WO2015072536A1 - ポリアクリル酸(塩)系吸水性樹脂の製造方法 - Google Patents

ポリアクリル酸(塩)系吸水性樹脂の製造方法 Download PDF

Info

Publication number
WO2015072536A1
WO2015072536A1 PCT/JP2014/080156 JP2014080156W WO2015072536A1 WO 2015072536 A1 WO2015072536 A1 WO 2015072536A1 JP 2014080156 W JP2014080156 W JP 2014080156W WO 2015072536 A1 WO2015072536 A1 WO 2015072536A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
exhaust gas
gas
absorbing
salt
Prior art date
Application number
PCT/JP2014/080156
Other languages
English (en)
French (fr)
Inventor
長澤 誠
次郎 佐野
好希 片田
邦彦 石▲崎▼
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to US15/036,230 priority Critical patent/US9682362B2/en
Priority to CN201480061613.4A priority patent/CN105722581B/zh
Priority to EP14862695.5A priority patent/EP3069782B1/en
Publication of WO2015072536A1 publication Critical patent/WO2015072536A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1487Removing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/44Organic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/04Acids, Metal salts or ammonium salts thereof
    • C08F20/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/245Differential crosslinking of one polymer with one crosslinking type, e.g. surface crosslinking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing a polyacrylic acid (salt) water-absorbing resin. More specifically, the polyacrylic acid further includes a step (gas absorption step) of absorbing gas discharged from the production step of the polyacrylic acid (salt) -based water absorbent resin including a polymerization step, a drying step, a surface cross-linking step, and the like.
  • the present invention relates to a method for producing a (salt) water-absorbing resin.
  • Water-absorbing resin (SAP / Super Absorbent Polymer) is a water-swellable, water-insoluble polymer gelling agent, such as sanitary products such as paper diapers and sanitary napkins, agricultural and horticultural water retention agents, industrial water-stopping agents, etc. , Mainly used in disposable applications.
  • sanitary products such as paper diapers and sanitary napkins, agricultural and horticultural water retention agents, industrial water-stopping agents, etc.
  • Such a water-absorbing resin uses many monomers and hydrophilic polymer compounds as raw materials. Among them, polyacrylic acid (salt) water-absorbing resins using acrylic acid and / or a salt thereof are most frequently used industrially because of their high water absorption performance.
  • Non-Patent Document 1 Such a water-absorbing resin is produced as a particulate product through polymerization, drying, pulverization, classification, surface crosslinking, etc.
  • Non-Patent Document 1 polymerization, drying, heat treatment (surface crosslinking)
  • the exhaust gas contains raw materials for the water-absorbing resin (monomers, crosslinking agents, water, organic solvents, etc.), and these substances need to be collected.
  • any stage of a process for producing waste water generated from acrylic acid and polyacrylic acid production processes (Patent Document 1), a water-absorbing resin, and a raw monomer aqueous solution thereof.
  • Patent Documents 2 to 4 For scrubbing the exhaust gas removed from the reactor with a basic aqueous solution (Patent Documents 2 to 4), and for recycling water and monomer vapor generated in the polymerization process to the monomer aqueous solution and the polymerization process (Patent Document) 5 to 11) are disclosed.
  • the liquid property of the exhaust gas absorption liquid is preferably adjusted to alkaline, but if the alkalinity is excessively increased, There was a problem that the amount of water-insoluble polyvalent metal salt produced by the reaction with polyvalent metal ions rapidly increased, and the absorption tower was easily clogged. When clogging occurs in the exhaust gas absorption tower, cleaning or the like is necessary, and production must be temporarily stopped. Therefore, since it takes time to adjust the polymerization temperature and the surface treatment temperature immediately after re-operation, there arises a problem that the physical properties of the water-absorbent resin immediately after re-operation are not stable.
  • Patent Documents 1 to 4 disclose a technique for absorbing exhaust gas with a basic aqueous solution, but there is no technique for eliminating clogging in the exhaust gas absorption tower. It was not revealed.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a stable and continuous method for producing a water-absorbent resin by suppressing clogging in an exhaust gas absorption tower. Furthermore, it is providing the manufacturing method of the stable and continuous water absorbing resin including the efficient and continuous gas absorption process of the gas discharged
  • the inventors have conducted intensive studies. As a result, in order to suppress clogging in the exhaust gas absorption tower, the pH of the exhaust gas absorption liquid is adjusted to a specific range, and the exhaust gas absorption liquid is adjusted. It has been found that it is necessary to reduce the amount of polyvalent metal ions and electrolyte contained below a certain value.
  • the present invention uses a gas discharged from the production process of a polyacrylic acid (salt) water-absorbing resin, having a pH of 7 to 11 and a polyvalent metal.
  • a method for producing a polyacrylic acid (salt) -based water-absorbing resin further comprising a step of absorbing water with an ion content of 100 ppm or less.
  • the present invention uses a gas discharged from the production process of a polyacrylic acid (salt) water-absorbing resin, with an electric conductivity at 25 ° C. of 500 ( ⁇ S / cm) or less of water and an alkali compound are mixed to be absorbed in water having a pH adjusted to 7 to 11, and a method for producing a polyacrylic acid (salt) -based water absorbent resin is further provided.
  • the exhaust gas absorption process for absorbing the exhaust gas discharged from the water absorbent resin manufacturing process is continuously operated, the generation of water-insoluble salts that cause clogging in the exhaust gas absorption tower is suppressed. It becomes possible to do. As a result, the exhaust gas absorption treatment can be continued for a long time. In particular, the exhaust gas absorption treatment performance and treatment efficiency can be improved, the occurrence frequency of clogging is very low, and the running cost can be reduced without interrupting the production of the water absorbent resin.
  • FIG. 1 is a schematic diagram showing an embodiment of the present invention.
  • Water absorbent resin refers to a water-swellable, water-insoluble polymer gelling agent and satisfies the following physical properties. That is, as “water swellability”, the CRC specified by ERT441.2-02 is 5 g / g or more, and as “water-insoluble”, Ext specified by ERT470.2-02 is 50% by weight or less. It refers to a polymer gelling agent that satisfies the above.
  • the water-absorbing resin can be designed as appropriate according to its use and is not particularly limited, but is preferably a hydrophilic cross-linked polymer obtained by cross-linking an unsaturated monomer having a carboxyl group. Moreover, the whole amount (100 weight%) is not limited to the form which is a polymer, The water absorbing resin composition containing the additive etc. may be sufficient in the range which satisfies the said physical property (CRC, Ext).
  • the water-absorbent resin in the present invention is not limited to the final product, but is an intermediate in the manufacturing process of the water-absorbent resin (for example, a water-containing gel-like crosslinked polymer after polymerization, a dried polymer after drying, a water absorption before surface crosslinking).
  • a water-containing gel-like crosslinked polymer after polymerization for example, a water-containing gel-like crosslinked polymer after polymerization, a dried polymer after drying, a water absorption before surface crosslinking.
  • water-absorbent resin examples of the shape of the water absorbent resin include a sheet shape, a fiber shape, a film shape, a particle shape, and a gel shape.
  • a particulate water absorbent resin is preferable.
  • polyacrylic acid (salt) refers to polyacrylic acid and / or a salt thereof, and acrylic acid and / or a salt thereof (hereinafter referred to as “acrylic acid (salt)”) as a main component.
  • acrylic acid (salt) acrylic acid and / or a salt thereof
  • the “main component” means that the amount (content) of acrylic acid (salt) used is usually 50 to 100 mol%, preferably 50% to 100% by mole, preferably based on the total amount of monomers (excluding the internal crosslinking agent) used in the polymerization. 70 to 100 mol%, more preferably 90 to 100 mol%, still more preferably substantially 100 mol%.
  • the polyacrylic acid salt essentially contains a water-soluble salt, preferably a monovalent salt, more preferably an alkali metal salt or an ammonium salt.
  • EDANA European Disposables and Nonwovens Associations
  • ERT is an abbreviation for a method of measuring water-absorbent resin of the European standard (almost the world standard) (EDANA Recommended Test Methods). .
  • the physical properties of the water-absorbent resin are measured according to the original ERT (revised in 2002 / known literature).
  • CRC is an abbreviation for Centrifugal Retention Capacity, and means the water absorption capacity of the water absorbent resin under no pressure (sometimes referred to as “water absorption capacity”). Specifically, 0.2 g of a water-absorbing resin was put in a nonwoven fabric, and then freely swollen by immersion in a large excess of 0.9 wt% sodium chloride aqueous solution for 30 minutes, and then drained with a centrifuge (250 G). It means the water absorption ratio (unit; g / g) after
  • Extractables which means the water-soluble component (water-soluble component amount) of the water-absorbent resin. Specifically, for 1.0 g of water-absorbing resin, a value obtained by measuring the amount of dissolved polymer after stirring for 16 hours at 500 rpm with respect to 200 ml of 0.9 wt% aqueous sodium chloride solution (unit: wt%) ).
  • AAP is an abbreviation for Absorption against Pressure, which means the water absorption capacity of a water absorbent resin under pressure. Specifically, 0.9 g of the water-absorbing resin was swollen under a load of 0.3 psi (2.06 kPa, 21 g / cm 2 ) for 1 hour against a large excess of 0.9 wt% sodium chloride aqueous solution. It refers to the subsequent water absorption ratio (unit: g / g). In some cases, the load condition is changed to 0.7 psi (4.83 kPa, 49 g / cm 2 ).
  • Liquid permeability “Liquid permeability” of the water-absorbent resin refers to the fluidity of the liquid passing between the particles of the swollen gel under load or no load.
  • SFC Seline Flow Conductivity / Saline flow conductivity
  • GBP Gel Bed Permeability / gel bed permeability
  • SFC Seline Flow Inducibility
  • GFP gel bed permeability
  • Water absorption speed The “water absorption rate” of the water absorbent resin refers to the speed at which a certain amount of aqueous liquid is absorbed, and “FSR” and “Vortex” (unit: seconds) are typical measurement methods. is there. In addition, the water absorption speed in this invention was evaluated by FSR. “FSR” is an abbreviation for Free Swell Rate. Specific measurement methods will be described in the examples described later.
  • X to Y indicating a range means “X or more and Y or less”.
  • t (ton) as a unit of weight means “Metric ton”
  • ppm means “weight ppm” or “mass ppm”.
  • weight and “mass”, “parts by weight” and “parts by mass”, “% by weight” and “% by mass” are treated as synonyms.
  • ⁇ acid (salt) means “ ⁇ acid and / or salt thereof”
  • (meth) acryl means “acryl and / or methacryl”.
  • liter may be described as “l” or “L”
  • wt% may be described as “wt%”.
  • D Non Detected
  • the gas discharged from the polyacrylic acid (salt) water absorbent resin production process has a pH of 7 to 11 and a polyacrylic acid (salt) water-absorbing resin production method, further comprising a step of absorbing the polyvalent metal ion in water of 100 ppm or less.
  • the manufacturing process of the polyacrylic acid (salt) water-absorbing resin common to the first and second inventions of the present invention will be described, and the exhaust gas absorption process will be described in the next section [3]. .
  • This step is a step of preparing and preparing an aqueous solution containing acrylic acid (salt) as a main component (hereinafter referred to as “monomer aqueous solution”).
  • a monomer slurry liquid can be used as long as the water absorption performance is not deteriorated. However, in this section, the monomer aqueous solution will be described for convenience.
  • this step includes a neutralization step (neutralization reaction) as shown below. Therefore, a part of acrylic acid may be volatilized by the heat of neutralization generated by the neutralization reaction, and the generated gas is supplied to the exhaust gas absorption process as necessary.
  • neutralization reaction neutralization reaction
  • acrylic acid is used as a monomer from the viewpoint of the effects of the invention.
  • the acrylic acid may be a known one, and the polymerization inhibitor preferably contains phenols, more preferably methoxyphenols. Further, the concentration of the polymerization inhibitor is preferably 1 to 200 ppm, more preferably 10 to 160 ppm, from the viewpoint of the polymerizability of acrylic acid and the color tone of the water absorbent resin.
  • a water-absorbing resin can also be produced by using a monomer other than acrylic acid (salt) (hereinafter referred to as “other monomer”) in combination with acrylic acid (salt).
  • other monomer a monomer other than acrylic acid (salt)
  • water-soluble or hydrophobic unsaturated monomer is mentioned. Specific examples include monomers (excluding acrylic acid) disclosed in paragraph [0035] of US Patent Application Publication No. 2005/215734.
  • the water-absorbing resin obtained by the production method according to the present invention includes those having the above water-soluble or hydrophobic unsaturated monomer as a copolymerization component.
  • the “basic composition” means a composition containing a basic compound, such as a commercially available sodium hydroxide aqueous solution.
  • the basic compound examples include alkali metal carbonates and hydrogen carbonates, alkali metal hydroxides, ammonia, and organic amines.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide are preferable, and sodium hydroxide is particularly preferable.
  • the water-absorbing resin of the present invention is polyacrylic acid (salt) obtained by crosslinking polymerization of acrylic acid (salt). Therefore, in order to obtain the polyacrylic acid (salt), it is preferable to have a step of neutralizing acrylic acid with the basic composition (neutralization step).
  • neutralization process in addition to neutralization of the monomer acrylic acid, neutralization of the hydrogel crosslinked polymer obtained by crosslinking polymerization of acrylic acid (hereinafter referred to as “post-neutralization”). ) Is also included. These neutralizations may be continuous or batch, but continuous is preferred from the viewpoint of production efficiency. Moreover, these neutralization can also be used together.
  • the acrylate obtained in the neutralization step is a substantially monovalent salt.
  • a very small amount of 5 mol% or less may be used as a polyvalent metal salt.
  • the neutralization rate in the present invention is preferably 10 to 90 mol%, more preferably 40 to 85 mol%, still more preferably 50 to 80 mol%, particularly preferably 60 to 90 mol% based on the acid group of the monomer. 75 mol%.
  • the neutralization rate is less than 10 mol%, water absorption magnification may fall remarkably.
  • the said neutralization rate exceeds 90 mol%, a water absorbing resin with a high water absorption capacity under pressure may not be obtained.
  • the neutralization rate is the same even in the case of post-neutralization.
  • the said neutralization rate is applied also about the neutralization rate of the water absorbing resin as a final product.
  • Internal crosslinking agent examples include compounds having two or more substituents capable of reacting with acrylic acid, and specific examples include compounds disclosed in column 14 of US Pat. No. 6,241,928. . Of these, one or more compounds are used.
  • a compound having two or more polymerizable unsaturated groups is preferable, more preferably a compound having thermal decomposability at about the drying temperature described below, and more preferably ( And compounds having two or more polymerizable unsaturated groups having a poly) alkylene glycol structural unit.
  • the polymerizable unsaturated group is preferably an allyl group or a (meth) acrylate group, more preferably a (meth) acrylate group.
  • the alkylene glycol structural unit is preferably polyethylene glycol, and the n number is preferably 1 to 100, more preferably 6 to 50. The above “average n number” means the average number of methylene chain polymerizations in the polyethylene glycol chain.
  • the amount of the internal crosslinking agent used is preferably 0.005 to 2 mol%, more preferably 0.01 to 1 mol%, and still more preferably 0.05 to 0.5 mol%, based on the monomer. is there. By setting the amount to be used within the above range, a desired water absorbent resin can be obtained.
  • a method in which a predetermined amount of an internal cross-linking agent is previously added to the monomer aqueous solution and a cross-linking reaction is performed simultaneously with the polymerization is preferably applied.
  • an internal crosslinking agent was added during or after polymerization, a method of post-crosslinking, a method of radical crosslinking using a radical polymerization initiator, active energy rays such as electron beams and ultraviolet rays were used.
  • a method of radiation crosslinking or the like can also be employed.
  • said method can also be used together.
  • the water-soluble resin or water-absorbing resin is preferably 50% by weight or less, more preferably 20% by weight or less, still more preferably 10% by weight or less, and particularly preferably 5% by weight or less (the lower limit is 0% by weight).
  • a foaming agent such as carbonates, azo compounds and bubbles, surfactants, chelating agents, chain transfer agents and the like are preferably 5% by weight or less, more preferably 1% by weight or less, still more preferably 0.8%. Or 5% by weight or less (the lower limit is 0% by weight).
  • a graft polymer or a water-absorbent resin composition for example, starch-acrylic acid polymer, PVA-acrylic acid polymer, etc.
  • Combined and water-absorbing resin compositions are also within the category of the polyacrylic acid (salt) -based water-absorbing resin of the present invention.
  • the concentration of the monomer component in the aqueous monomer solution is not particularly limited, but is preferably 10 to 80% by weight, more preferably 20 to 75% by weight, from the viewpoint of physical properties of the water absorbent resin. More preferably, it is 30 to 70% by weight.
  • the below-mentioned range is applied preferably.
  • the “concentration of the monomer component” is a value calculated from the following formula (1).
  • the monomer aqueous solution includes a graft component, a water absorbent resin, and a reverse phase suspension polymerization. Hydrophobic solvents are not included.
  • This step is a step of polymerizing the monomer aqueous solution obtained in the monomer aqueous solution preparation step to obtain a hydrated gel-like crosslinked polymer (hereinafter referred to as “hydrated gel”). It is.
  • hydrated gel a hydrated gel-like crosslinked polymer
  • a part of acrylic acid may be volatilized by the generated heat of polymerization, and the generated gas is supplied to the exhaust gas absorption step as necessary.
  • Polymerization initiator examples include a thermally decomposable polymerization initiator, a photodegradable polymerization initiator, or a redox polymerization initiator used in combination with a reducing agent that promotes the decomposition of these polymerization initiators. Specific examples include compounds disclosed in column 5 of US Pat. No. 7,265,190. Of these, one or more compounds are used.
  • a peroxide or an azo compound more preferably a peroxide, and still more preferably a persulfate is used.
  • the amount of the polymerization initiator used is preferably 0.001 to 1 mol%, more preferably 0.001 to 0.5 mol%, based on the monomer.
  • the amount of the reducing agent used is preferably 0.0001 to 0.02 mol% with respect to the monomer.
  • the polymerization reaction can also be carried out by irradiating active energy rays such as electron beams and ultraviolet rays. Moreover, these can also be used together.
  • the polymerization form applied to the present invention is not particularly limited, but is preferably spray polymerization, droplet polymerization, aqueous solution polymerization, reverse phase suspension polymerization from the viewpoint of water absorption performance of the water absorbent resin and ease of polymerization control. More preferably, aqueous solution polymerization, reverse phase suspension polymerization, still more preferably aqueous solution polymerization, and particularly preferably continuous aqueous solution polymerization.
  • continuous aqueous solution polymerization examples include continuous belt polymerization and continuous kneader polymerization.
  • continuous belt polymerization U.S. Pat. Nos. 4,893,999 and 6,241,928, U.S. Patent Application Publication No. 2005/215734, etc.
  • continuous kneader polymerization disclosed in U.S. Pat. Nos. 6,987,151 and 6,710,141, respectively.
  • the contents applied are applied to the present invention.
  • the production efficiency of the water-absorbent resin is improved.
  • polymerization process is efficiently supplied to a gas absorption tower, it is preferable.
  • preferred embodiments of the continuous aqueous solution polymerization include high temperature initiation polymerization and high concentration polymerization.
  • the “high temperature initiation polymerization” means that the temperature of the monomer aqueous solution is preferably 30 ° C. or higher, more preferably 35 ° C. or higher, still more preferably 40 ° C. or higher, particularly preferably 50 ° C. or higher (the upper limit is that of the monomer aqueous solution).
  • “high concentration polymerization” means that the concentration of the monomer component is preferably 30% by weight or more, more preferably 35% by weight or more, and still more preferably 40% by weight. % Or more, particularly preferably 45% by weight or more (upper limit is 80% by weight), and then the polymerization is started.
  • the solid concentration can also be increased during the polymerization.
  • the increase in the solid content concentration is defined by the following formula (2) as “solid content increase degree”.
  • the degree of increase in the solid content is preferably 1% by weight or more, more preferably 2% by weight or more.
  • the “solid content concentration of the monomer aqueous solution” is a value defined by the following formula (3).
  • the “component weight in the polymerization system” refers to the total weight of the monomer aqueous solution, graft component, water-absorbing resin and other solid components (for example, water-insoluble fine particles).
  • the hydrophobic solvent used in suspension polymerization or the like is not included. That is, the “solid content concentration of the monomer aqueous solution” refers to the concentration of the component that is solidified by polymerization.
  • the polymerization is preferably performed in an inert gas atmosphere such as nitrogen or argon, and the oxygen concentration is controlled in an atmosphere of 1% by volume or less. Is more preferable.
  • the dissolved oxygen in the monomer or the monomer aqueous solution is sufficiently substituted with an inert gas (for example, the dissolved oxygen concentration is less than 1 (mg / l)).
  • it can also be set as foaming polymerization which superpose
  • the polymerization rate of the hydrogel obtained after polymerization is preferably 90 mol% or more, more preferably 95 mol% or more, still more preferably 98 mol% or more, and particularly preferably 99 mol% or more.
  • the upper limit is preferably 99.99 mol% or less, more preferably 99.9 mol% or less, still more preferably 99.8 mol% or less.
  • the polymerization rate is less than 90 mol%, there are many residual monomers in the water-absorbent resin, while when the polymerization rate exceeds 99.99 mol%, it takes more polymerization time than necessary, and the productivity decreases. It is not preferable. Furthermore, depending on the case, the physical properties (relationship between water absorption and soluble content) of the water-absorbent resin after drying are lowered.
  • the present invention it is not necessary to advance the polymerization excessively, and it is possible to reduce the residual monomer in the drying step described below, particularly in the hot air drying step, and as a result, productivity can be improved. Furthermore, clogging in the gas absorption tower, which is a problem when absorbing the gas discharged from the drying process, is reduced, which is preferable.
  • the gel pulverization form applied to the present invention is not particularly limited, and examples thereof include a method disclosed in International Publication No. 2011/126079.
  • the weight average particle diameter (D50) of the particulate hydrogel obtained by such gel pulverization is preferably 4000 ⁇ m or less, more preferably 2000 ⁇ m or less.
  • the surface area is increased, so that the residual monomer (particularly acrylic acid) is likely to volatilize, and the residual monomer can be reduced.
  • pulverization process is efficiently supplied to a gas absorption tower, it is preferable.
  • This step is a step of obtaining a dry polymer by drying the particulate hydrogel obtained in the polymerization step and / or the gel grinding step to a desired solid content concentration.
  • a part of acrylic acid may volatilize with the heat at the time of drying, and the gas generated in that case is supplied to an exhaust gas absorption process as needed.
  • fine particles fine gel, fine particles after drying contained in the particulate hydrous gel may be scattered by hot air. At this time, the scattered fine particles preferably have a particle size of 2 mm or less, more preferably 0.5 mm. The following is supplied to the exhaust gas absorption step together with the exhaust gas.
  • the drying form applied to the present invention is not particularly limited, but is heat drying, hot air drying, vacuum drying, fluidized bed drying, infrared drying, microwave drying, drum dryer drying, azeotropic dehydration with a hydrophobic organic solvent.
  • Various drying methods such as drying and high-humidity drying using high-temperature steam can be applied.
  • hot air drying is preferable as a drying form suitable for the present invention, and band drying in which hot air drying is performed on a ventilation belt is particularly preferable.
  • the hot air temperature (drying temperature) is preferably 100 to 300 ° C., more preferably 120 to 220 ° C., and still more preferably 160 to 200 ° C.
  • the wind speed of the hot air is preferably 3.0 (m / s) or less, more preferably 0.5 to 2.0 (m / s) or less.
  • the drying time is appropriately determined, but is preferably 1 minute to 10 hours, more preferably 5 minutes to 3 hours, and still more preferably 10 minutes to 1 hour.
  • the water content can be controlled to a desired range, and further, the deterioration of the color tone and water absorption performance of the obtained water absorbent resin can be suppressed. Can do.
  • the solid content concentration of the dry polymer obtained in this step is preferably 80% by weight or more, more preferably 85 to 99% by weight, still more preferably 90 to 98% by weight, and particularly preferably 92 to 97% by weight.
  • concentration is calculated
  • the hot air drying is excellent in drying efficiency and physical properties of the water-absorbing resin, it has a problem that the monomer and the water-absorbing resin are easily mixed in the hot air. Therefore, it is important to collect monomers and water-absorbing resins in the exhaust gas from the environmental aspect. Therefore, by applying the present invention, continuous production can be performed without interrupting production of the water absorbent resin.
  • Pulverization step classification step
  • the dried polymer obtained in the above drying step is pulverized (pulverization step), adjusted to a predetermined particle size (classification step), and the water-absorbent resin powder (surface
  • classification step is a step of obtaining a particulate water-absorbing resin before crosslinking, for convenience, as “water-absorbing resin powder”.
  • the equipment used in the pulverization step of the present invention is not particularly limited, and examples thereof include a high-speed rotary pulverizer such as a roll mill, a hammer mill, a screw mill, and a pin mill, a vibration mill, a knuckle type pulverizer, and a cylindrical mixer. . These are used together as necessary.
  • the particle size adjustment method in the classification step of the present invention is not particularly limited, and examples thereof include sieve classification using a JIS standard sieve (JIS Z8801-1 (2000)), airflow classification, and the like.
  • the particle size of the water-absorbing resin is not limited to the pulverization step and the classification step, and is appropriately determined in the polymerization step (especially reverse phase suspension polymerization, spray polymerization, droplet polymerization) and other steps (for example, granulation step). Can be adjusted.
  • the weight average particle size (D50) is preferably 200 to 600 ⁇ m, more preferably 200 to 550 ⁇ m, still more preferably 250 to 500 ⁇ m, and particularly preferably 350 to 450 ⁇ m.
  • the proportion of particles having a particle size of less than 150 ⁇ m is preferably 10% by weight or less, more preferably 5% by weight or less, still more preferably 1% by weight or less (the lower limit is 0% by weight), and the particle size is 850 ⁇ m or more.
  • the proportion of the particles is preferably 5% by weight or less, more preferably 3% by weight or less, still more preferably 1% by weight or less (the lower limit is 0% by weight).
  • the logarithmic standard deviation ( ⁇ ) of the particle size distribution is preferably 0.20 to 0.50, more preferably 0.25 to 0.45, and still more preferably 0.30 to 0.40.
  • the above particle size applies not only to the water-absorbing resin after surface cross-linking (hereinafter referred to as “water-absorbing resin particles” for convenience) but also to the water-absorbing resin as a final product. Therefore, it is desired that the surface is crosslinked so as to maintain the particle size in the above range.
  • This step is a step of providing a portion having a high cross-linking density in the surface layer of the water-absorbent resin powder obtained through the above-described steps (portion of several tens of micrometers from the surface of the water-absorbent resin powder) , A mixing step, a heat treatment step and, if necessary, a cooling step.
  • surface-crosslinked water-absorbing resin (water-absorbing resin particles) is obtained by radical polymerization or surface polymerization on the surface of the water-absorbing resin powder, a cross-linking reaction with a surface cross-linking agent, or the like.
  • acrylic acid and a part of the surface cross-linking agent may be volatilized by reaction heat during the heat treatment, and the generated gas is supplied to the exhaust gas absorption step as necessary.
  • fine powder contained in the water-absorbent resin powder is scattered by hot air. At that time, the scattered fine particles are supplied to the exhaust gas absorption step together with the exhaust gas.
  • the surface cross-linking agent used in the present invention is preferably various organic or inorganic surface cross-linking agents, more preferably a covalent bond by reacting with a carboxyl group from the viewpoint of water absorption performance of the water-absorbent resin and handling of the surface cross-linking agent.
  • An organic surface cross-linking agent that forms Specifically, surface cross-linking agents disclosed in columns 9 to 10 of US Pat. No. 7,183,456 can be mentioned. Of these, one or more surface cross-linking agents are used.
  • a hydrophilic organic solvent can also be used as needed.
  • the amount of the surface cross-linking agent used is preferably 0.01 to 10 parts by weight, more preferably 0.01 to 5 parts by weight per 100 parts by weight of the water-absorbent resin powder. Part.
  • the surface crosslinking agent is preferably added as an aqueous solution.
  • the amount of water used is preferably 0.1 to 20 parts by weight, more preferably 0, relative to 100 parts by weight of the water absorbent resin powder. .5 to 10 parts by weight.
  • the amount used when using a hydrophilic organic solvent as required is preferably 10 parts by weight or less, more preferably 5 parts by weight or less, with respect to 100 parts by weight of the water-absorbent resin powder.
  • This mixing step is a step of obtaining a mixture by mixing the water absorbent resin powder and the surface cross-linking agent.
  • the method for adding and mixing the surface cross-linking agent is not particularly limited, but after preparing the surface cross-linking agent and water as a solvent, a hydrophilic organic solvent, or a mixture thereof in advance, the water-absorbent resin powder is sprayed. Or it is preferable to add and mix by dripping, and it is more preferable to add and mix by spraying.
  • the equipment used for the mixing is not particularly limited, but preferably a high-speed stirring type mixer, more preferably a high-speed stirring type continuous mixer.
  • This heat treatment step is a step of obtaining water absorbent resin particles by heat-treating the mixture of the water absorbent resin powder and the surface cross-linking agent.
  • the equipment used for the heat treatment is not particularly limited, but preferably includes a paddle dryer.
  • the temperature during the heat treatment is preferably 80 to 250 ° C, more preferably 100 to 220 ° C.
  • the heating time is preferably 1 minute to 2 hours. Note that the combination of the temperature during the heat treatment and the heating time is preferably 0.1 to 1.5 hours at 180 ° C., 0.1 to 1 hour at 200 ° C., and the like.
  • This cooling process is an arbitrary process installed as necessary after the heat treatment process.
  • the equipment used in the cooling process is not particularly limited, but equipment having the same specifications as the equipment used in the heat treatment process is preferable, and a paddle dryer is more preferable. It is because it can be used as a cooler by using a refrigerant instead of the heat medium.
  • Rehumidification step comprises adding, as additives, the water-absorbent resin particles obtained in the surface cross-linking step, as polyvalent metal salt compounds, polycationic polymers, chelating agents, inorganic reducing agents and ⁇ -hydroxy In this step, at least one compound selected from the group consisting of carboxylic acid compounds is added. In the rehumidification step, acrylic acid and some of the additives may be volatilized, and the gas generated at that time is supplied to the exhaust gas absorption step as necessary.
  • the above-mentioned additive is preferably added as an aqueous solution or slurry, and the water-absorbing resin is again swollen with water, so this step is referred to as a “rehumidification step”.
  • heating or drying is performed as necessary to control the water content of the resulting water-absorbent resin to preferably 1 to 10% by weight, more preferably 2 to 9% by weight.
  • the above additives may be added and mixed simultaneously with the above-described surface cross-linking agent, or may be added separately from the surface cross-linking agent in the surface cross-linking step.
  • a polyvalent metal salt compound and / or cationic polymer it is preferable to add a polyvalent metal salt compound and / or a cationic polymer from the viewpoint of the water absorption performance of the resulting water absorbent resin.
  • the water absorption rate (for example, FSR) and liquid permeability (for example, SFC) of the water absorbent resin can be improved, and the fluidity at the time of moisture absorption can also be improved.
  • a chelating agent in this invention, it is preferable to add a chelating agent from a viewpoint of the physical property of the water-absorbing resin obtained. By adding the compound, deterioration or deterioration of the color tone of the water-absorbent resin can be suppressed or prevented.
  • Inorganic reducing agent In this invention, it is preferable to add an inorganic reducing agent from a viewpoint of the physical property of the water absorbent resin obtained. By adding the compound, it is possible to suppress or prevent the color tone deterioration and deterioration of the water-absorbent resin, and further reduce the residual monomer.
  • ⁇ -hydroxycarboxylic acid compound In the present invention, it is preferable to add an ⁇ -hydroxycarboxylic acid compound from the viewpoint of the physical properties of the resulting water-absorbent resin. By adding the compound, deterioration of the color tone of the water-absorbent resin can be suppressed or prevented.
  • ⁇ -hydroxycarboxylic acid compound refers to a carboxylic acid having a hydroxyl group in the molecule or a salt thereof, and is a compound having a hydroxyl group at the ⁇ -position.
  • additives include surfactants, oxidizing agents, organic reducing agents, water-insoluble inorganic fine particles, organic powders such as metal soaps, deodorants, antibacterial agents, compounds having phosphorus atoms, pulp and thermoplastic fibers. Can be mentioned.
  • a surfactant disclosed in International Publication No. 2005/077500 is preferably applied as the surfactant.
  • the surfactant may be added to the aqueous monomer solution as described in (2-1) above, or may be added to the water-absorbent resin after surface crosslinking.
  • the amount of the additive used is not particularly limited as long as it is appropriately set depending on the application, but is preferably 5% by weight or less, more preferably 3% by weight or less, and further preferably 1% by weight or less (the lower limit is 0% by weight). %).
  • the particle size adjusting step includes a fine powder removing step after the surface cross-linking step, and a pulverizing step and a classification step that are performed when the water-absorbing resin aggregates and exceeds a desired size.
  • the fine powder reuse step includes a step of adding the fine powder as it is or making it into a large hydrogel in the granulation step and adding it to any of the production steps of the water absorbent resin.
  • This step is a step in which a water-absorbing resin as a final product manufactured through at least a part of the above-described steps is filled into a filling container such as a container bag or a paper bag.
  • the water-absorbent resin filled in the filling container is shipped after undergoing a predetermined inspection.
  • the filling unit may be appropriately set according to the shipment form, and is preferably 100 g to 100 ton, more preferably 10 kg to 10 ton.
  • Exhaust gas absorption step This step is a process in which the gas discharged from the polyacrylic acid (salt) water-absorbing resin manufacturing process (hereinafter referred to as “exhaust gas”) is an aqueous liquid such as water (hereinafter referred to as “absorption”). (Referred to as “liquid”).
  • absorption water having a pH of 7 to 11 and a polyvalent metal ion content of 100 ppm or less is used in the first invention, and the electric conductivity at 25 ° C. is 500 ( ⁇ S / second) in the second invention. cm) or less water and an alkali compound are used to adjust the pH to 7 to 11, respectively.
  • the first invention absorbs the gas discharged from the production process of the polyacrylic acid (salt) water-absorbing resin in water having a pH of 7 to 11 and a polyvalent metal ion content of 100 ppm or less.
  • a method for producing a polyacrylic acid (salt) water-absorbing resin further comprising
  • 2nd invention mixes the water discharged
  • a method for producing a polyacrylic acid (salt) -based water-absorbing resin is further provided, which further comprises a step of absorbing in water having a pH adjusted to 7 to 11.
  • the exhaust gas is discharged from the steps (2-1) to (2-11) and the like, but is not particularly limited as long as it is discharged from the polyacrylic acid (salt) water-absorbing resin manufacturing step.
  • exhaust gas refers to a gas discharged from the production process of a polyacrylic acid (salt) -based water absorbent resin as described above.
  • the exhaust gas is a gas discharged from the production process of the polyacrylic acid (salt) water-absorbing resin, preferably an exhaust gas mainly composed of a discharge from the polymerization process, the drying process, and the surface crosslinking process, more preferably Exhaust gas mainly composed of components discharged from the polymerization step and drying step, more preferably exhaust gas mainly composed of components discharged from the drying step.
  • the said "main component” means that the ratio for the whole volume of exhaust gas becomes like this. Preferably it is 50 volume% or more, More preferably, it is 70 volume% or more, More preferably, it is 90 volume% or more.
  • the drying step is preferably hot air drying, more preferably hot air drying at a temperature of 100 to 300 ° C. and a wind speed of 3 (m / s) or less.
  • a fluidized bed dryer a rotary stirring dryer, an aeration band dryer, a more preferably an aeration band dryer, and still more preferably an aeration band dryer.
  • the exhaust gas is absorbed in the absorption liquid in an exhaust gas absorption tower, and then recovered in a manufacturing process of a polyacrylic acid (salt) water-absorbing resin, or is subjected to disposal processing such as combustion processing or biological processing. .
  • the exhaust gas is absorbed into the absorption liquid by gas-liquid contact between the absorption liquid (for example, an aqueous sodium hydroxide solution) and the exhaust gas in the exhaust gas absorption tower.
  • the absorption liquid for example, an aqueous sodium hydroxide solution
  • the contents organic matter, particularly acrylic acid
  • the absorbent is collected or discarded in the manufacturing process of the water absorbent resin.
  • the organic matter is preferably 90% by weight or more, more preferably 95% by weight or more, still more preferably 99% by weight or more, particularly preferably 99.9% by weight or more based on the total amount of organic matter in the exhaust gas. Removed.
  • the temperature of the gas discharged from the production process is preferably 30 to 150 ° C., more preferably 50 to 130 ° C., still more preferably 80 to 120 ° C. when introduced into the exhaust gas absorption tower. is there.
  • the organic substance (especially acrylic acid) in exhaust gas may precipitate and apparatus troubles, such as obstruction
  • produce in order to make the temperature of exhaust gas less than 30 degreeC, it is necessary to forcibly cool, and since energy cost starts excessively, it is unpreferable.
  • a heat exchanger in order to control the temperature of the exhaust gas within the above temperature range, it is desirable to use a heat exchanger if necessary. For example, when the exhaust gas temperature is high, it is desirable to cool the exhaust gas and recover heat. When the temperature of the exhaust gas is low, it is desirable to heat the exhaust gas with a heat exchanger. In addition to the heat exchanger, various known temperature adjusting means such as a heater and a cooler can be used.
  • the specific cooling output of the heat exchanger is preferably more than 0 and not more than 10 (W / cm 2 ), more preferably 0.012 to 5 (W / cm 2 ), still more preferably 0.1 to 2 ( W / cm 2 ).
  • W / cm 2 The specific cooling output exceeds 10 (W / cm 2 ), it is not preferable because it is not only disadvantageous in terms of energy but also may be precipitated due to overcooling.
  • the gas discharged from the production process of the water-absorbent resin includes, in addition to the inert gas, air, and water vapor used in the production process, raw materials of the water-absorbent resin (for example, monomers, crosslinking agents) , Water, organic solvents, additives, etc.).
  • raw materials of the water-absorbent resin for example, monomers, crosslinking agents
  • Water organic solvents, additives, etc.
  • fine particles fine gel, fine particles after drying generated from the drying step and fine powder of the water-absorbing resin generated from the surface cross-linking step may be included.
  • the liquid that absorbs the gas discharged from the production process of the polyacrylic acid (salt) water-absorbing resin has a pH of 7 to 11 and a polyvalent metal ion content.
  • the content of the polyvalent metal ions is preferably 50 ppm or less, preferably 20 ppm or less, 10 ppm or less, 5 ppm or less, 1 ppm or less, or 0.5 ppm or less in order, and most preferably 0.1 ppm or less.
  • the lower limit is 0 ppm, but may be about 0.01 ppm.
  • the polyvalent metal ion is not particularly limited, but is preferably a metal ion belonging to Group 2 of the periodic table, more preferably a magnesium ion or a calcium ion, and still more preferably a calcium ion. Since polyvalent metal salts (particularly carbonates and hydroxides) containing these polyvalent metal ions have low solubility in water, it is particularly necessary to suppress the content.
  • the content of the polyvalent metal ion refers to the amount of the polyvalent metal cation excluding the counter anion. Specifically, in the case of calcium hydroxide, the amount of Ca 2+ is the amount of polyvalent metal cation.
  • the water having a polyvalent metal ion content of 100 ppm or less is not particularly limited.
  • produce in a manufacturing process are mentioned.
  • the water absorbent resin containing the polyvalent metal salt is mixed into the exhaust gas, resulting in the polyvalent metal in the absorbing liquid.
  • the ion content may exceed 100 ppm. Therefore, it is possible to monitor the content of polyvalent metal ions in the absorption liquid as needed, and use water with less polyvalent metal ions as necessary so that the content of polyvalent metal ions is 100 ppm or less. preferable.
  • water having an electric conductivity at 25 ° C. of 500 ( ⁇ S / cm) or less is used as a liquid that absorbs the gas discharged from the production process of the polyacrylic acid (salt) -based water absorbent resin. And water whose pH is adjusted to 7 to 11 by mixing the alkali compound with alkali.
  • the electrical conductivity ( ⁇ S / cm) at 25 ° C. is preferably 100 or less, preferably 50 or less, 30 or less, 20 or less, or 10 or less in order, and most preferably 5 or less.
  • the lower limit is 0.0546 to 0.0549 of theoretical pure water, but is preferably about 0.1, more preferably about 0.5, and still more preferably about 0.8 from the viewpoint of water purification cost.
  • the water used in the present invention is preferably an aqueous solution of an alkali compound, more preferably from the viewpoint of the absorption efficiency of organic matter (particularly acrylic acid) contained in the exhaust gas.
  • an aqueous solution of an alkali metal hydroxide, carbonate or bicarbonate more preferably an aqueous solution of sodium hydroxide, sodium carbonate or sodium bicarbonate.
  • water having a polyvalent metal ion content of preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less is used as water for dissolving the alkali compound. .
  • the liquidity of the aqueous solution is preferably adjusted to be alkaline in order to efficiently and surely absorb organic substances (particularly residual monomers) in the exhaust gas.
  • the liquidity of the absorbing solution is preferably adjusted to pH 7 to 11, more preferably pH 9 to 11.
  • the pH value is a value measured at a liquid temperature of 25 ° C.
  • the alkalinity By controlling to be the alkalinity, it is possible to suppress the excessive production of water-insoluble polyvalent metal salt due to the reaction between the alkali compound and the polyvalent metal ion contained in the absorption liquid, It is preferable because the amount of the alkali compound used can be suppressed and it is economical.
  • the pH value may vary to some extent during the operation of the exhaust gas absorption tower, and the fluctuation range is preferably controlled to be ⁇ 2, more preferably ⁇ 1.
  • Examples of the control method include a method of monitoring the pH of the absorbing solution during operation of the exhaust gas absorption tower and adding water, acid or alkali as appropriate to adjust the pH within the above range.
  • a scale inhibitor or a chelating agent may be added to the absorbing solution.
  • the scale inhibitor is not particularly limited.
  • lignin derivatives such as lignin sulfonic acid soda, water-soluble poly (meth) acrylic acid soda, or inorganic polyphosphates, phosphonates, organic phosphates, etc.
  • the chelating agent is not particularly limited, and examples thereof include chelating agents, aminocarboxylic acids, aminophosphoric acids, and polyphosphoric acids described in [2] chelating agents in International Publication No. 2011/040530. It is done.
  • the amount of the scale inhibitor or chelating agent used is preferably 0.01 to 500 ppm with respect to the absorbing solution.
  • the temperature of the absorbing liquid to be contacted with the exhaust gas is not particularly limited, but from the viewpoint of absorption efficiency, it is preferably 30 to 100 ° C, more preferably 40 to 95 ° C, still more preferably 50 to 90 ° C, particularly preferably. Is 60-90 ° C.
  • the temperature of the absorption liquid exceeds 100 ° C., the exhaust gas absorption efficiency is lowered, which is not preferable.
  • the temperature is lower than 30 ° C., it is disadvantageous in terms of energy, and further, the solubility of the polyvalent metal salt dissolved in the absorbing solution is lowered and precipitation may occur.
  • the temperature of the absorption liquid refers to the temperature immediately before the absorption liquid is sprayed on the packed bed which is the gas-liquid contact means of the exhaust gas absorption tower, and can be appropriately adjusted by temperature adjustment means such as a heat exchanger or a heater. .
  • the pressure in the absorption tower may be any of normal pressure, pressurization, and reduced pressure, but is preferably slightly reduced pressure, for example, a pressure in the range of ⁇ 10 to ⁇ 1 mbar. Will be implemented.
  • the ratio between the amount of exhaust gas and the amount of absorbing liquid is adjusted as appropriate according to the composition of the exhaust gas, but the amount of absorbing liquid per exhaust gas 1000 (Nm 3 / min) (100 ° C. conversion) is preferably 0.8. It is 01 to 100 (m 3 / min), more preferably 0.05 to 50 (m 3 / min), and still more preferably 0.1 to 10 (m 3 / min).
  • This invention also provides the manufacturing apparatus suitable for the manufacturing method of the polyacrylic acid (salt) type water absorbing resin mentioned above. That is, the water absorption which removes organic substance from this exhaust gas by making gas-liquid contact the exhaust gas discharged
  • a gas-liquid contact means for bringing the exhaust gas into contact with the absorption liquid, a spray means for supplying the absorption liquid to the gas-liquid contact means from above the gas-liquid contact means, and the exhaust gas Exhaust gas supply means for supplying gas from the lower part of the gas-liquid contact means, and a circulation path for transferring the absorbing liquid staying in the lower part of the gas-liquid contact means to the spray means, wherein the gas-liquid contact means comprises the gas-liquid contact
  • the exhaust gas supplied from the lower part of the means is installed so as to pass through the gas-liquid contact means in a longitudinal state, and the spray
  • the exhaust gas absorption device used as the water absorbent resin production device according to the present invention is not particularly limited as long as it has the gas-liquid contact means, the spray means, the exhaust gas supply means, and the circulation path.
  • various wet exhaust gas absorption towers such as spray tower, plate tower, bubble tower, wet wall tower, wet shelf tower, fluidized bed scrubber, cyclone scrubber, venturi scrubber, jet scrubber, and cross flow contact device.
  • a packed tower is preferable from the viewpoint of gas-liquid contact efficiency.
  • the gas-liquid contact means includes a packed bed incorporating various fillers from the viewpoint of improving the contact efficiency between the exhaust gas and the absorbing liquid.
  • the material and shape of the filler are not particularly limited, and examples of the material include fillers made of metal, ceramic, resin, and the like.
  • Examples of the shape include a shape having a large space ratio and a small pressure loss, a shape having a large number of contact points, and a shape capable of uniformly distributing the absorbing liquid in the packed bed.
  • the gas-liquid contact area of absorption liquid and waste gas increases by employ
  • the spraying means is not particularly limited as long as it is an apparatus that can spray the absorbing liquid uniformly on the gas-liquid contact means, and examples thereof include a shower nozzle and a spray nozzle.
  • FIG. 1 is a schematic apparatus diagram showing an embodiment of the present invention, in which a gas discharged from a production process of a polyacrylic acid (salt) water-absorbing resin and an absorbing solution for neutralizing organic substances in the exhaust gas Is a device for producing a water-absorbing resin that removes organic substances from the exhaust gas, and uses a spray tower as an exhaust gas absorption tower.
  • the present invention is not limited to this embodiment, and can be appropriately selected within a range that does not impair the effects of the present invention.
  • a packed bed 13 which is a gas-liquid contact means for bringing the exhaust gas and the absorption liquid into gas-liquid contact is provided.
  • Gas (exhaust gas) discharged from the production process of the polyacrylic acid (salt) water-absorbing resin of the present invention is supplied to the bottom of the wet exhaust gas absorption tower 1 (below the packed bed) via the exhaust gas supply line 2. Is done.
  • an absorbent that neutralizes organic substances present in the exhaust gas is prepared in the absorbent supply tank 8.
  • the absorption liquid is prepared by adding a certain amount of water and an aqueous alkali compound solution to the absorption liquid supply tank 8 from the water supply line 14 and the alkaline compound aqueous solution supply line 15 respectively.
  • the bottom of the exhaust gas absorption tower 1 is filled. Thereafter, the absorption liquid passes through the circulation line 7 and the absorption liquid line 5 using the circulation pump 4 from the upper part of the wet exhaust gas absorption tower 1 (above the packed bed 13) toward the packed bed 13 from the shower nozzle 6. Sprayed downward.
  • the exhaust gas supplied to the wet exhaust gas absorption tower 1 rises in the tower and makes gas-liquid contact (countercurrent contact) with the sprayed absorption liquid as it passes through the packed bed 13 in a longitudinal state. At that time, impurities in the exhaust gas are taken into the absorption liquid and removed from the exhaust gas. A certain amount of the absorbent after the gas-liquid contact is retained at the bottom of the absorption tower 1.
  • the absorption liquid is forcibly circulated and used by the circulation pump 4 through the circulation line 7 and the absorption liquid line 5 and through a spray nozzle disposed on the upper part of the packed bed.
  • the absorption efficiency gradually decreases due to circulation, but when the absorption efficiency falls below a certain absorption efficiency, the valve 10 is operated to extract a certain amount of absorption liquid from the absorption liquid extraction line.
  • the extracted absorption liquid is collected in an arbitrary manufacturing process of the water-absorbent resin, or is subjected to a disposal process such as a combustion process or a biological process.
  • the decrease in the absorption liquid due to the operation is compensated for the shortage by using the absorption liquid supply pump 9 from the absorption liquid supply tank 8.
  • This operation may be a batch type or a continuous type. In order to maintain the above range by monitoring the pH of the absorbent and the content of polyvalent metal ions as needed, remove the used absorbent or supply new absorbent to make contact with the exhaust gas. You may adjust pH and polyvalent metal ion content.
  • the method for producing a polyacrylic acid (salt) water-absorbing resin according to the present invention is suitable for long-term continuous operation on a large scale, and the production amount is preferably 1 (t / hr) or more per line, more preferably Is preferably 2 (t / hr) or more, and is preferably used for industrial scale production for continuous operation for 10 days or more, more preferably for 1 month or more, and even more preferably for 3 months or more. It is.
  • continuous operation refers to substantially continuous operation including switching of product numbers, and even if it is temporarily stopped, it falls within the category of continuous operation.
  • polyacrylic acid (salt) water-absorbing resin obtained by the production method according to the present invention preferably satisfies the following physical properties.
  • the CRC water absorption capacity without pressure
  • the CRC water absorption capacity without pressure
  • AAP water absorption capacity under pressure
  • the SFC saline flow conductivity
  • the SFC is preferably 1 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ 1 ) or more, more preferably 10 ( ⁇ 10 ⁇ 7 ⁇ cm 3 ⁇ s ⁇ g ⁇ ). 1 ) or more
  • the FSR water absorption rate
  • the FSR water absorption rate
  • water-absorbent resin When used in sanitary goods, particularly paper diapers, at least one or more of the physical properties described above, preferably two or more including AAP (water absorption under pressure), more preferably AAP (water absorption under pressure). 3) or more, more preferably all four physical properties, including
  • the polyacrylic acid (salt) -based water-absorbing resin obtained by the production method according to the present invention can be used as an absorbent article for absorbent articles, particularly sanitary articles such as paper diapers, sanitary napkins, and incontinence pads. preferable. At that time, it is combined with hydrophilic fibers and formed into a sheet or the like. In addition, when hydrophilic fiber is not used, an absorptive article is obtained by immobilizing the water-absorbent resin on paper, nonwoven fabric, or the like.
  • the electrical device including the physical property measurement of a water absorbing resin
  • a manufacture example used by a manufacture example, an Example, and a comparative example used the power supply of 200V or 100V.
  • the physical properties of the water-absorbent resin of the present invention were measured under conditions of room temperature (20 to 25 ° C.) and relative humidity of 50% RH unless otherwise specified.
  • AAP water absorption magnification under pressure
  • the AAP water absorption capacity under pressure of the water-absorbent resin of the present invention was measured according to the EDANA method (ERT442.2-02).
  • the load condition was changed to 4.83 kPa (0.7 psi).
  • Weight average particle diameter (D50) of the water-absorbent resin of the present invention was measured in accordance with the measurement method disclosed in US Patent Application Publication No. 2006/204755.
  • FSR Water absorption rate
  • the FSR (water absorption rate) of the water-absorbent resin of the present invention was measured according to the measurement method disclosed in International Publication No. 2009/016055.
  • the monomer aqueous solution (1) an aqueous solution of partial sodium salt of acrylic acid having a neutralization rate of 73 mol% and a monomer concentration of 38% by weight was prepared. At that time, polyethylene glycol diacrylate (average n number; 9) was added as an internal cross-linking agent so as to be 0.09 mol% with respect to the number of moles of all monomers.
  • the monomer aqueous solution (1) was continuously supplied (liquid fed) to the polymerization apparatus using a metering pump. At that time, nitrogen gas was continuously blown from the middle of the liquid feeding pipe so that the concentration of dissolved oxygen in the monomer aqueous solution (1) was 0.5 ppm or less.
  • sodium persulfate and L-ascorbic acid were continuously mixed (line mixing) using separate supply pipes. The addition amounts of sodium persulfate and L-ascorbic acid were 0.12 g and 0.005 g, respectively, per 1 mol of the monomer.
  • the above polymerization apparatus is a flat steel belt polymerization apparatus having weirs at both ends, and using the polymerization apparatus, standing aqueous solution polymerization was continuously performed.
  • the liquid supplied to the polymerization apparatus had a thickness of about 30 mm on a flat steel belt, and the polymerization time for the polymerization was 30 minutes. By this operation, a band-shaped hydrogel crosslinked polymer (hydrogel) (1) was obtained.
  • the strip-like hydrogel (1) is cut at equal intervals in the vertical direction with respect to the traveling direction of the flat steel belt, and then continuously supplied to a meat chopper having a pore diameter of 7 mm to obtain weight average particles.
  • the gel was crushed into particles having a diameter (D50) of about 2 mm. By the operation, a particulate hydrous gel (1) was obtained.
  • the particulate hydrogel (1) was loaded on the perforated plate of the ventilation band type continuous dryer so as to have a thickness of 50 mm, and hot air at a temperature of 185 ° C. was applied at a wind speed of 1.6 (m / s). And aerated for 30 minutes to dry. By this operation, a block-shaped dry polymer (1) was obtained at the outlet of the dryer.
  • the whole amount of the pulverized polymer (1) is continuously supplied to a classification device (a sieving device composed of a total of two metal sieving meshes having a mesh opening of 710 ⁇ m / 150 ⁇ m in order from the top), Classified.
  • the temperature of the pulverized polymer (1) supplied to the classifier was about 60 ° C., and the frame on which the classifier was installed was grounded (static elimination) with a ground resistance value of 5 ⁇ . By this operation, an irregularly shaped water-absorbing resin powder (1) was obtained.
  • the physical properties of the water absorbent resin powder (1) obtained by the above series of operations were as follows. That is, solid content: 97% by weight, weight average particle diameter (D50): 375 ⁇ m, logarithmic standard deviation of particle size distribution ( ⁇ ); 0.38, absorption capacity without load (CRC); 33.9 (g / g) Met.
  • the water absorbent resin powder (1) was continuously supplied to a high-speed mixer (turbulator / 1000 rpm) at 2000 (kg / hr). In that case, the said surface treating agent solution (1) was sprayed using the spray, and was mixed uniformly.
  • the paddle dryer having the same specifications as the paddle dryer used in the heat treatment step is used to forcibly cool the surface-treated water absorbent resin powder (1) until the temperature reaches 60 ° C. (Cooling step).
  • weight average particle diameter (D50): 387 ⁇ m
  • CRC water absorption capacity without pressure
  • AAP water absorption capacity under pressure
  • SFC physiological saline Flow inductivity
  • FSR water absorption rate
  • Ext water soluble content
  • FIG. 1 shows a gas (hereinafter referred to as “exhaust gas”) discharged from a ventilation band type continuous dryer (drying step) in the production process of the polyacrylic acid (salt) -based water absorbent resin of Production Example 1 above. It collected using the wet-type exhaust gas absorption tower 1 shown.
  • the exhaust gas contained 200 ppm by volume of gaseous acrylic acid, and the temperature of the exhaust gas was 160 ° C.
  • the exhaust gas is cooled and recovered by a heat exchanger having a specific cooling output of 1.4 (W / cm 2 ), and then absorbed through the exhaust gas supply line 2 at a flow rate of 1000 (Nm 3 / min). Feeded to column 1.
  • the temperature of the exhaust gas after the heat recovery was 100 ° C.
  • the exhaust gas absorbing solution ion-exchanged water having a calcium ion content of 0.2 ppm (electric conductivity at 25 ° C. is 1.1 ( ⁇ S / cm)), 48% by weight sodium hydroxide aqueous solution, A 1.0 ⁇ 10 ⁇ 3 (mol / l) aqueous sodium hydroxide solution (pH 10) prepared by mixing was used.
  • the absorption liquid was stored in the absorption liquid supply tank 8. Moreover, in the long-term continuous operation, since the absorption liquid in the wet exhaust gas absorption tower 1 gradually decreases, it was appropriately supplemented. Further, since the amount held in the absorption liquid supply tank 8 also decreased, replenishment was performed as appropriate.
  • the pH of the absorption liquid and the content of polyvalent metal ions in the wet exhaust gas absorption tower 1 are monitored to maintain the pH of the absorption liquid at 9 to 11 and the content of polyvalent metal ions at 100 ppm or less.
  • the absorption liquid was appropriately extracted from the absorption liquid extraction line 11 and the absorption liquid was appropriately added from the absorption liquid supply tank 8.
  • the pH of the absorbent in the absorbent supply tank 8 was adjusted by controlling the supply amount from the water supply line 14 and the alkaline compound aqueous solution supply line 15 as necessary.
  • the absorption liquid As an operation in the wet exhaust gas absorption tower 1, first, 3 m 3 of the absorption liquid was supplied to the bottom of the wet exhaust gas absorption tower 1 using the absorption liquid supply pump 9. Next, the absorption liquid was sprayed downward from the shower nozzle 6 using the circulation pump 4 through the circulation line 7 and the absorption liquid line 5 at a flow rate of 1.4 (m 3 / min). In addition, the temperature of the said absorption liquid was adjusted using the heat exchanger 16 so that the temperature just before spraying from the shower nozzle 6 might be 50 degreeC.
  • the exhaust gas was supplied from the exhaust gas supply line 2 to make a countercurrent contact with the absorbing solution.
  • the temperature of the absorbent after absorbing the exhaust gas was 64 ° C.
  • the gas-liquid contact was performed more efficiently by the packed bed 13 installed in the wet exhaust gas absorption tower 1.
  • the liquid that absorbed the exhaust gas was circulated through the circulation line 7 and the absorption liquid line 5 using the circulation pump 4.
  • the liquid was sprayed from the shower nozzle 6 after adjusting using a heat exchanger so that the temperature immediately before spraying from the shower nozzle 6 was 50 ° C.
  • the exhaust gas that was not absorbed by the absorbing solution was discharged out of the system from the exhaust gas discharge line 3 at the top of the tower via the mist separator 12.
  • 99.92% by weight of the total amount of organic matter contained in the exhaust gas before being supplied to the absorption tower was removed.
  • a steam ejector is installed at the tip of the exhaust gas discharge line 3, and the internal pressure of the wet exhaust gas absorption tower 1 is slightly reduced (atmospheric pressure -5 mbar).
  • the shower nozzle 6 of the wet exhaust gas absorption tower 1 was inspected, and no adhesion of water-insoluble metal salt was observed, and there was no clogging.
  • Example 1 As an exhaust gas absorbing solution, ion-exchanged water having a calcium ion content of 300 ppm (electric conductivity at 25 ° C. is 1550 ( ⁇ S / cm)) and a 48 wt% aqueous sodium hydroxide solution are used. The same operation as in Example 1 was performed except that the mixture was changed to a 0.1 (mol / l) aqueous sodium hydroxide solution (pH 13) prepared by mixing.
  • Example 2 In Example 1 above, as an exhaust gas absorbing solution, ion-exchanged water having a calcium ion content of 300 ppm (electric conductivity at 25 ° C. is 1550 ( ⁇ S / cm)) and a 48 wt% aqueous sodium hydroxide solution are used. The same operation as in Example 1 was performed except that the mixture was changed to a 1.0 ⁇ 10 ⁇ 3 (mol / l) aqueous sodium hydroxide solution (pH 10) prepared by mixing.
  • Example 3 As an exhaust gas absorbing liquid, ion-exchanged water having a calcium ion content of 0.2 ppm (electric conductivity at 25 ° C. is 1.1 ( ⁇ S / cm)) and 48% by weight of hydroxide The same operation as in Example 1 was performed except that the aqueous solution was changed to a 0.1 (mol / l) aqueous sodium hydroxide solution (pH 13) prepared by mixing with an aqueous sodium solution.
  • Example 1 water having a pH of 7 to 11 and a polyvalent metal ion content of 100 ppm or less (electric conductivity at 25 ° C. of 500 ( ⁇ S / cm) or less) is absorbed in exhaust gas.
  • a polyvalent metal ion content of 100 ppm or less electrical conductivity at 25 ° C. of 500 ( ⁇ S / cm) or less
  • clogging at the spray nozzle of the shower nozzle 6 does not occur, and adhesion of a water-insoluble polyvalent metal salt can be suppressed.
  • the method for producing a polyacrylic acid (salt) water-absorbent resin according to the present invention can be applied to the production of water-absorbent resins, particularly to mass production.
  • the polyacrylic acid (salt) water-absorbing resin obtained by the present invention is suitable for use as an absorbent material for sanitary goods such as paper diapers.

Abstract

 本発明の目的は、吸水性樹脂の安定かつ連続的な製造方法、更には、吸水性樹脂の製造工程から排出されるガスの効率的かつ持続的なガス吸収工程を含む、安定かつ連続的な吸水性樹脂の製造方法を提供することにある。本発明のポリアクリル酸(塩)系吸水性樹脂の製造方法は、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水に吸収させる工程、又は、25℃における電気伝導率が500(μS/cm)以下の水とアルカリ化合物とを混合して、pHを7~11に調整した水に吸収させる工程を更に含むところに要旨を有する。

Description

ポリアクリル酸(塩)系吸水性樹脂の製造方法
 本発明は、ポリアクリル酸(塩)系吸水性樹脂の製造方法に関するものである。更に詳しくは、重合工程、乾燥工程、表面架橋工程等を含むポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを吸収する工程(ガス吸収工程)を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法に関する。
 吸水性樹脂(SAP/Super Absorbent Polymer)は、水膨潤性水不溶性の高分子ゲル化剤であり、紙オムツや生理用ナプキン等の衛生用品、農園芸用保水剤、工業用止水剤等として、主に使い捨て用途で多用されている。かような吸水性樹脂は、その原料として、多くの単量体や親水性高分子化合物が用いられている。中でも、吸水性能の高さから、アクリル酸及び/又はその塩を用いたポリアクリル酸(塩)系吸水性樹脂が工業的に最も多く利用されている。
 かような吸水性樹脂は、重合、乾燥、粉砕、分級、表面架橋等を経て、粒子状の製品として製造される(非特許文献1)が、特に、重合、乾燥、加熱処理(表面架橋)の各工程から排出されるガス(排ガス)は環境保全の観点から、大気に放出する前に捕集する必要がある。つまり、当該排ガス中には、吸水性樹脂の原材料等(単量体、架橋剤、水、有機溶媒等)が含まれており、これらの物質を捕集する必要がある。
 そこで、当該排ガスの捕集又はリサイクル技術として、アクリル酸及びポリアクリル酸の製造プロセスから生じる排出物の処理技術(特許文献1)、吸水性樹脂及びその原料モノマー水溶液を製造する工程の任意の段階から除去された排ガスを塩基性水溶液でスクラビングする技術(特許文献2~4)、重合工程等で発生する水や単量体の蒸気を、単量体水溶液や重合工程にリサイクルする技術(特許文献5~11)が開示されている。
 また、吸水性樹脂の製造工程においては、水は単量体や架橋剤の溶媒として汎用であり、重合時の溶媒として蒸留水を使用する技術(特許文献12~14)が開示されている。
欧州特許出願公開第1415977号明細書 国際公開第2010/040465号パンフレット 国際公開第2010/040466号パンフレット 国際公開第2010/040467号パンフレット 国際公開第2011/042404号パンフレット 米国特許第6174978号明細書 米国特許第7741400号明細書 米国特許第7049366号明細書 欧州特許出願公開第1879930号明細書 欧州特許出願公開第1866349号明細書 米国特許第6987151号明細書 米国再発行特許第Re32649号明細書 米国特許第5633329号明細書 欧州特許第0068189号明細書
Modern Superabsorbent Polymer Techlogoy 69~103ページ
 上記特許文献1~11に開示された排ガス捕集技術においては、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出される排ガスは冷却して凝縮させたり、水やアルカリ水で吸収されたり、或いは、直接燃焼処理されたりしていた。
 これらの排ガス捕集技術のうち、水やアルカリ水での吸収は、特に乾燥工程から排出される排ガスを吸収する場合、排ガス吸収塔内での詰まりがしばしば発生していた。特に近年では、吸水性樹脂の生産性を向上する目的で、高温開始重合や高濃度重合を行うようになり、製造工程から排出されるガスの絶対量や排ガス中の有機物(特に残存モノマー)の含有比率(容積%)が増加する傾向にある。上記排ガスの吸収工程が吸水性樹脂の安定生産に多大な影響を及ぼすようになり、排ガス吸収塔内での詰まりに起因するトラブルによる一時停止が、生産性の低下を引き起こすようになっていた。
 また、排ガス中に含まれる有機物(特に残存モノマー)をより効率よく吸収するために、排ガスの吸収液の液性はアルカリ性に調整されることが好ましいが、過度にアルカリ性を強くすると、吸収液中の多価金属イオンとの反応により生成する水不溶性の多価金属塩量が急速に増加し、吸収塔内の詰まりが生じやすくなる問題があった。排ガス吸収塔内での詰まりが発生すると、洗浄等が必要となり、一時的に製造を停止する必要がある。そのため、再稼働直後は重合温度や表面処理温度の調整に時間を要するため、再稼働直後の吸水性樹脂の物性が安定しないという問題を生じる。
 上記問題に対して、従来技術(特に、上記特許文献1~4)では、排ガスを塩基性水溶液で吸収する技術は開示されているものの、排ガス吸収塔内での詰まりを解消する技術については何ら明らかにされていなかった。
 本発明は上記課題を鑑みてなされたものであって、本発明の目的は、排ガス吸収塔内での詰まりを抑制して吸水性樹脂の安定かつ連続的な製造方法を提供することである。更には、吸水性樹脂の製造工程から排出されるガスの効率的かつ持続的なガス吸収工程を含む、安定かつ連続的な吸水性樹脂の製造方法を提供することにある。
 上記課題を解決するため、発明者らが鋭意検討した結果、排ガス吸収塔内での詰まりを抑制するためには、排ガスの吸収液のpHを特定の範囲に調整すると共に、排ガスの吸収液に含まれる多価金属イオンや電解質の量を一定の数値以下に低下させることが必要であることを見出した。
 即ち、上記課題を解決するため、本発明(第1の発明)は、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法を提供する。
 また、上記課題を解決するため、本発明(第2の発明)は、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、25℃における電気伝導率が500(μS/cm)以下の水とアルカリ化合物とを混合してpHを7~11に調整した水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法を提供する。
 本発明によると、吸水性樹脂の製造工程から排出される排ガスを吸収させる排ガス吸収工程を連続的に稼働させる上で、排ガス吸収塔での詰まりの原因となる、水不溶性の塩の生成を抑制することが可能となる。結果として、排ガスの吸収処理を長期間持続させることができる。特に、排ガスの吸収処理性能や処理効率の向上が図れ、詰まりの発生頻度が非常に少なく、吸水性樹脂の生産を中断することなく、ランニングコストの低減を図ることができる。
図1は、本発明の一実施形態を示した概略装置図である。
 以下、本発明について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲内で適宜変更、実施し得る。具体的には、本発明は下記の各実施形態に限定されるものではなく、請求項に示す範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示される技術的手段を適宜組み合わせて得られる実施形態についても、本発明の技術的範囲に含まれる。
 〔1〕用語の定義
 (1-1)「吸水性樹脂」
 本発明における「吸水性樹脂」とは、水膨潤性水不溶性の高分子ゲル化剤を指し、以下の物性を満たすものをいう。即ち、「水膨潤性」として、ERT441.2-02で規定されるCRCが5g/g以上、かつ、「水不溶性」として、ERT470.2-02で規定されるExtが50重量%以下の物性を満たす高分子ゲル化剤を指す。
 上記吸水性樹脂は、その用途に応じて適宜、設計が可能であり、特に限定されないが、カルボキシル基を有する不飽和単量体を架橋重合させた親水性架橋重合体であることが好ましい。また、全量(100重量%)が重合体である形態に限定されず、上記物性(CRC、Ext)を満足する範囲内で、添加剤等を含んだ吸水性樹脂組成物であってもよい。
 更に、本発明における吸水性樹脂は、最終製品に限らず、吸水性樹脂の製造工程における中間体(例えば、重合後の含水ゲル状架橋重合体や乾燥後の乾燥重合体、表面架橋前の吸水性樹脂粉末等)を指す場合もあり、前述の吸水性樹脂組成物と合わせて、これら全てを包括して「吸水性樹脂」と総称する。なお、吸水性樹脂の形状として、シート状、繊維状、フィルム状、粒子状、ゲル状等が挙げられるが、本発明では粒子状の吸水性樹脂が好ましい。
 (1-2)「ポリアクリル酸(塩)」
 本発明における「ポリアクリル酸(塩)」とは、ポリアクリル酸及び/又はその塩を指し、主成分として、アクリル酸及び/又はその塩(以下、「アクリル酸(塩)」と称する)を繰り返し単位として含み、任意成分としてグラフト成分を含む重合体を指す。
 上記「主成分」とは、アクリル酸(塩)の使用量(含有量)が、重合に用いられる単量体(内部架橋剤を除く)全体に対して、通常50~100モル%、好ましくは70~100モル%、より好ましくは90~100モル%、更に好ましくは実質100モル%であることをいう。また、上記ポリアクリル酸塩は、必須に水溶性塩を含み、好ましくは一価の塩、より好ましくはアルカリ金属塩又はアンモニウム塩を含む。
 (1-3)「EDANA」及び「ERT」
 「EDANA」は、欧州不織布工業会(European Disposables and Nonwovens Associations)の略称であり、「ERT」は、欧州標準(ほぼ世界標準)の吸水性樹脂の測定法(EDANA Recommended Test Methods)の略称である。本発明では、特に断りのない限り、ERT原本(2002年改定/公知文献)に準拠して、吸水性樹脂の物性を測定する。
 (1-3-1)「CRC」(ERT441.2-02)
 「CRC」は、遠心分離保持容量(Centrifuge Retention Capacity)の略称であり、吸水性樹脂の無加圧下吸水倍率(「吸水倍率」と称する場合もある)を意味する。具体的には、吸水性樹脂0.2gを不織布に入れた後、大過剰の0.9重量%塩化ナトリウム水溶液中に30分間浸漬して自由膨潤させ、その後、遠心分離機(250G)で水切りした後の吸水倍率(単位;g/g)のことをいう。
 (1-3-2)「Ext」(ERT470.2-02)
 「Ext」は、Extractablesの略称であり、吸水性樹脂の水可溶分(水可溶成分量)を意味する。具体的には、吸水性樹脂1.0gについて、0.9重量%塩化ナトリウム水溶液200mlに対して、500rpmで16時間攪拌した後の溶解したポリマー量をpH滴定で測定した値(単位;重量%)のことをいう。
 (1-3-3)「AAP」(ERT442.2-02)
 「AAP」は、Absorption Against Pressureの略称であり、吸水性樹脂の加圧下吸水倍率を意味する。具体的には、吸水性樹脂0.9gについて、大過剰の0.9重量%塩化ナトリウム水溶液に対して、1時間、0.3psi(2.06kPa、21g/cm)荷重下で膨潤させた後の吸水倍率(単位;g/g)のことをいう。なお、荷重条件を0.7psi(4.83kPa、49g/cm)に変更して測定する場合もある。
 (1-4)「通液性」
 吸水性樹脂の「通液性」とは、荷重下または無荷重下での膨潤ゲルの粒子間を通過する液の流れ性のことをいい、代表的な測定方法として、SFC(Saline Flow Conductivity/生理食塩水流れ誘導性)や、GBP(Gel Bed Permeability/ゲル床透過性)がある。
 「SFC(生理食塩水流れ誘導性)」は、2.07kPa荷重下での吸水性樹脂に対する0.69重量%塩化ナトリウム水溶液の通液性をいい、米国特許第5669894号に開示されるSFC試験方法に準拠して測定される。
 「GBP(ゲル床透過性)」とは、荷重下または自由膨潤での吸水性樹脂に対する0.9重量%塩化ナトリウム水溶液の通液性をいい、国際公開第2005/016393号に開示されるGBP試験方法に準拠して測定される。
 (1-5)「吸水速度」
 吸水性樹脂の「吸水速度」とは、ある一定量の水性液を吸収する際の速さのことをいい、代表的な測定方法として、「FSR」や、「Vortex」(単位:秒)がある。なお、本発明における吸水速度は、FSRで評価した。また、「FSR」とは、Free Swell Rateの略称である。具体的な測定方法については、後述の実施例において説明する。
 (1-6)その他
 本明細書において、範囲を示す「X~Y」は「X以上、Y以下」を意味する。また、特に注釈のない限り、重量の単位である「t(トン)」は「Metric ton(メトリック トン)」を意味し、「ppm」は「重量ppm」又は「質量ppm」を意味する。更に、「重量」と「質量」、「重量部」と「質量部」、「重量%」と「質量%」は同義語として扱う。また、「~酸(塩)」は「~酸及び/又はその塩」、「(メタ)アクリル」は「アクリル及び/又はメタクリル」をそれぞれ意味する。
 また、便宜上、「リットル」を「l」又は「L」、「重量%」を「wt%」と記すことがある。更に、微量成分の測定を行う場合において、検出限界以下をN.D(Non Detected)と表記する。
 〔2〕ポリアクリル酸(塩)系吸水性樹脂の製造方法
 本発明(第1の発明)は、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法を提供する。なお、本項では本発明の第1の発明及び第2の発明に共通するポリアクリル酸(塩)系吸水性樹脂の製造工程について説明し、排ガスの吸収工程については次項〔3〕で説明する。
 (2-1)単量体水溶液の調製工程
 本工程は、アクリル酸(塩)を主成分として含む水溶液(以下、「単量体水溶液」と称する)を調製、準備する工程である。なお、吸水性能が低下しない限り、単量体のスラリー液を使用することもできるが、本項では、便宜上、単量体水溶液について説明する。
 また、本工程には、下記に示すように中和工程(中和反応)が含まれる。したがって、当該中和反応で発生する中和熱によってアクリル酸の一部が揮発する可能性があり、その際、発生するガスは必要に応じて排ガス吸収工程に供給される。
 (アクリル酸)
 本発明では、発明の効果の観点から単量体としてアクリル酸が用いられる。当該アクリル酸としては公知のものでよく、重合禁止剤として好ましくはフェノール類、より好ましくはメトキシフェノール類が含まれていればよい。また、重合禁止剤の濃度として、アクリル酸の重合性や吸水性樹脂の色調の観点から、好ましくは1~200ppm、より好ましくは10~160ppmであればよい。
 アクリル酸中の不純物については、米国特許出願公開第2008/0161512号に開示された内容は本発明にも適用される。
 (併用される単量体)
 本発明においては、アクリル酸(塩)以外の単量体(以下、「他の単量体」と称する)を、アクリル酸(塩)と併用して吸水性樹脂を製造することもできる。当該他の単量体としては、特に限定されないが、水溶性又は疎水性の不飽和単量体が挙げられる。具体的には、米国特許出願公開第2005/215734号の段落〔0035〕に開示された単量体(但し、アクリル酸は除く)が挙げられる。
 本発明に係る製造方法で得られる吸水性樹脂には、上記水溶性又は疎水性の不飽和単量体を共重合成分とするものも含まれる。
 (塩基性組成物)
 本発明において、「塩基性組成物」とは塩基性化合物を含有する組成物を意味し、例えば、市販の水酸化ナトリウム水溶液等が該当する。
 当該塩基性化合物として具体的には、アルカリ金属の炭酸塩や炭酸水素塩、アルカリ金属の水酸化物、アンモニア、有機アミン等が挙げられる。中でも、高物性の吸水性樹脂を製造するという観点から、強塩基性の化合物であることが望まれる。即ち、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物が好ましく、水酸化ナトリウムが特に好ましい。
 本発明の吸水性樹脂は、アクリル酸(塩)を架橋重合したポリアクリル酸(塩)である。したがって、当該ポリアクリル酸(塩)を得るため、アクリル酸を上記塩基性組成物で中和する工程(中和工程)を有することが好ましい。
 (中和工程)
 上記中和工程として本発明では、単量体のアクリル酸に対する中和の他に、アクリル酸を架橋重合させて得られる含水ゲル状架橋重合体に対する中和(以下、「後中和」と称する)も含まれる。これらの中和は、連続式でもバッチ式でもよいが、生産効率等の観点から連続式が好ましい。また、これらの中和を併用することもできる。
 当該中和工程で適用される装置、塩基性組成物、温度条件、滞留時間等の中和条件については、国際公開第2009/123197号や米国特許出願公開第2008/0194863号に開示された内容が本発明に適用される。
 また、当該中和工程で得られるアクリル酸塩は実質一価塩であるが、例えば、5モル%以下の極少量を多価金属塩としてもよい。
 本発明における中和率としては、単量体の酸基に対して、好ましくは10~90モル%、より好ましくは40~85モル%、更に好ましくは50~80モル%、特に好ましくは60~75モル%である。当該中和率が10モル%未満の場合、吸水倍率が著しく低下することがある。一方、当該中和率が90モル%を超える場合、加圧下吸水倍率の高い吸水性樹脂が得られないことがある。上記中和率は後中和の場合でも同様である。また、最終製品としての吸水性樹脂の中和率についても、上記中和率が適用される。
 (内部架橋剤)
 本発明で使用される内部架橋剤として、アクリル酸と反応しうる置換基を2個以上有する化合物が挙げられ、具体的には、米国特許第6241928号のカラム14に開示された化合物が挙げられる。これらのうち、1種又は2種以上の化合物が用いられる。
 中でも、得られる吸水性樹脂の吸水性能等の観点から、2個以上の重合性不飽和基を有する化合物が好ましく、より好ましくは後述する乾燥温度程度で熱分解性を有する化合物、更に好ましくは(ポリ)アルキレングリコール構造単位を有する2個以上の重合性不飽和基を有する化合物が挙げられる。当該重合性不飽和基として、好ましくはアリル基や(メタ)アクリレート基、より好ましくは(メタ)アクリレート基が挙げられる。また、アルキレングリコール構造単位として、ポリエチレングリコールが好ましく、n数としては、1~100が好ましく、6~50がより好ましい。なお、上記「平均n数」は、ポリエチレングリコール鎖中のメチレン鎖重合度の平均数を意味する。
 したがって、本発明では、好ましくは(ポリ)アルキレングリコールジ(メタ)アクリレート又は(ポリ)アルキレングリコールトリ(メタ)アクリレート、より好ましくは(ポリ)エチレングリコールジ(メタ)アクリレートが重合時に用いられる。
 上記内部架橋剤の使用量は、単量体に対して、好ましくは0.005~2モル%、より好ましくは0.01~1モル%、更に好ましくは0.05~0.5モル%である。当該使用量を上記範囲内とすることで、所望する吸水性樹脂が得られる。
 本発明では、所定量の内部架橋剤を予め単量体水溶液に添加しておき、重合と同時に架橋反応する方法が好ましく適用される。一方で、当該手法以外に、重合中や重合後に内部架橋剤を添加して後架橋する方法や、ラジカル重合開始剤を用いてラジカル架橋する方法、電子線、紫外線等の活性エネルギー線を用いた放射線架橋する方法等を採用することもできる。また、上記の方法を併用することもできる。
 (その他、単量体水溶液に添加される物質)
 本発明において、吸水性樹脂の吸水性能等の諸物性を向上させることを目的として、下記の物質を単量体水溶液を調製する際に、添加することもできる。
 具体的には、水溶性樹脂又は吸水性樹脂を好ましくは50重量%以下、より好ましくは20重量%以下、更に好ましくは10重量%以下、特に好ましくは5重量%以下(下限は0重量%)で添加したり、炭酸塩、アゾ化合物、気泡等の発泡剤や、界面活性剤、キレート剤、連鎖移動剤等を好ましくは5重量%以下、より好ましくは1重量%以下、更に好ましくは0.5重量%以下(下限は0重量%)で添加したりすることができる。
 これらの物質は、単量体水溶液に添加される形態のみならず、重合途中で添加される形態でもよいし、これらの形態を併用することもできる。
 なお、上記水溶性樹脂又は吸水性樹脂を使用する場合、グラフト重合体又は吸水性樹脂組成物(例えば、澱粉-アクリル酸重合体、PVA-アクリル酸重合体等)が得られるが、これらの重合体、吸水性樹脂組成物も本発明のポリアクリル酸(塩)系吸水性樹脂の範疇である。
 (単量体成分の濃度)
 本発明において、単量体水溶液中の単量体成分の濃度としては、特に限定されないが、吸水性樹脂の物性の観点から、好ましくは10~80重量%、より好ましくは20~75重量%、更に好ましくは30~70重量%である。なお、後述する高濃度重合を採用する場合には、後述の範囲が好ましく適用される。
 なお、重合形態として、水溶液重合又は逆相懸濁重合を採用する場合、水以外の任意の溶媒を必要に応じて併用することもできる。その場合、使用される溶媒の種類は特に限定されない。
 上記「単量体成分の濃度」は、下記式(1)から算出される値であり、式(1)中、単量体水溶液には、グラフト成分や吸水性樹脂、逆相懸濁重合における疎水性溶媒は含まれない。
Figure JPOXMLDOC01-appb-M000001
 (2-2)重合工程
 本工程は、上記単量体水溶液の調製工程で得られる単量体水溶液を重合させて、含水ゲル状架橋重合体(以下、「含水ゲル」と称する)を得る工程である。なお、当該重合工程では、発生する重合熱によってアクリル酸の一部が揮発する可能性があり、その際、発生するガスは必要に応じて排ガス吸収工程に供給される。
 (重合開始剤)
 本発明で使用される重合開始剤として、熱分解性重合開始剤、光分解性重合開始剤又はこれらの重合開始剤の分解を促進する還元剤を併用したレドックス系重合開始剤等が挙げられ、具体的には、米国特許第7265190号のカラム5に開示された化合物が挙げられる。これらのうち、1種又は2種以上の化合物が用いられる。
 中でも、得られる吸水性樹脂の吸水性能や取扱性の観点から、好ましくは過酸化物又はアゾ化合物、より好ましくは過酸化物、更に好ましくは過硫酸塩が用いられる。
 上記重合開始剤の使用量は、単量体に対して、好ましくは0.001~1モル%、より好ましくは0.001~0.5モル%である。上記還元剤の使用量は、単量体に対して、好ましくは0.0001~0.02モル%である。当該使用量を上記範囲内とすることで、所望する吸水性樹脂が得られる。
 上記重合開始剤以外に、電子線、紫外線等の活性エネルギー線を照射して重合反応することもできる。また、これらを併用することもできる。
 (重合形態)
 本発明に適用される重合形態としては、特に限定されないが、吸水性樹脂の吸水性能や重合制御の容易性等の観点から、好ましくは噴霧重合、液滴重合、水溶液重合、逆相懸濁重合、より好ましくは水溶液重合、逆相懸濁重合、更に好ましくは水溶液重合、特に好ましくは連続水溶液重合が挙げられる。
 上記連続水溶液重合の具体的形態として、連続ベルト重合や連続ニーダー重合が挙げられる。なお、連続ベルト重合として、米国特許第4893999号、同第6241928号、米国特許出願公開第2005/215734号等に、連続ニーダー重合として、米国特許第6987151号、同第6710141号等に、それぞれ開示されている内容が本発明に適用される。これらの連続水溶液重合を採用することで、吸水性樹脂の生産効率が向上する。更に、当該重合工程から排出されるガスが効率的にガス吸収塔に供給されるため、好ましい。
 また、上記連続水溶液重合の好ましい実施形態として、高温開始重合や高濃度重合が挙げられる。当該「高温開始重合」とは、単量体水溶液の温度を好ましくは30℃以上、より好ましくは35℃以上、更に好ましくは40℃以上、特に好ましくは50℃以上(上限は単量体水溶液の沸点)に上昇させた後に重合を開始する方法をいい、「高濃度重合」とは、単量体成分の濃度を好ましくは30重量%以上、より好ましくは35重量%以上、更に好ましくは40重量%以上、特に好ましくは45重量%以上(上限は80重量%)に調製した後に重合を開始する方法をいう。なお、これらの重合方法は併用することもできる。
 また、本発明では重合中に固形分濃度を上昇させることもできる。当該固形分濃度の上昇は、「固形分上昇度」として下記式(2)で定義される。当該固形分上昇度は好ましくは1重量%以上、より好ましくは2重量%以上である。
Figure JPOXMLDOC01-appb-M000002
 上式(2)中、「単量体水溶液の固形分濃度」とは、下記式(3)で定義される値である。
Figure JPOXMLDOC01-appb-M000003
 上式(3)中、「重合系内の成分重量」とは、単量体水溶液、グラフト成分、吸水性樹脂及びその他の固形分(例えば、水不溶性微粒子等)の合計重量を指し、逆相懸濁重合等で用いられる疎水性溶媒は含まれない。つまり、上記「単量体水溶液の固形分濃度」とは、重合によって固体化する成分の濃度を指す。
 また、本発明では、得られる吸水性樹脂の色調の観点から、窒素やアルゴン等の不活性ガス雰囲気下で重合を実施することが好ましく、酸素濃度を1容積%以下の雰囲気下に制御することがより好ましい。更にこの場合、単量体又は単量体水溶液中の溶存酸素を不活性ガスで十分に置換(例えば、溶存酸素濃度を1(mg/l)未満)しておくことも望まれる。なお、上記不活性ガス等の気泡を単量体水溶液に分散させて重合を行う発泡重合とすることもできる。
 本発明において、重合後に得られる含水ゲルの重合率は、好ましくは90モル%以上、より好ましくは95モル%以上、更に好ましくは98モル%以上、特に好ましくは99モル%以上である。上限として好ましくは99.99モル%以下、より好ましくは99.9モル%以下、更に好ましくは99.8モル%以下である。当該重合率が90モル%未満の場合、吸水性樹脂中の残存モノマーが多く、一方、重合率が99.99モル%を超える場合、必要以上の重合時間を要し生産性が低下するため、好ましくない。更に場合により、乾燥後の吸水性樹脂の物性(吸水倍率と可溶分の関係)が低下する。
 本発明では、過度に重合を進行させる必要はなく、後述の乾燥工程、特に熱風乾燥工程において残存モノマーを低減させることが可能であり、結果として生産性を向上させることができる。更に、乾燥工程から排出されるガスを吸収する際の問題点であるガス吸収塔での詰まりも低減されるため、好ましい。
 (2-3)ゲル粉砕工程
 本工程は、上記重合工程で得られる含水ゲルをニーダー、ミートチョッパー又はカッターミル等のゲル粉砕機でゲル粉砕し、粒子状の含水ゲル(以下、「粒子状含水ゲル」と称する)を得る工程である。なお、上記重合工程がニーダー重合の場合、重合工程とゲル粉砕工程が同時に実施されていることになる。
 本発明に適用されるゲル粉砕形態としては、特に限定されないが、国際公開第2011/126079号に開示される方法が挙げられる。
 かようなゲル粉砕で得られる粒子状含水ゲルの重量平均粒子径(D50)は、好ましくは4000μm以下、より好ましくは2000μm以下である。粒子状含水ゲルの重量平均粒子径(D50)を上記範囲内とすることで、表面積が大きくなるため、残存モノマー(特にアクリル酸)が揮発しやすくなり、残存モノマーの低減を図ることができる。更に、当該ゲル粉砕工程から排出されるガスが効率的にガス吸収塔に供給されるため、好ましい。
 (2-4)乾燥工程
 本工程は、上記重合工程及び/又はゲル粉砕工程で得られる粒子状含水ゲルを所望の固形分濃度まで乾燥させて乾燥重合体を得る工程である。なお、当該乾燥工程では、乾燥時の熱によってアクリル酸の一部が揮発する可能性があり、その際、発生するガスは必要に応じて排ガス吸収工程に供給される。また、粒子状含水ゲルに含まれる微粒子(微細ゲル、乾燥後の微粒子)が熱風によって飛散する可能性もあり、その際、飛散した微粒子は粒径が好ましくは2mm以下、より好ましくは0.5mm以下であり、当該排ガスと共に排ガス吸収工程に供給される。
 本発明に適用される乾燥形態としては、特に限定されないが、加熱乾燥、熱風乾燥、減圧乾燥、流動層乾燥、赤外線乾燥、マイクロ波乾燥、ドラムドライヤー乾燥、疎水性有機溶媒との共沸脱水による乾燥、高温の水蒸気を用いた高湿乾燥等、種々の乾燥を適用することができる。
 これらの中でも、本発明に適した乾燥形態として熱風乾燥が好ましく、通気ベルト上で熱風乾燥を行うバンド乾燥が特に好ましい。なお、得られる吸水性樹脂の色調や乾燥効率の観点から、熱風の温度(乾燥温度)として好ましくは100~300℃、より好ましくは120~220℃、更に好ましくは160~200℃である。また、熱風の風速として好ましくは3.0(m/s)以下、より好ましくは0.5~2.0(m/s)以下である。乾燥時間は適宜決定されるが、好ましくは1分~10時間、より好ましくは5分~3時間、更に好ましくは10分~1時間である。かような範囲とすることで、乾燥重合体の物性にムラが生じにくく、含水率を所望の範囲に制御することができ、更に得られる吸水性樹脂の色調悪化や吸水性能の低下を抑えることができる。
 また、本工程で得られる乾燥重合体の固形分濃度として好ましくは80重量%以上、より好ましくは85~99重量%、更に好ましくは90~98重量%、特に好ましくは92~97重量%である。なお、当該固形分濃度は、乾燥減量(試料1gを180℃で3時間加熱した際の重量変化量)から求められる。
 上記バンド乾燥を行う場合、上述以外の条件として、国際公開第2006/100300号、同第2011/025012号、同第2011/025013号、同第2011/111657号等に開示される条件が適用される。
 上記熱風乾燥は、乾燥効率や吸水性樹脂の物性に対して優れているものの、熱風中に単量体や吸水性樹脂が混入しやすいという問題点を有している。したがって、環境面から、排ガス中の単量体や吸水性樹脂を捕集することが重要となっている。そこで、本発明を適用することにより、吸水性樹脂の生産を中断することなく、連続生産することができる。
 (2-5)粉砕工程、分級工程
 本工程は、上記乾燥工程で得られる乾燥重合体を粉砕(粉砕工程)し、所定範囲の粒度に調製(分級工程)して、吸水性樹脂粉末(表面架橋前の、粒子状の吸水性樹脂を便宜上「吸水性樹脂粉末」と称する)を得る工程である。
 本発明の粉砕工程で使用される機器としては、特に限定されないが、ロールミル、ハンマーミル、スクリューミル、ピンミル等の高速回転式粉砕機、振動ミル、ナックルタイプ粉砕機、円筒型ミキサー等が挙げられる。これらは必要に応じて併用される。
 また、本発明の分級工程での粒度調製方法としては、特に限定されないが、JIS標準篩(JIS Z8801-1(2000))を用いた篩分級や、気流分級等が挙げられる。なお、吸水性樹脂の粒度は、粉砕工程、分級工程に限らず、重合工程(特に逆相懸濁重合や、噴霧重合、液滴重合)やその他の工程(例えば、造粒工程)でも、適宜調整することができる。
 当該吸水性樹脂粉末の粒度として、重量平均粒子径(D50)は好ましくは200~600μm、より好ましくは200~550μm、更に好ましくは250~500μm、特に好ましくは350~450μmである。また、粒子径が150μm未満の粒子の割合は好ましくは10重量%以下、より好ましくは5重量%以下、更に好ましくは1重量%以下(下限は0重量%)であり、粒子径が850μm以上の粒子の割合は好ましくは5重量%以下、より好ましくは3重量%以下、更に好ましくは1重量%以下(下限は0重量%)である。更に、粒子径分布の対数標準偏差(σζ)は好ましくは0.20~0.50、より好ましくは0.25~0.45、更に好ましくは0.30~0.40である。
 これらの粒度は、米国特許第7638570号やERT420.2-02に開示されている測定方法に準じて、標準篩を用いて測定される。
 上記粒度は、表面架橋後の吸水性樹脂(以下、便宜上「吸水性樹脂粒子」と称する)のみならず、最終製品としての吸水性樹脂についても適用される。そのため、上記範囲の粒度を維持するように、表面架橋されることが望まれる。
 (2-6)表面架橋工程
 本工程は、上述した工程を経て得られる吸水性樹脂粉末の表面層(吸水性樹脂粉末の表面から数10μmの部分)に架橋密度の高い部分を設ける工程であり、混合工程、加熱処理工程及び必要により冷却工程から構成される。
 当該表面架橋工程において、吸水性樹脂粉末表面でのラジカル重合や表面重合、表面架橋剤との架橋反応等により、表面架橋された吸水性樹脂(吸水性樹脂粒子)が得られる。なお、当該表面架橋工程では、加熱処理時の反応熱によってアクリル酸や表面架橋剤の一部が揮発する可能性があり、その際、発生するガスは必要に応じて排ガス吸収工程に供給される。また、吸水性樹脂粉末に含まれる微粉が熱風によって飛散する可能性もあり、その際、飛散した微粒子は当該排ガスと共に排ガス吸収工程に供給される。
 (表面架橋剤)
 本発明で使用される表面架橋剤として、好ましくは種々の有機又は無機の表面架橋剤、より好ましくは吸水性樹脂の吸水性能や表面架橋剤の取扱性の観点からカルボキシル基と反応して共有結合を形成する有機表面架橋剤が挙げられる。具体的には、米国特許第7183456号のカラム9~10に開示された表面架橋剤が挙げられる。これらのうち、1種又は2種以上の表面架橋剤が用いられる。また、必要に応じて、親水性有機溶媒を使用することもできる。
 当該表面架橋剤の使用量(複数使用の場合は合計使用量)としては、吸水性樹脂粉末100重量部に対して、好ましくは0.01~10重量部、より好ましくは0.01~5重量部である。また、当該表面架橋剤は水溶液として添加することが好ましく、この場合、水の使用量としては、吸水性樹脂粉末100重量部に対して、好ましくは0.1~20重量部、より好ましくは0.5~10重量部である。更に、必要に応じて親水性有機溶媒を用いる場合の使用量としては、吸水性樹脂粉末100重量部に対して、好ましくは10重量部以下、より好ましくは5重量部以下である。
 (混合工程)
 本混合工程は、吸水性樹脂粉末と上記表面架橋剤とを混合して混合物を得る工程である。当該表面架橋剤の添加、混合方法については、特に限定されないが、表面架橋剤及び溶媒としての水、親水性有機溶媒、又はこれらの混合物を予め用意した後、吸水性樹脂粉末に対して、噴霧又は滴下して添加し混合することが好ましく、噴霧して添加し混合することがより好ましい。
 また、当該混合に用いられる機器としては、特に限定されないが、好ましくは高速攪拌型混合機、より好ましくは高速攪拌型連続混合機が挙げられる。
 (加熱処理工程)
 本加熱処理工程は、上記吸水性樹脂粉末と表面架橋剤との混合物を加熱処理して、吸水性樹脂粒子を得る工程である。
 当該加熱処理に用いられる機器としては、特に限定されないが、好ましくはパドルドライヤーが挙げられる。加熱処理時の温度として好ましくは80~250℃、より好ましくは100~220℃である。また、加熱時間として好ましくは1分~2時間である。なお、加熱処理時の温度と加熱時間の組み合わせとして、180℃で0.1~1.5時間、200℃で0.1~1時間等が好ましい。
 (冷却工程)
 本冷却工程は、上記加熱処理工程の後に必要に応じて設置される任意の工程である。
 当該冷却工程に用いられる機器としては、特に限定されないが、加熱処理工程で使用される機器と同一仕様の機器が好ましく、パドルドライヤーがより好ましい。熱媒に代えて冷媒を用いることで冷却機として使用することができるためである。
 (2-7)再加湿工程
 本工程は、上記表面架橋工程で得られる吸水性樹脂粒子に、添加剤として、多価金属塩化合物、ポリカチオン性ポリマー、キレート剤、無機還元剤及びα-ヒドロキシカルボン酸化合物からなる群から選ばれる少なくとも1種の化合物を添加する工程である。なお、当該再加湿工程では、アクリル酸や添加剤の一部が揮発する可能性があり、その際、発生するガスは必要に応じて排ガス吸収工程に供給される。
 上記添加剤は、水溶液又はスラリー液で添加することが好ましく、吸水性樹脂を再度水膨潤させることになるため、本工程を「再加湿工程」という。なお、当該再加湿工程において、必要に応じて、加熱又は乾燥を行って、得られる吸水性樹脂の含水率を好ましくは1~10重量%、より好ましくは2~9重量%に制御する。
 上記添加剤は、上述した表面架橋剤と同時に添加、混合してもよく、あるいは、表面架橋剤とは別途に表面架橋工程で添加することもできる。
 (多価金属塩化合物及び/又はカチオン性ポリマー)
 本発明において、得られる吸水性樹脂の吸水性能の観点から、多価金属塩化合物及び/又はカチオン性ポリマーを添加することが好ましい。これらの化合物を添加することによって、吸水性樹脂の吸水速度(例えば、FSR)や通液性(例えば、SFC)を向上させることができ、更に吸湿時の流動性も向上させることができる。
 具体的には、国際公開第2011/040530号の「〔7〕多価金属塩及び/又はカチオン性ポリマー」に開示される化合物及びその使用量が本発明に適用される。
 (キレート剤)
 本発明において、得られる吸水性樹脂の物性の観点から、キレート剤を添加することが好ましい。当該化合物を添加することによって、吸水性樹脂の色調悪化や劣化を抑制又は防止することができる。
 具体的には、国際公開第2011/040530号の「〔2〕キレート剤」に開示される化合物及びその使用量が本発明に適用される。
 (無機還元剤)
 本発明において、得られる吸水性樹脂の物性の観点から、無機還元剤を添加することが好ましい。当該化合物を添加することによって、吸水性樹脂の色調悪化や劣化を抑制又は防止、更には残存モノマーを低減させることができる。
 具体的には、国際公開第2011/040530号の「〔3〕無機還元剤」に開示される化合物及びその使用量が本発明に適用される。
 (α-ヒドロキシカルボン酸化合物)
 本発明において、得られる吸水性樹脂の物性の観点から、α-ヒドロキシカルボン酸化合物を添加することが好ましい。当該化合物を添加することによって、吸水性樹脂の色調悪化を抑制又は防止することができる。
 具体的には、国際公開第2011/040530号の「〔6〕α-ヒドロキシカルボン酸化合物」に開示される化合物及びその使用量が本発明に適用される。
 なお、上記「α-ヒドロキシカルボン酸化合物」とは、分子内にヒドロキシル基を有するカルボン酸又はその塩のことを指し、α位にヒドロキシル基を有する化合物である。
 (2-8)その他の添加剤の添加工程
 本工程は、上述した添加剤以外の添加剤を添加する工程であり、吸水性樹脂に対して種々の機能を付与するために設置される任意の工程である。かような添加剤として、界面活性剤、酸化剤、有機還元剤、水不溶性無機微粒子、金属石鹸等の有機粉末、消臭剤、抗菌剤、リン原子を有する化合物、パルプや熱可塑性繊維等が挙げられる。
 なお、上記界面活性剤として、具体的には国際公開第2005/075070号に開示された界面活性剤が好ましく適用される。また、当該界面活性剤は、上記(2-1)で述べたように単量体水溶液に添加してもよいし、表面架橋後の吸水性樹脂に添加してもよい。
 上記添加剤の使用量としては、用途に応じて適宜設定すればよく特に限定されないが、好ましくは5重量%以下、より好ましくは3重量%以下、更に好ましくは1重量%以下(下限は0重量%)である。
 (2-9)その他の工程
 上述した工程以外に、造粒工程、整粒工程、微粉除去工程、微粉の再利用工程等を必要に応じて設けることができる。
 なお、上記整粒工程には、表面架橋工程以降の微粉除去工程や、吸水性樹脂が凝集し所望の大きさを超えた場合に行われる粉砕工程及び分級工程が含まれる。また、上記微粉の再利用工程には、微粉をそのままの状態で、或いは、造粒工程で大きな含水ゲルとした上で、吸水性樹脂の何れかの製造工程に添加する工程が含まれる。
 (2-10)輸送工程
 上述した各工程の間は、スクリューフィーダー、バケットコンベア、フライトコンベア、ベルトコンベアや空気輸送等の各種搬送機で連結され、必要に応じて、各工程の間で中間貯蔵される。吸水性樹脂の製造工程全体として、基本的に各工程が連結されおり、好ましくは密閉系で製造及び充填がなされる。
 (2-11)充填工程
 本工程は、上述した工程の少なくとも一部を経て製造される最終製品としての吸水性樹脂が、コンテナバッグやペーパーバッグ等の充填容器に充填される工程である。当該充填容器に充填された吸水性樹脂は、所定の検査を受けた後に出荷される。
 なお、最終製品の吸水性樹脂を充填容器に充填する前に、貯蔵槽に所定時間貯蔵し、その後、出荷形態(例えば、袋、箱、瓶、サイロ等)に応じた充填を行うことで、充填後の吸水性樹脂の物性が向上及び安定化が可能となる。充填単位としては、出荷形態に応じて適宜設定すればよく、好ましくは100g~100ton、より好ましくは10kg~10tonである。
 〔3〕排ガスの吸収工程
 本工程は、上記ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガス(以下、「排ガス」と称する)を水等の水性液(以下、「吸収液」と称する)に吸収させる工程である。当該吸収液として、第1の発明では、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水を、第2の発明では、25℃における電気伝導率が500(μS/cm)以下の水と、アルカリ化合物とを混合してpHを7~11に調整した水をそれぞれ使用する。
 即ち、第1の発明は、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法を提供する。
 また、第2の発明は、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、25℃における電気伝導率が500(μS/cm)以下の水とアルカリ化合物とを混合してpHを7~11に調整した水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法を提供する。
 なお、上記排ガスは、上記工程(2-1)~(2-11)等から排出されるが、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出される限り、特に限定されない。
 (排ガス)
 本発明において、「排ガス」とは、上述したようにポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスのことをいう。
 当該排ガスは、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスであり、好ましくは重合工程、乾燥工程、表面架橋工程からの排出分を主成分とする排ガス、より好ましくは重合工程、乾燥工程からの排出分を主成分とする排ガス、更に好ましくは乾燥工程からの排出分を主成分とする排ガスである。なお、当該「主成分」とは、排ガスの全体積に対して占める割合が、好ましくは50容積%以上、より好ましくは70容積%以上、更に好ましくは90容積%以上のことをいう。
 乾燥工程から排出されるガスを吸収する場合、乾燥工程として、好ましくは熱風乾燥、より好ましくは温度が100~300℃で風速が3(m/s)以下の熱風乾燥である。また、使用される乾燥機として、好ましくは流動層乾燥機、回転攪拌型乾燥機、通気バンド型乾燥機、より好ましくは通気バンド型乾燥機、更に好ましくは通気バンド型連続乾燥機が選ばれる。かような乾燥工程とすることで、本発明の効果がより発揮される。なお、上記熱風の温度や風速等、好ましい乾燥条件は、上記(2-4)の記載内容が適用される。
 (排ガスの吸収)
 本発明において、上記排ガスは、排ガス吸収塔で上記吸収液に吸収させた後に、ポリアクリル酸(塩)系吸水性樹脂の製造工程に回収、又は燃焼処理若しくは生物処理等の廃棄処理がなされる。
 詳細には、上記排ガスは、排ガス吸収塔に供給された後、当該排ガス吸収塔内において、吸収液(例えば、水酸化ナトリウム水溶液等)と排ガスとの気液接触によって、吸収液に吸収される。当該操作によって、排ガス中の含有物(有機物、特にアクリル酸)が除去される。その後、当該吸収液は、吸水性樹脂の製造工程に回収、又は廃棄処理がなされる。
 なお、本発明では、排ガス中の有機物全量に対して、好ましくは90重量%以上、より好ましくは95重量%以上、更に好ましくは99重量%以上、特に好ましくは99.9重量%以上の有機物が除去される。
 (排ガスの温度等)
 本発明において、上記製造工程から排出されるガスの温度としては、排ガス吸収塔に導入される時点で、好ましくは30~150℃、より好ましくは50~130℃、更に好ましくは80~120℃である。上記温度が30℃未満の場合、排ガス中の有機物(特にアクリル酸)が析出し、配管等での閉塞等の装置トラブルが発生する虞がある。また、排ガスの温度を30℃未満とするには強制冷却する必要があり、エネルギーコストが余分に掛かるため、好ましくない。一方、上記温度が150℃を超える場合、排ガスと吸収液が接触した際、当該吸収液の一部が蒸発してしまい、吸収効率が低下するため、好ましくない。また、上記蒸発によって失われた吸収液を補うため、余分な水が必要となり、コスト増の観点から好ましくない。
 そこで本発明では、排ガスの温度を上記温度範囲に制御するため、必要に応じて、熱交換器を用いることが望ましい。例えば排ガス温度が高い場合は、排ガスを冷却し、熱回収することが望まれる。また排ガスの温度が低い場合は、排ガスを熱交換器で加熱することが望まれる。熱交換器以外にも加熱器や冷却器など各種公知の温度調整手段を用いることができる。
 当該熱交換器の比冷却出力としては、好ましくは0を超えて10(W/cm)以下、より好ましくは0.012~5(W/cm)、更に好ましくは0.1~2(W/cm)である。当該比冷却出力が10(W/cm)を超える場合、エネルギー的に不利となるのみならず、過冷却によって析出する虞もあるため、好ましくない。
 (排ガス中の含有物)
 本発明において、上記吸水性樹脂の製造工程から排出されるガスには、当該製造工程で使用される不活性ガスや空気、水蒸気の他、吸水性樹脂の原材料(例えば、単量体、架橋剤、水、有機溶媒、添加剤等)等が含まれる。また、乾燥工程から発生した微粒子(微細ゲル、乾燥後の微粒子)や表面架橋工程から発生した吸水性樹脂の微粉が含まれる場合がある。
 (吸収液)
 本発明(第1の発明)では、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを吸収する液として、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水を使用する。当該多価金属イオンの含有量は、好ましくは50ppm以下であり、以下順に、20ppm以下、10ppm以下、5ppm以下、1ppm以下、0.5ppm以下が好ましく、最も好ましくは0.1ppm以下である。下限値としては0ppmであるが、0.01ppm程度であってもよい。上記多価金属イオンの含有量が100ppmを超える場合、吸収液との反応により水不溶性の多価金属塩が多量に生成し、排ガス吸収塔内の吸収液噴霧ノズルや気液接触用充填層等に付着し、目詰まり等の装置トラブルが発生するため、好ましくない。
 また、上記多価金属イオンとしては特に限定されないが、好ましくは周期表第2族の金属イオンであり、より好ましくはマグネシウムイオン又はカルシウムイオンであり、更に好ましくはカルシウムイオンである。これらの多価金属イオンを含む多価金属塩(特に炭酸塩、水酸化物)は水への溶解度が低いため、特に含有量を抑える必要がある。なお、多価金属イオンの含有量は、カウンターアニオンを除いた多価金属カチオンの量を指す。具体的に、水酸化カルシウムの場合ではCa2+の量が多価金属カチオンの量となる。
 更に、上記多価金属イオンの含有量が100ppm以下の水として、特に限定されないが、例えば、イオン交換水、蒸留水、低硬度の天然水、河川水、地下水、雨水の他、吸水性樹脂の製造工程で発生する凝縮水等が挙げられる。
 また、吸水性樹脂の製造工程において、吸水性樹脂の原材料として多価金属塩を使用する場合、多価金属塩を含む吸水性樹脂が排ガス中に混入し、結果として吸収液中の多価金属イオンの含有量が100ppmを超えてしまうことがある。したがって、吸収液中の多価金属イオンの含有量を随時監視し、多価金属イオンの含有量が100ppm以下となるように、必要に応じて、多価金属イオンの少ない水を使用することが好ましい。
 本発明(第2の発明)では、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを吸収する液として、25℃における電気伝導率が500(μS/cm)以下の水とアルカリ化合物とを混合してpHを7~11に調整した水を使用する。当該25℃における電気伝導率(μS/cm)は、好ましくは100以下であり、以下順に、50以下、30以下、20以下、10以下が好ましく、最も好ましくは5以下である。下限値としては、理論純水の0.0546~0.0549であるが、水の精製コストの観点から、好ましくは0.1、より好ましくは0.5、更に好ましくは0.8程度であってもよい。上記25℃における電気伝導率が500(μS/cm)を超える場合、電解質(特に多価金属イオン)と吸収液との反応により水不溶性のスケールが多量に生成し、排ガス吸収塔内の吸収液噴霧ノズルや気液接触用充填層等に付着し、目詰まり等の装置トラブルが発生するため、好ましくない。
 また、第1の発明又は第2の発明の区別なく、本発明で使用される水は、排ガスに含まれる有機物(特にアクリル酸)の吸収効率の観点から、好ましくはアルカリ化合物の水溶液、より好ましくはアルカリ金属の水酸化物、炭酸塩、炭酸水素塩の水溶液、更に好ましくは水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムの水溶液である。これらのアルカリ化合物は適宜併用することもできる。また、アルカリ化合物の水溶液を使用する場合、該アルカリ化合物を溶解する水として、多価金属イオンの含有量が好ましくは100ppm以下、より好ましくは50ppm以下、更に好ましくは10ppm以下の水が使用される。
 上記水溶液の液性としては、排ガス中の有機物(特に残存モノマー)を効率よく、かつ確実に吸収するために、アルカリ性に調整されることが好ましいが、過度にアルカリ性を強くすると、水不溶性の多価金属塩の生成量が増加し、吸収塔内の詰まりが生じやすくなる。したがって、吸収液の液性は好ましくはpH7~11、より好ましくはpH9~11に調整される。なお、該pH値は、液温25℃での測定値である。当該アルカリ度となるように制御することで、アルカリ化合物と吸収液中に含まれる多価金属イオンの反応により水不溶性の多価金属塩が過剰に生成されるのを抑制することができると共に、アルカリ化合物の使用量を抑えることができ経済的であるため、好ましい。
 なお、上記pH値は、排ガス吸収塔の運転中では、ある程度変動してもよく、該変動幅として好ましくは±2、より好ましくは±1となるように、制御すればよい。該制御方法としては、排ガス吸収塔の運転中に吸収液のpHをモニタリングし、水、酸又はアルカリを適宜添加して、pHを上記範囲内に調整する方法が挙げられる。
 更に本発明では、効果の観点から、吸収液にスケール防止剤やキレート剤を添加してもよい。当該スケール防止剤としては、特に限定されないが、例えば、リグニンスルホン酸ソーダ等のリグニン系誘導体、水溶性のポリ(メタ)アクリル酸ソーダ、或いは無機ポリリン酸塩、ホスホン酸塩、有機リン酸エステル等のリン系化合物等が挙げられる。また、当該キレート剤としては、特に限定されないが、例えば、国際公開第2011/040530号の〔2〕キレート剤の項に記載された、キレート剤、アミノカルボン酸、アミノリン酸、ポリリン酸等が挙げられる。当該スケール防止剤やキレート剤の使用量としては、吸収液に対して、好ましくは0.01~500ppmである。
 (排ガスと吸収液との接触)
 本発明において、排ガスと接触させる吸収液の温度としては特に限定されないが、吸収効率の観点から、好ましくは30~100℃、より好ましくは40~95℃、更に好ましくは50~90℃、特に好ましくは60~90℃である。上記吸収液の温度が100℃を超える場合、排ガスの吸収効率が低下するため、好ましくない。一方、30℃未満の場合は、エネルギー的に不利であり、更に吸収液中に溶解している多価金属塩の溶解度が低下し、析出が発生する虞があるため、好ましくない。該吸収液の温度は、吸収液を排ガス吸収塔の気液接触手段である充填層に噴霧する直前での温度を指し、熱交換器や加熱器などの温度調整手段によって適宜調整することができる。
 また、排ガスと吸収液とを接触させる際、該吸収塔内の圧力としては常圧、加圧、減圧の何れでもよいが、好ましくは微減圧、例えば、-10~-1mbarの範囲での圧力で実施される。更に、本発明において、排ガス量と吸収液量との比率は、排ガスの組成によって適宜調整されるが、排ガス1000(Nm/min)(100℃換算)当たりの吸収液量として好ましくは0.01~100(m/min)、より好ましくは0.05~50(m/min)、更に好ましくは0.1~10(m/min)である。
 (排ガス吸収装置)
 本発明は、上述したポリアクリル酸(塩)系吸水性樹脂の製造方法に適した製造装置をも提供する。即ち、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出される排ガスと、該排ガス中の有機物を中和する吸収液とを気液接触させて、該排ガスから有機物を除去処理する吸水性樹脂の製造装置であって、前記排ガスと前記吸収液とを気液接触させる気液接触手段、前記気液接触手段上部から前記気液接触手段に前記吸収液を供給する噴霧手段、前記排ガスを前記気液接触手段下部から供給する排ガス供給手段、前記気液接触手段下部に滞留する前記吸収液を前記噴霧手段に移送する循環経路を有し、前記気液接触手段は、前記気液接触手段下部から供給された前記排ガスが前記気液接触手段内を縦断状態で通過するように設置し、前記噴霧手段は前記吸収液を前記気液接触手段に向けて下向きに設置し、前記循環経路は、前記吸収液を強制的に循環させる手段を有する、吸水性樹脂の製造装置を提供する。
 本発明に係る吸水性樹脂の製造装置として用いられる排ガスの吸収装置は、上記気液接触手段、噴霧手段、排ガス供給手段及び循環経路を有していればよく特に限定されないが、例えば、充填塔、スプレー塔、段塔、気泡塔、濡れ壁塔、濡れ棚塔、流動層スクラバー、サイクロンスクラバー、ベンチュリースクラバー、ジェットスクラバー、十字流接触装置等の、各種の湿式排ガス吸収塔が挙げられる。中でも、気液接触効率の観点から、充填塔が好ましい。
 上記気液接触手段としては、排ガスと吸収液との接触効率を向上させるという観点から、種々の充填材を組み込んだ充填層が挙げられる。該充填材の材質や形状については、特に限定されないが、例えば材質としては、金属製、セラミック製、樹脂製等の充填材が挙げられる。また、形状としては、空間率が大きく圧力損失が少ない形状、接触点が多数存在する形状、充填層内に均一に吸収液を分布させることできる形状等が挙げられる。なお、上記気液接触手段に充填層を採用することで、吸収液と排ガスとの気液接触面積が増加するため、排ガスの処理効率が向上するため、好ましい。
 上記噴霧手段としては、上記気液接触手段に対して均一に吸収液を噴霧できる装置であればよく、特に限定されないが、例えば、シャワーノズルやスプレーノズルが挙げられる。
 以下、図1に示した湿式排ガス吸収塔について説明する。
 図1は、本発明の一実施形態を示した概略装置図であり、ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスと、該排ガス中の有機物を中和する吸収液とを気液接触させて、該排ガスから有機物を除去処理する吸水性樹脂の製造装置であって、排ガス吸収塔としてスプレー塔を用いている。しかしながら、本発明はこの実施形態に限定されるものではなく、本発明の効果を阻害しない範囲内で適宜選定することができる。
 排ガス吸収塔内には排ガスと吸収液とを気液接触させる気液接触手段である充填層13が配備されている。本発明のポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されたガス(排ガス)は、排ガス供給ライン2を介して、湿式排ガス吸収塔1の塔底部(充填層より下部)に供給される。一方、該排ガス中に存在する有機物を中和する吸収液は、吸収液供給タンク8にて調製される。吸収液は水供給ライン14とアルカリ化合物水溶液供給ライン15からそれぞれ水とアルカリ化合物水溶液を吸収液供給タンク8に一定量投入して吸収液を調製し、あらかじめ吸収液供給ポンプ9を用いて、湿式排ガス吸収塔1の塔底部に充填されている。その後、吸収液は、循環ポンプ4を用いて、循環ライン7及び吸収液ライン5を経て、湿式排ガス吸収塔1の塔上部(充填層13より上部)からシャワーノズル6から充填層13に向けて下向きに噴霧される。
 湿式排ガス吸収塔1に供給された排ガスは塔内を上昇し、充填層内13を縦断状態で通過する際、噴霧された吸収液と気液接触(向流接触)する。その際、排ガス中の不純物が吸収液中に取り込まれ、排ガス中から除去される。気液接触した後の吸収液は、吸収塔1の塔底に一定量保有される。当該吸収液は、循環ポンプ4を用いて、循環ライン7及び吸収液ライン5を経て、充填層の上部に配置したスプレーノズルを介して強制的に循環利用される。
 循環利用によって吸収効率が徐々に低下していくが、ある一定の吸収効率を下回った時点で、バルブ10を操作して、吸収液抜出ラインから吸収液を一定量抜き出す。当該抜き出した吸収液は、吸水性樹脂の任意の製造工程に回収するか、又は燃焼処理若しくは生物処理等の廃棄処理がなされる。当該操作による吸収液の減少分は、吸収液供給タンク8から吸収液供給ポンプ9を用いて、不足分を補う。なお、この操作はバッチ式でも連続式でもよい。また吸収液のpHや多価金属イオン含有量を随時モニタリングして上記範囲を維持できるように、使用済み吸収液を抜き出したり、新たな吸収液を供給するなどして排ガスと接触させる吸収液のpHや多価金属イオン含有量を調整してもよい。
 (生産量)
 本発明に係るポリアクリル酸(塩)系吸水性樹脂の製造方法は、大スケールでの長期連続稼働に適しており、生産量として1ラインあたり、好ましくは1(t/hr)以上、より好ましくは2(t/hr)以上がよく、また、稼働日数として好ましくは10日間以上、より好ましくは1ヶ月間以上、更に好ましくは3ヶ月以上の連続稼働を目的とする工業的規模の生産に好適である。なお、本発明では、「連続稼働」は品番の切り替えを含め、実質的な連続稼働を指し、一時的に停止する場合も連続稼働の範疇に入るものとする。
 〔4〕ポリアクリル酸(塩)系吸水性樹脂の物性及び用途
 本発明に係る製造方法で得られるポリアクリル酸(塩)系吸水性樹脂は、以下の物性を満たすものが好ましい。
 即ち、CRC(無加圧下吸水倍率)として、好ましくは10~100(g/g)、より好ましくは20~50(g/g)、更に好ましくは25~40(g/g)、特に好ましくは27~36(g/g)であり、AAP(加圧下吸水倍率)として、好ましくは15~40(g/g)、より好ましくは20~35(g/g)、更に好ましくは25~35(g/g)である。
 また、SFC(生理食塩水流れ誘導性)として、好ましくは1(×10-7・cm・s・g-1)以上、より好ましくは10(×10-7・cm・s・g-1)以上であり、FSR(吸水速度)として、好ましくは0.1~2.0(g/g/s)、より好ましくは0.2~1.0(g/g/s)である。
 当該吸水性樹脂を衛生用品、特に紙オムツに使用する場合、上述した物性の少なくとも1つ以上、好ましくはAAP(加圧下吸水倍率)を含めた2つ以上、より好ましくはAAP(加圧下吸水倍率)を含めた3つ以上、更に好ましくは4つすべての物性を満たすことが望まれる。
 本発明に係る製造方法で得られるポリアクリル酸(塩)系吸水性樹脂は、吸収性物品、特に紙オムツや生理用ナプキン、失禁パット等の衛生用品の吸収体用途として、使用されることが好ましい。その際、親水性繊維等と複合化されてシート状等に成形される。なお、親水性繊維が使用されない場合には、紙や不織布等に当該吸水性樹脂を固定化することで、吸収性物品が得られる。
 本願は、2013年11月14日に出願された日本国特許出願第2013-236034号に基づく優先権の利益を主張するものである。2013年11月14日に出願された日本国特許出願第2013-236034号の明細書の全内容が、本願に参考のため援用される。
 以下の実施例に従って、本発明をより具体的に説明するが、本発明はこれらに限定解釈されるものではなく、各実施例に開示された技術的手段を適宜組み合わせて得られる実施例も、本発明の範囲に含まれるものとする。
 なお、製造例、実施例及び比較例で使用する電気機器(吸水性樹脂の物性測定も含む)は、特に注釈のない限り、200V又は100Vの電源を使用した。また、本発明の吸水性樹脂の諸物性は、特に注釈のない限り、室温(20~25℃)、相対湿度50%RHの条件下で測定した。
 [吸水性樹脂の物性測定]
 (a)CRC(無加圧下吸水倍率)
 本発明の吸水性樹脂のCRC(無加圧下吸水倍率)は、EDANA法(ERT441.2-02)に準拠して測定した。
 (b)AAP(加圧下吸水倍率)
 本発明の吸水性樹脂のAAP(加圧下吸水倍率)は、EDANA法(ERT442.2-02)に準拠して測定した。なお、荷重条件を4.83kPa(0.7psi)に変更した。
 (c)SFC(生理食塩水流れ誘導性)
 本発明の吸水性樹脂のSFC(生理食塩水流れ誘導性)は、米国特許第5669894号に開示された測定方法に準拠して測定した。
 (d)重量平均粒子径(D50)
 本発明の吸水性樹脂の重量平均粒子径(D50)は、米国特許出願公開第2006/204755号に開示された測定方法に準拠して測定した。
 (e)FSR(吸水速度)
 本発明の吸水性樹脂のFSR(吸水速度)は、国際公開第2009/016055号に開示された測定方法に準拠して測定した。
 (f)Ext(水可溶分)
 本発明の吸水性樹脂のExt(水可溶分)は、EDANA法(ERT470.2-02)に準拠して測定した。
 [製造例1]
 ポリアクリル酸(塩)系吸水性樹脂の連続製造装置として、重合工程、ゲル粉砕工程、乾燥工程、粉砕工程、分級工程、表面架橋工程(表面架橋剤の混合工程、加熱処理工程、冷却工程)及び整粒工程を含む製造装置を用意した。当該製造装置は、上記各工程がこの順序で構成されており、各工程間は輸送工程によって連結されていた。当該連続製造装置を用いて、2000(kg/hr)で吸水性樹脂を連続的に製造した。
 先ず、単量体水溶液(1)として、中和率73モル%、単量体濃度38重量%のアクリル酸部分ナトリウム塩水溶液を作成した。その際、内部架橋剤として、ポリエチレングリコールジアクリレート(平均n数;9)を、全単量体のモル数に対して0.09モル%となるように添加した。
 (重合工程)
 次に、上記単量体水溶液(1)を、定量ポンプを用いて連続的に重合装置に供給(送液)した。その際、送液配管の途中から窒素ガスを連続的に吹き込み、単量体水溶液(1)中の溶存酸素の濃度を0.5ppm以下とした。続いて、重合開始剤として、過硫酸ナトリウム及びL-アスコルビン酸を別々の供給配管を用いて、連続的に混合(ラインミキシング)した。過硫酸ナトリウム及びL-アスコルビン酸の添加量は、単量体1モルに対して、それぞれ0.12g、0.005gであった。
 上記重合装置は、両端に堰を有する平面スチールベルト重合装置であり、当該重合装置を用いて、静置水溶液重合を連続的に行った。なお、当該重合装置に供給された液は、平面スチールベルト上での厚みが約30mmであり、当該重合の重合時間は30分間であった。当該操作によって、帯状の含水ゲル状架橋重合体(含水ゲル)(1)を得た。
 (ゲル粉砕工程)
 次に、上記帯状の含水ゲル(1)を、上記平面スチールベルトの進行方向に対して、垂直方向に等間隔に切断した後、孔径7mmのミートチョッパーに連続的に供給して、重量平均粒子径(D50)約2mmの粒子状にゲル粉砕した。当該操作によって、粒子状の含水ゲル(1)を得た。
 (乾燥工程)
 続いて、粒子状の含水ゲル(1)を、通気バンド型連続乾燥機の多孔板上に、厚みが50mmとなるように積載し、温度185℃の熱風を風速1.6(m/s)で30分間通気して乾燥した。当該操作によって、乾燥機出口において、ブロック状の乾燥重合体(1)を得た。
 (粉砕工程)
 続いて、ブロック状の乾燥重合体(1)全量を、3段ロールミル(ロールギャップ;上から順に1.0mm/0.65mm/0.42mm)に連続的に供給して、粉砕した。なお、当該粉砕装置(3段ロールミル)に供給された乾燥重合体(1)の温度は約60℃であり、粉砕工程での減圧度を0.29kPaに調整した。当該操作によって、粉砕重合体(1)を得た。
 (分級工程)
 続いて、粉砕重合体(1)全量を、分級装置(目開きが上から順に、710μm/150μmである合計2枚の金属篩網から構成される篩い分け装置)に連続的に供給して、分級した。なお、当該分級装置に供給される粉砕重合体(1)の温度は約60℃であり、当該分級装置が据え付けられている架台は、接地抵抗値が5Ωの接地(除電)がなされていた。当該操作により、不定形破砕状の吸水性樹脂粉末(1)を得た。
 上記一連の操作で得られた吸水性樹脂粉末(1)の物性は以下の通りであった。即ち、固形分;97重量%、重量平均粒子径(D50);375μm、粒度分布の対数標準偏差(σζ);0.38、無加圧下吸水倍率(CRC);33.9(g/g)であった。
 (表面架橋工程)
 次に、上記吸水性樹脂粉末(1)100重量部に対して、エチレンカーボネート0.35重量部、プロピレングリコール0.58重量部、ポリオキシエチレン(20)ソルビタンモノステアレート(花王株式会社製)0.001重量部及び脱イオン水2.3重量部からなる表面処理剤溶液(1)を用意した。
 (表面架橋剤の混合工程)
 上記吸水性樹脂粉末(1)を高速混合機(タービュライザー/1000rpm)に、連続的に2000(kg/hr)で供給した。その際、上記表面処理剤溶液(1)を、スプレーを用いて噴霧し、均一に混合した。
 (加熱処理工程)
その後、当該混合物をパドルドライヤーに移送し、200℃で40分間加熱処理を行った。
 (冷却工程)
 上記加熱処理後、当該加熱処理工程で使用したパドルドライヤーと同一仕様のパドルドライヤーを用いて、表面処理された吸水性樹脂粉末(1)の温度が60℃となるまで、強制的に冷却を行った(冷却工程)。
 なお、当該冷却の際、表面処理された吸水性樹脂粉末(1)100重量部に対して、27重量%の硫酸アルミニウム水溶液(酸化アルミニウム換算で8重量%)0.80重量部、60重量%の乳酸ナトリウム水溶液0.13重量部及びプロピレングリコール0.02重量部からなる混合液を、スプレーを用いて噴霧し、混合した。
 (整粒工程)
 その後、目開き710μmのJIS標準篩を有する篩い分け装置を用いて、表面処理された吸水性樹脂粉末(1)の全量が通過するまで解砕を行った。なお、左記の「解砕」とは、表面処理時に凝集した吸水性樹脂粉末(1)について、目開き710μmの篩網を通過するまで解す操作のことをいう。以上の操作により、製品としての吸水性樹脂(A)を得た。得られた吸水性樹脂(A)の物性は以下の通りであった。即ち、重量平均粒子径(D50);387μm、無加圧下吸水倍率(CRC);30.1(g/g)、加圧下吸水倍率(AAP);24.6(g/g)、生理食塩水流れ誘導性(SFC);50(×10-7・cm・s・g-1)、吸水速度(FSR);0.25(g/g/s)、水可溶分(Ext);9.3重量%であった。
 [実施例1]
 上記製造例1のポリアクリル酸(塩)系吸水性樹脂の製造工程において、通気バンド型連続乾燥機(乾燥工程)から排出されるガス(以下、「排ガス」と称する。)を、図1に示した湿式排ガス吸収塔1を用いて捕集した。なお、当該排ガス中には気体のアクリル酸が200容積ppm含有しており、排ガスの温度は160℃であった。
 上記排ガスは、比冷却出力が1.4(W/cm)の熱交換器で冷却、熱回収された後、排ガス供給ライン2を介して、流量1000(Nm/min)で湿式排ガス吸収塔1に供給した。なお、当該熱回収後の排ガスの温度は、100℃であった。
 一方、上記排ガスの吸収液として、カルシウムイオンの含有量が0.2ppmのイオン交換水(25℃での電気伝導率は1.1(μS/cm))と48重量%の水酸化ナトリウム水溶液とを混合して調製した、1.0×10-3(mol/l)の水酸化ナトリウム水溶液(pH10)を使用した。なお、当該吸収液は、吸収液供給タンク8に保存した。また、長期連続稼働では徐々に湿式排ガス吸収塔1内の吸収液が減少していくため、適宜補充した。更に、吸収液供給タンク8の保有量についても減少するため、適宜、補充を行った。また操業中は、湿式排ガス吸収塔1内の吸収液のpHと多価金属イオンの含有量をモニタリングして吸収液のpHが9~11、多価金属イオンの含有量が100ppm以下を維持するように、適宜吸収液を吸収液抜出ライン11から抜き出すと共に、吸収液供給タンク8から適宜吸収液を追加した。なお、吸収液供給タンク8内の吸収液のpH等は必要に応じて水供給ライン14、アルカリ化合物水溶液供給ライン15からの供給量を制御することで調整した。
 湿式排ガス吸収塔1での操作として、先ず、吸収液供給ポンプ9を用いて、湿式排ガス吸収塔1の塔底に上記吸収液を3m供給した。次に、循環ポンプ4を用いて、流量1.4(m/min)で循環ライン7及び吸収液ライン5を経て、シャワーノズル6から下向きに吸収液を噴霧した。なお、当該吸収液の温度は、シャワーノズル6から噴霧する直前の温度が50℃になるように、熱交換器16を用いて調整した。
 その後、排ガス供給ライン2から排ガスを供給することで、吸収液と向流接触させた。排ガスを吸収した後の吸収液の温度は64℃であった。なお、湿式排ガス吸収塔1内に設置した充填層13によって、気液接触がより効率的に行われた。
 続いて、排ガスを吸収した液は、循環ポンプ4を用いて、循環ライン7及び吸収液ライン5を介して循環利用した。このとき、該液はシャワーノズル6から噴霧する直前の温度が50℃になるように熱交換器を用いて調整した後、シャワーノズル6から噴霧した。
 また、上記吸収液に吸収されなかった排ガスは、ミストセパレーター12を経て塔頂部の排ガス排出ライン3から系外に排出した。このときの該排ガス中に含まれる有機物量を測定したところ、吸収塔に供給される前の排ガス中に含まれる有機物全量の99.92重量%が除去されていた。なお、図示されていないが、排ガス排出ライン3の先には、スチームエゼクターが設置されており、湿式排ガス吸収塔1の内部圧力は微減圧(大気圧-5mbar)であった。
 上記操作を3ヶ月間連続して実施した後、湿式排ガス吸収塔1のシャワーノズル6を点検したところ、水不溶性の金属塩の付着は見られず、目詰まりもなかった。
 [比較例1]
 上記実施例1において、排ガスの吸収液として、カルシウムイオンの含有量が300ppmのイオン交換水(25℃での電気伝導率は1550(μS/cm))と48重量%の水酸化ナトリウム水溶液とを混合して調製した、0.1(mol/l)の水酸化ナトリウム水溶液(pH13)に変更した以外は、実施例1と同様の操作を行った。
 上記操作を1週間連続して実施したところ、吸収液の噴霧が急停止した。そこで、湿式排ガス吸収塔1のシャワーノズル6を点検した結果、水不溶性のカルシウム塩がシャワーノズル6の噴霧口に多量に付着しており、目詰まりを起こしていた。
 [比較例2]
 上記実施例1において、排ガスの吸収液として、カルシウムイオンの含有量が300ppmのイオン交換水(25℃での電気伝導率は1550(μS/cm))と48重量%の水酸化ナトリウム水溶液とを混合して調製した、1.0×10-3(mol/l)の水酸化ナトリウム水溶液(pH10)に変更した以外は、実施例1と同様の操作を行った。
 上記操作を2週間連続して実施したところ、吸収液の噴霧が急停止した。そこで、湿式排ガス吸収塔1のシャワーノズル6を点検した結果、水不溶性のカルシウム塩がシャワーノズル6の噴霧口に多量に付着しており、目詰まりを起こしていた。
 [比較例3]
 上記実施例1において、排ガスの吸収液として、カルシウムイオンの含有量が0.2ppmのイオン交換水(25℃での電気伝導率は1.1(μS/cm))と48重量%の水酸化ナトリウム水溶液とを混合して調製した、0.1(mol/l)の水酸化ナトリウム水溶液(pH13)に変更した以外は、実施例1と同様の操作を行った。
 上記操作を3ヶ月間連続して実施したところ、吸収液の噴霧量が減少した(流量1.4(m/min)⇒0.9(m/min))。そこで、湿式排ガス吸収塔1のシャワーノズル6を点検した結果、水不溶性のカルシウム塩がシャワーノズル6の噴霧口の一部を塞いでいた。
 (まとめ)
 上記のとおり、比較例1のように強アルカリ性(pH=13)で、かつ多価金属イオンの含有量が100ppmを超える水を排ガスの吸収液として使用した場合、シャワーノズル6の噴霧口において急速に水不溶性の多価金属塩が大量に付着し、詰まりが発生する。
 また、比較例2のようにアルカリ度を低くした場合(pH=10)であっても、多価金属イオンの含有量が100ppmを超える水を排ガスの吸収液として使用した場合、シャワーノズル6の噴霧口において水不溶性の多価金属塩が付着し、詰まりが発生する。
 さらに、比較例3のように強アルカリ性(pH=13)で、かつ多価金属イオンの含有量が100ppm以下の水を排ガスの吸収液として使用した場合、水不溶性の多価金属塩の付着によるシャワーノズル6の噴霧口の一部閉塞が発生する。
 一方、実施例1のように、pHが7~11であって、多価金属イオンの含有量が100ppm以下の水(25℃における電気伝導率が500(μS/cm)以下)を排ガスの吸収液として使用した場合、シャワーノズル6の噴霧口における詰まりは発生せず、水不溶性の多価金属塩の付着も抑制できる。
 本発明に係るポリアクリル酸(塩)系吸水性樹脂の製造方法は、吸水性樹脂の生産、特に大量生産に適用することができる。また、本発明によって得られるポリアクリル酸(塩)系吸水性樹脂は、紙オムツ等の衛生用品の吸収体用途に適している。
1:湿式排ガス吸収塔
2:排ガス供給ライン
3:排ガス排出ライン
4:循環ポンプ
5:吸収液ライン
6:シャワーノズル
7:循環ライン
8:吸収液供給タンク
9:吸収液供給ポンプ
10:バルブ
11:吸収液抜出ライン
12:ミストセパレーター
13:充填層
14:水供給ライン
15:アルカリ化合物水溶液供給ライン
16:熱交換器

Claims (22)

  1.  ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、pHが7~11で、かつ多価金属イオンの含有量が100ppm以下の水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法。
  2.  上記多価金属イオンの含有量が10ppm以下である、請求項1に記載の製造方法。
  3.  上記多価金属イオンの含有量が1ppm以下である、請求項1又は2に記載の製造方法。
  4.  上記多価金属イオンが、周期表第2族元素のイオンである、請求項1~3の何れか1項に記載の製造方法。
  5.  ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出されるガスを、25℃における電気伝導率が500(μS/cm)以下の水とアルカリ化合物とを混合してpHを7~11に調整した水に吸収させる工程を更に含む、ポリアクリル酸(塩)系吸水性樹脂の製造方法。
  6.  上記水の温度が30~100℃である、請求項1~5の何れか1項に記載の製造方法。
  7.  上記アルカリ化合物が、アルカリ金属の水酸化物、炭酸塩又は炭酸水素塩から選ばれる少なくとも1種以上の化合物である、請求項5に記載の製造方法。
  8.  上記製造工程から排出されるガスの温度が、排ガス吸収塔に導入される時点で30~150℃である、請求項1~7の何れか1項に記載の製造方法。
  9.  上記製造工程から排出されるガス中に単量体が含まれる、請求項1~8の何れか1項に記載の製造方法。
  10.  上記製造工程から排出されるガスが微減圧で上記水に吸収される、請求項1~9の何れか1項に記載の製造方法。
  11.  上記製造工程から排出されるガスを熱交換器で冷却して熱回収される、請求項1~10の何れか1項に記載の製造方法。
  12.  上記熱交換器の比冷却出力が10(W/cm)以下である、請求項11に記載の製造方法。
  13.  上記水吸収工程から排出される吸収液をポリアクリル酸(塩)系吸水性樹脂の製造工程にリサイクルする、請求項1~12の何れか1項に記載の製造方法。
  14.  上記水吸収工程から排出される吸収液を燃焼処理する、請求項1~12の何れか1項に記載の製造方法。
  15.  上記水吸収工程から排出される吸収液を生物処理する、請求項1~12の何れか1項に記載の製造方法。
  16.  上記ポリアクリル酸(塩)系吸水性樹脂の生産量が1ラインあたり1(t/hr)以上であり、かつ、10日間以上の連続生産である、請求項1~15の何れか1項に記載の製造方法。
  17.  上記ポリアクリル酸(塩)系吸水性樹脂の製造工程において、多価金属を使用する、請求項1~16の何れか1項に記載の製造方法。
  18.  上記ポリアクリル酸(塩)系吸水性樹脂の製造工程に、アクリル酸(塩)系単量体水溶液の重合工程、含水ゲル状架橋重合体の乾燥工程、及び吸水性樹脂粉末の表面架橋工程が含まれる、請求項1~17の何れか1項に記載の製造方法。
  19.  上記含水ゲル状架橋重合体の重量平均粒子径(D50)が2000μm以下である、請求項18に記載の製造方法。
  20.  上記乾燥工程が乾燥温度100~300℃で、風速3(m/s)以下の熱風乾燥である、請求項18又は19に記載の製造方法。
  21.  上記製造工程から排出されるガスが上記乾燥工程から排出されるものである、請求項18~20の何れか1項に記載の製造方法。
  22.  ポリアクリル酸(塩)系吸水性樹脂の製造工程から排出される排ガスと、該排ガス中の有機物を中和する吸収液とを気液接触させて、該排ガスから有機物を除去処理する吸水性樹脂の製造装置であって、
     上記排ガスと上記吸収液とを気液接触させる気液接触手段、
     上記気液接触手段上部から上記気液接触手段に上記吸収液を供給する噴霧手段、
     上記排ガスを上記気液接触手段下部から供給する排ガス供給手段、
     上記気液接触手段下部に滞留する上記吸収液を上記噴霧手段に移送する循環経路を有し、
     上記気液接触手段は、上記気液接触手段下部から供給された上記排ガスが上記気液接触手段内を縦断状態で通過するように設置し、
     上記噴霧手段は上記吸収液を上記気液接触手段に向けて下向きに設置し、
     上記循環経路は、上記吸収液を強制的に循環させる手段を有する吸水性樹脂の製造装置。
     
PCT/JP2014/080156 2013-11-14 2014-11-14 ポリアクリル酸(塩)系吸水性樹脂の製造方法 WO2015072536A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/036,230 US9682362B2 (en) 2013-11-14 2014-11-14 Process for producing water-absorbing polyacrylic acid (salt) resin
CN201480061613.4A CN105722581B (zh) 2013-11-14 2014-11-14 聚丙烯酸(盐)系吸水性树脂的制造方法
EP14862695.5A EP3069782B1 (en) 2013-11-14 2014-11-14 Process for producing water-absorbing polyacrylic acid (salt) resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013236034A JP2017006808A (ja) 2013-11-14 2013-11-14 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP2013-236034 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072536A1 true WO2015072536A1 (ja) 2015-05-21

Family

ID=53057470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080156 WO2015072536A1 (ja) 2013-11-14 2014-11-14 ポリアクリル酸(塩)系吸水性樹脂の製造方法

Country Status (5)

Country Link
US (1) US9682362B2 (ja)
EP (1) EP3069782B1 (ja)
JP (1) JP2017006808A (ja)
CN (1) CN105722581B (ja)
WO (1) WO2015072536A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107847905A (zh) * 2015-07-01 2018-03-27 株式会社日本触媒 颗粒状吸水剂
WO2018092863A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495845B1 (ko) * 2013-09-30 2015-02-25 주식회사 엘지화학 고흡수성 수지 및 이의 제조 방법
US10285866B2 (en) 2015-01-16 2019-05-14 Lg Chem, Ltd. Super absorbent polymer
CN107936271B (zh) * 2017-11-07 2021-06-11 露乐健康科技股份有限公司 一种真空负压改进吸水树脂表面交联的处理方法
US10578369B1 (en) * 2018-02-23 2020-03-03 United States Of America As Represented By The Secretary Of The Air Force Thermal management using endothermic heat sink

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068189A1 (de) 1981-06-19 1983-01-05 Chemische Fabrik Stockhausen GmbH Vernetzte, in Wasser quellbare Copolymerisate und ihre Verwendung als Absorptionsmittel für wässrige Körperflüssigkeiten wie Urin und andere elektrolythaltige wässrige Flüssigkeiten
USRE32649E (en) 1985-06-18 1988-04-19 The Procter & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US5633329A (en) 1995-01-31 1997-05-27 Basf Aktiengesellschaft Preparation of high molecular weight polymers
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US6174978B1 (en) 1997-12-10 2001-01-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin
JP2001046802A (ja) * 1999-06-03 2001-02-20 Nippon Shokubai Co Ltd 易閉塞性物質を含む有機化合物の精製方法及び精製装置
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP2003222322A (ja) * 2002-01-30 2003-08-08 Nippon Shokubai Co Ltd アクリル酸及びポリアクリル酸製造プロセス廃出物の処理方法
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US20050016393A1 (en) 2003-07-27 2005-01-27 Soberanis David L. Wine pomace extraction apparatus and method
WO2005075070A1 (ja) 2004-02-05 2005-08-18 Nippon Shokubai Co., Ltd. 粒子状吸水剤及びその製造方法並びに吸水性物品
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7049366B2 (en) 2001-12-19 2006-05-23 Nippon Shokubai Co., Ltd. Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
EP1866349A1 (en) 2005-04-07 2007-12-19 Nippon Shokubai Co.,Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
US20080194863A1 (en) 2005-09-07 2008-08-14 Basf Se Neutralization Process
WO2009016055A2 (en) 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
WO2010040465A1 (en) 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A process for the production of a superabsorbent polymer
WO2010040467A1 (en) 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A process for the production of a superabsorbent polymer
WO2010040466A1 (en) 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A continuous process for the production of a superabsorbent polymer
US7741400B2 (en) 2000-08-03 2010-06-22 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
WO2011025012A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011042404A1 (de) 2009-10-09 2011-04-14 Basf Se Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
JP2012504044A (ja) * 2008-09-26 2012-02-16 ニューマン システムズ グループ、インコーポレイティッド 気液接触器および気液接触方法
JP2014079677A (ja) * 2012-10-15 2014-05-08 Nippon Shokubai Co Ltd 廃ガスの処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654039A (en) 1985-06-18 1987-03-31 The Proctor & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
CN1167486C (zh) 1999-06-03 2004-09-22 株式会社日本触媒 用于含有易堵塞性物质的有机化合物的精制塔及精制法
JP4056336B2 (ja) * 2002-09-19 2008-03-05 株式会社日本触媒 アクリル酸及びアクリル酸エステルプロセス廃棄物の処理方法
US8864876B2 (en) 2005-02-14 2014-10-21 Neumann Systems Group, Inc. Indirect and direct method of sequestering contaminates
US8398059B2 (en) 2005-02-14 2013-03-19 Neumann Systems Group, Inc. Gas liquid contactor and method thereof
US7379487B2 (en) 2005-02-14 2008-05-27 Neumann Information Systems, Inc. Two phase reactor
US8113491B2 (en) 2005-02-14 2012-02-14 Neumann Systems Group, Inc. Gas-liquid contactor apparatus and nozzle plate
CN101347712B (zh) 2008-08-21 2011-12-07 浙江菲达环保科技股份有限公司 一种钠法脱硫塔
EP2546284B1 (en) * 2010-03-12 2019-07-10 Nippon Shokubai Co., Ltd. Method for manufacturing a water-absorbing resin

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0068189A1 (de) 1981-06-19 1983-01-05 Chemische Fabrik Stockhausen GmbH Vernetzte, in Wasser quellbare Copolymerisate und ihre Verwendung als Absorptionsmittel für wässrige Körperflüssigkeiten wie Urin und andere elektrolythaltige wässrige Flüssigkeiten
USRE32649E (en) 1985-06-18 1988-04-19 The Procter & Gamble Company Hydrogel-forming polymer compositions for use in absorbent structures
US4893999A (en) 1985-12-18 1990-01-16 Chemische Fabrik Stockhausen Gmbh Apparatus for the continuous production of polymers and copolymers of water-soluble monomers
US5669894A (en) 1994-03-29 1997-09-23 The Procter & Gamble Company Absorbent members for body fluids having good wet integrity and relatively high concentrations of hydrogel-forming absorbent polymer
US5633329A (en) 1995-01-31 1997-05-27 Basf Aktiengesellschaft Preparation of high molecular weight polymers
US6174978B1 (en) 1997-12-10 2001-01-16 Nippon Shokubai Co., Ltd. Production process of water-absorbent resin
US6241928B1 (en) 1998-04-28 2001-06-05 Nippon Shokubai Co., Ltd. Method for production of shaped hydrogel of absorbent resin
JP2001046802A (ja) * 1999-06-03 2001-02-20 Nippon Shokubai Co Ltd 易閉塞性物質を含む有機化合物の精製方法及び精製装置
US6710141B1 (en) 1999-11-20 2004-03-23 Basf Aktiengesellschaft Method for continuously producing cross-linked fine-particle geleous polymerizates
US7741400B2 (en) 2000-08-03 2010-06-22 Nippon Shokubai Co., Ltd. Water-absorbent resin, hydropolymer, process for producing them, and uses of them
US7183456B2 (en) 2000-09-20 2007-02-27 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US6987151B2 (en) 2001-09-12 2006-01-17 Dow Global Technologies Inc. Continuous polymerization process for the manufacture of superabsorbent polymers
US7049366B2 (en) 2001-12-19 2006-05-23 Nippon Shokubai Co., Ltd. Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
JP2003222322A (ja) * 2002-01-30 2003-08-08 Nippon Shokubai Co Ltd アクリル酸及びポリアクリル酸製造プロセス廃出物の処理方法
EP1415977A1 (en) 2002-01-30 2004-05-06 Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha A process for treating wastes from acrylic acid and polyacrylic acid production processes
US7265190B2 (en) 2002-11-07 2007-09-04 Nippon Shokubai Co., Ltd. Process and apparatus for production of water-absorbent resin
US7638570B2 (en) 2003-02-10 2009-12-29 Nippon Shokubai Co., Ltd. Water-absorbing agent
US20050016393A1 (en) 2003-07-27 2005-01-27 Soberanis David L. Wine pomace extraction apparatus and method
WO2005075070A1 (ja) 2004-02-05 2005-08-18 Nippon Shokubai Co., Ltd. 粒子状吸水剤及びその製造方法並びに吸水性物品
US20050215734A1 (en) 2004-03-24 2005-09-29 Yorimichi Dairoku Method for continuous production of water-absorbent resin
WO2006100300A1 (de) 2005-03-24 2006-09-28 Basf Aktiengesellschaft Verfahren zur herstellung wasserabsorbierender polymere
EP1866349A1 (en) 2005-04-07 2007-12-19 Nippon Shokubai Co.,Ltd. Polyacrylic acid (salt) water-absorbent resin, production process thereof, and acrylic acid used in polymerization for production of water-absorbent resin
EP1879930A1 (en) 2005-04-07 2008-01-23 Nippon Shokubai Co., Ltd. Production process of polyacrylic acid (salt) water-absorbent resin
US20080161512A1 (en) 2005-04-07 2008-07-03 Takaaki Kawano Production Process of Polyacrylic Acid (Salt) Water-Absorbent Resin
US20080194863A1 (en) 2005-09-07 2008-08-14 Basf Se Neutralization Process
WO2009016055A2 (en) 2007-07-27 2009-02-05 Basf Se Water-absorbing polymeric particles and method for the production thereof
WO2009123197A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法及びその製造装置
JP2012504044A (ja) * 2008-09-26 2012-02-16 ニューマン システムズ グループ、インコーポレイティッド 気液接触器および気液接触方法
WO2010040465A1 (en) 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A process for the production of a superabsorbent polymer
WO2010040466A1 (en) 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A continuous process for the production of a superabsorbent polymer
WO2010040467A1 (en) 2008-10-07 2010-04-15 Evonik Stockhausen Gmbh A process for the production of a superabsorbent polymer
JP2012505272A (ja) * 2008-10-07 2012-03-01 エボニック シュトックハウゼン ゲゼルシャフト ミット ベシュレンクテル ハフツング 超吸収性ポリマーの製造のための方法
WO2011025012A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011025013A1 (ja) 2009-08-28 2011-03-03 株式会社日本触媒 吸水性樹脂の製造方法
WO2011040530A1 (ja) 2009-09-30 2011-04-07 株式会社日本触媒 粒子状吸水剤及びその製造方法
WO2011042404A1 (de) 2009-10-09 2011-04-14 Basf Se Verwendung von heizdampfkondensat zur herstellung wasserabsorbierender polymerpartikel
WO2011111657A1 (ja) 2010-03-08 2011-09-15 株式会社日本触媒 粒子状含水ゲル状架橋重合体の乾燥方法
WO2011126079A1 (ja) 2010-04-07 2011-10-13 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法及びポリアクリル酸(塩)系吸水性樹脂粉末
JP2014079677A (ja) * 2012-10-15 2014-05-08 Nippon Shokubai Co Ltd 廃ガスの処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F L BUCHHOLZ AND A T GRAHAM: "Modern Superabsorbent Polymer Technology", 2000, WILEY-VCH, pages: 69 - 103

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107847905A (zh) * 2015-07-01 2018-03-27 株式会社日本触媒 颗粒状吸水剂
WO2018092863A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法、並びに粒子状含水ゲルの乾燥装置及び乾燥方法
WO2018092864A1 (ja) 2016-11-16 2018-05-24 株式会社日本触媒 吸水性樹脂粉末の製造方法及びその製造装置
US11465126B2 (en) 2016-11-16 2022-10-11 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder and production apparatus therefor
US11766659B2 (en) 2016-11-16 2023-09-26 Nippon Shokubai Co., Ltd. Method for producing water-absorbent resin powder, and drying device and drying method for particulate hydrous gel

Also Published As

Publication number Publication date
US20160279602A1 (en) 2016-09-29
EP3069782A4 (en) 2017-07-26
EP3069782A1 (en) 2016-09-21
US9682362B2 (en) 2017-06-20
CN105722581B (zh) 2018-07-17
CN105722581A (zh) 2016-06-29
EP3069782B1 (en) 2019-12-25
JP2017006808A (ja) 2017-01-12

Similar Documents

Publication Publication Date Title
US9233186B2 (en) Process for producing water-absorbing resin
WO2015072536A1 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP5524042B2 (ja) 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
JP6360153B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
EP4252728A2 (en) Water absorbing agent based on polyacrylic acid and/or a salt thereof
KR102195097B1 (ko) 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법
JP5514841B2 (ja) 吸水性樹脂の製造方法
JP6171083B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
JPWO2011090130A1 (ja) 吸水性樹脂の製造方法
JP5587409B2 (ja) 粒子状吸水性樹脂の製造方法
CN106255708B (zh) 聚丙烯酸(盐)系吸水性树脂的制造方法
KR102304003B1 (ko) 폴리아크릴산(염)계 흡수성 수지의 제조 방법
JP6521668B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP2016060764A (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862695

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15036230

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014862695

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014862695

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP