201177A1 (ja) 2020-03-31 2021-10-07 株式会社日本触媒 粒子状吸水剤
WO2022163849A1 (ja) 2021-01-29 2022-08-04 株式会社日本触媒 吸水性樹脂の製造方法
WO2022181771A1 (ja) 2021-02-26 2022-09-01 株式会社日本触媒 粒子状吸水剤、該吸水剤を含む吸収体及び該吸収体を用いた吸収性物品
WO2022197991A1 (en) 2021-03-18 2022-09-22 The Procter & Gamble Company Method for producing absorbent articles comprising water-absorbing resin
WO2022196763A1 (ja) 2021-03-18 2022-09-22 株式会社日本触媒 吸水性樹脂の製造方法
WO2022239723A1 (ja) 2021-05-12 2022-11-17 株式会社日本触媒 ポリ(メタ)アクリル酸(塩)系吸水性樹脂、及び吸収体
WO2023046583A1 (de) 2021-09-27 2023-03-30 Basf Se Verfahren zur herstellung von superabsorberpartikeln

Also Published As

Publication number Publication date
EP2298819A1 (de) 2011-03-23
EP2305718A1 (de) 2011-04-06
JP5992134B2 (ja) 2016-09-14
EP2305718B1 (de) 2018-01-17
TW200640951A (en) 2006-12-01
DE102005014291A1 (de) 2006-09-28
JP2013053315A (ja) 2013-03-21
DE502006008808D1 (de) 2011-03-10
CN101146832B (zh) 2010-12-29
US8592516B2 (en) 2013-11-26
JP6184081B2 (ja) 2017-08-23
US20080214749A1 (en) 2008-09-04
EP2298819B1 (de) 2016-02-17
JP6184082B2 (ja) 2017-08-23
JP2013040353A (ja) 2013-02-28
EP1863852A1 (de) 2007-12-12
EP1863852B1 (de) 2011-01-26
BRPI0608923A2 (pt) 2010-11-03
KR20070121804A (ko) 2007-12-27
US20140047730A1 (en) 2014-02-20
BRPI0608923B1 (pt) 2017-06-06
ZA200709067B (en) 2010-01-27
ATE496945T1 (de) 2011-02-15
US9238215B2 (en) 2016-01-19
CN101146832A (zh) 2008-03-19
JP2008534707A (ja) 2008-08-28

Similar Documents

Publication Publication Date Title
EP2298819B1 (de) Verfahren zur Herstellung wasserabsorbierender Polymere
EP2046400B1 (de) Verfahren zur herstellung nachvernetzter wasserabsorbierender polymerpartikel mit hoher absorption durch polymerisation von tropfen einer monomerlösung
EP2074153B1 (de) Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
EP2073943B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2076338B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP1926754B2 (de) Polymerisationsverfahren
EP2076547B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2007031441A2 (de) Verfahren zum vertropfen von flüssigkeiten
WO2008040715A2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2008052971A1 (de) Regelung eines verfahrens zur herstellung wasserabsorbierender polymerpartikel in einer erwärmten gasphase
WO2007104676A1 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2007104673A2 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
WO2008095901A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2007093531A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
WO2008095892A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP1996492A2 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
EP1926758A1 (de) Polymerisationsverfahren
WO2009077100A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2008113789A1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
WO2008113790A1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
EP2121772B1 (de) Verfahren zur herstellung von polymerpartikeln durch polymerisation von flüssigkeitstropfen in einer gasphase
WO2019154652A1 (de) Verfahren zur pneumatischen förderung von superabsorberpartikeln

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006725287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816769

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680009440.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008502424

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077024310

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWP Wipo information: published in national office

Ref document number: 2006725287

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608923

Country of ref document: BR

Kind code of ref document: A2