EP2076338B1 - Verfahren zum klassieren wasserabsorbierender polymerpartikel - Google Patents

Verfahren zum klassieren wasserabsorbierender polymerpartikel Download PDF

Info

Publication number
EP2076338B1
EP2076338B1 EP07820483A EP07820483A EP2076338B1 EP 2076338 B1 EP2076338 B1 EP 2076338B1 EP 07820483 A EP07820483 A EP 07820483A EP 07820483 A EP07820483 A EP 07820483A EP 2076338 B1 EP2076338 B1 EP 2076338B1
Authority
EP
European Patent Office
Prior art keywords
process according
water
absorbing polymer
polymer beads
screens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07820483A
Other languages
English (en)
French (fr)
Other versions
EP2076338B2 (de
EP2076338A1 (de
Inventor
Uwe Stueven
Rüdiger Funk
Matthias Weismantel
Jürgen Schröder
Domien Van Esbroeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38961767&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2076338(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP2076338A1 publication Critical patent/EP2076338A1/de
Publication of EP2076338B1 publication Critical patent/EP2076338B1/de
Application granted granted Critical
Publication of EP2076338B2 publication Critical patent/EP2076338B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/46Constructional details of screens in general; Cleaning or heating of screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/08Separating solids from solids by subjecting their mixture to gas currents while the mixtures are supported by sieves, screens, or like mechanical elements

Definitions

  • the present invention relates to a method for classifying water-absorbing polymer particles, wherein the polymer particles are separated by means of at least n sieves in n particle size fractions and n is an integer greater than 1.
  • Water-absorbing polymers are used as aqueous solution-absorbing products for making diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • the properties of the water-absorbing polymers can be adjusted via the degree of crosslinking. As the degree of cross-linking increases, the gel strength increases and the centrifuge retention capacity (CRC) decreases.
  • CRC centrifuge retention capacity
  • the water-absorbing polymers are used as pulverulent, granular product, preferably in the hygiene sector.
  • particle sizes between 200 and 850 .mu.m are used here, and the particulate polymer material is already classified to these particle sizes during the production process.
  • continuous sieving machines with two sieves are used, whereby sieves with the mesh sizes of 200 and 850 ⁇ m are used. Particles with a grain size of up to 200 ⁇ m fall through both screens and are collected at the bottom of the screening machine as undersize. Particles with a particle size of greater than 850 microns remain as oversize on the top sieve and are discharged.
  • the product fraction with a particle size of greater than 200 to 850 microns is used as the middle grain between the two Seven removed from the screening machine.
  • each particle size fraction still contains a proportion of particles with the wrong particle size as a so-called faulty discharge.
  • the oversize fraction may still contain a proportion of particles with a particle size of 850 microns or less.
  • undersize Extracted undersize and oversize is usually attributed to production.
  • the undersize can be added to the polymerization, for example.
  • the oversize grain is usually crushed, which inevitably leads to a forced attack of further undersize.
  • a higher screening quality is usually achieved by adding to the product substances which serve to increase the flowability and / or the mechanical stability of the polymer powder.
  • a free-flowing product is achieved by adding to the polymer powder, usually after drying and / or as part of the post-crosslinking auxiliaries, for example surfactants, which prevent mutual sticking of the individual particles.
  • the post-crosslinking auxiliaries for example surfactants, which prevent mutual sticking of the individual particles.
  • screening aids such as screen balls, PVC friction rings, Teflon friction rings or rubber cube, on the sieve surface, helps only slightly to increase the selectivity. Especially with amorphous polymer material, such as water-absorbing polymer particles, this can lead to increased abrasion.
  • EP 855 232 A2 describes a classification process for water-absorbing polymers. By using heated or thermally insulated sieves, agglomerates below the sieve are avoided, especially with small grain sizes.
  • JP 2003/320308 A describes a method in which agglomerates are avoided by the bottom of the sieve with warm air is flown.
  • WO 92/18171 A1 describes the addition of inorganic powders as screening aids.
  • the object of the present invention was to provide an improved classification method for producing water-absorbing polymer particles.
  • the object was achieved by a method for classifying water-absorbing polymer particles, wherein the polymer particles are separated into n particle size fractions and n is an integer greater than 1, characterized in that at least n sieves are used and decrease the mesh sizes of n sieves in the product flow direction.
  • a particulate material is separated into two sieve fractions, the particles remaining on the sieve and the particles passing through the meshes of the sieve.
  • each sieve fraction can be separated into a further two sieve fractions.
  • n sieves are used, (n + 1) sieve fractions are obtained, whereby each sieve fraction can be processed separately as a grain size fraction.
  • an essential feature of the present invention is that at least two of these sieve fractions are combined to form a particle size fraction and further processed together. Compared with the hitherto conventional method for classifying water-absorbing polymer particles, the method according to the invention thus uses at least one sieve more.
  • water-absorbing polymer particles having improved absorption under pressure (AUL) and improved fluid conduction in the swollen gel bed (SFC) are obtained.
  • the sieve fractions can be combined according to the inventive method in different ways to grain size fractions, for example in the Sequence (2,1), (3,1), (2,1,1), (1,2,1), (2,2,1), (3,1,1), (1,3, 1), (3,2,1), (2,3,1) or (3,3,1), where the number of numbers is in parenthesis for the number of grain size fractions, the grain size fractions in product stream sequence in parentheses of are arranged left to right and the numerical values themselves stand for the number of successive sieve fractions which are combined to the respective particle size fraction.
  • the number of particle size fractions is preferably at least 3.
  • the number of sieves used is preferably at least (n + 1).
  • At least two sieve fractions obtained in succession in the product flow direction are combined to form a particle size fraction, wherein the mesh sizes of the sieves on which these sieve fractions are obtained are usually usually at least 50 ⁇ m, preferably at least 100 ⁇ m, preferably around in each case at least 150 .mu.m, particularly preferably by at least 200 .mu.m, very particularly preferably by at least 250 microns, different.
  • the at least two sieve fractions initially obtained in the product flow direction are combined to form a particle size fraction, wherein the mesh sizes of the sieves on which these sieve fractions are obtained are preferably at least 500 .mu.m, preferably at least 1000 .mu.m, more preferably each differ by at least 1,500 microns, most preferably by at least 2,000 microns.
  • the water-absorbing polymer particles preferably have a temperature of from 40 to 120 ° C., more preferably from 45 to 100 ° C., very preferably from 50 to 80 ° C., during classification.
  • the product is classified under reduced pressure.
  • the pressure is preferably 100 mbar less than the ambient pressure.
  • the classification method according to the invention is carried out continuously.
  • the throughput of water-absorbing polymer is usually at least 100 kg / m 2 ⁇ h, preferably at least 150 kg / m 2 ⁇ h, preferably at least 200 kg / m 2 ⁇ h, particularly preferably at least 250 kg / m 2 ⁇ h, very particularly preferably at least 300 kg / m 2 ⁇ h.
  • the screening devices which are suitable for the classification method according to the invention are not subject to any restrictions; plane sieve methods are preferred, tumble screening machines are very particularly preferred.
  • the screening device is used to support the Classification typically shaken. This is preferably done so that the material to be classified is spirally guided over the sieve. This forced vibration typically has an amplitude of 0.7 to 40 mm, preferably 1.5 to 25 mm, and a frequency of 1 to 100 Hz, preferably of 5 to 10 Hz.
  • At least one sieving machine with n sieves is used. It is advantageous if several screening machines are operated in parallel.
  • the water-absorbing resin is overflowed during the classifying with a gas stream, more preferably air.
  • the amount of gas is typically from 0.1 to 10 m 3 / h per m 2 screen area, preferably from 0.5 to 5 m 3 / h per m 2 screen area, particularly preferably from 1 to 3 m 3 / h per m 2 screen area, the gas volume being measured under standard conditions (25 ° C and 1 bar).
  • the gas stream is heated before entering the sieve, typically to a temperature of 40 to 120 ° C, preferably to a temperature of 50 to 110 ° C, preferably to a temperature of 60 to 100 ° C, more preferably to a Temperature of 65 to 90 ° C, most preferably to a temperature of 70 to 80 ° C.
  • the water content of the gas stream is typically less than 5 g / kg, preferably less than 4.5 g / kg, preferably less than 4 g / kg, more preferably less than 3.5 g / kg, most preferably less than 3 g / kg ,
  • a gas stream with a low water content can be generated, for example, by condensing a corresponding amount of water from the gas stream having a higher water content by cooling.
  • the screening machines are usually electrically grounded.
  • the water-absorbing polymer particles to be used in the process according to the invention can be prepared by polymerization of monomer solutions comprising at least one ethylenically unsaturated monomer a), optionally at least one crosslinker b), at least one initiator c) and water d).
  • the monomers a) are preferably water-soluble, i. the solubility in water at 23 ° C. is typically at least 1 g / 100 g of water, preferably at least 5 g / 100 g of water, more preferably at least 25 g / 100 g of water, most preferably at least 50 g / 100 g of water preferably at least one acid group each.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • the preferred monomers a) have at least one acid group, wherein the acid groups are preferably at least partially neutralized.
  • the proportion of acrylic acid and / or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, particularly preferably at least 90 mol%, very particularly preferably at least 95 mol%.
  • Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and / or tocopherols.
  • Tocopherol is understood as meaning compounds of the following formula wherein R 1 is hydrogen or methyl, R 2 is hydrogen or methyl, R 3 is hydrogen or methyl and R 4 is hydrogen or an acid radical having 1 to 20 carbon atoms.
  • Preferred radicals for R 4 are acetyl, ascorbyl, succinyl, nicotinyl and other physiologically acceptable carboxylic acids.
  • the carboxylic acids may be mono-, di- or tricarboxylic acids.
  • R 1 is more preferably hydrogen or acetyl. Especially preferred is RRR-alpha-tocopherol.
  • the monomer solution preferably contains at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, in particular by 50 ppm by weight, hydroquinone, in each case based on Acrylic acid, wherein acrylic acid salts are taken into account as acrylic acid.
  • an acrylic acid having a corresponding content of hydroquinone half-ether can be used.
  • Crosslinkers b) are compounds having at least two polymerizable groups which can be radically copolymerized into the polymer network.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallyloxyethane, as in EP 530 438 A1 described, di- and triacrylates, as in EP 547 847 A1 .
  • WO 2003/104300 A1 are compounds having at least two polymerizable groups which can be radically copolymerized into the polymer network.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, allyl methacrylate, trimethylo
  • Suitable crosslinkers b) are, in particular, N, N'-methylenebisacrylamide and N, N'-methylenebismethacrylamide, esters of unsaturated monocarboxylic or polycarboxylic acids of polyols, such as diacrylate or triacrylate, for example butanediol or ethylene glycol diacrylate or methacrylate, and trimethylolpropane triacrylate and allyl compounds, such as allyl (meth) acrylate, triallyl cyanurate, maleic acid diallyl esters, polyallyl esters, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic acid derivatives, as described, for example, in US Pat EP 343 427 A2 are described.
  • crosslinkers b) are pentaerythritol di-, pentaerythritol tri- and pentaerythritol tetraallyl ethers, polyethylene glycol diallyl ether, ethylene glycol diallyl ether, glycerol and glycerol triallyl ethers, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • Useful in the process according to the invention are di (meth) acrylates of polyethylene glycols, where the polyethylene glycol used has a molecular weight between 100 and 1000.
  • crosslinkers b) are di- and triacrylates of 3 to 20 times ethoxylated glycerol, 3 to 20 times ethoxylated trimethylolpropane, 3 to 20 times ethoxylated trimethylolethane, in particular di- and triacrylates of 2 to 6-times ethoxylated glycerol or trimethylolpropane, the 3-fold propoxylated glycerol or trimethylolpropane, as well as the 3-times mixed ethoxylated or propoxylated glycerol or trimethylolpropane, 15-ethoxylated glycerol or trimethylolpropane, as well as at least 40-times ethoxylated glycerol, trimethylolethane or trimethylolpropane.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and / or propoxylated glycerols which are esterified with acrylic acid or methacrylic acid to form di- or triacrylates, as are described, for example, in US Pat WO 2003/104301 A1 are described.
  • Particularly advantageous are di- and / or triacrylates of 3- to 10-fold ethoxylated glycerol.
  • diacrylates or triacrylates of 1 to 5 times ethoxylated and / or propoxylated glycerol.
  • Most preferred are the triacrylates of 3 to 5 times ethoxylated and / or propoxylated glycerin.
  • the amount of crosslinker b) is preferably 0.01 to 5 wt .-%, particularly preferably 0.05 to 2 wt .-%, most preferably 0.1 to 1 wt .-%, each based on the monomer solution.
  • initiators c) it is possible to use all compounds which form radically under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and the so-called redox initiators. Preference is given to the use of water-soluble initiators. In some cases, it is advantageous to use mixtures of different initiators, for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion.
  • Particularly preferred initiators c) are azo initiators, such as 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (5-methyl-2-imidazoline-2 -yl) propane] dihydrochloride, and photoinitiators such as 2-hydroxy-2-methylpropiophenone and 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, redox initiators such as sodium persulfate / hydroxymethylsulfinic acid, ammonium peroxodisulfate / hydroxymethylsulfinic acid, hydrogen peroxide / hydroxymethylsulfinic acid, sodium persulfate / ascorbic acid, ammonium peroxodisulfate / ascorbic acid and hydrogen peroxide / ascorbic acid, photoinitiators such as 1- [4- (2-hydroxyethoxy) -phenyl]
  • the initiators are used in customary amounts, for example in amounts of 0.001 to 5 wt .-%, preferably 0.01 to 1 wt .-%, based on the monomers a).
  • the preferred polymerization inhibitors require dissolved oxygen for optimum performance.
  • the monomer solution may be polymerized prior to polymerization by inerting, i. H. Flow through with an inert gas, preferably nitrogen, to be freed of dissolved oxygen.
  • an inert gas preferably nitrogen
  • the oxygen content of the monomer solution before polymerization is reduced to less than 1 ppm by weight, more preferably less than 0.5 ppm by weight.
  • Suitable reactors are kneading reactors or belt reactors.
  • the polymer gel formed during the polymerization of an aqueous monomer solution is comminuted continuously by, for example, counter-rotating stirring shafts, as in WO 2001/38402 A1 described.
  • the polymerization on the belt is for example in DE 38 25 366 A1 and US 6,241,928 described.
  • Polymerization in a belt reactor produces a polymer gel which must be comminuted in a further process step, for example in a meat grinder, extruder or kneader.
  • the hydrogel After leaving the polymerization reactor, the hydrogel is advantageously stored even at a higher temperature, preferably at least 50 ° C., more preferably at least 70 ° C., very preferably at least 80 ° C., and preferably less than 100 ° C., for example in isolated containers. By storage, usually 2 to 12 hours, the monomer conversion is further increased.
  • the storage can also be significantly shortened or omitted storage.
  • the acid groups of the hydrogels obtained are usually partially neutralized, preferably from 25 to 95 mol%, preferably from 50 to 80 mol%, particularly preferably from 60 to 75 mol%, the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • the usual neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides , Alkali metal carbonates or alkali metal hydrogencarbonates and mixtures thereof.
  • alkali metal salts and ammonium salts can be used.
  • Sodium and potassium are particularly preferred as alkali metals, but most preferred are sodium hydroxide, sodium carbonate or sodium bicarbonate and mixtures thereof.
  • the neutralization is preferably carried out at the stage of the monomers. This is usually done by mixing the neutralizing agent as an aqueous solution, as a melt, or preferably as a solid.
  • the neutralizing agent for example, sodium hydroxide with a water content well below 50 wt .-% may be present as a waxy mass with a melting point above 23 ° C. In this case, a dosage as general cargo or melt at elevated temperature is possible.
  • the hydrogel stage it is also possible to carry out the neutralization after the polymerization at the hydrogel stage. Furthermore, it is possible to neutralize up to 40 mol%, preferably 10 to 30 mol%, particularly preferably 15 to 25 mol%, of the acid groups before the polymerization by adding a part of the neutralizing agent already to the monomer solution and the desired final degree of neutralization only after the polymerization is adjusted at the level of the hydrogel. If the hydrogel is at least partially neutralized after the polymerization, the hydrogel is preferably comminuted mechanically, for example by means of a meat grinder, wherein the neutralizing agent can be sprayed, sprinkled or poured on and then thoroughly mixed in. For this purpose, the gel mass obtained can be further gewolfft for homogenization.
  • the hydrogel is then preferably dried with a belt dryer until the residual moisture content is preferably below 15% by weight, in particular below 10% by weight, the water content being determined in accordance with the test method No. 430.2- recommended by EDANA (European Disposables and Nonwovens Association). 02 "Moisture content" is determined.
  • a fluidized bed dryer or a heated ploughshare mixer can be used for drying but also a fluidized bed dryer or a heated ploughshare mixer can be used.
  • the dryer temperature must be optimized, the air supply and removal must be controlled, and it is in any case to ensure adequate ventilation. Naturally, drying is all the easier and the product is whiter when the solids content of the gel is as high as possible.
  • the solids content of the gel before drying is therefore preferably between 30 and 80% by weight.
  • Particularly advantageous is the ventilation of the dryer with nitrogen or other non-oxidizing inert gas.
  • the dried hydrogel is thereafter ground and classified, wherein for grinding usually one- or multi-stage roller mills, preferably two- or three-stage roller mills, pin mills, hammer mills or vibratory mills can be used.
  • the mean particle size of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • the mean particle size of the product fraction can be determined by means of the test method No. 420.2-02 "particle size distribution" recommended by the EDANA (European Disposables and Nonwovens Association), in which the mass fractions of the sieve fractions are cumulatively applied and the average particle size is determined graphically.
  • the mean particle size here is the value of the mesh size, which results for accumulated 50 wt .-%.
  • the polymer particles can be postcrosslinked to further improve the properties.
  • Suitable postcrosslinkers are compounds containing groups which can form covalent bonds with the at least two carboxylate groups of the hydrogel. Suitable compounds are, for example, alkoxysilyl compounds, polyaziridines, polyamines, polyamidoamines, di- or polyepoxides, as in EP 83 022 A2 .
  • DE 35 23 617 A1 and EP 450 922 A2 described or ß-hydroxyalkylamides, as in DE 102 04 938 A1 and US 6,239,230 described.
  • the amount of postcrosslinker is preferably 0.01 to 1 wt .-%, particularly preferably 0.05 to 0.5 wt .-%, most preferably 0.1 to 0.2 wt .-%, each based on the polymer ,
  • polyvalent cations are applied to the particle surface in addition to the postcrosslinkers.
  • the polyvalent cations which can be used in the process according to the invention are, for example, divalent cations, such as the cations of zinc, magnesium, calcium and strontium, trivalent cations, such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations, such as the cations of titanium and Zirconium.
  • divalent cations such as the cations of zinc, magnesium, calcium and strontium
  • trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese
  • tetravalent cations such as the cations of titanium and Zirconium.
  • chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate are possible.
  • Aluminum sulfate is preferred.
  • polyamines can
  • the amount of polyvalent cation used is, for example, 0.001 to 0.5% by weight, preferably 0.005 to 0.2% by weight, particularly preferably 0.02 to 0.1% by weight. in each case based on the polymer.
  • the postcrosslinking is usually carried out so that a solution of the postcrosslinker is sprayed onto the hydrogel or the dry polymer particles. Subsequent to the spraying, it is thermally dried, whereby the postcrosslinking reaction can take place both before and during the drying.
  • the spraying of a solution of the crosslinker is preferably carried out in mixers with agitated mixing tools, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • agitated mixing tools such as screw mixers, paddle mixers, disk mixers, plowshare mixers and paddle mixers.
  • Vertical mixers are particularly preferred, plowshare mixers and paddle mixers are very particularly preferred.
  • suitable mixers are Lödige mixers, Bepex mixers, Nauta mixers, Processall mixers and Schugi mixers.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, very particularly preferably disk dryers.
  • Suitable dryers include Bepex dryers and Nara dryers.
  • fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air.
  • a downstream dryer such as a hopper dryer, a rotary kiln or a heatable screw. Particularly advantageous is mixed and dried in a fluidized bed dryer.
  • Preferred drying temperatures are in the range 100 to 250 ° C, preferably 120 to 220 ° C, and particularly preferably 130 to 210 ° C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes.
  • the postcrosslinked polymer can be re-classified.
  • the average diameter of the polymer fraction separated as a product fraction is preferably at least 200 ⁇ m, more preferably from 250 to 600 ⁇ m, very particularly from 300 to 500 ⁇ m.
  • 90% of the polymer particles have a diameter of preferably 100 to 800 .mu.m, more preferably from 150 to 700 .mu.m, most preferably from 200 to 600 .mu.m.
  • the water-absorbing polymer particles have a centrifuge retention capacity (CRC) of typically at least 15 g / g, preferably at least 20 g / g, preferably at least 25 g / g, more preferably at least 30 g / g, most preferably at least 35 g / g.
  • the centrifuge retention capacity (CRC) of the water-absorbing polymer particles is usually less than 60 g / g, the centrifuge retention capacity (CRC) being determined according to the test method No. 441.2-02 "Centrifuge retention capacity" recommended by the EDANA (European Disposables and Nonwovens Association).
  • the water-absorbing polymer particles are tested by the test methods described below.
  • Measurements should be taken at an ambient temperature of 23 ⁇ 2 ° C and a relative humidity of 50 ⁇ 10%, unless otherwise specified.
  • the water-absorbing polymer particles are thoroughly mixed before the measurement.
  • Fg (t) of flow determinations by extrapolation to t 0
  • L0 is the thickness of the gel layer in cm
  • d the density of the NaCl solution in g / cm 3
  • A area of the gel layer in cm 2 and WP the hydrostatic pressure over the gel layer in dyn / cm 2 .
  • Polyethylene glycol 400 diacrylate (diacrylate of a polyethylene glycol having an average molecular weight of 400 g / mol) is used as the polyethylenically unsaturated crosslinker.
  • the amount used was 2 kg per ton of monomer solution.
  • the throughput of the monomer solution was 20 t / h.
  • the individual components are continuously metered into a List Contikneter with 6.3m 3 volume (List, Arisdorf, Switzerland) in the following quantities: 20 t / h monomer 40 kg / h Polyethylene glycol 400 diacrylate 82.6 kg / h Hydrogen peroxide solution / sodium solution 21 kg / h ascorbic acid
  • the monomer solution was rendered inert with nitrogen.
  • the reaction solution had a temperature of 23.5 ° C. at the inlet.
  • the reactor was operated at a shaft speed of 38rpm.
  • the residence time of the reaction mixture in the reactor was 15 minutes.
  • the aqueous polymer gel was applied to a belt dryer.
  • the residence time on the dryer belt was about 37 minutes.
  • the dried hydrogel was ground and sieved.
  • the fraction with the particle size 150 to 850 microns was postcrosslinked.
  • the separated undersize (undersize A) was returned.
  • the postcrosslinker solution was sprayed onto the polymer particles in a Schugi mixer (Fa, Hosokawa-Micron B.V., Doetichem, NL).
  • the postcrosslinker solution was a 2.7% by weight solution of ethylene glycol diglycidyl ether in propylene glycol / water weight ratio 1: 3).
  • the mixture was then dried for 60 minutes at 150 ° C. in a NARA paddle dryer (GMF Gouda, Waddinxveen, NL) and postcrosslinked.
  • NARA paddle dryer GMF Gouda, Waddinxveen, NL
  • the postcrosslinked polymer particles were cooled to 60 ° C. in a NARA paddle dryer (GMF Gouda, Waddinxveen, NL) (mixture I).
  • undersize B The separated undersize (undersize B) was returned.
  • mixture III A homogeneous mixture of mixture I and undersize B in a weight ratio of 4: 1 was prepared (mixture III).
  • Each 200 g of each mixture was separated for 30 and 60 seconds by means of a vibrating screening machine (AS 200 control, Retsch GmbH, Haan, DE) with a sieving tower with 2 or 3 sieves.
  • AS 200 control Retsch GmbH, Haan, DE
  • Variant A Sieves with mesh sizes 850 ⁇ m and 150 ⁇ m (2 sieves) were used. The sieve fraction on the sieve with mesh size 150 ⁇ m was analyzed as product fraction.
  • Variant B Sieves with mesh sizes 850 ⁇ m, 500 ⁇ m and 150 ⁇ m (3 sieves) were used. The fractions on the sieves of 500 ⁇ m and 150 ⁇ m were combined, homogenized and analyzed as product fraction.
  • mixture IV A homogeneous mixture of mixture I and undersize (mixture of undersize A and undersize B) in a weight ratio of 2: 1 was prepared (mixture IV).
  • Variant A Sieves with mesh sizes 850 ⁇ m and 150 ⁇ m (2 sieves) were used. The sieve fraction on the sieve with mesh size 150 ⁇ m was analyzed as product fraction.
  • Variant B Sieves with mesh sizes of 850 ⁇ m, x ⁇ m and 150 ⁇ m (3 sieves) were used, the middle sieve having a mesh size of 500 ⁇ m, 600 ⁇ m or 710 ⁇ m. The fractions on the sieves with x ⁇ m and 150 ⁇ m were combined, homogenized and analyzed as product fraction.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Klassieren wasserabsorbierender Polymerpartikel, wobei die Polymerpartikel mittels mindestens n Sieben in n Korngrößenfraktionen aufgetrennt werden und n eine ganze Zahl größer 1 ist.
  • Die Herstellung wasserabsorbierender Polymerpartikel wird in der Monographie "Modern Superabsorbent Polymer Technology", F.L. Buchholz und A.T. Graham, Wiley-VCH, 1998, Seiten 71 bis 103, beschrieben.
  • Wasserabsorbierende Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
  • Die Eigenschaften der wasserabsorbierenden Polymere können über den Vernetzungsgrad eingestellt werden. Mit steigendem Vernetzungsgrad steigt die Gelfestigkeit und sinkt die Zentrifugenretentionskapazität (CRC).
  • Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Flüssigkeitsweiterleitung im gequollenen Gelbett (SFC) in der Windel und Absorption unter Druck (AUL), werden wasserabsorbierende Polymerpartikel im allgemeinen nachvernetzt. Dadurch steigt nur der Vernetzungsgrad der Partikeloberfläche, wodurch die Absorption unter Druck (AUL) und die Zentrifugenretentionskapazität (CRC) zumindest teilweise entkoppelt werden können. Diese Nachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber getrocknete, gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Nachvernetzer beschichtet, thermisch nachvernetzt und getrocknet. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen des hydrophilen Polymeren kovalente Bindungen bilden können.
  • Die wasserabsorbierenden Polymere gelangen als pulverförmiges, körniges Produkt bevorzugt im Hygienesektor zum Einsatz. Hier werden beispielsweise Teilchengrößen zwischen 200 und 850 µm eingesetzt und das partikuläre Polymermaterial wird bereits beim Herstellungsprozess auf diese Korngrößen klassiert. Hierbei werden kontinuierlich arbeitende Siebmaschinen mit zwei Sieben eingesetzt, wobei Siebe mit den Maschenweiten von 200 und 850 µm verwendet werden. Partikel mit einer Korngröße von bis zu 200 µm fallen dabei durch beide Siebe und werden am Boden der Siebmaschine als Unterkorn gesammelt. Partikel mit einer Korngröße von größer 850 µm verbleiben als Überkorn auf dem obersten Sieb und werden ausgeschleust. Die Produktfraktion mit einer Korngröße von größer 200 bis 850 µm wird als Mittelkorn zwischen den beiden Sieben der Siebmaschine entnommen. Abhängig von der Siebgüte enthält dabei jede Korngrößenfraktion noch einen Anteil an Partikeln mit der falschen Korngröße als sogenannten Fehlaustrag. So kann beispielsweise die Überkornfraktion noch einen Anteil an Partikeln mit einer Korngröße von 850 µm oder weniger enthalten.
  • Ausgeschleustes Unter- und Überkorn wird üblicherweise in die Herstellung zurückgeführt. Das Unterkorn kann beispielsweise der Polymerisation zugesetzt werden. Das Überkorn wird üblicherweise zerkleinert, was zwangsläufig auch zu einem Zwangsanfall von weiterem Unterkorn führt.
  • Bei den herkömmlichen Klassiervorgängen treten unterschiedliche Probleme auf, wenn teilchenförmige Polymere klassiert werden. Häufigstes Problem ist die Verstopfung der Sieboberfläche sowie die Verschlechterung der Klassifizierungseffizienz und der Klassierfähigkeit. Ein weiteres Problem ist die Verbackungsneigung des Produkts, die vor, nach und während der Siebung zu unerwünschte Agglomeraten führt. Der Verfahrensschritt der Siebung kann daher nicht frei von Störungen, oft begleitet von ungewollten Stillständen bei der Polymerherstellung, durchgeführt werden. Besonders problematisch erweisen sich derartige Störungen im kontinuierlichen Herstellungsverfahren. Insgesamt resultiert daraus jedoch eine unzureichende Trennschärfe bei der Siebung. Diese Problematik ist vor allem bei der Klassierung von nachvemetztem Produkt zu beobachten.
  • Eine höhere Siebgüte wird üblicherweise dadurch erzielt, indem man dem Produkt Substanzen zusetzt, die dazu dienen, die Rieselfähigkeit und/oder die mechanische Stabilität des Polymerpulvers zu erhöhen. In aller Regel wird ein rieselfähiges Produkt erreicht, wenn man dem Polymerpulver, meist nach der Trocknung und/oder im Rahmen der Nachvernetzung Hilfsstoffe, beispielsweise Tenside, zusetzt, die ein gegenseitiges Verkleben der einzelnen Partikel verhindern. In anderen Fällen versucht man durch verfahrenstechnische Maßnahmen Einfluss auf die Verbackungstendenzen zu nehmen.
  • Um ohne weitere Produktzusätze höhere Trennschärfen zu erreichen, wurden Verbesserungen durch alternative Siebanlagen vorgeschlagen. So werden höhere Trennschärfen erreicht, wenn Sieböffnungsflächen spiralförmig angetrieben werden. Dies ist beispielsweise der Fall bei Taumelsiebmaschinen. Wird jedoch der Durchsatz derartiger Siebvorrichtungen erhöht, so werden obige Probleme verstärkt, und es wird immer weniger möglich, das hohe Klassiervermögen aufrechtzuerhalten.
  • Auch der Zusatz von Siebhilfen, wie Siebbälle, PVC-Reibringe, Teflon-Reibringe oder Gummiwürfel, auf die Sieboberfläche, hilft nur unwesentlich die Trennschärfe zu steigern. Besonders bei amorphem Polymermaterial, wie wasserabsorbierenden Polymerpartikeln, kann es dadurch zu verstärktem Abrieb kommen.
  • Ein allgemeine Übersicht zur Klassierung ist beispielsweise in Ullmanns Encyklopädie der technischen Chemie, 4. Auflage, Band 2, Seiten 43 bis 56, Verlag Chemie, Weinheim, 1972, zu finden.
  • EP 855 232 A2 beschreibt ein Klassierverfahren für wasserabsorbierende Polymere. Durch Verwendung beheizter oder thermisch isolierter Siebe werden insbesondere bei kleinen Korngrößen Agglomerate unterhalb des Siebes vermieden.
  • DE 10 2005 001 789 A1 beschreibt ein Klassierverfahren, das bei vermindertem Druck durchgeführt wird.
  • JP 2003/320308 A beschreibt ein Verfahren, bei dem Agglomerate vermieden werden, indem die Siebunterseite mit warmer Luft angeströmt wird.
  • WO 92/18171 A1 beschreibt den Zusatz anorganischer Pulver als Siebhilfsmittel.
  • Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Klassierverfahrens zur Herstellung wasserabsorbierender Polymerpartikel.
  • Gelöst wurde die Aufgabe durch ein Verfahren zum Klassieren wasserabsorbierender Polymerpartikel, wobei die Polymerpartikel in n Korngrößenfraktionen aufgetrennt werden und n eine ganze Zahl größer 1 ist, dadurch gekennzeichnet, dass mindestens n Siebe verwendet werden und die Maschenweiten der n Siebe in Produktstromrichtung abnehmen.
  • Durch ein Sieb wird ein partikuläres Material in zwei Siebfraktionen aufgetrennt, die Partikel, die auf dem Sieb verbleiben, und die Partikel, die durch die Maschen des Siebes hindurchtreten. Durch Verwendung weiterer Siebe kann jede Siebfraktion in weitere zwei Siebfraktionen aufgetrennt werden. Bei Verwendung von n Sieben werden also (n+1) Siebfraktionen erhalten, wobei jede Siebfraktion separat als Korngrößenfraktion weiterverarbeitet werden kann. Wesentliches Merkmal der vorliegenden Erfindung ist dagegen, dass mindestens zwei dieser Siebfraktionen zu einer Korngrößenfraktion vereinigt und gemeinsam weiterverarbeitet werden. Gegenüber den bisher üblichen Verfahren zur Klassierung wasserabsorbierender Polymerpartikel verwendet das erfindungsgemäße Verfahren also mindestens ein Sieb mehr.
  • Durch die Verwendung des mindestens einen zusätzlichen Siebes werden wasserabsorbierende Polymerpartikel mit verbesserter Absorption unter Druck (AUL) und verbesserter Flüssigkeitsweiterleitung im gequollenen Gelbett (SFC) erhalten.
  • Die Siebfraktionen können gemäß dem erfindungsgemäßen Verfahren auf unterschiedliche Weise zu Korngrößenfraktionen zusammengefasst werden, beispielsweise in der Folge (2,1), (3,1), (2,1,1), (1,2,1), (2,2,1), (3,1,1), (1,3,1), (3,2,1), (2,3,1) oder (3,3,1), wobei die Anzahl der Zahlen in einer Klammer für die Anzahl der Korngrößenfraktionen steht, die Korngrößenfraktionen in Produktstromfolge in den Klammern von links nach rechts angeordnet sind und die Zahlenwerte selber für die Anzahl aufeinanderfolgender Siebfraktionen stehen, die zu der jeweiligen Korngrößenfraktion zusammengefasst werden.
  • Die Anzahl der Korngrößenfraktionen beträgt vorzugsweise mindestens 3. Die Anzahl der verwendeten Siebe beträgt vorzugsweise mindestens (n+1).
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden mindestens zwei in Produktstromrichtung hintereinander anfallende Siebfraktionen zu einer Korngrößenfraktion vereinigt, wobei sich die Maschenweiten der Siebe, auf denen diese Siebfraktionen anfallen vorzugsweise um üblicherweise um jeweils mindestens 50 µm, vorzugsweise um jeweils mindestens 100 µm, bevorzugt um jeweils mindestens 150 µm, besonders bevorzugt um jeweils mindestens 200 µm, ganz besonders bevorzugt um jeweils mindestens 250 µm, unterscheiden.
  • In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung werden die in Produktstromrichtung zuerst anfallenden mindestens zwei Siebfraktionen zu einer Korngrößenfraktion vereinigt, wobei sich die Maschenweiten der Siebe, auf denen diese Siebfraktionen anfallen vorzugsweise um jeweils mindestens 500 µm, bevorzugt um jeweils mindestens 1.000 µm, besonders bevorzugt um jeweils mindestens 1.500 µm, ganz besonders bevorzugt um jeweils mindestens 2.000 µm, unterscheiden.
  • Die wasserabsorbierenden Polymerpartikel weisen während des Klassierens vorzugsweise eine Temperatur von 40 bis 120°C, besonders bevorzugt von 45 bis 100 °C, ganz besonders bevorzugt von 50 bis 80°C, auf.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird bei vermindertem Druck klassiert. Der Druck beträgt dabei vorzugsweise 100 mbar weniger als der Umgebungsdruck.
  • Besonders vorteilhaft wird das erfindungsgemäße Klassierverfahren kontinuierlich durchgeführt. Der Durchsatz an wasserabsorbierendem Polymer beträgt dabei üblicherweise mindestens 100 kg/m2·h, vorzugsweise mindestens 150 kg/m2·h, bevorzugt mindestens 200 kg/m2 ˙h, besonders bevorzugt mindestens 250 kg/m2 ˙h, ganz besonders bevorzugt mindestens 300 kg/m2 ˙h.
  • Die für das erfindungsgemäße Klassierverfahren geeigneten Siebvorrichtungen unterliegen keiner Beschränkung, bevorzugt sind Plansiebverfahren, ganz besonders bevorzugt sind Taumelsiebmaschinen. Die Siebvorrichtung wird zur Unterstützung der Klassierung typischerweise gerüttelt. Dies geschieht vorzugsweise so, dass das zu klassierende Gut spiralförmig über das Sieb geführt wird. Diese erzwungene Vibration hat typischerweise eine Amplitude von 0,7 bis 40 mm, vorzugsweise von 1,5 bis 25 mm, und eine Frequenz von 1 bis 100 Hz, vorzugsweise von 5 bis 10 Hz.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird mindestens eine Siebmaschine mit n Sieben verwendet. Dabei ist es vorteilhaft, wenn mehrere Siebmaschinen parallel betrieben werden.
  • Vorzugsweise wird das wasserabsorbierende Harz während des Klassierens mit einem Gasstrom, besonders bevorzugt Luft, überströmt. Die Gasmenge beträgt typischerweise von 0,1 bis 10 m3/h pro m2 Siebfläche, vorzugsweise von 0,5 bis 5 m3/h pro m2 Siebfläche, besonders bevorzugt von 1 bis 3 m3/h pro m2 Siebfläche, wobei das Gasvolumen unter Standardbedingungen gemessen wird (25 °C und 1 bar). Besonders bevorzugt wird der Gasstrom vor dem Eintritt in die Siebvorrichtung angewärmt, typischerweise auf eine Temperatur von 40 bis 120°C, vorzugsweise auf eine Temperatur von 50 bis 110 °C, bevorzugt auf eine Temperatur von 60 bis 100°C, besonders bevorzugt auf eine Temperatur von 65 bis 90 °C, ganz besonders bevorzugt auf eine Temperatur von 70 bis 80 °C. Der Wassergehalt des Gasstroms beträgt typischerweise weniger 5 g/kg, vorzugsweise weniger als 4,5 g/kg, bevorzugt weniger als 4 g/kg, besonders bevorzugt weniger als 3,5 g/kg, ganz besonders bevorzugt weniger als 3 g/kg. Ein Gasstrom mit geringem Wassergehalt kann beispielsweise erzeugt werden, indem aus einem Gasstrom mit höherem Wassergehalt eine entsprechende Wassermenge durch Abkühlung auskondensiert wird.
  • Die Siebmaschinen werden üblicherweise elektrisch geerdet.
  • Die im erfindungsgemäßen Verfahren einzusetzenden wasserabsorbierenden Polymerpartikel können durch Polymerisation von Monomerlösungen, enthaltend mindestens ein ethylenisch ungesättigtes Monomer a), wahlweise mindestens einen Vernetzer b), mindestens einen Initiator c) und Wasser d), hergestellt werden.
  • Die Monomeren a) sind vorzugsweise wasserlöslich, d.h. die Löslichkeit in Wasser bei 23°C beträgt typischerweise mindestens 1 g/100 g Wasser, vorzugsweise mindestens 5 g/100 g Wasser, besonders bevorzugt mindestens 25 g/100 g Wasser, ganz besonders bevorzugt mindestens 50 g/100 g Wasser, und haben vorzugsweise mindestens je eine Säuregruppe.
  • Geeignete Monomere a) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure.
  • Die bevorzugten Monomere a) haben mindestens eine Säuregruppe, wobei die Säuregruppen vorzugsweise zumindest teilweise neutralisiert sind.
  • Der Anteil an Acrylsäure und/oder deren Salzen an der Gesamtmenge der Monomeren a) beträgt vorzugsweise mindestens 50 mol-%, besonders bevorzugt mindestens 90 mol-%, ganz besonders bevorzugt mindestens 95 mol-%.
  • Die Monomere a), insbesondere Acrylsäure, enthalten vorzugsweise bis zu 0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind Hydrochinonmonomethylether (MEHQ) und/oder Tocopherole.
  • Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
    Figure imgb0001
    wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeutet.
  • Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricarbonsäuren sein.
  • Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R1 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
  • Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindesten 10 Gew.-ppm, besonders bevorzugt mindesten 30 Gew.-ppm, insbesondere um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze als Acrylsäure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
  • Vernetzer b) sind Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können. Geeignete Vernetzer b) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP 530 438 A1 beschrieben, Di- und Triacrylate, wie in EP 547 847 A1 , EP 559 476 A1 , EP 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 und DE 103 31 450 A1 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethylenisch ungesättigte Gruppen enthalten, wie in DE 103 31 456 A1 und DE 103 55 401 A1 beschrieben, oder Vernetzermischungen, wie beispielsweise in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 und WO 2002/32962 A2 beschrieben.
  • Geeignete Vernetzer b) sind insbesondere N,N'-Methylenbisacrylamid und N,N'-Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldiacrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallyloxyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vinylphosphonsäurederivate, wie sie beispielsweise in EP 343 427 A2 beschrieben sind. Weiterhin geeignete Vernetzer b) sind Pentaerythritoldi-, Pentaerythritoltri- und Pentaerythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerindi- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon. Im erfindungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Polyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 100 und 1000 aufweist.
  • Besonders vorteilhafte Vernetzer b) sind jedoch Di- und Triacrylate des 3- bis 20-fach ethoxylierten Glyzerins, des 3- bis 20-fach ethoxylierten Trimethylolpropans, des 3- bis 20-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6-fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des mindestens 40-fach ethoxylierten Glyzerins, Trimethylolethans oder Trimethylolpropans.
  • Ganz besonders bevorzugte Vernetzer b) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine, wie sie beispielsweise in WO 2003/104301 A1 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3-bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins.
  • Die Menge an Vernetzer b) beträgt vorzugsweise 0,01 bis 5 Gew.-%, besonders bevorzugt 0,05 bis 2 Gew.-%, ganz besonders bevorzugt 0,1 bis 1 Gew.-%, jeweils bezogen auf die Monomerlösung.
  • Als Initiatoren c) können sämtliche unter den Polymerisationsbedingungen radikalbildende Verbindungen eingesetzt werden, beispielsweise Peroxide, Hydroperoxide, Wasserstoffperoxid, Persulfate, Azoverbindungen und die sogenannten Redoxinitiatoren. Bevorzugt ist der Einsatz von wasserlöslichen Initiatoren. In manchen Fällen ist es vorteilhaft, Mischungen verschiedener Initiatoren zu verwenden, beispielsweise Mischungen aus Wasserstoffperoxid und Natrium- oder Kaliumperoxodisulfat. Mischungen aus Wasserstoffperoxid und Natriumperoxodisulfat können in jedem beliebigen Verhältnis verwendet werden.
  • Besonders bevorzugte Initiatoren c) sind Azoinitiatoren, wie 2,2'-Azobis[2-(2-imidazolin-2-yl)propan]dihydrochlorid und 2,2'-Azobis[2-(5-methyl-2-imidazolin-2-yl)propan]dihydrochlorid, und Photoinitiatoren, wie 2-Hydroxy-2-methylpropiophenon und 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-on, Redoxinitiatoren, wie Natriumpersulfat/ Hydroxymethylsulfinsäure, Ammoniumperoxodisulfat/Hydroxymethylsulfinsäure, Wasserstoffperoxid/Hydroxymethylsulfinsäure, Natriumpersulfat/Ascorbinsäure, Ammoniumperoxodisulfat/Ascorbinsäure und Wasserstoffperoxid/Ascorbinsäure, Photoinitiatoren, wie 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1-on, sowie deren Mischungen.
  • Die Initiatoren werden in üblichen Mengen eingesetzt, beispielsweise in Mengen von 0,001 bis 5 Gew.-%, vorzugsweise 0,01 bis 1 Gew.-%, bezogen auf die Monomeren a).
  • Die bevorzugten Polymerisationsinhibitoren benötigen für eine optimale Wirkung gelösten Sauerstoff. Daher kann die Monomerlösung vor der Polymerisation durch Inertisierung, d. h. Durchströmen mit einem inerten Gas, vorzugsweise Stickstoff, von gelöstem Sauerstoff befreit werden. Vorzugsweise wird der Sauerstoffgehalt der Monomerlösung vor der Polymerisation auf weniger als 1 Gew.-ppm, besonders bevorzugt auf weniger als 0,5 Gew.-ppm, gesenkt.
  • Die Herstellung eines geeigneten Polymers sowie weitere geeignete hydrophile ethylenisch ungesättigte Monomere a) werden in DE 199 41 423 A1 , EP 686 650 A1 , WO 2001/45758 A1 und WO 2003/104300 A1 beschrieben.
  • Geeignete Reaktoren sind Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 2001/38402 A1 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE 38 25 366 A1 und US 6,241,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das in einem weiteren Verfahrensschritt zerkleinert werden muss, beispielsweise in einem Fleischwolf, Extruder oder Kneter. Vorteilhaft wird das Hydrogel nach dem Verlassen des Polymerisationsreaktors noch bei höherer Temperatur, vorzugsweise mindestens 50°C, besonders bevorzugt mindestes 70 °C, ganz besonders bevorzugt mindestens 80 °C, sowie vorzugsweise weniger als 100°C, gelagert, beispielsweise in isolierten Behältern. Durch die Lagerung, üblicherweise 2 bis 12 Stunden, wird der Monomerumsatz weiter erhöht.
  • Bei höheren Monomerumsätzen im Polymerisationsreaktor kann die Lagerung auch deutlich verkürzt bzw. auf eine Lagerung verzichtet werden.
  • Die Säuregruppen der erhaltenen Hydrogele sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 95 mol-%, bevorzugt zu 50 bis 80 mol-%, besonders bevorzugt zu 60 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Alkalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen.
  • Die Neutralisation wird vorzugsweise auf der Stufe der Monomeren durchgeführt. Dies geschieht üblicherweise durch Einmischung des Neutralisationsmittels als wässrige Lösung, als Schmelze, oder bevorzugt auch als Feststoff. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.-% als wachsartige Masse mit einem Schmelzpunkt oberhalb 23 °C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich.
  • Es ist aber auch möglich die Neutralisation nach der Polymerisation auf der Stufe des Hydrogels durchzuführen. Weiterhin ist es möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlösung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Hydrogels eingestellt wird. Wird das Hydrogel zumindest teilweise nach der Polymerisation neutralisiert, so wird das Hydrogel vorzugsweise mechanisch zerkleinert, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig untergemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden.
  • Das Hydrogel wird dann vorzugsweise mit einem Bandtrockner getrocknet bis der Restfeuchtegehalt vorzugsweise unter 15 Gew.-%, insbesondere unter 10 Gew.-% liegt, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt wird. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein beheizter Pflugscharmischer verwendet werden. Um besonders weiße Produkte zu erhalten, ist es vorteilhaft bei der Trocknung dieses Gels einen schnellen Abtransport des verdampfenden Wassers sicherzustellen. Dazu ist die Trocknertemperatur zu optimieren, die Luftzu- und -abführung muss kontrolliert erfolgen, und es ist in jedem Fall auf ausreichende Belüftung zu achten. Die Trocknung ist naturgemäß um so einfacher und das Produkt um so weißer, wenn der Feststoffgehalt des Gels möglichst hoch ist. Bevorzugt liegt der Feststoffgehalt des Gels vor der Trocknung daher zwischen 30 und 80 Gew.-%. Besonders vorteilhaft ist die Belüftung des Trockners mit Stickstoff oder einem anderen nicht-oxidierenden Inertgas. Wahlweise kann aber auch einfach nur der Partialdruck des Sauerstoffs während der Trocknung abgesenkt werden, um oxidative Vergilbungsvorgänge zu verhindern.
  • Das getrocknete Hydrogel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen eingesetzt werden können.
  • Die mittlere Partikelgröße der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 µm, besonders bevorzugt von 250 bis 600 µm, ganz besonders von 300 bis 500 µm. Die mittlere Partikelgröße der Produktfraktion kann mittels der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 420.2-02 "Partikel size distribution" ermittelt werden, wobei die Massenanteile der Siebfraktionen kumuliert aufgetragen werden und die mittlere Partikelgröße graphisch bestimmt wird. Die mittlere Partikelgröße ist hierbei der Wert der Maschenweite, der sich für kumulierte 50 Gew.-% ergibt.
  • Die Polymerpartikel können zur weiteren Verbesserung der Eigenschaften nachvernetzt werden. Geeignete Nachvernetzer sind Verbindungen, die Gruppen enthalten, die mit den mindestens zwei Carboxylatgruppen des Hydrogels kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polyaziridine, Polyamine, Polyamidoamine, Di- oder Polyepoxide, wie in EP 83 022 A2 , EP 543 303 A1 und EP 937 736 A2 beschrieben, di- oder polyfunktionelle Alkohole, wie in DE 33 14 019 A1 , DE 35 23 617 A1 und EP 450 922 A2 beschrieben, oder ß-Hydroxyalkylamide, wie in DE 102 04 938 A1 und US 6,239,230 beschrieben.
  • Des weiteren sind in DE 40 20 780 C1 zyklische Karbonate, in DE 198 07 502 A1 2-Oxazolidon und dessen Derivate, wie 2-Hydroxyethyl-2-oxazolidon, in DE 198 07 992 C1 Bis- und Poly-2-oxazolidinone, in DE 198 54 573 A1 2-Oxotetrahydro-1,3-oxazin und dessen Derivate, in DE 198 54 574 A1 N-Acyl-2-Oxazolidone, in DE 102 04 937 A1 zyklische Harnstoffe, in DE 103 34 584 A1 bizyklische Amidacetale, in EP 1 199 327 A2 Oxetane und zyklische Harnstoffe und in WO 2003/31482 A1 Morpholin-2,3-dion und dessen Derivate als geeignete Nachvernetzer beschrieben.
  • Weiterhin können auch Nachvernetzer eingesetzt werden, die zusätzliche polymerisierbare ethylenisch ungesättigte Gruppen enthalten, wie in DE 37 13 601 A1 beschrieben
  • Die Menge an Nachvernetzer beträgt vorzugsweise 0,01 bis 1 Gew.-%, besonders bevorzugt 0,05 bis 0,5 Gew.-%, ganz besonders bevorzugt 0,1 bis 0,2 Gew.-%, jeweils bezogen auf das Polymer.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung werden zusätzlich zu den Nachvernetzern polyvalente Kationen auf die Partikeloberfläche aufgebracht.
  • Die im erfindungsgemäßen Verfahren einsetzbaren polyvalenten Kationen sind beispielsweise zweiwertige Kationen, wie die Kationen von Zink, Magnesium, Kalzium und Strontium, dreiwertige Kationen, wie die Kationen von Aluminium, Eisen, Chrom, Seltenerden und Mangan, vierwertige Kationen, wie die Kationen von Titan und Zirkonium. Als Gegenion sind Chlorid, Bromid, Sulfat, Hydrogensulfat, Carbonat, Hydrogencarbonat, Nitrat, Phosphat, Hydrogenphosphat, Dihydrogenphosphat und Carboxylat, wie Acetat und Lactat, möglich. Aluminiumsulfat ist bevorzugt. Außer Metallsalzen können auch Polyamine als polyvalente Kationen eingesetzt werden.
  • Die Einsatzmenge an polyvalentem Kation beträgt beispielsweise 0,001 bis 0,5 Gew.-%, vorzugsweise 0,005 bis 0,2 Gew.-%, besonders bevorzugt 0,02 bis 0,1 Gew.-%. jeweils bezogen auf das Polymer.
  • Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Nachvernetzers auf das Hydrogel oder die trockenen Polymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen wird thermisch getrocknet, wobei die Nachvernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann.
  • Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schaufelmischer. Geeignete Mischer sind beispielsweise Lödige-Mischer, Bepex-Mischer, Nauta-Mischer, Processall-Mischer und Schugi-Mischer.
  • Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevorzugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex-Trockner und Nara-Trockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
  • Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Besonders vorteilhaft wird in einem Wirbelschichttrockner gemischt und getrocknet.
  • Bevorzugte Trocknungstemperaturen liegen im Bereich 100 bis 250 °C, bevorzugt 120 bis 220 °C, und besonders bevorzugt 130 bis 210°C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt vorzugsweise mindestens 10 Minuten, besonders bevorzugt mindestens 20 Minuten, ganz besonders bevorzugt mindestens 30 Minuten.
  • Anschließend kann das nachvernetzte Polymer erneut klassiert werden.
  • Der mittlere Durchmesser der als Produktfraktion abgetrennten Polymerpartikel beträgt vorzugsweise mindestens 200 µm, besonders bevorzugt von 250 bis 600 µm, ganz besonders von 300 bis 500 µm. 90% der Polymerpartikel weisen einen Durchmesser von vorzugsweise 100 bis 800 µm, besonders bevorzugt von 150 bis 700 µm, ganz besonders bevorzugt von 200 bis 600 µm, auf.
  • Die wasserabsorbierenden Polymerpartikel weisen eine Zentrifugenretentionskapazität (CRC) von typischerweise mindestens 15 g/g, vorzugsweise mindestens 20 g/g, bevorzugt mindestens 25 g/g, besonders bevorzugt mindestens 30 g/g, ganz besonders bevorzugt mindestens 35 g/g, auf. Die Zentrifugenretentionskapazität (CRC) der wasserabsorbierenden Polymerpartikel beträgt üblicherweise weniger als 60 g/g, wobei die Zentrifugenretentionskapazität (CRC) gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt wird.
  • Die wasserabsorbierenden Polymerpartikel werden mittels der nachfolgend beschriebenen Testmethoden geprüft.
  • Methoden:
  • Die Messungen sollten, wenn nicht anders angegeben, bei einer Umgebungstemperatur von 23 ± 2 °C und einer relativen Luftfeuchte von 50 ± 10 % durchgeführt werden. Die wasserabsorbierenden Polymerpartikel werden vor der Messung gut durchmischt.
  • Permeabilität (SFC Saline Flow Conductivity)
  • Die Permeabilität einer gequollenen Gelschicht unter Druckbelastung von 0,3 psi (2070. Pa) wird, wie in EP-A-0 640 330 beschrieben, als Gel-Layer-Permeability einer gequollenen Gelschicht aus superabsorbierendem Polymer bestimmt, wobei die in zuvor genannter Patentanmeldung auf Seite 19 und in Figur 8 beschriebene Apparatur dahingehend modifiziert wurde, dass die Glasfritte (40) nicht mehr verwendet wird, der Stempel (39) aus gleichem Kunststoffmaterial besteht wie der Zylinder (37) und jetzt über die gesamte Auflagefläche gleichmäßig verteilt 21 gleichgroße Bohrungen enthält. Die Vorgehensweise sowie Auswertung der Messung bleibt unverändert gegenüber EP-A-0 640 330 . Der Durchfluss wird automatisch erfasst.
  • Die Permeabilität (SFC) wird wie folgt berechnet: SFC cm 2 s / g = Fg t = 0 x L 0 / dxAxWP ,
    Figure imgb0002

    wobei Fg(t=0) der Durchfluss an NaCl-Lösung in g/s ist, der anhand einer linearen Regressionsanalyse der Daten Fg(t) der Durchflussbestimmungen durch Extrapolation gegen t=0 erhalten wird, L0 die Dicke der Gelschicht in cm, d die Dichte der NaCl-Lösung in g/cm3, A die Fläche der Gelschicht in cm2 und WP der hydrostatische Druck über der Gelschicht in dyn/cm2 darstellt.
  • Beispiele Herstellung der wasserabsorbierenden Polymerpartikel
  • Durch kontinuierliches Mischen von Wasser, 50 gew.-%iger Natronlauge und Acrylsäure wurde eine 38,8 gew.-%ige Acrylsäure/Natriumacrylatlösung hergestellt, so dass der Neutralisationsgrad 71,3 mol-% betrug. Der Feststoffgehalt der Monomerlösung betrug 38,8 Gew.-%. Die Monomerlösung wurde nach dem Mischen der Komponenten durch einen Wärmetauscher kontinuierlich abgekühlt.
  • Als mehrfach ethylenisch ungesättigter Vernetzer wird Polyethylenglykol-400-diacrylat (Diacrylat eines Polyethylenglykols mit einem mittleren Molgewicht von 400 g/mol) verwendet. Die Einsatzmenge betrug 2 kg pro t Monomerlösung.
  • Zur Initiierung der radikalischen Polymerisation wurden folgende Komponenten eingesetzt: Wasserstoffperoxid (1,03 kg (0,25 gew.-%ig) pro t Monomerlösung), Natriumperoxodisulfat (3,10 kg (15 gew.-%ig) pro t Monomerlösung), sowie Ascorbinsäure (1,05 kg (1 gew.-%ig) pro t Monomerlösung).
  • Der Durchsatz der Monomerlösung betrug 20 t/h.
  • Die einzelnen Komponenten werden kontinuierlich in einen List Contikneter mit 6.3m3 Volumen (Fa. List, Arisdorf, Schweiz) in folgenden Mengen eindosiert:
    20 t/h Monomerlösung
    40 kg/h Polyethylenglycol-400-diacrylat
    82,6 kg/h Wasserstoffperoxidlösung/Natriumperoxodisulfat-Lösung
    21 kg/h Ascorbinsäurelösung
  • Zwischen den Zugabepunkten für Vernetzer und Initiatoren wurde die Monomerlösung mit Stickstoff inertisiert.
  • Am Ende des Reaktors wurden zusätzlich 1.000 kg/h abgetrenntes Unterkorn mit einer Partikelgröße kleiner 150 µm zudosiert.
  • Die Reaktionslösung hatte am Zulauf eine Temperatur von 23,5 °C. Der Reaktor wurde mit einer Drehzahl der Wellen von 38rpm betrieben. Die Verweilzeit der Reaktionsmischung im Reaktor betrug 15 Minuten.
  • Nach Polymerisation und Gelzerkleinerung wurde das wässrige Polymergel auf einen Bandtrockner aufgegeben. Die Verweilzeit auf dem Trocknerband betrug ca. 37 Minuten.
  • Das getrocknete Hydrogel wurde gemahlen und gesiebt. Die Fraktion mit der Partikelgröße 150 bis 850 µm wurde nachvernetzt. Das abgetrennte Unterkorn (Unterkorn A) wurde zurückgeführt.
  • Die Nachvernetzerlösung wurde in einem Schugi-Mischer (Fa, Hosokawa-Micron B.V., Doetichem, NL) auf die Polymerpartikel aufgesprüht. Die Nachvernetzerlösung war eine 2,7 gew.-%ige Lösung von Ethylenglykoldiglycidylether in Propylenglykol/Wasser Gewichtsverhältnis 1:3).
  • Es wurden die folgenden Mengen dosiert:
    7,5 t/h wasserabsorbierende Polymerpartikel (Grundpolymer)
    308,25 kg/h Nachvernetzerlösung
  • Anschließend wurde 60 Minuten bei 150°C in einem NARA-Paddle-Dryer (Fa. GMF Gouda, Waddinxveen, NL) getrocknet und nachvernetzt.
  • Die nachvernetzten Polymerpartikel wurden in einem NARA-Paddle-Dryer (Fa. GMF Gouda, Waddinxveen, NL) auf 60°C abgekühlt (Mischung I).
  • Die abgekühlten Polymerpartikel wurden auf eine Partikelgröße von 150 bis 850 µm abgesiebt. Das abgetrennte Unterkorn (Unterkorn B) wurde zurückgeführt.
  • Beispiele 1 bis 12
  • Es wurde eine homogene Mischung aus Mischung I und Unterkorn A im Gewichtsverhältnis 4:1 hergestellt (Mischung II).
  • Es wurde eine homogene Mischung aus Mischung I und Unterkorn B im Gewichtsverhältnis 4:1 hergestellt (Mischung III).
  • Jeweils 200 g jeder Mischung wurden 30 bzw. 60 Sekunden mittels einer Vibrationsiebmaschine (AS 200 control; Retsch GmbH, Haan, DE) mit einem Siebturm mit 2 bzw. 3 Sieben aufgetrennt.
  • Variante A: Es wurden Siebe mit den Maschenweiten 850 µm und 150 µm (2 Siebe) eingesetzt. Die Siebfraktion auf dem Sieb mit der Maschenweite 150 µm wurde als Produktfraktion analysiert.
  • Variante B: Es wurden Siebe mit den Maschenweiten 850 µm, 500 µm und 150 µm (3 Siebe) eingesetzt. Die Fraktionen auf den Sieben mit 500 µm und 150 µm wurden vereinigt, homogenisiert und als Produktfraktion analysiert.
  • Die Versuchsergebnisse sind in Tabelle 1 zusammengefasst: Tab. 1: Siebversuche 1
    Beispiel Einsatz Dauer des Siebens Anzahl der Siebe SFC [10-7 · cm3s/g]
    1 Mischung I 30 s 3 42
    2*) Mischung I 30 s 2 37
    3 Mischung I 60 s 3 44
    4*) Mischung I 60 s 2 34
    5 Mischung II 30 s 3 26
    6*) Mischung II 30 s 2 19
    7 Mischung II 60 s 3 22
    8*) Mischung II 60 s 2 21
    9 Mischung III 30 s 3 33
    10*) Mischung III 30 s 2 25
    11 Mischung III 60 s 3 34
    12*) Mischung III 60 s 2 33
    *) Vergleichsbeispiele
  • Beispiele 13 bis 16
  • Es wurde eine homogene Mischung aus Mischung I und Unterkorn (Gemisch aus Unterkorn A und Unterkorn B) im Gewichtsverhältnis 2:1 hergestellt (Mischung IV).
  • Jeweils 200 g jeder Mischung wurde 60 Sekunden mittels einer Vibrationssiebmaschine (AS 200 control; Retsch GmbH, Haan, DE) mit einem Siebturm mit 2 bzw. 3 Sieben aufgetrennt.
  • Variante A: Es wurden Siebe mit den Maschenweiten 850 µm und 150 µm (2 Siebe) eingesetzt. Die Siebfraktion auf dem Sieb mit der Maschenweite 150 µm wurde als Produktfraktion analysiert.
  • Variante B: Es wurden Siebe mit den Maschenweiten 850 µm, x µm und 150 µm (3 Siebe) eingesetzt, wobei das mittlere Sieb eine Maschenweite von 500 µm, 600 µm oder 710 µm aufwies. Die Fraktionen auf den Sieben mit x µm und 150 µm wurden vereinigt, homogenisiert und als Produktfraktion analysiert.
  • Die Versuchsergebnisse sind in Tabelle 2 zusammengefasst: Tab. 2: Siebversuche 2
    Beispiel Einsatz Anzahl der Siebe Maschenweite des mittleren Siebes SFC [10-7 ·cm3s/g]
    13 Mischung IV 3 500 µm 30
    14 Mischung IV 3 600 µm 29
    15 Mischung IV 3 710 µm 25
    16*) Mischung IV 2 entfällt 25
    *) Vergleichsbeispiel

Claims (16)

  1. Verfahren zum Klassieren wasserabsorbierender Polymerpartikel, wobei die Polymerpartikel in n Korngrößenfraktionen aufgetrennt werden und n eine ganze Zahl größer 1 ist, dadurch gekennzeichnet, dass mindestens n Siebe verwendet werden und die Maschenweiten der n Siebe in Produktstromrichtung abnehmen.
  2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass n größer 2 ist.
  3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass mindestens (n+1) Siebe verwendet werden.
  4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass mindestens zwei in Produktstromrichtung hintereinander anfallende Siebfraktionen zu einer Korngrößenfraktion vereinigt werden, wobei sich die Maschenweiten der Siebe, auf denen diese Siebfraktionen anfallen, um jeweils mindestens 50 µm unterscheiden.
  5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die in Produktstromrichtung zuerst anfallenden mindestens zwei Siebfraktionen zu einer Korngrößenfraktion vereinigt werden.
  6. Verfahren gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die in Produktstromrichtung zuerst anfallenden mindestens zwei Siebfraktionen zu einer Korngrößenfraktion vereinigt werden, wobei sich die Maschenweiten der Siebe, auf denen diese Siebfraktionen anfallen, um jeweils mindestens 500 µm unterscheiden.
  7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass mindestens eine Siebmaschine mit n Sieben verwendet wird.
  8. Verfahren gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel während des Klassierens eine Temperatur von mindestens 40°C aufweisen.
  9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass bei vermindertem Druck klassiert wird.
  10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der stündliche Durchsatz an wasserabsorbierenden Polymerpartikeln beim Klassieren mindestens 100 kg pro m2 Siebfläche beträgt.
  11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel während des Klassierens von einem Gasstrom überströmt werden.
  12. Verfahren gemäß Anspruch 11, dadurch gekennzeichnet, dass der Gasstrom eine Temperatur von 40 bis 120°C aufweist.
  13. Verfahren gemäß Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Gasstrom einen Wasserdampfgehalt von weniger als 5 g/kg aufweist.
  14. Verfahren gemäß einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel durch Polymerisation einer wässrigen Monomerlösung erhalten wurden.
  15. Verfahren gemäß einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel zu mindestens 50 mol-% zumindest teilweise neutralisierter polymerisierter Acrylsäure enthalten.
  16. Verfahren gemäß einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass die wasserabsorbierenden Polymerpartikel eine Zentrifugenretentionskapazität von mindestens 15 g/g aufweisen.
EP07820483.1A 2006-09-25 2007-09-24 Verfahren zum klassieren wasserabsorbierender polymerpartikel Active EP2076338B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06121228 2006-09-25
PCT/EP2007/060076 WO2008037675A1 (de) 2006-09-25 2007-09-24 Verfahren zum klassieren wasserabsorbierender polymerpartikel

Publications (3)

Publication Number Publication Date
EP2076338A1 EP2076338A1 (de) 2009-07-08
EP2076338B1 true EP2076338B1 (de) 2012-12-19
EP2076338B2 EP2076338B2 (de) 2022-01-26

Family

ID=38961767

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07820483.1A Active EP2076338B2 (de) 2006-09-25 2007-09-24 Verfahren zum klassieren wasserabsorbierender polymerpartikel

Country Status (5)

Country Link
US (2) US8443982B2 (de)
EP (1) EP2076338B2 (de)
JP (2) JP5888836B2 (de)
CN (1) CN101516531B (de)
WO (1) WO2008037675A1 (de)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10099254B2 (en) 2007-03-26 2018-10-16 Nippon Shokubai Co., Ltd. Classification method of particulate water absorbent resin
EP2235093B1 (de) * 2007-12-19 2015-04-22 Basf Se Verfahren zur herstellung von oberflächenvernetzten superabsorbern
WO2009113679A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP5390511B2 (ja) 2008-04-11 2014-01-15 株式会社日本触媒 吸水性樹脂の表面処理方法および吸水性樹脂の製造方法
SG194348A1 (en) 2008-09-16 2013-11-29 Nippon Catalytic Chem Ind Production method and method for enhancing liquid permeability of water-absorbing resin
US8608096B2 (en) 2009-02-18 2013-12-17 Basf Se Method for the production of water-absorbing polymer particles
EP2415822B1 (de) 2009-03-31 2019-03-20 Nippon Shokubai Co., Ltd. Herstellungsverfahren für wasserabsorbierende harzpartikel
WO2011042468A2 (de) * 2009-10-09 2011-04-14 Basf Se Verfahren zur nachbefeuchtung oberflächennachvernetzter wasserabsorbierender polymerpartikel
WO2011099586A1 (ja) 2010-02-10 2011-08-18 株式会社日本触媒 吸水性樹脂粉末の製造方法
WO2011111857A1 (ja) 2010-03-12 2011-09-15 株式会社日本触媒 吸水性樹脂の製造方法
WO2011115221A1 (ja) 2010-03-17 2011-09-22 株式会社日本触媒 吸水性樹脂の製造方法
JP5616437B2 (ja) 2010-04-27 2014-10-29 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2012144595A1 (ja) 2011-04-20 2012-10-26 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法および製造装置
JP5551836B2 (ja) 2011-11-16 2014-07-16 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP5996651B2 (ja) 2012-08-01 2016-09-21 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
EP2927264B1 (de) 2012-11-27 2020-04-08 Nippon Shokubai Co., Ltd. Verfahren zur herstellung von wasserabsorbierendem harz auf polyacrylsäure(salz)basis
WO2014154522A1 (en) * 2013-03-28 2014-10-02 Basf Se Process for classifying water-absorbing polymer beads
EP4159307A1 (de) 2013-09-30 2023-04-05 Nippon Shokubai Co., Ltd. Verfahren zum füllen eines partikelförmigen wasserabsorptionsmittels und verfahren zur probenahme eines gefüllten partikelförmigen wasserabsorptionsmittels
WO2016136761A1 (ja) * 2015-02-24 2016-09-01 住友精化株式会社 吸水性樹脂製造装置
US10537874B2 (en) 2015-04-02 2020-01-21 Nippon Shokubai Co., Ltd. Method for producing particulate water-absorbing agent
US11465126B2 (en) 2016-11-16 2022-10-11 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder and production apparatus therefor
EP3661662A1 (de) * 2017-07-31 2020-06-10 Basf Se Klassierverfahren für superabsorbierende polymerpartikel
KR102270052B1 (ko) * 2019-09-03 2021-06-28 주식회사 케이씨인더스트리얼 고순도 SiC 분말의 제조방법
US11718532B2 (en) 2018-12-27 2023-08-08 Kcindustrial Co., Ltd. Preparation method of high purity SiC powder
JP7335051B2 (ja) * 2019-10-07 2023-08-29 エルジー・ケム・リミテッド 高吸水性樹脂の製造方法
EP3943541A4 (de) * 2020-01-20 2023-07-05 Lg Chem, Ltd. Verfahren zur herstellung eines superabsorbierenden polymers

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE562688A (de) *
US2683533A (en) * 1950-03-10 1954-07-13 Huntley Mfg Company Grain separator and cleaner
US2960724A (en) * 1956-03-09 1960-11-22 Houilleres Du Nord Ets Process for preparing, by a mechanical way, polyethylenes with homogeneous physico-chemical properties
US3061095A (en) * 1960-10-10 1962-10-30 Process Engineers Inc Machine for processing mineral material
US3485364A (en) * 1967-02-09 1969-12-23 Dart Ind Inc Classification of solid polymer pellets
US3620368A (en) * 1969-06-02 1971-11-16 Dart Ind Inc Classification of dry polymer beads
US4013550A (en) * 1975-07-22 1977-03-22 United States Steel Corporation Manufacture of thermoplastic resin beads
US4192920A (en) * 1978-07-24 1980-03-11 Rohm And Haas Company Uniform polymer beads and ion exchange resins therefrom prepared by post-crosslinking of lightly crosslinked beads
DE3315991A1 (de) * 1983-05-03 1984-11-08 Dr. Küttner GmbH & Co KG, 4300 Essen Verfahren und einrichtung zur bereitung von schuettgut mit definierter korngroessenverteilung
DD256227A3 (de) 1985-09-23 1988-05-04 Akad Wissenschaften Ddr Siebmaschinensystem
KR100240359B1 (ko) 1991-04-12 2000-03-02 데이비드 엠 모이어 초흡수성 하이드로겔-형성 물질의 특정한 입경 분포를 갖는 흡수 구조물
JPH06246636A (ja) * 1993-02-26 1994-09-06 Eikichi Yamaharu ブラスト装置およびこれを利用した金型仕上げ装置
US5599335A (en) 1994-03-29 1997-02-04 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
AU717286B2 (en) * 1996-11-06 2000-03-23 Sanyo Chemical Industries Ltd. Water absorbing agent and absorbent material
JP3875757B2 (ja) * 1997-01-27 2007-01-31 株式会社日本触媒 粒子状親水性重合体の分級方法およびふるい分け装置
EP0979250B1 (de) 1997-04-29 2004-04-14 Dow Global Technologies Inc. Superabsorbierende polymere mit verbesserter verarbeitbarkeit
JP4583516B2 (ja) 1998-03-04 2010-11-17 株式会社日本触媒 吸水性樹脂、その製造方法および吸収性物品
US6036126A (en) * 1998-12-09 2000-03-14 Boehringer Ingelheim Pharmaceuticals, Inc. Apparatus for separating particles of cohesive material according to size and process
DE19909653A1 (de) 1999-03-05 2000-09-07 Stockhausen Chem Fab Gmbh Pulverförmige, vernetzte, wässrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung
CA2395455C (en) 1999-12-23 2008-02-05 Mobius Technologies, Inc Polymeric foam powder processing techniques, foam powder products, and foams produced containing those foam powders
JP2001219155A (ja) * 2000-02-07 2001-08-14 Mitsubishi Heavy Ind Ltd 汚染土壌前処理方法およびその装置ならびに汚染土壌無害化処理方法
DE10016041A1 (de) 2000-03-31 2001-10-04 Stockhausen Chem Fab Gmbh Pulverförmige an der Oberfläche vernetzte Polymerisate
US6727345B2 (en) 2001-07-03 2004-04-27 Nippon Shokubai Co., Ltd. Continuous production process for water-absorbent resin powder and powder surface detector used therefor
JP3993797B2 (ja) * 2001-07-06 2007-10-17 株式会社日本触媒 吸水性樹脂粉末、その製造方法およびその用途
JP2003320308A (ja) 2002-04-30 2003-11-11 Sumitomo Chem Co Ltd 水硬性粉体の造粒物の篩別方法および装置
US7193006B2 (en) 2002-12-06 2007-03-20 Nippon Shokubai Co., Ltd. Process for continuous production of water-absorbent resin product
FR2863509B1 (fr) * 2003-12-10 2007-07-13 Galloo Plastics Procede de separation selective de materiaux polymeres fragmentes en particulier usages, au moyen de suspensions aqueuses denses dynamiquement stabilises
DE102004009438A1 (de) * 2004-02-24 2005-09-15 Basf Ag Verfahren zur Oberflächennachvernetzung wasserabsorbierender Polymere
JP3849124B1 (ja) * 2004-12-03 2006-11-22 グリーンアーム株式会社 舗装のアスファルト混合物層を路上で連続的に再生する方法およびそのための自走車両システム
DE102005001789A1 (de) 2005-01-13 2006-07-27 Basf Ag Verfahren zum Klassieren eines teilchenförmigen wasserabsorbierenden Harzes
WO2006078046A2 (en) * 2005-01-18 2006-07-27 Nippon Shokubai Co., Ltd. Water absorbent and method for production thereof
JP2006247510A (ja) 2005-03-10 2006-09-21 Fuji Xerox Co Ltd 振動篩装置および電子写真用トナーの製造方法

Also Published As

Publication number Publication date
US8844729B2 (en) 2014-09-30
US20090266747A1 (en) 2009-10-29
US20130098809A1 (en) 2013-04-25
JP2010504211A (ja) 2010-02-12
CN101516531A (zh) 2009-08-26
JP6157534B2 (ja) 2017-07-05
WO2008037675A1 (de) 2008-04-03
JP2015145507A (ja) 2015-08-13
EP2076338B2 (de) 2022-01-26
CN101516531B (zh) 2014-05-21
EP2076338A1 (de) 2009-07-08
US8443982B2 (en) 2013-05-21
JP5888836B2 (ja) 2016-03-22

Similar Documents

Publication Publication Date Title
EP2076338B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2073943B1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2069409B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2307062B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
WO2008037672A1 (de) Verfahren zum klassieren wasserabsorbierender polymerpartikel
EP2305718B1 (de) Verfahren zur Herstellung wasserabsorbierender Polymere
EP1799721B1 (de) Verfahren zur kontinuierlichen herstellung von vernetzten feinteiligen gelförmigen polymerisaten
EP1838463B2 (de) Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes
EP2291416A1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2074153B1 (de) Verfahren zur herstellung farbstabiler wasserabsorbierender polymerpartikel mit niedrigen neutralisationsgrad
EP2137262B1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
EP2069121B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP2238181B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2076547A2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel durch polymerisation von tropfen einer monomerlösung
EP2547705B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel mit verbesserter farbstabilität
EP2222398B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
CN110799275A (zh) 超吸收性聚合物颗粒的分级方法
EP2129706B1 (de) Verfahren zum beschichten wasserabsorbierender polymerpartikel
EP3464427B1 (de) Verfahren zur herstellung von superabsorbern
CN110832011A (zh) 制备超吸收性聚合物颗粒的方法
EP2215128B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20101129

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 589090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007011081

Country of ref document: DE

Effective date: 20130207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130330

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20121219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130320

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130319

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: EVONIK DEGUSSA GMBH

Effective date: 20130918

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: NIPPON SHOKUBAI CO., LTD.

Effective date: 20130919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502007011081

Country of ref document: DE

Effective date: 20130918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130924

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130924

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130924

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 589090

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130924

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070924

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APAW Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNO

APBA Date of receipt of statement of grounds of appeal deleted

Free format text: ORIGINAL CODE: EPIDOSDNOA3O

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

R26 Opposition filed (corrected)

Opponent name: EVONIK OPERATIONS GMBH

Effective date: 20130918

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAP Information related to despatch of examination report in opposition + time limit deleted

Free format text: ORIGINAL CODE: EPIDOSDORE2

PLAT Information related to reply to examination report in opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20220126

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502007011081

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230926

Year of fee payment: 17

Ref country code: DE

Payment date: 20230928

Year of fee payment: 17

Ref country code: BE

Payment date: 20230926

Year of fee payment: 17